1//===-- tsan_interceptors_mac.cpp -----------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of ThreadSanitizer (TSan), a race detector.
10//
11// Mac-specific interceptors.
12//===----------------------------------------------------------------------===//
13
14#include "sanitizer_common/sanitizer_platform.h"
15#if SANITIZER_MAC
16
17#include "interception/interception.h"
18#include "tsan_interceptors.h"
19#include "tsan_interface.h"
20#include "tsan_interface_ann.h"
21#include "sanitizer_common/sanitizer_addrhashmap.h"
22
23#include <errno.h>
24#include <libkern/OSAtomic.h>
25#include <objc/objc-sync.h>
26#include <sys/ucontext.h>
27
28#if defined(__has_include) && __has_include(<os/lock.h>)
29#include <os/lock.h>
30#endif
31
32#if defined(__has_include) && __has_include(<xpc/xpc.h>)
33#include <xpc/xpc.h>
34#endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
35
36typedef long long_t;
37
38extern "C" {
39int getcontext(ucontext_t *ucp) __attribute__((returns_twice));
40int setcontext(const ucontext_t *ucp);
41}
42
43namespace __tsan {
44
45// The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
46// but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
47// actually aliases of each other, and we cannot have different interceptors for
48// them, because they're actually the same function.  Thus, we have to stay
49// conservative and treat the non-barrier versions as mo_acq_rel.
50static const morder kMacOrderBarrier = mo_acq_rel;
51static const morder kMacOrderNonBarrier = mo_acq_rel;
52
53#define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
54  TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                 \
55    SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                 \
56    return tsan_atomic_f((volatile tsan_t *)ptr, x, mo);                \
57  }
58
59#define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
60  TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                        \
61    SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                        \
62    return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x;                   \
63  }
64
65#define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
66  TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                             \
67    SCOPED_TSAN_INTERCEPTOR(f, ptr);                                           \
68    return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1;                   \
69  }
70
71#define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
72                                     mo)                                    \
73  TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                          \
74    SCOPED_TSAN_INTERCEPTOR(f, ptr);                                        \
75    return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1;                \
76  }
77
78#define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m)                  \
79  m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,             \
80    kMacOrderNonBarrier)                                                       \
81  m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,    \
82    kMacOrderBarrier)                                                          \
83  m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f,             \
84    kMacOrderNonBarrier)                                                       \
85  m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f,    \
86    kMacOrderBarrier)
87
88#define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig)             \
89  m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,            \
90    kMacOrderNonBarrier)                                                       \
91  m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,   \
92    kMacOrderBarrier)                                                          \
93  m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
94    kMacOrderNonBarrier)                                                       \
95  m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier,                           \
96    __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
97
98OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
99                                 OSATOMIC_INTERCEPTOR_PLUS_X)
100OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
101                                 OSATOMIC_INTERCEPTOR_PLUS_1)
102OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
103                                 OSATOMIC_INTERCEPTOR_MINUS_1)
104OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
105                              OSATOMIC_INTERCEPTOR)
106OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
107                              OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
108OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
109                              OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
110
111#define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t)              \
112  TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) {    \
113    SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr);                  \
114    return tsan_atomic_f##_compare_exchange_strong(                         \
115        (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
116        kMacOrderNonBarrier, kMacOrderNonBarrier);                          \
117  }                                                                         \
118                                                                            \
119  TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value,              \
120                   t volatile *ptr) {                                       \
121    SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr);         \
122    return tsan_atomic_f##_compare_exchange_strong(                         \
123        (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
124        kMacOrderBarrier, kMacOrderNonBarrier);                             \
125  }
126
127OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
128OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
129                          long_t)
130OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
131                          void *)
132OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
133                          int32_t)
134OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
135                          int64_t)
136
137#define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo)             \
138  TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) {    \
139    SCOPED_TSAN_INTERCEPTOR(f, n, ptr);                          \
140    volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \
141    char bit = 0x80u >> (n & 7);                                 \
142    char mask = clear ? ~bit : bit;                              \
143    char orig_byte = op((volatile a8 *)byte_ptr, mask, mo);      \
144    return orig_byte & bit;                                      \
145  }
146
147#define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear)               \
148  OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
149  OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
150
151OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
152OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
153                            true)
154
155TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
156                 size_t offset) {
157  SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
158  __tsan_release(item);
159  REAL(OSAtomicEnqueue)(list, item, offset);
160}
161
162TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
163  SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
164  void *item = REAL(OSAtomicDequeue)(list, offset);
165  if (item) __tsan_acquire(item);
166  return item;
167}
168
169// OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
170#if !SANITIZER_IOS
171
172TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
173                 size_t offset) {
174  SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
175  __tsan_release(item);
176  REAL(OSAtomicFifoEnqueue)(list, item, offset);
177}
178
179TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
180                 size_t offset) {
181  SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
182  void *item = REAL(OSAtomicFifoDequeue)(list, offset);
183  if (item) __tsan_acquire(item);
184  return item;
185}
186
187#endif
188
189TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
190  CHECK(!cur_thread()->is_dead);
191  if (!cur_thread()->is_inited) {
192    return REAL(OSSpinLockLock)(lock);
193  }
194  SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
195  REAL(OSSpinLockLock)(lock);
196  Acquire(thr, pc, (uptr)lock);
197}
198
199TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
200  CHECK(!cur_thread()->is_dead);
201  if (!cur_thread()->is_inited) {
202    return REAL(OSSpinLockTry)(lock);
203  }
204  SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
205  bool result = REAL(OSSpinLockTry)(lock);
206  if (result)
207    Acquire(thr, pc, (uptr)lock);
208  return result;
209}
210
211TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
212  CHECK(!cur_thread()->is_dead);
213  if (!cur_thread()->is_inited) {
214    return REAL(OSSpinLockUnlock)(lock);
215  }
216  SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
217  Release(thr, pc, (uptr)lock);
218  REAL(OSSpinLockUnlock)(lock);
219}
220
221TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
222  CHECK(!cur_thread()->is_dead);
223  if (!cur_thread()->is_inited) {
224    return REAL(os_lock_lock)(lock);
225  }
226  SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
227  REAL(os_lock_lock)(lock);
228  Acquire(thr, pc, (uptr)lock);
229}
230
231TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
232  CHECK(!cur_thread()->is_dead);
233  if (!cur_thread()->is_inited) {
234    return REAL(os_lock_trylock)(lock);
235  }
236  SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
237  bool result = REAL(os_lock_trylock)(lock);
238  if (result)
239    Acquire(thr, pc, (uptr)lock);
240  return result;
241}
242
243TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
244  CHECK(!cur_thread()->is_dead);
245  if (!cur_thread()->is_inited) {
246    return REAL(os_lock_unlock)(lock);
247  }
248  SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
249  Release(thr, pc, (uptr)lock);
250  REAL(os_lock_unlock)(lock);
251}
252
253#if defined(__has_include) && __has_include(<os/lock.h>)
254
255TSAN_INTERCEPTOR(void, os_unfair_lock_lock, os_unfair_lock_t lock) {
256  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
257    return REAL(os_unfair_lock_lock)(lock);
258  }
259  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock, lock);
260  REAL(os_unfair_lock_lock)(lock);
261  Acquire(thr, pc, (uptr)lock);
262}
263
264TSAN_INTERCEPTOR(void, os_unfair_lock_lock_with_options, os_unfair_lock_t lock,
265                 u32 options) {
266  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
267    return REAL(os_unfair_lock_lock_with_options)(lock, options);
268  }
269  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock_with_options, lock, options);
270  REAL(os_unfair_lock_lock_with_options)(lock, options);
271  Acquire(thr, pc, (uptr)lock);
272}
273
274TSAN_INTERCEPTOR(bool, os_unfair_lock_trylock, os_unfair_lock_t lock) {
275  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
276    return REAL(os_unfair_lock_trylock)(lock);
277  }
278  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_trylock, lock);
279  bool result = REAL(os_unfair_lock_trylock)(lock);
280  if (result)
281    Acquire(thr, pc, (uptr)lock);
282  return result;
283}
284
285TSAN_INTERCEPTOR(void, os_unfair_lock_unlock, os_unfair_lock_t lock) {
286  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
287    return REAL(os_unfair_lock_unlock)(lock);
288  }
289  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_unlock, lock);
290  Release(thr, pc, (uptr)lock);
291  REAL(os_unfair_lock_unlock)(lock);
292}
293
294#endif  // #if defined(__has_include) && __has_include(<os/lock.h>)
295
296#if defined(__has_include) && __has_include(<xpc/xpc.h>)
297
298TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
299                 xpc_connection_t connection, xpc_handler_t handler) {
300  SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
301                          handler);
302  Release(thr, pc, (uptr)connection);
303  xpc_handler_t new_handler = ^(xpc_object_t object) {
304    {
305      SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
306      Acquire(thr, pc, (uptr)connection);
307    }
308    handler(object);
309  };
310  REAL(xpc_connection_set_event_handler)(connection, new_handler);
311}
312
313TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
314                 dispatch_block_t barrier) {
315  SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
316  Release(thr, pc, (uptr)connection);
317  dispatch_block_t new_barrier = ^() {
318    {
319      SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
320      Acquire(thr, pc, (uptr)connection);
321    }
322    barrier();
323  };
324  REAL(xpc_connection_send_barrier)(connection, new_barrier);
325}
326
327TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
328                 xpc_connection_t connection, xpc_object_t message,
329                 dispatch_queue_t replyq, xpc_handler_t handler) {
330  SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
331                          message, replyq, handler);
332  Release(thr, pc, (uptr)connection);
333  xpc_handler_t new_handler = ^(xpc_object_t object) {
334    {
335      SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
336      Acquire(thr, pc, (uptr)connection);
337    }
338    handler(object);
339  };
340  REAL(xpc_connection_send_message_with_reply)
341  (connection, message, replyq, new_handler);
342}
343
344TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
345  SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
346  Release(thr, pc, (uptr)connection);
347  REAL(xpc_connection_cancel)(connection);
348}
349
350#endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
351
352// Determines whether the Obj-C object pointer is a tagged pointer. Tagged
353// pointers encode the object data directly in their pointer bits and do not
354// have an associated memory allocation. The Obj-C runtime uses tagged pointers
355// to transparently optimize small objects.
356static bool IsTaggedObjCPointer(id obj) {
357  const uptr kPossibleTaggedBits = 0x8000000000000001ull;
358  return ((uptr)obj & kPossibleTaggedBits) != 0;
359}
360
361// Returns an address which can be used to inform TSan about synchronization
362// points (MutexLock/Unlock). The TSan infrastructure expects this to be a valid
363// address in the process space. We do a small allocation here to obtain a
364// stable address (the array backing the hash map can change). The memory is
365// never free'd (leaked) and allocation and locking are slow, but this code only
366// runs for @synchronized with tagged pointers, which is very rare.
367static uptr GetOrCreateSyncAddress(uptr addr, ThreadState *thr, uptr pc) {
368  typedef AddrHashMap<uptr, 5> Map;
369  static Map Addresses;
370  Map::Handle h(&Addresses, addr);
371  if (h.created()) {
372    ThreadIgnoreBegin(thr, pc);
373    *h = (uptr) user_alloc(thr, pc, /*size=*/1);
374    ThreadIgnoreEnd(thr, pc);
375  }
376  return *h;
377}
378
379// Returns an address on which we can synchronize given an Obj-C object pointer.
380// For normal object pointers, this is just the address of the object in memory.
381// Tagged pointers are not backed by an actual memory allocation, so we need to
382// synthesize a valid address.
383static uptr SyncAddressForObjCObject(id obj, ThreadState *thr, uptr pc) {
384  if (IsTaggedObjCPointer(obj))
385    return GetOrCreateSyncAddress((uptr)obj, thr, pc);
386  return (uptr)obj;
387}
388
389TSAN_INTERCEPTOR(int, objc_sync_enter, id obj) {
390  SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj);
391  if (!obj) return REAL(objc_sync_enter)(obj);
392  uptr addr = SyncAddressForObjCObject(obj, thr, pc);
393  MutexPreLock(thr, pc, addr, MutexFlagWriteReentrant);
394  int result = REAL(objc_sync_enter)(obj);
395  CHECK_EQ(result, OBJC_SYNC_SUCCESS);
396  MutexPostLock(thr, pc, addr, MutexFlagWriteReentrant);
397  return result;
398}
399
400TSAN_INTERCEPTOR(int, objc_sync_exit, id obj) {
401  SCOPED_TSAN_INTERCEPTOR(objc_sync_exit, obj);
402  if (!obj) return REAL(objc_sync_exit)(obj);
403  uptr addr = SyncAddressForObjCObject(obj, thr, pc);
404  MutexUnlock(thr, pc, addr);
405  int result = REAL(objc_sync_exit)(obj);
406  if (result != OBJC_SYNC_SUCCESS) MutexInvalidAccess(thr, pc, addr);
407  return result;
408}
409
410TSAN_INTERCEPTOR(int, swapcontext, ucontext_t *oucp, const ucontext_t *ucp) {
411  {
412    SCOPED_INTERCEPTOR_RAW(swapcontext, oucp, ucp);
413  }
414  // Bacause of swapcontext() semantics we have no option but to copy its
415  // impementation here
416  if (!oucp || !ucp) {
417    errno = EINVAL;
418    return -1;
419  }
420  ThreadState *thr = cur_thread();
421  const int UCF_SWAPPED = 0x80000000;
422  oucp->uc_onstack &= ~UCF_SWAPPED;
423  thr->ignore_interceptors++;
424  int ret = getcontext(oucp);
425  if (!(oucp->uc_onstack & UCF_SWAPPED)) {
426    thr->ignore_interceptors--;
427    if (!ret) {
428      oucp->uc_onstack |= UCF_SWAPPED;
429      ret = setcontext(ucp);
430    }
431  }
432  return ret;
433}
434
435// On macOS, libc++ is always linked dynamically, so intercepting works the
436// usual way.
437#define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
438
439namespace {
440struct fake_shared_weak_count {
441  volatile a64 shared_owners;
442  volatile a64 shared_weak_owners;
443  virtual void _unused_0x0() = 0;
444  virtual void _unused_0x8() = 0;
445  virtual void on_zero_shared() = 0;
446  virtual void _unused_0x18() = 0;
447  virtual void on_zero_shared_weak() = 0;
448};
449}  // namespace
450
451// The following code adds libc++ interceptors for:
452//     void __shared_weak_count::__release_shared() _NOEXCEPT;
453//     bool __shared_count::__release_shared() _NOEXCEPT;
454// Shared and weak pointers in C++ maintain reference counts via atomics in
455// libc++.dylib, which are TSan-invisible, and this leads to false positives in
456// destructor code. These interceptors re-implements the whole functions so that
457// the mo_acq_rel semantics of the atomic decrement are visible.
458//
459// Unfortunately, the interceptors cannot simply Acquire/Release some sync
460// object and call the original function, because it would have a race between
461// the sync and the destruction of the object.  Calling both under a lock will
462// not work because the destructor can invoke this interceptor again (and even
463// in a different thread, so recursive locks don't help).
464
465STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
466                   fake_shared_weak_count *o) {
467  if (!flags()->shared_ptr_interceptor)
468    return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
469
470  SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
471                          o);
472  if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
473    Acquire(thr, pc, (uptr)&o->shared_owners);
474    o->on_zero_shared();
475    if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
476        0) {
477      Acquire(thr, pc, (uptr)&o->shared_weak_owners);
478      o->on_zero_shared_weak();
479    }
480  }
481}
482
483STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
484                   fake_shared_weak_count *o) {
485  if (!flags()->shared_ptr_interceptor)
486    return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
487
488  SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
489  if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
490    Acquire(thr, pc, (uptr)&o->shared_owners);
491    o->on_zero_shared();
492    return true;
493  }
494  return false;
495}
496
497namespace {
498struct call_once_callback_args {
499  void (*orig_func)(void *arg);
500  void *orig_arg;
501  void *flag;
502};
503
504void call_once_callback_wrapper(void *arg) {
505  call_once_callback_args *new_args = (call_once_callback_args *)arg;
506  new_args->orig_func(new_args->orig_arg);
507  __tsan_release(new_args->flag);
508}
509}  // namespace
510
511// This adds a libc++ interceptor for:
512//     void __call_once(volatile unsigned long&, void*, void(*)(void*));
513// C++11 call_once is implemented via an internal function __call_once which is
514// inside libc++.dylib, and the atomic release store inside it is thus
515// TSan-invisible. To avoid false positives, this interceptor wraps the callback
516// function and performs an explicit Release after the user code has run.
517STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
518                   void *arg, void (*func)(void *arg)) {
519  call_once_callback_args new_args = {func, arg, flag};
520  REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
521                                            call_once_callback_wrapper);
522}
523
524}  // namespace __tsan
525
526#endif  // SANITIZER_MAC
527