1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements type-related semantic analysis.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/ASTStructuralEquivalence.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/AST/TypeLocVisitor.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Sema/ScopeInfo.h"
33#include "clang/Sema/SemaInternal.h"
34#include "clang/Sema/Template.h"
35#include "clang/Sema/TemplateInstCallback.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/ADT/StringSwitch.h"
39#include "llvm/Support/ErrorHandling.h"
40
41using namespace clang;
42
43enum TypeDiagSelector {
44  TDS_Function,
45  TDS_Pointer,
46  TDS_ObjCObjOrBlock
47};
48
49/// isOmittedBlockReturnType - Return true if this declarator is missing a
50/// return type because this is a omitted return type on a block literal.
51static bool isOmittedBlockReturnType(const Declarator &D) {
52  if (D.getContext() != DeclaratorContext::BlockLiteralContext ||
53      D.getDeclSpec().hasTypeSpecifier())
54    return false;
55
56  if (D.getNumTypeObjects() == 0)
57    return true;   // ^{ ... }
58
59  if (D.getNumTypeObjects() == 1 &&
60      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
61    return true;   // ^(int X, float Y) { ... }
62
63  return false;
64}
65
66/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
67/// doesn't apply to the given type.
68static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
69                                     QualType type) {
70  TypeDiagSelector WhichType;
71  bool useExpansionLoc = true;
72  switch (attr.getKind()) {
73  case ParsedAttr::AT_ObjCGC:
74    WhichType = TDS_Pointer;
75    break;
76  case ParsedAttr::AT_ObjCOwnership:
77    WhichType = TDS_ObjCObjOrBlock;
78    break;
79  default:
80    // Assume everything else was a function attribute.
81    WhichType = TDS_Function;
82    useExpansionLoc = false;
83    break;
84  }
85
86  SourceLocation loc = attr.getLoc();
87  StringRef name = attr.getAttrName()->getName();
88
89  // The GC attributes are usually written with macros;  special-case them.
90  IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
91                                          : nullptr;
92  if (useExpansionLoc && loc.isMacroID() && II) {
93    if (II->isStr("strong")) {
94      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
95    } else if (II->isStr("weak")) {
96      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
97    }
98  }
99
100  S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
101    << type;
102}
103
104// objc_gc applies to Objective-C pointers or, otherwise, to the
105// smallest available pointer type (i.e. 'void*' in 'void**').
106#define OBJC_POINTER_TYPE_ATTRS_CASELIST                                       \
107  case ParsedAttr::AT_ObjCGC:                                                  \
108  case ParsedAttr::AT_ObjCOwnership
109
110// Calling convention attributes.
111#define CALLING_CONV_ATTRS_CASELIST                                            \
112  case ParsedAttr::AT_CDecl:                                                   \
113  case ParsedAttr::AT_FastCall:                                                \
114  case ParsedAttr::AT_StdCall:                                                 \
115  case ParsedAttr::AT_ThisCall:                                                \
116  case ParsedAttr::AT_RegCall:                                                 \
117  case ParsedAttr::AT_Pascal:                                                  \
118  case ParsedAttr::AT_SwiftCall:                                               \
119  case ParsedAttr::AT_VectorCall:                                              \
120  case ParsedAttr::AT_AArch64VectorPcs:                                        \
121  case ParsedAttr::AT_MSABI:                                                   \
122  case ParsedAttr::AT_SysVABI:                                                 \
123  case ParsedAttr::AT_Pcs:                                                     \
124  case ParsedAttr::AT_IntelOclBicc:                                            \
125  case ParsedAttr::AT_PreserveMost:                                            \
126  case ParsedAttr::AT_PreserveAll
127
128// Function type attributes.
129#define FUNCTION_TYPE_ATTRS_CASELIST                                           \
130  case ParsedAttr::AT_NSReturnsRetained:                                       \
131  case ParsedAttr::AT_NoReturn:                                                \
132  case ParsedAttr::AT_Regparm:                                                 \
133  case ParsedAttr::AT_AnyX86NoCallerSavedRegisters:                            \
134  case ParsedAttr::AT_AnyX86NoCfCheck:                                         \
135    CALLING_CONV_ATTRS_CASELIST
136
137// Microsoft-specific type qualifiers.
138#define MS_TYPE_ATTRS_CASELIST                                                 \
139  case ParsedAttr::AT_Ptr32:                                                   \
140  case ParsedAttr::AT_Ptr64:                                                   \
141  case ParsedAttr::AT_SPtr:                                                    \
142  case ParsedAttr::AT_UPtr
143
144// Nullability qualifiers.
145#define NULLABILITY_TYPE_ATTRS_CASELIST                                        \
146  case ParsedAttr::AT_TypeNonNull:                                             \
147  case ParsedAttr::AT_TypeNullable:                                            \
148  case ParsedAttr::AT_TypeNullUnspecified
149
150namespace {
151  /// An object which stores processing state for the entire
152  /// GetTypeForDeclarator process.
153  class TypeProcessingState {
154    Sema &sema;
155
156    /// The declarator being processed.
157    Declarator &declarator;
158
159    /// The index of the declarator chunk we're currently processing.
160    /// May be the total number of valid chunks, indicating the
161    /// DeclSpec.
162    unsigned chunkIndex;
163
164    /// Whether there are non-trivial modifications to the decl spec.
165    bool trivial;
166
167    /// Whether we saved the attributes in the decl spec.
168    bool hasSavedAttrs;
169
170    /// The original set of attributes on the DeclSpec.
171    SmallVector<ParsedAttr *, 2> savedAttrs;
172
173    /// A list of attributes to diagnose the uselessness of when the
174    /// processing is complete.
175    SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
176
177    /// Attributes corresponding to AttributedTypeLocs that we have not yet
178    /// populated.
179    // FIXME: The two-phase mechanism by which we construct Types and fill
180    // their TypeLocs makes it hard to correctly assign these. We keep the
181    // attributes in creation order as an attempt to make them line up
182    // properly.
183    using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
184    SmallVector<TypeAttrPair, 8> AttrsForTypes;
185    bool AttrsForTypesSorted = true;
186
187    /// MacroQualifiedTypes mapping to macro expansion locations that will be
188    /// stored in a MacroQualifiedTypeLoc.
189    llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
190
191    /// Flag to indicate we parsed a noderef attribute. This is used for
192    /// validating that noderef was used on a pointer or array.
193    bool parsedNoDeref;
194
195  public:
196    TypeProcessingState(Sema &sema, Declarator &declarator)
197        : sema(sema), declarator(declarator),
198          chunkIndex(declarator.getNumTypeObjects()), trivial(true),
199          hasSavedAttrs(false), parsedNoDeref(false) {}
200
201    Sema &getSema() const {
202      return sema;
203    }
204
205    Declarator &getDeclarator() const {
206      return declarator;
207    }
208
209    bool isProcessingDeclSpec() const {
210      return chunkIndex == declarator.getNumTypeObjects();
211    }
212
213    unsigned getCurrentChunkIndex() const {
214      return chunkIndex;
215    }
216
217    void setCurrentChunkIndex(unsigned idx) {
218      assert(idx <= declarator.getNumTypeObjects());
219      chunkIndex = idx;
220    }
221
222    ParsedAttributesView &getCurrentAttributes() const {
223      if (isProcessingDeclSpec())
224        return getMutableDeclSpec().getAttributes();
225      return declarator.getTypeObject(chunkIndex).getAttrs();
226    }
227
228    /// Save the current set of attributes on the DeclSpec.
229    void saveDeclSpecAttrs() {
230      // Don't try to save them multiple times.
231      if (hasSavedAttrs) return;
232
233      DeclSpec &spec = getMutableDeclSpec();
234      for (ParsedAttr &AL : spec.getAttributes())
235        savedAttrs.push_back(&AL);
236      trivial &= savedAttrs.empty();
237      hasSavedAttrs = true;
238    }
239
240    /// Record that we had nowhere to put the given type attribute.
241    /// We will diagnose such attributes later.
242    void addIgnoredTypeAttr(ParsedAttr &attr) {
243      ignoredTypeAttrs.push_back(&attr);
244    }
245
246    /// Diagnose all the ignored type attributes, given that the
247    /// declarator worked out to the given type.
248    void diagnoseIgnoredTypeAttrs(QualType type) const {
249      for (auto *Attr : ignoredTypeAttrs)
250        diagnoseBadTypeAttribute(getSema(), *Attr, type);
251    }
252
253    /// Get an attributed type for the given attribute, and remember the Attr
254    /// object so that we can attach it to the AttributedTypeLoc.
255    QualType getAttributedType(Attr *A, QualType ModifiedType,
256                               QualType EquivType) {
257      QualType T =
258          sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
259      AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
260      AttrsForTypesSorted = false;
261      return T;
262    }
263
264    /// Completely replace the \c auto in \p TypeWithAuto by
265    /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
266    /// necessary.
267    QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
268      QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
269      if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
270        // Attributed type still should be an attributed type after replacement.
271        auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
272        for (TypeAttrPair &A : AttrsForTypes) {
273          if (A.first == AttrTy)
274            A.first = NewAttrTy;
275        }
276        AttrsForTypesSorted = false;
277      }
278      return T;
279    }
280
281    /// Extract and remove the Attr* for a given attributed type.
282    const Attr *takeAttrForAttributedType(const AttributedType *AT) {
283      if (!AttrsForTypesSorted) {
284        llvm::stable_sort(AttrsForTypes, llvm::less_first());
285        AttrsForTypesSorted = true;
286      }
287
288      // FIXME: This is quadratic if we have lots of reuses of the same
289      // attributed type.
290      for (auto It = std::partition_point(
291               AttrsForTypes.begin(), AttrsForTypes.end(),
292               [=](const TypeAttrPair &A) { return A.first < AT; });
293           It != AttrsForTypes.end() && It->first == AT; ++It) {
294        if (It->second) {
295          const Attr *Result = It->second;
296          It->second = nullptr;
297          return Result;
298        }
299      }
300
301      llvm_unreachable("no Attr* for AttributedType*");
302    }
303
304    SourceLocation
305    getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
306      auto FoundLoc = LocsForMacros.find(MQT);
307      assert(FoundLoc != LocsForMacros.end() &&
308             "Unable to find macro expansion location for MacroQualifedType");
309      return FoundLoc->second;
310    }
311
312    void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
313                                              SourceLocation Loc) {
314      LocsForMacros[MQT] = Loc;
315    }
316
317    void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
318
319    bool didParseNoDeref() const { return parsedNoDeref; }
320
321    ~TypeProcessingState() {
322      if (trivial) return;
323
324      restoreDeclSpecAttrs();
325    }
326
327  private:
328    DeclSpec &getMutableDeclSpec() const {
329      return const_cast<DeclSpec&>(declarator.getDeclSpec());
330    }
331
332    void restoreDeclSpecAttrs() {
333      assert(hasSavedAttrs);
334
335      getMutableDeclSpec().getAttributes().clearListOnly();
336      for (ParsedAttr *AL : savedAttrs)
337        getMutableDeclSpec().getAttributes().addAtEnd(AL);
338    }
339  };
340} // end anonymous namespace
341
342static void moveAttrFromListToList(ParsedAttr &attr,
343                                   ParsedAttributesView &fromList,
344                                   ParsedAttributesView &toList) {
345  fromList.remove(&attr);
346  toList.addAtEnd(&attr);
347}
348
349/// The location of a type attribute.
350enum TypeAttrLocation {
351  /// The attribute is in the decl-specifier-seq.
352  TAL_DeclSpec,
353  /// The attribute is part of a DeclaratorChunk.
354  TAL_DeclChunk,
355  /// The attribute is immediately after the declaration's name.
356  TAL_DeclName
357};
358
359static void processTypeAttrs(TypeProcessingState &state, QualType &type,
360                             TypeAttrLocation TAL, ParsedAttributesView &attrs);
361
362static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
363                                   QualType &type);
364
365static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
366                                             ParsedAttr &attr, QualType &type);
367
368static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
369                                 QualType &type);
370
371static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
372                                        ParsedAttr &attr, QualType &type);
373
374static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
375                                      ParsedAttr &attr, QualType &type) {
376  if (attr.getKind() == ParsedAttr::AT_ObjCGC)
377    return handleObjCGCTypeAttr(state, attr, type);
378  assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
379  return handleObjCOwnershipTypeAttr(state, attr, type);
380}
381
382/// Given the index of a declarator chunk, check whether that chunk
383/// directly specifies the return type of a function and, if so, find
384/// an appropriate place for it.
385///
386/// \param i - a notional index which the search will start
387///   immediately inside
388///
389/// \param onlyBlockPointers Whether we should only look into block
390/// pointer types (vs. all pointer types).
391static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
392                                                unsigned i,
393                                                bool onlyBlockPointers) {
394  assert(i <= declarator.getNumTypeObjects());
395
396  DeclaratorChunk *result = nullptr;
397
398  // First, look inwards past parens for a function declarator.
399  for (; i != 0; --i) {
400    DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
401    switch (fnChunk.Kind) {
402    case DeclaratorChunk::Paren:
403      continue;
404
405    // If we find anything except a function, bail out.
406    case DeclaratorChunk::Pointer:
407    case DeclaratorChunk::BlockPointer:
408    case DeclaratorChunk::Array:
409    case DeclaratorChunk::Reference:
410    case DeclaratorChunk::MemberPointer:
411    case DeclaratorChunk::Pipe:
412      return result;
413
414    // If we do find a function declarator, scan inwards from that,
415    // looking for a (block-)pointer declarator.
416    case DeclaratorChunk::Function:
417      for (--i; i != 0; --i) {
418        DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
419        switch (ptrChunk.Kind) {
420        case DeclaratorChunk::Paren:
421        case DeclaratorChunk::Array:
422        case DeclaratorChunk::Function:
423        case DeclaratorChunk::Reference:
424        case DeclaratorChunk::Pipe:
425          continue;
426
427        case DeclaratorChunk::MemberPointer:
428        case DeclaratorChunk::Pointer:
429          if (onlyBlockPointers)
430            continue;
431
432          LLVM_FALLTHROUGH;
433
434        case DeclaratorChunk::BlockPointer:
435          result = &ptrChunk;
436          goto continue_outer;
437        }
438        llvm_unreachable("bad declarator chunk kind");
439      }
440
441      // If we run out of declarators doing that, we're done.
442      return result;
443    }
444    llvm_unreachable("bad declarator chunk kind");
445
446    // Okay, reconsider from our new point.
447  continue_outer: ;
448  }
449
450  // Ran out of chunks, bail out.
451  return result;
452}
453
454/// Given that an objc_gc attribute was written somewhere on a
455/// declaration *other* than on the declarator itself (for which, use
456/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
457/// didn't apply in whatever position it was written in, try to move
458/// it to a more appropriate position.
459static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
460                                          ParsedAttr &attr, QualType type) {
461  Declarator &declarator = state.getDeclarator();
462
463  // Move it to the outermost normal or block pointer declarator.
464  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
465    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
466    switch (chunk.Kind) {
467    case DeclaratorChunk::Pointer:
468    case DeclaratorChunk::BlockPointer: {
469      // But don't move an ARC ownership attribute to the return type
470      // of a block.
471      DeclaratorChunk *destChunk = nullptr;
472      if (state.isProcessingDeclSpec() &&
473          attr.getKind() == ParsedAttr::AT_ObjCOwnership)
474        destChunk = maybeMovePastReturnType(declarator, i - 1,
475                                            /*onlyBlockPointers=*/true);
476      if (!destChunk) destChunk = &chunk;
477
478      moveAttrFromListToList(attr, state.getCurrentAttributes(),
479                             destChunk->getAttrs());
480      return;
481    }
482
483    case DeclaratorChunk::Paren:
484    case DeclaratorChunk::Array:
485      continue;
486
487    // We may be starting at the return type of a block.
488    case DeclaratorChunk::Function:
489      if (state.isProcessingDeclSpec() &&
490          attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
491        if (DeclaratorChunk *dest = maybeMovePastReturnType(
492                                      declarator, i,
493                                      /*onlyBlockPointers=*/true)) {
494          moveAttrFromListToList(attr, state.getCurrentAttributes(),
495                                 dest->getAttrs());
496          return;
497        }
498      }
499      goto error;
500
501    // Don't walk through these.
502    case DeclaratorChunk::Reference:
503    case DeclaratorChunk::MemberPointer:
504    case DeclaratorChunk::Pipe:
505      goto error;
506    }
507  }
508 error:
509
510  diagnoseBadTypeAttribute(state.getSema(), attr, type);
511}
512
513/// Distribute an objc_gc type attribute that was written on the
514/// declarator.
515static void distributeObjCPointerTypeAttrFromDeclarator(
516    TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
517  Declarator &declarator = state.getDeclarator();
518
519  // objc_gc goes on the innermost pointer to something that's not a
520  // pointer.
521  unsigned innermost = -1U;
522  bool considerDeclSpec = true;
523  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
524    DeclaratorChunk &chunk = declarator.getTypeObject(i);
525    switch (chunk.Kind) {
526    case DeclaratorChunk::Pointer:
527    case DeclaratorChunk::BlockPointer:
528      innermost = i;
529      continue;
530
531    case DeclaratorChunk::Reference:
532    case DeclaratorChunk::MemberPointer:
533    case DeclaratorChunk::Paren:
534    case DeclaratorChunk::Array:
535    case DeclaratorChunk::Pipe:
536      continue;
537
538    case DeclaratorChunk::Function:
539      considerDeclSpec = false;
540      goto done;
541    }
542  }
543 done:
544
545  // That might actually be the decl spec if we weren't blocked by
546  // anything in the declarator.
547  if (considerDeclSpec) {
548    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
549      // Splice the attribute into the decl spec.  Prevents the
550      // attribute from being applied multiple times and gives
551      // the source-location-filler something to work with.
552      state.saveDeclSpecAttrs();
553      declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
554          declarator.getAttributes(), &attr);
555      return;
556    }
557  }
558
559  // Otherwise, if we found an appropriate chunk, splice the attribute
560  // into it.
561  if (innermost != -1U) {
562    moveAttrFromListToList(attr, declarator.getAttributes(),
563                           declarator.getTypeObject(innermost).getAttrs());
564    return;
565  }
566
567  // Otherwise, diagnose when we're done building the type.
568  declarator.getAttributes().remove(&attr);
569  state.addIgnoredTypeAttr(attr);
570}
571
572/// A function type attribute was written somewhere in a declaration
573/// *other* than on the declarator itself or in the decl spec.  Given
574/// that it didn't apply in whatever position it was written in, try
575/// to move it to a more appropriate position.
576static void distributeFunctionTypeAttr(TypeProcessingState &state,
577                                       ParsedAttr &attr, QualType type) {
578  Declarator &declarator = state.getDeclarator();
579
580  // Try to push the attribute from the return type of a function to
581  // the function itself.
582  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
583    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
584    switch (chunk.Kind) {
585    case DeclaratorChunk::Function:
586      moveAttrFromListToList(attr, state.getCurrentAttributes(),
587                             chunk.getAttrs());
588      return;
589
590    case DeclaratorChunk::Paren:
591    case DeclaratorChunk::Pointer:
592    case DeclaratorChunk::BlockPointer:
593    case DeclaratorChunk::Array:
594    case DeclaratorChunk::Reference:
595    case DeclaratorChunk::MemberPointer:
596    case DeclaratorChunk::Pipe:
597      continue;
598    }
599  }
600
601  diagnoseBadTypeAttribute(state.getSema(), attr, type);
602}
603
604/// Try to distribute a function type attribute to the innermost
605/// function chunk or type.  Returns true if the attribute was
606/// distributed, false if no location was found.
607static bool distributeFunctionTypeAttrToInnermost(
608    TypeProcessingState &state, ParsedAttr &attr,
609    ParsedAttributesView &attrList, QualType &declSpecType) {
610  Declarator &declarator = state.getDeclarator();
611
612  // Put it on the innermost function chunk, if there is one.
613  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
614    DeclaratorChunk &chunk = declarator.getTypeObject(i);
615    if (chunk.Kind != DeclaratorChunk::Function) continue;
616
617    moveAttrFromListToList(attr, attrList, chunk.getAttrs());
618    return true;
619  }
620
621  return handleFunctionTypeAttr(state, attr, declSpecType);
622}
623
624/// A function type attribute was written in the decl spec.  Try to
625/// apply it somewhere.
626static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
627                                                   ParsedAttr &attr,
628                                                   QualType &declSpecType) {
629  state.saveDeclSpecAttrs();
630
631  // C++11 attributes before the decl specifiers actually appertain to
632  // the declarators. Move them straight there. We don't support the
633  // 'put them wherever you like' semantics we allow for GNU attributes.
634  if (attr.isCXX11Attribute()) {
635    moveAttrFromListToList(attr, state.getCurrentAttributes(),
636                           state.getDeclarator().getAttributes());
637    return;
638  }
639
640  // Try to distribute to the innermost.
641  if (distributeFunctionTypeAttrToInnermost(
642          state, attr, state.getCurrentAttributes(), declSpecType))
643    return;
644
645  // If that failed, diagnose the bad attribute when the declarator is
646  // fully built.
647  state.addIgnoredTypeAttr(attr);
648}
649
650/// A function type attribute was written on the declarator.  Try to
651/// apply it somewhere.
652static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
653                                                     ParsedAttr &attr,
654                                                     QualType &declSpecType) {
655  Declarator &declarator = state.getDeclarator();
656
657  // Try to distribute to the innermost.
658  if (distributeFunctionTypeAttrToInnermost(
659          state, attr, declarator.getAttributes(), declSpecType))
660    return;
661
662  // If that failed, diagnose the bad attribute when the declarator is
663  // fully built.
664  declarator.getAttributes().remove(&attr);
665  state.addIgnoredTypeAttr(attr);
666}
667
668/// Given that there are attributes written on the declarator
669/// itself, try to distribute any type attributes to the appropriate
670/// declarator chunk.
671///
672/// These are attributes like the following:
673///   int f ATTR;
674///   int (f ATTR)();
675/// but not necessarily this:
676///   int f() ATTR;
677static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
678                                              QualType &declSpecType) {
679  // Collect all the type attributes from the declarator itself.
680  assert(!state.getDeclarator().getAttributes().empty() &&
681         "declarator has no attrs!");
682  // The called functions in this loop actually remove things from the current
683  // list, so iterating over the existing list isn't possible.  Instead, make a
684  // non-owning copy and iterate over that.
685  ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
686  for (ParsedAttr &attr : AttrsCopy) {
687    // Do not distribute C++11 attributes. They have strict rules for what
688    // they appertain to.
689    if (attr.isCXX11Attribute())
690      continue;
691
692    switch (attr.getKind()) {
693    OBJC_POINTER_TYPE_ATTRS_CASELIST:
694      distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
695      break;
696
697    FUNCTION_TYPE_ATTRS_CASELIST:
698      distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
699      break;
700
701    MS_TYPE_ATTRS_CASELIST:
702      // Microsoft type attributes cannot go after the declarator-id.
703      continue;
704
705    NULLABILITY_TYPE_ATTRS_CASELIST:
706      // Nullability specifiers cannot go after the declarator-id.
707
708    // Objective-C __kindof does not get distributed.
709    case ParsedAttr::AT_ObjCKindOf:
710      continue;
711
712    default:
713      break;
714    }
715  }
716}
717
718/// Add a synthetic '()' to a block-literal declarator if it is
719/// required, given the return type.
720static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
721                                          QualType declSpecType) {
722  Declarator &declarator = state.getDeclarator();
723
724  // First, check whether the declarator would produce a function,
725  // i.e. whether the innermost semantic chunk is a function.
726  if (declarator.isFunctionDeclarator()) {
727    // If so, make that declarator a prototyped declarator.
728    declarator.getFunctionTypeInfo().hasPrototype = true;
729    return;
730  }
731
732  // If there are any type objects, the type as written won't name a
733  // function, regardless of the decl spec type.  This is because a
734  // block signature declarator is always an abstract-declarator, and
735  // abstract-declarators can't just be parentheses chunks.  Therefore
736  // we need to build a function chunk unless there are no type
737  // objects and the decl spec type is a function.
738  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
739    return;
740
741  // Note that there *are* cases with invalid declarators where
742  // declarators consist solely of parentheses.  In general, these
743  // occur only in failed efforts to make function declarators, so
744  // faking up the function chunk is still the right thing to do.
745
746  // Otherwise, we need to fake up a function declarator.
747  SourceLocation loc = declarator.getBeginLoc();
748
749  // ...and *prepend* it to the declarator.
750  SourceLocation NoLoc;
751  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
752      /*HasProto=*/true,
753      /*IsAmbiguous=*/false,
754      /*LParenLoc=*/NoLoc,
755      /*ArgInfo=*/nullptr,
756      /*NumParams=*/0,
757      /*EllipsisLoc=*/NoLoc,
758      /*RParenLoc=*/NoLoc,
759      /*RefQualifierIsLvalueRef=*/true,
760      /*RefQualifierLoc=*/NoLoc,
761      /*MutableLoc=*/NoLoc, EST_None,
762      /*ESpecRange=*/SourceRange(),
763      /*Exceptions=*/nullptr,
764      /*ExceptionRanges=*/nullptr,
765      /*NumExceptions=*/0,
766      /*NoexceptExpr=*/nullptr,
767      /*ExceptionSpecTokens=*/nullptr,
768      /*DeclsInPrototype=*/None, loc, loc, declarator));
769
770  // For consistency, make sure the state still has us as processing
771  // the decl spec.
772  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
773  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
774}
775
776static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
777                                            unsigned &TypeQuals,
778                                            QualType TypeSoFar,
779                                            unsigned RemoveTQs,
780                                            unsigned DiagID) {
781  // If this occurs outside a template instantiation, warn the user about
782  // it; they probably didn't mean to specify a redundant qualifier.
783  typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
784  for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
785                       QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
786                       QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
787                       QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
788    if (!(RemoveTQs & Qual.first))
789      continue;
790
791    if (!S.inTemplateInstantiation()) {
792      if (TypeQuals & Qual.first)
793        S.Diag(Qual.second, DiagID)
794          << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
795          << FixItHint::CreateRemoval(Qual.second);
796    }
797
798    TypeQuals &= ~Qual.first;
799  }
800}
801
802/// Return true if this is omitted block return type. Also check type
803/// attributes and type qualifiers when returning true.
804static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
805                                        QualType Result) {
806  if (!isOmittedBlockReturnType(declarator))
807    return false;
808
809  // Warn if we see type attributes for omitted return type on a block literal.
810  SmallVector<ParsedAttr *, 2> ToBeRemoved;
811  for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
812    if (AL.isInvalid() || !AL.isTypeAttr())
813      continue;
814    S.Diag(AL.getLoc(),
815           diag::warn_block_literal_attributes_on_omitted_return_type)
816        << AL;
817    ToBeRemoved.push_back(&AL);
818  }
819  // Remove bad attributes from the list.
820  for (ParsedAttr *AL : ToBeRemoved)
821    declarator.getMutableDeclSpec().getAttributes().remove(AL);
822
823  // Warn if we see type qualifiers for omitted return type on a block literal.
824  const DeclSpec &DS = declarator.getDeclSpec();
825  unsigned TypeQuals = DS.getTypeQualifiers();
826  diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
827      diag::warn_block_literal_qualifiers_on_omitted_return_type);
828  declarator.getMutableDeclSpec().ClearTypeQualifiers();
829
830  return true;
831}
832
833/// Apply Objective-C type arguments to the given type.
834static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
835                                  ArrayRef<TypeSourceInfo *> typeArgs,
836                                  SourceRange typeArgsRange,
837                                  bool failOnError = false) {
838  // We can only apply type arguments to an Objective-C class type.
839  const auto *objcObjectType = type->getAs<ObjCObjectType>();
840  if (!objcObjectType || !objcObjectType->getInterface()) {
841    S.Diag(loc, diag::err_objc_type_args_non_class)
842      << type
843      << typeArgsRange;
844
845    if (failOnError)
846      return QualType();
847    return type;
848  }
849
850  // The class type must be parameterized.
851  ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
852  ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
853  if (!typeParams) {
854    S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
855      << objcClass->getDeclName()
856      << FixItHint::CreateRemoval(typeArgsRange);
857
858    if (failOnError)
859      return QualType();
860
861    return type;
862  }
863
864  // The type must not already be specialized.
865  if (objcObjectType->isSpecialized()) {
866    S.Diag(loc, diag::err_objc_type_args_specialized_class)
867      << type
868      << FixItHint::CreateRemoval(typeArgsRange);
869
870    if (failOnError)
871      return QualType();
872
873    return type;
874  }
875
876  // Check the type arguments.
877  SmallVector<QualType, 4> finalTypeArgs;
878  unsigned numTypeParams = typeParams->size();
879  bool anyPackExpansions = false;
880  for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
881    TypeSourceInfo *typeArgInfo = typeArgs[i];
882    QualType typeArg = typeArgInfo->getType();
883
884    // Type arguments cannot have explicit qualifiers or nullability.
885    // We ignore indirect sources of these, e.g. behind typedefs or
886    // template arguments.
887    if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
888      bool diagnosed = false;
889      SourceRange rangeToRemove;
890      if (auto attr = qual.getAs<AttributedTypeLoc>()) {
891        rangeToRemove = attr.getLocalSourceRange();
892        if (attr.getTypePtr()->getImmediateNullability()) {
893          typeArg = attr.getTypePtr()->getModifiedType();
894          S.Diag(attr.getBeginLoc(),
895                 diag::err_objc_type_arg_explicit_nullability)
896              << typeArg << FixItHint::CreateRemoval(rangeToRemove);
897          diagnosed = true;
898        }
899      }
900
901      if (!diagnosed) {
902        S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
903            << typeArg << typeArg.getQualifiers().getAsString()
904            << FixItHint::CreateRemoval(rangeToRemove);
905      }
906    }
907
908    // Remove qualifiers even if they're non-local.
909    typeArg = typeArg.getUnqualifiedType();
910
911    finalTypeArgs.push_back(typeArg);
912
913    if (typeArg->getAs<PackExpansionType>())
914      anyPackExpansions = true;
915
916    // Find the corresponding type parameter, if there is one.
917    ObjCTypeParamDecl *typeParam = nullptr;
918    if (!anyPackExpansions) {
919      if (i < numTypeParams) {
920        typeParam = typeParams->begin()[i];
921      } else {
922        // Too many arguments.
923        S.Diag(loc, diag::err_objc_type_args_wrong_arity)
924          << false
925          << objcClass->getDeclName()
926          << (unsigned)typeArgs.size()
927          << numTypeParams;
928        S.Diag(objcClass->getLocation(), diag::note_previous_decl)
929          << objcClass;
930
931        if (failOnError)
932          return QualType();
933
934        return type;
935      }
936    }
937
938    // Objective-C object pointer types must be substitutable for the bounds.
939    if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
940      // If we don't have a type parameter to match against, assume
941      // everything is fine. There was a prior pack expansion that
942      // means we won't be able to match anything.
943      if (!typeParam) {
944        assert(anyPackExpansions && "Too many arguments?");
945        continue;
946      }
947
948      // Retrieve the bound.
949      QualType bound = typeParam->getUnderlyingType();
950      const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
951
952      // Determine whether the type argument is substitutable for the bound.
953      if (typeArgObjC->isObjCIdType()) {
954        // When the type argument is 'id', the only acceptable type
955        // parameter bound is 'id'.
956        if (boundObjC->isObjCIdType())
957          continue;
958      } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
959        // Otherwise, we follow the assignability rules.
960        continue;
961      }
962
963      // Diagnose the mismatch.
964      S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
965             diag::err_objc_type_arg_does_not_match_bound)
966          << typeArg << bound << typeParam->getDeclName();
967      S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
968        << typeParam->getDeclName();
969
970      if (failOnError)
971        return QualType();
972
973      return type;
974    }
975
976    // Block pointer types are permitted for unqualified 'id' bounds.
977    if (typeArg->isBlockPointerType()) {
978      // If we don't have a type parameter to match against, assume
979      // everything is fine. There was a prior pack expansion that
980      // means we won't be able to match anything.
981      if (!typeParam) {
982        assert(anyPackExpansions && "Too many arguments?");
983        continue;
984      }
985
986      // Retrieve the bound.
987      QualType bound = typeParam->getUnderlyingType();
988      if (bound->isBlockCompatibleObjCPointerType(S.Context))
989        continue;
990
991      // Diagnose the mismatch.
992      S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
993             diag::err_objc_type_arg_does_not_match_bound)
994          << typeArg << bound << typeParam->getDeclName();
995      S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
996        << typeParam->getDeclName();
997
998      if (failOnError)
999        return QualType();
1000
1001      return type;
1002    }
1003
1004    // Dependent types will be checked at instantiation time.
1005    if (typeArg->isDependentType()) {
1006      continue;
1007    }
1008
1009    // Diagnose non-id-compatible type arguments.
1010    S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1011           diag::err_objc_type_arg_not_id_compatible)
1012        << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
1013
1014    if (failOnError)
1015      return QualType();
1016
1017    return type;
1018  }
1019
1020  // Make sure we didn't have the wrong number of arguments.
1021  if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
1022    S.Diag(loc, diag::err_objc_type_args_wrong_arity)
1023      << (typeArgs.size() < typeParams->size())
1024      << objcClass->getDeclName()
1025      << (unsigned)finalTypeArgs.size()
1026      << (unsigned)numTypeParams;
1027    S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1028      << objcClass;
1029
1030    if (failOnError)
1031      return QualType();
1032
1033    return type;
1034  }
1035
1036  // Success. Form the specialized type.
1037  return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1038}
1039
1040QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1041                                      SourceLocation ProtocolLAngleLoc,
1042                                      ArrayRef<ObjCProtocolDecl *> Protocols,
1043                                      ArrayRef<SourceLocation> ProtocolLocs,
1044                                      SourceLocation ProtocolRAngleLoc,
1045                                      bool FailOnError) {
1046  QualType Result = QualType(Decl->getTypeForDecl(), 0);
1047  if (!Protocols.empty()) {
1048    bool HasError;
1049    Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1050                                                 HasError);
1051    if (HasError) {
1052      Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1053        << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1054      if (FailOnError) Result = QualType();
1055    }
1056    if (FailOnError && Result.isNull())
1057      return QualType();
1058  }
1059
1060  return Result;
1061}
1062
1063QualType Sema::BuildObjCObjectType(QualType BaseType,
1064                                   SourceLocation Loc,
1065                                   SourceLocation TypeArgsLAngleLoc,
1066                                   ArrayRef<TypeSourceInfo *> TypeArgs,
1067                                   SourceLocation TypeArgsRAngleLoc,
1068                                   SourceLocation ProtocolLAngleLoc,
1069                                   ArrayRef<ObjCProtocolDecl *> Protocols,
1070                                   ArrayRef<SourceLocation> ProtocolLocs,
1071                                   SourceLocation ProtocolRAngleLoc,
1072                                   bool FailOnError) {
1073  QualType Result = BaseType;
1074  if (!TypeArgs.empty()) {
1075    Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1076                               SourceRange(TypeArgsLAngleLoc,
1077                                           TypeArgsRAngleLoc),
1078                               FailOnError);
1079    if (FailOnError && Result.isNull())
1080      return QualType();
1081  }
1082
1083  if (!Protocols.empty()) {
1084    bool HasError;
1085    Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1086                                                 HasError);
1087    if (HasError) {
1088      Diag(Loc, diag::err_invalid_protocol_qualifiers)
1089        << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1090      if (FailOnError) Result = QualType();
1091    }
1092    if (FailOnError && Result.isNull())
1093      return QualType();
1094  }
1095
1096  return Result;
1097}
1098
1099TypeResult Sema::actOnObjCProtocolQualifierType(
1100             SourceLocation lAngleLoc,
1101             ArrayRef<Decl *> protocols,
1102             ArrayRef<SourceLocation> protocolLocs,
1103             SourceLocation rAngleLoc) {
1104  // Form id<protocol-list>.
1105  QualType Result = Context.getObjCObjectType(
1106                      Context.ObjCBuiltinIdTy, { },
1107                      llvm::makeArrayRef(
1108                        (ObjCProtocolDecl * const *)protocols.data(),
1109                        protocols.size()),
1110                      false);
1111  Result = Context.getObjCObjectPointerType(Result);
1112
1113  TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1114  TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1115
1116  auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1117  ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1118
1119  auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1120                        .castAs<ObjCObjectTypeLoc>();
1121  ObjCObjectTL.setHasBaseTypeAsWritten(false);
1122  ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1123
1124  // No type arguments.
1125  ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1126  ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1127
1128  // Fill in protocol qualifiers.
1129  ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1130  ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1131  for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1132    ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1133
1134  // We're done. Return the completed type to the parser.
1135  return CreateParsedType(Result, ResultTInfo);
1136}
1137
1138TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1139             Scope *S,
1140             SourceLocation Loc,
1141             ParsedType BaseType,
1142             SourceLocation TypeArgsLAngleLoc,
1143             ArrayRef<ParsedType> TypeArgs,
1144             SourceLocation TypeArgsRAngleLoc,
1145             SourceLocation ProtocolLAngleLoc,
1146             ArrayRef<Decl *> Protocols,
1147             ArrayRef<SourceLocation> ProtocolLocs,
1148             SourceLocation ProtocolRAngleLoc) {
1149  TypeSourceInfo *BaseTypeInfo = nullptr;
1150  QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1151  if (T.isNull())
1152    return true;
1153
1154  // Handle missing type-source info.
1155  if (!BaseTypeInfo)
1156    BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1157
1158  // Extract type arguments.
1159  SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1160  for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1161    TypeSourceInfo *TypeArgInfo = nullptr;
1162    QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1163    if (TypeArg.isNull()) {
1164      ActualTypeArgInfos.clear();
1165      break;
1166    }
1167
1168    assert(TypeArgInfo && "No type source info?");
1169    ActualTypeArgInfos.push_back(TypeArgInfo);
1170  }
1171
1172  // Build the object type.
1173  QualType Result = BuildObjCObjectType(
1174      T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1175      TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1176      ProtocolLAngleLoc,
1177      llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1178                         Protocols.size()),
1179      ProtocolLocs, ProtocolRAngleLoc,
1180      /*FailOnError=*/false);
1181
1182  if (Result == T)
1183    return BaseType;
1184
1185  // Create source information for this type.
1186  TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1187  TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1188
1189  // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1190  // object pointer type. Fill in source information for it.
1191  if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1192    // The '*' is implicit.
1193    ObjCObjectPointerTL.setStarLoc(SourceLocation());
1194    ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1195  }
1196
1197  if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1198    // Protocol qualifier information.
1199    if (OTPTL.getNumProtocols() > 0) {
1200      assert(OTPTL.getNumProtocols() == Protocols.size());
1201      OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1202      OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1203      for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1204        OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1205    }
1206
1207    // We're done. Return the completed type to the parser.
1208    return CreateParsedType(Result, ResultTInfo);
1209  }
1210
1211  auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1212
1213  // Type argument information.
1214  if (ObjCObjectTL.getNumTypeArgs() > 0) {
1215    assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
1216    ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1217    ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1218    for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1219      ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1220  } else {
1221    ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1222    ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1223  }
1224
1225  // Protocol qualifier information.
1226  if (ObjCObjectTL.getNumProtocols() > 0) {
1227    assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
1228    ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1229    ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1230    for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1231      ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1232  } else {
1233    ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1234    ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1235  }
1236
1237  // Base type.
1238  ObjCObjectTL.setHasBaseTypeAsWritten(true);
1239  if (ObjCObjectTL.getType() == T)
1240    ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1241  else
1242    ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1243
1244  // We're done. Return the completed type to the parser.
1245  return CreateParsedType(Result, ResultTInfo);
1246}
1247
1248static OpenCLAccessAttr::Spelling
1249getImageAccess(const ParsedAttributesView &Attrs) {
1250  for (const ParsedAttr &AL : Attrs)
1251    if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1252      return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1253  return OpenCLAccessAttr::Keyword_read_only;
1254}
1255
1256static QualType ConvertConstrainedAutoDeclSpecToType(Sema &S, DeclSpec &DS,
1257                                                     AutoTypeKeyword AutoKW) {
1258  assert(DS.isConstrainedAuto());
1259  TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
1260  TemplateArgumentListInfo TemplateArgsInfo;
1261  TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1262  TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1263  ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1264                                     TemplateId->NumArgs);
1265  S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1266  llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1267  for (auto &ArgLoc : TemplateArgsInfo.arguments())
1268    TemplateArgs.push_back(ArgLoc.getArgument());
1269  return S.Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false,
1270                               /*IsPack=*/false,
1271                               cast<ConceptDecl>(TemplateId->Template.get()
1272                                                 .getAsTemplateDecl()),
1273                               TemplateArgs);
1274}
1275
1276/// Convert the specified declspec to the appropriate type
1277/// object.
1278/// \param state Specifies the declarator containing the declaration specifier
1279/// to be converted, along with other associated processing state.
1280/// \returns The type described by the declaration specifiers.  This function
1281/// never returns null.
1282static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1283  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1284  // checking.
1285
1286  Sema &S = state.getSema();
1287  Declarator &declarator = state.getDeclarator();
1288  DeclSpec &DS = declarator.getMutableDeclSpec();
1289  SourceLocation DeclLoc = declarator.getIdentifierLoc();
1290  if (DeclLoc.isInvalid())
1291    DeclLoc = DS.getBeginLoc();
1292
1293  ASTContext &Context = S.Context;
1294
1295  QualType Result;
1296  switch (DS.getTypeSpecType()) {
1297  case DeclSpec::TST_void:
1298    Result = Context.VoidTy;
1299    break;
1300  case DeclSpec::TST_char:
1301    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
1302      Result = Context.CharTy;
1303    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
1304      Result = Context.SignedCharTy;
1305    else {
1306      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1307             "Unknown TSS value");
1308      Result = Context.UnsignedCharTy;
1309    }
1310    break;
1311  case DeclSpec::TST_wchar:
1312    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
1313      Result = Context.WCharTy;
1314    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
1315      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1316        << DS.getSpecifierName(DS.getTypeSpecType(),
1317                               Context.getPrintingPolicy());
1318      Result = Context.getSignedWCharType();
1319    } else {
1320      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1321        "Unknown TSS value");
1322      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1323        << DS.getSpecifierName(DS.getTypeSpecType(),
1324                               Context.getPrintingPolicy());
1325      Result = Context.getUnsignedWCharType();
1326    }
1327    break;
1328  case DeclSpec::TST_char8:
1329      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1330        "Unknown TSS value");
1331      Result = Context.Char8Ty;
1332    break;
1333  case DeclSpec::TST_char16:
1334      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1335        "Unknown TSS value");
1336      Result = Context.Char16Ty;
1337    break;
1338  case DeclSpec::TST_char32:
1339      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1340        "Unknown TSS value");
1341      Result = Context.Char32Ty;
1342    break;
1343  case DeclSpec::TST_unspecified:
1344    // If this is a missing declspec in a block literal return context, then it
1345    // is inferred from the return statements inside the block.
1346    // The declspec is always missing in a lambda expr context; it is either
1347    // specified with a trailing return type or inferred.
1348    if (S.getLangOpts().CPlusPlus14 &&
1349        declarator.getContext() == DeclaratorContext::LambdaExprContext) {
1350      // In C++1y, a lambda's implicit return type is 'auto'.
1351      Result = Context.getAutoDeductType();
1352      break;
1353    } else if (declarator.getContext() ==
1354                   DeclaratorContext::LambdaExprContext ||
1355               checkOmittedBlockReturnType(S, declarator,
1356                                           Context.DependentTy)) {
1357      Result = Context.DependentTy;
1358      break;
1359    }
1360
1361    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
1362    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1363    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
1364    // Note that the one exception to this is function definitions, which are
1365    // allowed to be completely missing a declspec.  This is handled in the
1366    // parser already though by it pretending to have seen an 'int' in this
1367    // case.
1368    if (S.getLangOpts().ImplicitInt) {
1369      // In C89 mode, we only warn if there is a completely missing declspec
1370      // when one is not allowed.
1371      if (DS.isEmpty()) {
1372        S.Diag(DeclLoc, diag::ext_missing_declspec)
1373            << DS.getSourceRange()
1374            << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1375      }
1376    } else if (!DS.hasTypeSpecifier()) {
1377      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
1378      // "At least one type specifier shall be given in the declaration
1379      // specifiers in each declaration, and in the specifier-qualifier list in
1380      // each struct declaration and type name."
1381      if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) {
1382        S.Diag(DeclLoc, diag::err_missing_type_specifier)
1383          << DS.getSourceRange();
1384
1385        // When this occurs in C++ code, often something is very broken with the
1386        // value being declared, poison it as invalid so we don't get chains of
1387        // errors.
1388        declarator.setInvalidType(true);
1389      } else if ((S.getLangOpts().OpenCLVersion >= 200 ||
1390                  S.getLangOpts().OpenCLCPlusPlus) &&
1391                 DS.isTypeSpecPipe()) {
1392        S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1393          << DS.getSourceRange();
1394        declarator.setInvalidType(true);
1395      } else {
1396        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1397          << DS.getSourceRange();
1398      }
1399    }
1400
1401    LLVM_FALLTHROUGH;
1402  case DeclSpec::TST_int: {
1403    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
1404      switch (DS.getTypeSpecWidth()) {
1405      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
1406      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
1407      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
1408      case DeclSpec::TSW_longlong:
1409        Result = Context.LongLongTy;
1410
1411        // 'long long' is a C99 or C++11 feature.
1412        if (!S.getLangOpts().C99) {
1413          if (S.getLangOpts().CPlusPlus)
1414            S.Diag(DS.getTypeSpecWidthLoc(),
1415                   S.getLangOpts().CPlusPlus11 ?
1416                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1417          else
1418            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1419        }
1420        break;
1421      }
1422    } else {
1423      switch (DS.getTypeSpecWidth()) {
1424      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
1425      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
1426      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
1427      case DeclSpec::TSW_longlong:
1428        Result = Context.UnsignedLongLongTy;
1429
1430        // 'long long' is a C99 or C++11 feature.
1431        if (!S.getLangOpts().C99) {
1432          if (S.getLangOpts().CPlusPlus)
1433            S.Diag(DS.getTypeSpecWidthLoc(),
1434                   S.getLangOpts().CPlusPlus11 ?
1435                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1436          else
1437            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1438        }
1439        break;
1440      }
1441    }
1442    break;
1443  }
1444  case DeclSpec::TST_accum: {
1445    switch (DS.getTypeSpecWidth()) {
1446      case DeclSpec::TSW_short:
1447        Result = Context.ShortAccumTy;
1448        break;
1449      case DeclSpec::TSW_unspecified:
1450        Result = Context.AccumTy;
1451        break;
1452      case DeclSpec::TSW_long:
1453        Result = Context.LongAccumTy;
1454        break;
1455      case DeclSpec::TSW_longlong:
1456        llvm_unreachable("Unable to specify long long as _Accum width");
1457    }
1458
1459    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1460      Result = Context.getCorrespondingUnsignedType(Result);
1461
1462    if (DS.isTypeSpecSat())
1463      Result = Context.getCorrespondingSaturatedType(Result);
1464
1465    break;
1466  }
1467  case DeclSpec::TST_fract: {
1468    switch (DS.getTypeSpecWidth()) {
1469      case DeclSpec::TSW_short:
1470        Result = Context.ShortFractTy;
1471        break;
1472      case DeclSpec::TSW_unspecified:
1473        Result = Context.FractTy;
1474        break;
1475      case DeclSpec::TSW_long:
1476        Result = Context.LongFractTy;
1477        break;
1478      case DeclSpec::TSW_longlong:
1479        llvm_unreachable("Unable to specify long long as _Fract width");
1480    }
1481
1482    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1483      Result = Context.getCorrespondingUnsignedType(Result);
1484
1485    if (DS.isTypeSpecSat())
1486      Result = Context.getCorrespondingSaturatedType(Result);
1487
1488    break;
1489  }
1490  case DeclSpec::TST_int128:
1491    if (!S.Context.getTargetInfo().hasInt128Type() &&
1492        !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1493      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1494        << "__int128";
1495    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1496      Result = Context.UnsignedInt128Ty;
1497    else
1498      Result = Context.Int128Ty;
1499    break;
1500  case DeclSpec::TST_float16:
1501    // CUDA host and device may have different _Float16 support, therefore
1502    // do not diagnose _Float16 usage to avoid false alarm.
1503    // ToDo: more precise diagnostics for CUDA.
1504    if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1505        !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1506      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1507        << "_Float16";
1508    Result = Context.Float16Ty;
1509    break;
1510  case DeclSpec::TST_half:    Result = Context.HalfTy; break;
1511  case DeclSpec::TST_float:   Result = Context.FloatTy; break;
1512  case DeclSpec::TST_double:
1513    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
1514      Result = Context.LongDoubleTy;
1515    else
1516      Result = Context.DoubleTy;
1517    break;
1518  case DeclSpec::TST_float128:
1519    if (!S.Context.getTargetInfo().hasFloat128Type() &&
1520        !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1521      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1522        << "__float128";
1523    Result = Context.Float128Ty;
1524    break;
1525  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
1526    break;
1527  case DeclSpec::TST_decimal32:    // _Decimal32
1528  case DeclSpec::TST_decimal64:    // _Decimal64
1529  case DeclSpec::TST_decimal128:   // _Decimal128
1530    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1531    Result = Context.IntTy;
1532    declarator.setInvalidType(true);
1533    break;
1534  case DeclSpec::TST_class:
1535  case DeclSpec::TST_enum:
1536  case DeclSpec::TST_union:
1537  case DeclSpec::TST_struct:
1538  case DeclSpec::TST_interface: {
1539    TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1540    if (!D) {
1541      // This can happen in C++ with ambiguous lookups.
1542      Result = Context.IntTy;
1543      declarator.setInvalidType(true);
1544      break;
1545    }
1546
1547    // If the type is deprecated or unavailable, diagnose it.
1548    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1549
1550    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1551           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
1552
1553    // TypeQuals handled by caller.
1554    Result = Context.getTypeDeclType(D);
1555
1556    // In both C and C++, make an ElaboratedType.
1557    ElaboratedTypeKeyword Keyword
1558      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1559    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1560                                 DS.isTypeSpecOwned() ? D : nullptr);
1561    break;
1562  }
1563  case DeclSpec::TST_typename: {
1564    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1565           DS.getTypeSpecSign() == 0 &&
1566           "Can't handle qualifiers on typedef names yet!");
1567    Result = S.GetTypeFromParser(DS.getRepAsType());
1568    if (Result.isNull()) {
1569      declarator.setInvalidType(true);
1570    }
1571
1572    // TypeQuals handled by caller.
1573    break;
1574  }
1575  case DeclSpec::TST_typeofType:
1576    // FIXME: Preserve type source info.
1577    Result = S.GetTypeFromParser(DS.getRepAsType());
1578    assert(!Result.isNull() && "Didn't get a type for typeof?");
1579    if (!Result->isDependentType())
1580      if (const TagType *TT = Result->getAs<TagType>())
1581        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1582    // TypeQuals handled by caller.
1583    Result = Context.getTypeOfType(Result);
1584    break;
1585  case DeclSpec::TST_typeofExpr: {
1586    Expr *E = DS.getRepAsExpr();
1587    assert(E && "Didn't get an expression for typeof?");
1588    // TypeQuals handled by caller.
1589    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1590    if (Result.isNull()) {
1591      Result = Context.IntTy;
1592      declarator.setInvalidType(true);
1593    }
1594    break;
1595  }
1596  case DeclSpec::TST_decltype: {
1597    Expr *E = DS.getRepAsExpr();
1598    assert(E && "Didn't get an expression for decltype?");
1599    // TypeQuals handled by caller.
1600    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1601    if (Result.isNull()) {
1602      Result = Context.IntTy;
1603      declarator.setInvalidType(true);
1604    }
1605    break;
1606  }
1607  case DeclSpec::TST_underlyingType:
1608    Result = S.GetTypeFromParser(DS.getRepAsType());
1609    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
1610    Result = S.BuildUnaryTransformType(Result,
1611                                       UnaryTransformType::EnumUnderlyingType,
1612                                       DS.getTypeSpecTypeLoc());
1613    if (Result.isNull()) {
1614      Result = Context.IntTy;
1615      declarator.setInvalidType(true);
1616    }
1617    break;
1618
1619  case DeclSpec::TST_auto:
1620    if (DS.isConstrainedAuto()) {
1621      Result = ConvertConstrainedAutoDeclSpecToType(S, DS,
1622                                                    AutoTypeKeyword::Auto);
1623      break;
1624    }
1625    Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
1626    break;
1627
1628  case DeclSpec::TST_auto_type:
1629    Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1630    break;
1631
1632  case DeclSpec::TST_decltype_auto:
1633    if (DS.isConstrainedAuto()) {
1634      Result =
1635          ConvertConstrainedAutoDeclSpecToType(S, DS,
1636                                               AutoTypeKeyword::DecltypeAuto);
1637      break;
1638    }
1639    Result = Context.getAutoType(QualType(), AutoTypeKeyword::DecltypeAuto,
1640                                 /*IsDependent*/ false);
1641    break;
1642
1643  case DeclSpec::TST_unknown_anytype:
1644    Result = Context.UnknownAnyTy;
1645    break;
1646
1647  case DeclSpec::TST_atomic:
1648    Result = S.GetTypeFromParser(DS.getRepAsType());
1649    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1650    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1651    if (Result.isNull()) {
1652      Result = Context.IntTy;
1653      declarator.setInvalidType(true);
1654    }
1655    break;
1656
1657#define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
1658  case DeclSpec::TST_##ImgType##_t:                                            \
1659    switch (getImageAccess(DS.getAttributes())) {                              \
1660    case OpenCLAccessAttr::Keyword_write_only:                                 \
1661      Result = Context.Id##WOTy;                                               \
1662      break;                                                                   \
1663    case OpenCLAccessAttr::Keyword_read_write:                                 \
1664      Result = Context.Id##RWTy;                                               \
1665      break;                                                                   \
1666    case OpenCLAccessAttr::Keyword_read_only:                                  \
1667      Result = Context.Id##ROTy;                                               \
1668      break;                                                                   \
1669    case OpenCLAccessAttr::SpellingNotCalculated:                              \
1670      llvm_unreachable("Spelling not yet calculated");                         \
1671    }                                                                          \
1672    break;
1673#include "clang/Basic/OpenCLImageTypes.def"
1674
1675  case DeclSpec::TST_error:
1676    Result = Context.IntTy;
1677    declarator.setInvalidType(true);
1678    break;
1679  }
1680
1681  if (S.getLangOpts().OpenCL &&
1682      S.checkOpenCLDisabledTypeDeclSpec(DS, Result))
1683    declarator.setInvalidType(true);
1684
1685  bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1686                          DS.getTypeSpecType() == DeclSpec::TST_fract;
1687
1688  // Only fixed point types can be saturated
1689  if (DS.isTypeSpecSat() && !IsFixedPointType)
1690    S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1691        << DS.getSpecifierName(DS.getTypeSpecType(),
1692                               Context.getPrintingPolicy());
1693
1694  // Handle complex types.
1695  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1696    if (S.getLangOpts().Freestanding)
1697      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1698    Result = Context.getComplexType(Result);
1699  } else if (DS.isTypeAltiVecVector()) {
1700    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1701    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1702    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1703    if (DS.isTypeAltiVecPixel())
1704      VecKind = VectorType::AltiVecPixel;
1705    else if (DS.isTypeAltiVecBool())
1706      VecKind = VectorType::AltiVecBool;
1707    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1708  }
1709
1710  // FIXME: Imaginary.
1711  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1712    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1713
1714  // Before we process any type attributes, synthesize a block literal
1715  // function declarator if necessary.
1716  if (declarator.getContext() == DeclaratorContext::BlockLiteralContext)
1717    maybeSynthesizeBlockSignature(state, Result);
1718
1719  // Apply any type attributes from the decl spec.  This may cause the
1720  // list of type attributes to be temporarily saved while the type
1721  // attributes are pushed around.
1722  // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1723  if (!DS.isTypeSpecPipe())
1724    processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1725
1726  // Apply const/volatile/restrict qualifiers to T.
1727  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1728    // Warn about CV qualifiers on function types.
1729    // C99 6.7.3p8:
1730    //   If the specification of a function type includes any type qualifiers,
1731    //   the behavior is undefined.
1732    // C++11 [dcl.fct]p7:
1733    //   The effect of a cv-qualifier-seq in a function declarator is not the
1734    //   same as adding cv-qualification on top of the function type. In the
1735    //   latter case, the cv-qualifiers are ignored.
1736    if (TypeQuals && Result->isFunctionType()) {
1737      diagnoseAndRemoveTypeQualifiers(
1738          S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1739          S.getLangOpts().CPlusPlus
1740              ? diag::warn_typecheck_function_qualifiers_ignored
1741              : diag::warn_typecheck_function_qualifiers_unspecified);
1742      // No diagnostic for 'restrict' or '_Atomic' applied to a
1743      // function type; we'll diagnose those later, in BuildQualifiedType.
1744    }
1745
1746    // C++11 [dcl.ref]p1:
1747    //   Cv-qualified references are ill-formed except when the
1748    //   cv-qualifiers are introduced through the use of a typedef-name
1749    //   or decltype-specifier, in which case the cv-qualifiers are ignored.
1750    //
1751    // There don't appear to be any other contexts in which a cv-qualified
1752    // reference type could be formed, so the 'ill-formed' clause here appears
1753    // to never happen.
1754    if (TypeQuals && Result->isReferenceType()) {
1755      diagnoseAndRemoveTypeQualifiers(
1756          S, DS, TypeQuals, Result,
1757          DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1758          diag::warn_typecheck_reference_qualifiers);
1759    }
1760
1761    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1762    // than once in the same specifier-list or qualifier-list, either directly
1763    // or via one or more typedefs."
1764    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1765        && TypeQuals & Result.getCVRQualifiers()) {
1766      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1767        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1768          << "const";
1769      }
1770
1771      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1772        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1773          << "volatile";
1774      }
1775
1776      // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1777      // produce a warning in this case.
1778    }
1779
1780    QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1781
1782    // If adding qualifiers fails, just use the unqualified type.
1783    if (Qualified.isNull())
1784      declarator.setInvalidType(true);
1785    else
1786      Result = Qualified;
1787  }
1788
1789  assert(!Result.isNull() && "This function should not return a null type");
1790  return Result;
1791}
1792
1793static std::string getPrintableNameForEntity(DeclarationName Entity) {
1794  if (Entity)
1795    return Entity.getAsString();
1796
1797  return "type name";
1798}
1799
1800QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1801                                  Qualifiers Qs, const DeclSpec *DS) {
1802  if (T.isNull())
1803    return QualType();
1804
1805  // Ignore any attempt to form a cv-qualified reference.
1806  if (T->isReferenceType()) {
1807    Qs.removeConst();
1808    Qs.removeVolatile();
1809  }
1810
1811  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1812  // object or incomplete types shall not be restrict-qualified."
1813  if (Qs.hasRestrict()) {
1814    unsigned DiagID = 0;
1815    QualType ProblemTy;
1816
1817    if (T->isAnyPointerType() || T->isReferenceType() ||
1818        T->isMemberPointerType()) {
1819      QualType EltTy;
1820      if (T->isObjCObjectPointerType())
1821        EltTy = T;
1822      else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1823        EltTy = PTy->getPointeeType();
1824      else
1825        EltTy = T->getPointeeType();
1826
1827      // If we have a pointer or reference, the pointee must have an object
1828      // incomplete type.
1829      if (!EltTy->isIncompleteOrObjectType()) {
1830        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1831        ProblemTy = EltTy;
1832      }
1833    } else if (!T->isDependentType()) {
1834      DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1835      ProblemTy = T;
1836    }
1837
1838    if (DiagID) {
1839      Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1840      Qs.removeRestrict();
1841    }
1842  }
1843
1844  return Context.getQualifiedType(T, Qs);
1845}
1846
1847QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1848                                  unsigned CVRAU, const DeclSpec *DS) {
1849  if (T.isNull())
1850    return QualType();
1851
1852  // Ignore any attempt to form a cv-qualified reference.
1853  if (T->isReferenceType())
1854    CVRAU &=
1855        ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1856
1857  // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1858  // TQ_unaligned;
1859  unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1860
1861  // C11 6.7.3/5:
1862  //   If the same qualifier appears more than once in the same
1863  //   specifier-qualifier-list, either directly or via one or more typedefs,
1864  //   the behavior is the same as if it appeared only once.
1865  //
1866  // It's not specified what happens when the _Atomic qualifier is applied to
1867  // a type specified with the _Atomic specifier, but we assume that this
1868  // should be treated as if the _Atomic qualifier appeared multiple times.
1869  if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1870    // C11 6.7.3/5:
1871    //   If other qualifiers appear along with the _Atomic qualifier in a
1872    //   specifier-qualifier-list, the resulting type is the so-qualified
1873    //   atomic type.
1874    //
1875    // Don't need to worry about array types here, since _Atomic can't be
1876    // applied to such types.
1877    SplitQualType Split = T.getSplitUnqualifiedType();
1878    T = BuildAtomicType(QualType(Split.Ty, 0),
1879                        DS ? DS->getAtomicSpecLoc() : Loc);
1880    if (T.isNull())
1881      return T;
1882    Split.Quals.addCVRQualifiers(CVR);
1883    return BuildQualifiedType(T, Loc, Split.Quals);
1884  }
1885
1886  Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1887  Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1888  return BuildQualifiedType(T, Loc, Q, DS);
1889}
1890
1891/// Build a paren type including \p T.
1892QualType Sema::BuildParenType(QualType T) {
1893  return Context.getParenType(T);
1894}
1895
1896/// Given that we're building a pointer or reference to the given
1897static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1898                                           SourceLocation loc,
1899                                           bool isReference) {
1900  // Bail out if retention is unrequired or already specified.
1901  if (!type->isObjCLifetimeType() ||
1902      type.getObjCLifetime() != Qualifiers::OCL_None)
1903    return type;
1904
1905  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1906
1907  // If the object type is const-qualified, we can safely use
1908  // __unsafe_unretained.  This is safe (because there are no read
1909  // barriers), and it'll be safe to coerce anything but __weak* to
1910  // the resulting type.
1911  if (type.isConstQualified()) {
1912    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1913
1914  // Otherwise, check whether the static type does not require
1915  // retaining.  This currently only triggers for Class (possibly
1916  // protocol-qualifed, and arrays thereof).
1917  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1918    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1919
1920  // If we are in an unevaluated context, like sizeof, skip adding a
1921  // qualification.
1922  } else if (S.isUnevaluatedContext()) {
1923    return type;
1924
1925  // If that failed, give an error and recover using __strong.  __strong
1926  // is the option most likely to prevent spurious second-order diagnostics,
1927  // like when binding a reference to a field.
1928  } else {
1929    // These types can show up in private ivars in system headers, so
1930    // we need this to not be an error in those cases.  Instead we
1931    // want to delay.
1932    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1933      S.DelayedDiagnostics.add(
1934          sema::DelayedDiagnostic::makeForbiddenType(loc,
1935              diag::err_arc_indirect_no_ownership, type, isReference));
1936    } else {
1937      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1938    }
1939    implicitLifetime = Qualifiers::OCL_Strong;
1940  }
1941  assert(implicitLifetime && "didn't infer any lifetime!");
1942
1943  Qualifiers qs;
1944  qs.addObjCLifetime(implicitLifetime);
1945  return S.Context.getQualifiedType(type, qs);
1946}
1947
1948static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1949  std::string Quals = FnTy->getMethodQuals().getAsString();
1950
1951  switch (FnTy->getRefQualifier()) {
1952  case RQ_None:
1953    break;
1954
1955  case RQ_LValue:
1956    if (!Quals.empty())
1957      Quals += ' ';
1958    Quals += '&';
1959    break;
1960
1961  case RQ_RValue:
1962    if (!Quals.empty())
1963      Quals += ' ';
1964    Quals += "&&";
1965    break;
1966  }
1967
1968  return Quals;
1969}
1970
1971namespace {
1972/// Kinds of declarator that cannot contain a qualified function type.
1973///
1974/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1975///     a function type with a cv-qualifier or a ref-qualifier can only appear
1976///     at the topmost level of a type.
1977///
1978/// Parens and member pointers are permitted. We don't diagnose array and
1979/// function declarators, because they don't allow function types at all.
1980///
1981/// The values of this enum are used in diagnostics.
1982enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1983} // end anonymous namespace
1984
1985/// Check whether the type T is a qualified function type, and if it is,
1986/// diagnose that it cannot be contained within the given kind of declarator.
1987static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1988                                   QualifiedFunctionKind QFK) {
1989  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1990  const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1991  if (!FPT ||
1992      (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1993    return false;
1994
1995  S.Diag(Loc, diag::err_compound_qualified_function_type)
1996    << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1997    << getFunctionQualifiersAsString(FPT);
1998  return true;
1999}
2000
2001bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
2002  const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2003  if (!FPT ||
2004      (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2005    return false;
2006
2007  Diag(Loc, diag::err_qualified_function_typeid)
2008      << T << getFunctionQualifiersAsString(FPT);
2009  return true;
2010}
2011
2012// Helper to deduce addr space of a pointee type in OpenCL mode.
2013static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
2014  if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
2015      !PointeeType->isSamplerT() &&
2016      !PointeeType.hasAddressSpace())
2017    PointeeType = S.getASTContext().getAddrSpaceQualType(
2018        PointeeType,
2019        S.getLangOpts().OpenCLCPlusPlus || S.getLangOpts().OpenCLVersion == 200
2020            ? LangAS::opencl_generic
2021            : LangAS::opencl_private);
2022  return PointeeType;
2023}
2024
2025/// Build a pointer type.
2026///
2027/// \param T The type to which we'll be building a pointer.
2028///
2029/// \param Loc The location of the entity whose type involves this
2030/// pointer type or, if there is no such entity, the location of the
2031/// type that will have pointer type.
2032///
2033/// \param Entity The name of the entity that involves the pointer
2034/// type, if known.
2035///
2036/// \returns A suitable pointer type, if there are no
2037/// errors. Otherwise, returns a NULL type.
2038QualType Sema::BuildPointerType(QualType T,
2039                                SourceLocation Loc, DeclarationName Entity) {
2040  if (T->isReferenceType()) {
2041    // C++ 8.3.2p4: There shall be no ... pointers to references ...
2042    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
2043      << getPrintableNameForEntity(Entity) << T;
2044    return QualType();
2045  }
2046
2047  if (T->isFunctionType() && getLangOpts().OpenCL) {
2048    Diag(Loc, diag::err_opencl_function_pointer);
2049    return QualType();
2050  }
2051
2052  if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
2053    return QualType();
2054
2055  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
2056
2057  // In ARC, it is forbidden to build pointers to unqualified pointers.
2058  if (getLangOpts().ObjCAutoRefCount)
2059    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
2060
2061  if (getLangOpts().OpenCL)
2062    T = deduceOpenCLPointeeAddrSpace(*this, T);
2063
2064  // Build the pointer type.
2065  return Context.getPointerType(T);
2066}
2067
2068/// Build a reference type.
2069///
2070/// \param T The type to which we'll be building a reference.
2071///
2072/// \param Loc The location of the entity whose type involves this
2073/// reference type or, if there is no such entity, the location of the
2074/// type that will have reference type.
2075///
2076/// \param Entity The name of the entity that involves the reference
2077/// type, if known.
2078///
2079/// \returns A suitable reference type, if there are no
2080/// errors. Otherwise, returns a NULL type.
2081QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
2082                                  SourceLocation Loc,
2083                                  DeclarationName Entity) {
2084  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
2085         "Unresolved overloaded function type");
2086
2087  // C++0x [dcl.ref]p6:
2088  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2089  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2090  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
2091  //   the type "lvalue reference to T", while an attempt to create the type
2092  //   "rvalue reference to cv TR" creates the type TR.
2093  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
2094
2095  // C++ [dcl.ref]p4: There shall be no references to references.
2096  //
2097  // According to C++ DR 106, references to references are only
2098  // diagnosed when they are written directly (e.g., "int & &"),
2099  // but not when they happen via a typedef:
2100  //
2101  //   typedef int& intref;
2102  //   typedef intref& intref2;
2103  //
2104  // Parser::ParseDeclaratorInternal diagnoses the case where
2105  // references are written directly; here, we handle the
2106  // collapsing of references-to-references as described in C++0x.
2107  // DR 106 and 540 introduce reference-collapsing into C++98/03.
2108
2109  // C++ [dcl.ref]p1:
2110  //   A declarator that specifies the type "reference to cv void"
2111  //   is ill-formed.
2112  if (T->isVoidType()) {
2113    Diag(Loc, diag::err_reference_to_void);
2114    return QualType();
2115  }
2116
2117  if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2118    return QualType();
2119
2120  // In ARC, it is forbidden to build references to unqualified pointers.
2121  if (getLangOpts().ObjCAutoRefCount)
2122    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2123
2124  if (getLangOpts().OpenCL)
2125    T = deduceOpenCLPointeeAddrSpace(*this, T);
2126
2127  // Handle restrict on references.
2128  if (LValueRef)
2129    return Context.getLValueReferenceType(T, SpelledAsLValue);
2130  return Context.getRValueReferenceType(T);
2131}
2132
2133/// Build a Read-only Pipe type.
2134///
2135/// \param T The type to which we'll be building a Pipe.
2136///
2137/// \param Loc We do not use it for now.
2138///
2139/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2140/// NULL type.
2141QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2142  return Context.getReadPipeType(T);
2143}
2144
2145/// Build a Write-only Pipe type.
2146///
2147/// \param T The type to which we'll be building a Pipe.
2148///
2149/// \param Loc We do not use it for now.
2150///
2151/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2152/// NULL type.
2153QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2154  return Context.getWritePipeType(T);
2155}
2156
2157/// Check whether the specified array size makes the array type a VLA.  If so,
2158/// return true, if not, return the size of the array in SizeVal.
2159static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
2160  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2161  // (like gnu99, but not c99) accept any evaluatable value as an extension.
2162  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2163  public:
2164    VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
2165
2166    void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
2167    }
2168
2169    void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
2170      S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
2171    }
2172  } Diagnoser;
2173
2174  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
2175                                           S.LangOpts.GNUMode ||
2176                                           S.LangOpts.OpenCL).isInvalid();
2177}
2178
2179/// Build an array type.
2180///
2181/// \param T The type of each element in the array.
2182///
2183/// \param ASM C99 array size modifier (e.g., '*', 'static').
2184///
2185/// \param ArraySize Expression describing the size of the array.
2186///
2187/// \param Brackets The range from the opening '[' to the closing ']'.
2188///
2189/// \param Entity The name of the entity that involves the array
2190/// type, if known.
2191///
2192/// \returns A suitable array type, if there are no errors. Otherwise,
2193/// returns a NULL type.
2194QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
2195                              Expr *ArraySize, unsigned Quals,
2196                              SourceRange Brackets, DeclarationName Entity) {
2197
2198  SourceLocation Loc = Brackets.getBegin();
2199  if (getLangOpts().CPlusPlus) {
2200    // C++ [dcl.array]p1:
2201    //   T is called the array element type; this type shall not be a reference
2202    //   type, the (possibly cv-qualified) type void, a function type or an
2203    //   abstract class type.
2204    //
2205    // C++ [dcl.array]p3:
2206    //   When several "array of" specifications are adjacent, [...] only the
2207    //   first of the constant expressions that specify the bounds of the arrays
2208    //   may be omitted.
2209    //
2210    // Note: function types are handled in the common path with C.
2211    if (T->isReferenceType()) {
2212      Diag(Loc, diag::err_illegal_decl_array_of_references)
2213      << getPrintableNameForEntity(Entity) << T;
2214      return QualType();
2215    }
2216
2217    if (T->isVoidType() || T->isIncompleteArrayType()) {
2218      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
2219      return QualType();
2220    }
2221
2222    if (RequireNonAbstractType(Brackets.getBegin(), T,
2223                               diag::err_array_of_abstract_type))
2224      return QualType();
2225
2226    // Mentioning a member pointer type for an array type causes us to lock in
2227    // an inheritance model, even if it's inside an unused typedef.
2228    if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2229      if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2230        if (!MPTy->getClass()->isDependentType())
2231          (void)isCompleteType(Loc, T);
2232
2233  } else {
2234    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2235    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2236    if (RequireCompleteType(Loc, T,
2237                            diag::err_illegal_decl_array_incomplete_type))
2238      return QualType();
2239  }
2240
2241  if (T->isFunctionType()) {
2242    Diag(Loc, diag::err_illegal_decl_array_of_functions)
2243      << getPrintableNameForEntity(Entity) << T;
2244    return QualType();
2245  }
2246
2247  if (const RecordType *EltTy = T->getAs<RecordType>()) {
2248    // If the element type is a struct or union that contains a variadic
2249    // array, accept it as a GNU extension: C99 6.7.2.1p2.
2250    if (EltTy->getDecl()->hasFlexibleArrayMember())
2251      Diag(Loc, diag::ext_flexible_array_in_array) << T;
2252  } else if (T->isObjCObjectType()) {
2253    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2254    return QualType();
2255  }
2256
2257  // Do placeholder conversions on the array size expression.
2258  if (ArraySize && ArraySize->hasPlaceholderType()) {
2259    ExprResult Result = CheckPlaceholderExpr(ArraySize);
2260    if (Result.isInvalid()) return QualType();
2261    ArraySize = Result.get();
2262  }
2263
2264  // Do lvalue-to-rvalue conversions on the array size expression.
2265  if (ArraySize && !ArraySize->isRValue()) {
2266    ExprResult Result = DefaultLvalueConversion(ArraySize);
2267    if (Result.isInvalid())
2268      return QualType();
2269
2270    ArraySize = Result.get();
2271  }
2272
2273  // C99 6.7.5.2p1: The size expression shall have integer type.
2274  // C++11 allows contextual conversions to such types.
2275  if (!getLangOpts().CPlusPlus11 &&
2276      ArraySize && !ArraySize->isTypeDependent() &&
2277      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2278    Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2279        << ArraySize->getType() << ArraySize->getSourceRange();
2280    return QualType();
2281  }
2282
2283  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2284  if (!ArraySize) {
2285    if (ASM == ArrayType::Star)
2286      T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2287    else
2288      T = Context.getIncompleteArrayType(T, ASM, Quals);
2289  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2290    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2291  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
2292              !T->isConstantSizeType()) ||
2293             isArraySizeVLA(*this, ArraySize, ConstVal)) {
2294    // Even in C++11, don't allow contextual conversions in the array bound
2295    // of a VLA.
2296    if (getLangOpts().CPlusPlus11 &&
2297        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2298      Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2299          << ArraySize->getType() << ArraySize->getSourceRange();
2300      return QualType();
2301    }
2302
2303    // C99: an array with an element type that has a non-constant-size is a VLA.
2304    // C99: an array with a non-ICE size is a VLA.  We accept any expression
2305    // that we can fold to a non-zero positive value as an extension.
2306    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2307  } else {
2308    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2309    // have a value greater than zero.
2310    if (ConstVal.isSigned() && ConstVal.isNegative()) {
2311      if (Entity)
2312        Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2313            << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
2314      else
2315        Diag(ArraySize->getBeginLoc(), diag::err_typecheck_negative_array_size)
2316            << ArraySize->getSourceRange();
2317      return QualType();
2318    }
2319    if (ConstVal == 0) {
2320      // GCC accepts zero sized static arrays. We allow them when
2321      // we're not in a SFINAE context.
2322      Diag(ArraySize->getBeginLoc(), isSFINAEContext()
2323                                         ? diag::err_typecheck_zero_array_size
2324                                         : diag::ext_typecheck_zero_array_size)
2325          << ArraySize->getSourceRange();
2326
2327      if (ASM == ArrayType::Static) {
2328        Diag(ArraySize->getBeginLoc(),
2329             diag::warn_typecheck_zero_static_array_size)
2330            << ArraySize->getSourceRange();
2331        ASM = ArrayType::Normal;
2332      }
2333    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
2334               !T->isIncompleteType() && !T->isUndeducedType()) {
2335      // Is the array too large?
2336      unsigned ActiveSizeBits
2337        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
2338      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2339        Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2340            << ConstVal.toString(10) << ArraySize->getSourceRange();
2341        return QualType();
2342      }
2343    }
2344
2345    T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2346  }
2347
2348  // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2349  if (getLangOpts().OpenCL && T->isVariableArrayType()) {
2350    Diag(Loc, diag::err_opencl_vla);
2351    return QualType();
2352  }
2353
2354  if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2355    // CUDA device code and some other targets don't support VLAs.
2356    targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2357                        ? diag::err_cuda_vla
2358                        : diag::err_vla_unsupported)
2359        << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2360                ? CurrentCUDATarget()
2361                : CFT_InvalidTarget);
2362  }
2363
2364  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
2365  if (!getLangOpts().C99) {
2366    if (T->isVariableArrayType()) {
2367      // Prohibit the use of VLAs during template argument deduction.
2368      if (isSFINAEContext()) {
2369        Diag(Loc, diag::err_vla_in_sfinae);
2370        return QualType();
2371      }
2372      // Just extwarn about VLAs.
2373      else
2374        Diag(Loc, diag::ext_vla);
2375    } else if (ASM != ArrayType::Normal || Quals != 0)
2376      Diag(Loc,
2377           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
2378                                  : diag::ext_c99_array_usage) << ASM;
2379  }
2380
2381  if (T->isVariableArrayType()) {
2382    // Warn about VLAs for -Wvla.
2383    Diag(Loc, diag::warn_vla_used);
2384  }
2385
2386  // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2387  // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2388  // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2389  if (getLangOpts().OpenCL) {
2390    const QualType ArrType = Context.getBaseElementType(T);
2391    if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2392        ArrType->isSamplerT() || ArrType->isImageType()) {
2393      Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2394      return QualType();
2395    }
2396  }
2397
2398  return T;
2399}
2400
2401QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2402                               SourceLocation AttrLoc) {
2403  // The base type must be integer (not Boolean or enumeration) or float, and
2404  // can't already be a vector.
2405  if (!CurType->isDependentType() &&
2406      (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2407       (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) {
2408    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2409    return QualType();
2410  }
2411
2412  if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2413    return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2414                                               VectorType::GenericVector);
2415
2416  llvm::APSInt VecSize(32);
2417  if (!SizeExpr->isIntegerConstantExpr(VecSize, Context)) {
2418    Diag(AttrLoc, diag::err_attribute_argument_type)
2419        << "vector_size" << AANT_ArgumentIntegerConstant
2420        << SizeExpr->getSourceRange();
2421    return QualType();
2422  }
2423
2424  if (CurType->isDependentType())
2425    return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2426                                               VectorType::GenericVector);
2427
2428  unsigned VectorSize = static_cast<unsigned>(VecSize.getZExtValue() * 8);
2429  unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2430
2431  if (VectorSize == 0) {
2432    Diag(AttrLoc, diag::err_attribute_zero_size) << SizeExpr->getSourceRange();
2433    return QualType();
2434  }
2435
2436  // vecSize is specified in bytes - convert to bits.
2437  if (VectorSize % TypeSize) {
2438    Diag(AttrLoc, diag::err_attribute_invalid_size)
2439        << SizeExpr->getSourceRange();
2440    return QualType();
2441  }
2442
2443  if (VectorType::isVectorSizeTooLarge(VectorSize / TypeSize)) {
2444    Diag(AttrLoc, diag::err_attribute_size_too_large)
2445        << SizeExpr->getSourceRange();
2446    return QualType();
2447  }
2448
2449  return Context.getVectorType(CurType, VectorSize / TypeSize,
2450                               VectorType::GenericVector);
2451}
2452
2453/// Build an ext-vector type.
2454///
2455/// Run the required checks for the extended vector type.
2456QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2457                                  SourceLocation AttrLoc) {
2458  // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2459  // in conjunction with complex types (pointers, arrays, functions, etc.).
2460  //
2461  // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2462  // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2463  // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2464  // of bool aren't allowed.
2465  if ((!T->isDependentType() && !T->isIntegerType() &&
2466       !T->isRealFloatingType()) ||
2467      T->isBooleanType()) {
2468    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2469    return QualType();
2470  }
2471
2472  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2473    llvm::APSInt vecSize(32);
2474    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
2475      Diag(AttrLoc, diag::err_attribute_argument_type)
2476        << "ext_vector_type" << AANT_ArgumentIntegerConstant
2477        << ArraySize->getSourceRange();
2478      return QualType();
2479    }
2480
2481    // Unlike gcc's vector_size attribute, the size is specified as the
2482    // number of elements, not the number of bytes.
2483    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2484
2485    if (vectorSize == 0) {
2486      Diag(AttrLoc, diag::err_attribute_zero_size)
2487      << ArraySize->getSourceRange();
2488      return QualType();
2489    }
2490
2491    if (VectorType::isVectorSizeTooLarge(vectorSize)) {
2492      Diag(AttrLoc, diag::err_attribute_size_too_large)
2493        << ArraySize->getSourceRange();
2494      return QualType();
2495    }
2496
2497    return Context.getExtVectorType(T, vectorSize);
2498  }
2499
2500  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2501}
2502
2503bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2504  if (T->isArrayType() || T->isFunctionType()) {
2505    Diag(Loc, diag::err_func_returning_array_function)
2506      << T->isFunctionType() << T;
2507    return true;
2508  }
2509
2510  // Functions cannot return half FP.
2511  if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2512    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2513      FixItHint::CreateInsertion(Loc, "*");
2514    return true;
2515  }
2516
2517  // Methods cannot return interface types. All ObjC objects are
2518  // passed by reference.
2519  if (T->isObjCObjectType()) {
2520    Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2521        << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2522    return true;
2523  }
2524
2525  if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2526      T.hasNonTrivialToPrimitiveCopyCUnion())
2527    checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2528                          NTCUK_Destruct|NTCUK_Copy);
2529
2530  // C++2a [dcl.fct]p12:
2531  //   A volatile-qualified return type is deprecated
2532  if (T.isVolatileQualified() && getLangOpts().CPlusPlus2a)
2533    Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2534
2535  return false;
2536}
2537
2538/// Check the extended parameter information.  Most of the necessary
2539/// checking should occur when applying the parameter attribute; the
2540/// only other checks required are positional restrictions.
2541static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2542                    const FunctionProtoType::ExtProtoInfo &EPI,
2543                    llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2544  assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2545
2546  bool hasCheckedSwiftCall = false;
2547  auto checkForSwiftCC = [&](unsigned paramIndex) {
2548    // Only do this once.
2549    if (hasCheckedSwiftCall) return;
2550    hasCheckedSwiftCall = true;
2551    if (EPI.ExtInfo.getCC() == CC_Swift) return;
2552    S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2553      << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
2554  };
2555
2556  for (size_t paramIndex = 0, numParams = paramTypes.size();
2557          paramIndex != numParams; ++paramIndex) {
2558    switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2559    // Nothing interesting to check for orindary-ABI parameters.
2560    case ParameterABI::Ordinary:
2561      continue;
2562
2563    // swift_indirect_result parameters must be a prefix of the function
2564    // arguments.
2565    case ParameterABI::SwiftIndirectResult:
2566      checkForSwiftCC(paramIndex);
2567      if (paramIndex != 0 &&
2568          EPI.ExtParameterInfos[paramIndex - 1].getABI()
2569            != ParameterABI::SwiftIndirectResult) {
2570        S.Diag(getParamLoc(paramIndex),
2571               diag::err_swift_indirect_result_not_first);
2572      }
2573      continue;
2574
2575    case ParameterABI::SwiftContext:
2576      checkForSwiftCC(paramIndex);
2577      continue;
2578
2579    // swift_error parameters must be preceded by a swift_context parameter.
2580    case ParameterABI::SwiftErrorResult:
2581      checkForSwiftCC(paramIndex);
2582      if (paramIndex == 0 ||
2583          EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2584              ParameterABI::SwiftContext) {
2585        S.Diag(getParamLoc(paramIndex),
2586               diag::err_swift_error_result_not_after_swift_context);
2587      }
2588      continue;
2589    }
2590    llvm_unreachable("bad ABI kind");
2591  }
2592}
2593
2594QualType Sema::BuildFunctionType(QualType T,
2595                                 MutableArrayRef<QualType> ParamTypes,
2596                                 SourceLocation Loc, DeclarationName Entity,
2597                                 const FunctionProtoType::ExtProtoInfo &EPI) {
2598  bool Invalid = false;
2599
2600  Invalid |= CheckFunctionReturnType(T, Loc);
2601
2602  for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2603    // FIXME: Loc is too inprecise here, should use proper locations for args.
2604    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2605    if (ParamType->isVoidType()) {
2606      Diag(Loc, diag::err_param_with_void_type);
2607      Invalid = true;
2608    } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2609      // Disallow half FP arguments.
2610      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2611        FixItHint::CreateInsertion(Loc, "*");
2612      Invalid = true;
2613    }
2614
2615    // C++2a [dcl.fct]p4:
2616    //   A parameter with volatile-qualified type is deprecated
2617    if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus2a)
2618      Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2619
2620    ParamTypes[Idx] = ParamType;
2621  }
2622
2623  if (EPI.ExtParameterInfos) {
2624    checkExtParameterInfos(*this, ParamTypes, EPI,
2625                           [=](unsigned i) { return Loc; });
2626  }
2627
2628  if (EPI.ExtInfo.getProducesResult()) {
2629    // This is just a warning, so we can't fail to build if we see it.
2630    checkNSReturnsRetainedReturnType(Loc, T);
2631  }
2632
2633  if (Invalid)
2634    return QualType();
2635
2636  return Context.getFunctionType(T, ParamTypes, EPI);
2637}
2638
2639/// Build a member pointer type \c T Class::*.
2640///
2641/// \param T the type to which the member pointer refers.
2642/// \param Class the class type into which the member pointer points.
2643/// \param Loc the location where this type begins
2644/// \param Entity the name of the entity that will have this member pointer type
2645///
2646/// \returns a member pointer type, if successful, or a NULL type if there was
2647/// an error.
2648QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2649                                      SourceLocation Loc,
2650                                      DeclarationName Entity) {
2651  // Verify that we're not building a pointer to pointer to function with
2652  // exception specification.
2653  if (CheckDistantExceptionSpec(T)) {
2654    Diag(Loc, diag::err_distant_exception_spec);
2655    return QualType();
2656  }
2657
2658  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2659  //   with reference type, or "cv void."
2660  if (T->isReferenceType()) {
2661    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2662      << getPrintableNameForEntity(Entity) << T;
2663    return QualType();
2664  }
2665
2666  if (T->isVoidType()) {
2667    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2668      << getPrintableNameForEntity(Entity);
2669    return QualType();
2670  }
2671
2672  if (!Class->isDependentType() && !Class->isRecordType()) {
2673    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2674    return QualType();
2675  }
2676
2677  // Adjust the default free function calling convention to the default method
2678  // calling convention.
2679  bool IsCtorOrDtor =
2680      (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2681      (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2682  if (T->isFunctionType())
2683    adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2684
2685  return Context.getMemberPointerType(T, Class.getTypePtr());
2686}
2687
2688/// Build a block pointer type.
2689///
2690/// \param T The type to which we'll be building a block pointer.
2691///
2692/// \param Loc The source location, used for diagnostics.
2693///
2694/// \param Entity The name of the entity that involves the block pointer
2695/// type, if known.
2696///
2697/// \returns A suitable block pointer type, if there are no
2698/// errors. Otherwise, returns a NULL type.
2699QualType Sema::BuildBlockPointerType(QualType T,
2700                                     SourceLocation Loc,
2701                                     DeclarationName Entity) {
2702  if (!T->isFunctionType()) {
2703    Diag(Loc, diag::err_nonfunction_block_type);
2704    return QualType();
2705  }
2706
2707  if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2708    return QualType();
2709
2710  if (getLangOpts().OpenCL)
2711    T = deduceOpenCLPointeeAddrSpace(*this, T);
2712
2713  return Context.getBlockPointerType(T);
2714}
2715
2716QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2717  QualType QT = Ty.get();
2718  if (QT.isNull()) {
2719    if (TInfo) *TInfo = nullptr;
2720    return QualType();
2721  }
2722
2723  TypeSourceInfo *DI = nullptr;
2724  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2725    QT = LIT->getType();
2726    DI = LIT->getTypeSourceInfo();
2727  }
2728
2729  if (TInfo) *TInfo = DI;
2730  return QT;
2731}
2732
2733static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2734                                            Qualifiers::ObjCLifetime ownership,
2735                                            unsigned chunkIndex);
2736
2737/// Given that this is the declaration of a parameter under ARC,
2738/// attempt to infer attributes and such for pointer-to-whatever
2739/// types.
2740static void inferARCWriteback(TypeProcessingState &state,
2741                              QualType &declSpecType) {
2742  Sema &S = state.getSema();
2743  Declarator &declarator = state.getDeclarator();
2744
2745  // TODO: should we care about decl qualifiers?
2746
2747  // Check whether the declarator has the expected form.  We walk
2748  // from the inside out in order to make the block logic work.
2749  unsigned outermostPointerIndex = 0;
2750  bool isBlockPointer = false;
2751  unsigned numPointers = 0;
2752  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2753    unsigned chunkIndex = i;
2754    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2755    switch (chunk.Kind) {
2756    case DeclaratorChunk::Paren:
2757      // Ignore parens.
2758      break;
2759
2760    case DeclaratorChunk::Reference:
2761    case DeclaratorChunk::Pointer:
2762      // Count the number of pointers.  Treat references
2763      // interchangeably as pointers; if they're mis-ordered, normal
2764      // type building will discover that.
2765      outermostPointerIndex = chunkIndex;
2766      numPointers++;
2767      break;
2768
2769    case DeclaratorChunk::BlockPointer:
2770      // If we have a pointer to block pointer, that's an acceptable
2771      // indirect reference; anything else is not an application of
2772      // the rules.
2773      if (numPointers != 1) return;
2774      numPointers++;
2775      outermostPointerIndex = chunkIndex;
2776      isBlockPointer = true;
2777
2778      // We don't care about pointer structure in return values here.
2779      goto done;
2780
2781    case DeclaratorChunk::Array: // suppress if written (id[])?
2782    case DeclaratorChunk::Function:
2783    case DeclaratorChunk::MemberPointer:
2784    case DeclaratorChunk::Pipe:
2785      return;
2786    }
2787  }
2788 done:
2789
2790  // If we have *one* pointer, then we want to throw the qualifier on
2791  // the declaration-specifiers, which means that it needs to be a
2792  // retainable object type.
2793  if (numPointers == 1) {
2794    // If it's not a retainable object type, the rule doesn't apply.
2795    if (!declSpecType->isObjCRetainableType()) return;
2796
2797    // If it already has lifetime, don't do anything.
2798    if (declSpecType.getObjCLifetime()) return;
2799
2800    // Otherwise, modify the type in-place.
2801    Qualifiers qs;
2802
2803    if (declSpecType->isObjCARCImplicitlyUnretainedType())
2804      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
2805    else
2806      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
2807    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2808
2809  // If we have *two* pointers, then we want to throw the qualifier on
2810  // the outermost pointer.
2811  } else if (numPointers == 2) {
2812    // If we don't have a block pointer, we need to check whether the
2813    // declaration-specifiers gave us something that will turn into a
2814    // retainable object pointer after we slap the first pointer on it.
2815    if (!isBlockPointer && !declSpecType->isObjCObjectType())
2816      return;
2817
2818    // Look for an explicit lifetime attribute there.
2819    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2820    if (chunk.Kind != DeclaratorChunk::Pointer &&
2821        chunk.Kind != DeclaratorChunk::BlockPointer)
2822      return;
2823    for (const ParsedAttr &AL : chunk.getAttrs())
2824      if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
2825        return;
2826
2827    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
2828                                          outermostPointerIndex);
2829
2830  // Any other number of pointers/references does not trigger the rule.
2831  } else return;
2832
2833  // TODO: mark whether we did this inference?
2834}
2835
2836void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2837                                     SourceLocation FallbackLoc,
2838                                     SourceLocation ConstQualLoc,
2839                                     SourceLocation VolatileQualLoc,
2840                                     SourceLocation RestrictQualLoc,
2841                                     SourceLocation AtomicQualLoc,
2842                                     SourceLocation UnalignedQualLoc) {
2843  if (!Quals)
2844    return;
2845
2846  struct Qual {
2847    const char *Name;
2848    unsigned Mask;
2849    SourceLocation Loc;
2850  } const QualKinds[5] = {
2851    { "const", DeclSpec::TQ_const, ConstQualLoc },
2852    { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2853    { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2854    { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2855    { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2856  };
2857
2858  SmallString<32> QualStr;
2859  unsigned NumQuals = 0;
2860  SourceLocation Loc;
2861  FixItHint FixIts[5];
2862
2863  // Build a string naming the redundant qualifiers.
2864  for (auto &E : QualKinds) {
2865    if (Quals & E.Mask) {
2866      if (!QualStr.empty()) QualStr += ' ';
2867      QualStr += E.Name;
2868
2869      // If we have a location for the qualifier, offer a fixit.
2870      SourceLocation QualLoc = E.Loc;
2871      if (QualLoc.isValid()) {
2872        FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2873        if (Loc.isInvalid() ||
2874            getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2875          Loc = QualLoc;
2876      }
2877
2878      ++NumQuals;
2879    }
2880  }
2881
2882  Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2883    << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2884}
2885
2886// Diagnose pointless type qualifiers on the return type of a function.
2887static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2888                                                  Declarator &D,
2889                                                  unsigned FunctionChunkIndex) {
2890  if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
2891    // FIXME: TypeSourceInfo doesn't preserve location information for
2892    // qualifiers.
2893    S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2894                                RetTy.getLocalCVRQualifiers(),
2895                                D.getIdentifierLoc());
2896    return;
2897  }
2898
2899  for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2900                End = D.getNumTypeObjects();
2901       OuterChunkIndex != End; ++OuterChunkIndex) {
2902    DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2903    switch (OuterChunk.Kind) {
2904    case DeclaratorChunk::Paren:
2905      continue;
2906
2907    case DeclaratorChunk::Pointer: {
2908      DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2909      S.diagnoseIgnoredQualifiers(
2910          diag::warn_qual_return_type,
2911          PTI.TypeQuals,
2912          SourceLocation(),
2913          SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2914          SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2915          SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2916          SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc),
2917          SourceLocation::getFromRawEncoding(PTI.UnalignedQualLoc));
2918      return;
2919    }
2920
2921    case DeclaratorChunk::Function:
2922    case DeclaratorChunk::BlockPointer:
2923    case DeclaratorChunk::Reference:
2924    case DeclaratorChunk::Array:
2925    case DeclaratorChunk::MemberPointer:
2926    case DeclaratorChunk::Pipe:
2927      // FIXME: We can't currently provide an accurate source location and a
2928      // fix-it hint for these.
2929      unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2930      S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2931                                  RetTy.getCVRQualifiers() | AtomicQual,
2932                                  D.getIdentifierLoc());
2933      return;
2934    }
2935
2936    llvm_unreachable("unknown declarator chunk kind");
2937  }
2938
2939  // If the qualifiers come from a conversion function type, don't diagnose
2940  // them -- they're not necessarily redundant, since such a conversion
2941  // operator can be explicitly called as "x.operator const int()".
2942  if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
2943    return;
2944
2945  // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2946  // which are present there.
2947  S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2948                              D.getDeclSpec().getTypeQualifiers(),
2949                              D.getIdentifierLoc(),
2950                              D.getDeclSpec().getConstSpecLoc(),
2951                              D.getDeclSpec().getVolatileSpecLoc(),
2952                              D.getDeclSpec().getRestrictSpecLoc(),
2953                              D.getDeclSpec().getAtomicSpecLoc(),
2954                              D.getDeclSpec().getUnalignedSpecLoc());
2955}
2956
2957static void CopyTypeConstraintFromAutoType(Sema &SemaRef, const AutoType *Auto,
2958                                           AutoTypeLoc AutoLoc,
2959                                           TemplateTypeParmDecl *TP,
2960                                           SourceLocation EllipsisLoc) {
2961
2962  TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
2963  for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx)
2964    TAL.addArgument(AutoLoc.getArgLoc(Idx));
2965
2966  SemaRef.AttachTypeConstraint(
2967      AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
2968      AutoLoc.getNamedConcept(),
2969      AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr, TP, EllipsisLoc);
2970}
2971
2972static QualType InventTemplateParameter(
2973    TypeProcessingState &state, QualType T, TypeSourceInfo *TSI, AutoType *Auto,
2974    InventedTemplateParameterInfo &Info) {
2975  Sema &S = state.getSema();
2976  Declarator &D = state.getDeclarator();
2977
2978  const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
2979  const unsigned AutoParameterPosition = Info.TemplateParams.size();
2980  const bool IsParameterPack = D.hasEllipsis();
2981
2982  // If auto is mentioned in a lambda parameter or abbreviated function
2983  // template context, convert it to a template parameter type.
2984
2985  // Create the TemplateTypeParmDecl here to retrieve the corresponding
2986  // template parameter type. Template parameters are temporarily added
2987  // to the TU until the associated TemplateDecl is created.
2988  TemplateTypeParmDecl *InventedTemplateParam =
2989      TemplateTypeParmDecl::Create(
2990          S.Context, S.Context.getTranslationUnitDecl(),
2991          /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
2992          /*NameLoc=*/D.getIdentifierLoc(),
2993          TemplateParameterDepth, AutoParameterPosition,
2994          S.InventAbbreviatedTemplateParameterTypeName(
2995              D.getIdentifier(), AutoParameterPosition), false,
2996          IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
2997  InventedTemplateParam->setImplicit();
2998  Info.TemplateParams.push_back(InventedTemplateParam);
2999  // Attach type constraints
3000  if (Auto->isConstrained()) {
3001    if (TSI) {
3002      CopyTypeConstraintFromAutoType(
3003          S, Auto, TSI->getTypeLoc().getContainedAutoTypeLoc(),
3004          InventedTemplateParam, D.getEllipsisLoc());
3005    } else {
3006      TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3007      TemplateArgumentListInfo TemplateArgsInfo;
3008      if (TemplateId->LAngleLoc.isValid()) {
3009        ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3010                                           TemplateId->NumArgs);
3011        S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3012      }
3013      S.AttachTypeConstraint(
3014          D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3015          DeclarationNameInfo(DeclarationName(TemplateId->Name),
3016                              TemplateId->TemplateNameLoc),
3017          cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()),
3018          TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3019          InventedTemplateParam, D.getEllipsisLoc());
3020    }
3021  }
3022
3023  // If TSI is nullptr, this is a constrained declspec auto and the type
3024  // constraint will be attached later in TypeSpecLocFiller
3025
3026  // Replace the 'auto' in the function parameter with this invented
3027  // template type parameter.
3028  // FIXME: Retain some type sugar to indicate that this was written
3029  //  as 'auto'?
3030  return state.ReplaceAutoType(
3031      T, QualType(InventedTemplateParam->getTypeForDecl(), 0));
3032}
3033
3034static TypeSourceInfo *
3035GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3036                               QualType T, TypeSourceInfo *ReturnTypeInfo);
3037
3038static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3039                                             TypeSourceInfo *&ReturnTypeInfo) {
3040  Sema &SemaRef = state.getSema();
3041  Declarator &D = state.getDeclarator();
3042  QualType T;
3043  ReturnTypeInfo = nullptr;
3044
3045  // The TagDecl owned by the DeclSpec.
3046  TagDecl *OwnedTagDecl = nullptr;
3047
3048  switch (D.getName().getKind()) {
3049  case UnqualifiedIdKind::IK_ImplicitSelfParam:
3050  case UnqualifiedIdKind::IK_OperatorFunctionId:
3051  case UnqualifiedIdKind::IK_Identifier:
3052  case UnqualifiedIdKind::IK_LiteralOperatorId:
3053  case UnqualifiedIdKind::IK_TemplateId:
3054    T = ConvertDeclSpecToType(state);
3055
3056    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3057      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3058      // Owned declaration is embedded in declarator.
3059      OwnedTagDecl->setEmbeddedInDeclarator(true);
3060    }
3061    break;
3062
3063  case UnqualifiedIdKind::IK_ConstructorName:
3064  case UnqualifiedIdKind::IK_ConstructorTemplateId:
3065  case UnqualifiedIdKind::IK_DestructorName:
3066    // Constructors and destructors don't have return types. Use
3067    // "void" instead.
3068    T = SemaRef.Context.VoidTy;
3069    processTypeAttrs(state, T, TAL_DeclSpec,
3070                     D.getMutableDeclSpec().getAttributes());
3071    break;
3072
3073  case UnqualifiedIdKind::IK_DeductionGuideName:
3074    // Deduction guides have a trailing return type and no type in their
3075    // decl-specifier sequence. Use a placeholder return type for now.
3076    T = SemaRef.Context.DependentTy;
3077    break;
3078
3079  case UnqualifiedIdKind::IK_ConversionFunctionId:
3080    // The result type of a conversion function is the type that it
3081    // converts to.
3082    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3083                                  &ReturnTypeInfo);
3084    break;
3085  }
3086
3087  if (!D.getAttributes().empty())
3088    distributeTypeAttrsFromDeclarator(state, T);
3089
3090  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3091  if (DeducedType *Deduced = T->getContainedDeducedType()) {
3092    AutoType *Auto = dyn_cast<AutoType>(Deduced);
3093    int Error = -1;
3094
3095    // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3096    // class template argument deduction)?
3097    bool IsCXXAutoType =
3098        (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3099    bool IsDeducedReturnType = false;
3100
3101    switch (D.getContext()) {
3102    case DeclaratorContext::LambdaExprContext:
3103      // Declared return type of a lambda-declarator is implicit and is always
3104      // 'auto'.
3105      break;
3106    case DeclaratorContext::ObjCParameterContext:
3107    case DeclaratorContext::ObjCResultContext:
3108      Error = 0;
3109      break;
3110    case DeclaratorContext::RequiresExprContext:
3111      Error = 22;
3112      break;
3113    case DeclaratorContext::PrototypeContext:
3114    case DeclaratorContext::LambdaExprParameterContext: {
3115      InventedTemplateParameterInfo *Info = nullptr;
3116      if (D.getContext() == DeclaratorContext::PrototypeContext) {
3117        // With concepts we allow 'auto' in function parameters.
3118        if (!SemaRef.getLangOpts().CPlusPlus2a || !Auto ||
3119            Auto->getKeyword() != AutoTypeKeyword::Auto) {
3120          Error = 0;
3121          break;
3122        } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3123          Error = 21;
3124          break;
3125        } else if (D.hasTrailingReturnType()) {
3126          // This might be OK, but we'll need to convert the trailing return
3127          // type later.
3128          break;
3129        }
3130
3131        Info = &SemaRef.InventedParameterInfos.back();
3132      } else {
3133        // In C++14, generic lambdas allow 'auto' in their parameters.
3134        if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto ||
3135            Auto->getKeyword() != AutoTypeKeyword::Auto) {
3136          Error = 16;
3137          break;
3138        }
3139        Info = SemaRef.getCurLambda();
3140        assert(Info && "No LambdaScopeInfo on the stack!");
3141      }
3142      T = InventTemplateParameter(state, T, nullptr, Auto, *Info);
3143      break;
3144    }
3145    case DeclaratorContext::MemberContext: {
3146      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
3147          D.isFunctionDeclarator())
3148        break;
3149      bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3150      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3151      case TTK_Enum: llvm_unreachable("unhandled tag kind");
3152      case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
3153      case TTK_Union:  Error = Cxx ? 3 : 4; /* Union member */ break;
3154      case TTK_Class:  Error = 5; /* Class member */ break;
3155      case TTK_Interface: Error = 6; /* Interface member */ break;
3156      }
3157      if (D.getDeclSpec().isFriendSpecified())
3158        Error = 20; // Friend type
3159      break;
3160    }
3161    case DeclaratorContext::CXXCatchContext:
3162    case DeclaratorContext::ObjCCatchContext:
3163      Error = 7; // Exception declaration
3164      break;
3165    case DeclaratorContext::TemplateParamContext:
3166      if (isa<DeducedTemplateSpecializationType>(Deduced))
3167        Error = 19; // Template parameter
3168      else if (!SemaRef.getLangOpts().CPlusPlus17)
3169        Error = 8; // Template parameter (until C++17)
3170      break;
3171    case DeclaratorContext::BlockLiteralContext:
3172      Error = 9; // Block literal
3173      break;
3174    case DeclaratorContext::TemplateArgContext:
3175      // Within a template argument list, a deduced template specialization
3176      // type will be reinterpreted as a template template argument.
3177      if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3178          !D.getNumTypeObjects() &&
3179          D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3180        break;
3181      LLVM_FALLTHROUGH;
3182    case DeclaratorContext::TemplateTypeArgContext:
3183      Error = 10; // Template type argument
3184      break;
3185    case DeclaratorContext::AliasDeclContext:
3186    case DeclaratorContext::AliasTemplateContext:
3187      Error = 12; // Type alias
3188      break;
3189    case DeclaratorContext::TrailingReturnContext:
3190    case DeclaratorContext::TrailingReturnVarContext:
3191      if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3192        Error = 13; // Function return type
3193      IsDeducedReturnType = true;
3194      break;
3195    case DeclaratorContext::ConversionIdContext:
3196      if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3197        Error = 14; // conversion-type-id
3198      IsDeducedReturnType = true;
3199      break;
3200    case DeclaratorContext::FunctionalCastContext:
3201      if (isa<DeducedTemplateSpecializationType>(Deduced))
3202        break;
3203      LLVM_FALLTHROUGH;
3204    case DeclaratorContext::TypeNameContext:
3205      Error = 15; // Generic
3206      break;
3207    case DeclaratorContext::FileContext:
3208    case DeclaratorContext::BlockContext:
3209    case DeclaratorContext::ForContext:
3210    case DeclaratorContext::InitStmtContext:
3211    case DeclaratorContext::ConditionContext:
3212      // FIXME: P0091R3 (erroneously) does not permit class template argument
3213      // deduction in conditions, for-init-statements, and other declarations
3214      // that are not simple-declarations.
3215      break;
3216    case DeclaratorContext::CXXNewContext:
3217      // FIXME: P0091R3 does not permit class template argument deduction here,
3218      // but we follow GCC and allow it anyway.
3219      if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3220        Error = 17; // 'new' type
3221      break;
3222    case DeclaratorContext::KNRTypeListContext:
3223      Error = 18; // K&R function parameter
3224      break;
3225    }
3226
3227    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3228      Error = 11;
3229
3230    // In Objective-C it is an error to use 'auto' on a function declarator
3231    // (and everywhere for '__auto_type').
3232    if (D.isFunctionDeclarator() &&
3233        (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3234      Error = 13;
3235
3236    bool HaveTrailing = false;
3237
3238    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
3239    // contains a trailing return type. That is only legal at the outermost
3240    // level. Check all declarator chunks (outermost first) anyway, to give
3241    // better diagnostics.
3242    // We don't support '__auto_type' with trailing return types.
3243    // FIXME: Should we only do this for 'auto' and not 'decltype(auto)'?
3244    if (SemaRef.getLangOpts().CPlusPlus11 && IsCXXAutoType &&
3245        D.hasTrailingReturnType()) {
3246      HaveTrailing = true;
3247      Error = -1;
3248    }
3249
3250    SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3251    if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3252      AutoRange = D.getName().getSourceRange();
3253
3254    if (Error != -1) {
3255      unsigned Kind;
3256      if (Auto) {
3257        switch (Auto->getKeyword()) {
3258        case AutoTypeKeyword::Auto: Kind = 0; break;
3259        case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3260        case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3261        }
3262      } else {
3263        assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3264               "unknown auto type");
3265        Kind = 3;
3266      }
3267
3268      auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3269      TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3270
3271      SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3272        << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3273        << QualType(Deduced, 0) << AutoRange;
3274      if (auto *TD = TN.getAsTemplateDecl())
3275        SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3276
3277      T = SemaRef.Context.IntTy;
3278      D.setInvalidType(true);
3279    } else if (Auto && !HaveTrailing &&
3280               D.getContext() != DeclaratorContext::LambdaExprContext) {
3281      // If there was a trailing return type, we already got
3282      // warn_cxx98_compat_trailing_return_type in the parser.
3283      SemaRef.Diag(AutoRange.getBegin(),
3284                   D.getContext() ==
3285                           DeclaratorContext::LambdaExprParameterContext
3286                       ? diag::warn_cxx11_compat_generic_lambda
3287                       : IsDeducedReturnType
3288                             ? diag::warn_cxx11_compat_deduced_return_type
3289                             : diag::warn_cxx98_compat_auto_type_specifier)
3290          << AutoRange;
3291    }
3292  }
3293
3294  if (SemaRef.getLangOpts().CPlusPlus &&
3295      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3296    // Check the contexts where C++ forbids the declaration of a new class
3297    // or enumeration in a type-specifier-seq.
3298    unsigned DiagID = 0;
3299    switch (D.getContext()) {
3300    case DeclaratorContext::TrailingReturnContext:
3301    case DeclaratorContext::TrailingReturnVarContext:
3302      // Class and enumeration definitions are syntactically not allowed in
3303      // trailing return types.
3304      llvm_unreachable("parser should not have allowed this");
3305      break;
3306    case DeclaratorContext::FileContext:
3307    case DeclaratorContext::MemberContext:
3308    case DeclaratorContext::BlockContext:
3309    case DeclaratorContext::ForContext:
3310    case DeclaratorContext::InitStmtContext:
3311    case DeclaratorContext::BlockLiteralContext:
3312    case DeclaratorContext::LambdaExprContext:
3313      // C++11 [dcl.type]p3:
3314      //   A type-specifier-seq shall not define a class or enumeration unless
3315      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
3316      //   the declaration of a template-declaration.
3317    case DeclaratorContext::AliasDeclContext:
3318      break;
3319    case DeclaratorContext::AliasTemplateContext:
3320      DiagID = diag::err_type_defined_in_alias_template;
3321      break;
3322    case DeclaratorContext::TypeNameContext:
3323    case DeclaratorContext::FunctionalCastContext:
3324    case DeclaratorContext::ConversionIdContext:
3325    case DeclaratorContext::TemplateParamContext:
3326    case DeclaratorContext::CXXNewContext:
3327    case DeclaratorContext::CXXCatchContext:
3328    case DeclaratorContext::ObjCCatchContext:
3329    case DeclaratorContext::TemplateArgContext:
3330    case DeclaratorContext::TemplateTypeArgContext:
3331      DiagID = diag::err_type_defined_in_type_specifier;
3332      break;
3333    case DeclaratorContext::PrototypeContext:
3334    case DeclaratorContext::LambdaExprParameterContext:
3335    case DeclaratorContext::ObjCParameterContext:
3336    case DeclaratorContext::ObjCResultContext:
3337    case DeclaratorContext::KNRTypeListContext:
3338    case DeclaratorContext::RequiresExprContext:
3339      // C++ [dcl.fct]p6:
3340      //   Types shall not be defined in return or parameter types.
3341      DiagID = diag::err_type_defined_in_param_type;
3342      break;
3343    case DeclaratorContext::ConditionContext:
3344      // C++ 6.4p2:
3345      // The type-specifier-seq shall not contain typedef and shall not declare
3346      // a new class or enumeration.
3347      DiagID = diag::err_type_defined_in_condition;
3348      break;
3349    }
3350
3351    if (DiagID != 0) {
3352      SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3353          << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3354      D.setInvalidType(true);
3355    }
3356  }
3357
3358  assert(!T.isNull() && "This function should not return a null type");
3359  return T;
3360}
3361
3362/// Produce an appropriate diagnostic for an ambiguity between a function
3363/// declarator and a C++ direct-initializer.
3364static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3365                                       DeclaratorChunk &DeclType, QualType RT) {
3366  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3367  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3368
3369  // If the return type is void there is no ambiguity.
3370  if (RT->isVoidType())
3371    return;
3372
3373  // An initializer for a non-class type can have at most one argument.
3374  if (!RT->isRecordType() && FTI.NumParams > 1)
3375    return;
3376
3377  // An initializer for a reference must have exactly one argument.
3378  if (RT->isReferenceType() && FTI.NumParams != 1)
3379    return;
3380
3381  // Only warn if this declarator is declaring a function at block scope, and
3382  // doesn't have a storage class (such as 'extern') specified.
3383  if (!D.isFunctionDeclarator() ||
3384      D.getFunctionDefinitionKind() != FDK_Declaration ||
3385      !S.CurContext->isFunctionOrMethod() ||
3386      D.getDeclSpec().getStorageClassSpec()
3387        != DeclSpec::SCS_unspecified)
3388    return;
3389
3390  // Inside a condition, a direct initializer is not permitted. We allow one to
3391  // be parsed in order to give better diagnostics in condition parsing.
3392  if (D.getContext() == DeclaratorContext::ConditionContext)
3393    return;
3394
3395  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3396
3397  S.Diag(DeclType.Loc,
3398         FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3399                       : diag::warn_empty_parens_are_function_decl)
3400      << ParenRange;
3401
3402  // If the declaration looks like:
3403  //   T var1,
3404  //   f();
3405  // and name lookup finds a function named 'f', then the ',' was
3406  // probably intended to be a ';'.
3407  if (!D.isFirstDeclarator() && D.getIdentifier()) {
3408    FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3409    FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3410    if (Comma.getFileID() != Name.getFileID() ||
3411        Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3412      LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3413                          Sema::LookupOrdinaryName);
3414      if (S.LookupName(Result, S.getCurScope()))
3415        S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3416          << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3417          << D.getIdentifier();
3418      Result.suppressDiagnostics();
3419    }
3420  }
3421
3422  if (FTI.NumParams > 0) {
3423    // For a declaration with parameters, eg. "T var(T());", suggest adding
3424    // parens around the first parameter to turn the declaration into a
3425    // variable declaration.
3426    SourceRange Range = FTI.Params[0].Param->getSourceRange();
3427    SourceLocation B = Range.getBegin();
3428    SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3429    // FIXME: Maybe we should suggest adding braces instead of parens
3430    // in C++11 for classes that don't have an initializer_list constructor.
3431    S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3432      << FixItHint::CreateInsertion(B, "(")
3433      << FixItHint::CreateInsertion(E, ")");
3434  } else {
3435    // For a declaration without parameters, eg. "T var();", suggest replacing
3436    // the parens with an initializer to turn the declaration into a variable
3437    // declaration.
3438    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3439
3440    // Empty parens mean value-initialization, and no parens mean
3441    // default initialization. These are equivalent if the default
3442    // constructor is user-provided or if zero-initialization is a
3443    // no-op.
3444    if (RD && RD->hasDefinition() &&
3445        (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3446      S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3447        << FixItHint::CreateRemoval(ParenRange);
3448    else {
3449      std::string Init =
3450          S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3451      if (Init.empty() && S.LangOpts.CPlusPlus11)
3452        Init = "{}";
3453      if (!Init.empty())
3454        S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3455          << FixItHint::CreateReplacement(ParenRange, Init);
3456    }
3457  }
3458}
3459
3460/// Produce an appropriate diagnostic for a declarator with top-level
3461/// parentheses.
3462static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3463  DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3464  assert(Paren.Kind == DeclaratorChunk::Paren &&
3465         "do not have redundant top-level parentheses");
3466
3467  // This is a syntactic check; we're not interested in cases that arise
3468  // during template instantiation.
3469  if (S.inTemplateInstantiation())
3470    return;
3471
3472  // Check whether this could be intended to be a construction of a temporary
3473  // object in C++ via a function-style cast.
3474  bool CouldBeTemporaryObject =
3475      S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3476      !D.isInvalidType() && D.getIdentifier() &&
3477      D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3478      (T->isRecordType() || T->isDependentType()) &&
3479      D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3480
3481  bool StartsWithDeclaratorId = true;
3482  for (auto &C : D.type_objects()) {
3483    switch (C.Kind) {
3484    case DeclaratorChunk::Paren:
3485      if (&C == &Paren)
3486        continue;
3487      LLVM_FALLTHROUGH;
3488    case DeclaratorChunk::Pointer:
3489      StartsWithDeclaratorId = false;
3490      continue;
3491
3492    case DeclaratorChunk::Array:
3493      if (!C.Arr.NumElts)
3494        CouldBeTemporaryObject = false;
3495      continue;
3496
3497    case DeclaratorChunk::Reference:
3498      // FIXME: Suppress the warning here if there is no initializer; we're
3499      // going to give an error anyway.
3500      // We assume that something like 'T (&x) = y;' is highly likely to not
3501      // be intended to be a temporary object.
3502      CouldBeTemporaryObject = false;
3503      StartsWithDeclaratorId = false;
3504      continue;
3505
3506    case DeclaratorChunk::Function:
3507      // In a new-type-id, function chunks require parentheses.
3508      if (D.getContext() == DeclaratorContext::CXXNewContext)
3509        return;
3510      // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3511      // redundant-parens warning, but we don't know whether the function
3512      // chunk was syntactically valid as an expression here.
3513      CouldBeTemporaryObject = false;
3514      continue;
3515
3516    case DeclaratorChunk::BlockPointer:
3517    case DeclaratorChunk::MemberPointer:
3518    case DeclaratorChunk::Pipe:
3519      // These cannot appear in expressions.
3520      CouldBeTemporaryObject = false;
3521      StartsWithDeclaratorId = false;
3522      continue;
3523    }
3524  }
3525
3526  // FIXME: If there is an initializer, assume that this is not intended to be
3527  // a construction of a temporary object.
3528
3529  // Check whether the name has already been declared; if not, this is not a
3530  // function-style cast.
3531  if (CouldBeTemporaryObject) {
3532    LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3533                        Sema::LookupOrdinaryName);
3534    if (!S.LookupName(Result, S.getCurScope()))
3535      CouldBeTemporaryObject = false;
3536    Result.suppressDiagnostics();
3537  }
3538
3539  SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3540
3541  if (!CouldBeTemporaryObject) {
3542    // If we have A (::B), the parentheses affect the meaning of the program.
3543    // Suppress the warning in that case. Don't bother looking at the DeclSpec
3544    // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3545    // formally unambiguous.
3546    if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3547      for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3548           NNS = NNS->getPrefix()) {
3549        if (NNS->getKind() == NestedNameSpecifier::Global)
3550          return;
3551      }
3552    }
3553
3554    S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3555        << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3556        << FixItHint::CreateRemoval(Paren.EndLoc);
3557    return;
3558  }
3559
3560  S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3561      << ParenRange << D.getIdentifier();
3562  auto *RD = T->getAsCXXRecordDecl();
3563  if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3564    S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3565        << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3566        << D.getIdentifier();
3567  // FIXME: A cast to void is probably a better suggestion in cases where it's
3568  // valid (when there is no initializer and we're not in a condition).
3569  S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3570      << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3571      << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3572  S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3573      << FixItHint::CreateRemoval(Paren.Loc)
3574      << FixItHint::CreateRemoval(Paren.EndLoc);
3575}
3576
3577/// Helper for figuring out the default CC for a function declarator type.  If
3578/// this is the outermost chunk, then we can determine the CC from the
3579/// declarator context.  If not, then this could be either a member function
3580/// type or normal function type.
3581static CallingConv getCCForDeclaratorChunk(
3582    Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3583    const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3584  assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
3585
3586  // Check for an explicit CC attribute.
3587  for (const ParsedAttr &AL : AttrList) {
3588    switch (AL.getKind()) {
3589    CALLING_CONV_ATTRS_CASELIST : {
3590      // Ignore attributes that don't validate or can't apply to the
3591      // function type.  We'll diagnose the failure to apply them in
3592      // handleFunctionTypeAttr.
3593      CallingConv CC;
3594      if (!S.CheckCallingConvAttr(AL, CC) &&
3595          (!FTI.isVariadic || supportsVariadicCall(CC))) {
3596        return CC;
3597      }
3598      break;
3599    }
3600
3601    default:
3602      break;
3603    }
3604  }
3605
3606  bool IsCXXInstanceMethod = false;
3607
3608  if (S.getLangOpts().CPlusPlus) {
3609    // Look inwards through parentheses to see if this chunk will form a
3610    // member pointer type or if we're the declarator.  Any type attributes
3611    // between here and there will override the CC we choose here.
3612    unsigned I = ChunkIndex;
3613    bool FoundNonParen = false;
3614    while (I && !FoundNonParen) {
3615      --I;
3616      if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3617        FoundNonParen = true;
3618    }
3619
3620    if (FoundNonParen) {
3621      // If we're not the declarator, we're a regular function type unless we're
3622      // in a member pointer.
3623      IsCXXInstanceMethod =
3624          D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3625    } else if (D.getContext() == DeclaratorContext::LambdaExprContext) {
3626      // This can only be a call operator for a lambda, which is an instance
3627      // method.
3628      IsCXXInstanceMethod = true;
3629    } else {
3630      // We're the innermost decl chunk, so must be a function declarator.
3631      assert(D.isFunctionDeclarator());
3632
3633      // If we're inside a record, we're declaring a method, but it could be
3634      // explicitly or implicitly static.
3635      IsCXXInstanceMethod =
3636          D.isFirstDeclarationOfMember() &&
3637          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3638          !D.isStaticMember();
3639    }
3640  }
3641
3642  CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3643                                                         IsCXXInstanceMethod);
3644
3645  // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3646  // and AMDGPU targets, hence it cannot be treated as a calling
3647  // convention attribute. This is the simplest place to infer
3648  // calling convention for OpenCL kernels.
3649  if (S.getLangOpts().OpenCL) {
3650    for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3651      if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3652        CC = CC_OpenCLKernel;
3653        break;
3654      }
3655    }
3656  }
3657
3658  return CC;
3659}
3660
3661namespace {
3662  /// A simple notion of pointer kinds, which matches up with the various
3663  /// pointer declarators.
3664  enum class SimplePointerKind {
3665    Pointer,
3666    BlockPointer,
3667    MemberPointer,
3668    Array,
3669  };
3670} // end anonymous namespace
3671
3672IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3673  switch (nullability) {
3674  case NullabilityKind::NonNull:
3675    if (!Ident__Nonnull)
3676      Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3677    return Ident__Nonnull;
3678
3679  case NullabilityKind::Nullable:
3680    if (!Ident__Nullable)
3681      Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3682    return Ident__Nullable;
3683
3684  case NullabilityKind::Unspecified:
3685    if (!Ident__Null_unspecified)
3686      Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3687    return Ident__Null_unspecified;
3688  }
3689  llvm_unreachable("Unknown nullability kind.");
3690}
3691
3692/// Retrieve the identifier "NSError".
3693IdentifierInfo *Sema::getNSErrorIdent() {
3694  if (!Ident_NSError)
3695    Ident_NSError = PP.getIdentifierInfo("NSError");
3696
3697  return Ident_NSError;
3698}
3699
3700/// Check whether there is a nullability attribute of any kind in the given
3701/// attribute list.
3702static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3703  for (const ParsedAttr &AL : attrs) {
3704    if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3705        AL.getKind() == ParsedAttr::AT_TypeNullable ||
3706        AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3707      return true;
3708  }
3709
3710  return false;
3711}
3712
3713namespace {
3714  /// Describes the kind of a pointer a declarator describes.
3715  enum class PointerDeclaratorKind {
3716    // Not a pointer.
3717    NonPointer,
3718    // Single-level pointer.
3719    SingleLevelPointer,
3720    // Multi-level pointer (of any pointer kind).
3721    MultiLevelPointer,
3722    // CFFooRef*
3723    MaybePointerToCFRef,
3724    // CFErrorRef*
3725    CFErrorRefPointer,
3726    // NSError**
3727    NSErrorPointerPointer,
3728  };
3729
3730  /// Describes a declarator chunk wrapping a pointer that marks inference as
3731  /// unexpected.
3732  // These values must be kept in sync with diagnostics.
3733  enum class PointerWrappingDeclaratorKind {
3734    /// Pointer is top-level.
3735    None = -1,
3736    /// Pointer is an array element.
3737    Array = 0,
3738    /// Pointer is the referent type of a C++ reference.
3739    Reference = 1
3740  };
3741} // end anonymous namespace
3742
3743/// Classify the given declarator, whose type-specified is \c type, based on
3744/// what kind of pointer it refers to.
3745///
3746/// This is used to determine the default nullability.
3747static PointerDeclaratorKind
3748classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3749                          PointerWrappingDeclaratorKind &wrappingKind) {
3750  unsigned numNormalPointers = 0;
3751
3752  // For any dependent type, we consider it a non-pointer.
3753  if (type->isDependentType())
3754    return PointerDeclaratorKind::NonPointer;
3755
3756  // Look through the declarator chunks to identify pointers.
3757  for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3758    DeclaratorChunk &chunk = declarator.getTypeObject(i);
3759    switch (chunk.Kind) {
3760    case DeclaratorChunk::Array:
3761      if (numNormalPointers == 0)
3762        wrappingKind = PointerWrappingDeclaratorKind::Array;
3763      break;
3764
3765    case DeclaratorChunk::Function:
3766    case DeclaratorChunk::Pipe:
3767      break;
3768
3769    case DeclaratorChunk::BlockPointer:
3770    case DeclaratorChunk::MemberPointer:
3771      return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3772                                   : PointerDeclaratorKind::SingleLevelPointer;
3773
3774    case DeclaratorChunk::Paren:
3775      break;
3776
3777    case DeclaratorChunk::Reference:
3778      if (numNormalPointers == 0)
3779        wrappingKind = PointerWrappingDeclaratorKind::Reference;
3780      break;
3781
3782    case DeclaratorChunk::Pointer:
3783      ++numNormalPointers;
3784      if (numNormalPointers > 2)
3785        return PointerDeclaratorKind::MultiLevelPointer;
3786      break;
3787    }
3788  }
3789
3790  // Then, dig into the type specifier itself.
3791  unsigned numTypeSpecifierPointers = 0;
3792  do {
3793    // Decompose normal pointers.
3794    if (auto ptrType = type->getAs<PointerType>()) {
3795      ++numNormalPointers;
3796
3797      if (numNormalPointers > 2)
3798        return PointerDeclaratorKind::MultiLevelPointer;
3799
3800      type = ptrType->getPointeeType();
3801      ++numTypeSpecifierPointers;
3802      continue;
3803    }
3804
3805    // Decompose block pointers.
3806    if (type->getAs<BlockPointerType>()) {
3807      return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3808                                   : PointerDeclaratorKind::SingleLevelPointer;
3809    }
3810
3811    // Decompose member pointers.
3812    if (type->getAs<MemberPointerType>()) {
3813      return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3814                                   : PointerDeclaratorKind::SingleLevelPointer;
3815    }
3816
3817    // Look at Objective-C object pointers.
3818    if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3819      ++numNormalPointers;
3820      ++numTypeSpecifierPointers;
3821
3822      // If this is NSError**, report that.
3823      if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3824        if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
3825            numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3826          return PointerDeclaratorKind::NSErrorPointerPointer;
3827        }
3828      }
3829
3830      break;
3831    }
3832
3833    // Look at Objective-C class types.
3834    if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3835      if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
3836        if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3837          return PointerDeclaratorKind::NSErrorPointerPointer;
3838      }
3839
3840      break;
3841    }
3842
3843    // If at this point we haven't seen a pointer, we won't see one.
3844    if (numNormalPointers == 0)
3845      return PointerDeclaratorKind::NonPointer;
3846
3847    if (auto recordType = type->getAs<RecordType>()) {
3848      RecordDecl *recordDecl = recordType->getDecl();
3849
3850      bool isCFError = false;
3851      if (S.CFError) {
3852        // If we already know about CFError, test it directly.
3853        isCFError = (S.CFError == recordDecl);
3854      } else {
3855        // Check whether this is CFError, which we identify based on its bridge
3856        // to NSError. CFErrorRef used to be declared with "objc_bridge" but is
3857        // now declared with "objc_bridge_mutable", so look for either one of
3858        // the two attributes.
3859        if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
3860          IdentifierInfo *bridgedType = nullptr;
3861          if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>())
3862            bridgedType = bridgeAttr->getBridgedType();
3863          else if (auto bridgeAttr =
3864                       recordDecl->getAttr<ObjCBridgeMutableAttr>())
3865            bridgedType = bridgeAttr->getBridgedType();
3866
3867          if (bridgedType == S.getNSErrorIdent()) {
3868            S.CFError = recordDecl;
3869            isCFError = true;
3870          }
3871        }
3872      }
3873
3874      // If this is CFErrorRef*, report it as such.
3875      if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3876        return PointerDeclaratorKind::CFErrorRefPointer;
3877      }
3878      break;
3879    }
3880
3881    break;
3882  } while (true);
3883
3884  switch (numNormalPointers) {
3885  case 0:
3886    return PointerDeclaratorKind::NonPointer;
3887
3888  case 1:
3889    return PointerDeclaratorKind::SingleLevelPointer;
3890
3891  case 2:
3892    return PointerDeclaratorKind::MaybePointerToCFRef;
3893
3894  default:
3895    return PointerDeclaratorKind::MultiLevelPointer;
3896  }
3897}
3898
3899static FileID getNullabilityCompletenessCheckFileID(Sema &S,
3900                                                    SourceLocation loc) {
3901  // If we're anywhere in a function, method, or closure context, don't perform
3902  // completeness checks.
3903  for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3904    if (ctx->isFunctionOrMethod())
3905      return FileID();
3906
3907    if (ctx->isFileContext())
3908      break;
3909  }
3910
3911  // We only care about the expansion location.
3912  loc = S.SourceMgr.getExpansionLoc(loc);
3913  FileID file = S.SourceMgr.getFileID(loc);
3914  if (file.isInvalid())
3915    return FileID();
3916
3917  // Retrieve file information.
3918  bool invalid = false;
3919  const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3920  if (invalid || !sloc.isFile())
3921    return FileID();
3922
3923  // We don't want to perform completeness checks on the main file or in
3924  // system headers.
3925  const SrcMgr::FileInfo &fileInfo = sloc.getFile();
3926  if (fileInfo.getIncludeLoc().isInvalid())
3927    return FileID();
3928  if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
3929      S.Diags.getSuppressSystemWarnings()) {
3930    return FileID();
3931  }
3932
3933  return file;
3934}
3935
3936/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
3937/// taking into account whitespace before and after.
3938static void fixItNullability(Sema &S, DiagnosticBuilder &Diag,
3939                             SourceLocation PointerLoc,
3940                             NullabilityKind Nullability) {
3941  assert(PointerLoc.isValid());
3942  if (PointerLoc.isMacroID())
3943    return;
3944
3945  SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
3946  if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
3947    return;
3948
3949  const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
3950  if (!NextChar)
3951    return;
3952
3953  SmallString<32> InsertionTextBuf{" "};
3954  InsertionTextBuf += getNullabilitySpelling(Nullability);
3955  InsertionTextBuf += " ";
3956  StringRef InsertionText = InsertionTextBuf.str();
3957
3958  if (isWhitespace(*NextChar)) {
3959    InsertionText = InsertionText.drop_back();
3960  } else if (NextChar[-1] == '[') {
3961    if (NextChar[0] == ']')
3962      InsertionText = InsertionText.drop_back().drop_front();
3963    else
3964      InsertionText = InsertionText.drop_front();
3965  } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
3966             !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
3967    InsertionText = InsertionText.drop_back().drop_front();
3968  }
3969
3970  Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
3971}
3972
3973static void emitNullabilityConsistencyWarning(Sema &S,
3974                                              SimplePointerKind PointerKind,
3975                                              SourceLocation PointerLoc,
3976                                              SourceLocation PointerEndLoc) {
3977  assert(PointerLoc.isValid());
3978
3979  if (PointerKind == SimplePointerKind::Array) {
3980    S.Diag(PointerLoc, diag::warn_nullability_missing_array);
3981  } else {
3982    S.Diag(PointerLoc, diag::warn_nullability_missing)
3983      << static_cast<unsigned>(PointerKind);
3984  }
3985
3986  auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
3987  if (FixItLoc.isMacroID())
3988    return;
3989
3990  auto addFixIt = [&](NullabilityKind Nullability) {
3991    auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
3992    Diag << static_cast<unsigned>(Nullability);
3993    Diag << static_cast<unsigned>(PointerKind);
3994    fixItNullability(S, Diag, FixItLoc, Nullability);
3995  };
3996  addFixIt(NullabilityKind::Nullable);
3997  addFixIt(NullabilityKind::NonNull);
3998}
3999
4000/// Complains about missing nullability if the file containing \p pointerLoc
4001/// has other uses of nullability (either the keywords or the \c assume_nonnull
4002/// pragma).
4003///
4004/// If the file has \e not seen other uses of nullability, this particular
4005/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4006static void
4007checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4008                            SourceLocation pointerLoc,
4009                            SourceLocation pointerEndLoc = SourceLocation()) {
4010  // Determine which file we're performing consistency checking for.
4011  FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4012  if (file.isInvalid())
4013    return;
4014
4015  // If we haven't seen any type nullability in this file, we won't warn now
4016  // about anything.
4017  FileNullability &fileNullability = S.NullabilityMap[file];
4018  if (!fileNullability.SawTypeNullability) {
4019    // If this is the first pointer declarator in the file, and the appropriate
4020    // warning is on, record it in case we need to diagnose it retroactively.
4021    diag::kind diagKind;
4022    if (pointerKind == SimplePointerKind::Array)
4023      diagKind = diag::warn_nullability_missing_array;
4024    else
4025      diagKind = diag::warn_nullability_missing;
4026
4027    if (fileNullability.PointerLoc.isInvalid() &&
4028        !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4029      fileNullability.PointerLoc = pointerLoc;
4030      fileNullability.PointerEndLoc = pointerEndLoc;
4031      fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4032    }
4033
4034    return;
4035  }
4036
4037  // Complain about missing nullability.
4038  emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4039}
4040
4041/// Marks that a nullability feature has been used in the file containing
4042/// \p loc.
4043///
4044/// If this file already had pointer types in it that were missing nullability,
4045/// the first such instance is retroactively diagnosed.
4046///
4047/// \sa checkNullabilityConsistency
4048static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4049  FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4050  if (file.isInvalid())
4051    return;
4052
4053  FileNullability &fileNullability = S.NullabilityMap[file];
4054  if (fileNullability.SawTypeNullability)
4055    return;
4056  fileNullability.SawTypeNullability = true;
4057
4058  // If we haven't seen any type nullability before, now we have. Retroactively
4059  // diagnose the first unannotated pointer, if there was one.
4060  if (fileNullability.PointerLoc.isInvalid())
4061    return;
4062
4063  auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4064  emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4065                                    fileNullability.PointerEndLoc);
4066}
4067
4068/// Returns true if any of the declarator chunks before \p endIndex include a
4069/// level of indirection: array, pointer, reference, or pointer-to-member.
4070///
4071/// Because declarator chunks are stored in outer-to-inner order, testing
4072/// every chunk before \p endIndex is testing all chunks that embed the current
4073/// chunk as part of their type.
4074///
4075/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4076/// end index, in which case all chunks are tested.
4077static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4078  unsigned i = endIndex;
4079  while (i != 0) {
4080    // Walk outwards along the declarator chunks.
4081    --i;
4082    const DeclaratorChunk &DC = D.getTypeObject(i);
4083    switch (DC.Kind) {
4084    case DeclaratorChunk::Paren:
4085      break;
4086    case DeclaratorChunk::Array:
4087    case DeclaratorChunk::Pointer:
4088    case DeclaratorChunk::Reference:
4089    case DeclaratorChunk::MemberPointer:
4090      return true;
4091    case DeclaratorChunk::Function:
4092    case DeclaratorChunk::BlockPointer:
4093    case DeclaratorChunk::Pipe:
4094      // These are invalid anyway, so just ignore.
4095      break;
4096    }
4097  }
4098  return false;
4099}
4100
4101static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
4102  return (Chunk.Kind == DeclaratorChunk::Pointer ||
4103          Chunk.Kind == DeclaratorChunk::Array);
4104}
4105
4106template<typename AttrT>
4107static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4108  AL.setUsedAsTypeAttr();
4109  return ::new (Ctx) AttrT(Ctx, AL);
4110}
4111
4112static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4113                                   NullabilityKind NK) {
4114  switch (NK) {
4115  case NullabilityKind::NonNull:
4116    return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4117
4118  case NullabilityKind::Nullable:
4119    return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4120
4121  case NullabilityKind::Unspecified:
4122    return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4123  }
4124  llvm_unreachable("unknown NullabilityKind");
4125}
4126
4127// Diagnose whether this is a case with the multiple addr spaces.
4128// Returns true if this is an invalid case.
4129// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4130// by qualifiers for two or more different address spaces."
4131static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4132                                                LangAS ASNew,
4133                                                SourceLocation AttrLoc) {
4134  if (ASOld != LangAS::Default) {
4135    if (ASOld != ASNew) {
4136      S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4137      return true;
4138    }
4139    // Emit a warning if they are identical; it's likely unintended.
4140    S.Diag(AttrLoc,
4141           diag::warn_attribute_address_multiple_identical_qualifiers);
4142  }
4143  return false;
4144}
4145
4146static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4147                                                QualType declSpecType,
4148                                                TypeSourceInfo *TInfo) {
4149  // The TypeSourceInfo that this function returns will not be a null type.
4150  // If there is an error, this function will fill in a dummy type as fallback.
4151  QualType T = declSpecType;
4152  Declarator &D = state.getDeclarator();
4153  Sema &S = state.getSema();
4154  ASTContext &Context = S.Context;
4155  const LangOptions &LangOpts = S.getLangOpts();
4156
4157  // The name we're declaring, if any.
4158  DeclarationName Name;
4159  if (D.getIdentifier())
4160    Name = D.getIdentifier();
4161
4162  // Does this declaration declare a typedef-name?
4163  bool IsTypedefName =
4164    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4165    D.getContext() == DeclaratorContext::AliasDeclContext ||
4166    D.getContext() == DeclaratorContext::AliasTemplateContext;
4167
4168  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4169  bool IsQualifiedFunction = T->isFunctionProtoType() &&
4170      (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4171       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4172
4173  // If T is 'decltype(auto)', the only declarators we can have are parens
4174  // and at most one function declarator if this is a function declaration.
4175  // If T is a deduced class template specialization type, we can have no
4176  // declarator chunks at all.
4177  if (auto *DT = T->getAs<DeducedType>()) {
4178    const AutoType *AT = T->getAs<AutoType>();
4179    bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4180    if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4181      for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4182        unsigned Index = E - I - 1;
4183        DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4184        unsigned DiagId = IsClassTemplateDeduction
4185                              ? diag::err_deduced_class_template_compound_type
4186                              : diag::err_decltype_auto_compound_type;
4187        unsigned DiagKind = 0;
4188        switch (DeclChunk.Kind) {
4189        case DeclaratorChunk::Paren:
4190          // FIXME: Rejecting this is a little silly.
4191          if (IsClassTemplateDeduction) {
4192            DiagKind = 4;
4193            break;
4194          }
4195          continue;
4196        case DeclaratorChunk::Function: {
4197          if (IsClassTemplateDeduction) {
4198            DiagKind = 3;
4199            break;
4200          }
4201          unsigned FnIndex;
4202          if (D.isFunctionDeclarationContext() &&
4203              D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4204            continue;
4205          DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4206          break;
4207        }
4208        case DeclaratorChunk::Pointer:
4209        case DeclaratorChunk::BlockPointer:
4210        case DeclaratorChunk::MemberPointer:
4211          DiagKind = 0;
4212          break;
4213        case DeclaratorChunk::Reference:
4214          DiagKind = 1;
4215          break;
4216        case DeclaratorChunk::Array:
4217          DiagKind = 2;
4218          break;
4219        case DeclaratorChunk::Pipe:
4220          break;
4221        }
4222
4223        S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4224        D.setInvalidType(true);
4225        break;
4226      }
4227    }
4228  }
4229
4230  // Determine whether we should infer _Nonnull on pointer types.
4231  Optional<NullabilityKind> inferNullability;
4232  bool inferNullabilityCS = false;
4233  bool inferNullabilityInnerOnly = false;
4234  bool inferNullabilityInnerOnlyComplete = false;
4235
4236  // Are we in an assume-nonnull region?
4237  bool inAssumeNonNullRegion = false;
4238  SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4239  if (assumeNonNullLoc.isValid()) {
4240    inAssumeNonNullRegion = true;
4241    recordNullabilitySeen(S, assumeNonNullLoc);
4242  }
4243
4244  // Whether to complain about missing nullability specifiers or not.
4245  enum {
4246    /// Never complain.
4247    CAMN_No,
4248    /// Complain on the inner pointers (but not the outermost
4249    /// pointer).
4250    CAMN_InnerPointers,
4251    /// Complain about any pointers that don't have nullability
4252    /// specified or inferred.
4253    CAMN_Yes
4254  } complainAboutMissingNullability = CAMN_No;
4255  unsigned NumPointersRemaining = 0;
4256  auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4257
4258  if (IsTypedefName) {
4259    // For typedefs, we do not infer any nullability (the default),
4260    // and we only complain about missing nullability specifiers on
4261    // inner pointers.
4262    complainAboutMissingNullability = CAMN_InnerPointers;
4263
4264    if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4265        !T->getNullability(S.Context)) {
4266      // Note that we allow but don't require nullability on dependent types.
4267      ++NumPointersRemaining;
4268    }
4269
4270    for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4271      DeclaratorChunk &chunk = D.getTypeObject(i);
4272      switch (chunk.Kind) {
4273      case DeclaratorChunk::Array:
4274      case DeclaratorChunk::Function:
4275      case DeclaratorChunk::Pipe:
4276        break;
4277
4278      case DeclaratorChunk::BlockPointer:
4279      case DeclaratorChunk::MemberPointer:
4280        ++NumPointersRemaining;
4281        break;
4282
4283      case DeclaratorChunk::Paren:
4284      case DeclaratorChunk::Reference:
4285        continue;
4286
4287      case DeclaratorChunk::Pointer:
4288        ++NumPointersRemaining;
4289        continue;
4290      }
4291    }
4292  } else {
4293    bool isFunctionOrMethod = false;
4294    switch (auto context = state.getDeclarator().getContext()) {
4295    case DeclaratorContext::ObjCParameterContext:
4296    case DeclaratorContext::ObjCResultContext:
4297    case DeclaratorContext::PrototypeContext:
4298    case DeclaratorContext::TrailingReturnContext:
4299    case DeclaratorContext::TrailingReturnVarContext:
4300      isFunctionOrMethod = true;
4301      LLVM_FALLTHROUGH;
4302
4303    case DeclaratorContext::MemberContext:
4304      if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4305        complainAboutMissingNullability = CAMN_No;
4306        break;
4307      }
4308
4309      // Weak properties are inferred to be nullable.
4310      if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4311        inferNullability = NullabilityKind::Nullable;
4312        break;
4313      }
4314
4315      LLVM_FALLTHROUGH;
4316
4317    case DeclaratorContext::FileContext:
4318    case DeclaratorContext::KNRTypeListContext: {
4319      complainAboutMissingNullability = CAMN_Yes;
4320
4321      // Nullability inference depends on the type and declarator.
4322      auto wrappingKind = PointerWrappingDeclaratorKind::None;
4323      switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4324      case PointerDeclaratorKind::NonPointer:
4325      case PointerDeclaratorKind::MultiLevelPointer:
4326        // Cannot infer nullability.
4327        break;
4328
4329      case PointerDeclaratorKind::SingleLevelPointer:
4330        // Infer _Nonnull if we are in an assumes-nonnull region.
4331        if (inAssumeNonNullRegion) {
4332          complainAboutInferringWithinChunk = wrappingKind;
4333          inferNullability = NullabilityKind::NonNull;
4334          inferNullabilityCS =
4335              (context == DeclaratorContext::ObjCParameterContext ||
4336               context == DeclaratorContext::ObjCResultContext);
4337        }
4338        break;
4339
4340      case PointerDeclaratorKind::CFErrorRefPointer:
4341      case PointerDeclaratorKind::NSErrorPointerPointer:
4342        // Within a function or method signature, infer _Nullable at both
4343        // levels.
4344        if (isFunctionOrMethod && inAssumeNonNullRegion)
4345          inferNullability = NullabilityKind::Nullable;
4346        break;
4347
4348      case PointerDeclaratorKind::MaybePointerToCFRef:
4349        if (isFunctionOrMethod) {
4350          // On pointer-to-pointer parameters marked cf_returns_retained or
4351          // cf_returns_not_retained, if the outer pointer is explicit then
4352          // infer the inner pointer as _Nullable.
4353          auto hasCFReturnsAttr =
4354              [](const ParsedAttributesView &AttrList) -> bool {
4355            return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4356                   AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4357          };
4358          if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4359            if (hasCFReturnsAttr(D.getAttributes()) ||
4360                hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4361                hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4362              inferNullability = NullabilityKind::Nullable;
4363              inferNullabilityInnerOnly = true;
4364            }
4365          }
4366        }
4367        break;
4368      }
4369      break;
4370    }
4371
4372    case DeclaratorContext::ConversionIdContext:
4373      complainAboutMissingNullability = CAMN_Yes;
4374      break;
4375
4376    case DeclaratorContext::AliasDeclContext:
4377    case DeclaratorContext::AliasTemplateContext:
4378    case DeclaratorContext::BlockContext:
4379    case DeclaratorContext::BlockLiteralContext:
4380    case DeclaratorContext::ConditionContext:
4381    case DeclaratorContext::CXXCatchContext:
4382    case DeclaratorContext::CXXNewContext:
4383    case DeclaratorContext::ForContext:
4384    case DeclaratorContext::InitStmtContext:
4385    case DeclaratorContext::LambdaExprContext:
4386    case DeclaratorContext::LambdaExprParameterContext:
4387    case DeclaratorContext::ObjCCatchContext:
4388    case DeclaratorContext::TemplateParamContext:
4389    case DeclaratorContext::TemplateArgContext:
4390    case DeclaratorContext::TemplateTypeArgContext:
4391    case DeclaratorContext::TypeNameContext:
4392    case DeclaratorContext::FunctionalCastContext:
4393    case DeclaratorContext::RequiresExprContext:
4394      // Don't infer in these contexts.
4395      break;
4396    }
4397  }
4398
4399  // Local function that returns true if its argument looks like a va_list.
4400  auto isVaList = [&S](QualType T) -> bool {
4401    auto *typedefTy = T->getAs<TypedefType>();
4402    if (!typedefTy)
4403      return false;
4404    TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4405    do {
4406      if (typedefTy->getDecl() == vaListTypedef)
4407        return true;
4408      if (auto *name = typedefTy->getDecl()->getIdentifier())
4409        if (name->isStr("va_list"))
4410          return true;
4411      typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4412    } while (typedefTy);
4413    return false;
4414  };
4415
4416  // Local function that checks the nullability for a given pointer declarator.
4417  // Returns true if _Nonnull was inferred.
4418  auto inferPointerNullability =
4419      [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4420          SourceLocation pointerEndLoc,
4421          ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4422    // We've seen a pointer.
4423    if (NumPointersRemaining > 0)
4424      --NumPointersRemaining;
4425
4426    // If a nullability attribute is present, there's nothing to do.
4427    if (hasNullabilityAttr(attrs))
4428      return nullptr;
4429
4430    // If we're supposed to infer nullability, do so now.
4431    if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4432      ParsedAttr::Syntax syntax = inferNullabilityCS
4433                                      ? ParsedAttr::AS_ContextSensitiveKeyword
4434                                      : ParsedAttr::AS_Keyword;
4435      ParsedAttr *nullabilityAttr = Pool.create(
4436          S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4437          nullptr, SourceLocation(), nullptr, 0, syntax);
4438
4439      attrs.addAtEnd(nullabilityAttr);
4440
4441      if (inferNullabilityCS) {
4442        state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4443          ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4444      }
4445
4446      if (pointerLoc.isValid() &&
4447          complainAboutInferringWithinChunk !=
4448            PointerWrappingDeclaratorKind::None) {
4449        auto Diag =
4450            S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4451        Diag << static_cast<int>(complainAboutInferringWithinChunk);
4452        fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4453      }
4454
4455      if (inferNullabilityInnerOnly)
4456        inferNullabilityInnerOnlyComplete = true;
4457      return nullabilityAttr;
4458    }
4459
4460    // If we're supposed to complain about missing nullability, do so
4461    // now if it's truly missing.
4462    switch (complainAboutMissingNullability) {
4463    case CAMN_No:
4464      break;
4465
4466    case CAMN_InnerPointers:
4467      if (NumPointersRemaining == 0)
4468        break;
4469      LLVM_FALLTHROUGH;
4470
4471    case CAMN_Yes:
4472      checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4473    }
4474    return nullptr;
4475  };
4476
4477  // If the type itself could have nullability but does not, infer pointer
4478  // nullability and perform consistency checking.
4479  if (S.CodeSynthesisContexts.empty()) {
4480    if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4481        !T->getNullability(S.Context)) {
4482      if (isVaList(T)) {
4483        // Record that we've seen a pointer, but do nothing else.
4484        if (NumPointersRemaining > 0)
4485          --NumPointersRemaining;
4486      } else {
4487        SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4488        if (T->isBlockPointerType())
4489          pointerKind = SimplePointerKind::BlockPointer;
4490        else if (T->isMemberPointerType())
4491          pointerKind = SimplePointerKind::MemberPointer;
4492
4493        if (auto *attr = inferPointerNullability(
4494                pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4495                D.getDeclSpec().getEndLoc(),
4496                D.getMutableDeclSpec().getAttributes(),
4497                D.getMutableDeclSpec().getAttributePool())) {
4498          T = state.getAttributedType(
4499              createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4500        }
4501      }
4502    }
4503
4504    if (complainAboutMissingNullability == CAMN_Yes &&
4505        T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4506        D.isPrototypeContext() &&
4507        !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4508      checkNullabilityConsistency(S, SimplePointerKind::Array,
4509                                  D.getDeclSpec().getTypeSpecTypeLoc());
4510    }
4511  }
4512
4513  bool ExpectNoDerefChunk =
4514      state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4515
4516  // Walk the DeclTypeInfo, building the recursive type as we go.
4517  // DeclTypeInfos are ordered from the identifier out, which is
4518  // opposite of what we want :).
4519  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4520    unsigned chunkIndex = e - i - 1;
4521    state.setCurrentChunkIndex(chunkIndex);
4522    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4523    IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4524    switch (DeclType.Kind) {
4525    case DeclaratorChunk::Paren:
4526      if (i == 0)
4527        warnAboutRedundantParens(S, D, T);
4528      T = S.BuildParenType(T);
4529      break;
4530    case DeclaratorChunk::BlockPointer:
4531      // If blocks are disabled, emit an error.
4532      if (!LangOpts.Blocks)
4533        S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4534
4535      // Handle pointer nullability.
4536      inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4537                              DeclType.EndLoc, DeclType.getAttrs(),
4538                              state.getDeclarator().getAttributePool());
4539
4540      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4541      if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4542        // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4543        // qualified with const.
4544        if (LangOpts.OpenCL)
4545          DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4546        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4547      }
4548      break;
4549    case DeclaratorChunk::Pointer:
4550      // Verify that we're not building a pointer to pointer to function with
4551      // exception specification.
4552      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4553        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4554        D.setInvalidType(true);
4555        // Build the type anyway.
4556      }
4557
4558      // Handle pointer nullability
4559      inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4560                              DeclType.EndLoc, DeclType.getAttrs(),
4561                              state.getDeclarator().getAttributePool());
4562
4563      if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4564        T = Context.getObjCObjectPointerType(T);
4565        if (DeclType.Ptr.TypeQuals)
4566          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4567        break;
4568      }
4569
4570      // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4571      // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4572      // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4573      if (LangOpts.OpenCL) {
4574        if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4575            T->isBlockPointerType()) {
4576          S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4577          D.setInvalidType(true);
4578        }
4579      }
4580
4581      T = S.BuildPointerType(T, DeclType.Loc, Name);
4582      if (DeclType.Ptr.TypeQuals)
4583        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4584      break;
4585    case DeclaratorChunk::Reference: {
4586      // Verify that we're not building a reference to pointer to function with
4587      // exception specification.
4588      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4589        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4590        D.setInvalidType(true);
4591        // Build the type anyway.
4592      }
4593      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4594
4595      if (DeclType.Ref.HasRestrict)
4596        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4597      break;
4598    }
4599    case DeclaratorChunk::Array: {
4600      // Verify that we're not building an array of pointers to function with
4601      // exception specification.
4602      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4603        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4604        D.setInvalidType(true);
4605        // Build the type anyway.
4606      }
4607      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4608      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4609      ArrayType::ArraySizeModifier ASM;
4610      if (ATI.isStar)
4611        ASM = ArrayType::Star;
4612      else if (ATI.hasStatic)
4613        ASM = ArrayType::Static;
4614      else
4615        ASM = ArrayType::Normal;
4616      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4617        // FIXME: This check isn't quite right: it allows star in prototypes
4618        // for function definitions, and disallows some edge cases detailed
4619        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4620        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4621        ASM = ArrayType::Normal;
4622        D.setInvalidType(true);
4623      }
4624
4625      // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4626      // shall appear only in a declaration of a function parameter with an
4627      // array type, ...
4628      if (ASM == ArrayType::Static || ATI.TypeQuals) {
4629        if (!(D.isPrototypeContext() ||
4630              D.getContext() == DeclaratorContext::KNRTypeListContext)) {
4631          S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4632              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4633          // Remove the 'static' and the type qualifiers.
4634          if (ASM == ArrayType::Static)
4635            ASM = ArrayType::Normal;
4636          ATI.TypeQuals = 0;
4637          D.setInvalidType(true);
4638        }
4639
4640        // C99 6.7.5.2p1: ... and then only in the outermost array type
4641        // derivation.
4642        if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4643          S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
4644            (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4645          if (ASM == ArrayType::Static)
4646            ASM = ArrayType::Normal;
4647          ATI.TypeQuals = 0;
4648          D.setInvalidType(true);
4649        }
4650      }
4651      const AutoType *AT = T->getContainedAutoType();
4652      // Allow arrays of auto if we are a generic lambda parameter.
4653      // i.e. [](auto (&array)[5]) { return array[0]; }; OK
4654      if (AT &&
4655          D.getContext() != DeclaratorContext::LambdaExprParameterContext) {
4656        // We've already diagnosed this for decltype(auto).
4657        if (!AT->isDecltypeAuto())
4658          S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
4659            << getPrintableNameForEntity(Name) << T;
4660        T = QualType();
4661        break;
4662      }
4663
4664      // Array parameters can be marked nullable as well, although it's not
4665      // necessary if they're marked 'static'.
4666      if (complainAboutMissingNullability == CAMN_Yes &&
4667          !hasNullabilityAttr(DeclType.getAttrs()) &&
4668          ASM != ArrayType::Static &&
4669          D.isPrototypeContext() &&
4670          !hasOuterPointerLikeChunk(D, chunkIndex)) {
4671        checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4672      }
4673
4674      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4675                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4676      break;
4677    }
4678    case DeclaratorChunk::Function: {
4679      // If the function declarator has a prototype (i.e. it is not () and
4680      // does not have a K&R-style identifier list), then the arguments are part
4681      // of the type, otherwise the argument list is ().
4682      DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4683      IsQualifiedFunction =
4684          FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4685
4686      // Check for auto functions and trailing return type and adjust the
4687      // return type accordingly.
4688      if (!D.isInvalidType()) {
4689        // trailing-return-type is only required if we're declaring a function,
4690        // and not, for instance, a pointer to a function.
4691        if (D.getDeclSpec().hasAutoTypeSpec() &&
4692            !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4693          if (!S.getLangOpts().CPlusPlus14) {
4694            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4695                   D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4696                       ? diag::err_auto_missing_trailing_return
4697                       : diag::err_deduced_return_type);
4698            T = Context.IntTy;
4699            D.setInvalidType(true);
4700          } else {
4701            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4702                   diag::warn_cxx11_compat_deduced_return_type);
4703          }
4704        } else if (FTI.hasTrailingReturnType()) {
4705          // T must be exactly 'auto' at this point. See CWG issue 681.
4706          if (isa<ParenType>(T)) {
4707            S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4708                << T << D.getSourceRange();
4709            D.setInvalidType(true);
4710          } else if (D.getName().getKind() ==
4711                     UnqualifiedIdKind::IK_DeductionGuideName) {
4712            if (T != Context.DependentTy) {
4713              S.Diag(D.getDeclSpec().getBeginLoc(),
4714                     diag::err_deduction_guide_with_complex_decl)
4715                  << D.getSourceRange();
4716              D.setInvalidType(true);
4717            }
4718          } else if (D.getContext() != DeclaratorContext::LambdaExprContext &&
4719                     (T.hasQualifiers() || !isa<AutoType>(T) ||
4720                      cast<AutoType>(T)->getKeyword() !=
4721                          AutoTypeKeyword::Auto ||
4722                      cast<AutoType>(T)->isConstrained())) {
4723            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4724                   diag::err_trailing_return_without_auto)
4725                << T << D.getDeclSpec().getSourceRange();
4726            D.setInvalidType(true);
4727          }
4728          T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4729          if (T.isNull()) {
4730            // An error occurred parsing the trailing return type.
4731            T = Context.IntTy;
4732            D.setInvalidType(true);
4733          } else if (S.getLangOpts().CPlusPlus2a)
4734            // Handle cases like: `auto f() -> auto` or `auto f() -> C auto`.
4735            if (AutoType *Auto = T->getContainedAutoType())
4736              if (S.getCurScope()->isFunctionDeclarationScope())
4737                T = InventTemplateParameter(state, T, TInfo, Auto,
4738                                            S.InventedParameterInfos.back());
4739        } else {
4740          // This function type is not the type of the entity being declared,
4741          // so checking the 'auto' is not the responsibility of this chunk.
4742        }
4743      }
4744
4745      // C99 6.7.5.3p1: The return type may not be a function or array type.
4746      // For conversion functions, we'll diagnose this particular error later.
4747      if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4748          (D.getName().getKind() !=
4749           UnqualifiedIdKind::IK_ConversionFunctionId)) {
4750        unsigned diagID = diag::err_func_returning_array_function;
4751        // Last processing chunk in block context means this function chunk
4752        // represents the block.
4753        if (chunkIndex == 0 &&
4754            D.getContext() == DeclaratorContext::BlockLiteralContext)
4755          diagID = diag::err_block_returning_array_function;
4756        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4757        T = Context.IntTy;
4758        D.setInvalidType(true);
4759      }
4760
4761      // Do not allow returning half FP value.
4762      // FIXME: This really should be in BuildFunctionType.
4763      if (T->isHalfType()) {
4764        if (S.getLangOpts().OpenCL) {
4765          if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4766            S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4767                << T << 0 /*pointer hint*/;
4768            D.setInvalidType(true);
4769          }
4770        } else if (!S.getLangOpts().HalfArgsAndReturns) {
4771          S.Diag(D.getIdentifierLoc(),
4772            diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4773          D.setInvalidType(true);
4774        }
4775      }
4776
4777      if (LangOpts.OpenCL) {
4778        // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4779        // function.
4780        if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4781            T->isPipeType()) {
4782          S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4783              << T << 1 /*hint off*/;
4784          D.setInvalidType(true);
4785        }
4786        // OpenCL doesn't support variadic functions and blocks
4787        // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4788        // We also allow here any toolchain reserved identifiers.
4789        if (FTI.isVariadic &&
4790            !(D.getIdentifier() &&
4791              ((D.getIdentifier()->getName() == "printf" &&
4792                (LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) ||
4793               D.getIdentifier()->getName().startswith("__")))) {
4794          S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4795          D.setInvalidType(true);
4796        }
4797      }
4798
4799      // Methods cannot return interface types. All ObjC objects are
4800      // passed by reference.
4801      if (T->isObjCObjectType()) {
4802        SourceLocation DiagLoc, FixitLoc;
4803        if (TInfo) {
4804          DiagLoc = TInfo->getTypeLoc().getBeginLoc();
4805          FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
4806        } else {
4807          DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4808          FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
4809        }
4810        S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
4811          << 0 << T
4812          << FixItHint::CreateInsertion(FixitLoc, "*");
4813
4814        T = Context.getObjCObjectPointerType(T);
4815        if (TInfo) {
4816          TypeLocBuilder TLB;
4817          TLB.pushFullCopy(TInfo->getTypeLoc());
4818          ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
4819          TLoc.setStarLoc(FixitLoc);
4820          TInfo = TLB.getTypeSourceInfo(Context, T);
4821        }
4822
4823        D.setInvalidType(true);
4824      }
4825
4826      // cv-qualifiers on return types are pointless except when the type is a
4827      // class type in C++.
4828      if ((T.getCVRQualifiers() || T->isAtomicType()) &&
4829          !(S.getLangOpts().CPlusPlus &&
4830            (T->isDependentType() || T->isRecordType()))) {
4831        if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
4832            D.getFunctionDefinitionKind() == FDK_Definition) {
4833          // [6.9.1/3] qualified void return is invalid on a C
4834          // function definition.  Apparently ok on declarations and
4835          // in C++ though (!)
4836          S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
4837        } else
4838          diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
4839
4840        // C++2a [dcl.fct]p12:
4841        //   A volatile-qualified return type is deprecated
4842        if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus2a)
4843          S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
4844      }
4845
4846      // Objective-C ARC ownership qualifiers are ignored on the function
4847      // return type (by type canonicalization). Complain if this attribute
4848      // was written here.
4849      if (T.getQualifiers().hasObjCLifetime()) {
4850        SourceLocation AttrLoc;
4851        if (chunkIndex + 1 < D.getNumTypeObjects()) {
4852          DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
4853          for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
4854            if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
4855              AttrLoc = AL.getLoc();
4856              break;
4857            }
4858          }
4859        }
4860        if (AttrLoc.isInvalid()) {
4861          for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
4862            if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
4863              AttrLoc = AL.getLoc();
4864              break;
4865            }
4866          }
4867        }
4868
4869        if (AttrLoc.isValid()) {
4870          // The ownership attributes are almost always written via
4871          // the predefined
4872          // __strong/__weak/__autoreleasing/__unsafe_unretained.
4873          if (AttrLoc.isMacroID())
4874            AttrLoc =
4875                S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
4876
4877          S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
4878            << T.getQualifiers().getObjCLifetime();
4879        }
4880      }
4881
4882      if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
4883        // C++ [dcl.fct]p6:
4884        //   Types shall not be defined in return or parameter types.
4885        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
4886        S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
4887          << Context.getTypeDeclType(Tag);
4888      }
4889
4890      // Exception specs are not allowed in typedefs. Complain, but add it
4891      // anyway.
4892      if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
4893        S.Diag(FTI.getExceptionSpecLocBeg(),
4894               diag::err_exception_spec_in_typedef)
4895            << (D.getContext() == DeclaratorContext::AliasDeclContext ||
4896                D.getContext() == DeclaratorContext::AliasTemplateContext);
4897
4898      // If we see "T var();" or "T var(T());" at block scope, it is probably
4899      // an attempt to initialize a variable, not a function declaration.
4900      if (FTI.isAmbiguous)
4901        warnAboutAmbiguousFunction(S, D, DeclType, T);
4902
4903      FunctionType::ExtInfo EI(
4904          getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
4905
4906      if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
4907                                            && !LangOpts.OpenCL) {
4908        // Simple void foo(), where the incoming T is the result type.
4909        T = Context.getFunctionNoProtoType(T, EI);
4910      } else {
4911        // We allow a zero-parameter variadic function in C if the
4912        // function is marked with the "overloadable" attribute. Scan
4913        // for this attribute now.
4914        if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
4915          if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
4916            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
4917
4918        if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
4919          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
4920          // definition.
4921          S.Diag(FTI.Params[0].IdentLoc,
4922                 diag::err_ident_list_in_fn_declaration);
4923          D.setInvalidType(true);
4924          // Recover by creating a K&R-style function type.
4925          T = Context.getFunctionNoProtoType(T, EI);
4926          break;
4927        }
4928
4929        FunctionProtoType::ExtProtoInfo EPI;
4930        EPI.ExtInfo = EI;
4931        EPI.Variadic = FTI.isVariadic;
4932        EPI.EllipsisLoc = FTI.getEllipsisLoc();
4933        EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
4934        EPI.TypeQuals.addCVRUQualifiers(
4935            FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
4936                                 : 0);
4937        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
4938                    : FTI.RefQualifierIsLValueRef? RQ_LValue
4939                    : RQ_RValue;
4940
4941        // Otherwise, we have a function with a parameter list that is
4942        // potentially variadic.
4943        SmallVector<QualType, 16> ParamTys;
4944        ParamTys.reserve(FTI.NumParams);
4945
4946        SmallVector<FunctionProtoType::ExtParameterInfo, 16>
4947          ExtParameterInfos(FTI.NumParams);
4948        bool HasAnyInterestingExtParameterInfos = false;
4949
4950        for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
4951          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
4952          QualType ParamTy = Param->getType();
4953          assert(!ParamTy.isNull() && "Couldn't parse type?");
4954
4955          // Look for 'void'.  void is allowed only as a single parameter to a
4956          // function with no other parameters (C99 6.7.5.3p10).  We record
4957          // int(void) as a FunctionProtoType with an empty parameter list.
4958          if (ParamTy->isVoidType()) {
4959            // If this is something like 'float(int, void)', reject it.  'void'
4960            // is an incomplete type (C99 6.2.5p19) and function decls cannot
4961            // have parameters of incomplete type.
4962            if (FTI.NumParams != 1 || FTI.isVariadic) {
4963              S.Diag(DeclType.Loc, diag::err_void_only_param);
4964              ParamTy = Context.IntTy;
4965              Param->setType(ParamTy);
4966            } else if (FTI.Params[i].Ident) {
4967              // Reject, but continue to parse 'int(void abc)'.
4968              S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
4969              ParamTy = Context.IntTy;
4970              Param->setType(ParamTy);
4971            } else {
4972              // Reject, but continue to parse 'float(const void)'.
4973              if (ParamTy.hasQualifiers())
4974                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
4975
4976              // Do not add 'void' to the list.
4977              break;
4978            }
4979          } else if (ParamTy->isHalfType()) {
4980            // Disallow half FP parameters.
4981            // FIXME: This really should be in BuildFunctionType.
4982            if (S.getLangOpts().OpenCL) {
4983              if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4984                S.Diag(Param->getLocation(),
4985                  diag::err_opencl_half_param) << ParamTy;
4986                D.setInvalidType();
4987                Param->setInvalidDecl();
4988              }
4989            } else if (!S.getLangOpts().HalfArgsAndReturns) {
4990              S.Diag(Param->getLocation(),
4991                diag::err_parameters_retval_cannot_have_fp16_type) << 0;
4992              D.setInvalidType();
4993            }
4994          } else if (!FTI.hasPrototype) {
4995            if (ParamTy->isPromotableIntegerType()) {
4996              ParamTy = Context.getPromotedIntegerType(ParamTy);
4997              Param->setKNRPromoted(true);
4998            } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
4999              if (BTy->getKind() == BuiltinType::Float) {
5000                ParamTy = Context.DoubleTy;
5001                Param->setKNRPromoted(true);
5002              }
5003            }
5004          }
5005
5006          if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5007            ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5008            HasAnyInterestingExtParameterInfos = true;
5009          }
5010
5011          if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5012            ExtParameterInfos[i] =
5013              ExtParameterInfos[i].withABI(attr->getABI());
5014            HasAnyInterestingExtParameterInfos = true;
5015          }
5016
5017          if (Param->hasAttr<PassObjectSizeAttr>()) {
5018            ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5019            HasAnyInterestingExtParameterInfos = true;
5020          }
5021
5022          if (Param->hasAttr<NoEscapeAttr>()) {
5023            ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5024            HasAnyInterestingExtParameterInfos = true;
5025          }
5026
5027          ParamTys.push_back(ParamTy);
5028        }
5029
5030        if (HasAnyInterestingExtParameterInfos) {
5031          EPI.ExtParameterInfos = ExtParameterInfos.data();
5032          checkExtParameterInfos(S, ParamTys, EPI,
5033              [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5034        }
5035
5036        SmallVector<QualType, 4> Exceptions;
5037        SmallVector<ParsedType, 2> DynamicExceptions;
5038        SmallVector<SourceRange, 2> DynamicExceptionRanges;
5039        Expr *NoexceptExpr = nullptr;
5040
5041        if (FTI.getExceptionSpecType() == EST_Dynamic) {
5042          // FIXME: It's rather inefficient to have to split into two vectors
5043          // here.
5044          unsigned N = FTI.getNumExceptions();
5045          DynamicExceptions.reserve(N);
5046          DynamicExceptionRanges.reserve(N);
5047          for (unsigned I = 0; I != N; ++I) {
5048            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5049            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5050          }
5051        } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5052          NoexceptExpr = FTI.NoexceptExpr;
5053        }
5054
5055        S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5056                                      FTI.getExceptionSpecType(),
5057                                      DynamicExceptions,
5058                                      DynamicExceptionRanges,
5059                                      NoexceptExpr,
5060                                      Exceptions,
5061                                      EPI.ExceptionSpec);
5062
5063        // FIXME: Set address space from attrs for C++ mode here.
5064        // OpenCLCPlusPlus: A class member function has an address space.
5065        auto IsClassMember = [&]() {
5066          return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5067                  state.getDeclarator()
5068                          .getCXXScopeSpec()
5069                          .getScopeRep()
5070                          ->getKind() == NestedNameSpecifier::TypeSpec) ||
5071                 state.getDeclarator().getContext() ==
5072                     DeclaratorContext::MemberContext ||
5073                 state.getDeclarator().getContext() ==
5074                     DeclaratorContext::LambdaExprContext;
5075        };
5076
5077        if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5078          LangAS ASIdx = LangAS::Default;
5079          // Take address space attr if any and mark as invalid to avoid adding
5080          // them later while creating QualType.
5081          if (FTI.MethodQualifiers)
5082            for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5083              LangAS ASIdxNew = attr.asOpenCLLangAS();
5084              if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5085                                                      attr.getLoc()))
5086                D.setInvalidType(true);
5087              else
5088                ASIdx = ASIdxNew;
5089            }
5090          // If a class member function's address space is not set, set it to
5091          // __generic.
5092          LangAS AS =
5093              (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5094                                        : ASIdx);
5095          EPI.TypeQuals.addAddressSpace(AS);
5096        }
5097        T = Context.getFunctionType(T, ParamTys, EPI);
5098      }
5099      break;
5100    }
5101    case DeclaratorChunk::MemberPointer: {
5102      // The scope spec must refer to a class, or be dependent.
5103      CXXScopeSpec &SS = DeclType.Mem.Scope();
5104      QualType ClsType;
5105
5106      // Handle pointer nullability.
5107      inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5108                              DeclType.EndLoc, DeclType.getAttrs(),
5109                              state.getDeclarator().getAttributePool());
5110
5111      if (SS.isInvalid()) {
5112        // Avoid emitting extra errors if we already errored on the scope.
5113        D.setInvalidType(true);
5114      } else if (S.isDependentScopeSpecifier(SS) ||
5115                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
5116        NestedNameSpecifier *NNS = SS.getScopeRep();
5117        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5118        switch (NNS->getKind()) {
5119        case NestedNameSpecifier::Identifier:
5120          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
5121                                                 NNS->getAsIdentifier());
5122          break;
5123
5124        case NestedNameSpecifier::Namespace:
5125        case NestedNameSpecifier::NamespaceAlias:
5126        case NestedNameSpecifier::Global:
5127        case NestedNameSpecifier::Super:
5128          llvm_unreachable("Nested-name-specifier must name a type");
5129
5130        case NestedNameSpecifier::TypeSpec:
5131        case NestedNameSpecifier::TypeSpecWithTemplate:
5132          ClsType = QualType(NNS->getAsType(), 0);
5133          // Note: if the NNS has a prefix and ClsType is a nondependent
5134          // TemplateSpecializationType, then the NNS prefix is NOT included
5135          // in ClsType; hence we wrap ClsType into an ElaboratedType.
5136          // NOTE: in particular, no wrap occurs if ClsType already is an
5137          // Elaborated, DependentName, or DependentTemplateSpecialization.
5138          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
5139            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
5140          break;
5141        }
5142      } else {
5143        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5144             diag::err_illegal_decl_mempointer_in_nonclass)
5145          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5146          << DeclType.Mem.Scope().getRange();
5147        D.setInvalidType(true);
5148      }
5149
5150      if (!ClsType.isNull())
5151        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5152                                     D.getIdentifier());
5153      if (T.isNull()) {
5154        T = Context.IntTy;
5155        D.setInvalidType(true);
5156      } else if (DeclType.Mem.TypeQuals) {
5157        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5158      }
5159      break;
5160    }
5161
5162    case DeclaratorChunk::Pipe: {
5163      T = S.BuildReadPipeType(T, DeclType.Loc);
5164      processTypeAttrs(state, T, TAL_DeclSpec,
5165                       D.getMutableDeclSpec().getAttributes());
5166      break;
5167    }
5168    }
5169
5170    if (T.isNull()) {
5171      D.setInvalidType(true);
5172      T = Context.IntTy;
5173    }
5174
5175    // See if there are any attributes on this declarator chunk.
5176    processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
5177
5178    if (DeclType.Kind != DeclaratorChunk::Paren) {
5179      if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5180        S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5181
5182      ExpectNoDerefChunk = state.didParseNoDeref();
5183    }
5184  }
5185
5186  if (ExpectNoDerefChunk)
5187    S.Diag(state.getDeclarator().getBeginLoc(),
5188           diag::warn_noderef_on_non_pointer_or_array);
5189
5190  // GNU warning -Wstrict-prototypes
5191  //   Warn if a function declaration is without a prototype.
5192  //   This warning is issued for all kinds of unprototyped function
5193  //   declarations (i.e. function type typedef, function pointer etc.)
5194  //   C99 6.7.5.3p14:
5195  //   The empty list in a function declarator that is not part of a definition
5196  //   of that function specifies that no information about the number or types
5197  //   of the parameters is supplied.
5198  if (!LangOpts.CPlusPlus && D.getFunctionDefinitionKind() == FDK_Declaration) {
5199    bool IsBlock = false;
5200    for (const DeclaratorChunk &DeclType : D.type_objects()) {
5201      switch (DeclType.Kind) {
5202      case DeclaratorChunk::BlockPointer:
5203        IsBlock = true;
5204        break;
5205      case DeclaratorChunk::Function: {
5206        const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5207        // We supress the warning when there's no LParen location, as this
5208        // indicates the declaration was an implicit declaration, which gets
5209        // warned about separately via -Wimplicit-function-declaration.
5210        if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid())
5211          S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5212              << IsBlock
5213              << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5214        IsBlock = false;
5215        break;
5216      }
5217      default:
5218        break;
5219      }
5220    }
5221  }
5222
5223  assert(!T.isNull() && "T must not be null after this point");
5224
5225  if (LangOpts.CPlusPlus && T->isFunctionType()) {
5226    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5227    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
5228
5229    // C++ 8.3.5p4:
5230    //   A cv-qualifier-seq shall only be part of the function type
5231    //   for a nonstatic member function, the function type to which a pointer
5232    //   to member refers, or the top-level function type of a function typedef
5233    //   declaration.
5234    //
5235    // Core issue 547 also allows cv-qualifiers on function types that are
5236    // top-level template type arguments.
5237    enum { NonMember, Member, DeductionGuide } Kind = NonMember;
5238    if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5239      Kind = DeductionGuide;
5240    else if (!D.getCXXScopeSpec().isSet()) {
5241      if ((D.getContext() == DeclaratorContext::MemberContext ||
5242           D.getContext() == DeclaratorContext::LambdaExprContext) &&
5243          !D.getDeclSpec().isFriendSpecified())
5244        Kind = Member;
5245    } else {
5246      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5247      if (!DC || DC->isRecord())
5248        Kind = Member;
5249    }
5250
5251    // C++11 [dcl.fct]p6 (w/DR1417):
5252    // An attempt to specify a function type with a cv-qualifier-seq or a
5253    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5254    //  - the function type for a non-static member function,
5255    //  - the function type to which a pointer to member refers,
5256    //  - the top-level function type of a function typedef declaration or
5257    //    alias-declaration,
5258    //  - the type-id in the default argument of a type-parameter, or
5259    //  - the type-id of a template-argument for a type-parameter
5260    //
5261    // FIXME: Checking this here is insufficient. We accept-invalid on:
5262    //
5263    //   template<typename T> struct S { void f(T); };
5264    //   S<int() const> s;
5265    //
5266    // ... for instance.
5267    if (IsQualifiedFunction &&
5268        !(Kind == Member &&
5269          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
5270        !IsTypedefName &&
5271        D.getContext() != DeclaratorContext::TemplateArgContext &&
5272        D.getContext() != DeclaratorContext::TemplateTypeArgContext) {
5273      SourceLocation Loc = D.getBeginLoc();
5274      SourceRange RemovalRange;
5275      unsigned I;
5276      if (D.isFunctionDeclarator(I)) {
5277        SmallVector<SourceLocation, 4> RemovalLocs;
5278        const DeclaratorChunk &Chunk = D.getTypeObject(I);
5279        assert(Chunk.Kind == DeclaratorChunk::Function);
5280
5281        if (Chunk.Fun.hasRefQualifier())
5282          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5283
5284        if (Chunk.Fun.hasMethodTypeQualifiers())
5285          Chunk.Fun.MethodQualifiers->forEachQualifier(
5286              [&](DeclSpec::TQ TypeQual, StringRef QualName,
5287                  SourceLocation SL) { RemovalLocs.push_back(SL); });
5288
5289        if (!RemovalLocs.empty()) {
5290          llvm::sort(RemovalLocs,
5291                     BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5292          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5293          Loc = RemovalLocs.front();
5294        }
5295      }
5296
5297      S.Diag(Loc, diag::err_invalid_qualified_function_type)
5298        << Kind << D.isFunctionDeclarator() << T
5299        << getFunctionQualifiersAsString(FnTy)
5300        << FixItHint::CreateRemoval(RemovalRange);
5301
5302      // Strip the cv-qualifiers and ref-qualifiers from the type.
5303      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5304      EPI.TypeQuals.removeCVRQualifiers();
5305      EPI.RefQualifier = RQ_None;
5306
5307      T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5308                                  EPI);
5309      // Rebuild any parens around the identifier in the function type.
5310      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5311        if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5312          break;
5313        T = S.BuildParenType(T);
5314      }
5315    }
5316  }
5317
5318  // Apply any undistributed attributes from the declarator.
5319  processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5320
5321  // Diagnose any ignored type attributes.
5322  state.diagnoseIgnoredTypeAttrs(T);
5323
5324  // C++0x [dcl.constexpr]p9:
5325  //  A constexpr specifier used in an object declaration declares the object
5326  //  as const.
5327  if (D.getDeclSpec().getConstexprSpecifier() == CSK_constexpr &&
5328      T->isObjectType())
5329    T.addConst();
5330
5331  // C++2a [dcl.fct]p4:
5332  //   A parameter with volatile-qualified type is deprecated
5333  if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus2a &&
5334      (D.getContext() == DeclaratorContext::PrototypeContext ||
5335       D.getContext() == DeclaratorContext::LambdaExprParameterContext))
5336    S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5337
5338  // If there was an ellipsis in the declarator, the declaration declares a
5339  // parameter pack whose type may be a pack expansion type.
5340  if (D.hasEllipsis()) {
5341    // C++0x [dcl.fct]p13:
5342    //   A declarator-id or abstract-declarator containing an ellipsis shall
5343    //   only be used in a parameter-declaration. Such a parameter-declaration
5344    //   is a parameter pack (14.5.3). [...]
5345    switch (D.getContext()) {
5346    case DeclaratorContext::PrototypeContext:
5347    case DeclaratorContext::LambdaExprParameterContext:
5348    case DeclaratorContext::RequiresExprContext:
5349      // C++0x [dcl.fct]p13:
5350      //   [...] When it is part of a parameter-declaration-clause, the
5351      //   parameter pack is a function parameter pack (14.5.3). The type T
5352      //   of the declarator-id of the function parameter pack shall contain
5353      //   a template parameter pack; each template parameter pack in T is
5354      //   expanded by the function parameter pack.
5355      //
5356      // We represent function parameter packs as function parameters whose
5357      // type is a pack expansion.
5358      if (!T->containsUnexpandedParameterPack() &&
5359          (!LangOpts.CPlusPlus2a || !T->getContainedAutoType())) {
5360        S.Diag(D.getEllipsisLoc(),
5361             diag::err_function_parameter_pack_without_parameter_packs)
5362          << T <<  D.getSourceRange();
5363        D.setEllipsisLoc(SourceLocation());
5364      } else {
5365        T = Context.getPackExpansionType(T, None);
5366      }
5367      break;
5368    case DeclaratorContext::TemplateParamContext:
5369      // C++0x [temp.param]p15:
5370      //   If a template-parameter is a [...] is a parameter-declaration that
5371      //   declares a parameter pack (8.3.5), then the template-parameter is a
5372      //   template parameter pack (14.5.3).
5373      //
5374      // Note: core issue 778 clarifies that, if there are any unexpanded
5375      // parameter packs in the type of the non-type template parameter, then
5376      // it expands those parameter packs.
5377      if (T->containsUnexpandedParameterPack())
5378        T = Context.getPackExpansionType(T, None);
5379      else
5380        S.Diag(D.getEllipsisLoc(),
5381               LangOpts.CPlusPlus11
5382                 ? diag::warn_cxx98_compat_variadic_templates
5383                 : diag::ext_variadic_templates);
5384      break;
5385
5386    case DeclaratorContext::FileContext:
5387    case DeclaratorContext::KNRTypeListContext:
5388    case DeclaratorContext::ObjCParameterContext:  // FIXME: special diagnostic
5389                                                   // here?
5390    case DeclaratorContext::ObjCResultContext:     // FIXME: special diagnostic
5391                                                   // here?
5392    case DeclaratorContext::TypeNameContext:
5393    case DeclaratorContext::FunctionalCastContext:
5394    case DeclaratorContext::CXXNewContext:
5395    case DeclaratorContext::AliasDeclContext:
5396    case DeclaratorContext::AliasTemplateContext:
5397    case DeclaratorContext::MemberContext:
5398    case DeclaratorContext::BlockContext:
5399    case DeclaratorContext::ForContext:
5400    case DeclaratorContext::InitStmtContext:
5401    case DeclaratorContext::ConditionContext:
5402    case DeclaratorContext::CXXCatchContext:
5403    case DeclaratorContext::ObjCCatchContext:
5404    case DeclaratorContext::BlockLiteralContext:
5405    case DeclaratorContext::LambdaExprContext:
5406    case DeclaratorContext::ConversionIdContext:
5407    case DeclaratorContext::TrailingReturnContext:
5408    case DeclaratorContext::TrailingReturnVarContext:
5409    case DeclaratorContext::TemplateArgContext:
5410    case DeclaratorContext::TemplateTypeArgContext:
5411      // FIXME: We may want to allow parameter packs in block-literal contexts
5412      // in the future.
5413      S.Diag(D.getEllipsisLoc(),
5414             diag::err_ellipsis_in_declarator_not_parameter);
5415      D.setEllipsisLoc(SourceLocation());
5416      break;
5417    }
5418  }
5419
5420  assert(!T.isNull() && "T must not be null at the end of this function");
5421  if (D.isInvalidType())
5422    return Context.getTrivialTypeSourceInfo(T);
5423
5424  return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5425}
5426
5427/// GetTypeForDeclarator - Convert the type for the specified
5428/// declarator to Type instances.
5429///
5430/// The result of this call will never be null, but the associated
5431/// type may be a null type if there's an unrecoverable error.
5432TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
5433  // Determine the type of the declarator. Not all forms of declarator
5434  // have a type.
5435
5436  TypeProcessingState state(*this, D);
5437
5438  TypeSourceInfo *ReturnTypeInfo = nullptr;
5439  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5440  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5441    inferARCWriteback(state, T);
5442
5443  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5444}
5445
5446static void transferARCOwnershipToDeclSpec(Sema &S,
5447                                           QualType &declSpecTy,
5448                                           Qualifiers::ObjCLifetime ownership) {
5449  if (declSpecTy->isObjCRetainableType() &&
5450      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5451    Qualifiers qs;
5452    qs.addObjCLifetime(ownership);
5453    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5454  }
5455}
5456
5457static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5458                                            Qualifiers::ObjCLifetime ownership,
5459                                            unsigned chunkIndex) {
5460  Sema &S = state.getSema();
5461  Declarator &D = state.getDeclarator();
5462
5463  // Look for an explicit lifetime attribute.
5464  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5465  if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5466    return;
5467
5468  const char *attrStr = nullptr;
5469  switch (ownership) {
5470  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5471  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5472  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5473  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5474  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5475  }
5476
5477  IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5478  Arg->Ident = &S.Context.Idents.get(attrStr);
5479  Arg->Loc = SourceLocation();
5480
5481  ArgsUnion Args(Arg);
5482
5483  // If there wasn't one, add one (with an invalid source location
5484  // so that we don't make an AttributedType for it).
5485  ParsedAttr *attr = D.getAttributePool().create(
5486      &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5487      /*scope*/ nullptr, SourceLocation(),
5488      /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5489  chunk.getAttrs().addAtEnd(attr);
5490  // TODO: mark whether we did this inference?
5491}
5492
5493/// Used for transferring ownership in casts resulting in l-values.
5494static void transferARCOwnership(TypeProcessingState &state,
5495                                 QualType &declSpecTy,
5496                                 Qualifiers::ObjCLifetime ownership) {
5497  Sema &S = state.getSema();
5498  Declarator &D = state.getDeclarator();
5499
5500  int inner = -1;
5501  bool hasIndirection = false;
5502  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5503    DeclaratorChunk &chunk = D.getTypeObject(i);
5504    switch (chunk.Kind) {
5505    case DeclaratorChunk::Paren:
5506      // Ignore parens.
5507      break;
5508
5509    case DeclaratorChunk::Array:
5510    case DeclaratorChunk::Reference:
5511    case DeclaratorChunk::Pointer:
5512      if (inner != -1)
5513        hasIndirection = true;
5514      inner = i;
5515      break;
5516
5517    case DeclaratorChunk::BlockPointer:
5518      if (inner != -1)
5519        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5520      return;
5521
5522    case DeclaratorChunk::Function:
5523    case DeclaratorChunk::MemberPointer:
5524    case DeclaratorChunk::Pipe:
5525      return;
5526    }
5527  }
5528
5529  if (inner == -1)
5530    return;
5531
5532  DeclaratorChunk &chunk = D.getTypeObject(inner);
5533  if (chunk.Kind == DeclaratorChunk::Pointer) {
5534    if (declSpecTy->isObjCRetainableType())
5535      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5536    if (declSpecTy->isObjCObjectType() && hasIndirection)
5537      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5538  } else {
5539    assert(chunk.Kind == DeclaratorChunk::Array ||
5540           chunk.Kind == DeclaratorChunk::Reference);
5541    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5542  }
5543}
5544
5545TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5546  TypeProcessingState state(*this, D);
5547
5548  TypeSourceInfo *ReturnTypeInfo = nullptr;
5549  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5550
5551  if (getLangOpts().ObjC) {
5552    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5553    if (ownership != Qualifiers::OCL_None)
5554      transferARCOwnership(state, declSpecTy, ownership);
5555  }
5556
5557  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5558}
5559
5560static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5561                                  TypeProcessingState &State) {
5562  TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5563}
5564
5565namespace {
5566  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5567    Sema &SemaRef;
5568    ASTContext &Context;
5569    TypeProcessingState &State;
5570    const DeclSpec &DS;
5571
5572  public:
5573    TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5574                      const DeclSpec &DS)
5575        : SemaRef(S), Context(Context), State(State), DS(DS) {}
5576
5577    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5578      Visit(TL.getModifiedLoc());
5579      fillAttributedTypeLoc(TL, State);
5580    }
5581    void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5582      Visit(TL.getInnerLoc());
5583      TL.setExpansionLoc(
5584          State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5585    }
5586    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5587      Visit(TL.getUnqualifiedLoc());
5588    }
5589    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5590      TL.setNameLoc(DS.getTypeSpecTypeLoc());
5591    }
5592    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5593      TL.setNameLoc(DS.getTypeSpecTypeLoc());
5594      // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5595      // addition field. What we have is good enough for dispay of location
5596      // of 'fixit' on interface name.
5597      TL.setNameEndLoc(DS.getEndLoc());
5598    }
5599    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5600      TypeSourceInfo *RepTInfo = nullptr;
5601      Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5602      TL.copy(RepTInfo->getTypeLoc());
5603    }
5604    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5605      TypeSourceInfo *RepTInfo = nullptr;
5606      Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5607      TL.copy(RepTInfo->getTypeLoc());
5608    }
5609    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5610      TypeSourceInfo *TInfo = nullptr;
5611      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5612
5613      // If we got no declarator info from previous Sema routines,
5614      // just fill with the typespec loc.
5615      if (!TInfo) {
5616        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5617        return;
5618      }
5619
5620      TypeLoc OldTL = TInfo->getTypeLoc();
5621      if (TInfo->getType()->getAs<ElaboratedType>()) {
5622        ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5623        TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5624            .castAs<TemplateSpecializationTypeLoc>();
5625        TL.copy(NamedTL);
5626      } else {
5627        TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5628        assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
5629      }
5630
5631    }
5632    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5633      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
5634      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5635      TL.setParensRange(DS.getTypeofParensRange());
5636    }
5637    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5638      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
5639      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5640      TL.setParensRange(DS.getTypeofParensRange());
5641      assert(DS.getRepAsType());
5642      TypeSourceInfo *TInfo = nullptr;
5643      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5644      TL.setUnderlyingTInfo(TInfo);
5645    }
5646    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5647      // FIXME: This holds only because we only have one unary transform.
5648      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
5649      TL.setKWLoc(DS.getTypeSpecTypeLoc());
5650      TL.setParensRange(DS.getTypeofParensRange());
5651      assert(DS.getRepAsType());
5652      TypeSourceInfo *TInfo = nullptr;
5653      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5654      TL.setUnderlyingTInfo(TInfo);
5655    }
5656    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5657      // By default, use the source location of the type specifier.
5658      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5659      if (TL.needsExtraLocalData()) {
5660        // Set info for the written builtin specifiers.
5661        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5662        // Try to have a meaningful source location.
5663        if (TL.getWrittenSignSpec() != TSS_unspecified)
5664          TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5665        if (TL.getWrittenWidthSpec() != TSW_unspecified)
5666          TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5667      }
5668    }
5669    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5670      ElaboratedTypeKeyword Keyword
5671        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
5672      if (DS.getTypeSpecType() == TST_typename) {
5673        TypeSourceInfo *TInfo = nullptr;
5674        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5675        if (TInfo) {
5676          TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
5677          return;
5678        }
5679      }
5680      TL.setElaboratedKeywordLoc(Keyword != ETK_None
5681                                 ? DS.getTypeSpecTypeLoc()
5682                                 : SourceLocation());
5683      const CXXScopeSpec& SS = DS.getTypeSpecScope();
5684      TL.setQualifierLoc(SS.getWithLocInContext(Context));
5685      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5686    }
5687    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5688      assert(DS.getTypeSpecType() == TST_typename);
5689      TypeSourceInfo *TInfo = nullptr;
5690      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5691      assert(TInfo);
5692      TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
5693    }
5694    void VisitDependentTemplateSpecializationTypeLoc(
5695                                 DependentTemplateSpecializationTypeLoc TL) {
5696      assert(DS.getTypeSpecType() == TST_typename);
5697      TypeSourceInfo *TInfo = nullptr;
5698      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5699      assert(TInfo);
5700      TL.copy(
5701          TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
5702    }
5703    void VisitAutoTypeLoc(AutoTypeLoc TL) {
5704      assert(DS.getTypeSpecType() == TST_auto ||
5705             DS.getTypeSpecType() == TST_decltype_auto ||
5706             DS.getTypeSpecType() == TST_auto_type ||
5707             DS.getTypeSpecType() == TST_unspecified);
5708      TL.setNameLoc(DS.getTypeSpecTypeLoc());
5709      if (!DS.isConstrainedAuto())
5710        return;
5711      TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
5712      if (DS.getTypeSpecScope().isNotEmpty())
5713        TL.setNestedNameSpecifierLoc(
5714            DS.getTypeSpecScope().getWithLocInContext(Context));
5715      else
5716        TL.setNestedNameSpecifierLoc(NestedNameSpecifierLoc());
5717      TL.setTemplateKWLoc(TemplateId->TemplateKWLoc);
5718      TL.setConceptNameLoc(TemplateId->TemplateNameLoc);
5719      TL.setFoundDecl(nullptr);
5720      TL.setLAngleLoc(TemplateId->LAngleLoc);
5721      TL.setRAngleLoc(TemplateId->RAngleLoc);
5722      if (TemplateId->NumArgs == 0)
5723        return;
5724      TemplateArgumentListInfo TemplateArgsInfo;
5725      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5726                                         TemplateId->NumArgs);
5727      SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
5728      for (unsigned I = 0; I < TemplateId->NumArgs; ++I)
5729        TL.setArgLocInfo(I, TemplateArgsInfo.arguments()[I].getLocInfo());
5730    }
5731    void VisitTagTypeLoc(TagTypeLoc TL) {
5732      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
5733    }
5734    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
5735      // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
5736      // or an _Atomic qualifier.
5737      if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
5738        TL.setKWLoc(DS.getTypeSpecTypeLoc());
5739        TL.setParensRange(DS.getTypeofParensRange());
5740
5741        TypeSourceInfo *TInfo = nullptr;
5742        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5743        assert(TInfo);
5744        TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5745      } else {
5746        TL.setKWLoc(DS.getAtomicSpecLoc());
5747        // No parens, to indicate this was spelled as an _Atomic qualifier.
5748        TL.setParensRange(SourceRange());
5749        Visit(TL.getValueLoc());
5750      }
5751    }
5752
5753    void VisitPipeTypeLoc(PipeTypeLoc TL) {
5754      TL.setKWLoc(DS.getTypeSpecTypeLoc());
5755
5756      TypeSourceInfo *TInfo = nullptr;
5757      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5758      TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5759    }
5760
5761    void VisitTypeLoc(TypeLoc TL) {
5762      // FIXME: add other typespec types and change this to an assert.
5763      TL.initialize(Context, DS.getTypeSpecTypeLoc());
5764    }
5765  };
5766
5767  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
5768    ASTContext &Context;
5769    TypeProcessingState &State;
5770    const DeclaratorChunk &Chunk;
5771
5772  public:
5773    DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
5774                        const DeclaratorChunk &Chunk)
5775        : Context(Context), State(State), Chunk(Chunk) {}
5776
5777    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5778      llvm_unreachable("qualified type locs not expected here!");
5779    }
5780    void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
5781      llvm_unreachable("decayed type locs not expected here!");
5782    }
5783
5784    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5785      fillAttributedTypeLoc(TL, State);
5786    }
5787    void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
5788      // nothing
5789    }
5790    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
5791      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
5792      TL.setCaretLoc(Chunk.Loc);
5793    }
5794    void VisitPointerTypeLoc(PointerTypeLoc TL) {
5795      assert(Chunk.Kind == DeclaratorChunk::Pointer);
5796      TL.setStarLoc(Chunk.Loc);
5797    }
5798    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5799      assert(Chunk.Kind == DeclaratorChunk::Pointer);
5800      TL.setStarLoc(Chunk.Loc);
5801    }
5802    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
5803      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
5804      const CXXScopeSpec& SS = Chunk.Mem.Scope();
5805      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
5806
5807      const Type* ClsTy = TL.getClass();
5808      QualType ClsQT = QualType(ClsTy, 0);
5809      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
5810      // Now copy source location info into the type loc component.
5811      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
5812      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
5813      case NestedNameSpecifier::Identifier:
5814        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
5815        {
5816          DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
5817          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
5818          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
5819          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
5820        }
5821        break;
5822
5823      case NestedNameSpecifier::TypeSpec:
5824      case NestedNameSpecifier::TypeSpecWithTemplate:
5825        if (isa<ElaboratedType>(ClsTy)) {
5826          ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
5827          ETLoc.setElaboratedKeywordLoc(SourceLocation());
5828          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
5829          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
5830          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
5831        } else {
5832          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
5833        }
5834        break;
5835
5836      case NestedNameSpecifier::Namespace:
5837      case NestedNameSpecifier::NamespaceAlias:
5838      case NestedNameSpecifier::Global:
5839      case NestedNameSpecifier::Super:
5840        llvm_unreachable("Nested-name-specifier must name a type");
5841      }
5842
5843      // Finally fill in MemberPointerLocInfo fields.
5844      TL.setStarLoc(Chunk.Loc);
5845      TL.setClassTInfo(ClsTInfo);
5846    }
5847    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
5848      assert(Chunk.Kind == DeclaratorChunk::Reference);
5849      // 'Amp' is misleading: this might have been originally
5850      /// spelled with AmpAmp.
5851      TL.setAmpLoc(Chunk.Loc);
5852    }
5853    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
5854      assert(Chunk.Kind == DeclaratorChunk::Reference);
5855      assert(!Chunk.Ref.LValueRef);
5856      TL.setAmpAmpLoc(Chunk.Loc);
5857    }
5858    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
5859      assert(Chunk.Kind == DeclaratorChunk::Array);
5860      TL.setLBracketLoc(Chunk.Loc);
5861      TL.setRBracketLoc(Chunk.EndLoc);
5862      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
5863    }
5864    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
5865      assert(Chunk.Kind == DeclaratorChunk::Function);
5866      TL.setLocalRangeBegin(Chunk.Loc);
5867      TL.setLocalRangeEnd(Chunk.EndLoc);
5868
5869      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
5870      TL.setLParenLoc(FTI.getLParenLoc());
5871      TL.setRParenLoc(FTI.getRParenLoc());
5872      for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
5873        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5874        TL.setParam(tpi++, Param);
5875      }
5876      TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
5877    }
5878    void VisitParenTypeLoc(ParenTypeLoc TL) {
5879      assert(Chunk.Kind == DeclaratorChunk::Paren);
5880      TL.setLParenLoc(Chunk.Loc);
5881      TL.setRParenLoc(Chunk.EndLoc);
5882    }
5883    void VisitPipeTypeLoc(PipeTypeLoc TL) {
5884      assert(Chunk.Kind == DeclaratorChunk::Pipe);
5885      TL.setKWLoc(Chunk.Loc);
5886    }
5887    void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5888      TL.setExpansionLoc(Chunk.Loc);
5889    }
5890
5891    void VisitTypeLoc(TypeLoc TL) {
5892      llvm_unreachable("unsupported TypeLoc kind in declarator!");
5893    }
5894  };
5895} // end anonymous namespace
5896
5897static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
5898  SourceLocation Loc;
5899  switch (Chunk.Kind) {
5900  case DeclaratorChunk::Function:
5901  case DeclaratorChunk::Array:
5902  case DeclaratorChunk::Paren:
5903  case DeclaratorChunk::Pipe:
5904    llvm_unreachable("cannot be _Atomic qualified");
5905
5906  case DeclaratorChunk::Pointer:
5907    Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
5908    break;
5909
5910  case DeclaratorChunk::BlockPointer:
5911  case DeclaratorChunk::Reference:
5912  case DeclaratorChunk::MemberPointer:
5913    // FIXME: Provide a source location for the _Atomic keyword.
5914    break;
5915  }
5916
5917  ATL.setKWLoc(Loc);
5918  ATL.setParensRange(SourceRange());
5919}
5920
5921static void
5922fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
5923                                 const ParsedAttributesView &Attrs) {
5924  for (const ParsedAttr &AL : Attrs) {
5925    if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
5926      DASTL.setAttrNameLoc(AL.getLoc());
5927      DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
5928      DASTL.setAttrOperandParensRange(SourceRange());
5929      return;
5930    }
5931  }
5932
5933  llvm_unreachable(
5934      "no address_space attribute found at the expected location!");
5935}
5936
5937/// Create and instantiate a TypeSourceInfo with type source information.
5938///
5939/// \param T QualType referring to the type as written in source code.
5940///
5941/// \param ReturnTypeInfo For declarators whose return type does not show
5942/// up in the normal place in the declaration specifiers (such as a C++
5943/// conversion function), this pointer will refer to a type source information
5944/// for that return type.
5945static TypeSourceInfo *
5946GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
5947                               QualType T, TypeSourceInfo *ReturnTypeInfo) {
5948  Sema &S = State.getSema();
5949  Declarator &D = State.getDeclarator();
5950
5951  TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
5952  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
5953
5954  // Handle parameter packs whose type is a pack expansion.
5955  if (isa<PackExpansionType>(T)) {
5956    CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
5957    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5958  }
5959
5960  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5961    // An AtomicTypeLoc might be produced by an atomic qualifier in this
5962    // declarator chunk.
5963    if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
5964      fillAtomicQualLoc(ATL, D.getTypeObject(i));
5965      CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
5966    }
5967
5968    while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) {
5969      TL.setExpansionLoc(
5970          State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5971      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5972    }
5973
5974    while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
5975      fillAttributedTypeLoc(TL, State);
5976      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5977    }
5978
5979    while (DependentAddressSpaceTypeLoc TL =
5980               CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
5981      fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
5982      CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
5983    }
5984
5985    // FIXME: Ordering here?
5986    while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
5987      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5988
5989    DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
5990    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5991  }
5992
5993  // If we have different source information for the return type, use
5994  // that.  This really only applies to C++ conversion functions.
5995  if (ReturnTypeInfo) {
5996    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
5997    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
5998    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
5999  } else {
6000    TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
6001  }
6002
6003  return TInfo;
6004}
6005
6006/// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6007ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6008  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6009  // and Sema during declaration parsing. Try deallocating/caching them when
6010  // it's appropriate, instead of allocating them and keeping them around.
6011  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
6012                                                       TypeAlignment);
6013  new (LocT) LocInfoType(T, TInfo);
6014  assert(LocT->getTypeClass() != T->getTypeClass() &&
6015         "LocInfoType's TypeClass conflicts with an existing Type class");
6016  return ParsedType::make(QualType(LocT, 0));
6017}
6018
6019void LocInfoType::getAsStringInternal(std::string &Str,
6020                                      const PrintingPolicy &Policy) const {
6021  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6022         " was used directly instead of getting the QualType through"
6023         " GetTypeFromParser");
6024}
6025
6026TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
6027  // C99 6.7.6: Type names have no identifier.  This is already validated by
6028  // the parser.
6029  assert(D.getIdentifier() == nullptr &&
6030         "Type name should have no identifier!");
6031
6032  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6033  QualType T = TInfo->getType();
6034  if (D.isInvalidType())
6035    return true;
6036
6037  // Make sure there are no unused decl attributes on the declarator.
6038  // We don't want to do this for ObjC parameters because we're going
6039  // to apply them to the actual parameter declaration.
6040  // Likewise, we don't want to do this for alias declarations, because
6041  // we are actually going to build a declaration from this eventually.
6042  if (D.getContext() != DeclaratorContext::ObjCParameterContext &&
6043      D.getContext() != DeclaratorContext::AliasDeclContext &&
6044      D.getContext() != DeclaratorContext::AliasTemplateContext)
6045    checkUnusedDeclAttributes(D);
6046
6047  if (getLangOpts().CPlusPlus) {
6048    // Check that there are no default arguments (C++ only).
6049    CheckExtraCXXDefaultArguments(D);
6050  }
6051
6052  return CreateParsedType(T, TInfo);
6053}
6054
6055ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
6056  QualType T = Context.getObjCInstanceType();
6057  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6058  return CreateParsedType(T, TInfo);
6059}
6060
6061//===----------------------------------------------------------------------===//
6062// Type Attribute Processing
6063//===----------------------------------------------------------------------===//
6064
6065/// Build an AddressSpace index from a constant expression and diagnose any
6066/// errors related to invalid address_spaces. Returns true on successfully
6067/// building an AddressSpace index.
6068static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6069                                   const Expr *AddrSpace,
6070                                   SourceLocation AttrLoc) {
6071  if (!AddrSpace->isValueDependent()) {
6072    llvm::APSInt addrSpace(32);
6073    if (!AddrSpace->isIntegerConstantExpr(addrSpace, S.Context)) {
6074      S.Diag(AttrLoc, diag::err_attribute_argument_type)
6075          << "'address_space'" << AANT_ArgumentIntegerConstant
6076          << AddrSpace->getSourceRange();
6077      return false;
6078    }
6079
6080    // Bounds checking.
6081    if (addrSpace.isSigned()) {
6082      if (addrSpace.isNegative()) {
6083        S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6084            << AddrSpace->getSourceRange();
6085        return false;
6086      }
6087      addrSpace.setIsSigned(false);
6088    }
6089
6090    llvm::APSInt max(addrSpace.getBitWidth());
6091    max =
6092        Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6093    if (addrSpace > max) {
6094      S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6095          << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6096      return false;
6097    }
6098
6099    ASIdx =
6100        getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6101    return true;
6102  }
6103
6104  // Default value for DependentAddressSpaceTypes
6105  ASIdx = LangAS::Default;
6106  return true;
6107}
6108
6109/// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
6110/// is uninstantiated. If instantiated it will apply the appropriate address
6111/// space to the type. This function allows dependent template variables to be
6112/// used in conjunction with the address_space attribute
6113QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6114                                     SourceLocation AttrLoc) {
6115  if (!AddrSpace->isValueDependent()) {
6116    if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6117                                            AttrLoc))
6118      return QualType();
6119
6120    return Context.getAddrSpaceQualType(T, ASIdx);
6121  }
6122
6123  // A check with similar intentions as checking if a type already has an
6124  // address space except for on a dependent types, basically if the
6125  // current type is already a DependentAddressSpaceType then its already
6126  // lined up to have another address space on it and we can't have
6127  // multiple address spaces on the one pointer indirection
6128  if (T->getAs<DependentAddressSpaceType>()) {
6129    Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6130    return QualType();
6131  }
6132
6133  return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6134}
6135
6136QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6137                                     SourceLocation AttrLoc) {
6138  LangAS ASIdx;
6139  if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6140    return QualType();
6141  return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6142}
6143
6144/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6145/// specified type.  The attribute contains 1 argument, the id of the address
6146/// space for the type.
6147static void HandleAddressSpaceTypeAttribute(QualType &Type,
6148                                            const ParsedAttr &Attr,
6149                                            TypeProcessingState &State) {
6150  Sema &S = State.getSema();
6151
6152  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6153  // qualified by an address-space qualifier."
6154  if (Type->isFunctionType()) {
6155    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6156    Attr.setInvalid();
6157    return;
6158  }
6159
6160  LangAS ASIdx;
6161  if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6162
6163    // Check the attribute arguments.
6164    if (Attr.getNumArgs() != 1) {
6165      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6166                                                                        << 1;
6167      Attr.setInvalid();
6168      return;
6169    }
6170
6171    Expr *ASArgExpr;
6172    if (Attr.isArgIdent(0)) {
6173      // Special case where the argument is a template id.
6174      CXXScopeSpec SS;
6175      SourceLocation TemplateKWLoc;
6176      UnqualifiedId id;
6177      id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
6178
6179      ExprResult AddrSpace = S.ActOnIdExpression(
6180          S.getCurScope(), SS, TemplateKWLoc, id, /*HasTrailingLParen=*/false,
6181          /*IsAddressOfOperand=*/false);
6182      if (AddrSpace.isInvalid())
6183        return;
6184
6185      ASArgExpr = static_cast<Expr *>(AddrSpace.get());
6186    } else {
6187      ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6188    }
6189
6190    LangAS ASIdx;
6191    if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6192      Attr.setInvalid();
6193      return;
6194    }
6195
6196    ASTContext &Ctx = S.Context;
6197    auto *ASAttr =
6198        ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6199
6200    // If the expression is not value dependent (not templated), then we can
6201    // apply the address space qualifiers just to the equivalent type.
6202    // Otherwise, we make an AttributedType with the modified and equivalent
6203    // type the same, and wrap it in a DependentAddressSpaceType. When this
6204    // dependent type is resolved, the qualifier is added to the equivalent type
6205    // later.
6206    QualType T;
6207    if (!ASArgExpr->isValueDependent()) {
6208      QualType EquivType =
6209          S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6210      if (EquivType.isNull()) {
6211        Attr.setInvalid();
6212        return;
6213      }
6214      T = State.getAttributedType(ASAttr, Type, EquivType);
6215    } else {
6216      T = State.getAttributedType(ASAttr, Type, Type);
6217      T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6218    }
6219
6220    if (!T.isNull())
6221      Type = T;
6222    else
6223      Attr.setInvalid();
6224  } else {
6225    // The keyword-based type attributes imply which address space to use.
6226    ASIdx = Attr.asOpenCLLangAS();
6227    if (ASIdx == LangAS::Default)
6228      llvm_unreachable("Invalid address space");
6229
6230    if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6231                                            Attr.getLoc())) {
6232      Attr.setInvalid();
6233      return;
6234    }
6235
6236    Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6237  }
6238}
6239
6240/// handleObjCOwnershipTypeAttr - Process an objc_ownership
6241/// attribute on the specified type.
6242///
6243/// Returns 'true' if the attribute was handled.
6244static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6245                                        ParsedAttr &attr, QualType &type) {
6246  bool NonObjCPointer = false;
6247
6248  if (!type->isDependentType() && !type->isUndeducedType()) {
6249    if (const PointerType *ptr = type->getAs<PointerType>()) {
6250      QualType pointee = ptr->getPointeeType();
6251      if (pointee->isObjCRetainableType() || pointee->isPointerType())
6252        return false;
6253      // It is important not to lose the source info that there was an attribute
6254      // applied to non-objc pointer. We will create an attributed type but
6255      // its type will be the same as the original type.
6256      NonObjCPointer = true;
6257    } else if (!type->isObjCRetainableType()) {
6258      return false;
6259    }
6260
6261    // Don't accept an ownership attribute in the declspec if it would
6262    // just be the return type of a block pointer.
6263    if (state.isProcessingDeclSpec()) {
6264      Declarator &D = state.getDeclarator();
6265      if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6266                                  /*onlyBlockPointers=*/true))
6267        return false;
6268    }
6269  }
6270
6271  Sema &S = state.getSema();
6272  SourceLocation AttrLoc = attr.getLoc();
6273  if (AttrLoc.isMacroID())
6274    AttrLoc =
6275        S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6276
6277  if (!attr.isArgIdent(0)) {
6278    S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6279                                                       << AANT_ArgumentString;
6280    attr.setInvalid();
6281    return true;
6282  }
6283
6284  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6285  Qualifiers::ObjCLifetime lifetime;
6286  if (II->isStr("none"))
6287    lifetime = Qualifiers::OCL_ExplicitNone;
6288  else if (II->isStr("strong"))
6289    lifetime = Qualifiers::OCL_Strong;
6290  else if (II->isStr("weak"))
6291    lifetime = Qualifiers::OCL_Weak;
6292  else if (II->isStr("autoreleasing"))
6293    lifetime = Qualifiers::OCL_Autoreleasing;
6294  else {
6295    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6296    attr.setInvalid();
6297    return true;
6298  }
6299
6300  // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6301  // outside of ARC mode.
6302  if (!S.getLangOpts().ObjCAutoRefCount &&
6303      lifetime != Qualifiers::OCL_Weak &&
6304      lifetime != Qualifiers::OCL_ExplicitNone) {
6305    return true;
6306  }
6307
6308  SplitQualType underlyingType = type.split();
6309
6310  // Check for redundant/conflicting ownership qualifiers.
6311  if (Qualifiers::ObjCLifetime previousLifetime
6312        = type.getQualifiers().getObjCLifetime()) {
6313    // If it's written directly, that's an error.
6314    if (S.Context.hasDirectOwnershipQualifier(type)) {
6315      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6316        << type;
6317      return true;
6318    }
6319
6320    // Otherwise, if the qualifiers actually conflict, pull sugar off
6321    // and remove the ObjCLifetime qualifiers.
6322    if (previousLifetime != lifetime) {
6323      // It's possible to have multiple local ObjCLifetime qualifiers. We
6324      // can't stop after we reach a type that is directly qualified.
6325      const Type *prevTy = nullptr;
6326      while (!prevTy || prevTy != underlyingType.Ty) {
6327        prevTy = underlyingType.Ty;
6328        underlyingType = underlyingType.getSingleStepDesugaredType();
6329      }
6330      underlyingType.Quals.removeObjCLifetime();
6331    }
6332  }
6333
6334  underlyingType.Quals.addObjCLifetime(lifetime);
6335
6336  if (NonObjCPointer) {
6337    StringRef name = attr.getAttrName()->getName();
6338    switch (lifetime) {
6339    case Qualifiers::OCL_None:
6340    case Qualifiers::OCL_ExplicitNone:
6341      break;
6342    case Qualifiers::OCL_Strong: name = "__strong"; break;
6343    case Qualifiers::OCL_Weak: name = "__weak"; break;
6344    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6345    }
6346    S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6347      << TDS_ObjCObjOrBlock << type;
6348  }
6349
6350  // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6351  // because having both 'T' and '__unsafe_unretained T' exist in the type
6352  // system causes unfortunate widespread consistency problems.  (For example,
6353  // they're not considered compatible types, and we mangle them identicially
6354  // as template arguments.)  These problems are all individually fixable,
6355  // but it's easier to just not add the qualifier and instead sniff it out
6356  // in specific places using isObjCInertUnsafeUnretainedType().
6357  //
6358  // Doing this does means we miss some trivial consistency checks that
6359  // would've triggered in ARC, but that's better than trying to solve all
6360  // the coexistence problems with __unsafe_unretained.
6361  if (!S.getLangOpts().ObjCAutoRefCount &&
6362      lifetime == Qualifiers::OCL_ExplicitNone) {
6363    type = state.getAttributedType(
6364        createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6365        type, type);
6366    return true;
6367  }
6368
6369  QualType origType = type;
6370  if (!NonObjCPointer)
6371    type = S.Context.getQualifiedType(underlyingType);
6372
6373  // If we have a valid source location for the attribute, use an
6374  // AttributedType instead.
6375  if (AttrLoc.isValid()) {
6376    type = state.getAttributedType(::new (S.Context)
6377                                       ObjCOwnershipAttr(S.Context, attr, II),
6378                                   origType, type);
6379  }
6380
6381  auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6382                            unsigned diagnostic, QualType type) {
6383    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6384      S.DelayedDiagnostics.add(
6385          sema::DelayedDiagnostic::makeForbiddenType(
6386              S.getSourceManager().getExpansionLoc(loc),
6387              diagnostic, type, /*ignored*/ 0));
6388    } else {
6389      S.Diag(loc, diagnostic);
6390    }
6391  };
6392
6393  // Sometimes, __weak isn't allowed.
6394  if (lifetime == Qualifiers::OCL_Weak &&
6395      !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6396
6397    // Use a specialized diagnostic if the runtime just doesn't support them.
6398    unsigned diagnostic =
6399      (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6400                                       : diag::err_arc_weak_no_runtime);
6401
6402    // In any case, delay the diagnostic until we know what we're parsing.
6403    diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6404
6405    attr.setInvalid();
6406    return true;
6407  }
6408
6409  // Forbid __weak for class objects marked as
6410  // objc_arc_weak_reference_unavailable
6411  if (lifetime == Qualifiers::OCL_Weak) {
6412    if (const ObjCObjectPointerType *ObjT =
6413          type->getAs<ObjCObjectPointerType>()) {
6414      if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6415        if (Class->isArcWeakrefUnavailable()) {
6416          S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6417          S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6418                 diag::note_class_declared);
6419        }
6420      }
6421    }
6422  }
6423
6424  return true;
6425}
6426
6427/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6428/// attribute on the specified type.  Returns true to indicate that
6429/// the attribute was handled, false to indicate that the type does
6430/// not permit the attribute.
6431static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6432                                 QualType &type) {
6433  Sema &S = state.getSema();
6434
6435  // Delay if this isn't some kind of pointer.
6436  if (!type->isPointerType() &&
6437      !type->isObjCObjectPointerType() &&
6438      !type->isBlockPointerType())
6439    return false;
6440
6441  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6442    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6443    attr.setInvalid();
6444    return true;
6445  }
6446
6447  // Check the attribute arguments.
6448  if (!attr.isArgIdent(0)) {
6449    S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6450        << attr << AANT_ArgumentString;
6451    attr.setInvalid();
6452    return true;
6453  }
6454  Qualifiers::GC GCAttr;
6455  if (attr.getNumArgs() > 1) {
6456    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6457                                                                      << 1;
6458    attr.setInvalid();
6459    return true;
6460  }
6461
6462  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6463  if (II->isStr("weak"))
6464    GCAttr = Qualifiers::Weak;
6465  else if (II->isStr("strong"))
6466    GCAttr = Qualifiers::Strong;
6467  else {
6468    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6469        << attr << II;
6470    attr.setInvalid();
6471    return true;
6472  }
6473
6474  QualType origType = type;
6475  type = S.Context.getObjCGCQualType(origType, GCAttr);
6476
6477  // Make an attributed type to preserve the source information.
6478  if (attr.getLoc().isValid())
6479    type = state.getAttributedType(
6480        ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
6481
6482  return true;
6483}
6484
6485namespace {
6486  /// A helper class to unwrap a type down to a function for the
6487  /// purposes of applying attributes there.
6488  ///
6489  /// Use:
6490  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
6491  ///   if (unwrapped.isFunctionType()) {
6492  ///     const FunctionType *fn = unwrapped.get();
6493  ///     // change fn somehow
6494  ///     T = unwrapped.wrap(fn);
6495  ///   }
6496  struct FunctionTypeUnwrapper {
6497    enum WrapKind {
6498      Desugar,
6499      Attributed,
6500      Parens,
6501      Pointer,
6502      BlockPointer,
6503      Reference,
6504      MemberPointer,
6505      MacroQualified,
6506    };
6507
6508    QualType Original;
6509    const FunctionType *Fn;
6510    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6511
6512    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6513      while (true) {
6514        const Type *Ty = T.getTypePtr();
6515        if (isa<FunctionType>(Ty)) {
6516          Fn = cast<FunctionType>(Ty);
6517          return;
6518        } else if (isa<ParenType>(Ty)) {
6519          T = cast<ParenType>(Ty)->getInnerType();
6520          Stack.push_back(Parens);
6521        } else if (isa<PointerType>(Ty)) {
6522          T = cast<PointerType>(Ty)->getPointeeType();
6523          Stack.push_back(Pointer);
6524        } else if (isa<BlockPointerType>(Ty)) {
6525          T = cast<BlockPointerType>(Ty)->getPointeeType();
6526          Stack.push_back(BlockPointer);
6527        } else if (isa<MemberPointerType>(Ty)) {
6528          T = cast<MemberPointerType>(Ty)->getPointeeType();
6529          Stack.push_back(MemberPointer);
6530        } else if (isa<ReferenceType>(Ty)) {
6531          T = cast<ReferenceType>(Ty)->getPointeeType();
6532          Stack.push_back(Reference);
6533        } else if (isa<AttributedType>(Ty)) {
6534          T = cast<AttributedType>(Ty)->getEquivalentType();
6535          Stack.push_back(Attributed);
6536        } else if (isa<MacroQualifiedType>(Ty)) {
6537          T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
6538          Stack.push_back(MacroQualified);
6539        } else {
6540          const Type *DTy = Ty->getUnqualifiedDesugaredType();
6541          if (Ty == DTy) {
6542            Fn = nullptr;
6543            return;
6544          }
6545
6546          T = QualType(DTy, 0);
6547          Stack.push_back(Desugar);
6548        }
6549      }
6550    }
6551
6552    bool isFunctionType() const { return (Fn != nullptr); }
6553    const FunctionType *get() const { return Fn; }
6554
6555    QualType wrap(Sema &S, const FunctionType *New) {
6556      // If T wasn't modified from the unwrapped type, do nothing.
6557      if (New == get()) return Original;
6558
6559      Fn = New;
6560      return wrap(S.Context, Original, 0);
6561    }
6562
6563  private:
6564    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6565      if (I == Stack.size())
6566        return C.getQualifiedType(Fn, Old.getQualifiers());
6567
6568      // Build up the inner type, applying the qualifiers from the old
6569      // type to the new type.
6570      SplitQualType SplitOld = Old.split();
6571
6572      // As a special case, tail-recurse if there are no qualifiers.
6573      if (SplitOld.Quals.empty())
6574        return wrap(C, SplitOld.Ty, I);
6575      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6576    }
6577
6578    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6579      if (I == Stack.size()) return QualType(Fn, 0);
6580
6581      switch (static_cast<WrapKind>(Stack[I++])) {
6582      case Desugar:
6583        // This is the point at which we potentially lose source
6584        // information.
6585        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6586
6587      case Attributed:
6588        return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6589
6590      case Parens: {
6591        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6592        return C.getParenType(New);
6593      }
6594
6595      case MacroQualified:
6596        return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
6597
6598      case Pointer: {
6599        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
6600        return C.getPointerType(New);
6601      }
6602
6603      case BlockPointer: {
6604        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
6605        return C.getBlockPointerType(New);
6606      }
6607
6608      case MemberPointer: {
6609        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
6610        QualType New = wrap(C, OldMPT->getPointeeType(), I);
6611        return C.getMemberPointerType(New, OldMPT->getClass());
6612      }
6613
6614      case Reference: {
6615        const ReferenceType *OldRef = cast<ReferenceType>(Old);
6616        QualType New = wrap(C, OldRef->getPointeeType(), I);
6617        if (isa<LValueReferenceType>(OldRef))
6618          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
6619        else
6620          return C.getRValueReferenceType(New);
6621      }
6622      }
6623
6624      llvm_unreachable("unknown wrapping kind");
6625    }
6626  };
6627} // end anonymous namespace
6628
6629static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
6630                                             ParsedAttr &PAttr, QualType &Type) {
6631  Sema &S = State.getSema();
6632
6633  Attr *A;
6634  switch (PAttr.getKind()) {
6635  default: llvm_unreachable("Unknown attribute kind");
6636  case ParsedAttr::AT_Ptr32:
6637    A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
6638    break;
6639  case ParsedAttr::AT_Ptr64:
6640    A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
6641    break;
6642  case ParsedAttr::AT_SPtr:
6643    A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
6644    break;
6645  case ParsedAttr::AT_UPtr:
6646    A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
6647    break;
6648  }
6649
6650  llvm::SmallSet<attr::Kind, 2> Attrs;
6651  attr::Kind NewAttrKind = A->getKind();
6652  QualType Desugared = Type;
6653  const AttributedType *AT = dyn_cast<AttributedType>(Type);
6654  while (AT) {
6655    Attrs.insert(AT->getAttrKind());
6656    Desugared = AT->getModifiedType();
6657    AT = dyn_cast<AttributedType>(Desugared);
6658  }
6659
6660  // You cannot specify duplicate type attributes, so if the attribute has
6661  // already been applied, flag it.
6662  if (Attrs.count(NewAttrKind)) {
6663    S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
6664    return true;
6665  }
6666  Attrs.insert(NewAttrKind);
6667
6668  // You cannot have both __sptr and __uptr on the same type, nor can you
6669  // have __ptr32 and __ptr64.
6670  if (Attrs.count(attr::Ptr32) && Attrs.count(attr::Ptr64)) {
6671    S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6672        << "'__ptr32'"
6673        << "'__ptr64'";
6674    return true;
6675  } else if (Attrs.count(attr::SPtr) && Attrs.count(attr::UPtr)) {
6676    S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6677        << "'__sptr'"
6678        << "'__uptr'";
6679    return true;
6680  }
6681
6682  // Pointer type qualifiers can only operate on pointer types, but not
6683  // pointer-to-member types.
6684  //
6685  // FIXME: Should we really be disallowing this attribute if there is any
6686  // type sugar between it and the pointer (other than attributes)? Eg, this
6687  // disallows the attribute on a parenthesized pointer.
6688  // And if so, should we really allow *any* type attribute?
6689  if (!isa<PointerType>(Desugared)) {
6690    if (Type->isMemberPointerType())
6691      S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
6692    else
6693      S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
6694    return true;
6695  }
6696
6697  // Add address space to type based on its attributes.
6698  LangAS ASIdx = LangAS::Default;
6699  uint64_t PtrWidth = S.Context.getTargetInfo().getPointerWidth(0);
6700  if (PtrWidth == 32) {
6701    if (Attrs.count(attr::Ptr64))
6702      ASIdx = LangAS::ptr64;
6703    else if (Attrs.count(attr::UPtr))
6704      ASIdx = LangAS::ptr32_uptr;
6705  } else if (PtrWidth == 64 && Attrs.count(attr::Ptr32)) {
6706    if (Attrs.count(attr::UPtr))
6707      ASIdx = LangAS::ptr32_uptr;
6708    else
6709      ASIdx = LangAS::ptr32_sptr;
6710  }
6711
6712  QualType Pointee = Type->getPointeeType();
6713  if (ASIdx != LangAS::Default)
6714    Pointee = S.Context.getAddrSpaceQualType(
6715        S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
6716  Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
6717  return false;
6718}
6719
6720/// Map a nullability attribute kind to a nullability kind.
6721static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
6722  switch (kind) {
6723  case ParsedAttr::AT_TypeNonNull:
6724    return NullabilityKind::NonNull;
6725
6726  case ParsedAttr::AT_TypeNullable:
6727    return NullabilityKind::Nullable;
6728
6729  case ParsedAttr::AT_TypeNullUnspecified:
6730    return NullabilityKind::Unspecified;
6731
6732  default:
6733    llvm_unreachable("not a nullability attribute kind");
6734  }
6735}
6736
6737/// Applies a nullability type specifier to the given type, if possible.
6738///
6739/// \param state The type processing state.
6740///
6741/// \param type The type to which the nullability specifier will be
6742/// added. On success, this type will be updated appropriately.
6743///
6744/// \param attr The attribute as written on the type.
6745///
6746/// \param allowOnArrayType Whether to accept nullability specifiers on an
6747/// array type (e.g., because it will decay to a pointer).
6748///
6749/// \returns true if a problem has been diagnosed, false on success.
6750static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
6751                                          QualType &type,
6752                                          ParsedAttr &attr,
6753                                          bool allowOnArrayType) {
6754  Sema &S = state.getSema();
6755
6756  NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
6757  SourceLocation nullabilityLoc = attr.getLoc();
6758  bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
6759
6760  recordNullabilitySeen(S, nullabilityLoc);
6761
6762  // Check for existing nullability attributes on the type.
6763  QualType desugared = type;
6764  while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
6765    // Check whether there is already a null
6766    if (auto existingNullability = attributed->getImmediateNullability()) {
6767      // Duplicated nullability.
6768      if (nullability == *existingNullability) {
6769        S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
6770          << DiagNullabilityKind(nullability, isContextSensitive)
6771          << FixItHint::CreateRemoval(nullabilityLoc);
6772
6773        break;
6774      }
6775
6776      // Conflicting nullability.
6777      S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
6778        << DiagNullabilityKind(nullability, isContextSensitive)
6779        << DiagNullabilityKind(*existingNullability, false);
6780      return true;
6781    }
6782
6783    desugared = attributed->getModifiedType();
6784  }
6785
6786  // If there is already a different nullability specifier, complain.
6787  // This (unlike the code above) looks through typedefs that might
6788  // have nullability specifiers on them, which means we cannot
6789  // provide a useful Fix-It.
6790  if (auto existingNullability = desugared->getNullability(S.Context)) {
6791    if (nullability != *existingNullability) {
6792      S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
6793        << DiagNullabilityKind(nullability, isContextSensitive)
6794        << DiagNullabilityKind(*existingNullability, false);
6795
6796      // Try to find the typedef with the existing nullability specifier.
6797      if (auto typedefType = desugared->getAs<TypedefType>()) {
6798        TypedefNameDecl *typedefDecl = typedefType->getDecl();
6799        QualType underlyingType = typedefDecl->getUnderlyingType();
6800        if (auto typedefNullability
6801              = AttributedType::stripOuterNullability(underlyingType)) {
6802          if (*typedefNullability == *existingNullability) {
6803            S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
6804              << DiagNullabilityKind(*existingNullability, false);
6805          }
6806        }
6807      }
6808
6809      return true;
6810    }
6811  }
6812
6813  // If this definitely isn't a pointer type, reject the specifier.
6814  if (!desugared->canHaveNullability() &&
6815      !(allowOnArrayType && desugared->isArrayType())) {
6816    S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
6817      << DiagNullabilityKind(nullability, isContextSensitive) << type;
6818    return true;
6819  }
6820
6821  // For the context-sensitive keywords/Objective-C property
6822  // attributes, require that the type be a single-level pointer.
6823  if (isContextSensitive) {
6824    // Make sure that the pointee isn't itself a pointer type.
6825    const Type *pointeeType;
6826    if (desugared->isArrayType())
6827      pointeeType = desugared->getArrayElementTypeNoTypeQual();
6828    else
6829      pointeeType = desugared->getPointeeType().getTypePtr();
6830
6831    if (pointeeType->isAnyPointerType() ||
6832        pointeeType->isObjCObjectPointerType() ||
6833        pointeeType->isMemberPointerType()) {
6834      S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
6835        << DiagNullabilityKind(nullability, true)
6836        << type;
6837      S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
6838        << DiagNullabilityKind(nullability, false)
6839        << type
6840        << FixItHint::CreateReplacement(nullabilityLoc,
6841                                        getNullabilitySpelling(nullability));
6842      return true;
6843    }
6844  }
6845
6846  // Form the attributed type.
6847  type = state.getAttributedType(
6848      createNullabilityAttr(S.Context, attr, nullability), type, type);
6849  return false;
6850}
6851
6852/// Check the application of the Objective-C '__kindof' qualifier to
6853/// the given type.
6854static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
6855                                ParsedAttr &attr) {
6856  Sema &S = state.getSema();
6857
6858  if (isa<ObjCTypeParamType>(type)) {
6859    // Build the attributed type to record where __kindof occurred.
6860    type = state.getAttributedType(
6861        createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
6862    return false;
6863  }
6864
6865  // Find out if it's an Objective-C object or object pointer type;
6866  const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
6867  const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
6868                                          : type->getAs<ObjCObjectType>();
6869
6870  // If not, we can't apply __kindof.
6871  if (!objType) {
6872    // FIXME: Handle dependent types that aren't yet object types.
6873    S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
6874      << type;
6875    return true;
6876  }
6877
6878  // Rebuild the "equivalent" type, which pushes __kindof down into
6879  // the object type.
6880  // There is no need to apply kindof on an unqualified id type.
6881  QualType equivType = S.Context.getObjCObjectType(
6882      objType->getBaseType(), objType->getTypeArgsAsWritten(),
6883      objType->getProtocols(),
6884      /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
6885
6886  // If we started with an object pointer type, rebuild it.
6887  if (ptrType) {
6888    equivType = S.Context.getObjCObjectPointerType(equivType);
6889    if (auto nullability = type->getNullability(S.Context)) {
6890      // We create a nullability attribute from the __kindof attribute.
6891      // Make sure that will make sense.
6892      assert(attr.getAttributeSpellingListIndex() == 0 &&
6893             "multiple spellings for __kindof?");
6894      Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
6895      A->setImplicit(true);
6896      equivType = state.getAttributedType(A, equivType, equivType);
6897    }
6898  }
6899
6900  // Build the attributed type to record where __kindof occurred.
6901  type = state.getAttributedType(
6902      createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
6903  return false;
6904}
6905
6906/// Distribute a nullability type attribute that cannot be applied to
6907/// the type specifier to a pointer, block pointer, or member pointer
6908/// declarator, complaining if necessary.
6909///
6910/// \returns true if the nullability annotation was distributed, false
6911/// otherwise.
6912static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
6913                                          QualType type, ParsedAttr &attr) {
6914  Declarator &declarator = state.getDeclarator();
6915
6916  /// Attempt to move the attribute to the specified chunk.
6917  auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
6918    // If there is already a nullability attribute there, don't add
6919    // one.
6920    if (hasNullabilityAttr(chunk.getAttrs()))
6921      return false;
6922
6923    // Complain about the nullability qualifier being in the wrong
6924    // place.
6925    enum {
6926      PK_Pointer,
6927      PK_BlockPointer,
6928      PK_MemberPointer,
6929      PK_FunctionPointer,
6930      PK_MemberFunctionPointer,
6931    } pointerKind
6932      = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
6933                                                             : PK_Pointer)
6934        : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
6935        : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
6936
6937    auto diag = state.getSema().Diag(attr.getLoc(),
6938                                     diag::warn_nullability_declspec)
6939      << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
6940                             attr.isContextSensitiveKeywordAttribute())
6941      << type
6942      << static_cast<unsigned>(pointerKind);
6943
6944    // FIXME: MemberPointer chunks don't carry the location of the *.
6945    if (chunk.Kind != DeclaratorChunk::MemberPointer) {
6946      diag << FixItHint::CreateRemoval(attr.getLoc())
6947           << FixItHint::CreateInsertion(
6948                  state.getSema().getPreprocessor().getLocForEndOfToken(
6949                      chunk.Loc),
6950                  " " + attr.getAttrName()->getName().str() + " ");
6951    }
6952
6953    moveAttrFromListToList(attr, state.getCurrentAttributes(),
6954                           chunk.getAttrs());
6955    return true;
6956  };
6957
6958  // Move it to the outermost pointer, member pointer, or block
6959  // pointer declarator.
6960  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
6961    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
6962    switch (chunk.Kind) {
6963    case DeclaratorChunk::Pointer:
6964    case DeclaratorChunk::BlockPointer:
6965    case DeclaratorChunk::MemberPointer:
6966      return moveToChunk(chunk, false);
6967
6968    case DeclaratorChunk::Paren:
6969    case DeclaratorChunk::Array:
6970      continue;
6971
6972    case DeclaratorChunk::Function:
6973      // Try to move past the return type to a function/block/member
6974      // function pointer.
6975      if (DeclaratorChunk *dest = maybeMovePastReturnType(
6976                                    declarator, i,
6977                                    /*onlyBlockPointers=*/false)) {
6978        return moveToChunk(*dest, true);
6979      }
6980
6981      return false;
6982
6983    // Don't walk through these.
6984    case DeclaratorChunk::Reference:
6985    case DeclaratorChunk::Pipe:
6986      return false;
6987    }
6988  }
6989
6990  return false;
6991}
6992
6993static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
6994  assert(!Attr.isInvalid());
6995  switch (Attr.getKind()) {
6996  default:
6997    llvm_unreachable("not a calling convention attribute");
6998  case ParsedAttr::AT_CDecl:
6999    return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7000  case ParsedAttr::AT_FastCall:
7001    return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7002  case ParsedAttr::AT_StdCall:
7003    return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7004  case ParsedAttr::AT_ThisCall:
7005    return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7006  case ParsedAttr::AT_RegCall:
7007    return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7008  case ParsedAttr::AT_Pascal:
7009    return createSimpleAttr<PascalAttr>(Ctx, Attr);
7010  case ParsedAttr::AT_SwiftCall:
7011    return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7012  case ParsedAttr::AT_VectorCall:
7013    return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7014  case ParsedAttr::AT_AArch64VectorPcs:
7015    return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7016  case ParsedAttr::AT_Pcs: {
7017    // The attribute may have had a fixit applied where we treated an
7018    // identifier as a string literal.  The contents of the string are valid,
7019    // but the form may not be.
7020    StringRef Str;
7021    if (Attr.isArgExpr(0))
7022      Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7023    else
7024      Str = Attr.getArgAsIdent(0)->Ident->getName();
7025    PcsAttr::PCSType Type;
7026    if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7027      llvm_unreachable("already validated the attribute");
7028    return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7029  }
7030  case ParsedAttr::AT_IntelOclBicc:
7031    return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7032  case ParsedAttr::AT_MSABI:
7033    return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7034  case ParsedAttr::AT_SysVABI:
7035    return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7036  case ParsedAttr::AT_PreserveMost:
7037    return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7038  case ParsedAttr::AT_PreserveAll:
7039    return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7040  }
7041  llvm_unreachable("unexpected attribute kind!");
7042}
7043
7044/// Process an individual function attribute.  Returns true to
7045/// indicate that the attribute was handled, false if it wasn't.
7046static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7047                                   QualType &type) {
7048  Sema &S = state.getSema();
7049
7050  FunctionTypeUnwrapper unwrapped(S, type);
7051
7052  if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7053    if (S.CheckAttrNoArgs(attr))
7054      return true;
7055
7056    // Delay if this is not a function type.
7057    if (!unwrapped.isFunctionType())
7058      return false;
7059
7060    // Otherwise we can process right away.
7061    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7062    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7063    return true;
7064  }
7065
7066  // ns_returns_retained is not always a type attribute, but if we got
7067  // here, we're treating it as one right now.
7068  if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7069    if (attr.getNumArgs()) return true;
7070
7071    // Delay if this is not a function type.
7072    if (!unwrapped.isFunctionType())
7073      return false;
7074
7075    // Check whether the return type is reasonable.
7076    if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
7077                                           unwrapped.get()->getReturnType()))
7078      return true;
7079
7080    // Only actually change the underlying type in ARC builds.
7081    QualType origType = type;
7082    if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7083      FunctionType::ExtInfo EI
7084        = unwrapped.get()->getExtInfo().withProducesResult(true);
7085      type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7086    }
7087    type = state.getAttributedType(
7088        createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7089        origType, type);
7090    return true;
7091  }
7092
7093  if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7094    if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7095      return true;
7096
7097    // Delay if this is not a function type.
7098    if (!unwrapped.isFunctionType())
7099      return false;
7100
7101    FunctionType::ExtInfo EI =
7102        unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7103    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7104    return true;
7105  }
7106
7107  if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7108    if (!S.getLangOpts().CFProtectionBranch) {
7109      S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7110      attr.setInvalid();
7111      return true;
7112    }
7113
7114    if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7115      return true;
7116
7117    // If this is not a function type, warning will be asserted by subject
7118    // check.
7119    if (!unwrapped.isFunctionType())
7120      return true;
7121
7122    FunctionType::ExtInfo EI =
7123      unwrapped.get()->getExtInfo().withNoCfCheck(true);
7124    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7125    return true;
7126  }
7127
7128  if (attr.getKind() == ParsedAttr::AT_Regparm) {
7129    unsigned value;
7130    if (S.CheckRegparmAttr(attr, value))
7131      return true;
7132
7133    // Delay if this is not a function type.
7134    if (!unwrapped.isFunctionType())
7135      return false;
7136
7137    // Diagnose regparm with fastcall.
7138    const FunctionType *fn = unwrapped.get();
7139    CallingConv CC = fn->getCallConv();
7140    if (CC == CC_X86FastCall) {
7141      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7142        << FunctionType::getNameForCallConv(CC)
7143        << "regparm";
7144      attr.setInvalid();
7145      return true;
7146    }
7147
7148    FunctionType::ExtInfo EI =
7149      unwrapped.get()->getExtInfo().withRegParm(value);
7150    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7151    return true;
7152  }
7153
7154  if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7155    // Delay if this is not a function type.
7156    if (!unwrapped.isFunctionType())
7157      return false;
7158
7159    if (S.CheckAttrNoArgs(attr)) {
7160      attr.setInvalid();
7161      return true;
7162    }
7163
7164    // Otherwise we can process right away.
7165    auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7166
7167    // MSVC ignores nothrow if it is in conflict with an explicit exception
7168    // specification.
7169    if (Proto->hasExceptionSpec()) {
7170      switch (Proto->getExceptionSpecType()) {
7171      case EST_None:
7172        llvm_unreachable("This doesn't have an exception spec!");
7173
7174      case EST_DynamicNone:
7175      case EST_BasicNoexcept:
7176      case EST_NoexceptTrue:
7177      case EST_NoThrow:
7178        // Exception spec doesn't conflict with nothrow, so don't warn.
7179        LLVM_FALLTHROUGH;
7180      case EST_Unparsed:
7181      case EST_Uninstantiated:
7182      case EST_DependentNoexcept:
7183      case EST_Unevaluated:
7184        // We don't have enough information to properly determine if there is a
7185        // conflict, so suppress the warning.
7186        break;
7187      case EST_Dynamic:
7188      case EST_MSAny:
7189      case EST_NoexceptFalse:
7190        S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
7191        break;
7192      }
7193      return true;
7194    }
7195
7196    type = unwrapped.wrap(
7197        S, S.Context
7198               .getFunctionTypeWithExceptionSpec(
7199                   QualType{Proto, 0},
7200                   FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
7201               ->getAs<FunctionType>());
7202    return true;
7203  }
7204
7205  // Delay if the type didn't work out to a function.
7206  if (!unwrapped.isFunctionType()) return false;
7207
7208  // Otherwise, a calling convention.
7209  CallingConv CC;
7210  if (S.CheckCallingConvAttr(attr, CC))
7211    return true;
7212
7213  const FunctionType *fn = unwrapped.get();
7214  CallingConv CCOld = fn->getCallConv();
7215  Attr *CCAttr = getCCTypeAttr(S.Context, attr);
7216
7217  if (CCOld != CC) {
7218    // Error out on when there's already an attribute on the type
7219    // and the CCs don't match.
7220    if (S.getCallingConvAttributedType(type)) {
7221      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7222        << FunctionType::getNameForCallConv(CC)
7223        << FunctionType::getNameForCallConv(CCOld);
7224      attr.setInvalid();
7225      return true;
7226    }
7227  }
7228
7229  // Diagnose use of variadic functions with calling conventions that
7230  // don't support them (e.g. because they're callee-cleanup).
7231  // We delay warning about this on unprototyped function declarations
7232  // until after redeclaration checking, just in case we pick up a
7233  // prototype that way.  And apparently we also "delay" warning about
7234  // unprototyped function types in general, despite not necessarily having
7235  // much ability to diagnose it later.
7236  if (!supportsVariadicCall(CC)) {
7237    const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
7238    if (FnP && FnP->isVariadic()) {
7239      // stdcall and fastcall are ignored with a warning for GCC and MS
7240      // compatibility.
7241      if (CC == CC_X86StdCall || CC == CC_X86FastCall)
7242        return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
7243               << FunctionType::getNameForCallConv(CC)
7244               << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
7245
7246      attr.setInvalid();
7247      return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
7248             << FunctionType::getNameForCallConv(CC);
7249    }
7250  }
7251
7252  // Also diagnose fastcall with regparm.
7253  if (CC == CC_X86FastCall && fn->getHasRegParm()) {
7254    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7255        << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
7256    attr.setInvalid();
7257    return true;
7258  }
7259
7260  // Modify the CC from the wrapped function type, wrap it all back, and then
7261  // wrap the whole thing in an AttributedType as written.  The modified type
7262  // might have a different CC if we ignored the attribute.
7263  QualType Equivalent;
7264  if (CCOld == CC) {
7265    Equivalent = type;
7266  } else {
7267    auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
7268    Equivalent =
7269      unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7270  }
7271  type = state.getAttributedType(CCAttr, type, Equivalent);
7272  return true;
7273}
7274
7275bool Sema::hasExplicitCallingConv(QualType T) {
7276  const AttributedType *AT;
7277
7278  // Stop if we'd be stripping off a typedef sugar node to reach the
7279  // AttributedType.
7280  while ((AT = T->getAs<AttributedType>()) &&
7281         AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
7282    if (AT->isCallingConv())
7283      return true;
7284    T = AT->getModifiedType();
7285  }
7286  return false;
7287}
7288
7289void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
7290                                  SourceLocation Loc) {
7291  FunctionTypeUnwrapper Unwrapped(*this, T);
7292  const FunctionType *FT = Unwrapped.get();
7293  bool IsVariadic = (isa<FunctionProtoType>(FT) &&
7294                     cast<FunctionProtoType>(FT)->isVariadic());
7295  CallingConv CurCC = FT->getCallConv();
7296  CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
7297
7298  if (CurCC == ToCC)
7299    return;
7300
7301  // MS compiler ignores explicit calling convention attributes on structors. We
7302  // should do the same.
7303  if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
7304    // Issue a warning on ignored calling convention -- except of __stdcall.
7305    // Again, this is what MS compiler does.
7306    if (CurCC != CC_X86StdCall)
7307      Diag(Loc, diag::warn_cconv_unsupported)
7308          << FunctionType::getNameForCallConv(CurCC)
7309          << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
7310  // Default adjustment.
7311  } else {
7312    // Only adjust types with the default convention.  For example, on Windows
7313    // we should adjust a __cdecl type to __thiscall for instance methods, and a
7314    // __thiscall type to __cdecl for static methods.
7315    CallingConv DefaultCC =
7316        Context.getDefaultCallingConvention(IsVariadic, IsStatic);
7317
7318    if (CurCC != DefaultCC || DefaultCC == ToCC)
7319      return;
7320
7321    if (hasExplicitCallingConv(T))
7322      return;
7323  }
7324
7325  FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
7326  QualType Wrapped = Unwrapped.wrap(*this, FT);
7327  T = Context.getAdjustedType(T, Wrapped);
7328}
7329
7330/// HandleVectorSizeAttribute - this attribute is only applicable to integral
7331/// and float scalars, although arrays, pointers, and function return values are
7332/// allowed in conjunction with this construct. Aggregates with this attribute
7333/// are invalid, even if they are of the same size as a corresponding scalar.
7334/// The raw attribute should contain precisely 1 argument, the vector size for
7335/// the variable, measured in bytes. If curType and rawAttr are well formed,
7336/// this routine will return a new vector type.
7337static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
7338                                 Sema &S) {
7339  // Check the attribute arguments.
7340  if (Attr.getNumArgs() != 1) {
7341    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7342                                                                      << 1;
7343    Attr.setInvalid();
7344    return;
7345  }
7346
7347  Expr *SizeExpr;
7348  // Special case where the argument is a template id.
7349  if (Attr.isArgIdent(0)) {
7350    CXXScopeSpec SS;
7351    SourceLocation TemplateKWLoc;
7352    UnqualifiedId Id;
7353    Id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
7354
7355    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
7356                                          Id, /*HasTrailingLParen=*/false,
7357                                          /*IsAddressOfOperand=*/false);
7358
7359    if (Size.isInvalid())
7360      return;
7361    SizeExpr = Size.get();
7362  } else {
7363    SizeExpr = Attr.getArgAsExpr(0);
7364  }
7365
7366  QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
7367  if (!T.isNull())
7368    CurType = T;
7369  else
7370    Attr.setInvalid();
7371}
7372
7373/// Process the OpenCL-like ext_vector_type attribute when it occurs on
7374/// a type.
7375static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7376                                    Sema &S) {
7377  // check the attribute arguments.
7378  if (Attr.getNumArgs() != 1) {
7379    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7380                                                                      << 1;
7381    return;
7382  }
7383
7384  Expr *sizeExpr;
7385
7386  // Special case where the argument is a template id.
7387  if (Attr.isArgIdent(0)) {
7388    CXXScopeSpec SS;
7389    SourceLocation TemplateKWLoc;
7390    UnqualifiedId id;
7391    id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
7392
7393    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
7394                                          id, /*HasTrailingLParen=*/false,
7395                                          /*IsAddressOfOperand=*/false);
7396    if (Size.isInvalid())
7397      return;
7398
7399    sizeExpr = Size.get();
7400  } else {
7401    sizeExpr = Attr.getArgAsExpr(0);
7402  }
7403
7404  // Create the vector type.
7405  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
7406  if (!T.isNull())
7407    CurType = T;
7408}
7409
7410static bool isPermittedNeonBaseType(QualType &Ty,
7411                                    VectorType::VectorKind VecKind, Sema &S) {
7412  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
7413  if (!BTy)
7414    return false;
7415
7416  llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
7417
7418  // Signed poly is mathematically wrong, but has been baked into some ABIs by
7419  // now.
7420  bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
7421                        Triple.getArch() == llvm::Triple::aarch64_32 ||
7422                        Triple.getArch() == llvm::Triple::aarch64_be;
7423  if (VecKind == VectorType::NeonPolyVector) {
7424    if (IsPolyUnsigned) {
7425      // AArch64 polynomial vectors are unsigned and support poly64.
7426      return BTy->getKind() == BuiltinType::UChar ||
7427             BTy->getKind() == BuiltinType::UShort ||
7428             BTy->getKind() == BuiltinType::ULong ||
7429             BTy->getKind() == BuiltinType::ULongLong;
7430    } else {
7431      // AArch32 polynomial vector are signed.
7432      return BTy->getKind() == BuiltinType::SChar ||
7433             BTy->getKind() == BuiltinType::Short;
7434    }
7435  }
7436
7437  // Non-polynomial vector types: the usual suspects are allowed, as well as
7438  // float64_t on AArch64.
7439  if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
7440      BTy->getKind() == BuiltinType::Double)
7441    return true;
7442
7443  return BTy->getKind() == BuiltinType::SChar ||
7444         BTy->getKind() == BuiltinType::UChar ||
7445         BTy->getKind() == BuiltinType::Short ||
7446         BTy->getKind() == BuiltinType::UShort ||
7447         BTy->getKind() == BuiltinType::Int ||
7448         BTy->getKind() == BuiltinType::UInt ||
7449         BTy->getKind() == BuiltinType::Long ||
7450         BTy->getKind() == BuiltinType::ULong ||
7451         BTy->getKind() == BuiltinType::LongLong ||
7452         BTy->getKind() == BuiltinType::ULongLong ||
7453         BTy->getKind() == BuiltinType::Float ||
7454         BTy->getKind() == BuiltinType::Half;
7455}
7456
7457/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
7458/// "neon_polyvector_type" attributes are used to create vector types that
7459/// are mangled according to ARM's ABI.  Otherwise, these types are identical
7460/// to those created with the "vector_size" attribute.  Unlike "vector_size"
7461/// the argument to these Neon attributes is the number of vector elements,
7462/// not the vector size in bytes.  The vector width and element type must
7463/// match one of the standard Neon vector types.
7464static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7465                                     Sema &S, VectorType::VectorKind VecKind) {
7466  // Target must have NEON (or MVE, whose vectors are similar enough
7467  // not to need a separate attribute)
7468  if (!S.Context.getTargetInfo().hasFeature("neon") &&
7469      !S.Context.getTargetInfo().hasFeature("mve")) {
7470    S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr;
7471    Attr.setInvalid();
7472    return;
7473  }
7474  // Check the attribute arguments.
7475  if (Attr.getNumArgs() != 1) {
7476    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7477                                                                      << 1;
7478    Attr.setInvalid();
7479    return;
7480  }
7481  // The number of elements must be an ICE.
7482  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
7483  llvm::APSInt numEltsInt(32);
7484  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
7485      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
7486    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
7487        << Attr << AANT_ArgumentIntegerConstant
7488        << numEltsExpr->getSourceRange();
7489    Attr.setInvalid();
7490    return;
7491  }
7492  // Only certain element types are supported for Neon vectors.
7493  if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
7494    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
7495    Attr.setInvalid();
7496    return;
7497  }
7498
7499  // The total size of the vector must be 64 or 128 bits.
7500  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
7501  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
7502  unsigned vecSize = typeSize * numElts;
7503  if (vecSize != 64 && vecSize != 128) {
7504    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
7505    Attr.setInvalid();
7506    return;
7507  }
7508
7509  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
7510}
7511
7512/// Handle OpenCL Access Qualifier Attribute.
7513static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
7514                                   Sema &S) {
7515  // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
7516  if (!(CurType->isImageType() || CurType->isPipeType())) {
7517    S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
7518    Attr.setInvalid();
7519    return;
7520  }
7521
7522  if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
7523    QualType BaseTy = TypedefTy->desugar();
7524
7525    std::string PrevAccessQual;
7526    if (BaseTy->isPipeType()) {
7527      if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
7528        OpenCLAccessAttr *Attr =
7529            TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
7530        PrevAccessQual = Attr->getSpelling();
7531      } else {
7532        PrevAccessQual = "read_only";
7533      }
7534    } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
7535
7536      switch (ImgType->getKind()) {
7537        #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7538      case BuiltinType::Id:                                          \
7539        PrevAccessQual = #Access;                                    \
7540        break;
7541        #include "clang/Basic/OpenCLImageTypes.def"
7542      default:
7543        llvm_unreachable("Unable to find corresponding image type.");
7544      }
7545    } else {
7546      llvm_unreachable("unexpected type");
7547    }
7548    StringRef AttrName = Attr.getAttrName()->getName();
7549    if (PrevAccessQual == AttrName.ltrim("_")) {
7550      // Duplicated qualifiers
7551      S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
7552         << AttrName << Attr.getRange();
7553    } else {
7554      // Contradicting qualifiers
7555      S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
7556    }
7557
7558    S.Diag(TypedefTy->getDecl()->getBeginLoc(),
7559           diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
7560  } else if (CurType->isPipeType()) {
7561    if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
7562      QualType ElemType = CurType->getAs<PipeType>()->getElementType();
7563      CurType = S.Context.getWritePipeType(ElemType);
7564    }
7565  }
7566}
7567
7568static void HandleLifetimeBoundAttr(TypeProcessingState &State,
7569                                    QualType &CurType,
7570                                    ParsedAttr &Attr) {
7571  if (State.getDeclarator().isDeclarationOfFunction()) {
7572    CurType = State.getAttributedType(
7573        createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
7574        CurType, CurType);
7575  } else {
7576    Attr.diagnoseAppertainsTo(State.getSema(), nullptr);
7577  }
7578}
7579
7580static bool isAddressSpaceKind(const ParsedAttr &attr) {
7581  auto attrKind = attr.getKind();
7582
7583  return attrKind == ParsedAttr::AT_AddressSpace ||
7584         attrKind == ParsedAttr::AT_OpenCLPrivateAddressSpace ||
7585         attrKind == ParsedAttr::AT_OpenCLGlobalAddressSpace ||
7586         attrKind == ParsedAttr::AT_OpenCLLocalAddressSpace ||
7587         attrKind == ParsedAttr::AT_OpenCLConstantAddressSpace ||
7588         attrKind == ParsedAttr::AT_OpenCLGenericAddressSpace;
7589}
7590
7591static void processTypeAttrs(TypeProcessingState &state, QualType &type,
7592                             TypeAttrLocation TAL,
7593                             ParsedAttributesView &attrs) {
7594  // Scan through and apply attributes to this type where it makes sense.  Some
7595  // attributes (such as __address_space__, __vector_size__, etc) apply to the
7596  // type, but others can be present in the type specifiers even though they
7597  // apply to the decl.  Here we apply type attributes and ignore the rest.
7598
7599  // This loop modifies the list pretty frequently, but we still need to make
7600  // sure we visit every element once. Copy the attributes list, and iterate
7601  // over that.
7602  ParsedAttributesView AttrsCopy{attrs};
7603
7604  state.setParsedNoDeref(false);
7605
7606  for (ParsedAttr &attr : AttrsCopy) {
7607
7608    // Skip attributes that were marked to be invalid.
7609    if (attr.isInvalid())
7610      continue;
7611
7612    if (attr.isCXX11Attribute()) {
7613      // [[gnu::...]] attributes are treated as declaration attributes, so may
7614      // not appertain to a DeclaratorChunk. If we handle them as type
7615      // attributes, accept them in that position and diagnose the GCC
7616      // incompatibility.
7617      if (attr.isGNUScope()) {
7618        bool IsTypeAttr = attr.isTypeAttr();
7619        if (TAL == TAL_DeclChunk) {
7620          state.getSema().Diag(attr.getLoc(),
7621                               IsTypeAttr
7622                                   ? diag::warn_gcc_ignores_type_attr
7623                                   : diag::warn_cxx11_gnu_attribute_on_type)
7624              << attr;
7625          if (!IsTypeAttr)
7626            continue;
7627        }
7628      } else if (TAL != TAL_DeclChunk && !isAddressSpaceKind(attr)) {
7629        // Otherwise, only consider type processing for a C++11 attribute if
7630        // it's actually been applied to a type.
7631        // We also allow C++11 address_space and
7632        // OpenCL language address space attributes to pass through.
7633        continue;
7634      }
7635    }
7636
7637    // If this is an attribute we can handle, do so now,
7638    // otherwise, add it to the FnAttrs list for rechaining.
7639    switch (attr.getKind()) {
7640    default:
7641      // A C++11 attribute on a declarator chunk must appertain to a type.
7642      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
7643        state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
7644            << attr;
7645        attr.setUsedAsTypeAttr();
7646      }
7647      break;
7648
7649    case ParsedAttr::UnknownAttribute:
7650      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
7651        state.getSema().Diag(attr.getLoc(),
7652                             diag::warn_unknown_attribute_ignored)
7653            << attr;
7654      break;
7655
7656    case ParsedAttr::IgnoredAttribute:
7657      break;
7658
7659    case ParsedAttr::AT_MayAlias:
7660      // FIXME: This attribute needs to actually be handled, but if we ignore
7661      // it it breaks large amounts of Linux software.
7662      attr.setUsedAsTypeAttr();
7663      break;
7664    case ParsedAttr::AT_OpenCLPrivateAddressSpace:
7665    case ParsedAttr::AT_OpenCLGlobalAddressSpace:
7666    case ParsedAttr::AT_OpenCLLocalAddressSpace:
7667    case ParsedAttr::AT_OpenCLConstantAddressSpace:
7668    case ParsedAttr::AT_OpenCLGenericAddressSpace:
7669    case ParsedAttr::AT_AddressSpace:
7670      HandleAddressSpaceTypeAttribute(type, attr, state);
7671      attr.setUsedAsTypeAttr();
7672      break;
7673    OBJC_POINTER_TYPE_ATTRS_CASELIST:
7674      if (!handleObjCPointerTypeAttr(state, attr, type))
7675        distributeObjCPointerTypeAttr(state, attr, type);
7676      attr.setUsedAsTypeAttr();
7677      break;
7678    case ParsedAttr::AT_VectorSize:
7679      HandleVectorSizeAttr(type, attr, state.getSema());
7680      attr.setUsedAsTypeAttr();
7681      break;
7682    case ParsedAttr::AT_ExtVectorType:
7683      HandleExtVectorTypeAttr(type, attr, state.getSema());
7684      attr.setUsedAsTypeAttr();
7685      break;
7686    case ParsedAttr::AT_NeonVectorType:
7687      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7688                               VectorType::NeonVector);
7689      attr.setUsedAsTypeAttr();
7690      break;
7691    case ParsedAttr::AT_NeonPolyVectorType:
7692      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7693                               VectorType::NeonPolyVector);
7694      attr.setUsedAsTypeAttr();
7695      break;
7696    case ParsedAttr::AT_OpenCLAccess:
7697      HandleOpenCLAccessAttr(type, attr, state.getSema());
7698      attr.setUsedAsTypeAttr();
7699      break;
7700    case ParsedAttr::AT_LifetimeBound:
7701      if (TAL == TAL_DeclChunk)
7702        HandleLifetimeBoundAttr(state, type, attr);
7703      break;
7704
7705    case ParsedAttr::AT_NoDeref: {
7706      ASTContext &Ctx = state.getSema().Context;
7707      type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
7708                                     type, type);
7709      attr.setUsedAsTypeAttr();
7710      state.setParsedNoDeref(true);
7711      break;
7712    }
7713
7714    MS_TYPE_ATTRS_CASELIST:
7715      if (!handleMSPointerTypeQualifierAttr(state, attr, type))
7716        attr.setUsedAsTypeAttr();
7717      break;
7718
7719
7720    NULLABILITY_TYPE_ATTRS_CASELIST:
7721      // Either add nullability here or try to distribute it.  We
7722      // don't want to distribute the nullability specifier past any
7723      // dependent type, because that complicates the user model.
7724      if (type->canHaveNullability() || type->isDependentType() ||
7725          type->isArrayType() ||
7726          !distributeNullabilityTypeAttr(state, type, attr)) {
7727        unsigned endIndex;
7728        if (TAL == TAL_DeclChunk)
7729          endIndex = state.getCurrentChunkIndex();
7730        else
7731          endIndex = state.getDeclarator().getNumTypeObjects();
7732        bool allowOnArrayType =
7733            state.getDeclarator().isPrototypeContext() &&
7734            !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
7735        if (checkNullabilityTypeSpecifier(
7736              state,
7737              type,
7738              attr,
7739              allowOnArrayType)) {
7740          attr.setInvalid();
7741        }
7742
7743        attr.setUsedAsTypeAttr();
7744      }
7745      break;
7746
7747    case ParsedAttr::AT_ObjCKindOf:
7748      // '__kindof' must be part of the decl-specifiers.
7749      switch (TAL) {
7750      case TAL_DeclSpec:
7751        break;
7752
7753      case TAL_DeclChunk:
7754      case TAL_DeclName:
7755        state.getSema().Diag(attr.getLoc(),
7756                             diag::err_objc_kindof_wrong_position)
7757            << FixItHint::CreateRemoval(attr.getLoc())
7758            << FixItHint::CreateInsertion(
7759                   state.getDeclarator().getDeclSpec().getBeginLoc(),
7760                   "__kindof ");
7761        break;
7762      }
7763
7764      // Apply it regardless.
7765      if (checkObjCKindOfType(state, type, attr))
7766        attr.setInvalid();
7767      break;
7768
7769    case ParsedAttr::AT_NoThrow:
7770    // Exception Specifications aren't generally supported in C mode throughout
7771    // clang, so revert to attribute-based handling for C.
7772      if (!state.getSema().getLangOpts().CPlusPlus)
7773        break;
7774      LLVM_FALLTHROUGH;
7775    FUNCTION_TYPE_ATTRS_CASELIST:
7776      attr.setUsedAsTypeAttr();
7777
7778      // Never process function type attributes as part of the
7779      // declaration-specifiers.
7780      if (TAL == TAL_DeclSpec)
7781        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
7782
7783      // Otherwise, handle the possible delays.
7784      else if (!handleFunctionTypeAttr(state, attr, type))
7785        distributeFunctionTypeAttr(state, attr, type);
7786      break;
7787    case ParsedAttr::AT_AcquireHandle: {
7788      if (!type->isFunctionType())
7789        return;
7790      StringRef HandleType;
7791      if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
7792        return;
7793      type = state.getAttributedType(
7794          AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
7795          type, type);
7796      attr.setUsedAsTypeAttr();
7797      break;
7798    }
7799    }
7800
7801    // Handle attributes that are defined in a macro. We do not want this to be
7802    // applied to ObjC builtin attributes.
7803    if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
7804        !type.getQualifiers().hasObjCLifetime() &&
7805        !type.getQualifiers().hasObjCGCAttr() &&
7806        attr.getKind() != ParsedAttr::AT_ObjCGC &&
7807        attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
7808      const IdentifierInfo *MacroII = attr.getMacroIdentifier();
7809      type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
7810      state.setExpansionLocForMacroQualifiedType(
7811          cast<MacroQualifiedType>(type.getTypePtr()),
7812          attr.getMacroExpansionLoc());
7813    }
7814  }
7815
7816  if (!state.getSema().getLangOpts().OpenCL ||
7817      type.getAddressSpace() != LangAS::Default)
7818    return;
7819}
7820
7821void Sema::completeExprArrayBound(Expr *E) {
7822  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
7823    if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
7824      if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
7825        auto *Def = Var->getDefinition();
7826        if (!Def) {
7827          SourceLocation PointOfInstantiation = E->getExprLoc();
7828          runWithSufficientStackSpace(PointOfInstantiation, [&] {
7829            InstantiateVariableDefinition(PointOfInstantiation, Var);
7830          });
7831          Def = Var->getDefinition();
7832
7833          // If we don't already have a point of instantiation, and we managed
7834          // to instantiate a definition, this is the point of instantiation.
7835          // Otherwise, we don't request an end-of-TU instantiation, so this is
7836          // not a point of instantiation.
7837          // FIXME: Is this really the right behavior?
7838          if (Var->getPointOfInstantiation().isInvalid() && Def) {
7839            assert(Var->getTemplateSpecializationKind() ==
7840                       TSK_ImplicitInstantiation &&
7841                   "explicit instantiation with no point of instantiation");
7842            Var->setTemplateSpecializationKind(
7843                Var->getTemplateSpecializationKind(), PointOfInstantiation);
7844          }
7845        }
7846
7847        // Update the type to the definition's type both here and within the
7848        // expression.
7849        if (Def) {
7850          DRE->setDecl(Def);
7851          QualType T = Def->getType();
7852          DRE->setType(T);
7853          // FIXME: Update the type on all intervening expressions.
7854          E->setType(T);
7855        }
7856
7857        // We still go on to try to complete the type independently, as it
7858        // may also require instantiations or diagnostics if it remains
7859        // incomplete.
7860      }
7861    }
7862  }
7863}
7864
7865/// Ensure that the type of the given expression is complete.
7866///
7867/// This routine checks whether the expression \p E has a complete type. If the
7868/// expression refers to an instantiable construct, that instantiation is
7869/// performed as needed to complete its type. Furthermore
7870/// Sema::RequireCompleteType is called for the expression's type (or in the
7871/// case of a reference type, the referred-to type).
7872///
7873/// \param E The expression whose type is required to be complete.
7874/// \param Diagnoser The object that will emit a diagnostic if the type is
7875/// incomplete.
7876///
7877/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
7878/// otherwise.
7879bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser) {
7880  QualType T = E->getType();
7881
7882  // Incomplete array types may be completed by the initializer attached to
7883  // their definitions. For static data members of class templates and for
7884  // variable templates, we need to instantiate the definition to get this
7885  // initializer and complete the type.
7886  if (T->isIncompleteArrayType()) {
7887    completeExprArrayBound(E);
7888    T = E->getType();
7889  }
7890
7891  // FIXME: Are there other cases which require instantiating something other
7892  // than the type to complete the type of an expression?
7893
7894  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
7895}
7896
7897bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
7898  BoundTypeDiagnoser<> Diagnoser(DiagID);
7899  return RequireCompleteExprType(E, Diagnoser);
7900}
7901
7902/// Ensure that the type T is a complete type.
7903///
7904/// This routine checks whether the type @p T is complete in any
7905/// context where a complete type is required. If @p T is a complete
7906/// type, returns false. If @p T is a class template specialization,
7907/// this routine then attempts to perform class template
7908/// instantiation. If instantiation fails, or if @p T is incomplete
7909/// and cannot be completed, issues the diagnostic @p diag (giving it
7910/// the type @p T) and returns true.
7911///
7912/// @param Loc  The location in the source that the incomplete type
7913/// diagnostic should refer to.
7914///
7915/// @param T  The type that this routine is examining for completeness.
7916///
7917/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
7918/// @c false otherwise.
7919bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
7920                               TypeDiagnoser &Diagnoser) {
7921  if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
7922    return true;
7923  if (const TagType *Tag = T->getAs<TagType>()) {
7924    if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
7925      Tag->getDecl()->setCompleteDefinitionRequired();
7926      Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
7927    }
7928  }
7929  return false;
7930}
7931
7932bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
7933  llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
7934  if (!Suggested)
7935    return false;
7936
7937  // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
7938  // and isolate from other C++ specific checks.
7939  StructuralEquivalenceContext Ctx(
7940      D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
7941      StructuralEquivalenceKind::Default,
7942      false /*StrictTypeSpelling*/, true /*Complain*/,
7943      true /*ErrorOnTagTypeMismatch*/);
7944  return Ctx.IsEquivalent(D, Suggested);
7945}
7946
7947/// Determine whether there is any declaration of \p D that was ever a
7948///        definition (perhaps before module merging) and is currently visible.
7949/// \param D The definition of the entity.
7950/// \param Suggested Filled in with the declaration that should be made visible
7951///        in order to provide a definition of this entity.
7952/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
7953///        not defined. This only matters for enums with a fixed underlying
7954///        type, since in all other cases, a type is complete if and only if it
7955///        is defined.
7956bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
7957                                bool OnlyNeedComplete) {
7958  // Easy case: if we don't have modules, all declarations are visible.
7959  if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
7960    return true;
7961
7962  // If this definition was instantiated from a template, map back to the
7963  // pattern from which it was instantiated.
7964  if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
7965    // We're in the middle of defining it; this definition should be treated
7966    // as visible.
7967    return true;
7968  } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
7969    if (auto *Pattern = RD->getTemplateInstantiationPattern())
7970      RD = Pattern;
7971    D = RD->getDefinition();
7972  } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
7973    if (auto *Pattern = ED->getTemplateInstantiationPattern())
7974      ED = Pattern;
7975    if (OnlyNeedComplete && ED->isFixed()) {
7976      // If the enum has a fixed underlying type, and we're only looking for a
7977      // complete type (not a definition), any visible declaration of it will
7978      // do.
7979      *Suggested = nullptr;
7980      for (auto *Redecl : ED->redecls()) {
7981        if (isVisible(Redecl))
7982          return true;
7983        if (Redecl->isThisDeclarationADefinition() ||
7984            (Redecl->isCanonicalDecl() && !*Suggested))
7985          *Suggested = Redecl;
7986      }
7987      return false;
7988    }
7989    D = ED->getDefinition();
7990  } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
7991    if (auto *Pattern = FD->getTemplateInstantiationPattern())
7992      FD = Pattern;
7993    D = FD->getDefinition();
7994  } else if (auto *VD = dyn_cast<VarDecl>(D)) {
7995    if (auto *Pattern = VD->getTemplateInstantiationPattern())
7996      VD = Pattern;
7997    D = VD->getDefinition();
7998  }
7999  assert(D && "missing definition for pattern of instantiated definition");
8000
8001  *Suggested = D;
8002
8003  auto DefinitionIsVisible = [&] {
8004    // The (primary) definition might be in a visible module.
8005    if (isVisible(D))
8006      return true;
8007
8008    // A visible module might have a merged definition instead.
8009    if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
8010                             : hasVisibleMergedDefinition(D)) {
8011      if (CodeSynthesisContexts.empty() &&
8012          !getLangOpts().ModulesLocalVisibility) {
8013        // Cache the fact that this definition is implicitly visible because
8014        // there is a visible merged definition.
8015        D->setVisibleDespiteOwningModule();
8016      }
8017      return true;
8018    }
8019
8020    return false;
8021  };
8022
8023  if (DefinitionIsVisible())
8024    return true;
8025
8026  // The external source may have additional definitions of this entity that are
8027  // visible, so complete the redeclaration chain now and ask again.
8028  if (auto *Source = Context.getExternalSource()) {
8029    Source->CompleteRedeclChain(D);
8030    return DefinitionIsVisible();
8031  }
8032
8033  return false;
8034}
8035
8036/// Locks in the inheritance model for the given class and all of its bases.
8037static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
8038  RD = RD->getMostRecentNonInjectedDecl();
8039  if (!RD->hasAttr<MSInheritanceAttr>()) {
8040    MSInheritanceModel IM;
8041    bool BestCase = false;
8042    switch (S.MSPointerToMemberRepresentationMethod) {
8043    case LangOptions::PPTMK_BestCase:
8044      BestCase = true;
8045      IM = RD->calculateInheritanceModel();
8046      break;
8047    case LangOptions::PPTMK_FullGeneralitySingleInheritance:
8048      IM = MSInheritanceModel::Single;
8049      break;
8050    case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
8051      IM = MSInheritanceModel::Multiple;
8052      break;
8053    case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
8054      IM = MSInheritanceModel::Unspecified;
8055      break;
8056    }
8057
8058    SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
8059                          ? S.ImplicitMSInheritanceAttrLoc
8060                          : RD->getSourceRange();
8061    RD->addAttr(MSInheritanceAttr::CreateImplicit(
8062        S.getASTContext(), BestCase, Loc, AttributeCommonInfo::AS_Microsoft,
8063        MSInheritanceAttr::Spelling(IM)));
8064    S.Consumer.AssignInheritanceModel(RD);
8065  }
8066}
8067
8068/// The implementation of RequireCompleteType
8069bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
8070                                   TypeDiagnoser *Diagnoser) {
8071  // FIXME: Add this assertion to make sure we always get instantiation points.
8072  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
8073  // FIXME: Add this assertion to help us flush out problems with
8074  // checking for dependent types and type-dependent expressions.
8075  //
8076  //  assert(!T->isDependentType() &&
8077  //         "Can't ask whether a dependent type is complete");
8078
8079  if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
8080    if (!MPTy->getClass()->isDependentType()) {
8081      if (getLangOpts().CompleteMemberPointers &&
8082          !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
8083          RequireCompleteType(Loc, QualType(MPTy->getClass(), 0),
8084                              diag::err_memptr_incomplete))
8085        return true;
8086
8087      // We lock in the inheritance model once somebody has asked us to ensure
8088      // that a pointer-to-member type is complete.
8089      if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
8090        (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
8091        assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
8092      }
8093    }
8094  }
8095
8096  NamedDecl *Def = nullptr;
8097  bool Incomplete = T->isIncompleteType(&Def);
8098
8099  // Check that any necessary explicit specializations are visible. For an
8100  // enum, we just need the declaration, so don't check this.
8101  if (Def && !isa<EnumDecl>(Def))
8102    checkSpecializationVisibility(Loc, Def);
8103
8104  // If we have a complete type, we're done.
8105  if (!Incomplete) {
8106    // If we know about the definition but it is not visible, complain.
8107    NamedDecl *SuggestedDef = nullptr;
8108    if (Def &&
8109        !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
8110      // If the user is going to see an error here, recover by making the
8111      // definition visible.
8112      bool TreatAsComplete = Diagnoser && !isSFINAEContext();
8113      if (Diagnoser && SuggestedDef)
8114        diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
8115                              /*Recover*/TreatAsComplete);
8116      return !TreatAsComplete;
8117    } else if (Def && !TemplateInstCallbacks.empty()) {
8118      CodeSynthesisContext TempInst;
8119      TempInst.Kind = CodeSynthesisContext::Memoization;
8120      TempInst.Template = Def;
8121      TempInst.Entity = Def;
8122      TempInst.PointOfInstantiation = Loc;
8123      atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
8124      atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
8125    }
8126
8127    return false;
8128  }
8129
8130  TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
8131  ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
8132
8133  // Give the external source a chance to provide a definition of the type.
8134  // This is kept separate from completing the redeclaration chain so that
8135  // external sources such as LLDB can avoid synthesizing a type definition
8136  // unless it's actually needed.
8137  if (Tag || IFace) {
8138    // Avoid diagnosing invalid decls as incomplete.
8139    if (Def->isInvalidDecl())
8140      return true;
8141
8142    // Give the external AST source a chance to complete the type.
8143    if (auto *Source = Context.getExternalSource()) {
8144      if (Tag && Tag->hasExternalLexicalStorage())
8145          Source->CompleteType(Tag);
8146      if (IFace && IFace->hasExternalLexicalStorage())
8147          Source->CompleteType(IFace);
8148      // If the external source completed the type, go through the motions
8149      // again to ensure we're allowed to use the completed type.
8150      if (!T->isIncompleteType())
8151        return RequireCompleteTypeImpl(Loc, T, Diagnoser);
8152    }
8153  }
8154
8155  // If we have a class template specialization or a class member of a
8156  // class template specialization, or an array with known size of such,
8157  // try to instantiate it.
8158  if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
8159    bool Instantiated = false;
8160    bool Diagnosed = false;
8161    if (RD->isDependentContext()) {
8162      // Don't try to instantiate a dependent class (eg, a member template of
8163      // an instantiated class template specialization).
8164      // FIXME: Can this ever happen?
8165    } else if (auto *ClassTemplateSpec =
8166            dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
8167      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
8168        runWithSufficientStackSpace(Loc, [&] {
8169          Diagnosed = InstantiateClassTemplateSpecialization(
8170              Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
8171              /*Complain=*/Diagnoser);
8172        });
8173        Instantiated = true;
8174      }
8175    } else {
8176      CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
8177      if (!RD->isBeingDefined() && Pattern) {
8178        MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
8179        assert(MSI && "Missing member specialization information?");
8180        // This record was instantiated from a class within a template.
8181        if (MSI->getTemplateSpecializationKind() !=
8182            TSK_ExplicitSpecialization) {
8183          runWithSufficientStackSpace(Loc, [&] {
8184            Diagnosed = InstantiateClass(Loc, RD, Pattern,
8185                                         getTemplateInstantiationArgs(RD),
8186                                         TSK_ImplicitInstantiation,
8187                                         /*Complain=*/Diagnoser);
8188          });
8189          Instantiated = true;
8190        }
8191      }
8192    }
8193
8194    if (Instantiated) {
8195      // Instantiate* might have already complained that the template is not
8196      // defined, if we asked it to.
8197      if (Diagnoser && Diagnosed)
8198        return true;
8199      // If we instantiated a definition, check that it's usable, even if
8200      // instantiation produced an error, so that repeated calls to this
8201      // function give consistent answers.
8202      if (!T->isIncompleteType())
8203        return RequireCompleteTypeImpl(Loc, T, Diagnoser);
8204    }
8205  }
8206
8207  // FIXME: If we didn't instantiate a definition because of an explicit
8208  // specialization declaration, check that it's visible.
8209
8210  if (!Diagnoser)
8211    return true;
8212
8213  Diagnoser->diagnose(*this, Loc, T);
8214
8215  // If the type was a forward declaration of a class/struct/union
8216  // type, produce a note.
8217  if (Tag && !Tag->isInvalidDecl())
8218    Diag(Tag->getLocation(),
8219         Tag->isBeingDefined() ? diag::note_type_being_defined
8220                               : diag::note_forward_declaration)
8221      << Context.getTagDeclType(Tag);
8222
8223  // If the Objective-C class was a forward declaration, produce a note.
8224  if (IFace && !IFace->isInvalidDecl())
8225    Diag(IFace->getLocation(), diag::note_forward_class);
8226
8227  // If we have external information that we can use to suggest a fix,
8228  // produce a note.
8229  if (ExternalSource)
8230    ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
8231
8232  return true;
8233}
8234
8235bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8236                               unsigned DiagID) {
8237  BoundTypeDiagnoser<> Diagnoser(DiagID);
8238  return RequireCompleteType(Loc, T, Diagnoser);
8239}
8240
8241/// Get diagnostic %select index for tag kind for
8242/// literal type diagnostic message.
8243/// WARNING: Indexes apply to particular diagnostics only!
8244///
8245/// \returns diagnostic %select index.
8246static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
8247  switch (Tag) {
8248  case TTK_Struct: return 0;
8249  case TTK_Interface: return 1;
8250  case TTK_Class:  return 2;
8251  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
8252  }
8253}
8254
8255/// Ensure that the type T is a literal type.
8256///
8257/// This routine checks whether the type @p T is a literal type. If @p T is an
8258/// incomplete type, an attempt is made to complete it. If @p T is a literal
8259/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
8260/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
8261/// it the type @p T), along with notes explaining why the type is not a
8262/// literal type, and returns true.
8263///
8264/// @param Loc  The location in the source that the non-literal type
8265/// diagnostic should refer to.
8266///
8267/// @param T  The type that this routine is examining for literalness.
8268///
8269/// @param Diagnoser Emits a diagnostic if T is not a literal type.
8270///
8271/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
8272/// @c false otherwise.
8273bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
8274                              TypeDiagnoser &Diagnoser) {
8275  assert(!T->isDependentType() && "type should not be dependent");
8276
8277  QualType ElemType = Context.getBaseElementType(T);
8278  if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
8279      T->isLiteralType(Context))
8280    return false;
8281
8282  Diagnoser.diagnose(*this, Loc, T);
8283
8284  if (T->isVariableArrayType())
8285    return true;
8286
8287  const RecordType *RT = ElemType->getAs<RecordType>();
8288  if (!RT)
8289    return true;
8290
8291  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
8292
8293  // A partially-defined class type can't be a literal type, because a literal
8294  // class type must have a trivial destructor (which can't be checked until
8295  // the class definition is complete).
8296  if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
8297    return true;
8298
8299  // [expr.prim.lambda]p3:
8300  //   This class type is [not] a literal type.
8301  if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
8302    Diag(RD->getLocation(), diag::note_non_literal_lambda);
8303    return true;
8304  }
8305
8306  // If the class has virtual base classes, then it's not an aggregate, and
8307  // cannot have any constexpr constructors or a trivial default constructor,
8308  // so is non-literal. This is better to diagnose than the resulting absence
8309  // of constexpr constructors.
8310  if (RD->getNumVBases()) {
8311    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
8312      << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
8313    for (const auto &I : RD->vbases())
8314      Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
8315          << I.getSourceRange();
8316  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
8317             !RD->hasTrivialDefaultConstructor()) {
8318    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
8319  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
8320    for (const auto &I : RD->bases()) {
8321      if (!I.getType()->isLiteralType(Context)) {
8322        Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
8323            << RD << I.getType() << I.getSourceRange();
8324        return true;
8325      }
8326    }
8327    for (const auto *I : RD->fields()) {
8328      if (!I->getType()->isLiteralType(Context) ||
8329          I->getType().isVolatileQualified()) {
8330        Diag(I->getLocation(), diag::note_non_literal_field)
8331          << RD << I << I->getType()
8332          << I->getType().isVolatileQualified();
8333        return true;
8334      }
8335    }
8336  } else if (getLangOpts().CPlusPlus2a ? !RD->hasConstexprDestructor()
8337                                       : !RD->hasTrivialDestructor()) {
8338    // All fields and bases are of literal types, so have trivial or constexpr
8339    // destructors. If this class's destructor is non-trivial / non-constexpr,
8340    // it must be user-declared.
8341    CXXDestructorDecl *Dtor = RD->getDestructor();
8342    assert(Dtor && "class has literal fields and bases but no dtor?");
8343    if (!Dtor)
8344      return true;
8345
8346    if (getLangOpts().CPlusPlus2a) {
8347      Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
8348          << RD;
8349    } else {
8350      Diag(Dtor->getLocation(), Dtor->isUserProvided()
8351                                    ? diag::note_non_literal_user_provided_dtor
8352                                    : diag::note_non_literal_nontrivial_dtor)
8353          << RD;
8354      if (!Dtor->isUserProvided())
8355        SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
8356                               /*Diagnose*/ true);
8357    }
8358  }
8359
8360  return true;
8361}
8362
8363bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
8364  BoundTypeDiagnoser<> Diagnoser(DiagID);
8365  return RequireLiteralType(Loc, T, Diagnoser);
8366}
8367
8368/// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
8369/// by the nested-name-specifier contained in SS, and that is (re)declared by
8370/// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
8371QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
8372                                 const CXXScopeSpec &SS, QualType T,
8373                                 TagDecl *OwnedTagDecl) {
8374  if (T.isNull())
8375    return T;
8376  NestedNameSpecifier *NNS;
8377  if (SS.isValid())
8378    NNS = SS.getScopeRep();
8379  else {
8380    if (Keyword == ETK_None)
8381      return T;
8382    NNS = nullptr;
8383  }
8384  return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
8385}
8386
8387QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
8388  assert(!E->hasPlaceholderType() && "unexpected placeholder");
8389
8390  if (!getLangOpts().CPlusPlus && E->refersToBitField())
8391    Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
8392
8393  if (!E->isTypeDependent()) {
8394    QualType T = E->getType();
8395    if (const TagType *TT = T->getAs<TagType>())
8396      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
8397  }
8398  return Context.getTypeOfExprType(E);
8399}
8400
8401/// getDecltypeForExpr - Given an expr, will return the decltype for
8402/// that expression, according to the rules in C++11
8403/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
8404static QualType getDecltypeForExpr(Sema &S, Expr *E) {
8405  if (E->isTypeDependent())
8406    return S.Context.DependentTy;
8407
8408  // C++11 [dcl.type.simple]p4:
8409  //   The type denoted by decltype(e) is defined as follows:
8410  //
8411  //     - if e is an unparenthesized id-expression or an unparenthesized class
8412  //       member access (5.2.5), decltype(e) is the type of the entity named
8413  //       by e. If there is no such entity, or if e names a set of overloaded
8414  //       functions, the program is ill-formed;
8415  //
8416  // We apply the same rules for Objective-C ivar and property references.
8417  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8418    const ValueDecl *VD = DRE->getDecl();
8419    return VD->getType();
8420  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
8421    if (const ValueDecl *VD = ME->getMemberDecl())
8422      if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
8423        return VD->getType();
8424  } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
8425    return IR->getDecl()->getType();
8426  } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
8427    if (PR->isExplicitProperty())
8428      return PR->getExplicitProperty()->getType();
8429  } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
8430    return PE->getType();
8431  }
8432
8433  // C++11 [expr.lambda.prim]p18:
8434  //   Every occurrence of decltype((x)) where x is a possibly
8435  //   parenthesized id-expression that names an entity of automatic
8436  //   storage duration is treated as if x were transformed into an
8437  //   access to a corresponding data member of the closure type that
8438  //   would have been declared if x were an odr-use of the denoted
8439  //   entity.
8440  using namespace sema;
8441  if (S.getCurLambda()) {
8442    if (isa<ParenExpr>(E)) {
8443      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8444        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8445          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
8446          if (!T.isNull())
8447            return S.Context.getLValueReferenceType(T);
8448        }
8449      }
8450    }
8451  }
8452
8453
8454  // C++11 [dcl.type.simple]p4:
8455  //   [...]
8456  QualType T = E->getType();
8457  switch (E->getValueKind()) {
8458  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
8459  //       type of e;
8460  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
8461  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
8462  //       type of e;
8463  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
8464  //  - otherwise, decltype(e) is the type of e.
8465  case VK_RValue: break;
8466  }
8467
8468  return T;
8469}
8470
8471QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
8472                                 bool AsUnevaluated) {
8473  assert(!E->hasPlaceholderType() && "unexpected placeholder");
8474
8475  if (AsUnevaluated && CodeSynthesisContexts.empty() &&
8476      E->HasSideEffects(Context, false)) {
8477    // The expression operand for decltype is in an unevaluated expression
8478    // context, so side effects could result in unintended consequences.
8479    Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8480  }
8481
8482  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
8483}
8484
8485QualType Sema::BuildUnaryTransformType(QualType BaseType,
8486                                       UnaryTransformType::UTTKind UKind,
8487                                       SourceLocation Loc) {
8488  switch (UKind) {
8489  case UnaryTransformType::EnumUnderlyingType:
8490    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
8491      Diag(Loc, diag::err_only_enums_have_underlying_types);
8492      return QualType();
8493    } else {
8494      QualType Underlying = BaseType;
8495      if (!BaseType->isDependentType()) {
8496        // The enum could be incomplete if we're parsing its definition or
8497        // recovering from an error.
8498        NamedDecl *FwdDecl = nullptr;
8499        if (BaseType->isIncompleteType(&FwdDecl)) {
8500          Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
8501          Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
8502          return QualType();
8503        }
8504
8505        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
8506        assert(ED && "EnumType has no EnumDecl");
8507
8508        DiagnoseUseOfDecl(ED, Loc);
8509
8510        Underlying = ED->getIntegerType();
8511        assert(!Underlying.isNull());
8512      }
8513      return Context.getUnaryTransformType(BaseType, Underlying,
8514                                        UnaryTransformType::EnumUnderlyingType);
8515    }
8516  }
8517  llvm_unreachable("unknown unary transform type");
8518}
8519
8520QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
8521  if (!T->isDependentType()) {
8522    // FIXME: It isn't entirely clear whether incomplete atomic types
8523    // are allowed or not; for simplicity, ban them for the moment.
8524    if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
8525      return QualType();
8526
8527    int DisallowedKind = -1;
8528    if (T->isArrayType())
8529      DisallowedKind = 1;
8530    else if (T->isFunctionType())
8531      DisallowedKind = 2;
8532    else if (T->isReferenceType())
8533      DisallowedKind = 3;
8534    else if (T->isAtomicType())
8535      DisallowedKind = 4;
8536    else if (T.hasQualifiers())
8537      DisallowedKind = 5;
8538    else if (!T.isTriviallyCopyableType(Context))
8539      // Some other non-trivially-copyable type (probably a C++ class)
8540      DisallowedKind = 6;
8541
8542    if (DisallowedKind != -1) {
8543      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
8544      return QualType();
8545    }
8546
8547    // FIXME: Do we need any handling for ARC here?
8548  }
8549
8550  // Build the pointer type.
8551  return Context.getAtomicType(T);
8552}
8553