1//==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the generic AliasAnalysis interface which is used as the
10// common interface used by all clients and implementations of alias analysis.
11//
12// This file also implements the default version of the AliasAnalysis interface
13// that is to be used when no other implementation is specified.  This does some
14// simple tests that detect obvious cases: two different global pointers cannot
15// alias, a global cannot alias a malloc, two different mallocs cannot alias,
16// etc.
17//
18// This alias analysis implementation really isn't very good for anything, but
19// it is very fast, and makes a nice clean default implementation.  Because it
20// handles lots of little corner cases, other, more complex, alias analysis
21// implementations may choose to rely on this pass to resolve these simple and
22// easy cases.
23//
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/BasicAliasAnalysis.h"
28#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
29#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
30#include "llvm/Analysis/CaptureTracking.h"
31#include "llvm/Analysis/GlobalsModRef.h"
32#include "llvm/Analysis/MemoryLocation.h"
33#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
34#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35#include "llvm/Analysis/ScopedNoAliasAA.h"
36#include "llvm/Analysis/TargetLibraryInfo.h"
37#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
38#include "llvm/Analysis/ValueTracking.h"
39#include "llvm/IR/Argument.h"
40#include "llvm/IR/Attributes.h"
41#include "llvm/IR/BasicBlock.h"
42#include "llvm/IR/Instruction.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/Module.h"
45#include "llvm/IR/Type.h"
46#include "llvm/IR/Value.h"
47#include "llvm/InitializePasses.h"
48#include "llvm/Pass.h"
49#include "llvm/Support/AtomicOrdering.h"
50#include "llvm/Support/Casting.h"
51#include "llvm/Support/CommandLine.h"
52#include <algorithm>
53#include <cassert>
54#include <functional>
55#include <iterator>
56
57using namespace llvm;
58
59/// Allow disabling BasicAA from the AA results. This is particularly useful
60/// when testing to isolate a single AA implementation.
61static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
62                                    cl::init(false));
63
64AAResults::AAResults(AAResults &&Arg)
65    : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
66  for (auto &AA : AAs)
67    AA->setAAResults(this);
68}
69
70AAResults::~AAResults() {
71// FIXME; It would be nice to at least clear out the pointers back to this
72// aggregation here, but we end up with non-nesting lifetimes in the legacy
73// pass manager that prevent this from working. In the legacy pass manager
74// we'll end up with dangling references here in some cases.
75#if 0
76  for (auto &AA : AAs)
77    AA->setAAResults(nullptr);
78#endif
79}
80
81bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
82                           FunctionAnalysisManager::Invalidator &Inv) {
83  // AAResults preserves the AAManager by default, due to the stateless nature
84  // of AliasAnalysis. There is no need to check whether it has been preserved
85  // explicitly. Check if any module dependency was invalidated and caused the
86  // AAManager to be invalidated. Invalidate ourselves in that case.
87  auto PAC = PA.getChecker<AAManager>();
88  if (!PAC.preservedWhenStateless())
89    return true;
90
91  // Check if any of the function dependencies were invalidated, and invalidate
92  // ourselves in that case.
93  for (AnalysisKey *ID : AADeps)
94    if (Inv.invalidate(ID, F, PA))
95      return true;
96
97  // Everything we depend on is still fine, so are we. Nothing to invalidate.
98  return false;
99}
100
101//===----------------------------------------------------------------------===//
102// Default chaining methods
103//===----------------------------------------------------------------------===//
104
105AliasResult AAResults::alias(const MemoryLocation &LocA,
106                             const MemoryLocation &LocB) {
107  AAQueryInfo AAQIP;
108  return alias(LocA, LocB, AAQIP);
109}
110
111AliasResult AAResults::alias(const MemoryLocation &LocA,
112                             const MemoryLocation &LocB, AAQueryInfo &AAQI) {
113  for (const auto &AA : AAs) {
114    auto Result = AA->alias(LocA, LocB, AAQI);
115    if (Result != MayAlias)
116      return Result;
117  }
118  return MayAlias;
119}
120
121bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
122                                       bool OrLocal) {
123  AAQueryInfo AAQIP;
124  return pointsToConstantMemory(Loc, AAQIP, OrLocal);
125}
126
127bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
128                                       AAQueryInfo &AAQI, bool OrLocal) {
129  for (const auto &AA : AAs)
130    if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
131      return true;
132
133  return false;
134}
135
136ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
137  ModRefInfo Result = ModRefInfo::ModRef;
138
139  for (const auto &AA : AAs) {
140    Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
141
142    // Early-exit the moment we reach the bottom of the lattice.
143    if (isNoModRef(Result))
144      return ModRefInfo::NoModRef;
145  }
146
147  return Result;
148}
149
150ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
151  AAQueryInfo AAQIP;
152  return getModRefInfo(I, Call2, AAQIP);
153}
154
155ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
156                                    AAQueryInfo &AAQI) {
157  // We may have two calls.
158  if (const auto *Call1 = dyn_cast<CallBase>(I)) {
159    // Check if the two calls modify the same memory.
160    return getModRefInfo(Call1, Call2, AAQI);
161  } else if (I->isFenceLike()) {
162    // If this is a fence, just return ModRef.
163    return ModRefInfo::ModRef;
164  } else {
165    // Otherwise, check if the call modifies or references the
166    // location this memory access defines.  The best we can say
167    // is that if the call references what this instruction
168    // defines, it must be clobbered by this location.
169    const MemoryLocation DefLoc = MemoryLocation::get(I);
170    ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
171    if (isModOrRefSet(MR))
172      return setModAndRef(MR);
173  }
174  return ModRefInfo::NoModRef;
175}
176
177ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
178                                    const MemoryLocation &Loc) {
179  AAQueryInfo AAQIP;
180  return getModRefInfo(Call, Loc, AAQIP);
181}
182
183ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
184                                    const MemoryLocation &Loc,
185                                    AAQueryInfo &AAQI) {
186  ModRefInfo Result = ModRefInfo::ModRef;
187
188  for (const auto &AA : AAs) {
189    Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));
190
191    // Early-exit the moment we reach the bottom of the lattice.
192    if (isNoModRef(Result))
193      return ModRefInfo::NoModRef;
194  }
195
196  // Try to refine the mod-ref info further using other API entry points to the
197  // aggregate set of AA results.
198  auto MRB = getModRefBehavior(Call);
199  if (MRB == FMRB_DoesNotAccessMemory ||
200      MRB == FMRB_OnlyAccessesInaccessibleMem)
201    return ModRefInfo::NoModRef;
202
203  if (onlyReadsMemory(MRB))
204    Result = clearMod(Result);
205  else if (doesNotReadMemory(MRB))
206    Result = clearRef(Result);
207
208  if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
209    bool IsMustAlias = true;
210    ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
211    if (doesAccessArgPointees(MRB)) {
212      for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) {
213        const Value *Arg = *AI;
214        if (!Arg->getType()->isPointerTy())
215          continue;
216        unsigned ArgIdx = std::distance(Call->arg_begin(), AI);
217        MemoryLocation ArgLoc =
218            MemoryLocation::getForArgument(Call, ArgIdx, TLI);
219        AliasResult ArgAlias = alias(ArgLoc, Loc);
220        if (ArgAlias != NoAlias) {
221          ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
222          AllArgsMask = unionModRef(AllArgsMask, ArgMask);
223        }
224        // Conservatively clear IsMustAlias unless only MustAlias is found.
225        IsMustAlias &= (ArgAlias == MustAlias);
226      }
227    }
228    // Return NoModRef if no alias found with any argument.
229    if (isNoModRef(AllArgsMask))
230      return ModRefInfo::NoModRef;
231    // Logical & between other AA analyses and argument analysis.
232    Result = intersectModRef(Result, AllArgsMask);
233    // If only MustAlias found above, set Must bit.
234    Result = IsMustAlias ? setMust(Result) : clearMust(Result);
235  }
236
237  // If Loc is a constant memory location, the call definitely could not
238  // modify the memory location.
239  if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
240    Result = clearMod(Result);
241
242  return Result;
243}
244
245ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
246                                    const CallBase *Call2) {
247  AAQueryInfo AAQIP;
248  return getModRefInfo(Call1, Call2, AAQIP);
249}
250
251ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
252                                    const CallBase *Call2, AAQueryInfo &AAQI) {
253  ModRefInfo Result = ModRefInfo::ModRef;
254
255  for (const auto &AA : AAs) {
256    Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));
257
258    // Early-exit the moment we reach the bottom of the lattice.
259    if (isNoModRef(Result))
260      return ModRefInfo::NoModRef;
261  }
262
263  // Try to refine the mod-ref info further using other API entry points to the
264  // aggregate set of AA results.
265
266  // If Call1 or Call2 are readnone, they don't interact.
267  auto Call1B = getModRefBehavior(Call1);
268  if (Call1B == FMRB_DoesNotAccessMemory)
269    return ModRefInfo::NoModRef;
270
271  auto Call2B = getModRefBehavior(Call2);
272  if (Call2B == FMRB_DoesNotAccessMemory)
273    return ModRefInfo::NoModRef;
274
275  // If they both only read from memory, there is no dependence.
276  if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
277    return ModRefInfo::NoModRef;
278
279  // If Call1 only reads memory, the only dependence on Call2 can be
280  // from Call1 reading memory written by Call2.
281  if (onlyReadsMemory(Call1B))
282    Result = clearMod(Result);
283  else if (doesNotReadMemory(Call1B))
284    Result = clearRef(Result);
285
286  // If Call2 only access memory through arguments, accumulate the mod/ref
287  // information from Call1's references to the memory referenced by
288  // Call2's arguments.
289  if (onlyAccessesArgPointees(Call2B)) {
290    if (!doesAccessArgPointees(Call2B))
291      return ModRefInfo::NoModRef;
292    ModRefInfo R = ModRefInfo::NoModRef;
293    bool IsMustAlias = true;
294    for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
295      const Value *Arg = *I;
296      if (!Arg->getType()->isPointerTy())
297        continue;
298      unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
299      auto Call2ArgLoc =
300          MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
301
302      // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
303      // dependence of Call1 on that location is the inverse:
304      // - If Call2 modifies location, dependence exists if Call1 reads or
305      //   writes.
306      // - If Call2 only reads location, dependence exists if Call1 writes.
307      ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
308      ModRefInfo ArgMask = ModRefInfo::NoModRef;
309      if (isModSet(ArgModRefC2))
310        ArgMask = ModRefInfo::ModRef;
311      else if (isRefSet(ArgModRefC2))
312        ArgMask = ModRefInfo::Mod;
313
314      // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
315      // above ArgMask to update dependence info.
316      ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc);
317      ArgMask = intersectModRef(ArgMask, ModRefC1);
318
319      // Conservatively clear IsMustAlias unless only MustAlias is found.
320      IsMustAlias &= isMustSet(ModRefC1);
321
322      R = intersectModRef(unionModRef(R, ArgMask), Result);
323      if (R == Result) {
324        // On early exit, not all args were checked, cannot set Must.
325        if (I + 1 != E)
326          IsMustAlias = false;
327        break;
328      }
329    }
330
331    if (isNoModRef(R))
332      return ModRefInfo::NoModRef;
333
334    // If MustAlias found above, set Must bit.
335    return IsMustAlias ? setMust(R) : clearMust(R);
336  }
337
338  // If Call1 only accesses memory through arguments, check if Call2 references
339  // any of the memory referenced by Call1's arguments. If not, return NoModRef.
340  if (onlyAccessesArgPointees(Call1B)) {
341    if (!doesAccessArgPointees(Call1B))
342      return ModRefInfo::NoModRef;
343    ModRefInfo R = ModRefInfo::NoModRef;
344    bool IsMustAlias = true;
345    for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
346      const Value *Arg = *I;
347      if (!Arg->getType()->isPointerTy())
348        continue;
349      unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
350      auto Call1ArgLoc =
351          MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
352
353      // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
354      // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
355      // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
356      ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
357      ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc);
358      if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
359          (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
360        R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
361
362      // Conservatively clear IsMustAlias unless only MustAlias is found.
363      IsMustAlias &= isMustSet(ModRefC2);
364
365      if (R == Result) {
366        // On early exit, not all args were checked, cannot set Must.
367        if (I + 1 != E)
368          IsMustAlias = false;
369        break;
370      }
371    }
372
373    if (isNoModRef(R))
374      return ModRefInfo::NoModRef;
375
376    // If MustAlias found above, set Must bit.
377    return IsMustAlias ? setMust(R) : clearMust(R);
378  }
379
380  return Result;
381}
382
383FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
384  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
385
386  for (const auto &AA : AAs) {
387    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
388
389    // Early-exit the moment we reach the bottom of the lattice.
390    if (Result == FMRB_DoesNotAccessMemory)
391      return Result;
392  }
393
394  return Result;
395}
396
397FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
398  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
399
400  for (const auto &AA : AAs) {
401    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
402
403    // Early-exit the moment we reach the bottom of the lattice.
404    if (Result == FMRB_DoesNotAccessMemory)
405      return Result;
406  }
407
408  return Result;
409}
410
411raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
412  switch (AR) {
413  case NoAlias:
414    OS << "NoAlias";
415    break;
416  case MustAlias:
417    OS << "MustAlias";
418    break;
419  case MayAlias:
420    OS << "MayAlias";
421    break;
422  case PartialAlias:
423    OS << "PartialAlias";
424    break;
425  }
426  return OS;
427}
428
429//===----------------------------------------------------------------------===//
430// Helper method implementation
431//===----------------------------------------------------------------------===//
432
433ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
434                                    const MemoryLocation &Loc) {
435  AAQueryInfo AAQIP;
436  return getModRefInfo(L, Loc, AAQIP);
437}
438ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
439                                    const MemoryLocation &Loc,
440                                    AAQueryInfo &AAQI) {
441  // Be conservative in the face of atomic.
442  if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
443    return ModRefInfo::ModRef;
444
445  // If the load address doesn't alias the given address, it doesn't read
446  // or write the specified memory.
447  if (Loc.Ptr) {
448    AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
449    if (AR == NoAlias)
450      return ModRefInfo::NoModRef;
451    if (AR == MustAlias)
452      return ModRefInfo::MustRef;
453  }
454  // Otherwise, a load just reads.
455  return ModRefInfo::Ref;
456}
457
458ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
459                                    const MemoryLocation &Loc) {
460  AAQueryInfo AAQIP;
461  return getModRefInfo(S, Loc, AAQIP);
462}
463ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
464                                    const MemoryLocation &Loc,
465                                    AAQueryInfo &AAQI) {
466  // Be conservative in the face of atomic.
467  if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
468    return ModRefInfo::ModRef;
469
470  if (Loc.Ptr) {
471    AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
472    // If the store address cannot alias the pointer in question, then the
473    // specified memory cannot be modified by the store.
474    if (AR == NoAlias)
475      return ModRefInfo::NoModRef;
476
477    // If the pointer is a pointer to constant memory, then it could not have
478    // been modified by this store.
479    if (pointsToConstantMemory(Loc, AAQI))
480      return ModRefInfo::NoModRef;
481
482    // If the store address aliases the pointer as must alias, set Must.
483    if (AR == MustAlias)
484      return ModRefInfo::MustMod;
485  }
486
487  // Otherwise, a store just writes.
488  return ModRefInfo::Mod;
489}
490
491ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
492  AAQueryInfo AAQIP;
493  return getModRefInfo(S, Loc, AAQIP);
494}
495
496ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
497                                    const MemoryLocation &Loc,
498                                    AAQueryInfo &AAQI) {
499  // If we know that the location is a constant memory location, the fence
500  // cannot modify this location.
501  if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
502    return ModRefInfo::Ref;
503  return ModRefInfo::ModRef;
504}
505
506ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
507                                    const MemoryLocation &Loc) {
508  AAQueryInfo AAQIP;
509  return getModRefInfo(V, Loc, AAQIP);
510}
511
512ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
513                                    const MemoryLocation &Loc,
514                                    AAQueryInfo &AAQI) {
515  if (Loc.Ptr) {
516    AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
517    // If the va_arg address cannot alias the pointer in question, then the
518    // specified memory cannot be accessed by the va_arg.
519    if (AR == NoAlias)
520      return ModRefInfo::NoModRef;
521
522    // If the pointer is a pointer to constant memory, then it could not have
523    // been modified by this va_arg.
524    if (pointsToConstantMemory(Loc, AAQI))
525      return ModRefInfo::NoModRef;
526
527    // If the va_arg aliases the pointer as must alias, set Must.
528    if (AR == MustAlias)
529      return ModRefInfo::MustModRef;
530  }
531
532  // Otherwise, a va_arg reads and writes.
533  return ModRefInfo::ModRef;
534}
535
536ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
537                                    const MemoryLocation &Loc) {
538  AAQueryInfo AAQIP;
539  return getModRefInfo(CatchPad, Loc, AAQIP);
540}
541
542ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
543                                    const MemoryLocation &Loc,
544                                    AAQueryInfo &AAQI) {
545  if (Loc.Ptr) {
546    // If the pointer is a pointer to constant memory,
547    // then it could not have been modified by this catchpad.
548    if (pointsToConstantMemory(Loc, AAQI))
549      return ModRefInfo::NoModRef;
550  }
551
552  // Otherwise, a catchpad reads and writes.
553  return ModRefInfo::ModRef;
554}
555
556ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
557                                    const MemoryLocation &Loc) {
558  AAQueryInfo AAQIP;
559  return getModRefInfo(CatchRet, Loc, AAQIP);
560}
561
562ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
563                                    const MemoryLocation &Loc,
564                                    AAQueryInfo &AAQI) {
565  if (Loc.Ptr) {
566    // If the pointer is a pointer to constant memory,
567    // then it could not have been modified by this catchpad.
568    if (pointsToConstantMemory(Loc, AAQI))
569      return ModRefInfo::NoModRef;
570  }
571
572  // Otherwise, a catchret reads and writes.
573  return ModRefInfo::ModRef;
574}
575
576ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
577                                    const MemoryLocation &Loc) {
578  AAQueryInfo AAQIP;
579  return getModRefInfo(CX, Loc, AAQIP);
580}
581
582ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
583                                    const MemoryLocation &Loc,
584                                    AAQueryInfo &AAQI) {
585  // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
586  if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
587    return ModRefInfo::ModRef;
588
589  if (Loc.Ptr) {
590    AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
591    // If the cmpxchg address does not alias the location, it does not access
592    // it.
593    if (AR == NoAlias)
594      return ModRefInfo::NoModRef;
595
596    // If the cmpxchg address aliases the pointer as must alias, set Must.
597    if (AR == MustAlias)
598      return ModRefInfo::MustModRef;
599  }
600
601  return ModRefInfo::ModRef;
602}
603
604ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
605                                    const MemoryLocation &Loc) {
606  AAQueryInfo AAQIP;
607  return getModRefInfo(RMW, Loc, AAQIP);
608}
609
610ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
611                                    const MemoryLocation &Loc,
612                                    AAQueryInfo &AAQI) {
613  // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
614  if (isStrongerThanMonotonic(RMW->getOrdering()))
615    return ModRefInfo::ModRef;
616
617  if (Loc.Ptr) {
618    AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
619    // If the atomicrmw address does not alias the location, it does not access
620    // it.
621    if (AR == NoAlias)
622      return ModRefInfo::NoModRef;
623
624    // If the atomicrmw address aliases the pointer as must alias, set Must.
625    if (AR == MustAlias)
626      return ModRefInfo::MustModRef;
627  }
628
629  return ModRefInfo::ModRef;
630}
631
632/// Return information about whether a particular call site modifies
633/// or reads the specified memory location \p MemLoc before instruction \p I
634/// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
635/// instruction-ordering queries inside the BasicBlock containing \p I.
636/// FIXME: this is really just shoring-up a deficiency in alias analysis.
637/// BasicAA isn't willing to spend linear time determining whether an alloca
638/// was captured before or after this particular call, while we are. However,
639/// with a smarter AA in place, this test is just wasting compile time.
640ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
641                                         const MemoryLocation &MemLoc,
642                                         DominatorTree *DT,
643                                         OrderedBasicBlock *OBB) {
644  if (!DT)
645    return ModRefInfo::ModRef;
646
647  const Value *Object =
648      GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
649  if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
650      isa<Constant>(Object))
651    return ModRefInfo::ModRef;
652
653  const auto *Call = dyn_cast<CallBase>(I);
654  if (!Call || Call == Object)
655    return ModRefInfo::ModRef;
656
657  if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
658                                 /* StoreCaptures */ true, I, DT,
659                                 /* include Object */ true,
660                                 /* OrderedBasicBlock */ OBB))
661    return ModRefInfo::ModRef;
662
663  unsigned ArgNo = 0;
664  ModRefInfo R = ModRefInfo::NoModRef;
665  bool IsMustAlias = true;
666  // Set flag only if no May found and all operands processed.
667  for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
668       CI != CE; ++CI, ++ArgNo) {
669    // Only look at the no-capture or byval pointer arguments.  If this
670    // pointer were passed to arguments that were neither of these, then it
671    // couldn't be no-capture.
672    if (!(*CI)->getType()->isPointerTy() ||
673        (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() &&
674         !Call->isByValArgument(ArgNo)))
675      continue;
676
677    AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
678    // If this is a no-capture pointer argument, see if we can tell that it
679    // is impossible to alias the pointer we're checking.  If not, we have to
680    // assume that the call could touch the pointer, even though it doesn't
681    // escape.
682    if (AR != MustAlias)
683      IsMustAlias = false;
684    if (AR == NoAlias)
685      continue;
686    if (Call->doesNotAccessMemory(ArgNo))
687      continue;
688    if (Call->onlyReadsMemory(ArgNo)) {
689      R = ModRefInfo::Ref;
690      continue;
691    }
692    // Not returning MustModRef since we have not seen all the arguments.
693    return ModRefInfo::ModRef;
694  }
695  return IsMustAlias ? setMust(R) : clearMust(R);
696}
697
698/// canBasicBlockModify - Return true if it is possible for execution of the
699/// specified basic block to modify the location Loc.
700///
701bool AAResults::canBasicBlockModify(const BasicBlock &BB,
702                                    const MemoryLocation &Loc) {
703  return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
704}
705
706/// canInstructionRangeModRef - Return true if it is possible for the
707/// execution of the specified instructions to mod\ref (according to the
708/// mode) the location Loc. The instructions to consider are all
709/// of the instructions in the range of [I1,I2] INCLUSIVE.
710/// I1 and I2 must be in the same basic block.
711bool AAResults::canInstructionRangeModRef(const Instruction &I1,
712                                          const Instruction &I2,
713                                          const MemoryLocation &Loc,
714                                          const ModRefInfo Mode) {
715  assert(I1.getParent() == I2.getParent() &&
716         "Instructions not in same basic block!");
717  BasicBlock::const_iterator I = I1.getIterator();
718  BasicBlock::const_iterator E = I2.getIterator();
719  ++E;  // Convert from inclusive to exclusive range.
720
721  for (; I != E; ++I) // Check every instruction in range
722    if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
723      return true;
724  return false;
725}
726
727// Provide a definition for the root virtual destructor.
728AAResults::Concept::~Concept() = default;
729
730// Provide a definition for the static object used to identify passes.
731AnalysisKey AAManager::Key;
732
733namespace {
734
735
736} // end anonymous namespace
737
738ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) {
739  initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
740}
741
742ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB)
743    : ImmutablePass(ID), CB(std::move(CB)) {
744  initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
745}
746
747char ExternalAAWrapperPass::ID = 0;
748
749INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
750                false, true)
751
752ImmutablePass *
753llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
754  return new ExternalAAWrapperPass(std::move(Callback));
755}
756
757AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
758  initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
759}
760
761char AAResultsWrapperPass::ID = 0;
762
763INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
764                      "Function Alias Analysis Results", false, true)
765INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
766INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
767INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
768INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
769INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
770INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
771INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
772INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
773INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
774INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
775                    "Function Alias Analysis Results", false, true)
776
777FunctionPass *llvm::createAAResultsWrapperPass() {
778  return new AAResultsWrapperPass();
779}
780
781/// Run the wrapper pass to rebuild an aggregation over known AA passes.
782///
783/// This is the legacy pass manager's interface to the new-style AA results
784/// aggregation object. Because this is somewhat shoe-horned into the legacy
785/// pass manager, we hard code all the specific alias analyses available into
786/// it. While the particular set enabled is configured via commandline flags,
787/// adding a new alias analysis to LLVM will require adding support for it to
788/// this list.
789bool AAResultsWrapperPass::runOnFunction(Function &F) {
790  // NB! This *must* be reset before adding new AA results to the new
791  // AAResults object because in the legacy pass manager, each instance
792  // of these will refer to the *same* immutable analyses, registering and
793  // unregistering themselves with them. We need to carefully tear down the
794  // previous object first, in this case replacing it with an empty one, before
795  // registering new results.
796  AAR.reset(
797      new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));
798
799  // BasicAA is always available for function analyses. Also, we add it first
800  // so that it can trump TBAA results when it proves MustAlias.
801  // FIXME: TBAA should have an explicit mode to support this and then we
802  // should reconsider the ordering here.
803  if (!DisableBasicAA)
804    AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
805
806  // Populate the results with the currently available AAs.
807  if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
808    AAR->addAAResult(WrapperPass->getResult());
809  if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
810    AAR->addAAResult(WrapperPass->getResult());
811  if (auto *WrapperPass =
812          getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
813    AAR->addAAResult(WrapperPass->getResult());
814  if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
815    AAR->addAAResult(WrapperPass->getResult());
816  if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
817    AAR->addAAResult(WrapperPass->getResult());
818  if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
819    AAR->addAAResult(WrapperPass->getResult());
820  if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
821    AAR->addAAResult(WrapperPass->getResult());
822
823  // If available, run an external AA providing callback over the results as
824  // well.
825  if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
826    if (WrapperPass->CB)
827      WrapperPass->CB(*this, F, *AAR);
828
829  // Analyses don't mutate the IR, so return false.
830  return false;
831}
832
833void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
834  AU.setPreservesAll();
835  AU.addRequired<BasicAAWrapperPass>();
836  AU.addRequired<TargetLibraryInfoWrapperPass>();
837
838  // We also need to mark all the alias analysis passes we will potentially
839  // probe in runOnFunction as used here to ensure the legacy pass manager
840  // preserves them. This hard coding of lists of alias analyses is specific to
841  // the legacy pass manager.
842  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
843  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
844  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
845  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
846  AU.addUsedIfAvailable<SCEVAAWrapperPass>();
847  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
848  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
849  AU.addUsedIfAvailable<ExternalAAWrapperPass>();
850}
851
852AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
853                                        BasicAAResult &BAR) {
854  AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
855
856  // Add in our explicitly constructed BasicAA results.
857  if (!DisableBasicAA)
858    AAR.addAAResult(BAR);
859
860  // Populate the results with the other currently available AAs.
861  if (auto *WrapperPass =
862          P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
863    AAR.addAAResult(WrapperPass->getResult());
864  if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
865    AAR.addAAResult(WrapperPass->getResult());
866  if (auto *WrapperPass =
867          P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
868    AAR.addAAResult(WrapperPass->getResult());
869  if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
870    AAR.addAAResult(WrapperPass->getResult());
871  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
872    AAR.addAAResult(WrapperPass->getResult());
873  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
874    AAR.addAAResult(WrapperPass->getResult());
875  if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>())
876    if (WrapperPass->CB)
877      WrapperPass->CB(P, F, AAR);
878
879  return AAR;
880}
881
882bool llvm::isNoAliasCall(const Value *V) {
883  if (const auto *Call = dyn_cast<CallBase>(V))
884    return Call->hasRetAttr(Attribute::NoAlias);
885  return false;
886}
887
888bool llvm::isNoAliasArgument(const Value *V) {
889  if (const Argument *A = dyn_cast<Argument>(V))
890    return A->hasNoAliasAttr();
891  return false;
892}
893
894bool llvm::isIdentifiedObject(const Value *V) {
895  if (isa<AllocaInst>(V))
896    return true;
897  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
898    return true;
899  if (isNoAliasCall(V))
900    return true;
901  if (const Argument *A = dyn_cast<Argument>(V))
902    return A->hasNoAliasAttr() || A->hasByValAttr();
903  return false;
904}
905
906bool llvm::isIdentifiedFunctionLocal(const Value *V) {
907  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
908}
909
910void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
911  // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
912  // more alias analyses are added to llvm::createLegacyPMAAResults, they need
913  // to be added here also.
914  AU.addRequired<TargetLibraryInfoWrapperPass>();
915  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
916  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
917  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
918  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
919  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
920  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
921  AU.addUsedIfAvailable<ExternalAAWrapperPass>();
922}
923