1//===- AArch64SpeculationHardening.cpp - Harden Against Missspeculation  --===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass to insert code to mitigate against side channel
10// vulnerabilities that may happen under control flow miss-speculation.
11//
12// The pass implements tracking of control flow miss-speculation into a "taint"
13// register. That taint register can then be used to mask off registers with
14// sensitive data when executing under miss-speculation, a.k.a. "transient
15// execution".
16// This pass is aimed at mitigating against SpectreV1-style vulnarabilities.
17//
18// It also implements speculative load hardening, i.e. using the taint register
19// to automatically mask off loaded data.
20//
21// As a possible follow-on improvement, also an intrinsics-based approach as
22// explained at https://lwn.net/Articles/759423/ could be implemented on top of
23// the current design.
24//
25// For AArch64, the following implementation choices are made to implement the
26// tracking of control flow miss-speculation into a taint register:
27// Some of these are different than the implementation choices made in
28// the similar pass implemented in X86SpeculativeLoadHardening.cpp, as
29// the instruction set characteristics result in different trade-offs.
30// - The speculation hardening is done after register allocation. With a
31//   relative abundance of registers, one register is reserved (X16) to be
32//   the taint register. X16 is expected to not clash with other register
33//   reservation mechanisms with very high probability because:
34//   . The AArch64 ABI doesn't guarantee X16 to be retained across any call.
35//   . The only way to request X16 to be used as a programmer is through
36//     inline assembly. In the rare case a function explicitly demands to
37//     use X16/W16, this pass falls back to hardening against speculation
38//     by inserting a DSB SYS/ISB barrier pair which will prevent control
39//     flow speculation.
40// - It is easy to insert mask operations at this late stage as we have
41//   mask operations available that don't set flags.
42// - The taint variable contains all-ones when no miss-speculation is detected,
43//   and contains all-zeros when miss-speculation is detected. Therefore, when
44//   masking, an AND instruction (which only changes the register to be masked,
45//   no other side effects) can easily be inserted anywhere that's needed.
46// - The tracking of miss-speculation is done by using a data-flow conditional
47//   select instruction (CSEL) to evaluate the flags that were also used to
48//   make conditional branch direction decisions. Speculation of the CSEL
49//   instruction can be limited with a CSDB instruction - so the combination of
50//   CSEL + a later CSDB gives the guarantee that the flags as used in the CSEL
51//   aren't speculated. When conditional branch direction gets miss-speculated,
52//   the semantics of the inserted CSEL instruction is such that the taint
53//   register will contain all zero bits.
54//   One key requirement for this to work is that the conditional branch is
55//   followed by an execution of the CSEL instruction, where the CSEL
56//   instruction needs to use the same flags status as the conditional branch.
57//   This means that the conditional branches must not be implemented as one
58//   of the AArch64 conditional branches that do not use the flags as input
59//   (CB(N)Z and TB(N)Z). This is implemented by ensuring in the instruction
60//   selectors to not produce these instructions when speculation hardening
61//   is enabled. This pass will assert if it does encounter such an instruction.
62// - On function call boundaries, the miss-speculation state is transferred from
63//   the taint register X16 to be encoded in the SP register as value 0.
64//
65// For the aspect of automatically hardening loads, using the taint register,
66// (a.k.a. speculative load hardening, see
67//  https://llvm.org/docs/SpeculativeLoadHardening.html), the following
68// implementation choices are made for AArch64:
69//   - Many of the optimizations described at
70//     https://llvm.org/docs/SpeculativeLoadHardening.html to harden fewer
71//     loads haven't been implemented yet - but for some of them there are
72//     FIXMEs in the code.
73//   - loads that load into general purpose (X or W) registers get hardened by
74//     masking the loaded data. For loads that load into other registers, the
75//     address loaded from gets hardened. It is expected that hardening the
76//     loaded data may be more efficient; but masking data in registers other
77//     than X or W is not easy and may result in being slower than just
78//     hardening the X address register loaded from.
79//   - On AArch64, CSDB instructions are inserted between the masking of the
80//     register and its first use, to ensure there's no non-control-flow
81//     speculation that might undermine the hardening mechanism.
82//
83// Future extensions/improvements could be:
84// - Implement this functionality using full speculation barriers, akin to the
85//   x86-slh-lfence option. This may be more useful for the intrinsics-based
86//   approach than for the SLH approach to masking.
87//   Note that this pass already inserts the full speculation barriers if the
88//   function for some niche reason makes use of X16/W16.
89// - no indirect branch misprediction gets protected/instrumented; but this
90//   could be done for some indirect branches, such as switch jump tables.
91//===----------------------------------------------------------------------===//
92
93#include "AArch64InstrInfo.h"
94#include "AArch64Subtarget.h"
95#include "Utils/AArch64BaseInfo.h"
96#include "llvm/ADT/BitVector.h"
97#include "llvm/ADT/SmallVector.h"
98#include "llvm/CodeGen/MachineBasicBlock.h"
99#include "llvm/CodeGen/MachineFunction.h"
100#include "llvm/CodeGen/MachineFunctionPass.h"
101#include "llvm/CodeGen/MachineInstr.h"
102#include "llvm/CodeGen/MachineInstrBuilder.h"
103#include "llvm/CodeGen/MachineOperand.h"
104#include "llvm/CodeGen/MachineRegisterInfo.h"
105#include "llvm/CodeGen/RegisterScavenging.h"
106#include "llvm/IR/DebugLoc.h"
107#include "llvm/Pass.h"
108#include "llvm/Support/CodeGen.h"
109#include "llvm/Support/Debug.h"
110#include "llvm/Target/TargetMachine.h"
111#include <cassert>
112
113using namespace llvm;
114
115#define DEBUG_TYPE "aarch64-speculation-hardening"
116
117#define AARCH64_SPECULATION_HARDENING_NAME "AArch64 speculation hardening pass"
118
119static cl::opt<bool> HardenLoads("aarch64-slh-loads", cl::Hidden,
120                                 cl::desc("Sanitize loads from memory."),
121                                 cl::init(true));
122
123namespace {
124
125class AArch64SpeculationHardening : public MachineFunctionPass {
126public:
127  const TargetInstrInfo *TII;
128  const TargetRegisterInfo *TRI;
129
130  static char ID;
131
132  AArch64SpeculationHardening() : MachineFunctionPass(ID) {
133    initializeAArch64SpeculationHardeningPass(*PassRegistry::getPassRegistry());
134  }
135
136  bool runOnMachineFunction(MachineFunction &Fn) override;
137
138  StringRef getPassName() const override {
139    return AARCH64_SPECULATION_HARDENING_NAME;
140  }
141
142private:
143  unsigned MisspeculatingTaintReg;
144  unsigned MisspeculatingTaintReg32Bit;
145  bool UseControlFlowSpeculationBarrier;
146  BitVector RegsNeedingCSDBBeforeUse;
147  BitVector RegsAlreadyMasked;
148
149  bool functionUsesHardeningRegister(MachineFunction &MF) const;
150  bool instrumentControlFlow(MachineBasicBlock &MBB,
151                             bool &UsesFullSpeculationBarrier);
152  bool endsWithCondControlFlow(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
153                               MachineBasicBlock *&FBB,
154                               AArch64CC::CondCode &CondCode) const;
155  void insertTrackingCode(MachineBasicBlock &SplitEdgeBB,
156                          AArch64CC::CondCode &CondCode, DebugLoc DL) const;
157  void insertSPToRegTaintPropagation(MachineBasicBlock &MBB,
158                                     MachineBasicBlock::iterator MBBI) const;
159  void insertRegToSPTaintPropagation(MachineBasicBlock &MBB,
160                                     MachineBasicBlock::iterator MBBI,
161                                     unsigned TmpReg) const;
162  void insertFullSpeculationBarrier(MachineBasicBlock &MBB,
163                                    MachineBasicBlock::iterator MBBI,
164                                    DebugLoc DL) const;
165
166  bool slhLoads(MachineBasicBlock &MBB);
167  bool makeGPRSpeculationSafe(MachineBasicBlock &MBB,
168                              MachineBasicBlock::iterator MBBI,
169                              MachineInstr &MI, unsigned Reg);
170  bool lowerSpeculationSafeValuePseudos(MachineBasicBlock &MBB,
171                                        bool UsesFullSpeculationBarrier);
172  bool expandSpeculationSafeValue(MachineBasicBlock &MBB,
173                                  MachineBasicBlock::iterator MBBI,
174                                  bool UsesFullSpeculationBarrier);
175  bool insertCSDB(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
176                  DebugLoc DL);
177};
178
179} // end anonymous namespace
180
181char AArch64SpeculationHardening::ID = 0;
182
183INITIALIZE_PASS(AArch64SpeculationHardening, "aarch64-speculation-hardening",
184                AARCH64_SPECULATION_HARDENING_NAME, false, false)
185
186bool AArch64SpeculationHardening::endsWithCondControlFlow(
187    MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
188    AArch64CC::CondCode &CondCode) const {
189  SmallVector<MachineOperand, 1> analyzeBranchCondCode;
190  if (TII->analyzeBranch(MBB, TBB, FBB, analyzeBranchCondCode, false))
191    return false;
192
193  // Ignore if the BB ends in an unconditional branch/fall-through.
194  if (analyzeBranchCondCode.empty())
195    return false;
196
197  // If the BB ends with a single conditional branch, FBB will be set to
198  // nullptr (see API docs for TII->analyzeBranch). For the rest of the
199  // analysis we want the FBB block to be set always.
200  assert(TBB != nullptr);
201  if (FBB == nullptr)
202    FBB = MBB.getFallThrough();
203
204  // If both the true and the false condition jump to the same basic block,
205  // there isn't need for any protection - whether the branch is speculated
206  // correctly or not, we end up executing the architecturally correct code.
207  if (TBB == FBB)
208    return false;
209
210  assert(MBB.succ_size() == 2);
211  // translate analyzeBranchCondCode to CondCode.
212  assert(analyzeBranchCondCode.size() == 1 && "unknown Cond array format");
213  CondCode = AArch64CC::CondCode(analyzeBranchCondCode[0].getImm());
214  return true;
215}
216
217void AArch64SpeculationHardening::insertFullSpeculationBarrier(
218    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
219    DebugLoc DL) const {
220  // A full control flow speculation barrier consists of (DSB SYS + ISB)
221  BuildMI(MBB, MBBI, DL, TII->get(AArch64::DSB)).addImm(0xf);
222  BuildMI(MBB, MBBI, DL, TII->get(AArch64::ISB)).addImm(0xf);
223}
224
225void AArch64SpeculationHardening::insertTrackingCode(
226    MachineBasicBlock &SplitEdgeBB, AArch64CC::CondCode &CondCode,
227    DebugLoc DL) const {
228  if (UseControlFlowSpeculationBarrier) {
229    insertFullSpeculationBarrier(SplitEdgeBB, SplitEdgeBB.begin(), DL);
230  } else {
231    BuildMI(SplitEdgeBB, SplitEdgeBB.begin(), DL, TII->get(AArch64::CSELXr))
232        .addDef(MisspeculatingTaintReg)
233        .addUse(MisspeculatingTaintReg)
234        .addUse(AArch64::XZR)
235        .addImm(CondCode);
236    SplitEdgeBB.addLiveIn(AArch64::NZCV);
237  }
238}
239
240bool AArch64SpeculationHardening::instrumentControlFlow(
241    MachineBasicBlock &MBB, bool &UsesFullSpeculationBarrier) {
242  LLVM_DEBUG(dbgs() << "Instrument control flow tracking on MBB: " << MBB);
243
244  bool Modified = false;
245  MachineBasicBlock *TBB = nullptr;
246  MachineBasicBlock *FBB = nullptr;
247  AArch64CC::CondCode CondCode;
248
249  if (!endsWithCondControlFlow(MBB, TBB, FBB, CondCode)) {
250    LLVM_DEBUG(dbgs() << "... doesn't end with CondControlFlow\n");
251  } else {
252    // Now insert:
253    // "CSEL MisSpeculatingR, MisSpeculatingR, XZR, cond" on the True edge and
254    // "CSEL MisSpeculatingR, MisSpeculatingR, XZR, Invertcond" on the False
255    // edge.
256    AArch64CC::CondCode InvCondCode = AArch64CC::getInvertedCondCode(CondCode);
257
258    MachineBasicBlock *SplitEdgeTBB = MBB.SplitCriticalEdge(TBB, *this);
259    MachineBasicBlock *SplitEdgeFBB = MBB.SplitCriticalEdge(FBB, *this);
260
261    assert(SplitEdgeTBB != nullptr);
262    assert(SplitEdgeFBB != nullptr);
263
264    DebugLoc DL;
265    if (MBB.instr_end() != MBB.instr_begin())
266      DL = (--MBB.instr_end())->getDebugLoc();
267
268    insertTrackingCode(*SplitEdgeTBB, CondCode, DL);
269    insertTrackingCode(*SplitEdgeFBB, InvCondCode, DL);
270
271    LLVM_DEBUG(dbgs() << "SplitEdgeTBB: " << *SplitEdgeTBB << "\n");
272    LLVM_DEBUG(dbgs() << "SplitEdgeFBB: " << *SplitEdgeFBB << "\n");
273    Modified = true;
274  }
275
276  // Perform correct code generation around function calls and before returns.
277  // The below variables record the return/terminator instructions and the call
278  // instructions respectively; including which register is available as a
279  // temporary register just before the recorded instructions.
280  SmallVector<std::pair<MachineInstr *, unsigned>, 4> ReturnInstructions;
281  SmallVector<std::pair<MachineInstr *, unsigned>, 4> CallInstructions;
282  // if a temporary register is not available for at least one of the
283  // instructions for which we need to transfer taint to the stack pointer, we
284  // need to insert a full speculation barrier.
285  // TmpRegisterNotAvailableEverywhere tracks that condition.
286  bool TmpRegisterNotAvailableEverywhere = false;
287
288  RegScavenger RS;
289  RS.enterBasicBlock(MBB);
290
291  for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); I++) {
292    MachineInstr &MI = *I;
293    if (!MI.isReturn() && !MI.isCall())
294      continue;
295
296    // The RegScavenger represents registers available *after* the MI
297    // instruction pointed to by RS.getCurrentPosition().
298    // We need to have a register that is available *before* the MI is executed.
299    if (I != MBB.begin())
300      RS.forward(std::prev(I));
301    // FIXME: The below just finds *a* unused register. Maybe code could be
302    // optimized more if this looks for the register that isn't used for the
303    // longest time around this place, to enable more scheduling freedom. Not
304    // sure if that would actually result in a big performance difference
305    // though. Maybe RegisterScavenger::findSurvivorBackwards has some logic
306    // already to do this - but it's unclear if that could easily be used here.
307    unsigned TmpReg = RS.FindUnusedReg(&AArch64::GPR64commonRegClass);
308    LLVM_DEBUG(dbgs() << "RS finds "
309                      << ((TmpReg == 0) ? "no register " : "register ");
310               if (TmpReg != 0) dbgs() << printReg(TmpReg, TRI) << " ";
311               dbgs() << "to be available at MI " << MI);
312    if (TmpReg == 0)
313      TmpRegisterNotAvailableEverywhere = true;
314    if (MI.isReturn())
315      ReturnInstructions.push_back({&MI, TmpReg});
316    else if (MI.isCall())
317      CallInstructions.push_back({&MI, TmpReg});
318  }
319
320  if (TmpRegisterNotAvailableEverywhere) {
321    // When a temporary register is not available everywhere in this basic
322    // basic block where a propagate-taint-to-sp operation is needed, just
323    // emit a full speculation barrier at the start of this basic block, which
324    // renders the taint/speculation tracking in this basic block unnecessary.
325    insertFullSpeculationBarrier(MBB, MBB.begin(),
326                                 (MBB.begin())->getDebugLoc());
327    UsesFullSpeculationBarrier = true;
328    Modified = true;
329  } else {
330    for (auto MI_Reg : ReturnInstructions) {
331      assert(MI_Reg.second != 0);
332      LLVM_DEBUG(
333          dbgs()
334          << " About to insert Reg to SP taint propagation with temp register "
335          << printReg(MI_Reg.second, TRI)
336          << " on instruction: " << *MI_Reg.first);
337      insertRegToSPTaintPropagation(MBB, MI_Reg.first, MI_Reg.second);
338      Modified = true;
339    }
340
341    for (auto MI_Reg : CallInstructions) {
342      assert(MI_Reg.second != 0);
343      LLVM_DEBUG(dbgs() << " About to insert Reg to SP and back taint "
344                           "propagation with temp register "
345                        << printReg(MI_Reg.second, TRI)
346                        << " around instruction: " << *MI_Reg.first);
347      // Just after the call:
348      insertSPToRegTaintPropagation(
349          MBB, std::next((MachineBasicBlock::iterator)MI_Reg.first));
350      // Just before the call:
351      insertRegToSPTaintPropagation(MBB, MI_Reg.first, MI_Reg.second);
352      Modified = true;
353    }
354  }
355  return Modified;
356}
357
358void AArch64SpeculationHardening::insertSPToRegTaintPropagation(
359    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
360  // If full control flow speculation barriers are used, emit a control flow
361  // barrier to block potential miss-speculation in flight coming in to this
362  // function.
363  if (UseControlFlowSpeculationBarrier) {
364    insertFullSpeculationBarrier(MBB, MBBI, DebugLoc());
365    return;
366  }
367
368  // CMP   SP, #0   === SUBS   xzr, SP, #0
369  BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::SUBSXri))
370      .addDef(AArch64::XZR)
371      .addUse(AArch64::SP)
372      .addImm(0)
373      .addImm(0); // no shift
374  // CSETM x16, NE  === CSINV  x16, xzr, xzr, EQ
375  BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::CSINVXr))
376      .addDef(MisspeculatingTaintReg)
377      .addUse(AArch64::XZR)
378      .addUse(AArch64::XZR)
379      .addImm(AArch64CC::EQ);
380}
381
382void AArch64SpeculationHardening::insertRegToSPTaintPropagation(
383    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
384    unsigned TmpReg) const {
385  // If full control flow speculation barriers are used, there will not be
386  // miss-speculation when returning from this function, and therefore, also
387  // no need to encode potential miss-speculation into the stack pointer.
388  if (UseControlFlowSpeculationBarrier)
389    return;
390
391  // mov   Xtmp, SP  === ADD  Xtmp, SP, #0
392  BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::ADDXri))
393      .addDef(TmpReg)
394      .addUse(AArch64::SP)
395      .addImm(0)
396      .addImm(0); // no shift
397  // and   Xtmp, Xtmp, TaintReg === AND Xtmp, Xtmp, TaintReg, #0
398  BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::ANDXrs))
399      .addDef(TmpReg, RegState::Renamable)
400      .addUse(TmpReg, RegState::Kill | RegState::Renamable)
401      .addUse(MisspeculatingTaintReg, RegState::Kill)
402      .addImm(0);
403  // mov   SP, Xtmp === ADD SP, Xtmp, #0
404  BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::ADDXri))
405      .addDef(AArch64::SP)
406      .addUse(TmpReg, RegState::Kill)
407      .addImm(0)
408      .addImm(0); // no shift
409}
410
411bool AArch64SpeculationHardening::functionUsesHardeningRegister(
412    MachineFunction &MF) const {
413  for (MachineBasicBlock &MBB : MF) {
414    for (MachineInstr &MI : MBB) {
415      // treat function calls specially, as the hardening register does not
416      // need to remain live across function calls.
417      if (MI.isCall())
418        continue;
419      if (MI.readsRegister(MisspeculatingTaintReg, TRI) ||
420          MI.modifiesRegister(MisspeculatingTaintReg, TRI))
421        return true;
422    }
423  }
424  return false;
425}
426
427// Make GPR register Reg speculation-safe by putting it through the
428// SpeculationSafeValue pseudo instruction, if we can't prove that
429// the value in the register has already been hardened.
430bool AArch64SpeculationHardening::makeGPRSpeculationSafe(
431    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, MachineInstr &MI,
432    unsigned Reg) {
433  assert(AArch64::GPR32allRegClass.contains(Reg) ||
434         AArch64::GPR64allRegClass.contains(Reg));
435
436  // Loads cannot directly load a value into the SP (nor WSP).
437  // Therefore, if Reg is SP or WSP, it is because the instruction loads from
438  // the stack through the stack pointer.
439  //
440  // Since the stack pointer is never dynamically controllable, don't harden it.
441  if (Reg == AArch64::SP || Reg == AArch64::WSP)
442    return false;
443
444  // Do not harden the register again if already hardened before.
445  if (RegsAlreadyMasked[Reg])
446    return false;
447
448  const bool Is64Bit = AArch64::GPR64allRegClass.contains(Reg);
449  LLVM_DEBUG(dbgs() << "About to harden register : " << Reg << "\n");
450  BuildMI(MBB, MBBI, MI.getDebugLoc(),
451          TII->get(Is64Bit ? AArch64::SpeculationSafeValueX
452                           : AArch64::SpeculationSafeValueW))
453      .addDef(Reg)
454      .addUse(Reg);
455  RegsAlreadyMasked.set(Reg);
456  return true;
457}
458
459bool AArch64SpeculationHardening::slhLoads(MachineBasicBlock &MBB) {
460  bool Modified = false;
461
462  LLVM_DEBUG(dbgs() << "slhLoads running on MBB: " << MBB);
463
464  RegsAlreadyMasked.reset();
465
466  MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
467  MachineBasicBlock::iterator NextMBBI;
468  for (; MBBI != E; MBBI = NextMBBI) {
469    MachineInstr &MI = *MBBI;
470    NextMBBI = std::next(MBBI);
471    // Only harden loaded values or addresses used in loads.
472    if (!MI.mayLoad())
473      continue;
474
475    LLVM_DEBUG(dbgs() << "About to harden: " << MI);
476
477    // For general purpose register loads, harden the registers loaded into.
478    // For other loads, harden the address loaded from.
479    // Masking the loaded value is expected to result in less performance
480    // overhead, as the load can still execute speculatively in comparison to
481    // when the address loaded from gets masked. However, masking is only
482    // easy to do efficiently on GPR registers, so for loads into non-GPR
483    // registers (e.g. floating point loads), mask the address loaded from.
484    bool AllDefsAreGPR = llvm::all_of(MI.defs(), [&](MachineOperand &Op) {
485      return Op.isReg() && (AArch64::GPR32allRegClass.contains(Op.getReg()) ||
486                            AArch64::GPR64allRegClass.contains(Op.getReg()));
487    });
488    // FIXME: it might be a worthwhile optimization to not mask loaded
489    // values if all the registers involved in address calculation are already
490    // hardened, leading to this load not able to execute on a miss-speculated
491    // path.
492    bool HardenLoadedData = AllDefsAreGPR;
493    bool HardenAddressLoadedFrom = !HardenLoadedData;
494
495    // First remove registers from AlreadyMaskedRegisters if their value is
496    // updated by this instruction - it makes them contain a new value that is
497    // not guaranteed to already have been masked.
498    for (MachineOperand Op : MI.defs())
499      for (MCRegAliasIterator AI(Op.getReg(), TRI, true); AI.isValid(); ++AI)
500        RegsAlreadyMasked.reset(*AI);
501
502    // FIXME: loads from the stack with an immediate offset from the stack
503    // pointer probably shouldn't be hardened, which could result in a
504    // significant optimization. See section "Don���t check loads from
505    // compile-time constant stack offsets", in
506    // https://llvm.org/docs/SpeculativeLoadHardening.html
507
508    if (HardenLoadedData)
509      for (auto Def : MI.defs()) {
510        if (Def.isDead())
511          // Do not mask a register that is not used further.
512          continue;
513        // FIXME: For pre/post-increment addressing modes, the base register
514        // used in address calculation is also defined by this instruction.
515        // It might be a worthwhile optimization to not harden that
516        // base register increment/decrement when the increment/decrement is
517        // an immediate.
518        Modified |= makeGPRSpeculationSafe(MBB, NextMBBI, MI, Def.getReg());
519      }
520
521    if (HardenAddressLoadedFrom)
522      for (auto Use : MI.uses()) {
523        if (!Use.isReg())
524          continue;
525        Register Reg = Use.getReg();
526        // Some loads of floating point data have implicit defs/uses on a
527        // super register of that floating point data. Some examples:
528        // $s0 = LDRSui $sp, 22, implicit-def $q0
529        // $q0 = LD1i64 $q0, 1, renamable $x0
530        // We need to filter out these uses for non-GPR register which occur
531        // because the load partially fills a non-GPR register with the loaded
532        // data. Just skipping all non-GPR registers is safe (for now) as all
533        // AArch64 load instructions only use GPR registers to perform the
534        // address calculation. FIXME: However that might change once we can
535        // produce SVE gather instructions.
536        if (!(AArch64::GPR32allRegClass.contains(Reg) ||
537              AArch64::GPR64allRegClass.contains(Reg)))
538          continue;
539        Modified |= makeGPRSpeculationSafe(MBB, MBBI, MI, Reg);
540      }
541  }
542  return Modified;
543}
544
545/// \brief If MBBI references a pseudo instruction that should be expanded
546/// here, do the expansion and return true. Otherwise return false.
547bool AArch64SpeculationHardening::expandSpeculationSafeValue(
548    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
549    bool UsesFullSpeculationBarrier) {
550  MachineInstr &MI = *MBBI;
551  unsigned Opcode = MI.getOpcode();
552  bool Is64Bit = true;
553
554  switch (Opcode) {
555  default:
556    break;
557  case AArch64::SpeculationSafeValueW:
558    Is64Bit = false;
559    LLVM_FALLTHROUGH;
560  case AArch64::SpeculationSafeValueX:
561    // Just remove the SpeculationSafe pseudo's if control flow
562    // miss-speculation isn't happening because we're already inserting barriers
563    // to guarantee that.
564    if (!UseControlFlowSpeculationBarrier && !UsesFullSpeculationBarrier) {
565      Register DstReg = MI.getOperand(0).getReg();
566      Register SrcReg = MI.getOperand(1).getReg();
567      // Mark this register and all its aliasing registers as needing to be
568      // value speculation hardened before its next use, by using a CSDB
569      // barrier instruction.
570      for (MachineOperand Op : MI.defs())
571        for (MCRegAliasIterator AI(Op.getReg(), TRI, true); AI.isValid(); ++AI)
572          RegsNeedingCSDBBeforeUse.set(*AI);
573
574      // Mask off with taint state.
575      BuildMI(MBB, MBBI, MI.getDebugLoc(),
576              Is64Bit ? TII->get(AArch64::ANDXrs) : TII->get(AArch64::ANDWrs))
577          .addDef(DstReg)
578          .addUse(SrcReg, RegState::Kill)
579          .addUse(Is64Bit ? MisspeculatingTaintReg
580                          : MisspeculatingTaintReg32Bit)
581          .addImm(0);
582    }
583    MI.eraseFromParent();
584    return true;
585  }
586  return false;
587}
588
589bool AArch64SpeculationHardening::insertCSDB(MachineBasicBlock &MBB,
590                                             MachineBasicBlock::iterator MBBI,
591                                             DebugLoc DL) {
592  assert(!UseControlFlowSpeculationBarrier && "No need to insert CSDBs when "
593                                              "control flow miss-speculation "
594                                              "is already blocked");
595  // insert data value speculation barrier (CSDB)
596  BuildMI(MBB, MBBI, DL, TII->get(AArch64::HINT)).addImm(0x14);
597  RegsNeedingCSDBBeforeUse.reset();
598  return true;
599}
600
601bool AArch64SpeculationHardening::lowerSpeculationSafeValuePseudos(
602    MachineBasicBlock &MBB, bool UsesFullSpeculationBarrier) {
603  bool Modified = false;
604
605  RegsNeedingCSDBBeforeUse.reset();
606
607  // The following loop iterates over all instructions in the basic block,
608  // and performs 2 operations:
609  // 1. Insert a CSDB at this location if needed.
610  // 2. Expand the SpeculationSafeValuePseudo if the current instruction is
611  // one.
612  //
613  // The insertion of the CSDB is done as late as possible (i.e. just before
614  // the use of a masked register), in the hope that that will reduce the
615  // total number of CSDBs in a block when there are multiple masked registers
616  // in the block.
617  MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
618  DebugLoc DL;
619  while (MBBI != E) {
620    MachineInstr &MI = *MBBI;
621    DL = MI.getDebugLoc();
622    MachineBasicBlock::iterator NMBBI = std::next(MBBI);
623
624    // First check if a CSDB needs to be inserted due to earlier registers
625    // that were masked and that are used by the next instruction.
626    // Also emit the barrier on any potential control flow changes.
627    bool NeedToEmitBarrier = false;
628    if (RegsNeedingCSDBBeforeUse.any() && (MI.isCall() || MI.isTerminator()))
629      NeedToEmitBarrier = true;
630    if (!NeedToEmitBarrier)
631      for (MachineOperand Op : MI.uses())
632        if (Op.isReg() && RegsNeedingCSDBBeforeUse[Op.getReg()]) {
633          NeedToEmitBarrier = true;
634          break;
635        }
636
637    if (NeedToEmitBarrier && !UsesFullSpeculationBarrier)
638      Modified |= insertCSDB(MBB, MBBI, DL);
639
640    Modified |=
641        expandSpeculationSafeValue(MBB, MBBI, UsesFullSpeculationBarrier);
642
643    MBBI = NMBBI;
644  }
645
646  if (RegsNeedingCSDBBeforeUse.any() && !UsesFullSpeculationBarrier)
647    Modified |= insertCSDB(MBB, MBBI, DL);
648
649  return Modified;
650}
651
652bool AArch64SpeculationHardening::runOnMachineFunction(MachineFunction &MF) {
653  if (!MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
654    return false;
655
656  MisspeculatingTaintReg = AArch64::X16;
657  MisspeculatingTaintReg32Bit = AArch64::W16;
658  TII = MF.getSubtarget().getInstrInfo();
659  TRI = MF.getSubtarget().getRegisterInfo();
660  RegsNeedingCSDBBeforeUse.resize(TRI->getNumRegs());
661  RegsAlreadyMasked.resize(TRI->getNumRegs());
662  UseControlFlowSpeculationBarrier = functionUsesHardeningRegister(MF);
663
664  bool Modified = false;
665
666  // Step 1: Enable automatic insertion of SpeculationSafeValue.
667  if (HardenLoads) {
668    LLVM_DEBUG(
669        dbgs() << "***** AArch64SpeculationHardening - automatic insertion of "
670                  "SpeculationSafeValue intrinsics *****\n");
671    for (auto &MBB : MF)
672      Modified |= slhLoads(MBB);
673  }
674
675  // 2. Add instrumentation code to function entry and exits.
676  LLVM_DEBUG(
677      dbgs()
678      << "***** AArch64SpeculationHardening - track control flow *****\n");
679
680  SmallVector<MachineBasicBlock *, 2> EntryBlocks;
681  EntryBlocks.push_back(&MF.front());
682  for (const LandingPadInfo &LPI : MF.getLandingPads())
683    EntryBlocks.push_back(LPI.LandingPadBlock);
684  for (auto Entry : EntryBlocks)
685    insertSPToRegTaintPropagation(
686        *Entry, Entry->SkipPHIsLabelsAndDebug(Entry->begin()));
687
688  // 3. Add instrumentation code to every basic block.
689  for (auto &MBB : MF) {
690    bool UsesFullSpeculationBarrier = false;
691    Modified |= instrumentControlFlow(MBB, UsesFullSpeculationBarrier);
692    Modified |=
693        lowerSpeculationSafeValuePseudos(MBB, UsesFullSpeculationBarrier);
694  }
695
696  return Modified;
697}
698
699/// \brief Returns an instance of the pseudo instruction expansion pass.
700FunctionPass *llvm::createAArch64SpeculationHardeningPass() {
701  return new AArch64SpeculationHardening();
702}
703