1//===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the PHITransAddr class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Analysis/PHITransAddr.h"
14#include "llvm/Analysis/InstructionSimplify.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Config/llvm-config.h"
17#include "llvm/IR/Constants.h"
18#include "llvm/IR/Dominators.h"
19#include "llvm/IR/Instructions.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace llvm;
24
25static bool CanPHITrans(Instruction *Inst) {
26  if (isa<PHINode>(Inst) ||
27      isa<GetElementPtrInst>(Inst))
28    return true;
29
30  if (isa<CastInst>(Inst) &&
31      isSafeToSpeculativelyExecute(Inst))
32    return true;
33
34  if (Inst->getOpcode() == Instruction::Add &&
35      isa<ConstantInt>(Inst->getOperand(1)))
36    return true;
37
38  //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
39  //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
40  //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
41  return false;
42}
43
44#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
45LLVM_DUMP_METHOD void PHITransAddr::dump() const {
46  if (!Addr) {
47    dbgs() << "PHITransAddr: null\n";
48    return;
49  }
50  dbgs() << "PHITransAddr: " << *Addr << "\n";
51  for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
52    dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n";
53}
54#endif
55
56
57static bool VerifySubExpr(Value *Expr,
58                          SmallVectorImpl<Instruction*> &InstInputs) {
59  // If this is a non-instruction value, there is nothing to do.
60  Instruction *I = dyn_cast<Instruction>(Expr);
61  if (!I) return true;
62
63  // If it's an instruction, it is either in Tmp or its operands recursively
64  // are.
65  SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
66  if (Entry != InstInputs.end()) {
67    InstInputs.erase(Entry);
68    return true;
69  }
70
71  // If it isn't in the InstInputs list it is a subexpr incorporated into the
72  // address.  Sanity check that it is phi translatable.
73  if (!CanPHITrans(I)) {
74    errs() << "Instruction in PHITransAddr is not phi-translatable:\n";
75    errs() << *I << '\n';
76    llvm_unreachable("Either something is missing from InstInputs or "
77                     "CanPHITrans is wrong.");
78  }
79
80  // Validate the operands of the instruction.
81  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
82    if (!VerifySubExpr(I->getOperand(i), InstInputs))
83      return false;
84
85  return true;
86}
87
88/// Verify - Check internal consistency of this data structure.  If the
89/// structure is valid, it returns true.  If invalid, it prints errors and
90/// returns false.
91bool PHITransAddr::Verify() const {
92  if (!Addr) return true;
93
94  SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
95
96  if (!VerifySubExpr(Addr, Tmp))
97    return false;
98
99  if (!Tmp.empty()) {
100    errs() << "PHITransAddr contains extra instructions:\n";
101    for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
102      errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n";
103    llvm_unreachable("This is unexpected.");
104  }
105
106  // a-ok.
107  return true;
108}
109
110
111/// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
112/// if we have some hope of doing it.  This should be used as a filter to
113/// avoid calling PHITranslateValue in hopeless situations.
114bool PHITransAddr::IsPotentiallyPHITranslatable() const {
115  // If the input value is not an instruction, or if it is not defined in CurBB,
116  // then we don't need to phi translate it.
117  Instruction *Inst = dyn_cast<Instruction>(Addr);
118  return !Inst || CanPHITrans(Inst);
119}
120
121
122static void RemoveInstInputs(Value *V,
123                             SmallVectorImpl<Instruction*> &InstInputs) {
124  Instruction *I = dyn_cast<Instruction>(V);
125  if (!I) return;
126
127  // If the instruction is in the InstInputs list, remove it.
128  SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
129  if (Entry != InstInputs.end()) {
130    InstInputs.erase(Entry);
131    return;
132  }
133
134  assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
135
136  // Otherwise, it must have instruction inputs itself.  Zap them recursively.
137  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
138    if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
139      RemoveInstInputs(Op, InstInputs);
140  }
141}
142
143Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
144                                         BasicBlock *PredBB,
145                                         const DominatorTree *DT) {
146  // If this is a non-instruction value, it can't require PHI translation.
147  Instruction *Inst = dyn_cast<Instruction>(V);
148  if (!Inst) return V;
149
150  // Determine whether 'Inst' is an input to our PHI translatable expression.
151  bool isInput = is_contained(InstInputs, Inst);
152
153  // Handle inputs instructions if needed.
154  if (isInput) {
155    if (Inst->getParent() != CurBB) {
156      // If it is an input defined in a different block, then it remains an
157      // input.
158      return Inst;
159    }
160
161    // If 'Inst' is defined in this block and is an input that needs to be phi
162    // translated, we need to incorporate the value into the expression or fail.
163
164    // In either case, the instruction itself isn't an input any longer.
165    InstInputs.erase(find(InstInputs, Inst));
166
167    // If this is a PHI, go ahead and translate it.
168    if (PHINode *PN = dyn_cast<PHINode>(Inst))
169      return AddAsInput(PN->getIncomingValueForBlock(PredBB));
170
171    // If this is a non-phi value, and it is analyzable, we can incorporate it
172    // into the expression by making all instruction operands be inputs.
173    if (!CanPHITrans(Inst))
174      return nullptr;
175
176    // All instruction operands are now inputs (and of course, they may also be
177    // defined in this block, so they may need to be phi translated themselves.
178    for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
179      if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
180        InstInputs.push_back(Op);
181  }
182
183  // Ok, it must be an intermediate result (either because it started that way
184  // or because we just incorporated it into the expression).  See if its
185  // operands need to be phi translated, and if so, reconstruct it.
186
187  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
188    if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
189    Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
190    if (!PHIIn) return nullptr;
191    if (PHIIn == Cast->getOperand(0))
192      return Cast;
193
194    // Find an available version of this cast.
195
196    // Constants are trivial to find.
197    if (Constant *C = dyn_cast<Constant>(PHIIn))
198      return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
199                                              C, Cast->getType()));
200
201    // Otherwise we have to see if a casted version of the incoming pointer
202    // is available.  If so, we can use it, otherwise we have to fail.
203    for (User *U : PHIIn->users()) {
204      if (CastInst *CastI = dyn_cast<CastInst>(U))
205        if (CastI->getOpcode() == Cast->getOpcode() &&
206            CastI->getType() == Cast->getType() &&
207            (!DT || DT->dominates(CastI->getParent(), PredBB)))
208          return CastI;
209    }
210    return nullptr;
211  }
212
213  // Handle getelementptr with at least one PHI translatable operand.
214  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
215    SmallVector<Value*, 8> GEPOps;
216    bool AnyChanged = false;
217    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
218      Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
219      if (!GEPOp) return nullptr;
220
221      AnyChanged |= GEPOp != GEP->getOperand(i);
222      GEPOps.push_back(GEPOp);
223    }
224
225    if (!AnyChanged)
226      return GEP;
227
228    // Simplify the GEP to handle 'gep x, 0' -> x etc.
229    if (Value *V = SimplifyGEPInst(GEP->getSourceElementType(),
230                                   GEPOps, {DL, TLI, DT, AC})) {
231      for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
232        RemoveInstInputs(GEPOps[i], InstInputs);
233
234      return AddAsInput(V);
235    }
236
237    // Scan to see if we have this GEP available.
238    Value *APHIOp = GEPOps[0];
239    for (User *U : APHIOp->users()) {
240      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
241        if (GEPI->getType() == GEP->getType() &&
242            GEPI->getNumOperands() == GEPOps.size() &&
243            GEPI->getParent()->getParent() == CurBB->getParent() &&
244            (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
245          if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin()))
246            return GEPI;
247        }
248    }
249    return nullptr;
250  }
251
252  // Handle add with a constant RHS.
253  if (Inst->getOpcode() == Instruction::Add &&
254      isa<ConstantInt>(Inst->getOperand(1))) {
255    // PHI translate the LHS.
256    Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
257    bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
258    bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
259
260    Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
261    if (!LHS) return nullptr;
262
263    // If the PHI translated LHS is an add of a constant, fold the immediates.
264    if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
265      if (BOp->getOpcode() == Instruction::Add)
266        if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
267          LHS = BOp->getOperand(0);
268          RHS = ConstantExpr::getAdd(RHS, CI);
269          isNSW = isNUW = false;
270
271          // If the old 'LHS' was an input, add the new 'LHS' as an input.
272          if (is_contained(InstInputs, BOp)) {
273            RemoveInstInputs(BOp, InstInputs);
274            AddAsInput(LHS);
275          }
276        }
277
278    // See if the add simplifies away.
279    if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) {
280      // If we simplified the operands, the LHS is no longer an input, but Res
281      // is.
282      RemoveInstInputs(LHS, InstInputs);
283      return AddAsInput(Res);
284    }
285
286    // If we didn't modify the add, just return it.
287    if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
288      return Inst;
289
290    // Otherwise, see if we have this add available somewhere.
291    for (User *U : LHS->users()) {
292      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U))
293        if (BO->getOpcode() == Instruction::Add &&
294            BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
295            BO->getParent()->getParent() == CurBB->getParent() &&
296            (!DT || DT->dominates(BO->getParent(), PredBB)))
297          return BO;
298    }
299
300    return nullptr;
301  }
302
303  // Otherwise, we failed.
304  return nullptr;
305}
306
307
308/// PHITranslateValue - PHI translate the current address up the CFG from
309/// CurBB to Pred, updating our state to reflect any needed changes.  If
310/// 'MustDominate' is true, the translated value must dominate
311/// PredBB.  This returns true on failure and sets Addr to null.
312bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
313                                     const DominatorTree *DT,
314                                     bool MustDominate) {
315  assert(DT || !MustDominate);
316  assert(Verify() && "Invalid PHITransAddr!");
317  if (DT && DT->isReachableFromEntry(PredBB))
318    Addr =
319        PHITranslateSubExpr(Addr, CurBB, PredBB, MustDominate ? DT : nullptr);
320  else
321    Addr = nullptr;
322  assert(Verify() && "Invalid PHITransAddr!");
323
324  if (MustDominate)
325    // Make sure the value is live in the predecessor.
326    if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
327      if (!DT->dominates(Inst->getParent(), PredBB))
328        Addr = nullptr;
329
330  return Addr == nullptr;
331}
332
333/// PHITranslateWithInsertion - PHI translate this value into the specified
334/// predecessor block, inserting a computation of the value if it is
335/// unavailable.
336///
337/// All newly created instructions are added to the NewInsts list.  This
338/// returns null on failure.
339///
340Value *PHITransAddr::
341PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
342                          const DominatorTree &DT,
343                          SmallVectorImpl<Instruction*> &NewInsts) {
344  unsigned NISize = NewInsts.size();
345
346  // Attempt to PHI translate with insertion.
347  Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
348
349  // If successful, return the new value.
350  if (Addr) return Addr;
351
352  // If not, destroy any intermediate instructions inserted.
353  while (NewInsts.size() != NISize)
354    NewInsts.pop_back_val()->eraseFromParent();
355  return nullptr;
356}
357
358
359/// InsertPHITranslatedPointer - Insert a computation of the PHI translated
360/// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
361/// block.  All newly created instructions are added to the NewInsts list.
362/// This returns null on failure.
363///
364Value *PHITransAddr::
365InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
366                           BasicBlock *PredBB, const DominatorTree &DT,
367                           SmallVectorImpl<Instruction*> &NewInsts) {
368  // See if we have a version of this value already available and dominating
369  // PredBB.  If so, there is no need to insert a new instance of it.
370  PHITransAddr Tmp(InVal, DL, AC);
371  if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true))
372    return Tmp.getAddr();
373
374  // We don't need to PHI translate values which aren't instructions.
375  auto *Inst = dyn_cast<Instruction>(InVal);
376  if (!Inst)
377    return nullptr;
378
379  // Handle cast of PHI translatable value.
380  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
381    if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
382    Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
383                                              CurBB, PredBB, DT, NewInsts);
384    if (!OpVal) return nullptr;
385
386    // Otherwise insert a cast at the end of PredBB.
387    CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(),
388                                     InVal->getName() + ".phi.trans.insert",
389                                     PredBB->getTerminator());
390    New->setDebugLoc(Inst->getDebugLoc());
391    NewInsts.push_back(New);
392    return New;
393  }
394
395  // Handle getelementptr with at least one PHI operand.
396  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
397    SmallVector<Value*, 8> GEPOps;
398    BasicBlock *CurBB = GEP->getParent();
399    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
400      Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
401                                                CurBB, PredBB, DT, NewInsts);
402      if (!OpVal) return nullptr;
403      GEPOps.push_back(OpVal);
404    }
405
406    GetElementPtrInst *Result = GetElementPtrInst::Create(
407        GEP->getSourceElementType(), GEPOps[0], makeArrayRef(GEPOps).slice(1),
408        InVal->getName() + ".phi.trans.insert", PredBB->getTerminator());
409    Result->setDebugLoc(Inst->getDebugLoc());
410    Result->setIsInBounds(GEP->isInBounds());
411    NewInsts.push_back(Result);
412    return Result;
413  }
414
415#if 0
416  // FIXME: This code works, but it is unclear that we actually want to insert
417  // a big chain of computation in order to make a value available in a block.
418  // This needs to be evaluated carefully to consider its cost trade offs.
419
420  // Handle add with a constant RHS.
421  if (Inst->getOpcode() == Instruction::Add &&
422      isa<ConstantInt>(Inst->getOperand(1))) {
423    // PHI translate the LHS.
424    Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
425                                              CurBB, PredBB, DT, NewInsts);
426    if (OpVal == 0) return 0;
427
428    BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
429                                           InVal->getName()+".phi.trans.insert",
430                                                    PredBB->getTerminator());
431    Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
432    Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
433    NewInsts.push_back(Res);
434    return Res;
435  }
436#endif
437
438  return nullptr;
439}
440