1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some functions that are useful for math stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_MATHEXTRAS_H
14#define LLVM_SUPPORT_MATHEXTRAS_H
15
16#include "llvm/Support/Compiler.h"
17#include "llvm/Support/SwapByteOrder.h"
18#include <algorithm>
19#include <cassert>
20#include <climits>
21#include <cstring>
22#include <limits>
23#include <type_traits>
24
25#ifdef __ANDROID_NDK__
26#include <android/api-level.h>
27#endif
28
29#ifdef _MSC_VER
30// Declare these intrinsics manually rather including intrin.h. It's very
31// expensive, and MathExtras.h is popular.
32// #include <intrin.h>
33extern "C" {
34unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
35unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
36unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
37unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
38}
39#endif
40
41namespace llvm {
42
43/// The behavior an operation has on an input of 0.
44enum ZeroBehavior {
45  /// The returned value is undefined.
46  ZB_Undefined,
47  /// The returned value is numeric_limits<T>::max()
48  ZB_Max,
49  /// The returned value is numeric_limits<T>::digits
50  ZB_Width
51};
52
53/// Mathematical constants.
54namespace numbers {
55// TODO: Track C++20 std::numbers.
56// TODO: Favor using the hexadecimal FP constants (requires C++17).
57constexpr double e          = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
58                 egamma     = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
59                 ln2        = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
60                 ln10       = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
61                 log2e      = 1.4426950408889634074, // (0x1.71547652b82feP+0)
62                 log10e     = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
63                 pi         = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
64                 inv_pi     = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
65                 sqrtpi     = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
66                 inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
67                 sqrt2      = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
68                 inv_sqrt2  = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
69                 sqrt3      = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
70                 inv_sqrt3  = .57735026918962576451, // (0x1.279a74590331cP-1)
71                 phi        = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
72constexpr float ef          = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
73                egammaf     = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
74                ln2f        = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
75                ln10f       = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
76                log2ef      = 1.44269504F, // (0x1.715476P+0)
77                log10ef     = .434294482F, // (0x1.bcb7b2P-2)
78                pif         = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
79                inv_pif     = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
80                sqrtpif     = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
81                inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
82                sqrt2f      = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
83                inv_sqrt2f  = .707106781F, // (0x1.6a09e6P-1)
84                sqrt3f      = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
85                inv_sqrt3f  = .577350269F, // (0x1.279a74P-1)
86                phif        = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
87} // namespace numbers
88
89namespace detail {
90template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
91  static unsigned count(T Val, ZeroBehavior) {
92    if (!Val)
93      return std::numeric_limits<T>::digits;
94    if (Val & 0x1)
95      return 0;
96
97    // Bisection method.
98    unsigned ZeroBits = 0;
99    T Shift = std::numeric_limits<T>::digits >> 1;
100    T Mask = std::numeric_limits<T>::max() >> Shift;
101    while (Shift) {
102      if ((Val & Mask) == 0) {
103        Val >>= Shift;
104        ZeroBits |= Shift;
105      }
106      Shift >>= 1;
107      Mask >>= Shift;
108    }
109    return ZeroBits;
110  }
111};
112
113#if defined(__GNUC__) || defined(_MSC_VER)
114template <typename T> struct TrailingZerosCounter<T, 4> {
115  static unsigned count(T Val, ZeroBehavior ZB) {
116    if (ZB != ZB_Undefined && Val == 0)
117      return 32;
118
119#if __has_builtin(__builtin_ctz) || defined(__GNUC__)
120    return __builtin_ctz(Val);
121#elif defined(_MSC_VER)
122    unsigned long Index;
123    _BitScanForward(&Index, Val);
124    return Index;
125#endif
126  }
127};
128
129#if !defined(_MSC_VER) || defined(_M_X64)
130template <typename T> struct TrailingZerosCounter<T, 8> {
131  static unsigned count(T Val, ZeroBehavior ZB) {
132    if (ZB != ZB_Undefined && Val == 0)
133      return 64;
134
135#if __has_builtin(__builtin_ctzll) || defined(__GNUC__)
136    return __builtin_ctzll(Val);
137#elif defined(_MSC_VER)
138    unsigned long Index;
139    _BitScanForward64(&Index, Val);
140    return Index;
141#endif
142  }
143};
144#endif
145#endif
146} // namespace detail
147
148/// Count number of 0's from the least significant bit to the most
149///   stopping at the first 1.
150///
151/// Only unsigned integral types are allowed.
152///
153/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
154///   valid arguments.
155template <typename T>
156unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
157  static_assert(std::numeric_limits<T>::is_integer &&
158                    !std::numeric_limits<T>::is_signed,
159                "Only unsigned integral types are allowed.");
160  return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
161}
162
163namespace detail {
164template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
165  static unsigned count(T Val, ZeroBehavior) {
166    if (!Val)
167      return std::numeric_limits<T>::digits;
168
169    // Bisection method.
170    unsigned ZeroBits = 0;
171    for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
172      T Tmp = Val >> Shift;
173      if (Tmp)
174        Val = Tmp;
175      else
176        ZeroBits |= Shift;
177    }
178    return ZeroBits;
179  }
180};
181
182#if defined(__GNUC__) || defined(_MSC_VER)
183template <typename T> struct LeadingZerosCounter<T, 4> {
184  static unsigned count(T Val, ZeroBehavior ZB) {
185    if (ZB != ZB_Undefined && Val == 0)
186      return 32;
187
188#if __has_builtin(__builtin_clz) || defined(__GNUC__)
189    return __builtin_clz(Val);
190#elif defined(_MSC_VER)
191    unsigned long Index;
192    _BitScanReverse(&Index, Val);
193    return Index ^ 31;
194#endif
195  }
196};
197
198#if !defined(_MSC_VER) || defined(_M_X64)
199template <typename T> struct LeadingZerosCounter<T, 8> {
200  static unsigned count(T Val, ZeroBehavior ZB) {
201    if (ZB != ZB_Undefined && Val == 0)
202      return 64;
203
204#if __has_builtin(__builtin_clzll) || defined(__GNUC__)
205    return __builtin_clzll(Val);
206#elif defined(_MSC_VER)
207    unsigned long Index;
208    _BitScanReverse64(&Index, Val);
209    return Index ^ 63;
210#endif
211  }
212};
213#endif
214#endif
215} // namespace detail
216
217/// Count number of 0's from the most significant bit to the least
218///   stopping at the first 1.
219///
220/// Only unsigned integral types are allowed.
221///
222/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
223///   valid arguments.
224template <typename T>
225unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
226  static_assert(std::numeric_limits<T>::is_integer &&
227                    !std::numeric_limits<T>::is_signed,
228                "Only unsigned integral types are allowed.");
229  return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
230}
231
232/// Get the index of the first set bit starting from the least
233///   significant bit.
234///
235/// Only unsigned integral types are allowed.
236///
237/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
238///   valid arguments.
239template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
240  if (ZB == ZB_Max && Val == 0)
241    return std::numeric_limits<T>::max();
242
243  return countTrailingZeros(Val, ZB_Undefined);
244}
245
246/// Create a bitmask with the N right-most bits set to 1, and all other
247/// bits set to 0.  Only unsigned types are allowed.
248template <typename T> T maskTrailingOnes(unsigned N) {
249  static_assert(std::is_unsigned<T>::value, "Invalid type!");
250  const unsigned Bits = CHAR_BIT * sizeof(T);
251  assert(N <= Bits && "Invalid bit index");
252  return N == 0 ? 0 : (T(-1) >> (Bits - N));
253}
254
255/// Create a bitmask with the N left-most bits set to 1, and all other
256/// bits set to 0.  Only unsigned types are allowed.
257template <typename T> T maskLeadingOnes(unsigned N) {
258  return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
259}
260
261/// Create a bitmask with the N right-most bits set to 0, and all other
262/// bits set to 1.  Only unsigned types are allowed.
263template <typename T> T maskTrailingZeros(unsigned N) {
264  return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
265}
266
267/// Create a bitmask with the N left-most bits set to 0, and all other
268/// bits set to 1.  Only unsigned types are allowed.
269template <typename T> T maskLeadingZeros(unsigned N) {
270  return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
271}
272
273/// Get the index of the last set bit starting from the least
274///   significant bit.
275///
276/// Only unsigned integral types are allowed.
277///
278/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
279///   valid arguments.
280template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
281  if (ZB == ZB_Max && Val == 0)
282    return std::numeric_limits<T>::max();
283
284  // Use ^ instead of - because both gcc and llvm can remove the associated ^
285  // in the __builtin_clz intrinsic on x86.
286  return countLeadingZeros(Val, ZB_Undefined) ^
287         (std::numeric_limits<T>::digits - 1);
288}
289
290/// Macro compressed bit reversal table for 256 bits.
291///
292/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
293static const unsigned char BitReverseTable256[256] = {
294#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
295#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
296#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
297  R6(0), R6(2), R6(1), R6(3)
298#undef R2
299#undef R4
300#undef R6
301};
302
303/// Reverse the bits in \p Val.
304template <typename T>
305T reverseBits(T Val) {
306  unsigned char in[sizeof(Val)];
307  unsigned char out[sizeof(Val)];
308  std::memcpy(in, &Val, sizeof(Val));
309  for (unsigned i = 0; i < sizeof(Val); ++i)
310    out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
311  std::memcpy(&Val, out, sizeof(Val));
312  return Val;
313}
314
315// NOTE: The following support functions use the _32/_64 extensions instead of
316// type overloading so that signed and unsigned integers can be used without
317// ambiguity.
318
319/// Return the high 32 bits of a 64 bit value.
320constexpr inline uint32_t Hi_32(uint64_t Value) {
321  return static_cast<uint32_t>(Value >> 32);
322}
323
324/// Return the low 32 bits of a 64 bit value.
325constexpr inline uint32_t Lo_32(uint64_t Value) {
326  return static_cast<uint32_t>(Value);
327}
328
329/// Make a 64-bit integer from a high / low pair of 32-bit integers.
330constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
331  return ((uint64_t)High << 32) | (uint64_t)Low;
332}
333
334/// Checks if an integer fits into the given bit width.
335template <unsigned N> constexpr inline bool isInt(int64_t x) {
336  return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
337}
338// Template specializations to get better code for common cases.
339template <> constexpr inline bool isInt<8>(int64_t x) {
340  return static_cast<int8_t>(x) == x;
341}
342template <> constexpr inline bool isInt<16>(int64_t x) {
343  return static_cast<int16_t>(x) == x;
344}
345template <> constexpr inline bool isInt<32>(int64_t x) {
346  return static_cast<int32_t>(x) == x;
347}
348
349/// Checks if a signed integer is an N bit number shifted left by S.
350template <unsigned N, unsigned S>
351constexpr inline bool isShiftedInt(int64_t x) {
352  static_assert(
353      N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
354  static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
355  return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
356}
357
358/// Checks if an unsigned integer fits into the given bit width.
359///
360/// This is written as two functions rather than as simply
361///
362///   return N >= 64 || X < (UINT64_C(1) << N);
363///
364/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
365/// left too many places.
366template <unsigned N>
367constexpr inline typename std::enable_if<(N < 64), bool>::type
368isUInt(uint64_t X) {
369  static_assert(N > 0, "isUInt<0> doesn't make sense");
370  return X < (UINT64_C(1) << (N));
371}
372template <unsigned N>
373constexpr inline typename std::enable_if<N >= 64, bool>::type
374isUInt(uint64_t X) {
375  return true;
376}
377
378// Template specializations to get better code for common cases.
379template <> constexpr inline bool isUInt<8>(uint64_t x) {
380  return static_cast<uint8_t>(x) == x;
381}
382template <> constexpr inline bool isUInt<16>(uint64_t x) {
383  return static_cast<uint16_t>(x) == x;
384}
385template <> constexpr inline bool isUInt<32>(uint64_t x) {
386  return static_cast<uint32_t>(x) == x;
387}
388
389/// Checks if a unsigned integer is an N bit number shifted left by S.
390template <unsigned N, unsigned S>
391constexpr inline bool isShiftedUInt(uint64_t x) {
392  static_assert(
393      N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
394  static_assert(N + S <= 64,
395                "isShiftedUInt<N, S> with N + S > 64 is too wide.");
396  // Per the two static_asserts above, S must be strictly less than 64.  So
397  // 1 << S is not undefined behavior.
398  return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
399}
400
401/// Gets the maximum value for a N-bit unsigned integer.
402inline uint64_t maxUIntN(uint64_t N) {
403  assert(N > 0 && N <= 64 && "integer width out of range");
404
405  // uint64_t(1) << 64 is undefined behavior, so we can't do
406  //   (uint64_t(1) << N) - 1
407  // without checking first that N != 64.  But this works and doesn't have a
408  // branch.
409  return UINT64_MAX >> (64 - N);
410}
411
412/// Gets the minimum value for a N-bit signed integer.
413inline int64_t minIntN(int64_t N) {
414  assert(N > 0 && N <= 64 && "integer width out of range");
415
416  return -(UINT64_C(1)<<(N-1));
417}
418
419/// Gets the maximum value for a N-bit signed integer.
420inline int64_t maxIntN(int64_t N) {
421  assert(N > 0 && N <= 64 && "integer width out of range");
422
423  // This relies on two's complement wraparound when N == 64, so we convert to
424  // int64_t only at the very end to avoid UB.
425  return (UINT64_C(1) << (N - 1)) - 1;
426}
427
428/// Checks if an unsigned integer fits into the given (dynamic) bit width.
429inline bool isUIntN(unsigned N, uint64_t x) {
430  return N >= 64 || x <= maxUIntN(N);
431}
432
433/// Checks if an signed integer fits into the given (dynamic) bit width.
434inline bool isIntN(unsigned N, int64_t x) {
435  return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
436}
437
438/// Return true if the argument is a non-empty sequence of ones starting at the
439/// least significant bit with the remainder zero (32 bit version).
440/// Ex. isMask_32(0x0000FFFFU) == true.
441constexpr inline bool isMask_32(uint32_t Value) {
442  return Value && ((Value + 1) & Value) == 0;
443}
444
445/// Return true if the argument is a non-empty sequence of ones starting at the
446/// least significant bit with the remainder zero (64 bit version).
447constexpr inline bool isMask_64(uint64_t Value) {
448  return Value && ((Value + 1) & Value) == 0;
449}
450
451/// Return true if the argument contains a non-empty sequence of ones with the
452/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
453constexpr inline bool isShiftedMask_32(uint32_t Value) {
454  return Value && isMask_32((Value - 1) | Value);
455}
456
457/// Return true if the argument contains a non-empty sequence of ones with the
458/// remainder zero (64 bit version.)
459constexpr inline bool isShiftedMask_64(uint64_t Value) {
460  return Value && isMask_64((Value - 1) | Value);
461}
462
463/// Return true if the argument is a power of two > 0.
464/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
465constexpr inline bool isPowerOf2_32(uint32_t Value) {
466  return Value && !(Value & (Value - 1));
467}
468
469/// Return true if the argument is a power of two > 0 (64 bit edition.)
470constexpr inline bool isPowerOf2_64(uint64_t Value) {
471  return Value && !(Value & (Value - 1));
472}
473
474/// Return a byte-swapped representation of the 16-bit argument.
475inline uint16_t ByteSwap_16(uint16_t Value) {
476  return sys::SwapByteOrder_16(Value);
477}
478
479/// Return a byte-swapped representation of the 32-bit argument.
480inline uint32_t ByteSwap_32(uint32_t Value) {
481  return sys::SwapByteOrder_32(Value);
482}
483
484/// Return a byte-swapped representation of the 64-bit argument.
485inline uint64_t ByteSwap_64(uint64_t Value) {
486  return sys::SwapByteOrder_64(Value);
487}
488
489/// Count the number of ones from the most significant bit to the first
490/// zero bit.
491///
492/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
493/// Only unsigned integral types are allowed.
494///
495/// \param ZB the behavior on an input of all ones. Only ZB_Width and
496/// ZB_Undefined are valid arguments.
497template <typename T>
498unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
499  static_assert(std::numeric_limits<T>::is_integer &&
500                    !std::numeric_limits<T>::is_signed,
501                "Only unsigned integral types are allowed.");
502  return countLeadingZeros<T>(~Value, ZB);
503}
504
505/// Count the number of ones from the least significant bit to the first
506/// zero bit.
507///
508/// Ex. countTrailingOnes(0x00FF00FF) == 8.
509/// Only unsigned integral types are allowed.
510///
511/// \param ZB the behavior on an input of all ones. Only ZB_Width and
512/// ZB_Undefined are valid arguments.
513template <typename T>
514unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
515  static_assert(std::numeric_limits<T>::is_integer &&
516                    !std::numeric_limits<T>::is_signed,
517                "Only unsigned integral types are allowed.");
518  return countTrailingZeros<T>(~Value, ZB);
519}
520
521namespace detail {
522template <typename T, std::size_t SizeOfT> struct PopulationCounter {
523  static unsigned count(T Value) {
524    // Generic version, forward to 32 bits.
525    static_assert(SizeOfT <= 4, "Not implemented!");
526#if defined(__GNUC__)
527    return __builtin_popcount(Value);
528#else
529    uint32_t v = Value;
530    v = v - ((v >> 1) & 0x55555555);
531    v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
532    return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
533#endif
534  }
535};
536
537template <typename T> struct PopulationCounter<T, 8> {
538  static unsigned count(T Value) {
539#if defined(__GNUC__)
540    return __builtin_popcountll(Value);
541#else
542    uint64_t v = Value;
543    v = v - ((v >> 1) & 0x5555555555555555ULL);
544    v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
545    v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
546    return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
547#endif
548  }
549};
550} // namespace detail
551
552/// Count the number of set bits in a value.
553/// Ex. countPopulation(0xF000F000) = 8
554/// Returns 0 if the word is zero.
555template <typename T>
556inline unsigned countPopulation(T Value) {
557  static_assert(std::numeric_limits<T>::is_integer &&
558                    !std::numeric_limits<T>::is_signed,
559                "Only unsigned integral types are allowed.");
560  return detail::PopulationCounter<T, sizeof(T)>::count(Value);
561}
562
563/// Compile time Log2.
564/// Valid only for positive powers of two.
565template <size_t kValue> constexpr inline size_t CTLog2() {
566  static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
567                "Value is not a valid power of 2");
568  return 1 + CTLog2<kValue / 2>();
569}
570
571template <> constexpr inline size_t CTLog2<1>() { return 0; }
572
573/// Return the log base 2 of the specified value.
574inline double Log2(double Value) {
575#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
576  return __builtin_log(Value) / __builtin_log(2.0);
577#else
578  return log2(Value);
579#endif
580}
581
582/// Return the floor log base 2 of the specified value, -1 if the value is zero.
583/// (32 bit edition.)
584/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
585inline unsigned Log2_32(uint32_t Value) {
586  return 31 - countLeadingZeros(Value);
587}
588
589/// Return the floor log base 2 of the specified value, -1 if the value is zero.
590/// (64 bit edition.)
591inline unsigned Log2_64(uint64_t Value) {
592  return 63 - countLeadingZeros(Value);
593}
594
595/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
596/// (32 bit edition).
597/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
598inline unsigned Log2_32_Ceil(uint32_t Value) {
599  return 32 - countLeadingZeros(Value - 1);
600}
601
602/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
603/// (64 bit edition.)
604inline unsigned Log2_64_Ceil(uint64_t Value) {
605  return 64 - countLeadingZeros(Value - 1);
606}
607
608/// Return the greatest common divisor of the values using Euclid's algorithm.
609template <typename T>
610inline T greatestCommonDivisor(T A, T B) {
611  while (B) {
612    T Tmp = B;
613    B = A % B;
614    A = Tmp;
615  }
616  return A;
617}
618
619inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
620  return greatestCommonDivisor<uint64_t>(A, B);
621}
622
623/// This function takes a 64-bit integer and returns the bit equivalent double.
624inline double BitsToDouble(uint64_t Bits) {
625  double D;
626  static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
627  memcpy(&D, &Bits, sizeof(Bits));
628  return D;
629}
630
631/// This function takes a 32-bit integer and returns the bit equivalent float.
632inline float BitsToFloat(uint32_t Bits) {
633  float F;
634  static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
635  memcpy(&F, &Bits, sizeof(Bits));
636  return F;
637}
638
639/// This function takes a double and returns the bit equivalent 64-bit integer.
640/// Note that copying doubles around changes the bits of NaNs on some hosts,
641/// notably x86, so this routine cannot be used if these bits are needed.
642inline uint64_t DoubleToBits(double Double) {
643  uint64_t Bits;
644  static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
645  memcpy(&Bits, &Double, sizeof(Double));
646  return Bits;
647}
648
649/// This function takes a float and returns the bit equivalent 32-bit integer.
650/// Note that copying floats around changes the bits of NaNs on some hosts,
651/// notably x86, so this routine cannot be used if these bits are needed.
652inline uint32_t FloatToBits(float Float) {
653  uint32_t Bits;
654  static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
655  memcpy(&Bits, &Float, sizeof(Float));
656  return Bits;
657}
658
659/// A and B are either alignments or offsets. Return the minimum alignment that
660/// may be assumed after adding the two together.
661constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
662  // The largest power of 2 that divides both A and B.
663  //
664  // Replace "-Value" by "1+~Value" in the following commented code to avoid
665  // MSVC warning C4146
666  //    return (A | B) & -(A | B);
667  return (A | B) & (1 + ~(A | B));
668}
669
670/// Returns the next power of two (in 64-bits) that is strictly greater than A.
671/// Returns zero on overflow.
672inline uint64_t NextPowerOf2(uint64_t A) {
673  A |= (A >> 1);
674  A |= (A >> 2);
675  A |= (A >> 4);
676  A |= (A >> 8);
677  A |= (A >> 16);
678  A |= (A >> 32);
679  return A + 1;
680}
681
682/// Returns the power of two which is less than or equal to the given value.
683/// Essentially, it is a floor operation across the domain of powers of two.
684inline uint64_t PowerOf2Floor(uint64_t A) {
685  if (!A) return 0;
686  return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
687}
688
689/// Returns the power of two which is greater than or equal to the given value.
690/// Essentially, it is a ceil operation across the domain of powers of two.
691inline uint64_t PowerOf2Ceil(uint64_t A) {
692  if (!A)
693    return 0;
694  return NextPowerOf2(A - 1);
695}
696
697/// Returns the next integer (mod 2**64) that is greater than or equal to
698/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
699///
700/// If non-zero \p Skew is specified, the return value will be a minimal
701/// integer that is greater than or equal to \p Value and equal to
702/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
703/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
704///
705/// Examples:
706/// \code
707///   alignTo(5, 8) = 8
708///   alignTo(17, 8) = 24
709///   alignTo(~0LL, 8) = 0
710///   alignTo(321, 255) = 510
711///
712///   alignTo(5, 8, 7) = 7
713///   alignTo(17, 8, 1) = 17
714///   alignTo(~0LL, 8, 3) = 3
715///   alignTo(321, 255, 42) = 552
716/// \endcode
717inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
718  assert(Align != 0u && "Align can't be 0.");
719  Skew %= Align;
720  return (Value + Align - 1 - Skew) / Align * Align + Skew;
721}
722
723/// Returns the next integer (mod 2**64) that is greater than or equal to
724/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
725template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
726  static_assert(Align != 0u, "Align must be non-zero");
727  return (Value + Align - 1) / Align * Align;
728}
729
730/// Returns the integer ceil(Numerator / Denominator).
731inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
732  return alignTo(Numerator, Denominator) / Denominator;
733}
734
735/// Returns the integer nearest(Numerator / Denominator).
736inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) {
737  return (Numerator + (Denominator / 2)) / Denominator;
738}
739
740/// Returns the largest uint64_t less than or equal to \p Value and is
741/// \p Skew mod \p Align. \p Align must be non-zero
742inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
743  assert(Align != 0u && "Align can't be 0.");
744  Skew %= Align;
745  return (Value - Skew) / Align * Align + Skew;
746}
747
748/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
749/// Requires 0 < B <= 32.
750template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
751  static_assert(B > 0, "Bit width can't be 0.");
752  static_assert(B <= 32, "Bit width out of range.");
753  return int32_t(X << (32 - B)) >> (32 - B);
754}
755
756/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
757/// Requires 0 < B < 32.
758inline int32_t SignExtend32(uint32_t X, unsigned B) {
759  assert(B > 0 && "Bit width can't be 0.");
760  assert(B <= 32 && "Bit width out of range.");
761  return int32_t(X << (32 - B)) >> (32 - B);
762}
763
764/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
765/// Requires 0 < B < 64.
766template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
767  static_assert(B > 0, "Bit width can't be 0.");
768  static_assert(B <= 64, "Bit width out of range.");
769  return int64_t(x << (64 - B)) >> (64 - B);
770}
771
772/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
773/// Requires 0 < B < 64.
774inline int64_t SignExtend64(uint64_t X, unsigned B) {
775  assert(B > 0 && "Bit width can't be 0.");
776  assert(B <= 64 && "Bit width out of range.");
777  return int64_t(X << (64 - B)) >> (64 - B);
778}
779
780/// Subtract two unsigned integers, X and Y, of type T and return the absolute
781/// value of the result.
782template <typename T>
783typename std::enable_if<std::is_unsigned<T>::value, T>::type
784AbsoluteDifference(T X, T Y) {
785  return std::max(X, Y) - std::min(X, Y);
786}
787
788/// Add two unsigned integers, X and Y, of type T.  Clamp the result to the
789/// maximum representable value of T on overflow.  ResultOverflowed indicates if
790/// the result is larger than the maximum representable value of type T.
791template <typename T>
792typename std::enable_if<std::is_unsigned<T>::value, T>::type
793SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
794  bool Dummy;
795  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
796  // Hacker's Delight, p. 29
797  T Z = X + Y;
798  Overflowed = (Z < X || Z < Y);
799  if (Overflowed)
800    return std::numeric_limits<T>::max();
801  else
802    return Z;
803}
804
805/// Multiply two unsigned integers, X and Y, of type T.  Clamp the result to the
806/// maximum representable value of T on overflow.  ResultOverflowed indicates if
807/// the result is larger than the maximum representable value of type T.
808template <typename T>
809typename std::enable_if<std::is_unsigned<T>::value, T>::type
810SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
811  bool Dummy;
812  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
813
814  // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
815  // because it fails for uint16_t (where multiplication can have undefined
816  // behavior due to promotion to int), and requires a division in addition
817  // to the multiplication.
818
819  Overflowed = false;
820
821  // Log2(Z) would be either Log2Z or Log2Z + 1.
822  // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
823  // will necessarily be less than Log2Max as desired.
824  int Log2Z = Log2_64(X) + Log2_64(Y);
825  const T Max = std::numeric_limits<T>::max();
826  int Log2Max = Log2_64(Max);
827  if (Log2Z < Log2Max) {
828    return X * Y;
829  }
830  if (Log2Z > Log2Max) {
831    Overflowed = true;
832    return Max;
833  }
834
835  // We're going to use the top bit, and maybe overflow one
836  // bit past it. Multiply all but the bottom bit then add
837  // that on at the end.
838  T Z = (X >> 1) * Y;
839  if (Z & ~(Max >> 1)) {
840    Overflowed = true;
841    return Max;
842  }
843  Z <<= 1;
844  if (X & 1)
845    return SaturatingAdd(Z, Y, ResultOverflowed);
846
847  return Z;
848}
849
850/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
851/// the product. Clamp the result to the maximum representable value of T on
852/// overflow. ResultOverflowed indicates if the result is larger than the
853/// maximum representable value of type T.
854template <typename T>
855typename std::enable_if<std::is_unsigned<T>::value, T>::type
856SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
857  bool Dummy;
858  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
859
860  T Product = SaturatingMultiply(X, Y, &Overflowed);
861  if (Overflowed)
862    return Product;
863
864  return SaturatingAdd(A, Product, &Overflowed);
865}
866
867/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
868extern const float huge_valf;
869
870
871/// Add two signed integers, computing the two's complement truncated result,
872/// returning true if overflow occured.
873template <typename T>
874typename std::enable_if<std::is_signed<T>::value, T>::type
875AddOverflow(T X, T Y, T &Result) {
876#if __has_builtin(__builtin_add_overflow)
877  return __builtin_add_overflow(X, Y, &Result);
878#else
879  // Perform the unsigned addition.
880  using U = typename std::make_unsigned<T>::type;
881  const U UX = static_cast<U>(X);
882  const U UY = static_cast<U>(Y);
883  const U UResult = UX + UY;
884
885  // Convert to signed.
886  Result = static_cast<T>(UResult);
887
888  // Adding two positive numbers should result in a positive number.
889  if (X > 0 && Y > 0)
890    return Result <= 0;
891  // Adding two negatives should result in a negative number.
892  if (X < 0 && Y < 0)
893    return Result >= 0;
894  return false;
895#endif
896}
897
898/// Subtract two signed integers, computing the two's complement truncated
899/// result, returning true if an overflow ocurred.
900template <typename T>
901typename std::enable_if<std::is_signed<T>::value, T>::type
902SubOverflow(T X, T Y, T &Result) {
903#if __has_builtin(__builtin_sub_overflow)
904  return __builtin_sub_overflow(X, Y, &Result);
905#else
906  // Perform the unsigned addition.
907  using U = typename std::make_unsigned<T>::type;
908  const U UX = static_cast<U>(X);
909  const U UY = static_cast<U>(Y);
910  const U UResult = UX - UY;
911
912  // Convert to signed.
913  Result = static_cast<T>(UResult);
914
915  // Subtracting a positive number from a negative results in a negative number.
916  if (X <= 0 && Y > 0)
917    return Result >= 0;
918  // Subtracting a negative number from a positive results in a positive number.
919  if (X >= 0 && Y < 0)
920    return Result <= 0;
921  return false;
922#endif
923}
924
925
926/// Multiply two signed integers, computing the two's complement truncated
927/// result, returning true if an overflow ocurred.
928template <typename T>
929typename std::enable_if<std::is_signed<T>::value, T>::type
930MulOverflow(T X, T Y, T &Result) {
931  // Perform the unsigned multiplication on absolute values.
932  using U = typename std::make_unsigned<T>::type;
933  const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
934  const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
935  const U UResult = UX * UY;
936
937  // Convert to signed.
938  const bool IsNegative = (X < 0) ^ (Y < 0);
939  Result = IsNegative ? (0 - UResult) : UResult;
940
941  // If any of the args was 0, result is 0 and no overflow occurs.
942  if (UX == 0 || UY == 0)
943    return false;
944
945  // UX and UY are in [1, 2^n], where n is the number of digits.
946  // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
947  // positive) divided by an argument compares to the other.
948  if (IsNegative)
949    return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
950  else
951    return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
952}
953
954} // End llvm namespace
955
956#endif
957