1//===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This set of linked tablegen backends is responsible for emitting the bits
10// and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
11// and provides a set of types and functions for (more or less) direct access
12// to the MVE instruction set, including the scalar shifts as well as the
13// vector instructions.
14//
15// MVE's standard intrinsic functions are unusual in that they have a system of
16// polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
17// vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
18// arguments you give it.
19//
20// This constrains the implementation strategies. The usual approach to making
21// the user-facing functions polymorphic would be to either use
22// __attribute__((overloadable)) to make a set of vaddq() functions that are
23// all inline wrappers on the underlying clang builtins, or to define a single
24// vaddq() macro which expands to an instance of _Generic.
25//
26// The inline-wrappers approach would work fine for most intrinsics, except for
27// the ones that take an argument required to be a compile-time constant,
28// because if you wrap an inline function around a call to a builtin, the
29// constant nature of the argument is not passed through.
30//
31// The _Generic approach can be made to work with enough effort, but it takes a
32// lot of machinery, because of the design feature of _Generic that even the
33// untaken branches are required to pass all front-end validity checks such as
34// type-correctness. You can work around that by nesting further _Generics all
35// over the place to coerce things to the right type in untaken branches, but
36// what you get out is complicated, hard to guarantee its correctness, and
37// worst of all, gives _completely unreadable_ error messages if the user gets
38// the types wrong for an intrinsic call.
39//
40// Therefore, my strategy is to introduce a new __attribute__ that allows a
41// function to be mapped to a clang builtin even though it doesn't have the
42// same name, and then declare all the user-facing MVE function names with that
43// attribute, mapping each one directly to the clang builtin. And the
44// polymorphic ones have __attribute__((overloadable)) as well. So once the
45// compiler has resolved the overload, it knows the internal builtin ID of the
46// selected function, and can check the immediate arguments against that; and
47// if the user gets the types wrong in a call to a polymorphic intrinsic, they
48// get a completely clear error message showing all the declarations of that
49// function in the header file and explaining why each one doesn't fit their
50// call.
51//
52// The downside of this is that if every clang builtin has to correspond
53// exactly to a user-facing ACLE intrinsic, then you can't save work in the
54// frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
55// job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
56// description for an MVE intrinsic has to contain a full description of the
57// sequence of IRBuilder calls that clang will need to make.
58//
59//===----------------------------------------------------------------------===//
60
61#include "llvm/ADT/APInt.h"
62#include "llvm/ADT/StringRef.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/raw_ostream.h"
65#include "llvm/TableGen/Error.h"
66#include "llvm/TableGen/Record.h"
67#include <cassert>
68#include <cstddef>
69#include <cstdint>
70#include <list>
71#include <map>
72#include <memory>
73#include <set>
74#include <string>
75#include <vector>
76
77using namespace llvm;
78
79namespace {
80
81class MveEmitter;
82class Result;
83
84// -----------------------------------------------------------------------------
85// A system of classes to represent all the types we'll need to deal with in
86// the prototypes of intrinsics.
87//
88// Query methods include finding out the C name of a type; the "LLVM name" in
89// the sense of a C++ code snippet that can be used in the codegen function;
90// the suffix that represents the type in the ACLE intrinsic naming scheme
91// (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
92// type is floating-point related (hence should be under #ifdef in the MVE
93// header so that it isn't included in integer-only MVE mode); and the type's
94// size in bits. Not all subtypes support all these queries.
95
96class Type {
97public:
98  enum class TypeKind {
99    // Void appears as a return type (for store intrinsics, which are pure
100    // side-effect). It's also used as the parameter type in the Tablegen
101    // when an intrinsic doesn't need to come in various suffixed forms like
102    // vfooq_s8,vfooq_u16,vfooq_f32.
103    Void,
104
105    // Scalar is used for ordinary int and float types of all sizes.
106    Scalar,
107
108    // Vector is used for anything that occupies exactly one MVE vector
109    // register, i.e. {uint,int,float}NxM_t.
110    Vector,
111
112    // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
113    // interleaving load/store intrinsics v{ld,st}{2,4}q.
114    MultiVector,
115
116    // Predicate is used by all the predicated intrinsics. Its C
117    // representation is mve_pred16_t (which is just an alias for uint16_t).
118    // But we give more detail here, by indicating that a given predicate
119    // instruction is logically regarded as a vector of i1 containing the
120    // same number of lanes as the input vector type. So our Predicate type
121    // comes with a lane count, which we use to decide which kind of <n x i1>
122    // we'll invoke the pred_i2v IR intrinsic to translate it into.
123    Predicate,
124
125    // Pointer is used for pointer types (obviously), and comes with a flag
126    // indicating whether it's a pointer to a const or mutable instance of
127    // the pointee type.
128    Pointer,
129  };
130
131private:
132  const TypeKind TKind;
133
134protected:
135  Type(TypeKind K) : TKind(K) {}
136
137public:
138  TypeKind typeKind() const { return TKind; }
139  virtual ~Type() = default;
140  virtual bool requiresFloat() const = 0;
141  virtual unsigned sizeInBits() const = 0;
142  virtual std::string cName() const = 0;
143  virtual std::string llvmName() const {
144    PrintFatalError("no LLVM type name available for type " + cName());
145  }
146  virtual std::string acleSuffix(std::string) const {
147    PrintFatalError("no ACLE suffix available for this type");
148  }
149};
150
151enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
152inline std::string toLetter(ScalarTypeKind kind) {
153  switch (kind) {
154  case ScalarTypeKind::SignedInt:
155    return "s";
156  case ScalarTypeKind::UnsignedInt:
157    return "u";
158  case ScalarTypeKind::Float:
159    return "f";
160  }
161  llvm_unreachable("Unhandled ScalarTypeKind enum");
162}
163inline std::string toCPrefix(ScalarTypeKind kind) {
164  switch (kind) {
165  case ScalarTypeKind::SignedInt:
166    return "int";
167  case ScalarTypeKind::UnsignedInt:
168    return "uint";
169  case ScalarTypeKind::Float:
170    return "float";
171  }
172  llvm_unreachable("Unhandled ScalarTypeKind enum");
173}
174
175class VoidType : public Type {
176public:
177  VoidType() : Type(TypeKind::Void) {}
178  unsigned sizeInBits() const override { return 0; }
179  bool requiresFloat() const override { return false; }
180  std::string cName() const override { return "void"; }
181
182  static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
183  std::string acleSuffix(std::string) const override { return ""; }
184};
185
186class PointerType : public Type {
187  const Type *Pointee;
188  bool Const;
189
190public:
191  PointerType(const Type *Pointee, bool Const)
192      : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
193  unsigned sizeInBits() const override { return 32; }
194  bool requiresFloat() const override { return Pointee->requiresFloat(); }
195  std::string cName() const override {
196    std::string Name = Pointee->cName();
197
198    // The syntax for a pointer in C is different when the pointee is
199    // itself a pointer. The MVE intrinsics don't contain any double
200    // pointers, so we don't need to worry about that wrinkle.
201    assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");
202
203    if (Const)
204      Name = "const " + Name;
205    return Name + " *";
206  }
207  std::string llvmName() const override {
208    return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")";
209  }
210
211  static bool classof(const Type *T) {
212    return T->typeKind() == TypeKind::Pointer;
213  }
214};
215
216// Base class for all the types that have a name of the form
217// [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
218//
219// For this sub-hierarchy we invent a cNameBase() method which returns the
220// whole name except for the trailing "_t", so that Vector and MultiVector can
221// append an extra "x2" or whatever to their element type's cNameBase(). Then
222// the main cName() query method puts "_t" on the end for the final type name.
223
224class CRegularNamedType : public Type {
225  using Type::Type;
226  virtual std::string cNameBase() const = 0;
227
228public:
229  std::string cName() const override { return cNameBase() + "_t"; }
230};
231
232class ScalarType : public CRegularNamedType {
233  ScalarTypeKind Kind;
234  unsigned Bits;
235  std::string NameOverride;
236
237public:
238  ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
239    Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
240               .Case("s", ScalarTypeKind::SignedInt)
241               .Case("u", ScalarTypeKind::UnsignedInt)
242               .Case("f", ScalarTypeKind::Float);
243    Bits = Record->getValueAsInt("size");
244    NameOverride = Record->getValueAsString("nameOverride");
245  }
246  unsigned sizeInBits() const override { return Bits; }
247  ScalarTypeKind kind() const { return Kind; }
248  std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
249  std::string cNameBase() const override {
250    return toCPrefix(Kind) + utostr(Bits);
251  }
252  std::string cName() const override {
253    if (NameOverride.empty())
254      return CRegularNamedType::cName();
255    return NameOverride;
256  }
257  std::string llvmName() const override {
258    if (Kind == ScalarTypeKind::Float) {
259      if (Bits == 16)
260        return "HalfTy";
261      if (Bits == 32)
262        return "FloatTy";
263      if (Bits == 64)
264        return "DoubleTy";
265      PrintFatalError("bad size for floating type");
266    }
267    return "Int" + utostr(Bits) + "Ty";
268  }
269  std::string acleSuffix(std::string overrideLetter) const override {
270    return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind))
271               + utostr(Bits);
272  }
273  bool isInteger() const { return Kind != ScalarTypeKind::Float; }
274  bool requiresFloat() const override { return !isInteger(); }
275  bool hasNonstandardName() const { return !NameOverride.empty(); }
276
277  static bool classof(const Type *T) {
278    return T->typeKind() == TypeKind::Scalar;
279  }
280};
281
282class VectorType : public CRegularNamedType {
283  const ScalarType *Element;
284  unsigned Lanes;
285
286public:
287  VectorType(const ScalarType *Element, unsigned Lanes)
288      : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
289  unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
290  unsigned lanes() const { return Lanes; }
291  bool requiresFloat() const override { return Element->requiresFloat(); }
292  std::string cNameBase() const override {
293    return Element->cNameBase() + "x" + utostr(Lanes);
294  }
295  std::string llvmName() const override {
296    return "llvm::VectorType::get(" + Element->llvmName() + ", " +
297           utostr(Lanes) + ")";
298  }
299
300  static bool classof(const Type *T) {
301    return T->typeKind() == TypeKind::Vector;
302  }
303};
304
305class MultiVectorType : public CRegularNamedType {
306  const VectorType *Element;
307  unsigned Registers;
308
309public:
310  MultiVectorType(unsigned Registers, const VectorType *Element)
311      : CRegularNamedType(TypeKind::MultiVector), Element(Element),
312        Registers(Registers) {}
313  unsigned sizeInBits() const override {
314    return Registers * Element->sizeInBits();
315  }
316  unsigned registers() const { return Registers; }
317  bool requiresFloat() const override { return Element->requiresFloat(); }
318  std::string cNameBase() const override {
319    return Element->cNameBase() + "x" + utostr(Registers);
320  }
321
322  // MultiVectorType doesn't override llvmName, because we don't expect to do
323  // automatic code generation for the MVE intrinsics that use it: the {vld2,
324  // vld4, vst2, vst4} family are the only ones that use these types, so it was
325  // easier to hand-write the codegen for dealing with these structs than to
326  // build in lots of extra automatic machinery that would only be used once.
327
328  static bool classof(const Type *T) {
329    return T->typeKind() == TypeKind::MultiVector;
330  }
331};
332
333class PredicateType : public CRegularNamedType {
334  unsigned Lanes;
335
336public:
337  PredicateType(unsigned Lanes)
338      : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
339  unsigned sizeInBits() const override { return 16; }
340  std::string cNameBase() const override { return "mve_pred16"; }
341  bool requiresFloat() const override { return false; };
342  std::string llvmName() const override {
343    // Use <4 x i1> instead of <2 x i1> for two-lane vector types. See
344    // the comment in llvm/lib/Target/ARM/ARMInstrMVE.td for further
345    // explanation.
346    unsigned ModifiedLanes = (Lanes == 2 ? 4 : Lanes);
347
348    return "llvm::VectorType::get(Builder.getInt1Ty(), " +
349           utostr(ModifiedLanes) + ")";
350  }
351
352  static bool classof(const Type *T) {
353    return T->typeKind() == TypeKind::Predicate;
354  }
355};
356
357// -----------------------------------------------------------------------------
358// Class to facilitate merging together the code generation for many intrinsics
359// by means of varying a few constant or type parameters.
360//
361// Most obviously, the intrinsics in a single parametrised family will have
362// code generation sequences that only differ in a type or two, e.g. vaddq_s8
363// and vaddq_u16 will look the same apart from putting a different vector type
364// in the call to CGM.getIntrinsic(). But also, completely different intrinsics
365// will often code-generate in the same way, with only a different choice of
366// _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
367// marshalling the arguments and return values of the IR intrinsic in exactly
368// the same way. And others might differ only in some other kind of constant,
369// such as a lane index.
370//
371// So, when we generate the IR-building code for all these intrinsics, we keep
372// track of every value that could possibly be pulled out of the code and
373// stored ahead of time in a local variable. Then we group together intrinsics
374// by textual equivalence of the code that would result if _all_ those
375// parameters were stored in local variables. That gives us maximal sets that
376// can be implemented by a single piece of IR-building code by changing
377// parameter values ahead of time.
378//
379// After we've done that, we do a second pass in which we only allocate _some_
380// of the parameters into local variables, by tracking which ones have the same
381// values as each other (so that a single variable can be reused) and which
382// ones are the same across the whole set (so that no variable is needed at
383// all).
384//
385// Hence the class below. Its allocParam method is invoked during code
386// generation by every method of a Result subclass (see below) that wants to
387// give it the opportunity to pull something out into a switchable parameter.
388// It returns a variable name for the parameter, or (if it's being used in the
389// second pass once we've decided that some parameters don't need to be stored
390// in variables after all) it might just return the input expression unchanged.
391
392struct CodeGenParamAllocator {
393  // Accumulated during code generation
394  std::vector<std::string> *ParamTypes = nullptr;
395  std::vector<std::string> *ParamValues = nullptr;
396
397  // Provided ahead of time in pass 2, to indicate which parameters are being
398  // assigned to what. This vector contains an entry for each call to
399  // allocParam expected during code gen (which we counted up in pass 1), and
400  // indicates the number of the parameter variable that should be returned, or
401  // -1 if this call shouldn't allocate a parameter variable at all.
402  //
403  // We rely on the recursive code generation working identically in passes 1
404  // and 2, so that the same list of calls to allocParam happen in the same
405  // order. That guarantees that the parameter numbers recorded in pass 1 will
406  // match the entries in this vector that store what MveEmitter::EmitBuiltinCG
407  // decided to do about each one in pass 2.
408  std::vector<int> *ParamNumberMap = nullptr;
409
410  // Internally track how many things we've allocated
411  unsigned nparams = 0;
412
413  std::string allocParam(StringRef Type, StringRef Value) {
414    unsigned ParamNumber;
415
416    if (!ParamNumberMap) {
417      // In pass 1, unconditionally assign a new parameter variable to every
418      // value we're asked to process.
419      ParamNumber = nparams++;
420    } else {
421      // In pass 2, consult the map provided by the caller to find out which
422      // variable we should be keeping things in.
423      int MapValue = (*ParamNumberMap)[nparams++];
424      if (MapValue < 0)
425        return Value;
426      ParamNumber = MapValue;
427    }
428
429    // If we've allocated a new parameter variable for the first time, store
430    // its type and value to be retrieved after codegen.
431    if (ParamTypes && ParamTypes->size() == ParamNumber)
432      ParamTypes->push_back(Type);
433    if (ParamValues && ParamValues->size() == ParamNumber)
434      ParamValues->push_back(Value);
435
436    // Unimaginative naming scheme for parameter variables.
437    return "Param" + utostr(ParamNumber);
438  }
439};
440
441// -----------------------------------------------------------------------------
442// System of classes that represent all the intermediate values used during
443// code-generation for an intrinsic.
444//
445// The base class 'Result' can represent a value of the LLVM type 'Value', or
446// sometimes 'Address' (for loads/stores, including an alignment requirement).
447//
448// In the case where the Tablegen provides a value in the codegen dag as a
449// plain integer literal, the Result object we construct here will be one that
450// returns true from hasIntegerConstantValue(). This allows the generated C++
451// code to use the constant directly in contexts which can take a literal
452// integer, such as Builder.CreateExtractValue(thing, 1), without going to the
453// effort of calling llvm::ConstantInt::get() and then pulling the constant
454// back out of the resulting llvm:Value later.
455
456class Result {
457public:
458  // Convenient shorthand for the pointer type we'll be using everywhere.
459  using Ptr = std::shared_ptr<Result>;
460
461private:
462  Ptr Predecessor;
463  std::string VarName;
464  bool VarNameUsed = false;
465  unsigned Visited = 0;
466
467public:
468  virtual ~Result() = default;
469  using Scope = std::map<std::string, Ptr>;
470  virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
471  virtual bool hasIntegerConstantValue() const { return false; }
472  virtual uint32_t integerConstantValue() const { return 0; }
473  virtual bool hasIntegerValue() const { return false; }
474  virtual std::string getIntegerValue(const std::string &) {
475    llvm_unreachable("non-working Result::getIntegerValue called");
476  }
477  virtual std::string typeName() const { return "Value *"; }
478
479  // Mostly, when a code-generation operation has a dependency on prior
480  // operations, it's because it uses the output values of those operations as
481  // inputs. But there's one exception, which is the use of 'seq' in Tablegen
482  // to indicate that operations have to be performed in sequence regardless of
483  // whether they use each others' output values.
484  //
485  // So, the actual generation of code is done by depth-first search, using the
486  // prerequisites() method to get a list of all the other Results that have to
487  // be computed before this one. That method divides into the 'predecessor',
488  // set by setPredecessor() while processing a 'seq' dag node, and the list
489  // returned by 'morePrerequisites', which each subclass implements to return
490  // a list of the Results it uses as input to whatever its own computation is
491  // doing.
492
493  virtual void morePrerequisites(std::vector<Ptr> &output) const {}
494  std::vector<Ptr> prerequisites() const {
495    std::vector<Ptr> ToRet;
496    if (Predecessor)
497      ToRet.push_back(Predecessor);
498    morePrerequisites(ToRet);
499    return ToRet;
500  }
501
502  void setPredecessor(Ptr p) {
503    assert(!Predecessor);
504    Predecessor = p;
505  }
506
507  // Each Result will be assigned a variable name in the output code, but not
508  // all those variable names will actually be used (e.g. the return value of
509  // Builder.CreateStore has void type, so nobody will want to refer to it). To
510  // prevent annoying compiler warnings, we track whether each Result's
511  // variable name was ever actually mentioned in subsequent statements, so
512  // that it can be left out of the final generated code.
513  std::string varname() {
514    VarNameUsed = true;
515    return VarName;
516  }
517  void setVarname(const StringRef s) { VarName = s; }
518  bool varnameUsed() const { return VarNameUsed; }
519
520  // Emit code to generate this result as a Value *.
521  virtual std::string asValue() {
522    return varname();
523  }
524
525  // Code generation happens in multiple passes. This method tracks whether a
526  // Result has yet been visited in a given pass, without the need for a
527  // tedious loop in between passes that goes through and resets a 'visited'
528  // flag back to false: you just set Pass=1 the first time round, and Pass=2
529  // the second time.
530  bool needsVisiting(unsigned Pass) {
531    bool ToRet = Visited < Pass;
532    Visited = Pass;
533    return ToRet;
534  }
535};
536
537// Result subclass that retrieves one of the arguments to the clang builtin
538// function. In cases where the argument has pointer type, we call
539// EmitPointerWithAlignment and store the result in a variable of type Address,
540// so that load and store IR nodes can know the right alignment. Otherwise, we
541// call EmitScalarExpr.
542//
543// There are aggregate parameters in the MVE intrinsics API, but we don't deal
544// with them in this Tablegen back end: they only arise in the vld2q/vld4q and
545// vst2q/vst4q family, which is few enough that we just write the code by hand
546// for those in CGBuiltin.cpp.
547class BuiltinArgResult : public Result {
548public:
549  unsigned ArgNum;
550  bool AddressType;
551  bool Immediate;
552  BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
553      : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
554  void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
555    OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
556       << "(E->getArg(" << ArgNum << "))";
557  }
558  std::string typeName() const override {
559    return AddressType ? "Address" : Result::typeName();
560  }
561  // Emit code to generate this result as a Value *.
562  std::string asValue() override {
563    if (AddressType)
564      return "(" + varname() + ".getPointer())";
565    return Result::asValue();
566  }
567  bool hasIntegerValue() const override { return Immediate; }
568  std::string getIntegerValue(const std::string &IntType) override {
569    return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
570           utostr(ArgNum) + "), getContext())";
571  }
572};
573
574// Result subclass for an integer literal appearing in Tablegen. This may need
575// to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
576// it may be used directly as an integer, depending on which IRBuilder method
577// it's being passed to.
578class IntLiteralResult : public Result {
579public:
580  const ScalarType *IntegerType;
581  uint32_t IntegerValue;
582  IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
583      : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
584  void genCode(raw_ostream &OS,
585               CodeGenParamAllocator &ParamAlloc) const override {
586    OS << "llvm::ConstantInt::get("
587       << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
588       << ", ";
589    OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
590       << ")";
591  }
592  bool hasIntegerConstantValue() const override { return true; }
593  uint32_t integerConstantValue() const override { return IntegerValue; }
594};
595
596// Result subclass representing a cast between different integer types. We use
597// our own ScalarType abstraction as the representation of the target type,
598// which gives both size and signedness.
599class IntCastResult : public Result {
600public:
601  const ScalarType *IntegerType;
602  Ptr V;
603  IntCastResult(const ScalarType *IntegerType, Ptr V)
604      : IntegerType(IntegerType), V(V) {}
605  void genCode(raw_ostream &OS,
606               CodeGenParamAllocator &ParamAlloc) const override {
607    OS << "Builder.CreateIntCast(" << V->varname() << ", "
608       << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
609       << ParamAlloc.allocParam("bool",
610                                IntegerType->kind() == ScalarTypeKind::SignedInt
611                                    ? "true"
612                                    : "false")
613       << ")";
614  }
615  void morePrerequisites(std::vector<Ptr> &output) const override {
616    output.push_back(V);
617  }
618};
619
620// Result subclass representing a cast between different pointer types.
621class PointerCastResult : public Result {
622public:
623  const PointerType *PtrType;
624  Ptr V;
625  PointerCastResult(const PointerType *PtrType, Ptr V)
626      : PtrType(PtrType), V(V) {}
627  void genCode(raw_ostream &OS,
628               CodeGenParamAllocator &ParamAlloc) const override {
629    OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
630       << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")";
631  }
632  void morePrerequisites(std::vector<Ptr> &output) const override {
633    output.push_back(V);
634  }
635};
636
637// Result subclass representing a call to an IRBuilder method. Each IRBuilder
638// method we want to use will have a Tablegen record giving the method name and
639// describing any important details of how to call it, such as whether a
640// particular argument should be an integer constant instead of an llvm::Value.
641class IRBuilderResult : public Result {
642public:
643  StringRef CallPrefix;
644  std::vector<Ptr> Args;
645  std::set<unsigned> AddressArgs;
646  std::map<unsigned, std::string> IntegerArgs;
647  IRBuilderResult(StringRef CallPrefix, std::vector<Ptr> Args,
648                  std::set<unsigned> AddressArgs,
649                  std::map<unsigned, std::string> IntegerArgs)
650      : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
651        IntegerArgs(IntegerArgs) {}
652  void genCode(raw_ostream &OS,
653               CodeGenParamAllocator &ParamAlloc) const override {
654    OS << CallPrefix;
655    const char *Sep = "";
656    for (unsigned i = 0, e = Args.size(); i < e; ++i) {
657      Ptr Arg = Args[i];
658      auto it = IntegerArgs.find(i);
659
660      OS << Sep;
661      Sep = ", ";
662
663      if (it != IntegerArgs.end()) {
664        if (Arg->hasIntegerConstantValue())
665          OS << "static_cast<" << it->second << ">("
666             << ParamAlloc.allocParam(it->second,
667                                      utostr(Arg->integerConstantValue()))
668             << ")";
669        else if (Arg->hasIntegerValue())
670          OS << ParamAlloc.allocParam(it->second,
671                                      Arg->getIntegerValue(it->second));
672      } else {
673        OS << Arg->varname();
674      }
675    }
676    OS << ")";
677  }
678  void morePrerequisites(std::vector<Ptr> &output) const override {
679    for (unsigned i = 0, e = Args.size(); i < e; ++i) {
680      Ptr Arg = Args[i];
681      if (IntegerArgs.find(i) != IntegerArgs.end())
682        continue;
683      output.push_back(Arg);
684    }
685  }
686};
687
688// Result subclass representing making an Address out of a Value.
689class AddressResult : public Result {
690public:
691  Ptr Arg;
692  unsigned Align;
693  AddressResult(Ptr Arg, unsigned Align) : Arg(Arg), Align(Align) {}
694  void genCode(raw_ostream &OS,
695               CodeGenParamAllocator &ParamAlloc) const override {
696    OS << "Address(" << Arg->varname() << ", CharUnits::fromQuantity("
697       << Align << "))";
698  }
699  std::string typeName() const override {
700    return "Address";
701  }
702  void morePrerequisites(std::vector<Ptr> &output) const override {
703    output.push_back(Arg);
704  }
705};
706
707// Result subclass representing a call to an IR intrinsic, which we first have
708// to look up using an Intrinsic::ID constant and an array of types.
709class IRIntrinsicResult : public Result {
710public:
711  std::string IntrinsicID;
712  std::vector<const Type *> ParamTypes;
713  std::vector<Ptr> Args;
714  IRIntrinsicResult(StringRef IntrinsicID, std::vector<const Type *> ParamTypes,
715                    std::vector<Ptr> Args)
716      : IntrinsicID(IntrinsicID), ParamTypes(ParamTypes), Args(Args) {}
717  void genCode(raw_ostream &OS,
718               CodeGenParamAllocator &ParamAlloc) const override {
719    std::string IntNo = ParamAlloc.allocParam(
720        "Intrinsic::ID", "Intrinsic::" + IntrinsicID);
721    OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
722    if (!ParamTypes.empty()) {
723      OS << ", llvm::SmallVector<llvm::Type *, " << ParamTypes.size() << "> {";
724      const char *Sep = "";
725      for (auto T : ParamTypes) {
726        OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
727        Sep = ", ";
728      }
729      OS << "}";
730    }
731    OS << "), llvm::SmallVector<Value *, " << Args.size() << "> {";
732    const char *Sep = "";
733    for (auto Arg : Args) {
734      OS << Sep << Arg->asValue();
735      Sep = ", ";
736    }
737    OS << "})";
738  }
739  void morePrerequisites(std::vector<Ptr> &output) const override {
740    output.insert(output.end(), Args.begin(), Args.end());
741  }
742};
743
744// Result subclass that specifies a type, for use in IRBuilder operations such
745// as CreateBitCast that take a type argument.
746class TypeResult : public Result {
747public:
748  const Type *T;
749  TypeResult(const Type *T) : T(T) {}
750  void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
751    OS << T->llvmName();
752  }
753  std::string typeName() const override {
754    return "llvm::Type *";
755  }
756};
757
758// -----------------------------------------------------------------------------
759// Class that describes a single ACLE intrinsic.
760//
761// A Tablegen record will typically describe more than one ACLE intrinsic, by
762// means of setting the 'list<Type> Params' field to a list of multiple
763// parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
764// We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
765// rather than a single one for all of them. Hence, the constructor takes both
766// a Tablegen record and the current value of the parameter type.
767
768class ACLEIntrinsic {
769  // Structure documenting that one of the intrinsic's arguments is required to
770  // be a compile-time constant integer, and what constraints there are on its
771  // value. Used when generating Sema checking code.
772  struct ImmediateArg {
773    enum class BoundsType { ExplicitRange, UInt };
774    BoundsType boundsType;
775    int64_t i1, i2;
776    StringRef ExtraCheckType, ExtraCheckArgs;
777    const Type *ArgType;
778  };
779
780  // For polymorphic intrinsics, FullName is the explicit name that uniquely
781  // identifies this variant of the intrinsic, and ShortName is the name it
782  // shares with at least one other intrinsic.
783  std::string ShortName, FullName;
784
785  // A very small number of intrinsics _only_ have a polymorphic
786  // variant (vuninitializedq taking an unevaluated argument).
787  bool PolymorphicOnly;
788
789  // Another rarely-used flag indicating that the builtin doesn't
790  // evaluate its argument(s) at all.
791  bool NonEvaluating;
792
793  const Type *ReturnType;
794  std::vector<const Type *> ArgTypes;
795  std::map<unsigned, ImmediateArg> ImmediateArgs;
796  Result::Ptr Code;
797
798  std::map<std::string, std::string> CustomCodeGenArgs;
799
800  // Recursive function that does the internals of code generation.
801  void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
802                  unsigned Pass) const {
803    if (!V->needsVisiting(Pass))
804      return;
805
806    for (Result::Ptr W : V->prerequisites())
807      genCodeDfs(W, Used, Pass);
808
809    Used.push_back(V);
810  }
811
812public:
813  const std::string &shortName() const { return ShortName; }
814  const std::string &fullName() const { return FullName; }
815  const Type *returnType() const { return ReturnType; }
816  const std::vector<const Type *> &argTypes() const { return ArgTypes; }
817  bool requiresFloat() const {
818    if (ReturnType->requiresFloat())
819      return true;
820    for (const Type *T : ArgTypes)
821      if (T->requiresFloat())
822        return true;
823    return false;
824  }
825  bool polymorphic() const { return ShortName != FullName; }
826  bool polymorphicOnly() const { return PolymorphicOnly; }
827  bool nonEvaluating() const { return NonEvaluating; }
828
829  // External entry point for code generation, called from MveEmitter.
830  void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
831               unsigned Pass) const {
832    if (!hasCode()) {
833      for (auto kv : CustomCodeGenArgs)
834        OS << "  " << kv.first << " = " << kv.second << ";\n";
835      OS << "  break; // custom code gen\n";
836      return;
837    }
838    std::list<Result::Ptr> Used;
839    genCodeDfs(Code, Used, Pass);
840
841    unsigned varindex = 0;
842    for (Result::Ptr V : Used)
843      if (V->varnameUsed())
844        V->setVarname("Val" + utostr(varindex++));
845
846    for (Result::Ptr V : Used) {
847      OS << "  ";
848      if (V == Used.back()) {
849        assert(!V->varnameUsed());
850        OS << "return "; // FIXME: what if the top-level thing is void?
851      } else if (V->varnameUsed()) {
852        std::string Type = V->typeName();
853        OS << V->typeName();
854        if (!StringRef(Type).endswith("*"))
855          OS << " ";
856        OS << V->varname() << " = ";
857      }
858      V->genCode(OS, ParamAlloc);
859      OS << ";\n";
860    }
861  }
862  bool hasCode() const { return Code != nullptr; }
863
864  static std::string signedHexLiteral(const llvm::APInt &iOrig) {
865    llvm::APInt i = iOrig.trunc(64);
866    SmallString<40> s;
867    i.toString(s, 16, true, true);
868    return s.str();
869  }
870
871  std::string genSema() const {
872    std::vector<std::string> SemaChecks;
873
874    for (const auto &kv : ImmediateArgs) {
875      const ImmediateArg &IA = kv.second;
876
877      llvm::APInt lo(128, 0), hi(128, 0);
878      switch (IA.boundsType) {
879      case ImmediateArg::BoundsType::ExplicitRange:
880        lo = IA.i1;
881        hi = IA.i2;
882        break;
883      case ImmediateArg::BoundsType::UInt:
884        lo = 0;
885        hi = IA.i1;
886        break;
887      }
888
889      llvm::APInt typelo, typehi;
890      unsigned Bits = IA.ArgType->sizeInBits();
891      if (cast<ScalarType>(IA.ArgType)->kind() == ScalarTypeKind::SignedInt) {
892        typelo = llvm::APInt::getSignedMinValue(Bits).sext(128);
893        typehi = llvm::APInt::getSignedMaxValue(Bits).sext(128);
894      } else {
895        typelo = llvm::APInt::getMinValue(Bits).zext(128);
896        typehi = llvm::APInt::getMaxValue(Bits).zext(128);
897      }
898
899      std::string Index = utostr(kv.first);
900
901      if (lo.sle(typelo) && hi.sge(typehi))
902        SemaChecks.push_back("SemaBuiltinConstantArg(TheCall, " + Index + ")");
903      else
904        SemaChecks.push_back("SemaBuiltinConstantArgRange(TheCall, " + Index +
905                             ", " + signedHexLiteral(lo) + ", " +
906                             signedHexLiteral(hi) + ")");
907
908      if (!IA.ExtraCheckType.empty()) {
909        std::string Suffix;
910        if (!IA.ExtraCheckArgs.empty())
911          Suffix = (Twine(", ") + IA.ExtraCheckArgs).str();
912        SemaChecks.push_back((Twine("SemaBuiltinConstantArg") +
913                              IA.ExtraCheckType + "(TheCall, " + Index +
914                              Suffix + ")")
915                                 .str());
916      }
917    }
918    if (SemaChecks.empty())
919      return "";
920    return (Twine("  return ") +
921            join(std::begin(SemaChecks), std::end(SemaChecks),
922                 " ||\n         ") +
923            ";\n")
924        .str();
925  }
926
927  ACLEIntrinsic(MveEmitter &ME, Record *R, const Type *Param);
928};
929
930// -----------------------------------------------------------------------------
931// The top-level class that holds all the state from analyzing the entire
932// Tablegen input.
933
934class MveEmitter {
935  // MveEmitter holds a collection of all the types we've instantiated.
936  VoidType Void;
937  std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
938  std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
939           std::unique_ptr<VectorType>>
940      VectorTypes;
941  std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
942      MultiVectorTypes;
943  std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
944  std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;
945
946  // And all the ACLEIntrinsic instances we've created.
947  std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;
948
949public:
950  // Methods to create a Type object, or return the right existing one from the
951  // maps stored in this object.
952  const VoidType *getVoidType() { return &Void; }
953  const ScalarType *getScalarType(StringRef Name) {
954    return ScalarTypes[Name].get();
955  }
956  const ScalarType *getScalarType(Record *R) {
957    return getScalarType(R->getName());
958  }
959  const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
960    std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
961                                                       ST->sizeInBits(), Lanes);
962    if (VectorTypes.find(key) == VectorTypes.end())
963      VectorTypes[key] = std::make_unique<VectorType>(ST, Lanes);
964    return VectorTypes[key].get();
965  }
966  const VectorType *getVectorType(const ScalarType *ST) {
967    return getVectorType(ST, 128 / ST->sizeInBits());
968  }
969  const MultiVectorType *getMultiVectorType(unsigned Registers,
970                                            const VectorType *VT) {
971    std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
972    if (MultiVectorTypes.find(key) == MultiVectorTypes.end())
973      MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT);
974    return MultiVectorTypes[key].get();
975  }
976  const PredicateType *getPredicateType(unsigned Lanes) {
977    unsigned key = Lanes;
978    if (PredicateTypes.find(key) == PredicateTypes.end())
979      PredicateTypes[key] = std::make_unique<PredicateType>(Lanes);
980    return PredicateTypes[key].get();
981  }
982  const PointerType *getPointerType(const Type *T, bool Const) {
983    PointerType PT(T, Const);
984    std::string key = PT.cName();
985    if (PointerTypes.find(key) == PointerTypes.end())
986      PointerTypes[key] = std::make_unique<PointerType>(PT);
987    return PointerTypes[key].get();
988  }
989
990  // Methods to construct a type from various pieces of Tablegen. These are
991  // always called in the context of setting up a particular ACLEIntrinsic, so
992  // there's always an ambient parameter type (because we're iterating through
993  // the Params list in the Tablegen record for the intrinsic), which is used
994  // to expand Tablegen classes like 'Vector' which mean something different in
995  // each member of a parametric family.
996  const Type *getType(Record *R, const Type *Param);
997  const Type *getType(DagInit *D, const Type *Param);
998  const Type *getType(Init *I, const Type *Param);
999
1000  // Functions that translate the Tablegen representation of an intrinsic's
1001  // code generation into a collection of Value objects (which will then be
1002  // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
1003  Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope,
1004                            const Type *Param);
1005  Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum,
1006                               const Result::Scope &Scope, const Type *Param);
1007  Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
1008                            bool Immediate);
1009
1010  // Constructor and top-level functions.
1011
1012  MveEmitter(RecordKeeper &Records);
1013
1014  void EmitHeader(raw_ostream &OS);
1015  void EmitBuiltinDef(raw_ostream &OS);
1016  void EmitBuiltinSema(raw_ostream &OS);
1017  void EmitBuiltinCG(raw_ostream &OS);
1018  void EmitBuiltinAliases(raw_ostream &OS);
1019};
1020
1021const Type *MveEmitter::getType(Init *I, const Type *Param) {
1022  if (auto Dag = dyn_cast<DagInit>(I))
1023    return getType(Dag, Param);
1024  if (auto Def = dyn_cast<DefInit>(I))
1025    return getType(Def->getDef(), Param);
1026
1027  PrintFatalError("Could not convert this value into a type");
1028}
1029
1030const Type *MveEmitter::getType(Record *R, const Type *Param) {
1031  // Pass to a subfield of any wrapper records. We don't expect more than one
1032  // of these: immediate operands are used as plain numbers rather than as
1033  // llvm::Value, so it's meaningless to promote their type anyway.
1034  if (R->isSubClassOf("Immediate"))
1035    R = R->getValueAsDef("type");
1036  else if (R->isSubClassOf("unpromoted"))
1037    R = R->getValueAsDef("underlying_type");
1038
1039  if (R->getName() == "Void")
1040    return getVoidType();
1041  if (R->isSubClassOf("PrimitiveType"))
1042    return getScalarType(R);
1043  if (R->isSubClassOf("ComplexType"))
1044    return getType(R->getValueAsDag("spec"), Param);
1045
1046  PrintFatalError(R->getLoc(), "Could not convert this record into a type");
1047}
1048
1049const Type *MveEmitter::getType(DagInit *D, const Type *Param) {
1050  // The meat of the getType system: types in the Tablegen are represented by a
1051  // dag whose operators select sub-cases of this function.
1052
1053  Record *Op = cast<DefInit>(D->getOperator())->getDef();
1054  if (!Op->isSubClassOf("ComplexTypeOp"))
1055    PrintFatalError(
1056        "Expected ComplexTypeOp as dag operator in type expression");
1057
1058  if (Op->getName() == "CTO_Parameter") {
1059    if (isa<VoidType>(Param))
1060      PrintFatalError("Parametric type in unparametrised context");
1061    return Param;
1062  }
1063
1064  if (Op->getName() == "CTO_Vec") {
1065    const Type *Element = getType(D->getArg(0), Param);
1066    if (D->getNumArgs() == 1) {
1067      return getVectorType(cast<ScalarType>(Element));
1068    } else {
1069      const Type *ExistingVector = getType(D->getArg(1), Param);
1070      return getVectorType(cast<ScalarType>(Element),
1071                           cast<VectorType>(ExistingVector)->lanes());
1072    }
1073  }
1074
1075  if (Op->getName() == "CTO_Pred") {
1076    const Type *Element = getType(D->getArg(0), Param);
1077    return getPredicateType(128 / Element->sizeInBits());
1078  }
1079
1080  if (Op->isSubClassOf("CTO_Tuple")) {
1081    unsigned Registers = Op->getValueAsInt("n");
1082    const Type *Element = getType(D->getArg(0), Param);
1083    return getMultiVectorType(Registers, cast<VectorType>(Element));
1084  }
1085
1086  if (Op->isSubClassOf("CTO_Pointer")) {
1087    const Type *Pointee = getType(D->getArg(0), Param);
1088    return getPointerType(Pointee, Op->getValueAsBit("const"));
1089  }
1090
1091  if (Op->getName() == "CTO_CopyKind") {
1092    const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param));
1093    const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param));
1094    for (const auto &kv : ScalarTypes) {
1095      const ScalarType *RT = kv.second.get();
1096      if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
1097        return RT;
1098    }
1099    PrintFatalError("Cannot find a type to satisfy CopyKind");
1100  }
1101
1102  if (Op->isSubClassOf("CTO_ScaleSize")) {
1103    const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param));
1104    int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom");
1105    unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
1106    for (const auto &kv : ScalarTypes) {
1107      const ScalarType *RT = kv.second.get();
1108      if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
1109        return RT;
1110    }
1111    PrintFatalError("Cannot find a type to satisfy ScaleSize");
1112  }
1113
1114  PrintFatalError("Bad operator in type dag expression");
1115}
1116
1117Result::Ptr MveEmitter::getCodeForDag(DagInit *D, const Result::Scope &Scope,
1118                                      const Type *Param) {
1119  Record *Op = cast<DefInit>(D->getOperator())->getDef();
1120
1121  if (Op->getName() == "seq") {
1122    Result::Scope SubScope = Scope;
1123    Result::Ptr PrevV = nullptr;
1124    for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
1125      // We don't use getCodeForDagArg here, because the argument name
1126      // has different semantics in a seq
1127      Result::Ptr V =
1128          getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
1129      StringRef ArgName = D->getArgNameStr(i);
1130      if (!ArgName.empty())
1131        SubScope[ArgName] = V;
1132      if (PrevV)
1133        V->setPredecessor(PrevV);
1134      PrevV = V;
1135    }
1136    return PrevV;
1137  } else if (Op->isSubClassOf("Type")) {
1138    if (D->getNumArgs() != 1)
1139      PrintFatalError("Type casts should have exactly one argument");
1140    const Type *CastType = getType(Op, Param);
1141    Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1142    if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
1143      if (!ST->requiresFloat()) {
1144        if (Arg->hasIntegerConstantValue())
1145          return std::make_shared<IntLiteralResult>(
1146              ST, Arg->integerConstantValue());
1147        else
1148          return std::make_shared<IntCastResult>(ST, Arg);
1149      }
1150    } else if (const auto *PT = dyn_cast<PointerType>(CastType)) {
1151      return std::make_shared<PointerCastResult>(PT, Arg);
1152    }
1153    PrintFatalError("Unsupported type cast");
1154  } else if (Op->getName() == "address") {
1155    if (D->getNumArgs() != 2)
1156      PrintFatalError("'address' should have two arguments");
1157    Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1158    unsigned Alignment;
1159    if (auto *II = dyn_cast<IntInit>(D->getArg(1))) {
1160      Alignment = II->getValue();
1161    } else {
1162      PrintFatalError("'address' alignment argument should be an integer");
1163    }
1164    return std::make_shared<AddressResult>(Arg, Alignment);
1165  } else if (Op->getName() == "unsignedflag") {
1166    if (D->getNumArgs() != 1)
1167      PrintFatalError("unsignedflag should have exactly one argument");
1168    Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1169    if (!TypeRec->isSubClassOf("Type"))
1170      PrintFatalError("unsignedflag's argument should be a type");
1171    if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1172      return std::make_shared<IntLiteralResult>(
1173        getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt);
1174    } else {
1175      PrintFatalError("unsignedflag's argument should be a scalar type");
1176    }
1177  } else {
1178    std::vector<Result::Ptr> Args;
1179    for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
1180      Args.push_back(getCodeForDagArg(D, i, Scope, Param));
1181    if (Op->isSubClassOf("IRBuilderBase")) {
1182      std::set<unsigned> AddressArgs;
1183      std::map<unsigned, std::string> IntegerArgs;
1184      for (Record *sp : Op->getValueAsListOfDefs("special_params")) {
1185        unsigned Index = sp->getValueAsInt("index");
1186        if (sp->isSubClassOf("IRBuilderAddrParam")) {
1187          AddressArgs.insert(Index);
1188        } else if (sp->isSubClassOf("IRBuilderIntParam")) {
1189          IntegerArgs[Index] = sp->getValueAsString("type");
1190        }
1191      }
1192      return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"),
1193                                               Args, AddressArgs, IntegerArgs);
1194    } else if (Op->isSubClassOf("IRIntBase")) {
1195      std::vector<const Type *> ParamTypes;
1196      for (Record *RParam : Op->getValueAsListOfDefs("params"))
1197        ParamTypes.push_back(getType(RParam, Param));
1198      std::string IntName = Op->getValueAsString("intname");
1199      if (Op->getValueAsBit("appendKind"))
1200        IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
1201      return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
1202    } else {
1203      PrintFatalError("Unsupported dag node " + Op->getName());
1204    }
1205  }
1206}
1207
1208Result::Ptr MveEmitter::getCodeForDagArg(DagInit *D, unsigned ArgNum,
1209                                         const Result::Scope &Scope,
1210                                         const Type *Param) {
1211  Init *Arg = D->getArg(ArgNum);
1212  StringRef Name = D->getArgNameStr(ArgNum);
1213
1214  if (!Name.empty()) {
1215    if (!isa<UnsetInit>(Arg))
1216      PrintFatalError(
1217          "dag operator argument should not have both a value and a name");
1218    auto it = Scope.find(Name);
1219    if (it == Scope.end())
1220      PrintFatalError("unrecognized variable name '" + Name + "'");
1221    return it->second;
1222  }
1223
1224  if (auto *II = dyn_cast<IntInit>(Arg))
1225    return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1226                                              II->getValue());
1227
1228  if (auto *DI = dyn_cast<DagInit>(Arg))
1229    return getCodeForDag(DI, Scope, Param);
1230
1231  if (auto *DI = dyn_cast<DefInit>(Arg)) {
1232    Record *Rec = DI->getDef();
1233    if (Rec->isSubClassOf("Type")) {
1234      const Type *T = getType(Rec, Param);
1235      return std::make_shared<TypeResult>(T);
1236    }
1237  }
1238
1239  PrintFatalError("bad dag argument type for code generation");
1240}
1241
1242Result::Ptr MveEmitter::getCodeForArg(unsigned ArgNum, const Type *ArgType,
1243                                      bool Promote, bool Immediate) {
1244  Result::Ptr V = std::make_shared<BuiltinArgResult>(
1245      ArgNum, isa<PointerType>(ArgType), Immediate);
1246
1247  if (Promote) {
1248    if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
1249      if (ST->isInteger() && ST->sizeInBits() < 32)
1250        V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1251    } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
1252      V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1253      V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v",
1254                                              std::vector<const Type *>{PT},
1255                                              std::vector<Result::Ptr>{V});
1256    }
1257  }
1258
1259  return V;
1260}
1261
1262ACLEIntrinsic::ACLEIntrinsic(MveEmitter &ME, Record *R, const Type *Param)
1263    : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
1264  // Derive the intrinsic's full name, by taking the name of the
1265  // Tablegen record (or override) and appending the suffix from its
1266  // parameter type. (If the intrinsic is unparametrised, its
1267  // parameter type will be given as Void, which returns the empty
1268  // string for acleSuffix.)
1269  StringRef BaseName =
1270      (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
1271                                       : R->getName());
1272  StringRef overrideLetter = R->getValueAsString("overrideKindLetter");
1273  FullName = (Twine(BaseName) + Param->acleSuffix(overrideLetter)).str();
1274
1275  // Derive the intrinsic's polymorphic name, by removing components from the
1276  // full name as specified by its 'pnt' member ('polymorphic name type'),
1277  // which indicates how many type suffixes to remove, and any other piece of
1278  // the name that should be removed.
1279  Record *PolymorphicNameType = R->getValueAsDef("pnt");
1280  SmallVector<StringRef, 8> NameParts;
1281  StringRef(FullName).split(NameParts, '_');
1282  for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
1283                           "NumTypeSuffixesToDiscard");
1284       i < e; ++i)
1285    NameParts.pop_back();
1286  if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
1287    StringRef ExtraSuffix =
1288        PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
1289    auto it = NameParts.end();
1290    while (it != NameParts.begin()) {
1291      --it;
1292      if (*it == ExtraSuffix) {
1293        NameParts.erase(it);
1294        break;
1295      }
1296    }
1297  }
1298  ShortName = join(std::begin(NameParts), std::end(NameParts), "_");
1299
1300  PolymorphicOnly = R->getValueAsBit("polymorphicOnly");
1301  NonEvaluating = R->getValueAsBit("nonEvaluating");
1302
1303  // Process the intrinsic's argument list.
1304  DagInit *ArgsDag = R->getValueAsDag("args");
1305  Result::Scope Scope;
1306  for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
1307    Init *TypeInit = ArgsDag->getArg(i);
1308
1309    bool Promote = true;
1310    if (auto TypeDI = dyn_cast<DefInit>(TypeInit))
1311      if (TypeDI->getDef()->isSubClassOf("unpromoted"))
1312        Promote = false;
1313
1314    // Work out the type of the argument, for use in the function prototype in
1315    // the header file.
1316    const Type *ArgType = ME.getType(TypeInit, Param);
1317    ArgTypes.push_back(ArgType);
1318
1319    // If the argument is a subclass of Immediate, record the details about
1320    // what values it can take, for Sema checking.
1321    bool Immediate = false;
1322    if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) {
1323      Record *TypeRec = TypeDI->getDef();
1324      if (TypeRec->isSubClassOf("Immediate")) {
1325        Immediate = true;
1326
1327        Record *Bounds = TypeRec->getValueAsDef("bounds");
1328        ImmediateArg &IA = ImmediateArgs[i];
1329        if (Bounds->isSubClassOf("IB_ConstRange")) {
1330          IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1331          IA.i1 = Bounds->getValueAsInt("lo");
1332          IA.i2 = Bounds->getValueAsInt("hi");
1333        } else if (Bounds->getName() == "IB_UEltValue") {
1334          IA.boundsType = ImmediateArg::BoundsType::UInt;
1335          IA.i1 = Param->sizeInBits();
1336        } else if (Bounds->getName() == "IB_LaneIndex") {
1337          IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1338          IA.i1 = 0;
1339          IA.i2 = 128 / Param->sizeInBits() - 1;
1340        } else if (Bounds->isSubClassOf("IB_EltBit")) {
1341          IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1342          IA.i1 = Bounds->getValueAsInt("base");
1343          const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param);
1344          IA.i2 = IA.i1 + T->sizeInBits() - 1;
1345        } else {
1346          PrintFatalError("unrecognised ImmediateBounds subclass");
1347        }
1348
1349        IA.ArgType = ArgType;
1350
1351        if (!TypeRec->isValueUnset("extra")) {
1352          IA.ExtraCheckType = TypeRec->getValueAsString("extra");
1353          if (!TypeRec->isValueUnset("extraarg"))
1354            IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
1355        }
1356      }
1357    }
1358
1359    // The argument will usually have a name in the arguments dag, which goes
1360    // into the variable-name scope that the code gen will refer to.
1361    StringRef ArgName = ArgsDag->getArgNameStr(i);
1362    if (!ArgName.empty())
1363      Scope[ArgName] = ME.getCodeForArg(i, ArgType, Promote, Immediate);
1364  }
1365
1366  // Finally, go through the codegen dag and translate it into a Result object
1367  // (with an arbitrary DAG of depended-on Results hanging off it).
1368  DagInit *CodeDag = R->getValueAsDag("codegen");
1369  Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
1370  if (MainOp->isSubClassOf("CustomCodegen")) {
1371    // Or, if it's the special case of CustomCodegen, just accumulate
1372    // a list of parameters we're going to assign to variables before
1373    // breaking from the loop.
1374    CustomCodeGenArgs["CustomCodeGenType"] =
1375        (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
1376    for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
1377      StringRef Name = CodeDag->getArgNameStr(i);
1378      if (Name.empty()) {
1379        PrintFatalError("Operands to CustomCodegen should have names");
1380      } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
1381        CustomCodeGenArgs[Name] = itostr(II->getValue());
1382      } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
1383        CustomCodeGenArgs[Name] = SI->getValue();
1384      } else {
1385        PrintFatalError("Operands to CustomCodegen should be integers");
1386      }
1387    }
1388  } else {
1389    Code = ME.getCodeForDag(CodeDag, Scope, Param);
1390  }
1391}
1392
1393MveEmitter::MveEmitter(RecordKeeper &Records) {
1394  // Construct the whole MveEmitter.
1395
1396  // First, look up all the instances of PrimitiveType. This gives us the list
1397  // of vector typedefs we have to put in arm_mve.h, and also allows us to
1398  // collect all the useful ScalarType instances into a big list so that we can
1399  // use it for operations such as 'find the unsigned version of this signed
1400  // integer type'.
1401  for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
1402    ScalarTypes[R->getName()] = std::make_unique<ScalarType>(R);
1403
1404  // Now go through the instances of Intrinsic, and for each one, iterate
1405  // through its list of type parameters making an ACLEIntrinsic for each one.
1406  for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
1407    for (Record *RParam : R->getValueAsListOfDefs("params")) {
1408      const Type *Param = getType(RParam, getVoidType());
1409      auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
1410      ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
1411    }
1412  }
1413}
1414
1415/// A wrapper on raw_string_ostream that contains its own buffer rather than
1416/// having to point it at one elsewhere. (In other words, it works just like
1417/// std::ostringstream; also, this makes it convenient to declare a whole array
1418/// of them at once.)
1419///
1420/// We have to set this up using multiple inheritance, to ensure that the
1421/// string member has been constructed before raw_string_ostream's constructor
1422/// is given a pointer to it.
1423class string_holder {
1424protected:
1425  std::string S;
1426};
1427class raw_self_contained_string_ostream : private string_holder,
1428                                          public raw_string_ostream {
1429public:
1430  raw_self_contained_string_ostream()
1431      : string_holder(), raw_string_ostream(S) {}
1432};
1433
1434void MveEmitter::EmitHeader(raw_ostream &OS) {
1435  // Accumulate pieces of the header file that will be enabled under various
1436  // different combinations of #ifdef. The index into parts[] is made up of
1437  // the following bit flags.
1438  constexpr unsigned Float = 1;
1439  constexpr unsigned UseUserNamespace = 2;
1440
1441  constexpr unsigned NumParts = 4;
1442  raw_self_contained_string_ostream parts[NumParts];
1443
1444  // Write typedefs for all the required vector types, and a few scalar
1445  // types that don't already have the name we want them to have.
1446
1447  parts[0] << "typedef uint16_t mve_pred16_t;\n";
1448  parts[Float] << "typedef __fp16 float16_t;\n"
1449                  "typedef float float32_t;\n";
1450  for (const auto &kv : ScalarTypes) {
1451    const ScalarType *ST = kv.second.get();
1452    if (ST->hasNonstandardName())
1453      continue;
1454    raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
1455    const VectorType *VT = getVectorType(ST);
1456
1457    OS << "typedef __attribute__((neon_vector_type(" << VT->lanes() << "))) "
1458       << ST->cName() << " " << VT->cName() << ";\n";
1459
1460    // Every vector type also comes with a pair of multi-vector types for
1461    // the VLD2 and VLD4 instructions.
1462    for (unsigned n = 2; n <= 4; n += 2) {
1463      const MultiVectorType *MT = getMultiVectorType(n, VT);
1464      OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
1465         << MT->cName() << ";\n";
1466    }
1467  }
1468  parts[0] << "\n";
1469  parts[Float] << "\n";
1470
1471  // Write declarations for all the intrinsics.
1472
1473  for (const auto &kv : ACLEIntrinsics) {
1474    const ACLEIntrinsic &Int = *kv.second;
1475
1476    // We generate each intrinsic twice, under its full unambiguous
1477    // name and its shorter polymorphic name (if the latter exists).
1478    for (bool Polymorphic : {false, true}) {
1479      if (Polymorphic && !Int.polymorphic())
1480        continue;
1481      if (!Polymorphic && Int.polymorphicOnly())
1482        continue;
1483
1484      // We also generate each intrinsic under a name like __arm_vfooq
1485      // (which is in C language implementation namespace, so it's
1486      // safe to define in any conforming user program) and a shorter
1487      // one like vfooq (which is in user namespace, so a user might
1488      // reasonably have used it for something already). If so, they
1489      // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
1490      // including the header, which will suppress the shorter names
1491      // and leave only the implementation-namespace ones. Then they
1492      // have to write __arm_vfooq everywhere, of course.
1493
1494      for (bool UserNamespace : {false, true}) {
1495        raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
1496                                (UserNamespace ? UseUserNamespace : 0)];
1497
1498        // Make the name of the function in this declaration.
1499
1500        std::string FunctionName =
1501            Polymorphic ? Int.shortName() : Int.fullName();
1502        if (!UserNamespace)
1503          FunctionName = "__arm_" + FunctionName;
1504
1505        // Make strings for the types involved in the function's
1506        // prototype.
1507
1508        std::string RetTypeName = Int.returnType()->cName();
1509        if (!StringRef(RetTypeName).endswith("*"))
1510          RetTypeName += " ";
1511
1512        std::vector<std::string> ArgTypeNames;
1513        for (const Type *ArgTypePtr : Int.argTypes())
1514          ArgTypeNames.push_back(ArgTypePtr->cName());
1515        std::string ArgTypesString =
1516            join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
1517
1518        // Emit the actual declaration. All these functions are
1519        // declared 'static inline' without a body, which is fine
1520        // provided clang recognizes them as builtins, and has the
1521        // effect that this type signature is used in place of the one
1522        // that Builtins.def didn't provide. That's how we can get
1523        // structure types that weren't defined until this header was
1524        // included to be part of the type signature of a builtin that
1525        // was known to clang already.
1526        //
1527        // The declarations use __attribute__(__clang_arm_mve_alias),
1528        // so that each function declared will be recognized as the
1529        // appropriate MVE builtin in spite of its user-facing name.
1530        //
1531        // (That's better than making them all wrapper functions,
1532        // partly because it avoids any compiler error message citing
1533        // the wrapper function definition instead of the user's code,
1534        // and mostly because some MVE intrinsics have arguments
1535        // required to be compile-time constants, and that property
1536        // can't be propagated through a wrapper function. It can be
1537        // propagated through a macro, but macros can't be overloaded
1538        // on argument types very easily - you have to use _Generic,
1539        // which makes error messages very confusing when the user
1540        // gets it wrong.)
1541        //
1542        // Finally, the polymorphic versions of the intrinsics are
1543        // also defined with __attribute__(overloadable), so that when
1544        // the same name is defined with several type signatures, the
1545        // right thing happens. Each one of the overloaded
1546        // declarations is given a different builtin id, which
1547        // has exactly the effect we want: first clang resolves the
1548        // overload to the right function, then it knows which builtin
1549        // it's referring to, and then the Sema checking for that
1550        // builtin can check further things like the constant
1551        // arguments.
1552        //
1553        // One more subtlety is the newline just before the return
1554        // type name. That's a cosmetic tweak to make the error
1555        // messages legible if the user gets the types wrong in a call
1556        // to a polymorphic function: this way, clang will print just
1557        // the _final_ line of each declaration in the header, to show
1558        // the type signatures that would have been legal. So all the
1559        // confusing machinery with __attribute__ is left out of the
1560        // error message, and the user sees something that's more or
1561        // less self-documenting: "here's a list of actually readable
1562        // type signatures for vfooq(), and here's why each one didn't
1563        // match your call".
1564
1565        OS << "static __inline__ __attribute__(("
1566           << (Polymorphic ? "overloadable, " : "")
1567           << "__clang_arm_mve_alias(__builtin_arm_mve_" << Int.fullName()
1568           << ")))\n"
1569           << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
1570      }
1571    }
1572  }
1573  for (auto &part : parts)
1574    part << "\n";
1575
1576  // Now we've finished accumulating bits and pieces into the parts[] array.
1577  // Put it all together to write the final output file.
1578
1579  OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
1580        "-----------------------------------===\n"
1581        " *\n"
1582        " *\n"
1583        " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
1584        "Exceptions.\n"
1585        " * See https://llvm.org/LICENSE.txt for license information.\n"
1586        " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
1587        " *\n"
1588        " *===-------------------------------------------------------------"
1589        "----"
1590        "------===\n"
1591        " */\n"
1592        "\n"
1593        "#ifndef __ARM_MVE_H\n"
1594        "#define __ARM_MVE_H\n"
1595        "\n"
1596        "#if !__ARM_FEATURE_MVE\n"
1597        "#error \"MVE support not enabled\"\n"
1598        "#endif\n"
1599        "\n"
1600        "#include <stdint.h>\n"
1601        "\n";
1602
1603  for (size_t i = 0; i < NumParts; ++i) {
1604    std::vector<std::string> conditions;
1605    if (i & Float)
1606      conditions.push_back("(__ARM_FEATURE_MVE & 2)");
1607    if (i & UseUserNamespace)
1608      conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");
1609
1610    std::string condition =
1611        join(std::begin(conditions), std::end(conditions), " && ");
1612    if (!condition.empty())
1613      OS << "#if " << condition << "\n\n";
1614    OS << parts[i].str();
1615    if (!condition.empty())
1616      OS << "#endif /* " << condition << " */\n\n";
1617  }
1618
1619  OS << "#endif /* __ARM_MVE_H */\n";
1620}
1621
1622void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
1623  for (const auto &kv : ACLEIntrinsics) {
1624    const ACLEIntrinsic &Int = *kv.second;
1625    OS << "TARGET_HEADER_BUILTIN(__builtin_arm_mve_" << Int.fullName()
1626       << ", \"\", \"n\", \"arm_mve.h\", ALL_LANGUAGES, \"\")\n";
1627  }
1628
1629  std::set<std::string> ShortNamesSeen;
1630
1631  for (const auto &kv : ACLEIntrinsics) {
1632    const ACLEIntrinsic &Int = *kv.second;
1633    if (Int.polymorphic()) {
1634      StringRef Name = Int.shortName();
1635      if (ShortNamesSeen.find(Name) == ShortNamesSeen.end()) {
1636        OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt";
1637        if (Int.nonEvaluating())
1638          OS << "u"; // indicate that this builtin doesn't evaluate its args
1639        OS << "\")\n";
1640        ShortNamesSeen.insert(Name);
1641      }
1642    }
1643  }
1644}
1645
1646void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
1647  std::map<std::string, std::set<std::string>> Checks;
1648
1649  for (const auto &kv : ACLEIntrinsics) {
1650    const ACLEIntrinsic &Int = *kv.second;
1651    std::string Check = Int.genSema();
1652    if (!Check.empty())
1653      Checks[Check].insert(Int.fullName());
1654  }
1655
1656  for (const auto &kv : Checks) {
1657    for (StringRef Name : kv.second)
1658      OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
1659    OS << kv.first;
1660  }
1661}
1662
1663// Machinery for the grouping of intrinsics by similar codegen.
1664//
1665// The general setup is that 'MergeableGroup' stores the things that a set of
1666// similarly shaped intrinsics have in common: the text of their code
1667// generation, and the number and type of their parameter variables.
1668// MergeableGroup is the key in a std::map whose value is a set of
1669// OutputIntrinsic, which stores the ways in which a particular intrinsic
1670// specializes the MergeableGroup's generic description: the function name and
1671// the _values_ of the parameter variables.
1672
1673struct ComparableStringVector : std::vector<std::string> {
1674  // Infrastructure: a derived class of vector<string> which comes with an
1675  // ordering, so that it can be used as a key in maps and an element in sets.
1676  // There's no requirement on the ordering beyond being deterministic.
1677  bool operator<(const ComparableStringVector &rhs) const {
1678    if (size() != rhs.size())
1679      return size() < rhs.size();
1680    for (size_t i = 0, e = size(); i < e; ++i)
1681      if ((*this)[i] != rhs[i])
1682        return (*this)[i] < rhs[i];
1683    return false;
1684  }
1685};
1686
1687struct OutputIntrinsic {
1688  const ACLEIntrinsic *Int;
1689  std::string Name;
1690  ComparableStringVector ParamValues;
1691  bool operator<(const OutputIntrinsic &rhs) const {
1692    if (Name != rhs.Name)
1693      return Name < rhs.Name;
1694    return ParamValues < rhs.ParamValues;
1695  }
1696};
1697struct MergeableGroup {
1698  std::string Code;
1699  ComparableStringVector ParamTypes;
1700  bool operator<(const MergeableGroup &rhs) const {
1701    if (Code != rhs.Code)
1702      return Code < rhs.Code;
1703    return ParamTypes < rhs.ParamTypes;
1704  }
1705};
1706
1707void MveEmitter::EmitBuiltinCG(raw_ostream &OS) {
1708  // Pass 1: generate code for all the intrinsics as if every type or constant
1709  // that can possibly be abstracted out into a parameter variable will be.
1710  // This identifies the sets of intrinsics we'll group together into a single
1711  // piece of code generation.
1712
1713  std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;
1714
1715  for (const auto &kv : ACLEIntrinsics) {
1716    const ACLEIntrinsic &Int = *kv.second;
1717
1718    MergeableGroup MG;
1719    OutputIntrinsic OI;
1720
1721    OI.Int = &Int;
1722    OI.Name = Int.fullName();
1723    CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
1724    raw_string_ostream OS(MG.Code);
1725    Int.genCode(OS, ParamAllocPrelim, 1);
1726    OS.flush();
1727
1728    MergeableGroupsPrelim[MG].insert(OI);
1729  }
1730
1731  // Pass 2: for each of those groups, optimize the parameter variable set by
1732  // eliminating 'parameters' that are the same for all intrinsics in the
1733  // group, and merging together pairs of parameter variables that take the
1734  // same values as each other for all intrinsics in the group.
1735
1736  std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;
1737
1738  for (const auto &kv : MergeableGroupsPrelim) {
1739    const MergeableGroup &MG = kv.first;
1740    std::vector<int> ParamNumbers;
1741    std::map<ComparableStringVector, int> ParamNumberMap;
1742
1743    // Loop over the parameters for this group.
1744    for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1745      // Is this parameter the same for all intrinsics in the group?
1746      const OutputIntrinsic &OI_first = *kv.second.begin();
1747      bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
1748        return OI.ParamValues[i] == OI_first.ParamValues[i];
1749      });
1750
1751      // If so, record it as -1, meaning 'no parameter variable needed'. Then
1752      // the corresponding call to allocParam in pass 2 will not generate a
1753      // variable at all, and just use the value inline.
1754      if (Constant) {
1755        ParamNumbers.push_back(-1);
1756        continue;
1757      }
1758
1759      // Otherwise, make a list of the values this parameter takes for each
1760      // intrinsic, and see if that value vector matches anything we already
1761      // have. We also record the parameter type, so that we don't accidentally
1762      // match up two parameter variables with different types. (Not that
1763      // there's much chance of them having textually equivalent values, but in
1764      // _principle_ it could happen.)
1765      ComparableStringVector key;
1766      key.push_back(MG.ParamTypes[i]);
1767      for (const auto &OI : kv.second)
1768        key.push_back(OI.ParamValues[i]);
1769
1770      auto Found = ParamNumberMap.find(key);
1771      if (Found != ParamNumberMap.end()) {
1772        // Yes, an existing parameter variable can be reused for this.
1773        ParamNumbers.push_back(Found->second);
1774        continue;
1775      }
1776
1777      // No, we need a new parameter variable.
1778      int ExistingIndex = ParamNumberMap.size();
1779      ParamNumberMap[key] = ExistingIndex;
1780      ParamNumbers.push_back(ExistingIndex);
1781    }
1782
1783    // Now we're ready to do the pass 2 code generation, which will emit the
1784    // reduced set of parameter variables we've just worked out.
1785
1786    for (const auto &OI_prelim : kv.second) {
1787      const ACLEIntrinsic *Int = OI_prelim.Int;
1788
1789      MergeableGroup MG;
1790      OutputIntrinsic OI;
1791
1792      OI.Int = OI_prelim.Int;
1793      OI.Name = OI_prelim.Name;
1794      CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
1795                                       &ParamNumbers};
1796      raw_string_ostream OS(MG.Code);
1797      Int->genCode(OS, ParamAlloc, 2);
1798      OS.flush();
1799
1800      MergeableGroups[MG].insert(OI);
1801    }
1802  }
1803
1804  // Output the actual C++ code.
1805
1806  for (const auto &kv : MergeableGroups) {
1807    const MergeableGroup &MG = kv.first;
1808
1809    // List of case statements in the main switch on BuiltinID, and an open
1810    // brace.
1811    const char *prefix = "";
1812    for (const auto &OI : kv.second) {
1813      OS << prefix << "case ARM::BI__builtin_arm_mve_" << OI.Name << ":";
1814      prefix = "\n";
1815    }
1816    OS << " {\n";
1817
1818    if (!MG.ParamTypes.empty()) {
1819      // If we've got some parameter variables, then emit their declarations...
1820      for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1821        StringRef Type = MG.ParamTypes[i];
1822        OS << "  " << Type;
1823        if (!Type.endswith("*"))
1824          OS << " ";
1825        OS << " Param" << utostr(i) << ";\n";
1826      }
1827
1828      // ... and an inner switch on BuiltinID that will fill them in with each
1829      // individual intrinsic's values.
1830      OS << "  switch (BuiltinID) {\n";
1831      for (const auto &OI : kv.second) {
1832        OS << "  case ARM::BI__builtin_arm_mve_" << OI.Name << ":\n";
1833        for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
1834          OS << "    Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
1835        OS << "    break;\n";
1836      }
1837      OS << "  }\n";
1838    }
1839
1840    // And finally, output the code, and close the outer pair of braces. (The
1841    // code will always end with a 'return' statement, so we need not insert a
1842    // 'break' here.)
1843    OS << MG.Code << "}\n";
1844  }
1845}
1846
1847void MveEmitter::EmitBuiltinAliases(raw_ostream &OS) {
1848  for (const auto &kv : ACLEIntrinsics) {
1849    const ACLEIntrinsic &Int = *kv.second;
1850    OS << "case ARM::BI__builtin_arm_mve_" << Int.fullName() << ":\n"
1851       << "  return AliasName == \"" << Int.fullName() << "\"";
1852    if (Int.polymorphic())
1853      OS << " || AliasName == \"" << Int.shortName() << "\"";
1854    OS << ";\n";
1855  }
1856}
1857
1858} // namespace
1859
1860namespace clang {
1861
1862void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) {
1863  MveEmitter(Records).EmitHeader(OS);
1864}
1865
1866void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
1867  MveEmitter(Records).EmitBuiltinDef(OS);
1868}
1869
1870void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
1871  MveEmitter(Records).EmitBuiltinSema(OS);
1872}
1873
1874void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
1875  MveEmitter(Records).EmitBuiltinCG(OS);
1876}
1877
1878void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
1879  MveEmitter(Records).EmitBuiltinAliases(OS);
1880}
1881
1882} // end namespace clang
1883