1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the implementation of the scalar evolution expander,
10// which is used to generate the code corresponding to a given scalar evolution
11// expression.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ScalarEvolutionExpander.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Analysis/LoopInfo.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/Dominators.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/LLVMContext.h"
25#include "llvm/IR/Module.h"
26#include "llvm/IR/PatternMatch.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29
30using namespace llvm;
31using namespace PatternMatch;
32
33/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
34/// reusing an existing cast if a suitable one exists, moving an existing
35/// cast if a suitable one exists but isn't in the right place, or
36/// creating a new one.
37Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
38                                       Instruction::CastOps Op,
39                                       BasicBlock::iterator IP) {
40  // This function must be called with the builder having a valid insertion
41  // point. It doesn't need to be the actual IP where the uses of the returned
42  // cast will be added, but it must dominate such IP.
43  // We use this precondition to produce a cast that will dominate all its
44  // uses. In particular, this is crucial for the case where the builder's
45  // insertion point *is* the point where we were asked to put the cast.
46  // Since we don't know the builder's insertion point is actually
47  // where the uses will be added (only that it dominates it), we are
48  // not allowed to move it.
49  BasicBlock::iterator BIP = Builder.GetInsertPoint();
50
51  Instruction *Ret = nullptr;
52
53  // Check to see if there is already a cast!
54  for (User *U : V->users())
55    if (U->getType() == Ty)
56      if (CastInst *CI = dyn_cast<CastInst>(U))
57        if (CI->getOpcode() == Op) {
58          // If the cast isn't where we want it, create a new cast at IP.
59          // Likewise, do not reuse a cast at BIP because it must dominate
60          // instructions that might be inserted before BIP.
61          if (BasicBlock::iterator(CI) != IP || BIP == IP) {
62            // Create a new cast, and leave the old cast in place in case
63            // it is being used as an insert point.
64            Ret = CastInst::Create(Op, V, Ty, "", &*IP);
65            Ret->takeName(CI);
66            CI->replaceAllUsesWith(Ret);
67            break;
68          }
69          Ret = CI;
70          break;
71        }
72
73  // Create a new cast.
74  if (!Ret)
75    Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
76
77  // We assert at the end of the function since IP might point to an
78  // instruction with different dominance properties than a cast
79  // (an invoke for example) and not dominate BIP (but the cast does).
80  assert(SE.DT.dominates(Ret, &*BIP));
81
82  rememberInstruction(Ret);
83  return Ret;
84}
85
86static BasicBlock::iterator findInsertPointAfter(Instruction *I,
87                                                 BasicBlock *MustDominate) {
88  BasicBlock::iterator IP = ++I->getIterator();
89  if (auto *II = dyn_cast<InvokeInst>(I))
90    IP = II->getNormalDest()->begin();
91
92  while (isa<PHINode>(IP))
93    ++IP;
94
95  if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
96    ++IP;
97  } else if (isa<CatchSwitchInst>(IP)) {
98    IP = MustDominate->getFirstInsertionPt();
99  } else {
100    assert(!IP->isEHPad() && "unexpected eh pad!");
101  }
102
103  return IP;
104}
105
106/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
107/// which must be possible with a noop cast, doing what we can to share
108/// the casts.
109Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
110  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
111  assert((Op == Instruction::BitCast ||
112          Op == Instruction::PtrToInt ||
113          Op == Instruction::IntToPtr) &&
114         "InsertNoopCastOfTo cannot perform non-noop casts!");
115  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
116         "InsertNoopCastOfTo cannot change sizes!");
117
118  // Short-circuit unnecessary bitcasts.
119  if (Op == Instruction::BitCast) {
120    if (V->getType() == Ty)
121      return V;
122    if (CastInst *CI = dyn_cast<CastInst>(V)) {
123      if (CI->getOperand(0)->getType() == Ty)
124        return CI->getOperand(0);
125    }
126  }
127  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
128  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
129      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
130    if (CastInst *CI = dyn_cast<CastInst>(V))
131      if ((CI->getOpcode() == Instruction::PtrToInt ||
132           CI->getOpcode() == Instruction::IntToPtr) &&
133          SE.getTypeSizeInBits(CI->getType()) ==
134          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
135        return CI->getOperand(0);
136    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
137      if ((CE->getOpcode() == Instruction::PtrToInt ||
138           CE->getOpcode() == Instruction::IntToPtr) &&
139          SE.getTypeSizeInBits(CE->getType()) ==
140          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
141        return CE->getOperand(0);
142  }
143
144  // Fold a cast of a constant.
145  if (Constant *C = dyn_cast<Constant>(V))
146    return ConstantExpr::getCast(Op, C, Ty);
147
148  // Cast the argument at the beginning of the entry block, after
149  // any bitcasts of other arguments.
150  if (Argument *A = dyn_cast<Argument>(V)) {
151    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
152    while ((isa<BitCastInst>(IP) &&
153            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
154            cast<BitCastInst>(IP)->getOperand(0) != A) ||
155           isa<DbgInfoIntrinsic>(IP))
156      ++IP;
157    return ReuseOrCreateCast(A, Ty, Op, IP);
158  }
159
160  // Cast the instruction immediately after the instruction.
161  Instruction *I = cast<Instruction>(V);
162  BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
163  return ReuseOrCreateCast(I, Ty, Op, IP);
164}
165
166/// InsertBinop - Insert the specified binary operator, doing a small amount
167/// of work to avoid inserting an obviously redundant operation, and hoisting
168/// to an outer loop when the opportunity is there and it is safe.
169Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
170                                 Value *LHS, Value *RHS,
171                                 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
172  // Fold a binop with constant operands.
173  if (Constant *CLHS = dyn_cast<Constant>(LHS))
174    if (Constant *CRHS = dyn_cast<Constant>(RHS))
175      return ConstantExpr::get(Opcode, CLHS, CRHS);
176
177  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
178  unsigned ScanLimit = 6;
179  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
180  // Scanning starts from the last instruction before the insertion point.
181  BasicBlock::iterator IP = Builder.GetInsertPoint();
182  if (IP != BlockBegin) {
183    --IP;
184    for (; ScanLimit; --IP, --ScanLimit) {
185      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
186      // generated code.
187      if (isa<DbgInfoIntrinsic>(IP))
188        ScanLimit++;
189
190      auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
191        // Ensure that no-wrap flags match.
192        if (isa<OverflowingBinaryOperator>(I)) {
193          if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
194            return true;
195          if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
196            return true;
197        }
198        // Conservatively, do not use any instruction which has any of exact
199        // flags installed.
200        if (isa<PossiblyExactOperator>(I) && I->isExact())
201          return true;
202        return false;
203      };
204      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
205          IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
206        return &*IP;
207      if (IP == BlockBegin) break;
208    }
209  }
210
211  // Save the original insertion point so we can restore it when we're done.
212  DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
213  SCEVInsertPointGuard Guard(Builder, this);
214
215  if (IsSafeToHoist) {
216    // Move the insertion point out of as many loops as we can.
217    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
218      if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
219      BasicBlock *Preheader = L->getLoopPreheader();
220      if (!Preheader) break;
221
222      // Ok, move up a level.
223      Builder.SetInsertPoint(Preheader->getTerminator());
224    }
225  }
226
227  // If we haven't found this binop, insert it.
228  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
229  BO->setDebugLoc(Loc);
230  if (Flags & SCEV::FlagNUW)
231    BO->setHasNoUnsignedWrap();
232  if (Flags & SCEV::FlagNSW)
233    BO->setHasNoSignedWrap();
234  rememberInstruction(BO);
235
236  return BO;
237}
238
239/// FactorOutConstant - Test if S is divisible by Factor, using signed
240/// division. If so, update S with Factor divided out and return true.
241/// S need not be evenly divisible if a reasonable remainder can be
242/// computed.
243static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
244                              const SCEV *Factor, ScalarEvolution &SE,
245                              const DataLayout &DL) {
246  // Everything is divisible by one.
247  if (Factor->isOne())
248    return true;
249
250  // x/x == 1.
251  if (S == Factor) {
252    S = SE.getConstant(S->getType(), 1);
253    return true;
254  }
255
256  // For a Constant, check for a multiple of the given factor.
257  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
258    // 0/x == 0.
259    if (C->isZero())
260      return true;
261    // Check for divisibility.
262    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
263      ConstantInt *CI =
264          ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
265      // If the quotient is zero and the remainder is non-zero, reject
266      // the value at this scale. It will be considered for subsequent
267      // smaller scales.
268      if (!CI->isZero()) {
269        const SCEV *Div = SE.getConstant(CI);
270        S = Div;
271        Remainder = SE.getAddExpr(
272            Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
273        return true;
274      }
275    }
276  }
277
278  // In a Mul, check if there is a constant operand which is a multiple
279  // of the given factor.
280  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
281    // Size is known, check if there is a constant operand which is a multiple
282    // of the given factor. If so, we can factor it.
283    const SCEVConstant *FC = cast<SCEVConstant>(Factor);
284    if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
285      if (!C->getAPInt().srem(FC->getAPInt())) {
286        SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
287        NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
288        S = SE.getMulExpr(NewMulOps);
289        return true;
290      }
291  }
292
293  // In an AddRec, check if both start and step are divisible.
294  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
295    const SCEV *Step = A->getStepRecurrence(SE);
296    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
297    if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
298      return false;
299    if (!StepRem->isZero())
300      return false;
301    const SCEV *Start = A->getStart();
302    if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
303      return false;
304    S = SE.getAddRecExpr(Start, Step, A->getLoop(),
305                         A->getNoWrapFlags(SCEV::FlagNW));
306    return true;
307  }
308
309  return false;
310}
311
312/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
313/// is the number of SCEVAddRecExprs present, which are kept at the end of
314/// the list.
315///
316static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
317                                Type *Ty,
318                                ScalarEvolution &SE) {
319  unsigned NumAddRecs = 0;
320  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
321    ++NumAddRecs;
322  // Group Ops into non-addrecs and addrecs.
323  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
324  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
325  // Let ScalarEvolution sort and simplify the non-addrecs list.
326  const SCEV *Sum = NoAddRecs.empty() ?
327                    SE.getConstant(Ty, 0) :
328                    SE.getAddExpr(NoAddRecs);
329  // If it returned an add, use the operands. Otherwise it simplified
330  // the sum into a single value, so just use that.
331  Ops.clear();
332  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
333    Ops.append(Add->op_begin(), Add->op_end());
334  else if (!Sum->isZero())
335    Ops.push_back(Sum);
336  // Then append the addrecs.
337  Ops.append(AddRecs.begin(), AddRecs.end());
338}
339
340/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
341/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
342/// This helps expose more opportunities for folding parts of the expressions
343/// into GEP indices.
344///
345static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
346                         Type *Ty,
347                         ScalarEvolution &SE) {
348  // Find the addrecs.
349  SmallVector<const SCEV *, 8> AddRecs;
350  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
351    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
352      const SCEV *Start = A->getStart();
353      if (Start->isZero()) break;
354      const SCEV *Zero = SE.getConstant(Ty, 0);
355      AddRecs.push_back(SE.getAddRecExpr(Zero,
356                                         A->getStepRecurrence(SE),
357                                         A->getLoop(),
358                                         A->getNoWrapFlags(SCEV::FlagNW)));
359      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
360        Ops[i] = Zero;
361        Ops.append(Add->op_begin(), Add->op_end());
362        e += Add->getNumOperands();
363      } else {
364        Ops[i] = Start;
365      }
366    }
367  if (!AddRecs.empty()) {
368    // Add the addrecs onto the end of the list.
369    Ops.append(AddRecs.begin(), AddRecs.end());
370    // Resort the operand list, moving any constants to the front.
371    SimplifyAddOperands(Ops, Ty, SE);
372  }
373}
374
375/// expandAddToGEP - Expand an addition expression with a pointer type into
376/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
377/// BasicAliasAnalysis and other passes analyze the result. See the rules
378/// for getelementptr vs. inttoptr in
379/// http://llvm.org/docs/LangRef.html#pointeraliasing
380/// for details.
381///
382/// Design note: The correctness of using getelementptr here depends on
383/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
384/// they may introduce pointer arithmetic which may not be safely converted
385/// into getelementptr.
386///
387/// Design note: It might seem desirable for this function to be more
388/// loop-aware. If some of the indices are loop-invariant while others
389/// aren't, it might seem desirable to emit multiple GEPs, keeping the
390/// loop-invariant portions of the overall computation outside the loop.
391/// However, there are a few reasons this is not done here. Hoisting simple
392/// arithmetic is a low-level optimization that often isn't very
393/// important until late in the optimization process. In fact, passes
394/// like InstructionCombining will combine GEPs, even if it means
395/// pushing loop-invariant computation down into loops, so even if the
396/// GEPs were split here, the work would quickly be undone. The
397/// LoopStrengthReduction pass, which is usually run quite late (and
398/// after the last InstructionCombining pass), takes care of hoisting
399/// loop-invariant portions of expressions, after considering what
400/// can be folded using target addressing modes.
401///
402Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
403                                    const SCEV *const *op_end,
404                                    PointerType *PTy,
405                                    Type *Ty,
406                                    Value *V) {
407  Type *OriginalElTy = PTy->getElementType();
408  Type *ElTy = OriginalElTy;
409  SmallVector<Value *, 4> GepIndices;
410  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
411  bool AnyNonZeroIndices = false;
412
413  // Split AddRecs up into parts as either of the parts may be usable
414  // without the other.
415  SplitAddRecs(Ops, Ty, SE);
416
417  Type *IntIdxTy = DL.getIndexType(PTy);
418
419  // Descend down the pointer's type and attempt to convert the other
420  // operands into GEP indices, at each level. The first index in a GEP
421  // indexes into the array implied by the pointer operand; the rest of
422  // the indices index into the element or field type selected by the
423  // preceding index.
424  for (;;) {
425    // If the scale size is not 0, attempt to factor out a scale for
426    // array indexing.
427    SmallVector<const SCEV *, 8> ScaledOps;
428    if (ElTy->isSized()) {
429      const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
430      if (!ElSize->isZero()) {
431        SmallVector<const SCEV *, 8> NewOps;
432        for (const SCEV *Op : Ops) {
433          const SCEV *Remainder = SE.getConstant(Ty, 0);
434          if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
435            // Op now has ElSize factored out.
436            ScaledOps.push_back(Op);
437            if (!Remainder->isZero())
438              NewOps.push_back(Remainder);
439            AnyNonZeroIndices = true;
440          } else {
441            // The operand was not divisible, so add it to the list of operands
442            // we'll scan next iteration.
443            NewOps.push_back(Op);
444          }
445        }
446        // If we made any changes, update Ops.
447        if (!ScaledOps.empty()) {
448          Ops = NewOps;
449          SimplifyAddOperands(Ops, Ty, SE);
450        }
451      }
452    }
453
454    // Record the scaled array index for this level of the type. If
455    // we didn't find any operands that could be factored, tentatively
456    // assume that element zero was selected (since the zero offset
457    // would obviously be folded away).
458    Value *Scaled = ScaledOps.empty() ?
459                    Constant::getNullValue(Ty) :
460                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
461    GepIndices.push_back(Scaled);
462
463    // Collect struct field index operands.
464    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
465      bool FoundFieldNo = false;
466      // An empty struct has no fields.
467      if (STy->getNumElements() == 0) break;
468      // Field offsets are known. See if a constant offset falls within any of
469      // the struct fields.
470      if (Ops.empty())
471        break;
472      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
473        if (SE.getTypeSizeInBits(C->getType()) <= 64) {
474          const StructLayout &SL = *DL.getStructLayout(STy);
475          uint64_t FullOffset = C->getValue()->getZExtValue();
476          if (FullOffset < SL.getSizeInBytes()) {
477            unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
478            GepIndices.push_back(
479                ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
480            ElTy = STy->getTypeAtIndex(ElIdx);
481            Ops[0] =
482                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
483            AnyNonZeroIndices = true;
484            FoundFieldNo = true;
485          }
486        }
487      // If no struct field offsets were found, tentatively assume that
488      // field zero was selected (since the zero offset would obviously
489      // be folded away).
490      if (!FoundFieldNo) {
491        ElTy = STy->getTypeAtIndex(0u);
492        GepIndices.push_back(
493          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
494      }
495    }
496
497    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
498      ElTy = ATy->getElementType();
499    else
500      break;
501  }
502
503  // If none of the operands were convertible to proper GEP indices, cast
504  // the base to i8* and do an ugly getelementptr with that. It's still
505  // better than ptrtoint+arithmetic+inttoptr at least.
506  if (!AnyNonZeroIndices) {
507    // Cast the base to i8*.
508    V = InsertNoopCastOfTo(V,
509       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
510
511    assert(!isa<Instruction>(V) ||
512           SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
513
514    // Expand the operands for a plain byte offset.
515    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
516
517    // Fold a GEP with constant operands.
518    if (Constant *CLHS = dyn_cast<Constant>(V))
519      if (Constant *CRHS = dyn_cast<Constant>(Idx))
520        return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
521                                              CLHS, CRHS);
522
523    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
524    unsigned ScanLimit = 6;
525    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
526    // Scanning starts from the last instruction before the insertion point.
527    BasicBlock::iterator IP = Builder.GetInsertPoint();
528    if (IP != BlockBegin) {
529      --IP;
530      for (; ScanLimit; --IP, --ScanLimit) {
531        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
532        // generated code.
533        if (isa<DbgInfoIntrinsic>(IP))
534          ScanLimit++;
535        if (IP->getOpcode() == Instruction::GetElementPtr &&
536            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
537          return &*IP;
538        if (IP == BlockBegin) break;
539      }
540    }
541
542    // Save the original insertion point so we can restore it when we're done.
543    SCEVInsertPointGuard Guard(Builder, this);
544
545    // Move the insertion point out of as many loops as we can.
546    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
547      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
548      BasicBlock *Preheader = L->getLoopPreheader();
549      if (!Preheader) break;
550
551      // Ok, move up a level.
552      Builder.SetInsertPoint(Preheader->getTerminator());
553    }
554
555    // Emit a GEP.
556    Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
557    rememberInstruction(GEP);
558
559    return GEP;
560  }
561
562  {
563    SCEVInsertPointGuard Guard(Builder, this);
564
565    // Move the insertion point out of as many loops as we can.
566    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
567      if (!L->isLoopInvariant(V)) break;
568
569      bool AnyIndexNotLoopInvariant = any_of(
570          GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
571
572      if (AnyIndexNotLoopInvariant)
573        break;
574
575      BasicBlock *Preheader = L->getLoopPreheader();
576      if (!Preheader) break;
577
578      // Ok, move up a level.
579      Builder.SetInsertPoint(Preheader->getTerminator());
580    }
581
582    // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
583    // because ScalarEvolution may have changed the address arithmetic to
584    // compute a value which is beyond the end of the allocated object.
585    Value *Casted = V;
586    if (V->getType() != PTy)
587      Casted = InsertNoopCastOfTo(Casted, PTy);
588    Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
589    Ops.push_back(SE.getUnknown(GEP));
590    rememberInstruction(GEP);
591  }
592
593  return expand(SE.getAddExpr(Ops));
594}
595
596Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
597                                    Value *V) {
598  const SCEV *const Ops[1] = {Op};
599  return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
600}
601
602/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
603/// SCEV expansion. If they are nested, this is the most nested. If they are
604/// neighboring, pick the later.
605static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
606                                        DominatorTree &DT) {
607  if (!A) return B;
608  if (!B) return A;
609  if (A->contains(B)) return B;
610  if (B->contains(A)) return A;
611  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
612  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
613  return A; // Arbitrarily break the tie.
614}
615
616/// getRelevantLoop - Get the most relevant loop associated with the given
617/// expression, according to PickMostRelevantLoop.
618const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
619  // Test whether we've already computed the most relevant loop for this SCEV.
620  auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
621  if (!Pair.second)
622    return Pair.first->second;
623
624  if (isa<SCEVConstant>(S))
625    // A constant has no relevant loops.
626    return nullptr;
627  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
628    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
629      return Pair.first->second = SE.LI.getLoopFor(I->getParent());
630    // A non-instruction has no relevant loops.
631    return nullptr;
632  }
633  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
634    const Loop *L = nullptr;
635    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
636      L = AR->getLoop();
637    for (const SCEV *Op : N->operands())
638      L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
639    return RelevantLoops[N] = L;
640  }
641  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
642    const Loop *Result = getRelevantLoop(C->getOperand());
643    return RelevantLoops[C] = Result;
644  }
645  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
646    const Loop *Result = PickMostRelevantLoop(
647        getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
648    return RelevantLoops[D] = Result;
649  }
650  llvm_unreachable("Unexpected SCEV type!");
651}
652
653namespace {
654
655/// LoopCompare - Compare loops by PickMostRelevantLoop.
656class LoopCompare {
657  DominatorTree &DT;
658public:
659  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
660
661  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
662                  std::pair<const Loop *, const SCEV *> RHS) const {
663    // Keep pointer operands sorted at the end.
664    if (LHS.second->getType()->isPointerTy() !=
665        RHS.second->getType()->isPointerTy())
666      return LHS.second->getType()->isPointerTy();
667
668    // Compare loops with PickMostRelevantLoop.
669    if (LHS.first != RHS.first)
670      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
671
672    // If one operand is a non-constant negative and the other is not,
673    // put the non-constant negative on the right so that a sub can
674    // be used instead of a negate and add.
675    if (LHS.second->isNonConstantNegative()) {
676      if (!RHS.second->isNonConstantNegative())
677        return false;
678    } else if (RHS.second->isNonConstantNegative())
679      return true;
680
681    // Otherwise they are equivalent according to this comparison.
682    return false;
683  }
684};
685
686}
687
688Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
689  Type *Ty = SE.getEffectiveSCEVType(S->getType());
690
691  // Collect all the add operands in a loop, along with their associated loops.
692  // Iterate in reverse so that constants are emitted last, all else equal, and
693  // so that pointer operands are inserted first, which the code below relies on
694  // to form more involved GEPs.
695  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
696  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
697       E(S->op_begin()); I != E; ++I)
698    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
699
700  // Sort by loop. Use a stable sort so that constants follow non-constants and
701  // pointer operands precede non-pointer operands.
702  llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
703
704  // Emit instructions to add all the operands. Hoist as much as possible
705  // out of loops, and form meaningful getelementptrs where possible.
706  Value *Sum = nullptr;
707  for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
708    const Loop *CurLoop = I->first;
709    const SCEV *Op = I->second;
710    if (!Sum) {
711      // This is the first operand. Just expand it.
712      Sum = expand(Op);
713      ++I;
714    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
715      // The running sum expression is a pointer. Try to form a getelementptr
716      // at this level with that as the base.
717      SmallVector<const SCEV *, 4> NewOps;
718      for (; I != E && I->first == CurLoop; ++I) {
719        // If the operand is SCEVUnknown and not instructions, peek through
720        // it, to enable more of it to be folded into the GEP.
721        const SCEV *X = I->second;
722        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
723          if (!isa<Instruction>(U->getValue()))
724            X = SE.getSCEV(U->getValue());
725        NewOps.push_back(X);
726      }
727      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
728    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
729      // The running sum is an integer, and there's a pointer at this level.
730      // Try to form a getelementptr. If the running sum is instructions,
731      // use a SCEVUnknown to avoid re-analyzing them.
732      SmallVector<const SCEV *, 4> NewOps;
733      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
734                                               SE.getSCEV(Sum));
735      for (++I; I != E && I->first == CurLoop; ++I)
736        NewOps.push_back(I->second);
737      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
738    } else if (Op->isNonConstantNegative()) {
739      // Instead of doing a negate and add, just do a subtract.
740      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
741      Sum = InsertNoopCastOfTo(Sum, Ty);
742      Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
743                        /*IsSafeToHoist*/ true);
744      ++I;
745    } else {
746      // A simple add.
747      Value *W = expandCodeFor(Op, Ty);
748      Sum = InsertNoopCastOfTo(Sum, Ty);
749      // Canonicalize a constant to the RHS.
750      if (isa<Constant>(Sum)) std::swap(Sum, W);
751      Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
752                        /*IsSafeToHoist*/ true);
753      ++I;
754    }
755  }
756
757  return Sum;
758}
759
760Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
761  Type *Ty = SE.getEffectiveSCEVType(S->getType());
762
763  // Collect all the mul operands in a loop, along with their associated loops.
764  // Iterate in reverse so that constants are emitted last, all else equal.
765  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
766  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
767       E(S->op_begin()); I != E; ++I)
768    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
769
770  // Sort by loop. Use a stable sort so that constants follow non-constants.
771  llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
772
773  // Emit instructions to mul all the operands. Hoist as much as possible
774  // out of loops.
775  Value *Prod = nullptr;
776  auto I = OpsAndLoops.begin();
777
778  // Expand the calculation of X pow N in the following manner:
779  // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
780  // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
781  const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
782    auto E = I;
783    // Calculate how many times the same operand from the same loop is included
784    // into this power.
785    uint64_t Exponent = 0;
786    const uint64_t MaxExponent = UINT64_MAX >> 1;
787    // No one sane will ever try to calculate such huge exponents, but if we
788    // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
789    // below when the power of 2 exceeds our Exponent, and we want it to be
790    // 1u << 31 at most to not deal with unsigned overflow.
791    while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
792      ++Exponent;
793      ++E;
794    }
795    assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
796
797    // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
798    // that are needed into the result.
799    Value *P = expandCodeFor(I->second, Ty);
800    Value *Result = nullptr;
801    if (Exponent & 1)
802      Result = P;
803    for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
804      P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
805                      /*IsSafeToHoist*/ true);
806      if (Exponent & BinExp)
807        Result = Result ? InsertBinop(Instruction::Mul, Result, P,
808                                      SCEV::FlagAnyWrap,
809                                      /*IsSafeToHoist*/ true)
810                        : P;
811    }
812
813    I = E;
814    assert(Result && "Nothing was expanded?");
815    return Result;
816  };
817
818  while (I != OpsAndLoops.end()) {
819    if (!Prod) {
820      // This is the first operand. Just expand it.
821      Prod = ExpandOpBinPowN();
822    } else if (I->second->isAllOnesValue()) {
823      // Instead of doing a multiply by negative one, just do a negate.
824      Prod = InsertNoopCastOfTo(Prod, Ty);
825      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
826                         SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
827      ++I;
828    } else {
829      // A simple mul.
830      Value *W = ExpandOpBinPowN();
831      Prod = InsertNoopCastOfTo(Prod, Ty);
832      // Canonicalize a constant to the RHS.
833      if (isa<Constant>(Prod)) std::swap(Prod, W);
834      const APInt *RHS;
835      if (match(W, m_Power2(RHS))) {
836        // Canonicalize Prod*(1<<C) to Prod<<C.
837        assert(!Ty->isVectorTy() && "vector types are not SCEVable");
838        auto NWFlags = S->getNoWrapFlags();
839        // clear nsw flag if shl will produce poison value.
840        if (RHS->logBase2() == RHS->getBitWidth() - 1)
841          NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
842        Prod = InsertBinop(Instruction::Shl, Prod,
843                           ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
844                           /*IsSafeToHoist*/ true);
845      } else {
846        Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
847                           /*IsSafeToHoist*/ true);
848      }
849    }
850  }
851
852  return Prod;
853}
854
855Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
856  Type *Ty = SE.getEffectiveSCEVType(S->getType());
857
858  Value *LHS = expandCodeFor(S->getLHS(), Ty);
859  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
860    const APInt &RHS = SC->getAPInt();
861    if (RHS.isPowerOf2())
862      return InsertBinop(Instruction::LShr, LHS,
863                         ConstantInt::get(Ty, RHS.logBase2()),
864                         SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
865  }
866
867  Value *RHS = expandCodeFor(S->getRHS(), Ty);
868  return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
869                     /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
870}
871
872/// Move parts of Base into Rest to leave Base with the minimal
873/// expression that provides a pointer operand suitable for a
874/// GEP expansion.
875static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
876                              ScalarEvolution &SE) {
877  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
878    Base = A->getStart();
879    Rest = SE.getAddExpr(Rest,
880                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
881                                          A->getStepRecurrence(SE),
882                                          A->getLoop(),
883                                          A->getNoWrapFlags(SCEV::FlagNW)));
884  }
885  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
886    Base = A->getOperand(A->getNumOperands()-1);
887    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
888    NewAddOps.back() = Rest;
889    Rest = SE.getAddExpr(NewAddOps);
890    ExposePointerBase(Base, Rest, SE);
891  }
892}
893
894/// Determine if this is a well-behaved chain of instructions leading back to
895/// the PHI. If so, it may be reused by expanded expressions.
896bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
897                                         const Loop *L) {
898  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
899      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
900    return false;
901  // If any of the operands don't dominate the insert position, bail.
902  // Addrec operands are always loop-invariant, so this can only happen
903  // if there are instructions which haven't been hoisted.
904  if (L == IVIncInsertLoop) {
905    for (User::op_iterator OI = IncV->op_begin()+1,
906           OE = IncV->op_end(); OI != OE; ++OI)
907      if (Instruction *OInst = dyn_cast<Instruction>(OI))
908        if (!SE.DT.dominates(OInst, IVIncInsertPos))
909          return false;
910  }
911  // Advance to the next instruction.
912  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
913  if (!IncV)
914    return false;
915
916  if (IncV->mayHaveSideEffects())
917    return false;
918
919  if (IncV == PN)
920    return true;
921
922  return isNormalAddRecExprPHI(PN, IncV, L);
923}
924
925/// getIVIncOperand returns an induction variable increment's induction
926/// variable operand.
927///
928/// If allowScale is set, any type of GEP is allowed as long as the nonIV
929/// operands dominate InsertPos.
930///
931/// If allowScale is not set, ensure that a GEP increment conforms to one of the
932/// simple patterns generated by getAddRecExprPHILiterally and
933/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
934Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
935                                           Instruction *InsertPos,
936                                           bool allowScale) {
937  if (IncV == InsertPos)
938    return nullptr;
939
940  switch (IncV->getOpcode()) {
941  default:
942    return nullptr;
943  // Check for a simple Add/Sub or GEP of a loop invariant step.
944  case Instruction::Add:
945  case Instruction::Sub: {
946    Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
947    if (!OInst || SE.DT.dominates(OInst, InsertPos))
948      return dyn_cast<Instruction>(IncV->getOperand(0));
949    return nullptr;
950  }
951  case Instruction::BitCast:
952    return dyn_cast<Instruction>(IncV->getOperand(0));
953  case Instruction::GetElementPtr:
954    for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
955      if (isa<Constant>(*I))
956        continue;
957      if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
958        if (!SE.DT.dominates(OInst, InsertPos))
959          return nullptr;
960      }
961      if (allowScale) {
962        // allow any kind of GEP as long as it can be hoisted.
963        continue;
964      }
965      // This must be a pointer addition of constants (pretty), which is already
966      // handled, or some number of address-size elements (ugly). Ugly geps
967      // have 2 operands. i1* is used by the expander to represent an
968      // address-size element.
969      if (IncV->getNumOperands() != 2)
970        return nullptr;
971      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
972      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
973          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
974        return nullptr;
975      break;
976    }
977    return dyn_cast<Instruction>(IncV->getOperand(0));
978  }
979}
980
981/// If the insert point of the current builder or any of the builders on the
982/// stack of saved builders has 'I' as its insert point, update it to point to
983/// the instruction after 'I'.  This is intended to be used when the instruction
984/// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
985/// different block, the inconsistent insert point (with a mismatched
986/// Instruction and Block) can lead to an instruction being inserted in a block
987/// other than its parent.
988void SCEVExpander::fixupInsertPoints(Instruction *I) {
989  BasicBlock::iterator It(*I);
990  BasicBlock::iterator NewInsertPt = std::next(It);
991  if (Builder.GetInsertPoint() == It)
992    Builder.SetInsertPoint(&*NewInsertPt);
993  for (auto *InsertPtGuard : InsertPointGuards)
994    if (InsertPtGuard->GetInsertPoint() == It)
995      InsertPtGuard->SetInsertPoint(NewInsertPt);
996}
997
998/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
999/// it available to other uses in this loop. Recursively hoist any operands,
1000/// until we reach a value that dominates InsertPos.
1001bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1002  if (SE.DT.dominates(IncV, InsertPos))
1003      return true;
1004
1005  // InsertPos must itself dominate IncV so that IncV's new position satisfies
1006  // its existing users.
1007  if (isa<PHINode>(InsertPos) ||
1008      !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1009    return false;
1010
1011  if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1012    return false;
1013
1014  // Check that the chain of IV operands leading back to Phi can be hoisted.
1015  SmallVector<Instruction*, 4> IVIncs;
1016  for(;;) {
1017    Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1018    if (!Oper)
1019      return false;
1020    // IncV is safe to hoist.
1021    IVIncs.push_back(IncV);
1022    IncV = Oper;
1023    if (SE.DT.dominates(IncV, InsertPos))
1024      break;
1025  }
1026  for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1027    fixupInsertPoints(*I);
1028    (*I)->moveBefore(InsertPos);
1029  }
1030  return true;
1031}
1032
1033/// Determine if this cyclic phi is in a form that would have been generated by
1034/// LSR. We don't care if the phi was actually expanded in this pass, as long
1035/// as it is in a low-cost form, for example, no implied multiplication. This
1036/// should match any patterns generated by getAddRecExprPHILiterally and
1037/// expandAddtoGEP.
1038bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1039                                           const Loop *L) {
1040  for(Instruction *IVOper = IncV;
1041      (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1042                                /*allowScale=*/false));) {
1043    if (IVOper == PN)
1044      return true;
1045  }
1046  return false;
1047}
1048
1049/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1050/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1051/// need to materialize IV increments elsewhere to handle difficult situations.
1052Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1053                                 Type *ExpandTy, Type *IntTy,
1054                                 bool useSubtract) {
1055  Value *IncV;
1056  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1057  if (ExpandTy->isPointerTy()) {
1058    PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1059    // If the step isn't constant, don't use an implicitly scaled GEP, because
1060    // that would require a multiply inside the loop.
1061    if (!isa<ConstantInt>(StepV))
1062      GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1063                                  GEPPtrTy->getAddressSpace());
1064    IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1065    if (IncV->getType() != PN->getType()) {
1066      IncV = Builder.CreateBitCast(IncV, PN->getType());
1067      rememberInstruction(IncV);
1068    }
1069  } else {
1070    IncV = useSubtract ?
1071      Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1072      Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1073    rememberInstruction(IncV);
1074  }
1075  return IncV;
1076}
1077
1078/// Hoist the addrec instruction chain rooted in the loop phi above the
1079/// position. This routine assumes that this is possible (has been checked).
1080void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1081                                  Instruction *Pos, PHINode *LoopPhi) {
1082  do {
1083    if (DT->dominates(InstToHoist, Pos))
1084      break;
1085    // Make sure the increment is where we want it. But don't move it
1086    // down past a potential existing post-inc user.
1087    fixupInsertPoints(InstToHoist);
1088    InstToHoist->moveBefore(Pos);
1089    Pos = InstToHoist;
1090    InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1091  } while (InstToHoist != LoopPhi);
1092}
1093
1094/// Check whether we can cheaply express the requested SCEV in terms of
1095/// the available PHI SCEV by truncation and/or inversion of the step.
1096static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1097                                    const SCEVAddRecExpr *Phi,
1098                                    const SCEVAddRecExpr *Requested,
1099                                    bool &InvertStep) {
1100  Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1101  Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1102
1103  if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1104    return false;
1105
1106  // Try truncate it if necessary.
1107  Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1108  if (!Phi)
1109    return false;
1110
1111  // Check whether truncation will help.
1112  if (Phi == Requested) {
1113    InvertStep = false;
1114    return true;
1115  }
1116
1117  // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1118  if (SE.getAddExpr(Requested->getStart(),
1119                    SE.getNegativeSCEV(Requested)) == Phi) {
1120    InvertStep = true;
1121    return true;
1122  }
1123
1124  return false;
1125}
1126
1127static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1128  if (!isa<IntegerType>(AR->getType()))
1129    return false;
1130
1131  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1132  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1133  const SCEV *Step = AR->getStepRecurrence(SE);
1134  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1135                                            SE.getSignExtendExpr(AR, WideTy));
1136  const SCEV *ExtendAfterOp =
1137    SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1138  return ExtendAfterOp == OpAfterExtend;
1139}
1140
1141static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1142  if (!isa<IntegerType>(AR->getType()))
1143    return false;
1144
1145  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1146  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1147  const SCEV *Step = AR->getStepRecurrence(SE);
1148  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1149                                            SE.getZeroExtendExpr(AR, WideTy));
1150  const SCEV *ExtendAfterOp =
1151    SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1152  return ExtendAfterOp == OpAfterExtend;
1153}
1154
1155/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1156/// the base addrec, which is the addrec without any non-loop-dominating
1157/// values, and return the PHI.
1158PHINode *
1159SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1160                                        const Loop *L,
1161                                        Type *ExpandTy,
1162                                        Type *IntTy,
1163                                        Type *&TruncTy,
1164                                        bool &InvertStep) {
1165  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1166
1167  // Reuse a previously-inserted PHI, if present.
1168  BasicBlock *LatchBlock = L->getLoopLatch();
1169  if (LatchBlock) {
1170    PHINode *AddRecPhiMatch = nullptr;
1171    Instruction *IncV = nullptr;
1172    TruncTy = nullptr;
1173    InvertStep = false;
1174
1175    // Only try partially matching scevs that need truncation and/or
1176    // step-inversion if we know this loop is outside the current loop.
1177    bool TryNonMatchingSCEV =
1178        IVIncInsertLoop &&
1179        SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1180
1181    for (PHINode &PN : L->getHeader()->phis()) {
1182      if (!SE.isSCEVable(PN.getType()))
1183        continue;
1184
1185      const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1186      if (!PhiSCEV)
1187        continue;
1188
1189      bool IsMatchingSCEV = PhiSCEV == Normalized;
1190      // We only handle truncation and inversion of phi recurrences for the
1191      // expanded expression if the expanded expression's loop dominates the
1192      // loop we insert to. Check now, so we can bail out early.
1193      if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1194          continue;
1195
1196      // TODO: this possibly can be reworked to avoid this cast at all.
1197      Instruction *TempIncV =
1198          dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1199      if (!TempIncV)
1200        continue;
1201
1202      // Check whether we can reuse this PHI node.
1203      if (LSRMode) {
1204        if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1205          continue;
1206        if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1207          continue;
1208      } else {
1209        if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1210          continue;
1211      }
1212
1213      // Stop if we have found an exact match SCEV.
1214      if (IsMatchingSCEV) {
1215        IncV = TempIncV;
1216        TruncTy = nullptr;
1217        InvertStep = false;
1218        AddRecPhiMatch = &PN;
1219        break;
1220      }
1221
1222      // Try whether the phi can be translated into the requested form
1223      // (truncated and/or offset by a constant).
1224      if ((!TruncTy || InvertStep) &&
1225          canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1226        // Record the phi node. But don't stop we might find an exact match
1227        // later.
1228        AddRecPhiMatch = &PN;
1229        IncV = TempIncV;
1230        TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1231      }
1232    }
1233
1234    if (AddRecPhiMatch) {
1235      // Potentially, move the increment. We have made sure in
1236      // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1237      if (L == IVIncInsertLoop)
1238        hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1239
1240      // Ok, the add recurrence looks usable.
1241      // Remember this PHI, even in post-inc mode.
1242      InsertedValues.insert(AddRecPhiMatch);
1243      // Remember the increment.
1244      rememberInstruction(IncV);
1245      return AddRecPhiMatch;
1246    }
1247  }
1248
1249  // Save the original insertion point so we can restore it when we're done.
1250  SCEVInsertPointGuard Guard(Builder, this);
1251
1252  // Another AddRec may need to be recursively expanded below. For example, if
1253  // this AddRec is quadratic, the StepV may itself be an AddRec in this
1254  // loop. Remove this loop from the PostIncLoops set before expanding such
1255  // AddRecs. Otherwise, we cannot find a valid position for the step
1256  // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1257  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1258  // so it's not worth implementing SmallPtrSet::swap.
1259  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1260  PostIncLoops.clear();
1261
1262  // Expand code for the start value into the loop preheader.
1263  assert(L->getLoopPreheader() &&
1264         "Can't expand add recurrences without a loop preheader!");
1265  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1266                                L->getLoopPreheader()->getTerminator());
1267
1268  // StartV must have been be inserted into L's preheader to dominate the new
1269  // phi.
1270  assert(!isa<Instruction>(StartV) ||
1271         SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1272                                 L->getHeader()));
1273
1274  // Expand code for the step value. Do this before creating the PHI so that PHI
1275  // reuse code doesn't see an incomplete PHI.
1276  const SCEV *Step = Normalized->getStepRecurrence(SE);
1277  // If the stride is negative, insert a sub instead of an add for the increment
1278  // (unless it's a constant, because subtracts of constants are canonicalized
1279  // to adds).
1280  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1281  if (useSubtract)
1282    Step = SE.getNegativeSCEV(Step);
1283  // Expand the step somewhere that dominates the loop header.
1284  Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1285
1286  // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1287  // we actually do emit an addition.  It does not apply if we emit a
1288  // subtraction.
1289  bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1290  bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1291
1292  // Create the PHI.
1293  BasicBlock *Header = L->getHeader();
1294  Builder.SetInsertPoint(Header, Header->begin());
1295  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1296  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1297                                  Twine(IVName) + ".iv");
1298  rememberInstruction(PN);
1299
1300  // Create the step instructions and populate the PHI.
1301  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1302    BasicBlock *Pred = *HPI;
1303
1304    // Add a start value.
1305    if (!L->contains(Pred)) {
1306      PN->addIncoming(StartV, Pred);
1307      continue;
1308    }
1309
1310    // Create a step value and add it to the PHI.
1311    // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1312    // instructions at IVIncInsertPos.
1313    Instruction *InsertPos = L == IVIncInsertLoop ?
1314      IVIncInsertPos : Pred->getTerminator();
1315    Builder.SetInsertPoint(InsertPos);
1316    Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1317
1318    if (isa<OverflowingBinaryOperator>(IncV)) {
1319      if (IncrementIsNUW)
1320        cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1321      if (IncrementIsNSW)
1322        cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1323    }
1324    PN->addIncoming(IncV, Pred);
1325  }
1326
1327  // After expanding subexpressions, restore the PostIncLoops set so the caller
1328  // can ensure that IVIncrement dominates the current uses.
1329  PostIncLoops = SavedPostIncLoops;
1330
1331  // Remember this PHI, even in post-inc mode.
1332  InsertedValues.insert(PN);
1333
1334  return PN;
1335}
1336
1337Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1338  Type *STy = S->getType();
1339  Type *IntTy = SE.getEffectiveSCEVType(STy);
1340  const Loop *L = S->getLoop();
1341
1342  // Determine a normalized form of this expression, which is the expression
1343  // before any post-inc adjustment is made.
1344  const SCEVAddRecExpr *Normalized = S;
1345  if (PostIncLoops.count(L)) {
1346    PostIncLoopSet Loops;
1347    Loops.insert(L);
1348    Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1349  }
1350
1351  // Strip off any non-loop-dominating component from the addrec start.
1352  const SCEV *Start = Normalized->getStart();
1353  const SCEV *PostLoopOffset = nullptr;
1354  if (!SE.properlyDominates(Start, L->getHeader())) {
1355    PostLoopOffset = Start;
1356    Start = SE.getConstant(Normalized->getType(), 0);
1357    Normalized = cast<SCEVAddRecExpr>(
1358      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1359                       Normalized->getLoop(),
1360                       Normalized->getNoWrapFlags(SCEV::FlagNW)));
1361  }
1362
1363  // Strip off any non-loop-dominating component from the addrec step.
1364  const SCEV *Step = Normalized->getStepRecurrence(SE);
1365  const SCEV *PostLoopScale = nullptr;
1366  if (!SE.dominates(Step, L->getHeader())) {
1367    PostLoopScale = Step;
1368    Step = SE.getConstant(Normalized->getType(), 1);
1369    if (!Start->isZero()) {
1370        // The normalization below assumes that Start is constant zero, so if
1371        // it isn't re-associate Start to PostLoopOffset.
1372        assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1373        PostLoopOffset = Start;
1374        Start = SE.getConstant(Normalized->getType(), 0);
1375    }
1376    Normalized =
1377      cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1378                             Start, Step, Normalized->getLoop(),
1379                             Normalized->getNoWrapFlags(SCEV::FlagNW)));
1380  }
1381
1382  // Expand the core addrec. If we need post-loop scaling, force it to
1383  // expand to an integer type to avoid the need for additional casting.
1384  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1385  // We can't use a pointer type for the addrec if the pointer type is
1386  // non-integral.
1387  Type *AddRecPHIExpandTy =
1388      DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1389
1390  // In some cases, we decide to reuse an existing phi node but need to truncate
1391  // it and/or invert the step.
1392  Type *TruncTy = nullptr;
1393  bool InvertStep = false;
1394  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1395                                          IntTy, TruncTy, InvertStep);
1396
1397  // Accommodate post-inc mode, if necessary.
1398  Value *Result;
1399  if (!PostIncLoops.count(L))
1400    Result = PN;
1401  else {
1402    // In PostInc mode, use the post-incremented value.
1403    BasicBlock *LatchBlock = L->getLoopLatch();
1404    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1405    Result = PN->getIncomingValueForBlock(LatchBlock);
1406
1407    // For an expansion to use the postinc form, the client must call
1408    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1409    // or dominated by IVIncInsertPos.
1410    if (isa<Instruction>(Result) &&
1411        !SE.DT.dominates(cast<Instruction>(Result),
1412                         &*Builder.GetInsertPoint())) {
1413      // The induction variable's postinc expansion does not dominate this use.
1414      // IVUsers tries to prevent this case, so it is rare. However, it can
1415      // happen when an IVUser outside the loop is not dominated by the latch
1416      // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1417      // all cases. Consider a phi outside whose operand is replaced during
1418      // expansion with the value of the postinc user. Without fundamentally
1419      // changing the way postinc users are tracked, the only remedy is
1420      // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1421      // but hopefully expandCodeFor handles that.
1422      bool useSubtract =
1423        !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1424      if (useSubtract)
1425        Step = SE.getNegativeSCEV(Step);
1426      Value *StepV;
1427      {
1428        // Expand the step somewhere that dominates the loop header.
1429        SCEVInsertPointGuard Guard(Builder, this);
1430        StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1431      }
1432      Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1433    }
1434  }
1435
1436  // We have decided to reuse an induction variable of a dominating loop. Apply
1437  // truncation and/or inversion of the step.
1438  if (TruncTy) {
1439    Type *ResTy = Result->getType();
1440    // Normalize the result type.
1441    if (ResTy != SE.getEffectiveSCEVType(ResTy))
1442      Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1443    // Truncate the result.
1444    if (TruncTy != Result->getType()) {
1445      Result = Builder.CreateTrunc(Result, TruncTy);
1446      rememberInstruction(Result);
1447    }
1448    // Invert the result.
1449    if (InvertStep) {
1450      Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1451                                 Result);
1452      rememberInstruction(Result);
1453    }
1454  }
1455
1456  // Re-apply any non-loop-dominating scale.
1457  if (PostLoopScale) {
1458    assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1459    Result = InsertNoopCastOfTo(Result, IntTy);
1460    Result = Builder.CreateMul(Result,
1461                               expandCodeFor(PostLoopScale, IntTy));
1462    rememberInstruction(Result);
1463  }
1464
1465  // Re-apply any non-loop-dominating offset.
1466  if (PostLoopOffset) {
1467    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1468      if (Result->getType()->isIntegerTy()) {
1469        Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
1470        Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1471      } else {
1472        Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1473      }
1474    } else {
1475      Result = InsertNoopCastOfTo(Result, IntTy);
1476      Result = Builder.CreateAdd(Result,
1477                                 expandCodeFor(PostLoopOffset, IntTy));
1478      rememberInstruction(Result);
1479    }
1480  }
1481
1482  return Result;
1483}
1484
1485Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1486  // In canonical mode we compute the addrec as an expression of a canonical IV
1487  // using evaluateAtIteration and expand the resulting SCEV expression. This
1488  // way we avoid introducing new IVs to carry on the comutation of the addrec
1489  // throughout the loop.
1490  //
1491  // For nested addrecs evaluateAtIteration might need a canonical IV of a
1492  // type wider than the addrec itself. Emitting a canonical IV of the
1493  // proper type might produce non-legal types, for example expanding an i64
1494  // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1495  // back to non-canonical mode for nested addrecs.
1496  if (!CanonicalMode || (S->getNumOperands() > 2))
1497    return expandAddRecExprLiterally(S);
1498
1499  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1500  const Loop *L = S->getLoop();
1501
1502  // First check for an existing canonical IV in a suitable type.
1503  PHINode *CanonicalIV = nullptr;
1504  if (PHINode *PN = L->getCanonicalInductionVariable())
1505    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1506      CanonicalIV = PN;
1507
1508  // Rewrite an AddRec in terms of the canonical induction variable, if
1509  // its type is more narrow.
1510  if (CanonicalIV &&
1511      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1512      SE.getTypeSizeInBits(Ty)) {
1513    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1514    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1515      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1516    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1517                                       S->getNoWrapFlags(SCEV::FlagNW)));
1518    BasicBlock::iterator NewInsertPt =
1519        findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
1520    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1521                      &*NewInsertPt);
1522    return V;
1523  }
1524
1525  // {X,+,F} --> X + {0,+,F}
1526  if (!S->getStart()->isZero()) {
1527    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1528    NewOps[0] = SE.getConstant(Ty, 0);
1529    const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1530                                        S->getNoWrapFlags(SCEV::FlagNW));
1531
1532    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1533    // comments on expandAddToGEP for details.
1534    const SCEV *Base = S->getStart();
1535    // Dig into the expression to find the pointer base for a GEP.
1536    const SCEV *ExposedRest = Rest;
1537    ExposePointerBase(Base, ExposedRest, SE);
1538    // If we found a pointer, expand the AddRec with a GEP.
1539    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1540      // Make sure the Base isn't something exotic, such as a multiplied
1541      // or divided pointer value. In those cases, the result type isn't
1542      // actually a pointer type.
1543      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1544        Value *StartV = expand(Base);
1545        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1546        return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1547      }
1548    }
1549
1550    // Just do a normal add. Pre-expand the operands to suppress folding.
1551    //
1552    // The LHS and RHS values are factored out of the expand call to make the
1553    // output independent of the argument evaluation order.
1554    const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1555    const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1556    return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1557  }
1558
1559  // If we don't yet have a canonical IV, create one.
1560  if (!CanonicalIV) {
1561    // Create and insert the PHI node for the induction variable in the
1562    // specified loop.
1563    BasicBlock *Header = L->getHeader();
1564    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1565    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1566                                  &Header->front());
1567    rememberInstruction(CanonicalIV);
1568
1569    SmallSet<BasicBlock *, 4> PredSeen;
1570    Constant *One = ConstantInt::get(Ty, 1);
1571    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1572      BasicBlock *HP = *HPI;
1573      if (!PredSeen.insert(HP).second) {
1574        // There must be an incoming value for each predecessor, even the
1575        // duplicates!
1576        CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1577        continue;
1578      }
1579
1580      if (L->contains(HP)) {
1581        // Insert a unit add instruction right before the terminator
1582        // corresponding to the back-edge.
1583        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1584                                                     "indvar.next",
1585                                                     HP->getTerminator());
1586        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1587        rememberInstruction(Add);
1588        CanonicalIV->addIncoming(Add, HP);
1589      } else {
1590        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1591      }
1592    }
1593  }
1594
1595  // {0,+,1} --> Insert a canonical induction variable into the loop!
1596  if (S->isAffine() && S->getOperand(1)->isOne()) {
1597    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1598           "IVs with types different from the canonical IV should "
1599           "already have been handled!");
1600    return CanonicalIV;
1601  }
1602
1603  // {0,+,F} --> {0,+,1} * F
1604
1605  // If this is a simple linear addrec, emit it now as a special case.
1606  if (S->isAffine())    // {0,+,F} --> i*F
1607    return
1608      expand(SE.getTruncateOrNoop(
1609        SE.getMulExpr(SE.getUnknown(CanonicalIV),
1610                      SE.getNoopOrAnyExtend(S->getOperand(1),
1611                                            CanonicalIV->getType())),
1612        Ty));
1613
1614  // If this is a chain of recurrences, turn it into a closed form, using the
1615  // folders, then expandCodeFor the closed form.  This allows the folders to
1616  // simplify the expression without having to build a bunch of special code
1617  // into this folder.
1618  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1619
1620  // Promote S up to the canonical IV type, if the cast is foldable.
1621  const SCEV *NewS = S;
1622  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1623  if (isa<SCEVAddRecExpr>(Ext))
1624    NewS = Ext;
1625
1626  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1627  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1628
1629  // Truncate the result down to the original type, if needed.
1630  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1631  return expand(T);
1632}
1633
1634Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1635  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1636  Value *V = expandCodeFor(S->getOperand(),
1637                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1638  Value *I = Builder.CreateTrunc(V, Ty);
1639  rememberInstruction(I);
1640  return I;
1641}
1642
1643Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1644  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1645  Value *V = expandCodeFor(S->getOperand(),
1646                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1647  Value *I = Builder.CreateZExt(V, Ty);
1648  rememberInstruction(I);
1649  return I;
1650}
1651
1652Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1653  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1654  Value *V = expandCodeFor(S->getOperand(),
1655                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1656  Value *I = Builder.CreateSExt(V, Ty);
1657  rememberInstruction(I);
1658  return I;
1659}
1660
1661Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1662  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1663  Type *Ty = LHS->getType();
1664  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1665    // In the case of mixed integer and pointer types, do the
1666    // rest of the comparisons as integer.
1667    Type *OpTy = S->getOperand(i)->getType();
1668    if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1669      Ty = SE.getEffectiveSCEVType(Ty);
1670      LHS = InsertNoopCastOfTo(LHS, Ty);
1671    }
1672    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1673    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1674    rememberInstruction(ICmp);
1675    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1676    rememberInstruction(Sel);
1677    LHS = Sel;
1678  }
1679  // In the case of mixed integer and pointer types, cast the
1680  // final result back to the pointer type.
1681  if (LHS->getType() != S->getType())
1682    LHS = InsertNoopCastOfTo(LHS, S->getType());
1683  return LHS;
1684}
1685
1686Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1687  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1688  Type *Ty = LHS->getType();
1689  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1690    // In the case of mixed integer and pointer types, do the
1691    // rest of the comparisons as integer.
1692    Type *OpTy = S->getOperand(i)->getType();
1693    if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1694      Ty = SE.getEffectiveSCEVType(Ty);
1695      LHS = InsertNoopCastOfTo(LHS, Ty);
1696    }
1697    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1698    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1699    rememberInstruction(ICmp);
1700    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1701    rememberInstruction(Sel);
1702    LHS = Sel;
1703  }
1704  // In the case of mixed integer and pointer types, cast the
1705  // final result back to the pointer type.
1706  if (LHS->getType() != S->getType())
1707    LHS = InsertNoopCastOfTo(LHS, S->getType());
1708  return LHS;
1709}
1710
1711Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1712  Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1713  Type *Ty = LHS->getType();
1714  for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1715    // In the case of mixed integer and pointer types, do the
1716    // rest of the comparisons as integer.
1717    Type *OpTy = S->getOperand(i)->getType();
1718    if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1719      Ty = SE.getEffectiveSCEVType(Ty);
1720      LHS = InsertNoopCastOfTo(LHS, Ty);
1721    }
1722    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1723    Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1724    rememberInstruction(ICmp);
1725    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1726    rememberInstruction(Sel);
1727    LHS = Sel;
1728  }
1729  // In the case of mixed integer and pointer types, cast the
1730  // final result back to the pointer type.
1731  if (LHS->getType() != S->getType())
1732    LHS = InsertNoopCastOfTo(LHS, S->getType());
1733  return LHS;
1734}
1735
1736Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1737  Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1738  Type *Ty = LHS->getType();
1739  for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1740    // In the case of mixed integer and pointer types, do the
1741    // rest of the comparisons as integer.
1742    Type *OpTy = S->getOperand(i)->getType();
1743    if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1744      Ty = SE.getEffectiveSCEVType(Ty);
1745      LHS = InsertNoopCastOfTo(LHS, Ty);
1746    }
1747    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1748    Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1749    rememberInstruction(ICmp);
1750    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1751    rememberInstruction(Sel);
1752    LHS = Sel;
1753  }
1754  // In the case of mixed integer and pointer types, cast the
1755  // final result back to the pointer type.
1756  if (LHS->getType() != S->getType())
1757    LHS = InsertNoopCastOfTo(LHS, S->getType());
1758  return LHS;
1759}
1760
1761Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1762                                   Instruction *IP) {
1763  setInsertPoint(IP);
1764  return expandCodeFor(SH, Ty);
1765}
1766
1767Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1768  // Expand the code for this SCEV.
1769  Value *V = expand(SH);
1770  if (Ty) {
1771    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1772           "non-trivial casts should be done with the SCEVs directly!");
1773    V = InsertNoopCastOfTo(V, Ty);
1774  }
1775  return V;
1776}
1777
1778ScalarEvolution::ValueOffsetPair
1779SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1780                                      const Instruction *InsertPt) {
1781  SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
1782  // If the expansion is not in CanonicalMode, and the SCEV contains any
1783  // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1784  if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1785    // If S is scConstant, it may be worse to reuse an existing Value.
1786    if (S->getSCEVType() != scConstant && Set) {
1787      // Choose a Value from the set which dominates the insertPt.
1788      // insertPt should be inside the Value's parent loop so as not to break
1789      // the LCSSA form.
1790      for (auto const &VOPair : *Set) {
1791        Value *V = VOPair.first;
1792        ConstantInt *Offset = VOPair.second;
1793        Instruction *EntInst = nullptr;
1794        if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1795            S->getType() == V->getType() &&
1796            EntInst->getFunction() == InsertPt->getFunction() &&
1797            SE.DT.dominates(EntInst, InsertPt) &&
1798            (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1799             SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1800          return {V, Offset};
1801      }
1802    }
1803  }
1804  return {nullptr, nullptr};
1805}
1806
1807// The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1808// or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1809// and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1810// literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1811// the expansion will try to reuse Value from ExprValueMap, and only when it
1812// fails, expand the SCEV literally.
1813Value *SCEVExpander::expand(const SCEV *S) {
1814  // Compute an insertion point for this SCEV object. Hoist the instructions
1815  // as far out in the loop nest as possible.
1816  Instruction *InsertPt = &*Builder.GetInsertPoint();
1817
1818  // We can move insertion point only if there is no div or rem operations
1819  // otherwise we are risky to move it over the check for zero denominator.
1820  auto SafeToHoist = [](const SCEV *S) {
1821    return !SCEVExprContains(S, [](const SCEV *S) {
1822              if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1823                if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1824                  // Division by non-zero constants can be hoisted.
1825                  return SC->getValue()->isZero();
1826                // All other divisions should not be moved as they may be
1827                // divisions by zero and should be kept within the
1828                // conditions of the surrounding loops that guard their
1829                // execution (see PR35406).
1830                return true;
1831              }
1832              return false;
1833            });
1834  };
1835  if (SafeToHoist(S)) {
1836    for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1837         L = L->getParentLoop()) {
1838      if (SE.isLoopInvariant(S, L)) {
1839        if (!L) break;
1840        if (BasicBlock *Preheader = L->getLoopPreheader())
1841          InsertPt = Preheader->getTerminator();
1842        else
1843          // LSR sets the insertion point for AddRec start/step values to the
1844          // block start to simplify value reuse, even though it's an invalid
1845          // position. SCEVExpander must correct for this in all cases.
1846          InsertPt = &*L->getHeader()->getFirstInsertionPt();
1847      } else {
1848        // If the SCEV is computable at this level, insert it into the header
1849        // after the PHIs (and after any other instructions that we've inserted
1850        // there) so that it is guaranteed to dominate any user inside the loop.
1851        if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1852          InsertPt = &*L->getHeader()->getFirstInsertionPt();
1853        while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1854               (isInsertedInstruction(InsertPt) ||
1855                isa<DbgInfoIntrinsic>(InsertPt)))
1856          InsertPt = &*std::next(InsertPt->getIterator());
1857        break;
1858      }
1859    }
1860  }
1861
1862  // IndVarSimplify sometimes sets the insertion point at the block start, even
1863  // when there are PHIs at that point.  We must correct for this.
1864  if (isa<PHINode>(*InsertPt))
1865    InsertPt = &*InsertPt->getParent()->getFirstInsertionPt();
1866
1867  // Check to see if we already expanded this here.
1868  auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1869  if (I != InsertedExpressions.end())
1870    return I->second;
1871
1872  SCEVInsertPointGuard Guard(Builder, this);
1873  Builder.SetInsertPoint(InsertPt);
1874
1875  // Expand the expression into instructions.
1876  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1877  Value *V = VO.first;
1878
1879  if (!V)
1880    V = visit(S);
1881  else if (VO.second) {
1882    if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1883      Type *Ety = Vty->getPointerElementType();
1884      int64_t Offset = VO.second->getSExtValue();
1885      int64_t ESize = SE.getTypeSizeInBits(Ety);
1886      if ((Offset * 8) % ESize == 0) {
1887        ConstantInt *Idx =
1888            ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1889        V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1890      } else {
1891        ConstantInt *Idx =
1892            ConstantInt::getSigned(VO.second->getType(), -Offset);
1893        unsigned AS = Vty->getAddressSpace();
1894        V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1895        V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1896                              "uglygep");
1897        V = Builder.CreateBitCast(V, Vty);
1898      }
1899    } else {
1900      V = Builder.CreateSub(V, VO.second);
1901    }
1902  }
1903  // Remember the expanded value for this SCEV at this location.
1904  //
1905  // This is independent of PostIncLoops. The mapped value simply materializes
1906  // the expression at this insertion point. If the mapped value happened to be
1907  // a postinc expansion, it could be reused by a non-postinc user, but only if
1908  // its insertion point was already at the head of the loop.
1909  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1910  return V;
1911}
1912
1913void SCEVExpander::rememberInstruction(Value *I) {
1914  if (!PostIncLoops.empty())
1915    InsertedPostIncValues.insert(I);
1916  else
1917    InsertedValues.insert(I);
1918}
1919
1920/// getOrInsertCanonicalInductionVariable - This method returns the
1921/// canonical induction variable of the specified type for the specified
1922/// loop (inserting one if there is none).  A canonical induction variable
1923/// starts at zero and steps by one on each iteration.
1924PHINode *
1925SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1926                                                    Type *Ty) {
1927  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1928
1929  // Build a SCEV for {0,+,1}<L>.
1930  // Conservatively use FlagAnyWrap for now.
1931  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1932                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1933
1934  // Emit code for it.
1935  SCEVInsertPointGuard Guard(Builder, this);
1936  PHINode *V =
1937      cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));
1938
1939  return V;
1940}
1941
1942/// replaceCongruentIVs - Check for congruent phis in this loop header and
1943/// replace them with their most canonical representative. Return the number of
1944/// phis eliminated.
1945///
1946/// This does not depend on any SCEVExpander state but should be used in
1947/// the same context that SCEVExpander is used.
1948unsigned
1949SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1950                                  SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1951                                  const TargetTransformInfo *TTI) {
1952  // Find integer phis in order of increasing width.
1953  SmallVector<PHINode*, 8> Phis;
1954  for (PHINode &PN : L->getHeader()->phis())
1955    Phis.push_back(&PN);
1956
1957  if (TTI)
1958    llvm::sort(Phis, [](Value *LHS, Value *RHS) {
1959      // Put pointers at the back and make sure pointer < pointer = false.
1960      if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1961        return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1962      return RHS->getType()->getPrimitiveSizeInBits() <
1963             LHS->getType()->getPrimitiveSizeInBits();
1964    });
1965
1966  unsigned NumElim = 0;
1967  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1968  // Process phis from wide to narrow. Map wide phis to their truncation
1969  // so narrow phis can reuse them.
1970  for (PHINode *Phi : Phis) {
1971    auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1972      if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1973        return V;
1974      if (!SE.isSCEVable(PN->getType()))
1975        return nullptr;
1976      auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1977      if (!Const)
1978        return nullptr;
1979      return Const->getValue();
1980    };
1981
1982    // Fold constant phis. They may be congruent to other constant phis and
1983    // would confuse the logic below that expects proper IVs.
1984    if (Value *V = SimplifyPHINode(Phi)) {
1985      if (V->getType() != Phi->getType())
1986        continue;
1987      Phi->replaceAllUsesWith(V);
1988      DeadInsts.emplace_back(Phi);
1989      ++NumElim;
1990      DEBUG_WITH_TYPE(DebugType, dbgs()
1991                      << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1992      continue;
1993    }
1994
1995    if (!SE.isSCEVable(Phi->getType()))
1996      continue;
1997
1998    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1999    if (!OrigPhiRef) {
2000      OrigPhiRef = Phi;
2001      if (Phi->getType()->isIntegerTy() && TTI &&
2002          TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
2003        // This phi can be freely truncated to the narrowest phi type. Map the
2004        // truncated expression to it so it will be reused for narrow types.
2005        const SCEV *TruncExpr =
2006          SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
2007        ExprToIVMap[TruncExpr] = Phi;
2008      }
2009      continue;
2010    }
2011
2012    // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2013    // sense.
2014    if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
2015      continue;
2016
2017    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2018      Instruction *OrigInc = dyn_cast<Instruction>(
2019          OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2020      Instruction *IsomorphicInc =
2021          dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2022
2023      if (OrigInc && IsomorphicInc) {
2024        // If this phi has the same width but is more canonical, replace the
2025        // original with it. As part of the "more canonical" determination,
2026        // respect a prior decision to use an IV chain.
2027        if (OrigPhiRef->getType() == Phi->getType() &&
2028            !(ChainedPhis.count(Phi) ||
2029              isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2030            (ChainedPhis.count(Phi) ||
2031             isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2032          std::swap(OrigPhiRef, Phi);
2033          std::swap(OrigInc, IsomorphicInc);
2034        }
2035        // Replacing the congruent phi is sufficient because acyclic
2036        // redundancy elimination, CSE/GVN, should handle the
2037        // rest. However, once SCEV proves that a phi is congruent,
2038        // it's often the head of an IV user cycle that is isomorphic
2039        // with the original phi. It's worth eagerly cleaning up the
2040        // common case of a single IV increment so that DeleteDeadPHIs
2041        // can remove cycles that had postinc uses.
2042        const SCEV *TruncExpr =
2043            SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2044        if (OrigInc != IsomorphicInc &&
2045            TruncExpr == SE.getSCEV(IsomorphicInc) &&
2046            SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2047            hoistIVInc(OrigInc, IsomorphicInc)) {
2048          DEBUG_WITH_TYPE(DebugType,
2049                          dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2050                                 << *IsomorphicInc << '\n');
2051          Value *NewInc = OrigInc;
2052          if (OrigInc->getType() != IsomorphicInc->getType()) {
2053            Instruction *IP = nullptr;
2054            if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2055              IP = &*PN->getParent()->getFirstInsertionPt();
2056            else
2057              IP = OrigInc->getNextNode();
2058
2059            IRBuilder<> Builder(IP);
2060            Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2061            NewInc = Builder.CreateTruncOrBitCast(
2062                OrigInc, IsomorphicInc->getType(), IVName);
2063          }
2064          IsomorphicInc->replaceAllUsesWith(NewInc);
2065          DeadInsts.emplace_back(IsomorphicInc);
2066        }
2067      }
2068    }
2069    DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
2070                                      << *Phi << '\n');
2071    ++NumElim;
2072    Value *NewIV = OrigPhiRef;
2073    if (OrigPhiRef->getType() != Phi->getType()) {
2074      IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2075      Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2076      NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2077    }
2078    Phi->replaceAllUsesWith(NewIV);
2079    DeadInsts.emplace_back(Phi);
2080  }
2081  return NumElim;
2082}
2083
2084Value *SCEVExpander::getExactExistingExpansion(const SCEV *S,
2085                                               const Instruction *At, Loop *L) {
2086  Optional<ScalarEvolution::ValueOffsetPair> VO =
2087      getRelatedExistingExpansion(S, At, L);
2088  if (VO && VO.getValue().second == nullptr)
2089    return VO.getValue().first;
2090  return nullptr;
2091}
2092
2093Optional<ScalarEvolution::ValueOffsetPair>
2094SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2095                                          Loop *L) {
2096  using namespace llvm::PatternMatch;
2097
2098  SmallVector<BasicBlock *, 4> ExitingBlocks;
2099  L->getExitingBlocks(ExitingBlocks);
2100
2101  // Look for suitable value in simple conditions at the loop exits.
2102  for (BasicBlock *BB : ExitingBlocks) {
2103    ICmpInst::Predicate Pred;
2104    Instruction *LHS, *RHS;
2105
2106    if (!match(BB->getTerminator(),
2107               m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2108                    m_BasicBlock(), m_BasicBlock())))
2109      continue;
2110
2111    if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2112      return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2113
2114    if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2115      return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2116  }
2117
2118  // Use expand's logic which is used for reusing a previous Value in
2119  // ExprValueMap.
2120  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2121  if (VO.first)
2122    return VO;
2123
2124  // There is potential to make this significantly smarter, but this simple
2125  // heuristic already gets some interesting cases.
2126
2127  // Can not find suitable value.
2128  return None;
2129}
2130
2131bool SCEVExpander::isHighCostExpansionHelper(
2132    const SCEV *S, Loop *L, const Instruction *At,
2133    SmallPtrSetImpl<const SCEV *> &Processed) {
2134
2135  // If we can find an existing value for this scev available at the point "At"
2136  // then consider the expression cheap.
2137  if (At && getRelatedExistingExpansion(S, At, L))
2138    return false;
2139
2140  // Zero/One operand expressions
2141  switch (S->getSCEVType()) {
2142  case scUnknown:
2143  case scConstant:
2144    return false;
2145  case scTruncate:
2146    return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
2147                                     L, At, Processed);
2148  case scZeroExtend:
2149    return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
2150                                     L, At, Processed);
2151  case scSignExtend:
2152    return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
2153                                     L, At, Processed);
2154  }
2155
2156  if (!Processed.insert(S).second)
2157    return false;
2158
2159  if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
2160    // If the divisor is a power of two and the SCEV type fits in a native
2161    // integer (and the LHS not expensive), consider the division cheap
2162    // irrespective of whether it occurs in the user code since it can be
2163    // lowered into a right shift.
2164    if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
2165      if (SC->getAPInt().isPowerOf2()) {
2166        if (isHighCostExpansionHelper(UDivExpr->getLHS(), L, At, Processed))
2167          return true;
2168        const DataLayout &DL =
2169            L->getHeader()->getParent()->getParent()->getDataLayout();
2170        unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
2171        return DL.isIllegalInteger(Width);
2172      }
2173
2174    // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2175    // HowManyLessThans produced to compute a precise expression, rather than a
2176    // UDiv from the user's code. If we can't find a UDiv in the code with some
2177    // simple searching, assume the former consider UDivExpr expensive to
2178    // compute.
2179    BasicBlock *ExitingBB = L->getExitingBlock();
2180    if (!ExitingBB)
2181      return true;
2182
2183    // At the beginning of this function we already tried to find existing value
2184    // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
2185    // involving division. This is just a simple search heuristic.
2186    if (!At)
2187      At = &ExitingBB->back();
2188    if (!getRelatedExistingExpansion(
2189            SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
2190      return true;
2191  }
2192
2193  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
2194  // the exit condition.
2195  if (isa<SCEVMinMaxExpr>(S))
2196    return true;
2197
2198  // Recurse past nary expressions, which commonly occur in the
2199  // BackedgeTakenCount. They may already exist in program code, and if not,
2200  // they are not too expensive rematerialize.
2201  if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
2202    for (auto *Op : NAry->operands())
2203      if (isHighCostExpansionHelper(Op, L, At, Processed))
2204        return true;
2205  }
2206
2207  // If we haven't recognized an expensive SCEV pattern, assume it's an
2208  // expression produced by program code.
2209  return false;
2210}
2211
2212Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2213                                            Instruction *IP) {
2214  assert(IP);
2215  switch (Pred->getKind()) {
2216  case SCEVPredicate::P_Union:
2217    return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2218  case SCEVPredicate::P_Equal:
2219    return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2220  case SCEVPredicate::P_Wrap: {
2221    auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2222    return expandWrapPredicate(AddRecPred, IP);
2223  }
2224  }
2225  llvm_unreachable("Unknown SCEV predicate type");
2226}
2227
2228Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2229                                          Instruction *IP) {
2230  Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2231  Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2232
2233  Builder.SetInsertPoint(IP);
2234  auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2235  return I;
2236}
2237
2238Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2239                                           Instruction *Loc, bool Signed) {
2240  assert(AR->isAffine() && "Cannot generate RT check for "
2241                           "non-affine expression");
2242
2243  SCEVUnionPredicate Pred;
2244  const SCEV *ExitCount =
2245      SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2246
2247  assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
2248
2249  const SCEV *Step = AR->getStepRecurrence(SE);
2250  const SCEV *Start = AR->getStart();
2251
2252  Type *ARTy = AR->getType();
2253  unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2254  unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2255
2256  // The expression {Start,+,Step} has nusw/nssw if
2257  //   Step < 0, Start - |Step| * Backedge <= Start
2258  //   Step >= 0, Start + |Step| * Backedge > Start
2259  // and |Step| * Backedge doesn't unsigned overflow.
2260
2261  IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2262  Builder.SetInsertPoint(Loc);
2263  Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
2264
2265  IntegerType *Ty =
2266      IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2267  Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2268
2269  Value *StepValue = expandCodeFor(Step, Ty, Loc);
2270  Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
2271  Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc);
2272
2273  ConstantInt *Zero =
2274      ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2275
2276  Builder.SetInsertPoint(Loc);
2277  // Compute |Step|
2278  Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2279  Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2280
2281  // Get the backedge taken count and truncate or extended to the AR type.
2282  Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2283  auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2284                                         Intrinsic::umul_with_overflow, Ty);
2285
2286  // Compute |Step| * Backedge
2287  CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2288  Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2289  Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2290
2291  // Compute:
2292  //   Start + |Step| * Backedge < Start
2293  //   Start - |Step| * Backedge > Start
2294  Value *Add = nullptr, *Sub = nullptr;
2295  if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2296    const SCEV *MulS = SE.getSCEV(MulV);
2297    const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2298    Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2299                                ARPtrTy);
2300    Sub = Builder.CreateBitCast(
2301        expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2302  } else {
2303    Add = Builder.CreateAdd(StartValue, MulV);
2304    Sub = Builder.CreateSub(StartValue, MulV);
2305  }
2306
2307  Value *EndCompareGT = Builder.CreateICmp(
2308      Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2309
2310  Value *EndCompareLT = Builder.CreateICmp(
2311      Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2312
2313  // Select the answer based on the sign of Step.
2314  Value *EndCheck =
2315      Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2316
2317  // If the backedge taken count type is larger than the AR type,
2318  // check that we don't drop any bits by truncating it. If we are
2319  // dropping bits, then we have overflow (unless the step is zero).
2320  if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2321    auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2322    auto *BackedgeCheck =
2323        Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2324                           ConstantInt::get(Loc->getContext(), MaxVal));
2325    BackedgeCheck = Builder.CreateAnd(
2326        BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2327
2328    EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2329  }
2330
2331  EndCheck = Builder.CreateOr(EndCheck, OfMul);
2332  return EndCheck;
2333}
2334
2335Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2336                                         Instruction *IP) {
2337  const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2338  Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2339
2340  // Add a check for NUSW
2341  if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2342    NUSWCheck = generateOverflowCheck(A, IP, false);
2343
2344  // Add a check for NSSW
2345  if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2346    NSSWCheck = generateOverflowCheck(A, IP, true);
2347
2348  if (NUSWCheck && NSSWCheck)
2349    return Builder.CreateOr(NUSWCheck, NSSWCheck);
2350
2351  if (NUSWCheck)
2352    return NUSWCheck;
2353
2354  if (NSSWCheck)
2355    return NSSWCheck;
2356
2357  return ConstantInt::getFalse(IP->getContext());
2358}
2359
2360Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2361                                          Instruction *IP) {
2362  auto *BoolType = IntegerType::get(IP->getContext(), 1);
2363  Value *Check = ConstantInt::getNullValue(BoolType);
2364
2365  // Loop over all checks in this set.
2366  for (auto Pred : Union->getPredicates()) {
2367    auto *NextCheck = expandCodeForPredicate(Pred, IP);
2368    Builder.SetInsertPoint(IP);
2369    Check = Builder.CreateOr(Check, NextCheck);
2370  }
2371
2372  return Check;
2373}
2374
2375namespace {
2376// Search for a SCEV subexpression that is not safe to expand.  Any expression
2377// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2378// UDiv expressions. We don't know if the UDiv is derived from an IR divide
2379// instruction, but the important thing is that we prove the denominator is
2380// nonzero before expansion.
2381//
2382// IVUsers already checks that IV-derived expressions are safe. So this check is
2383// only needed when the expression includes some subexpression that is not IV
2384// derived.
2385//
2386// Currently, we only allow division by a nonzero constant here. If this is
2387// inadequate, we could easily allow division by SCEVUnknown by using
2388// ValueTracking to check isKnownNonZero().
2389//
2390// We cannot generally expand recurrences unless the step dominates the loop
2391// header. The expander handles the special case of affine recurrences by
2392// scaling the recurrence outside the loop, but this technique isn't generally
2393// applicable. Expanding a nested recurrence outside a loop requires computing
2394// binomial coefficients. This could be done, but the recurrence has to be in a
2395// perfectly reduced form, which can't be guaranteed.
2396struct SCEVFindUnsafe {
2397  ScalarEvolution &SE;
2398  bool IsUnsafe;
2399
2400  SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2401
2402  bool follow(const SCEV *S) {
2403    if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2404      const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2405      if (!SC || SC->getValue()->isZero()) {
2406        IsUnsafe = true;
2407        return false;
2408      }
2409    }
2410    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2411      const SCEV *Step = AR->getStepRecurrence(SE);
2412      if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2413        IsUnsafe = true;
2414        return false;
2415      }
2416    }
2417    return true;
2418  }
2419  bool isDone() const { return IsUnsafe; }
2420};
2421}
2422
2423namespace llvm {
2424bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2425  SCEVFindUnsafe Search(SE);
2426  visitAll(S, Search);
2427  return !Search.IsUnsafe;
2428}
2429
2430bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2431                      ScalarEvolution &SE) {
2432  if (!isSafeToExpand(S, SE))
2433    return false;
2434  // We have to prove that the expanded site of S dominates InsertionPoint.
2435  // This is easy when not in the same block, but hard when S is an instruction
2436  // to be expanded somewhere inside the same block as our insertion point.
2437  // What we really need here is something analogous to an OrderedBasicBlock,
2438  // but for the moment, we paper over the problem by handling two common and
2439  // cheap to check cases.
2440  if (SE.properlyDominates(S, InsertionPoint->getParent()))
2441    return true;
2442  if (SE.dominates(S, InsertionPoint->getParent())) {
2443    if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2444      return true;
2445    if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2446      for (const Value *V : InsertionPoint->operand_values())
2447        if (V == U->getValue())
2448          return true;
2449  }
2450  return false;
2451}
2452}
2453