1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements semantic analysis for expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TreeTransform.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/ExprOpenMP.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/FixedPoint.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "clang/Lex/LiteralSupport.h"
34#include "clang/Lex/Preprocessor.h"
35#include "clang/Sema/AnalysisBasedWarnings.h"
36#include "clang/Sema/DeclSpec.h"
37#include "clang/Sema/DelayedDiagnostic.h"
38#include "clang/Sema/Designator.h"
39#include "clang/Sema/Initialization.h"
40#include "clang/Sema/Lookup.h"
41#include "clang/Sema/Overload.h"
42#include "clang/Sema/ParsedTemplate.h"
43#include "clang/Sema/Scope.h"
44#include "clang/Sema/ScopeInfo.h"
45#include "clang/Sema/SemaFixItUtils.h"
46#include "clang/Sema/SemaInternal.h"
47#include "clang/Sema/Template.h"
48#include "llvm/Support/ConvertUTF.h"
49using namespace clang;
50using namespace sema;
51
52/// Determine whether the use of this declaration is valid, without
53/// emitting diagnostics.
54bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
55  // See if this is an auto-typed variable whose initializer we are parsing.
56  if (ParsingInitForAutoVars.count(D))
57    return false;
58
59  // See if this is a deleted function.
60  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
61    if (FD->isDeleted())
62      return false;
63
64    // If the function has a deduced return type, and we can't deduce it,
65    // then we can't use it either.
66    if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
67        DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
68      return false;
69
70    // See if this is an aligned allocation/deallocation function that is
71    // unavailable.
72    if (TreatUnavailableAsInvalid &&
73        isUnavailableAlignedAllocationFunction(*FD))
74      return false;
75  }
76
77  // See if this function is unavailable.
78  if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
79      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
80    return false;
81
82  return true;
83}
84
85static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
86  // Warn if this is used but marked unused.
87  if (const auto *A = D->getAttr<UnusedAttr>()) {
88    // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
89    // should diagnose them.
90    if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
91        A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
92      const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
93      if (DC && !DC->hasAttr<UnusedAttr>())
94        S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
95    }
96  }
97}
98
99/// Emit a note explaining that this function is deleted.
100void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
101  assert(Decl && Decl->isDeleted());
102
103  if (Decl->isDefaulted()) {
104    // If the method was explicitly defaulted, point at that declaration.
105    if (!Decl->isImplicit())
106      Diag(Decl->getLocation(), diag::note_implicitly_deleted);
107
108    // Try to diagnose why this special member function was implicitly
109    // deleted. This might fail, if that reason no longer applies.
110    DiagnoseDeletedDefaultedFunction(Decl);
111    return;
112  }
113
114  auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
115  if (Ctor && Ctor->isInheritingConstructor())
116    return NoteDeletedInheritingConstructor(Ctor);
117
118  Diag(Decl->getLocation(), diag::note_availability_specified_here)
119    << Decl << 1;
120}
121
122/// Determine whether a FunctionDecl was ever declared with an
123/// explicit storage class.
124static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
125  for (auto I : D->redecls()) {
126    if (I->getStorageClass() != SC_None)
127      return true;
128  }
129  return false;
130}
131
132/// Check whether we're in an extern inline function and referring to a
133/// variable or function with internal linkage (C11 6.7.4p3).
134///
135/// This is only a warning because we used to silently accept this code, but
136/// in many cases it will not behave correctly. This is not enabled in C++ mode
137/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
138/// and so while there may still be user mistakes, most of the time we can't
139/// prove that there are errors.
140static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
141                                                      const NamedDecl *D,
142                                                      SourceLocation Loc) {
143  // This is disabled under C++; there are too many ways for this to fire in
144  // contexts where the warning is a false positive, or where it is technically
145  // correct but benign.
146  if (S.getLangOpts().CPlusPlus)
147    return;
148
149  // Check if this is an inlined function or method.
150  FunctionDecl *Current = S.getCurFunctionDecl();
151  if (!Current)
152    return;
153  if (!Current->isInlined())
154    return;
155  if (!Current->isExternallyVisible())
156    return;
157
158  // Check if the decl has internal linkage.
159  if (D->getFormalLinkage() != InternalLinkage)
160    return;
161
162  // Downgrade from ExtWarn to Extension if
163  //  (1) the supposedly external inline function is in the main file,
164  //      and probably won't be included anywhere else.
165  //  (2) the thing we're referencing is a pure function.
166  //  (3) the thing we're referencing is another inline function.
167  // This last can give us false negatives, but it's better than warning on
168  // wrappers for simple C library functions.
169  const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
170  bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
171  if (!DowngradeWarning && UsedFn)
172    DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
173
174  S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
175                               : diag::ext_internal_in_extern_inline)
176    << /*IsVar=*/!UsedFn << D;
177
178  S.MaybeSuggestAddingStaticToDecl(Current);
179
180  S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
181      << D;
182}
183
184void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
185  const FunctionDecl *First = Cur->getFirstDecl();
186
187  // Suggest "static" on the function, if possible.
188  if (!hasAnyExplicitStorageClass(First)) {
189    SourceLocation DeclBegin = First->getSourceRange().getBegin();
190    Diag(DeclBegin, diag::note_convert_inline_to_static)
191      << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
192  }
193}
194
195/// Determine whether the use of this declaration is valid, and
196/// emit any corresponding diagnostics.
197///
198/// This routine diagnoses various problems with referencing
199/// declarations that can occur when using a declaration. For example,
200/// it might warn if a deprecated or unavailable declaration is being
201/// used, or produce an error (and return true) if a C++0x deleted
202/// function is being used.
203///
204/// \returns true if there was an error (this declaration cannot be
205/// referenced), false otherwise.
206///
207bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
208                             const ObjCInterfaceDecl *UnknownObjCClass,
209                             bool ObjCPropertyAccess,
210                             bool AvoidPartialAvailabilityChecks,
211                             ObjCInterfaceDecl *ClassReceiver) {
212  SourceLocation Loc = Locs.front();
213  if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
214    // If there were any diagnostics suppressed by template argument deduction,
215    // emit them now.
216    auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
217    if (Pos != SuppressedDiagnostics.end()) {
218      for (const PartialDiagnosticAt &Suppressed : Pos->second)
219        Diag(Suppressed.first, Suppressed.second);
220
221      // Clear out the list of suppressed diagnostics, so that we don't emit
222      // them again for this specialization. However, we don't obsolete this
223      // entry from the table, because we want to avoid ever emitting these
224      // diagnostics again.
225      Pos->second.clear();
226    }
227
228    // C++ [basic.start.main]p3:
229    //   The function 'main' shall not be used within a program.
230    if (cast<FunctionDecl>(D)->isMain())
231      Diag(Loc, diag::ext_main_used);
232
233    diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
234  }
235
236  // See if this is an auto-typed variable whose initializer we are parsing.
237  if (ParsingInitForAutoVars.count(D)) {
238    if (isa<BindingDecl>(D)) {
239      Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
240        << D->getDeclName();
241    } else {
242      Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
243        << D->getDeclName() << cast<VarDecl>(D)->getType();
244    }
245    return true;
246  }
247
248  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
249    // See if this is a deleted function.
250    if (FD->isDeleted()) {
251      auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
252      if (Ctor && Ctor->isInheritingConstructor())
253        Diag(Loc, diag::err_deleted_inherited_ctor_use)
254            << Ctor->getParent()
255            << Ctor->getInheritedConstructor().getConstructor()->getParent();
256      else
257        Diag(Loc, diag::err_deleted_function_use);
258      NoteDeletedFunction(FD);
259      return true;
260    }
261
262    // [expr.prim.id]p4
263    //   A program that refers explicitly or implicitly to a function with a
264    //   trailing requires-clause whose constraint-expression is not satisfied,
265    //   other than to declare it, is ill-formed. [...]
266    //
267    // See if this is a function with constraints that need to be satisfied.
268    // Check this before deducing the return type, as it might instantiate the
269    // definition.
270    if (FD->getTrailingRequiresClause()) {
271      ConstraintSatisfaction Satisfaction;
272      if (CheckFunctionConstraints(FD, Satisfaction, Loc))
273        // A diagnostic will have already been generated (non-constant
274        // constraint expression, for example)
275        return true;
276      if (!Satisfaction.IsSatisfied) {
277        Diag(Loc,
278             diag::err_reference_to_function_with_unsatisfied_constraints)
279            << D;
280        DiagnoseUnsatisfiedConstraint(Satisfaction);
281        return true;
282      }
283    }
284
285    // If the function has a deduced return type, and we can't deduce it,
286    // then we can't use it either.
287    if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
288        DeduceReturnType(FD, Loc))
289      return true;
290
291    if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
292      return true;
293  }
294
295  if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
296    // Lambdas are only default-constructible or assignable in C++2a onwards.
297    if (MD->getParent()->isLambda() &&
298        ((isa<CXXConstructorDecl>(MD) &&
299          cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
300         MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
301      Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
302        << !isa<CXXConstructorDecl>(MD);
303    }
304  }
305
306  auto getReferencedObjCProp = [](const NamedDecl *D) ->
307                                      const ObjCPropertyDecl * {
308    if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
309      return MD->findPropertyDecl();
310    return nullptr;
311  };
312  if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
313    if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
314      return true;
315  } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
316      return true;
317  }
318
319  // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
320  // Only the variables omp_in and omp_out are allowed in the combiner.
321  // Only the variables omp_priv and omp_orig are allowed in the
322  // initializer-clause.
323  auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
324  if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
325      isa<VarDecl>(D)) {
326    Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
327        << getCurFunction()->HasOMPDeclareReductionCombiner;
328    Diag(D->getLocation(), diag::note_entity_declared_at) << D;
329    return true;
330  }
331
332  // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
333  //  List-items in map clauses on this construct may only refer to the declared
334  //  variable var and entities that could be referenced by a procedure defined
335  //  at the same location
336  auto *DMD = dyn_cast<OMPDeclareMapperDecl>(CurContext);
337  if (LangOpts.OpenMP && DMD && !CurContext->containsDecl(D) &&
338      isa<VarDecl>(D)) {
339    Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
340        << DMD->getVarName().getAsString();
341    Diag(D->getLocation(), diag::note_entity_declared_at) << D;
342    return true;
343  }
344
345  DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
346                             AvoidPartialAvailabilityChecks, ClassReceiver);
347
348  DiagnoseUnusedOfDecl(*this, D, Loc);
349
350  diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
351
352  if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
353      !isUnevaluatedContext()) {
354    // C++ [expr.prim.req.nested] p3
355    //   A local parameter shall only appear as an unevaluated operand
356    //   (Clause 8) within the constraint-expression.
357    Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
358        << D;
359    Diag(D->getLocation(), diag::note_entity_declared_at) << D;
360    return true;
361  }
362
363  return false;
364}
365
366/// DiagnoseSentinelCalls - This routine checks whether a call or
367/// message-send is to a declaration with the sentinel attribute, and
368/// if so, it checks that the requirements of the sentinel are
369/// satisfied.
370void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
371                                 ArrayRef<Expr *> Args) {
372  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
373  if (!attr)
374    return;
375
376  // The number of formal parameters of the declaration.
377  unsigned numFormalParams;
378
379  // The kind of declaration.  This is also an index into a %select in
380  // the diagnostic.
381  enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
382
383  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
384    numFormalParams = MD->param_size();
385    calleeType = CT_Method;
386  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
387    numFormalParams = FD->param_size();
388    calleeType = CT_Function;
389  } else if (isa<VarDecl>(D)) {
390    QualType type = cast<ValueDecl>(D)->getType();
391    const FunctionType *fn = nullptr;
392    if (const PointerType *ptr = type->getAs<PointerType>()) {
393      fn = ptr->getPointeeType()->getAs<FunctionType>();
394      if (!fn) return;
395      calleeType = CT_Function;
396    } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
397      fn = ptr->getPointeeType()->castAs<FunctionType>();
398      calleeType = CT_Block;
399    } else {
400      return;
401    }
402
403    if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
404      numFormalParams = proto->getNumParams();
405    } else {
406      numFormalParams = 0;
407    }
408  } else {
409    return;
410  }
411
412  // "nullPos" is the number of formal parameters at the end which
413  // effectively count as part of the variadic arguments.  This is
414  // useful if you would prefer to not have *any* formal parameters,
415  // but the language forces you to have at least one.
416  unsigned nullPos = attr->getNullPos();
417  assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
418  numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
419
420  // The number of arguments which should follow the sentinel.
421  unsigned numArgsAfterSentinel = attr->getSentinel();
422
423  // If there aren't enough arguments for all the formal parameters,
424  // the sentinel, and the args after the sentinel, complain.
425  if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
426    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
427    Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
428    return;
429  }
430
431  // Otherwise, find the sentinel expression.
432  Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
433  if (!sentinelExpr) return;
434  if (sentinelExpr->isValueDependent()) return;
435  if (Context.isSentinelNullExpr(sentinelExpr)) return;
436
437  // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
438  // or 'NULL' if those are actually defined in the context.  Only use
439  // 'nil' for ObjC methods, where it's much more likely that the
440  // variadic arguments form a list of object pointers.
441  SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
442  std::string NullValue;
443  if (calleeType == CT_Method && PP.isMacroDefined("nil"))
444    NullValue = "nil";
445  else if (getLangOpts().CPlusPlus11)
446    NullValue = "nullptr";
447  else if (PP.isMacroDefined("NULL"))
448    NullValue = "NULL";
449  else
450    NullValue = "(void*) 0";
451
452  if (MissingNilLoc.isInvalid())
453    Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
454  else
455    Diag(MissingNilLoc, diag::warn_missing_sentinel)
456      << int(calleeType)
457      << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
458  Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
459}
460
461SourceRange Sema::getExprRange(Expr *E) const {
462  return E ? E->getSourceRange() : SourceRange();
463}
464
465//===----------------------------------------------------------------------===//
466//  Standard Promotions and Conversions
467//===----------------------------------------------------------------------===//
468
469/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
470ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
471  // Handle any placeholder expressions which made it here.
472  if (E->getType()->isPlaceholderType()) {
473    ExprResult result = CheckPlaceholderExpr(E);
474    if (result.isInvalid()) return ExprError();
475    E = result.get();
476  }
477
478  QualType Ty = E->getType();
479  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
480
481  if (Ty->isFunctionType()) {
482    if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
483      if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
484        if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
485          return ExprError();
486
487    E = ImpCastExprToType(E, Context.getPointerType(Ty),
488                          CK_FunctionToPointerDecay).get();
489  } else if (Ty->isArrayType()) {
490    // In C90 mode, arrays only promote to pointers if the array expression is
491    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
492    // type 'array of type' is converted to an expression that has type 'pointer
493    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
494    // that has type 'array of type' ...".  The relevant change is "an lvalue"
495    // (C90) to "an expression" (C99).
496    //
497    // C++ 4.2p1:
498    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
499    // T" can be converted to an rvalue of type "pointer to T".
500    //
501    if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
502      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
503                            CK_ArrayToPointerDecay).get();
504  }
505  return E;
506}
507
508static void CheckForNullPointerDereference(Sema &S, Expr *E) {
509  // Check to see if we are dereferencing a null pointer.  If so,
510  // and if not volatile-qualified, this is undefined behavior that the
511  // optimizer will delete, so warn about it.  People sometimes try to use this
512  // to get a deterministic trap and are surprised by clang's behavior.  This
513  // only handles the pattern "*null", which is a very syntactic check.
514  const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
515  if (UO && UO->getOpcode() == UO_Deref &&
516      UO->getSubExpr()->getType()->isPointerType()) {
517    const LangAS AS =
518        UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
519    if ((!isTargetAddressSpace(AS) ||
520         (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
521        UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
522            S.Context, Expr::NPC_ValueDependentIsNotNull) &&
523        !UO->getType().isVolatileQualified()) {
524      S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
525                            S.PDiag(diag::warn_indirection_through_null)
526                                << UO->getSubExpr()->getSourceRange());
527      S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
528                            S.PDiag(diag::note_indirection_through_null));
529    }
530  }
531}
532
533static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
534                                    SourceLocation AssignLoc,
535                                    const Expr* RHS) {
536  const ObjCIvarDecl *IV = OIRE->getDecl();
537  if (!IV)
538    return;
539
540  DeclarationName MemberName = IV->getDeclName();
541  IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
542  if (!Member || !Member->isStr("isa"))
543    return;
544
545  const Expr *Base = OIRE->getBase();
546  QualType BaseType = Base->getType();
547  if (OIRE->isArrow())
548    BaseType = BaseType->getPointeeType();
549  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
550    if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
551      ObjCInterfaceDecl *ClassDeclared = nullptr;
552      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
553      if (!ClassDeclared->getSuperClass()
554          && (*ClassDeclared->ivar_begin()) == IV) {
555        if (RHS) {
556          NamedDecl *ObjectSetClass =
557            S.LookupSingleName(S.TUScope,
558                               &S.Context.Idents.get("object_setClass"),
559                               SourceLocation(), S.LookupOrdinaryName);
560          if (ObjectSetClass) {
561            SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
562            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
563                << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
564                                              "object_setClass(")
565                << FixItHint::CreateReplacement(
566                       SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
567                << FixItHint::CreateInsertion(RHSLocEnd, ")");
568          }
569          else
570            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
571        } else {
572          NamedDecl *ObjectGetClass =
573            S.LookupSingleName(S.TUScope,
574                               &S.Context.Idents.get("object_getClass"),
575                               SourceLocation(), S.LookupOrdinaryName);
576          if (ObjectGetClass)
577            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
578                << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
579                                              "object_getClass(")
580                << FixItHint::CreateReplacement(
581                       SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
582          else
583            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
584        }
585        S.Diag(IV->getLocation(), diag::note_ivar_decl);
586      }
587    }
588}
589
590ExprResult Sema::DefaultLvalueConversion(Expr *E) {
591  // Handle any placeholder expressions which made it here.
592  if (E->getType()->isPlaceholderType()) {
593    ExprResult result = CheckPlaceholderExpr(E);
594    if (result.isInvalid()) return ExprError();
595    E = result.get();
596  }
597
598  // C++ [conv.lval]p1:
599  //   A glvalue of a non-function, non-array type T can be
600  //   converted to a prvalue.
601  if (!E->isGLValue()) return E;
602
603  QualType T = E->getType();
604  assert(!T.isNull() && "r-value conversion on typeless expression?");
605
606  // We don't want to throw lvalue-to-rvalue casts on top of
607  // expressions of certain types in C++.
608  if (getLangOpts().CPlusPlus &&
609      (E->getType() == Context.OverloadTy ||
610       T->isDependentType() ||
611       T->isRecordType()))
612    return E;
613
614  // The C standard is actually really unclear on this point, and
615  // DR106 tells us what the result should be but not why.  It's
616  // generally best to say that void types just doesn't undergo
617  // lvalue-to-rvalue at all.  Note that expressions of unqualified
618  // 'void' type are never l-values, but qualified void can be.
619  if (T->isVoidType())
620    return E;
621
622  // OpenCL usually rejects direct accesses to values of 'half' type.
623  if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
624      T->isHalfType()) {
625    Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
626      << 0 << T;
627    return ExprError();
628  }
629
630  CheckForNullPointerDereference(*this, E);
631  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
632    NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
633                                     &Context.Idents.get("object_getClass"),
634                                     SourceLocation(), LookupOrdinaryName);
635    if (ObjectGetClass)
636      Diag(E->getExprLoc(), diag::warn_objc_isa_use)
637          << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
638          << FixItHint::CreateReplacement(
639                 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
640    else
641      Diag(E->getExprLoc(), diag::warn_objc_isa_use);
642  }
643  else if (const ObjCIvarRefExpr *OIRE =
644            dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
645    DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
646
647  // C++ [conv.lval]p1:
648  //   [...] If T is a non-class type, the type of the prvalue is the
649  //   cv-unqualified version of T. Otherwise, the type of the
650  //   rvalue is T.
651  //
652  // C99 6.3.2.1p2:
653  //   If the lvalue has qualified type, the value has the unqualified
654  //   version of the type of the lvalue; otherwise, the value has the
655  //   type of the lvalue.
656  if (T.hasQualifiers())
657    T = T.getUnqualifiedType();
658
659  // Under the MS ABI, lock down the inheritance model now.
660  if (T->isMemberPointerType() &&
661      Context.getTargetInfo().getCXXABI().isMicrosoft())
662    (void)isCompleteType(E->getExprLoc(), T);
663
664  ExprResult Res = CheckLValueToRValueConversionOperand(E);
665  if (Res.isInvalid())
666    return Res;
667  E = Res.get();
668
669  // Loading a __weak object implicitly retains the value, so we need a cleanup to
670  // balance that.
671  if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
672    Cleanup.setExprNeedsCleanups(true);
673
674  // C++ [conv.lval]p3:
675  //   If T is cv std::nullptr_t, the result is a null pointer constant.
676  CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
677  Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_RValue);
678
679  // C11 6.3.2.1p2:
680  //   ... if the lvalue has atomic type, the value has the non-atomic version
681  //   of the type of the lvalue ...
682  if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
683    T = Atomic->getValueType().getUnqualifiedType();
684    Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
685                                   nullptr, VK_RValue);
686  }
687
688  return Res;
689}
690
691ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
692  ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
693  if (Res.isInvalid())
694    return ExprError();
695  Res = DefaultLvalueConversion(Res.get());
696  if (Res.isInvalid())
697    return ExprError();
698  return Res;
699}
700
701/// CallExprUnaryConversions - a special case of an unary conversion
702/// performed on a function designator of a call expression.
703ExprResult Sema::CallExprUnaryConversions(Expr *E) {
704  QualType Ty = E->getType();
705  ExprResult Res = E;
706  // Only do implicit cast for a function type, but not for a pointer
707  // to function type.
708  if (Ty->isFunctionType()) {
709    Res = ImpCastExprToType(E, Context.getPointerType(Ty),
710                            CK_FunctionToPointerDecay).get();
711    if (Res.isInvalid())
712      return ExprError();
713  }
714  Res = DefaultLvalueConversion(Res.get());
715  if (Res.isInvalid())
716    return ExprError();
717  return Res.get();
718}
719
720/// UsualUnaryConversions - Performs various conversions that are common to most
721/// operators (C99 6.3). The conversions of array and function types are
722/// sometimes suppressed. For example, the array->pointer conversion doesn't
723/// apply if the array is an argument to the sizeof or address (&) operators.
724/// In these instances, this routine should *not* be called.
725ExprResult Sema::UsualUnaryConversions(Expr *E) {
726  // First, convert to an r-value.
727  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
728  if (Res.isInvalid())
729    return ExprError();
730  E = Res.get();
731
732  QualType Ty = E->getType();
733  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
734
735  // Half FP have to be promoted to float unless it is natively supported
736  if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
737    return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
738
739  // Try to perform integral promotions if the object has a theoretically
740  // promotable type.
741  if (Ty->isIntegralOrUnscopedEnumerationType()) {
742    // C99 6.3.1.1p2:
743    //
744    //   The following may be used in an expression wherever an int or
745    //   unsigned int may be used:
746    //     - an object or expression with an integer type whose integer
747    //       conversion rank is less than or equal to the rank of int
748    //       and unsigned int.
749    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
750    //
751    //   If an int can represent all values of the original type, the
752    //   value is converted to an int; otherwise, it is converted to an
753    //   unsigned int. These are called the integer promotions. All
754    //   other types are unchanged by the integer promotions.
755
756    QualType PTy = Context.isPromotableBitField(E);
757    if (!PTy.isNull()) {
758      E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
759      return E;
760    }
761    if (Ty->isPromotableIntegerType()) {
762      QualType PT = Context.getPromotedIntegerType(Ty);
763      E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
764      return E;
765    }
766  }
767  return E;
768}
769
770/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
771/// do not have a prototype. Arguments that have type float or __fp16
772/// are promoted to double. All other argument types are converted by
773/// UsualUnaryConversions().
774ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
775  QualType Ty = E->getType();
776  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
777
778  ExprResult Res = UsualUnaryConversions(E);
779  if (Res.isInvalid())
780    return ExprError();
781  E = Res.get();
782
783  // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
784  // promote to double.
785  // Note that default argument promotion applies only to float (and
786  // half/fp16); it does not apply to _Float16.
787  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
788  if (BTy && (BTy->getKind() == BuiltinType::Half ||
789              BTy->getKind() == BuiltinType::Float)) {
790    if (getLangOpts().OpenCL &&
791        !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
792        if (BTy->getKind() == BuiltinType::Half) {
793            E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
794        }
795    } else {
796      E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
797    }
798  }
799
800  // C++ performs lvalue-to-rvalue conversion as a default argument
801  // promotion, even on class types, but note:
802  //   C++11 [conv.lval]p2:
803  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
804  //     operand or a subexpression thereof the value contained in the
805  //     referenced object is not accessed. Otherwise, if the glvalue
806  //     has a class type, the conversion copy-initializes a temporary
807  //     of type T from the glvalue and the result of the conversion
808  //     is a prvalue for the temporary.
809  // FIXME: add some way to gate this entire thing for correctness in
810  // potentially potentially evaluated contexts.
811  if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
812    ExprResult Temp = PerformCopyInitialization(
813                       InitializedEntity::InitializeTemporary(E->getType()),
814                                                E->getExprLoc(), E);
815    if (Temp.isInvalid())
816      return ExprError();
817    E = Temp.get();
818  }
819
820  return E;
821}
822
823/// Determine the degree of POD-ness for an expression.
824/// Incomplete types are considered POD, since this check can be performed
825/// when we're in an unevaluated context.
826Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
827  if (Ty->isIncompleteType()) {
828    // C++11 [expr.call]p7:
829    //   After these conversions, if the argument does not have arithmetic,
830    //   enumeration, pointer, pointer to member, or class type, the program
831    //   is ill-formed.
832    //
833    // Since we've already performed array-to-pointer and function-to-pointer
834    // decay, the only such type in C++ is cv void. This also handles
835    // initializer lists as variadic arguments.
836    if (Ty->isVoidType())
837      return VAK_Invalid;
838
839    if (Ty->isObjCObjectType())
840      return VAK_Invalid;
841    return VAK_Valid;
842  }
843
844  if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
845    return VAK_Invalid;
846
847  if (Ty.isCXX98PODType(Context))
848    return VAK_Valid;
849
850  // C++11 [expr.call]p7:
851  //   Passing a potentially-evaluated argument of class type (Clause 9)
852  //   having a non-trivial copy constructor, a non-trivial move constructor,
853  //   or a non-trivial destructor, with no corresponding parameter,
854  //   is conditionally-supported with implementation-defined semantics.
855  if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
856    if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
857      if (!Record->hasNonTrivialCopyConstructor() &&
858          !Record->hasNonTrivialMoveConstructor() &&
859          !Record->hasNonTrivialDestructor())
860        return VAK_ValidInCXX11;
861
862  if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
863    return VAK_Valid;
864
865  if (Ty->isObjCObjectType())
866    return VAK_Invalid;
867
868  if (getLangOpts().MSVCCompat)
869    return VAK_MSVCUndefined;
870
871  // FIXME: In C++11, these cases are conditionally-supported, meaning we're
872  // permitted to reject them. We should consider doing so.
873  return VAK_Undefined;
874}
875
876void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
877  // Don't allow one to pass an Objective-C interface to a vararg.
878  const QualType &Ty = E->getType();
879  VarArgKind VAK = isValidVarArgType(Ty);
880
881  // Complain about passing non-POD types through varargs.
882  switch (VAK) {
883  case VAK_ValidInCXX11:
884    DiagRuntimeBehavior(
885        E->getBeginLoc(), nullptr,
886        PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
887    LLVM_FALLTHROUGH;
888  case VAK_Valid:
889    if (Ty->isRecordType()) {
890      // This is unlikely to be what the user intended. If the class has a
891      // 'c_str' member function, the user probably meant to call that.
892      DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
893                          PDiag(diag::warn_pass_class_arg_to_vararg)
894                              << Ty << CT << hasCStrMethod(E) << ".c_str()");
895    }
896    break;
897
898  case VAK_Undefined:
899  case VAK_MSVCUndefined:
900    DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
901                        PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
902                            << getLangOpts().CPlusPlus11 << Ty << CT);
903    break;
904
905  case VAK_Invalid:
906    if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
907      Diag(E->getBeginLoc(),
908           diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
909          << Ty << CT;
910    else if (Ty->isObjCObjectType())
911      DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
912                          PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
913                              << Ty << CT);
914    else
915      Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
916          << isa<InitListExpr>(E) << Ty << CT;
917    break;
918  }
919}
920
921/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
922/// will create a trap if the resulting type is not a POD type.
923ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
924                                                  FunctionDecl *FDecl) {
925  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
926    // Strip the unbridged-cast placeholder expression off, if applicable.
927    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
928        (CT == VariadicMethod ||
929         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
930      E = stripARCUnbridgedCast(E);
931
932    // Otherwise, do normal placeholder checking.
933    } else {
934      ExprResult ExprRes = CheckPlaceholderExpr(E);
935      if (ExprRes.isInvalid())
936        return ExprError();
937      E = ExprRes.get();
938    }
939  }
940
941  ExprResult ExprRes = DefaultArgumentPromotion(E);
942  if (ExprRes.isInvalid())
943    return ExprError();
944  E = ExprRes.get();
945
946  // Diagnostics regarding non-POD argument types are
947  // emitted along with format string checking in Sema::CheckFunctionCall().
948  if (isValidVarArgType(E->getType()) == VAK_Undefined) {
949    // Turn this into a trap.
950    CXXScopeSpec SS;
951    SourceLocation TemplateKWLoc;
952    UnqualifiedId Name;
953    Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
954                       E->getBeginLoc());
955    ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
956                                          /*HasTrailingLParen=*/true,
957                                          /*IsAddressOfOperand=*/false);
958    if (TrapFn.isInvalid())
959      return ExprError();
960
961    ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
962                                    None, E->getEndLoc());
963    if (Call.isInvalid())
964      return ExprError();
965
966    ExprResult Comma =
967        ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
968    if (Comma.isInvalid())
969      return ExprError();
970    return Comma.get();
971  }
972
973  if (!getLangOpts().CPlusPlus &&
974      RequireCompleteType(E->getExprLoc(), E->getType(),
975                          diag::err_call_incomplete_argument))
976    return ExprError();
977
978  return E;
979}
980
981/// Converts an integer to complex float type.  Helper function of
982/// UsualArithmeticConversions()
983///
984/// \return false if the integer expression is an integer type and is
985/// successfully converted to the complex type.
986static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
987                                                  ExprResult &ComplexExpr,
988                                                  QualType IntTy,
989                                                  QualType ComplexTy,
990                                                  bool SkipCast) {
991  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
992  if (SkipCast) return false;
993  if (IntTy->isIntegerType()) {
994    QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
995    IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
996    IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
997                                  CK_FloatingRealToComplex);
998  } else {
999    assert(IntTy->isComplexIntegerType());
1000    IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1001                                  CK_IntegralComplexToFloatingComplex);
1002  }
1003  return false;
1004}
1005
1006/// Handle arithmetic conversion with complex types.  Helper function of
1007/// UsualArithmeticConversions()
1008static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1009                                             ExprResult &RHS, QualType LHSType,
1010                                             QualType RHSType,
1011                                             bool IsCompAssign) {
1012  // if we have an integer operand, the result is the complex type.
1013  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1014                                             /*skipCast*/false))
1015    return LHSType;
1016  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1017                                             /*skipCast*/IsCompAssign))
1018    return RHSType;
1019
1020  // This handles complex/complex, complex/float, or float/complex.
1021  // When both operands are complex, the shorter operand is converted to the
1022  // type of the longer, and that is the type of the result. This corresponds
1023  // to what is done when combining two real floating-point operands.
1024  // The fun begins when size promotion occur across type domains.
1025  // From H&S 6.3.4: When one operand is complex and the other is a real
1026  // floating-point type, the less precise type is converted, within it's
1027  // real or complex domain, to the precision of the other type. For example,
1028  // when combining a "long double" with a "double _Complex", the
1029  // "double _Complex" is promoted to "long double _Complex".
1030
1031  // Compute the rank of the two types, regardless of whether they are complex.
1032  int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1033
1034  auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1035  auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1036  QualType LHSElementType =
1037      LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1038  QualType RHSElementType =
1039      RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1040
1041  QualType ResultType = S.Context.getComplexType(LHSElementType);
1042  if (Order < 0) {
1043    // Promote the precision of the LHS if not an assignment.
1044    ResultType = S.Context.getComplexType(RHSElementType);
1045    if (!IsCompAssign) {
1046      if (LHSComplexType)
1047        LHS =
1048            S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1049      else
1050        LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1051    }
1052  } else if (Order > 0) {
1053    // Promote the precision of the RHS.
1054    if (RHSComplexType)
1055      RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1056    else
1057      RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1058  }
1059  return ResultType;
1060}
1061
1062/// Handle arithmetic conversion from integer to float.  Helper function
1063/// of UsualArithmeticConversions()
1064static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1065                                           ExprResult &IntExpr,
1066                                           QualType FloatTy, QualType IntTy,
1067                                           bool ConvertFloat, bool ConvertInt) {
1068  if (IntTy->isIntegerType()) {
1069    if (ConvertInt)
1070      // Convert intExpr to the lhs floating point type.
1071      IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1072                                    CK_IntegralToFloating);
1073    return FloatTy;
1074  }
1075
1076  // Convert both sides to the appropriate complex float.
1077  assert(IntTy->isComplexIntegerType());
1078  QualType result = S.Context.getComplexType(FloatTy);
1079
1080  // _Complex int -> _Complex float
1081  if (ConvertInt)
1082    IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1083                                  CK_IntegralComplexToFloatingComplex);
1084
1085  // float -> _Complex float
1086  if (ConvertFloat)
1087    FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1088                                    CK_FloatingRealToComplex);
1089
1090  return result;
1091}
1092
1093/// Handle arithmethic conversion with floating point types.  Helper
1094/// function of UsualArithmeticConversions()
1095static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1096                                      ExprResult &RHS, QualType LHSType,
1097                                      QualType RHSType, bool IsCompAssign) {
1098  bool LHSFloat = LHSType->isRealFloatingType();
1099  bool RHSFloat = RHSType->isRealFloatingType();
1100
1101  // If we have two real floating types, convert the smaller operand
1102  // to the bigger result.
1103  if (LHSFloat && RHSFloat) {
1104    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1105    if (order > 0) {
1106      RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1107      return LHSType;
1108    }
1109
1110    assert(order < 0 && "illegal float comparison");
1111    if (!IsCompAssign)
1112      LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1113    return RHSType;
1114  }
1115
1116  if (LHSFloat) {
1117    // Half FP has to be promoted to float unless it is natively supported
1118    if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1119      LHSType = S.Context.FloatTy;
1120
1121    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1122                                      /*ConvertFloat=*/!IsCompAssign,
1123                                      /*ConvertInt=*/ true);
1124  }
1125  assert(RHSFloat);
1126  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1127                                    /*convertInt=*/ true,
1128                                    /*convertFloat=*/!IsCompAssign);
1129}
1130
1131/// Diagnose attempts to convert between __float128 and long double if
1132/// there is no support for such conversion. Helper function of
1133/// UsualArithmeticConversions().
1134static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1135                                      QualType RHSType) {
1136  /*  No issue converting if at least one of the types is not a floating point
1137      type or the two types have the same rank.
1138  */
1139  if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
1140      S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
1141    return false;
1142
1143  assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
1144         "The remaining types must be floating point types.");
1145
1146  auto *LHSComplex = LHSType->getAs<ComplexType>();
1147  auto *RHSComplex = RHSType->getAs<ComplexType>();
1148
1149  QualType LHSElemType = LHSComplex ?
1150    LHSComplex->getElementType() : LHSType;
1151  QualType RHSElemType = RHSComplex ?
1152    RHSComplex->getElementType() : RHSType;
1153
1154  // No issue if the two types have the same representation
1155  if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
1156      &S.Context.getFloatTypeSemantics(RHSElemType))
1157    return false;
1158
1159  bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
1160                                RHSElemType == S.Context.LongDoubleTy);
1161  Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
1162                            RHSElemType == S.Context.Float128Ty);
1163
1164  // We've handled the situation where __float128 and long double have the same
1165  // representation. We allow all conversions for all possible long double types
1166  // except PPC's double double.
1167  return Float128AndLongDouble &&
1168    (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1169     &llvm::APFloat::PPCDoubleDouble());
1170}
1171
1172typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1173
1174namespace {
1175/// These helper callbacks are placed in an anonymous namespace to
1176/// permit their use as function template parameters.
1177ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1178  return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1179}
1180
1181ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1182  return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1183                             CK_IntegralComplexCast);
1184}
1185}
1186
1187/// Handle integer arithmetic conversions.  Helper function of
1188/// UsualArithmeticConversions()
1189template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1190static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1191                                        ExprResult &RHS, QualType LHSType,
1192                                        QualType RHSType, bool IsCompAssign) {
1193  // The rules for this case are in C99 6.3.1.8
1194  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1195  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1196  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1197  if (LHSSigned == RHSSigned) {
1198    // Same signedness; use the higher-ranked type
1199    if (order >= 0) {
1200      RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1201      return LHSType;
1202    } else if (!IsCompAssign)
1203      LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1204    return RHSType;
1205  } else if (order != (LHSSigned ? 1 : -1)) {
1206    // The unsigned type has greater than or equal rank to the
1207    // signed type, so use the unsigned type
1208    if (RHSSigned) {
1209      RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1210      return LHSType;
1211    } else if (!IsCompAssign)
1212      LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1213    return RHSType;
1214  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1215    // The two types are different widths; if we are here, that
1216    // means the signed type is larger than the unsigned type, so
1217    // use the signed type.
1218    if (LHSSigned) {
1219      RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1220      return LHSType;
1221    } else if (!IsCompAssign)
1222      LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1223    return RHSType;
1224  } else {
1225    // The signed type is higher-ranked than the unsigned type,
1226    // but isn't actually any bigger (like unsigned int and long
1227    // on most 32-bit systems).  Use the unsigned type corresponding
1228    // to the signed type.
1229    QualType result =
1230      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1231    RHS = (*doRHSCast)(S, RHS.get(), result);
1232    if (!IsCompAssign)
1233      LHS = (*doLHSCast)(S, LHS.get(), result);
1234    return result;
1235  }
1236}
1237
1238/// Handle conversions with GCC complex int extension.  Helper function
1239/// of UsualArithmeticConversions()
1240static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1241                                           ExprResult &RHS, QualType LHSType,
1242                                           QualType RHSType,
1243                                           bool IsCompAssign) {
1244  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1245  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1246
1247  if (LHSComplexInt && RHSComplexInt) {
1248    QualType LHSEltType = LHSComplexInt->getElementType();
1249    QualType RHSEltType = RHSComplexInt->getElementType();
1250    QualType ScalarType =
1251      handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1252        (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1253
1254    return S.Context.getComplexType(ScalarType);
1255  }
1256
1257  if (LHSComplexInt) {
1258    QualType LHSEltType = LHSComplexInt->getElementType();
1259    QualType ScalarType =
1260      handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1261        (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1262    QualType ComplexType = S.Context.getComplexType(ScalarType);
1263    RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1264                              CK_IntegralRealToComplex);
1265
1266    return ComplexType;
1267  }
1268
1269  assert(RHSComplexInt);
1270
1271  QualType RHSEltType = RHSComplexInt->getElementType();
1272  QualType ScalarType =
1273    handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1274      (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1275  QualType ComplexType = S.Context.getComplexType(ScalarType);
1276
1277  if (!IsCompAssign)
1278    LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1279                              CK_IntegralRealToComplex);
1280  return ComplexType;
1281}
1282
1283/// Return the rank of a given fixed point or integer type. The value itself
1284/// doesn't matter, but the values must be increasing with proper increasing
1285/// rank as described in N1169 4.1.1.
1286static unsigned GetFixedPointRank(QualType Ty) {
1287  const auto *BTy = Ty->getAs<BuiltinType>();
1288  assert(BTy && "Expected a builtin type.");
1289
1290  switch (BTy->getKind()) {
1291  case BuiltinType::ShortFract:
1292  case BuiltinType::UShortFract:
1293  case BuiltinType::SatShortFract:
1294  case BuiltinType::SatUShortFract:
1295    return 1;
1296  case BuiltinType::Fract:
1297  case BuiltinType::UFract:
1298  case BuiltinType::SatFract:
1299  case BuiltinType::SatUFract:
1300    return 2;
1301  case BuiltinType::LongFract:
1302  case BuiltinType::ULongFract:
1303  case BuiltinType::SatLongFract:
1304  case BuiltinType::SatULongFract:
1305    return 3;
1306  case BuiltinType::ShortAccum:
1307  case BuiltinType::UShortAccum:
1308  case BuiltinType::SatShortAccum:
1309  case BuiltinType::SatUShortAccum:
1310    return 4;
1311  case BuiltinType::Accum:
1312  case BuiltinType::UAccum:
1313  case BuiltinType::SatAccum:
1314  case BuiltinType::SatUAccum:
1315    return 5;
1316  case BuiltinType::LongAccum:
1317  case BuiltinType::ULongAccum:
1318  case BuiltinType::SatLongAccum:
1319  case BuiltinType::SatULongAccum:
1320    return 6;
1321  default:
1322    if (BTy->isInteger())
1323      return 0;
1324    llvm_unreachable("Unexpected fixed point or integer type");
1325  }
1326}
1327
1328/// handleFixedPointConversion - Fixed point operations between fixed
1329/// point types and integers or other fixed point types do not fall under
1330/// usual arithmetic conversion since these conversions could result in loss
1331/// of precsision (N1169 4.1.4). These operations should be calculated with
1332/// the full precision of their result type (N1169 4.1.6.2.1).
1333static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1334                                           QualType RHSTy) {
1335  assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1336         "Expected at least one of the operands to be a fixed point type");
1337  assert((LHSTy->isFixedPointOrIntegerType() ||
1338          RHSTy->isFixedPointOrIntegerType()) &&
1339         "Special fixed point arithmetic operation conversions are only "
1340         "applied to ints or other fixed point types");
1341
1342  // If one operand has signed fixed-point type and the other operand has
1343  // unsigned fixed-point type, then the unsigned fixed-point operand is
1344  // converted to its corresponding signed fixed-point type and the resulting
1345  // type is the type of the converted operand.
1346  if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1347    LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1348  else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1349    RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1350
1351  // The result type is the type with the highest rank, whereby a fixed-point
1352  // conversion rank is always greater than an integer conversion rank; if the
1353  // type of either of the operands is a saturating fixedpoint type, the result
1354  // type shall be the saturating fixed-point type corresponding to the type
1355  // with the highest rank; the resulting value is converted (taking into
1356  // account rounding and overflow) to the precision of the resulting type.
1357  // Same ranks between signed and unsigned types are resolved earlier, so both
1358  // types are either signed or both unsigned at this point.
1359  unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1360  unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1361
1362  QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1363
1364  if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1365    ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1366
1367  return ResultTy;
1368}
1369
1370/// Check that the usual arithmetic conversions can be performed on this pair of
1371/// expressions that might be of enumeration type.
1372static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1373                                           SourceLocation Loc,
1374                                           Sema::ArithConvKind ACK) {
1375  // C++2a [expr.arith.conv]p1:
1376  //   If one operand is of enumeration type and the other operand is of a
1377  //   different enumeration type or a floating-point type, this behavior is
1378  //   deprecated ([depr.arith.conv.enum]).
1379  //
1380  // Warn on this in all language modes. Produce a deprecation warning in C++20.
1381  // Eventually we will presumably reject these cases (in C++23 onwards?).
1382  QualType L = LHS->getType(), R = RHS->getType();
1383  bool LEnum = L->isUnscopedEnumerationType(),
1384       REnum = R->isUnscopedEnumerationType();
1385  bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1386  if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1387      (REnum && L->isFloatingType())) {
1388    S.Diag(Loc, S.getLangOpts().CPlusPlus2a
1389                    ? diag::warn_arith_conv_enum_float_cxx2a
1390                    : diag::warn_arith_conv_enum_float)
1391        << LHS->getSourceRange() << RHS->getSourceRange()
1392        << (int)ACK << LEnum << L << R;
1393  } else if (!IsCompAssign && LEnum && REnum &&
1394             !S.Context.hasSameUnqualifiedType(L, R)) {
1395    unsigned DiagID;
1396    if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1397        !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1398      // If either enumeration type is unnamed, it's less likely that the
1399      // user cares about this, but this situation is still deprecated in
1400      // C++2a. Use a different warning group.
1401      DiagID = S.getLangOpts().CPlusPlus2a
1402                    ? diag::warn_arith_conv_mixed_anon_enum_types_cxx2a
1403                    : diag::warn_arith_conv_mixed_anon_enum_types;
1404    } else if (ACK == Sema::ACK_Conditional) {
1405      // Conditional expressions are separated out because they have
1406      // historically had a different warning flag.
1407      DiagID = S.getLangOpts().CPlusPlus2a
1408                   ? diag::warn_conditional_mixed_enum_types_cxx2a
1409                   : diag::warn_conditional_mixed_enum_types;
1410    } else if (ACK == Sema::ACK_Comparison) {
1411      // Comparison expressions are separated out because they have
1412      // historically had a different warning flag.
1413      DiagID = S.getLangOpts().CPlusPlus2a
1414                   ? diag::warn_comparison_mixed_enum_types_cxx2a
1415                   : diag::warn_comparison_mixed_enum_types;
1416    } else {
1417      DiagID = S.getLangOpts().CPlusPlus2a
1418                   ? diag::warn_arith_conv_mixed_enum_types_cxx2a
1419                   : diag::warn_arith_conv_mixed_enum_types;
1420    }
1421    S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1422                        << (int)ACK << L << R;
1423  }
1424}
1425
1426/// UsualArithmeticConversions - Performs various conversions that are common to
1427/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1428/// routine returns the first non-arithmetic type found. The client is
1429/// responsible for emitting appropriate error diagnostics.
1430QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1431                                          SourceLocation Loc,
1432                                          ArithConvKind ACK) {
1433  checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1434
1435  if (ACK != ACK_CompAssign) {
1436    LHS = UsualUnaryConversions(LHS.get());
1437    if (LHS.isInvalid())
1438      return QualType();
1439  }
1440
1441  RHS = UsualUnaryConversions(RHS.get());
1442  if (RHS.isInvalid())
1443    return QualType();
1444
1445  // For conversion purposes, we ignore any qualifiers.
1446  // For example, "const float" and "float" are equivalent.
1447  QualType LHSType =
1448    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1449  QualType RHSType =
1450    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1451
1452  // For conversion purposes, we ignore any atomic qualifier on the LHS.
1453  if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1454    LHSType = AtomicLHS->getValueType();
1455
1456  // If both types are identical, no conversion is needed.
1457  if (LHSType == RHSType)
1458    return LHSType;
1459
1460  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1461  // The caller can deal with this (e.g. pointer + int).
1462  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1463    return QualType();
1464
1465  // Apply unary and bitfield promotions to the LHS's type.
1466  QualType LHSUnpromotedType = LHSType;
1467  if (LHSType->isPromotableIntegerType())
1468    LHSType = Context.getPromotedIntegerType(LHSType);
1469  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1470  if (!LHSBitfieldPromoteTy.isNull())
1471    LHSType = LHSBitfieldPromoteTy;
1472  if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1473    LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1474
1475  // If both types are identical, no conversion is needed.
1476  if (LHSType == RHSType)
1477    return LHSType;
1478
1479  // At this point, we have two different arithmetic types.
1480
1481  // Diagnose attempts to convert between __float128 and long double where
1482  // such conversions currently can't be handled.
1483  if (unsupportedTypeConversion(*this, LHSType, RHSType))
1484    return QualType();
1485
1486  // Handle complex types first (C99 6.3.1.8p1).
1487  if (LHSType->isComplexType() || RHSType->isComplexType())
1488    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1489                                        ACK == ACK_CompAssign);
1490
1491  // Now handle "real" floating types (i.e. float, double, long double).
1492  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1493    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1494                                 ACK == ACK_CompAssign);
1495
1496  // Handle GCC complex int extension.
1497  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1498    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1499                                      ACK == ACK_CompAssign);
1500
1501  if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1502    return handleFixedPointConversion(*this, LHSType, RHSType);
1503
1504  // Finally, we have two differing integer types.
1505  return handleIntegerConversion<doIntegralCast, doIntegralCast>
1506           (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1507}
1508
1509//===----------------------------------------------------------------------===//
1510//  Semantic Analysis for various Expression Types
1511//===----------------------------------------------------------------------===//
1512
1513
1514ExprResult
1515Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1516                                SourceLocation DefaultLoc,
1517                                SourceLocation RParenLoc,
1518                                Expr *ControllingExpr,
1519                                ArrayRef<ParsedType> ArgTypes,
1520                                ArrayRef<Expr *> ArgExprs) {
1521  unsigned NumAssocs = ArgTypes.size();
1522  assert(NumAssocs == ArgExprs.size());
1523
1524  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1525  for (unsigned i = 0; i < NumAssocs; ++i) {
1526    if (ArgTypes[i])
1527      (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1528    else
1529      Types[i] = nullptr;
1530  }
1531
1532  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1533                                             ControllingExpr,
1534                                             llvm::makeArrayRef(Types, NumAssocs),
1535                                             ArgExprs);
1536  delete [] Types;
1537  return ER;
1538}
1539
1540ExprResult
1541Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1542                                 SourceLocation DefaultLoc,
1543                                 SourceLocation RParenLoc,
1544                                 Expr *ControllingExpr,
1545                                 ArrayRef<TypeSourceInfo *> Types,
1546                                 ArrayRef<Expr *> Exprs) {
1547  unsigned NumAssocs = Types.size();
1548  assert(NumAssocs == Exprs.size());
1549
1550  // Decay and strip qualifiers for the controlling expression type, and handle
1551  // placeholder type replacement. See committee discussion from WG14 DR423.
1552  {
1553    EnterExpressionEvaluationContext Unevaluated(
1554        *this, Sema::ExpressionEvaluationContext::Unevaluated);
1555    ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1556    if (R.isInvalid())
1557      return ExprError();
1558    ControllingExpr = R.get();
1559  }
1560
1561  // The controlling expression is an unevaluated operand, so side effects are
1562  // likely unintended.
1563  if (!inTemplateInstantiation() &&
1564      ControllingExpr->HasSideEffects(Context, false))
1565    Diag(ControllingExpr->getExprLoc(),
1566         diag::warn_side_effects_unevaluated_context);
1567
1568  bool TypeErrorFound = false,
1569       IsResultDependent = ControllingExpr->isTypeDependent(),
1570       ContainsUnexpandedParameterPack
1571         = ControllingExpr->containsUnexpandedParameterPack();
1572
1573  for (unsigned i = 0; i < NumAssocs; ++i) {
1574    if (Exprs[i]->containsUnexpandedParameterPack())
1575      ContainsUnexpandedParameterPack = true;
1576
1577    if (Types[i]) {
1578      if (Types[i]->getType()->containsUnexpandedParameterPack())
1579        ContainsUnexpandedParameterPack = true;
1580
1581      if (Types[i]->getType()->isDependentType()) {
1582        IsResultDependent = true;
1583      } else {
1584        // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1585        // complete object type other than a variably modified type."
1586        unsigned D = 0;
1587        if (Types[i]->getType()->isIncompleteType())
1588          D = diag::err_assoc_type_incomplete;
1589        else if (!Types[i]->getType()->isObjectType())
1590          D = diag::err_assoc_type_nonobject;
1591        else if (Types[i]->getType()->isVariablyModifiedType())
1592          D = diag::err_assoc_type_variably_modified;
1593
1594        if (D != 0) {
1595          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1596            << Types[i]->getTypeLoc().getSourceRange()
1597            << Types[i]->getType();
1598          TypeErrorFound = true;
1599        }
1600
1601        // C11 6.5.1.1p2 "No two generic associations in the same generic
1602        // selection shall specify compatible types."
1603        for (unsigned j = i+1; j < NumAssocs; ++j)
1604          if (Types[j] && !Types[j]->getType()->isDependentType() &&
1605              Context.typesAreCompatible(Types[i]->getType(),
1606                                         Types[j]->getType())) {
1607            Diag(Types[j]->getTypeLoc().getBeginLoc(),
1608                 diag::err_assoc_compatible_types)
1609              << Types[j]->getTypeLoc().getSourceRange()
1610              << Types[j]->getType()
1611              << Types[i]->getType();
1612            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1613                 diag::note_compat_assoc)
1614              << Types[i]->getTypeLoc().getSourceRange()
1615              << Types[i]->getType();
1616            TypeErrorFound = true;
1617          }
1618      }
1619    }
1620  }
1621  if (TypeErrorFound)
1622    return ExprError();
1623
1624  // If we determined that the generic selection is result-dependent, don't
1625  // try to compute the result expression.
1626  if (IsResultDependent)
1627    return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1628                                        Exprs, DefaultLoc, RParenLoc,
1629                                        ContainsUnexpandedParameterPack);
1630
1631  SmallVector<unsigned, 1> CompatIndices;
1632  unsigned DefaultIndex = -1U;
1633  for (unsigned i = 0; i < NumAssocs; ++i) {
1634    if (!Types[i])
1635      DefaultIndex = i;
1636    else if (Context.typesAreCompatible(ControllingExpr->getType(),
1637                                        Types[i]->getType()))
1638      CompatIndices.push_back(i);
1639  }
1640
1641  // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1642  // type compatible with at most one of the types named in its generic
1643  // association list."
1644  if (CompatIndices.size() > 1) {
1645    // We strip parens here because the controlling expression is typically
1646    // parenthesized in macro definitions.
1647    ControllingExpr = ControllingExpr->IgnoreParens();
1648    Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1649        << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1650        << (unsigned)CompatIndices.size();
1651    for (unsigned I : CompatIndices) {
1652      Diag(Types[I]->getTypeLoc().getBeginLoc(),
1653           diag::note_compat_assoc)
1654        << Types[I]->getTypeLoc().getSourceRange()
1655        << Types[I]->getType();
1656    }
1657    return ExprError();
1658  }
1659
1660  // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1661  // its controlling expression shall have type compatible with exactly one of
1662  // the types named in its generic association list."
1663  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1664    // We strip parens here because the controlling expression is typically
1665    // parenthesized in macro definitions.
1666    ControllingExpr = ControllingExpr->IgnoreParens();
1667    Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1668        << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1669    return ExprError();
1670  }
1671
1672  // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1673  // type name that is compatible with the type of the controlling expression,
1674  // then the result expression of the generic selection is the expression
1675  // in that generic association. Otherwise, the result expression of the
1676  // generic selection is the expression in the default generic association."
1677  unsigned ResultIndex =
1678    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1679
1680  return GenericSelectionExpr::Create(
1681      Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1682      ContainsUnexpandedParameterPack, ResultIndex);
1683}
1684
1685/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1686/// location of the token and the offset of the ud-suffix within it.
1687static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1688                                     unsigned Offset) {
1689  return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1690                                        S.getLangOpts());
1691}
1692
1693/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1694/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1695static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1696                                                 IdentifierInfo *UDSuffix,
1697                                                 SourceLocation UDSuffixLoc,
1698                                                 ArrayRef<Expr*> Args,
1699                                                 SourceLocation LitEndLoc) {
1700  assert(Args.size() <= 2 && "too many arguments for literal operator");
1701
1702  QualType ArgTy[2];
1703  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1704    ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1705    if (ArgTy[ArgIdx]->isArrayType())
1706      ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1707  }
1708
1709  DeclarationName OpName =
1710    S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1711  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1712  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1713
1714  LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1715  if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1716                              /*AllowRaw*/ false, /*AllowTemplate*/ false,
1717                              /*AllowStringTemplate*/ false,
1718                              /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1719    return ExprError();
1720
1721  return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1722}
1723
1724/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1725/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1726/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1727/// multiple tokens.  However, the common case is that StringToks points to one
1728/// string.
1729///
1730ExprResult
1731Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1732  assert(!StringToks.empty() && "Must have at least one string!");
1733
1734  StringLiteralParser Literal(StringToks, PP);
1735  if (Literal.hadError)
1736    return ExprError();
1737
1738  SmallVector<SourceLocation, 4> StringTokLocs;
1739  for (const Token &Tok : StringToks)
1740    StringTokLocs.push_back(Tok.getLocation());
1741
1742  QualType CharTy = Context.CharTy;
1743  StringLiteral::StringKind Kind = StringLiteral::Ascii;
1744  if (Literal.isWide()) {
1745    CharTy = Context.getWideCharType();
1746    Kind = StringLiteral::Wide;
1747  } else if (Literal.isUTF8()) {
1748    if (getLangOpts().Char8)
1749      CharTy = Context.Char8Ty;
1750    Kind = StringLiteral::UTF8;
1751  } else if (Literal.isUTF16()) {
1752    CharTy = Context.Char16Ty;
1753    Kind = StringLiteral::UTF16;
1754  } else if (Literal.isUTF32()) {
1755    CharTy = Context.Char32Ty;
1756    Kind = StringLiteral::UTF32;
1757  } else if (Literal.isPascal()) {
1758    CharTy = Context.UnsignedCharTy;
1759  }
1760
1761  // Warn on initializing an array of char from a u8 string literal; this
1762  // becomes ill-formed in C++2a.
1763  if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus2a &&
1764      !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1765    Diag(StringTokLocs.front(), diag::warn_cxx2a_compat_utf8_string);
1766
1767    // Create removals for all 'u8' prefixes in the string literal(s). This
1768    // ensures C++2a compatibility (but may change the program behavior when
1769    // built by non-Clang compilers for which the execution character set is
1770    // not always UTF-8).
1771    auto RemovalDiag = PDiag(diag::note_cxx2a_compat_utf8_string_remove_u8);
1772    SourceLocation RemovalDiagLoc;
1773    for (const Token &Tok : StringToks) {
1774      if (Tok.getKind() == tok::utf8_string_literal) {
1775        if (RemovalDiagLoc.isInvalid())
1776          RemovalDiagLoc = Tok.getLocation();
1777        RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1778            Tok.getLocation(),
1779            Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1780                                           getSourceManager(), getLangOpts())));
1781      }
1782    }
1783    Diag(RemovalDiagLoc, RemovalDiag);
1784  }
1785
1786  QualType StrTy =
1787      Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1788
1789  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1790  StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1791                                             Kind, Literal.Pascal, StrTy,
1792                                             &StringTokLocs[0],
1793                                             StringTokLocs.size());
1794  if (Literal.getUDSuffix().empty())
1795    return Lit;
1796
1797  // We're building a user-defined literal.
1798  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1799  SourceLocation UDSuffixLoc =
1800    getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1801                   Literal.getUDSuffixOffset());
1802
1803  // Make sure we're allowed user-defined literals here.
1804  if (!UDLScope)
1805    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1806
1807  // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1808  //   operator "" X (str, len)
1809  QualType SizeType = Context.getSizeType();
1810
1811  DeclarationName OpName =
1812    Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1813  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1814  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1815
1816  QualType ArgTy[] = {
1817    Context.getArrayDecayedType(StrTy), SizeType
1818  };
1819
1820  LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1821  switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1822                                /*AllowRaw*/ false, /*AllowTemplate*/ false,
1823                                /*AllowStringTemplate*/ true,
1824                                /*DiagnoseMissing*/ true)) {
1825
1826  case LOLR_Cooked: {
1827    llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1828    IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1829                                                    StringTokLocs[0]);
1830    Expr *Args[] = { Lit, LenArg };
1831
1832    return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1833  }
1834
1835  case LOLR_StringTemplate: {
1836    TemplateArgumentListInfo ExplicitArgs;
1837
1838    unsigned CharBits = Context.getIntWidth(CharTy);
1839    bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1840    llvm::APSInt Value(CharBits, CharIsUnsigned);
1841
1842    TemplateArgument TypeArg(CharTy);
1843    TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1844    ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1845
1846    for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1847      Value = Lit->getCodeUnit(I);
1848      TemplateArgument Arg(Context, Value, CharTy);
1849      TemplateArgumentLocInfo ArgInfo;
1850      ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1851    }
1852    return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1853                                    &ExplicitArgs);
1854  }
1855  case LOLR_Raw:
1856  case LOLR_Template:
1857  case LOLR_ErrorNoDiagnostic:
1858    llvm_unreachable("unexpected literal operator lookup result");
1859  case LOLR_Error:
1860    return ExprError();
1861  }
1862  llvm_unreachable("unexpected literal operator lookup result");
1863}
1864
1865DeclRefExpr *
1866Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1867                       SourceLocation Loc,
1868                       const CXXScopeSpec *SS) {
1869  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1870  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1871}
1872
1873DeclRefExpr *
1874Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1875                       const DeclarationNameInfo &NameInfo,
1876                       const CXXScopeSpec *SS, NamedDecl *FoundD,
1877                       SourceLocation TemplateKWLoc,
1878                       const TemplateArgumentListInfo *TemplateArgs) {
1879  NestedNameSpecifierLoc NNS =
1880      SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
1881  return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
1882                          TemplateArgs);
1883}
1884
1885NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
1886  // A declaration named in an unevaluated operand never constitutes an odr-use.
1887  if (isUnevaluatedContext())
1888    return NOUR_Unevaluated;
1889
1890  // C++2a [basic.def.odr]p4:
1891  //   A variable x whose name appears as a potentially-evaluated expression e
1892  //   is odr-used by e unless [...] x is a reference that is usable in
1893  //   constant expressions.
1894  if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
1895    if (VD->getType()->isReferenceType() &&
1896        !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
1897        VD->isUsableInConstantExpressions(Context))
1898      return NOUR_Constant;
1899  }
1900
1901  // All remaining non-variable cases constitute an odr-use. For variables, we
1902  // need to wait and see how the expression is used.
1903  return NOUR_None;
1904}
1905
1906/// BuildDeclRefExpr - Build an expression that references a
1907/// declaration that does not require a closure capture.
1908DeclRefExpr *
1909Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1910                       const DeclarationNameInfo &NameInfo,
1911                       NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
1912                       SourceLocation TemplateKWLoc,
1913                       const TemplateArgumentListInfo *TemplateArgs) {
1914  bool RefersToCapturedVariable =
1915      isa<VarDecl>(D) &&
1916      NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
1917
1918  DeclRefExpr *E = DeclRefExpr::Create(
1919      Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
1920      VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
1921  MarkDeclRefReferenced(E);
1922
1923  // C++ [except.spec]p17:
1924  //   An exception-specification is considered to be needed when:
1925  //   - in an expression, the function is the unique lookup result or
1926  //     the selected member of a set of overloaded functions.
1927  //
1928  // We delay doing this until after we've built the function reference and
1929  // marked it as used so that:
1930  //  a) if the function is defaulted, we get errors from defining it before /
1931  //     instead of errors from computing its exception specification, and
1932  //  b) if the function is a defaulted comparison, we can use the body we
1933  //     build when defining it as input to the exception specification
1934  //     computation rather than computing a new body.
1935  if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
1936    if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
1937      if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
1938        E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
1939    }
1940  }
1941
1942  if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
1943      Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
1944      !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
1945    getCurFunction()->recordUseOfWeak(E);
1946
1947  FieldDecl *FD = dyn_cast<FieldDecl>(D);
1948  if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
1949    FD = IFD->getAnonField();
1950  if (FD) {
1951    UnusedPrivateFields.remove(FD);
1952    // Just in case we're building an illegal pointer-to-member.
1953    if (FD->isBitField())
1954      E->setObjectKind(OK_BitField);
1955  }
1956
1957  // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
1958  // designates a bit-field.
1959  if (auto *BD = dyn_cast<BindingDecl>(D))
1960    if (auto *BE = BD->getBinding())
1961      E->setObjectKind(BE->getObjectKind());
1962
1963  return E;
1964}
1965
1966/// Decomposes the given name into a DeclarationNameInfo, its location, and
1967/// possibly a list of template arguments.
1968///
1969/// If this produces template arguments, it is permitted to call
1970/// DecomposeTemplateName.
1971///
1972/// This actually loses a lot of source location information for
1973/// non-standard name kinds; we should consider preserving that in
1974/// some way.
1975void
1976Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1977                             TemplateArgumentListInfo &Buffer,
1978                             DeclarationNameInfo &NameInfo,
1979                             const TemplateArgumentListInfo *&TemplateArgs) {
1980  if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
1981    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1982    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1983
1984    ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1985                                       Id.TemplateId->NumArgs);
1986    translateTemplateArguments(TemplateArgsPtr, Buffer);
1987
1988    TemplateName TName = Id.TemplateId->Template.get();
1989    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1990    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1991    TemplateArgs = &Buffer;
1992  } else {
1993    NameInfo = GetNameFromUnqualifiedId(Id);
1994    TemplateArgs = nullptr;
1995  }
1996}
1997
1998static void emitEmptyLookupTypoDiagnostic(
1999    const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2000    DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2001    unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2002  DeclContext *Ctx =
2003      SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2004  if (!TC) {
2005    // Emit a special diagnostic for failed member lookups.
2006    // FIXME: computing the declaration context might fail here (?)
2007    if (Ctx)
2008      SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2009                                                 << SS.getRange();
2010    else
2011      SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2012    return;
2013  }
2014
2015  std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2016  bool DroppedSpecifier =
2017      TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2018  unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2019                        ? diag::note_implicit_param_decl
2020                        : diag::note_previous_decl;
2021  if (!Ctx)
2022    SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2023                         SemaRef.PDiag(NoteID));
2024  else
2025    SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2026                                 << Typo << Ctx << DroppedSpecifier
2027                                 << SS.getRange(),
2028                         SemaRef.PDiag(NoteID));
2029}
2030
2031/// Diagnose an empty lookup.
2032///
2033/// \return false if new lookup candidates were found
2034bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2035                               CorrectionCandidateCallback &CCC,
2036                               TemplateArgumentListInfo *ExplicitTemplateArgs,
2037                               ArrayRef<Expr *> Args, TypoExpr **Out) {
2038  DeclarationName Name = R.getLookupName();
2039
2040  unsigned diagnostic = diag::err_undeclared_var_use;
2041  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2042  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2043      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2044      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2045    diagnostic = diag::err_undeclared_use;
2046    diagnostic_suggest = diag::err_undeclared_use_suggest;
2047  }
2048
2049  // If the original lookup was an unqualified lookup, fake an
2050  // unqualified lookup.  This is useful when (for example) the
2051  // original lookup would not have found something because it was a
2052  // dependent name.
2053  DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2054  while (DC) {
2055    if (isa<CXXRecordDecl>(DC)) {
2056      LookupQualifiedName(R, DC);
2057
2058      if (!R.empty()) {
2059        // Don't give errors about ambiguities in this lookup.
2060        R.suppressDiagnostics();
2061
2062        // During a default argument instantiation the CurContext points
2063        // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2064        // function parameter list, hence add an explicit check.
2065        bool isDefaultArgument =
2066            !CodeSynthesisContexts.empty() &&
2067            CodeSynthesisContexts.back().Kind ==
2068                CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2069        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2070        bool isInstance = CurMethod &&
2071                          CurMethod->isInstance() &&
2072                          DC == CurMethod->getParent() && !isDefaultArgument;
2073
2074        // Give a code modification hint to insert 'this->'.
2075        // TODO: fixit for inserting 'Base<T>::' in the other cases.
2076        // Actually quite difficult!
2077        if (getLangOpts().MSVCCompat)
2078          diagnostic = diag::ext_found_via_dependent_bases_lookup;
2079        if (isInstance) {
2080          Diag(R.getNameLoc(), diagnostic) << Name
2081            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2082          CheckCXXThisCapture(R.getNameLoc());
2083        } else {
2084          Diag(R.getNameLoc(), diagnostic) << Name;
2085        }
2086
2087        // Do we really want to note all of these?
2088        for (NamedDecl *D : R)
2089          Diag(D->getLocation(), diag::note_dependent_var_use);
2090
2091        // Return true if we are inside a default argument instantiation
2092        // and the found name refers to an instance member function, otherwise
2093        // the function calling DiagnoseEmptyLookup will try to create an
2094        // implicit member call and this is wrong for default argument.
2095        if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2096          Diag(R.getNameLoc(), diag::err_member_call_without_object);
2097          return true;
2098        }
2099
2100        // Tell the callee to try to recover.
2101        return false;
2102      }
2103
2104      R.clear();
2105    }
2106
2107    DC = DC->getLookupParent();
2108  }
2109
2110  // We didn't find anything, so try to correct for a typo.
2111  TypoCorrection Corrected;
2112  if (S && Out) {
2113    SourceLocation TypoLoc = R.getNameLoc();
2114    assert(!ExplicitTemplateArgs &&
2115           "Diagnosing an empty lookup with explicit template args!");
2116    *Out = CorrectTypoDelayed(
2117        R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2118        [=](const TypoCorrection &TC) {
2119          emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2120                                        diagnostic, diagnostic_suggest);
2121        },
2122        nullptr, CTK_ErrorRecovery);
2123    if (*Out)
2124      return true;
2125  } else if (S &&
2126             (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2127                                      S, &SS, CCC, CTK_ErrorRecovery))) {
2128    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2129    bool DroppedSpecifier =
2130        Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2131    R.setLookupName(Corrected.getCorrection());
2132
2133    bool AcceptableWithRecovery = false;
2134    bool AcceptableWithoutRecovery = false;
2135    NamedDecl *ND = Corrected.getFoundDecl();
2136    if (ND) {
2137      if (Corrected.isOverloaded()) {
2138        OverloadCandidateSet OCS(R.getNameLoc(),
2139                                 OverloadCandidateSet::CSK_Normal);
2140        OverloadCandidateSet::iterator Best;
2141        for (NamedDecl *CD : Corrected) {
2142          if (FunctionTemplateDecl *FTD =
2143                   dyn_cast<FunctionTemplateDecl>(CD))
2144            AddTemplateOverloadCandidate(
2145                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2146                Args, OCS);
2147          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2148            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2149              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2150                                   Args, OCS);
2151        }
2152        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2153        case OR_Success:
2154          ND = Best->FoundDecl;
2155          Corrected.setCorrectionDecl(ND);
2156          break;
2157        default:
2158          // FIXME: Arbitrarily pick the first declaration for the note.
2159          Corrected.setCorrectionDecl(ND);
2160          break;
2161        }
2162      }
2163      R.addDecl(ND);
2164      if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2165        CXXRecordDecl *Record = nullptr;
2166        if (Corrected.getCorrectionSpecifier()) {
2167          const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2168          Record = Ty->getAsCXXRecordDecl();
2169        }
2170        if (!Record)
2171          Record = cast<CXXRecordDecl>(
2172              ND->getDeclContext()->getRedeclContext());
2173        R.setNamingClass(Record);
2174      }
2175
2176      auto *UnderlyingND = ND->getUnderlyingDecl();
2177      AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2178                               isa<FunctionTemplateDecl>(UnderlyingND);
2179      // FIXME: If we ended up with a typo for a type name or
2180      // Objective-C class name, we're in trouble because the parser
2181      // is in the wrong place to recover. Suggest the typo
2182      // correction, but don't make it a fix-it since we're not going
2183      // to recover well anyway.
2184      AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2185                                  getAsTypeTemplateDecl(UnderlyingND) ||
2186                                  isa<ObjCInterfaceDecl>(UnderlyingND);
2187    } else {
2188      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2189      // because we aren't able to recover.
2190      AcceptableWithoutRecovery = true;
2191    }
2192
2193    if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2194      unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2195                            ? diag::note_implicit_param_decl
2196                            : diag::note_previous_decl;
2197      if (SS.isEmpty())
2198        diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2199                     PDiag(NoteID), AcceptableWithRecovery);
2200      else
2201        diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2202                                  << Name << computeDeclContext(SS, false)
2203                                  << DroppedSpecifier << SS.getRange(),
2204                     PDiag(NoteID), AcceptableWithRecovery);
2205
2206      // Tell the callee whether to try to recover.
2207      return !AcceptableWithRecovery;
2208    }
2209  }
2210  R.clear();
2211
2212  // Emit a special diagnostic for failed member lookups.
2213  // FIXME: computing the declaration context might fail here (?)
2214  if (!SS.isEmpty()) {
2215    Diag(R.getNameLoc(), diag::err_no_member)
2216      << Name << computeDeclContext(SS, false)
2217      << SS.getRange();
2218    return true;
2219  }
2220
2221  // Give up, we can't recover.
2222  Diag(R.getNameLoc(), diagnostic) << Name;
2223  return true;
2224}
2225
2226/// In Microsoft mode, if we are inside a template class whose parent class has
2227/// dependent base classes, and we can't resolve an unqualified identifier, then
2228/// assume the identifier is a member of a dependent base class.  We can only
2229/// recover successfully in static methods, instance methods, and other contexts
2230/// where 'this' is available.  This doesn't precisely match MSVC's
2231/// instantiation model, but it's close enough.
2232static Expr *
2233recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2234                               DeclarationNameInfo &NameInfo,
2235                               SourceLocation TemplateKWLoc,
2236                               const TemplateArgumentListInfo *TemplateArgs) {
2237  // Only try to recover from lookup into dependent bases in static methods or
2238  // contexts where 'this' is available.
2239  QualType ThisType = S.getCurrentThisType();
2240  const CXXRecordDecl *RD = nullptr;
2241  if (!ThisType.isNull())
2242    RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2243  else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2244    RD = MD->getParent();
2245  if (!RD || !RD->hasAnyDependentBases())
2246    return nullptr;
2247
2248  // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2249  // is available, suggest inserting 'this->' as a fixit.
2250  SourceLocation Loc = NameInfo.getLoc();
2251  auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2252  DB << NameInfo.getName() << RD;
2253
2254  if (!ThisType.isNull()) {
2255    DB << FixItHint::CreateInsertion(Loc, "this->");
2256    return CXXDependentScopeMemberExpr::Create(
2257        Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2258        /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2259        /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2260  }
2261
2262  // Synthesize a fake NNS that points to the derived class.  This will
2263  // perform name lookup during template instantiation.
2264  CXXScopeSpec SS;
2265  auto *NNS =
2266      NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2267  SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2268  return DependentScopeDeclRefExpr::Create(
2269      Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2270      TemplateArgs);
2271}
2272
2273ExprResult
2274Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2275                        SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2276                        bool HasTrailingLParen, bool IsAddressOfOperand,
2277                        CorrectionCandidateCallback *CCC,
2278                        bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2279  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2280         "cannot be direct & operand and have a trailing lparen");
2281  if (SS.isInvalid())
2282    return ExprError();
2283
2284  TemplateArgumentListInfo TemplateArgsBuffer;
2285
2286  // Decompose the UnqualifiedId into the following data.
2287  DeclarationNameInfo NameInfo;
2288  const TemplateArgumentListInfo *TemplateArgs;
2289  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2290
2291  DeclarationName Name = NameInfo.getName();
2292  IdentifierInfo *II = Name.getAsIdentifierInfo();
2293  SourceLocation NameLoc = NameInfo.getLoc();
2294
2295  if (II && II->isEditorPlaceholder()) {
2296    // FIXME: When typed placeholders are supported we can create a typed
2297    // placeholder expression node.
2298    return ExprError();
2299  }
2300
2301  // C++ [temp.dep.expr]p3:
2302  //   An id-expression is type-dependent if it contains:
2303  //     -- an identifier that was declared with a dependent type,
2304  //        (note: handled after lookup)
2305  //     -- a template-id that is dependent,
2306  //        (note: handled in BuildTemplateIdExpr)
2307  //     -- a conversion-function-id that specifies a dependent type,
2308  //     -- a nested-name-specifier that contains a class-name that
2309  //        names a dependent type.
2310  // Determine whether this is a member of an unknown specialization;
2311  // we need to handle these differently.
2312  bool DependentID = false;
2313  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2314      Name.getCXXNameType()->isDependentType()) {
2315    DependentID = true;
2316  } else if (SS.isSet()) {
2317    if (DeclContext *DC = computeDeclContext(SS, false)) {
2318      if (RequireCompleteDeclContext(SS, DC))
2319        return ExprError();
2320    } else {
2321      DependentID = true;
2322    }
2323  }
2324
2325  if (DependentID)
2326    return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2327                                      IsAddressOfOperand, TemplateArgs);
2328
2329  // Perform the required lookup.
2330  LookupResult R(*this, NameInfo,
2331                 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2332                     ? LookupObjCImplicitSelfParam
2333                     : LookupOrdinaryName);
2334  if (TemplateKWLoc.isValid() || TemplateArgs) {
2335    // Lookup the template name again to correctly establish the context in
2336    // which it was found. This is really unfortunate as we already did the
2337    // lookup to determine that it was a template name in the first place. If
2338    // this becomes a performance hit, we can work harder to preserve those
2339    // results until we get here but it's likely not worth it.
2340    bool MemberOfUnknownSpecialization;
2341    AssumedTemplateKind AssumedTemplate;
2342    if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2343                           MemberOfUnknownSpecialization, TemplateKWLoc,
2344                           &AssumedTemplate))
2345      return ExprError();
2346
2347    if (MemberOfUnknownSpecialization ||
2348        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2349      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2350                                        IsAddressOfOperand, TemplateArgs);
2351  } else {
2352    bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2353    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2354
2355    // If the result might be in a dependent base class, this is a dependent
2356    // id-expression.
2357    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2358      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2359                                        IsAddressOfOperand, TemplateArgs);
2360
2361    // If this reference is in an Objective-C method, then we need to do
2362    // some special Objective-C lookup, too.
2363    if (IvarLookupFollowUp) {
2364      ExprResult E(LookupInObjCMethod(R, S, II, true));
2365      if (E.isInvalid())
2366        return ExprError();
2367
2368      if (Expr *Ex = E.getAs<Expr>())
2369        return Ex;
2370    }
2371  }
2372
2373  if (R.isAmbiguous())
2374    return ExprError();
2375
2376  // This could be an implicitly declared function reference (legal in C90,
2377  // extension in C99, forbidden in C++).
2378  if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2379    NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2380    if (D) R.addDecl(D);
2381  }
2382
2383  // Determine whether this name might be a candidate for
2384  // argument-dependent lookup.
2385  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2386
2387  if (R.empty() && !ADL) {
2388    if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2389      if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2390                                                   TemplateKWLoc, TemplateArgs))
2391        return E;
2392    }
2393
2394    // Don't diagnose an empty lookup for inline assembly.
2395    if (IsInlineAsmIdentifier)
2396      return ExprError();
2397
2398    // If this name wasn't predeclared and if this is not a function
2399    // call, diagnose the problem.
2400    TypoExpr *TE = nullptr;
2401    DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2402                                                       : nullptr);
2403    DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2404    assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2405           "Typo correction callback misconfigured");
2406    if (CCC) {
2407      // Make sure the callback knows what the typo being diagnosed is.
2408      CCC->setTypoName(II);
2409      if (SS.isValid())
2410        CCC->setTypoNNS(SS.getScopeRep());
2411    }
2412    // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2413    // a template name, but we happen to have always already looked up the name
2414    // before we get here if it must be a template name.
2415    if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2416                            None, &TE)) {
2417      if (TE && KeywordReplacement) {
2418        auto &State = getTypoExprState(TE);
2419        auto BestTC = State.Consumer->getNextCorrection();
2420        if (BestTC.isKeyword()) {
2421          auto *II = BestTC.getCorrectionAsIdentifierInfo();
2422          if (State.DiagHandler)
2423            State.DiagHandler(BestTC);
2424          KeywordReplacement->startToken();
2425          KeywordReplacement->setKind(II->getTokenID());
2426          KeywordReplacement->setIdentifierInfo(II);
2427          KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2428          // Clean up the state associated with the TypoExpr, since it has
2429          // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2430          clearDelayedTypo(TE);
2431          // Signal that a correction to a keyword was performed by returning a
2432          // valid-but-null ExprResult.
2433          return (Expr*)nullptr;
2434        }
2435        State.Consumer->resetCorrectionStream();
2436      }
2437      return TE ? TE : ExprError();
2438    }
2439
2440    assert(!R.empty() &&
2441           "DiagnoseEmptyLookup returned false but added no results");
2442
2443    // If we found an Objective-C instance variable, let
2444    // LookupInObjCMethod build the appropriate expression to
2445    // reference the ivar.
2446    if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2447      R.clear();
2448      ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2449      // In a hopelessly buggy code, Objective-C instance variable
2450      // lookup fails and no expression will be built to reference it.
2451      if (!E.isInvalid() && !E.get())
2452        return ExprError();
2453      return E;
2454    }
2455  }
2456
2457  // This is guaranteed from this point on.
2458  assert(!R.empty() || ADL);
2459
2460  // Check whether this might be a C++ implicit instance member access.
2461  // C++ [class.mfct.non-static]p3:
2462  //   When an id-expression that is not part of a class member access
2463  //   syntax and not used to form a pointer to member is used in the
2464  //   body of a non-static member function of class X, if name lookup
2465  //   resolves the name in the id-expression to a non-static non-type
2466  //   member of some class C, the id-expression is transformed into a
2467  //   class member access expression using (*this) as the
2468  //   postfix-expression to the left of the . operator.
2469  //
2470  // But we don't actually need to do this for '&' operands if R
2471  // resolved to a function or overloaded function set, because the
2472  // expression is ill-formed if it actually works out to be a
2473  // non-static member function:
2474  //
2475  // C++ [expr.ref]p4:
2476  //   Otherwise, if E1.E2 refers to a non-static member function. . .
2477  //   [t]he expression can be used only as the left-hand operand of a
2478  //   member function call.
2479  //
2480  // There are other safeguards against such uses, but it's important
2481  // to get this right here so that we don't end up making a
2482  // spuriously dependent expression if we're inside a dependent
2483  // instance method.
2484  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2485    bool MightBeImplicitMember;
2486    if (!IsAddressOfOperand)
2487      MightBeImplicitMember = true;
2488    else if (!SS.isEmpty())
2489      MightBeImplicitMember = false;
2490    else if (R.isOverloadedResult())
2491      MightBeImplicitMember = false;
2492    else if (R.isUnresolvableResult())
2493      MightBeImplicitMember = true;
2494    else
2495      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2496                              isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2497                              isa<MSPropertyDecl>(R.getFoundDecl());
2498
2499    if (MightBeImplicitMember)
2500      return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2501                                             R, TemplateArgs, S);
2502  }
2503
2504  if (TemplateArgs || TemplateKWLoc.isValid()) {
2505
2506    // In C++1y, if this is a variable template id, then check it
2507    // in BuildTemplateIdExpr().
2508    // The single lookup result must be a variable template declaration.
2509    if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2510        Id.TemplateId->Kind == TNK_Var_template) {
2511      assert(R.getAsSingle<VarTemplateDecl>() &&
2512             "There should only be one declaration found.");
2513    }
2514
2515    return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2516  }
2517
2518  return BuildDeclarationNameExpr(SS, R, ADL);
2519}
2520
2521/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2522/// declaration name, generally during template instantiation.
2523/// There's a large number of things which don't need to be done along
2524/// this path.
2525ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2526    CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2527    bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2528  DeclContext *DC = computeDeclContext(SS, false);
2529  if (!DC)
2530    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2531                                     NameInfo, /*TemplateArgs=*/nullptr);
2532
2533  if (RequireCompleteDeclContext(SS, DC))
2534    return ExprError();
2535
2536  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2537  LookupQualifiedName(R, DC);
2538
2539  if (R.isAmbiguous())
2540    return ExprError();
2541
2542  if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2543    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2544                                     NameInfo, /*TemplateArgs=*/nullptr);
2545
2546  if (R.empty()) {
2547    Diag(NameInfo.getLoc(), diag::err_no_member)
2548      << NameInfo.getName() << DC << SS.getRange();
2549    return ExprError();
2550  }
2551
2552  if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2553    // Diagnose a missing typename if this resolved unambiguously to a type in
2554    // a dependent context.  If we can recover with a type, downgrade this to
2555    // a warning in Microsoft compatibility mode.
2556    unsigned DiagID = diag::err_typename_missing;
2557    if (RecoveryTSI && getLangOpts().MSVCCompat)
2558      DiagID = diag::ext_typename_missing;
2559    SourceLocation Loc = SS.getBeginLoc();
2560    auto D = Diag(Loc, DiagID);
2561    D << SS.getScopeRep() << NameInfo.getName().getAsString()
2562      << SourceRange(Loc, NameInfo.getEndLoc());
2563
2564    // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2565    // context.
2566    if (!RecoveryTSI)
2567      return ExprError();
2568
2569    // Only issue the fixit if we're prepared to recover.
2570    D << FixItHint::CreateInsertion(Loc, "typename ");
2571
2572    // Recover by pretending this was an elaborated type.
2573    QualType Ty = Context.getTypeDeclType(TD);
2574    TypeLocBuilder TLB;
2575    TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2576
2577    QualType ET = getElaboratedType(ETK_None, SS, Ty);
2578    ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2579    QTL.setElaboratedKeywordLoc(SourceLocation());
2580    QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2581
2582    *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2583
2584    return ExprEmpty();
2585  }
2586
2587  // Defend against this resolving to an implicit member access. We usually
2588  // won't get here if this might be a legitimate a class member (we end up in
2589  // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2590  // a pointer-to-member or in an unevaluated context in C++11.
2591  if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2592    return BuildPossibleImplicitMemberExpr(SS,
2593                                           /*TemplateKWLoc=*/SourceLocation(),
2594                                           R, /*TemplateArgs=*/nullptr, S);
2595
2596  return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2597}
2598
2599/// The parser has read a name in, and Sema has detected that we're currently
2600/// inside an ObjC method. Perform some additional checks and determine if we
2601/// should form a reference to an ivar.
2602///
2603/// Ideally, most of this would be done by lookup, but there's
2604/// actually quite a lot of extra work involved.
2605DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2606                                        IdentifierInfo *II) {
2607  SourceLocation Loc = Lookup.getNameLoc();
2608  ObjCMethodDecl *CurMethod = getCurMethodDecl();
2609
2610  // Check for error condition which is already reported.
2611  if (!CurMethod)
2612    return DeclResult(true);
2613
2614  // There are two cases to handle here.  1) scoped lookup could have failed,
2615  // in which case we should look for an ivar.  2) scoped lookup could have
2616  // found a decl, but that decl is outside the current instance method (i.e.
2617  // a global variable).  In these two cases, we do a lookup for an ivar with
2618  // this name, if the lookup sucedes, we replace it our current decl.
2619
2620  // If we're in a class method, we don't normally want to look for
2621  // ivars.  But if we don't find anything else, and there's an
2622  // ivar, that's an error.
2623  bool IsClassMethod = CurMethod->isClassMethod();
2624
2625  bool LookForIvars;
2626  if (Lookup.empty())
2627    LookForIvars = true;
2628  else if (IsClassMethod)
2629    LookForIvars = false;
2630  else
2631    LookForIvars = (Lookup.isSingleResult() &&
2632                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2633  ObjCInterfaceDecl *IFace = nullptr;
2634  if (LookForIvars) {
2635    IFace = CurMethod->getClassInterface();
2636    ObjCInterfaceDecl *ClassDeclared;
2637    ObjCIvarDecl *IV = nullptr;
2638    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2639      // Diagnose using an ivar in a class method.
2640      if (IsClassMethod) {
2641        Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2642        return DeclResult(true);
2643      }
2644
2645      // Diagnose the use of an ivar outside of the declaring class.
2646      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2647          !declaresSameEntity(ClassDeclared, IFace) &&
2648          !getLangOpts().DebuggerSupport)
2649        Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2650
2651      // Success.
2652      return IV;
2653    }
2654  } else if (CurMethod->isInstanceMethod()) {
2655    // We should warn if a local variable hides an ivar.
2656    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2657      ObjCInterfaceDecl *ClassDeclared;
2658      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2659        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2660            declaresSameEntity(IFace, ClassDeclared))
2661          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2662      }
2663    }
2664  } else if (Lookup.isSingleResult() &&
2665             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2666    // If accessing a stand-alone ivar in a class method, this is an error.
2667    if (const ObjCIvarDecl *IV =
2668            dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2669      Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2670      return DeclResult(true);
2671    }
2672  }
2673
2674  // Didn't encounter an error, didn't find an ivar.
2675  return DeclResult(false);
2676}
2677
2678ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2679                                  ObjCIvarDecl *IV) {
2680  ObjCMethodDecl *CurMethod = getCurMethodDecl();
2681  assert(CurMethod && CurMethod->isInstanceMethod() &&
2682         "should not reference ivar from this context");
2683
2684  ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2685  assert(IFace && "should not reference ivar from this context");
2686
2687  // If we're referencing an invalid decl, just return this as a silent
2688  // error node.  The error diagnostic was already emitted on the decl.
2689  if (IV->isInvalidDecl())
2690    return ExprError();
2691
2692  // Check if referencing a field with __attribute__((deprecated)).
2693  if (DiagnoseUseOfDecl(IV, Loc))
2694    return ExprError();
2695
2696  // FIXME: This should use a new expr for a direct reference, don't
2697  // turn this into Self->ivar, just return a BareIVarExpr or something.
2698  IdentifierInfo &II = Context.Idents.get("self");
2699  UnqualifiedId SelfName;
2700  SelfName.setIdentifier(&II, SourceLocation());
2701  SelfName.setKind(UnqualifiedIdKind::IK_ImplicitSelfParam);
2702  CXXScopeSpec SelfScopeSpec;
2703  SourceLocation TemplateKWLoc;
2704  ExprResult SelfExpr =
2705      ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2706                        /*HasTrailingLParen=*/false,
2707                        /*IsAddressOfOperand=*/false);
2708  if (SelfExpr.isInvalid())
2709    return ExprError();
2710
2711  SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2712  if (SelfExpr.isInvalid())
2713    return ExprError();
2714
2715  MarkAnyDeclReferenced(Loc, IV, true);
2716
2717  ObjCMethodFamily MF = CurMethod->getMethodFamily();
2718  if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2719      !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2720    Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2721
2722  ObjCIvarRefExpr *Result = new (Context)
2723      ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2724                      IV->getLocation(), SelfExpr.get(), true, true);
2725
2726  if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2727    if (!isUnevaluatedContext() &&
2728        !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2729      getCurFunction()->recordUseOfWeak(Result);
2730  }
2731  if (getLangOpts().ObjCAutoRefCount)
2732    if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2733      ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2734
2735  return Result;
2736}
2737
2738/// The parser has read a name in, and Sema has detected that we're currently
2739/// inside an ObjC method. Perform some additional checks and determine if we
2740/// should form a reference to an ivar. If so, build an expression referencing
2741/// that ivar.
2742ExprResult
2743Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2744                         IdentifierInfo *II, bool AllowBuiltinCreation) {
2745  // FIXME: Integrate this lookup step into LookupParsedName.
2746  DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2747  if (Ivar.isInvalid())
2748    return ExprError();
2749  if (Ivar.isUsable())
2750    return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2751                            cast<ObjCIvarDecl>(Ivar.get()));
2752
2753  if (Lookup.empty() && II && AllowBuiltinCreation)
2754    LookupBuiltin(Lookup);
2755
2756  // Sentinel value saying that we didn't do anything special.
2757  return ExprResult(false);
2758}
2759
2760/// Cast a base object to a member's actual type.
2761///
2762/// Logically this happens in three phases:
2763///
2764/// * First we cast from the base type to the naming class.
2765///   The naming class is the class into which we were looking
2766///   when we found the member;  it's the qualifier type if a
2767///   qualifier was provided, and otherwise it's the base type.
2768///
2769/// * Next we cast from the naming class to the declaring class.
2770///   If the member we found was brought into a class's scope by
2771///   a using declaration, this is that class;  otherwise it's
2772///   the class declaring the member.
2773///
2774/// * Finally we cast from the declaring class to the "true"
2775///   declaring class of the member.  This conversion does not
2776///   obey access control.
2777ExprResult
2778Sema::PerformObjectMemberConversion(Expr *From,
2779                                    NestedNameSpecifier *Qualifier,
2780                                    NamedDecl *FoundDecl,
2781                                    NamedDecl *Member) {
2782  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2783  if (!RD)
2784    return From;
2785
2786  QualType DestRecordType;
2787  QualType DestType;
2788  QualType FromRecordType;
2789  QualType FromType = From->getType();
2790  bool PointerConversions = false;
2791  if (isa<FieldDecl>(Member)) {
2792    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2793    auto FromPtrType = FromType->getAs<PointerType>();
2794    DestRecordType = Context.getAddrSpaceQualType(
2795        DestRecordType, FromPtrType
2796                            ? FromType->getPointeeType().getAddressSpace()
2797                            : FromType.getAddressSpace());
2798
2799    if (FromPtrType) {
2800      DestType = Context.getPointerType(DestRecordType);
2801      FromRecordType = FromPtrType->getPointeeType();
2802      PointerConversions = true;
2803    } else {
2804      DestType = DestRecordType;
2805      FromRecordType = FromType;
2806    }
2807  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2808    if (Method->isStatic())
2809      return From;
2810
2811    DestType = Method->getThisType();
2812    DestRecordType = DestType->getPointeeType();
2813
2814    if (FromType->getAs<PointerType>()) {
2815      FromRecordType = FromType->getPointeeType();
2816      PointerConversions = true;
2817    } else {
2818      FromRecordType = FromType;
2819      DestType = DestRecordType;
2820    }
2821
2822    LangAS FromAS = FromRecordType.getAddressSpace();
2823    LangAS DestAS = DestRecordType.getAddressSpace();
2824    if (FromAS != DestAS) {
2825      QualType FromRecordTypeWithoutAS =
2826          Context.removeAddrSpaceQualType(FromRecordType);
2827      QualType FromTypeWithDestAS =
2828          Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
2829      if (PointerConversions)
2830        FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
2831      From = ImpCastExprToType(From, FromTypeWithDestAS,
2832                               CK_AddressSpaceConversion, From->getValueKind())
2833                 .get();
2834    }
2835  } else {
2836    // No conversion necessary.
2837    return From;
2838  }
2839
2840  if (DestType->isDependentType() || FromType->isDependentType())
2841    return From;
2842
2843  // If the unqualified types are the same, no conversion is necessary.
2844  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2845    return From;
2846
2847  SourceRange FromRange = From->getSourceRange();
2848  SourceLocation FromLoc = FromRange.getBegin();
2849
2850  ExprValueKind VK = From->getValueKind();
2851
2852  // C++ [class.member.lookup]p8:
2853  //   [...] Ambiguities can often be resolved by qualifying a name with its
2854  //   class name.
2855  //
2856  // If the member was a qualified name and the qualified referred to a
2857  // specific base subobject type, we'll cast to that intermediate type
2858  // first and then to the object in which the member is declared. That allows
2859  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2860  //
2861  //   class Base { public: int x; };
2862  //   class Derived1 : public Base { };
2863  //   class Derived2 : public Base { };
2864  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2865  //
2866  //   void VeryDerived::f() {
2867  //     x = 17; // error: ambiguous base subobjects
2868  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2869  //   }
2870  if (Qualifier && Qualifier->getAsType()) {
2871    QualType QType = QualType(Qualifier->getAsType(), 0);
2872    assert(QType->isRecordType() && "lookup done with non-record type");
2873
2874    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2875
2876    // In C++98, the qualifier type doesn't actually have to be a base
2877    // type of the object type, in which case we just ignore it.
2878    // Otherwise build the appropriate casts.
2879    if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
2880      CXXCastPath BasePath;
2881      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2882                                       FromLoc, FromRange, &BasePath))
2883        return ExprError();
2884
2885      if (PointerConversions)
2886        QType = Context.getPointerType(QType);
2887      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2888                               VK, &BasePath).get();
2889
2890      FromType = QType;
2891      FromRecordType = QRecordType;
2892
2893      // If the qualifier type was the same as the destination type,
2894      // we're done.
2895      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2896        return From;
2897    }
2898  }
2899
2900  bool IgnoreAccess = false;
2901
2902  // If we actually found the member through a using declaration, cast
2903  // down to the using declaration's type.
2904  //
2905  // Pointer equality is fine here because only one declaration of a
2906  // class ever has member declarations.
2907  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2908    assert(isa<UsingShadowDecl>(FoundDecl));
2909    QualType URecordType = Context.getTypeDeclType(
2910                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2911
2912    // We only need to do this if the naming-class to declaring-class
2913    // conversion is non-trivial.
2914    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2915      assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
2916      CXXCastPath BasePath;
2917      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2918                                       FromLoc, FromRange, &BasePath))
2919        return ExprError();
2920
2921      QualType UType = URecordType;
2922      if (PointerConversions)
2923        UType = Context.getPointerType(UType);
2924      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2925                               VK, &BasePath).get();
2926      FromType = UType;
2927      FromRecordType = URecordType;
2928    }
2929
2930    // We don't do access control for the conversion from the
2931    // declaring class to the true declaring class.
2932    IgnoreAccess = true;
2933  }
2934
2935  CXXCastPath BasePath;
2936  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2937                                   FromLoc, FromRange, &BasePath,
2938                                   IgnoreAccess))
2939    return ExprError();
2940
2941  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2942                           VK, &BasePath);
2943}
2944
2945bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2946                                      const LookupResult &R,
2947                                      bool HasTrailingLParen) {
2948  // Only when used directly as the postfix-expression of a call.
2949  if (!HasTrailingLParen)
2950    return false;
2951
2952  // Never if a scope specifier was provided.
2953  if (SS.isSet())
2954    return false;
2955
2956  // Only in C++ or ObjC++.
2957  if (!getLangOpts().CPlusPlus)
2958    return false;
2959
2960  // Turn off ADL when we find certain kinds of declarations during
2961  // normal lookup:
2962  for (NamedDecl *D : R) {
2963    // C++0x [basic.lookup.argdep]p3:
2964    //     -- a declaration of a class member
2965    // Since using decls preserve this property, we check this on the
2966    // original decl.
2967    if (D->isCXXClassMember())
2968      return false;
2969
2970    // C++0x [basic.lookup.argdep]p3:
2971    //     -- a block-scope function declaration that is not a
2972    //        using-declaration
2973    // NOTE: we also trigger this for function templates (in fact, we
2974    // don't check the decl type at all, since all other decl types
2975    // turn off ADL anyway).
2976    if (isa<UsingShadowDecl>(D))
2977      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2978    else if (D->getLexicalDeclContext()->isFunctionOrMethod())
2979      return false;
2980
2981    // C++0x [basic.lookup.argdep]p3:
2982    //     -- a declaration that is neither a function or a function
2983    //        template
2984    // And also for builtin functions.
2985    if (isa<FunctionDecl>(D)) {
2986      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2987
2988      // But also builtin functions.
2989      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2990        return false;
2991    } else if (!isa<FunctionTemplateDecl>(D))
2992      return false;
2993  }
2994
2995  return true;
2996}
2997
2998
2999/// Diagnoses obvious problems with the use of the given declaration
3000/// as an expression.  This is only actually called for lookups that
3001/// were not overloaded, and it doesn't promise that the declaration
3002/// will in fact be used.
3003static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
3004  if (D->isInvalidDecl())
3005    return true;
3006
3007  if (isa<TypedefNameDecl>(D)) {
3008    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3009    return true;
3010  }
3011
3012  if (isa<ObjCInterfaceDecl>(D)) {
3013    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3014    return true;
3015  }
3016
3017  if (isa<NamespaceDecl>(D)) {
3018    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3019    return true;
3020  }
3021
3022  return false;
3023}
3024
3025// Certain multiversion types should be treated as overloaded even when there is
3026// only one result.
3027static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3028  assert(R.isSingleResult() && "Expected only a single result");
3029  const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3030  return FD &&
3031         (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3032}
3033
3034ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3035                                          LookupResult &R, bool NeedsADL,
3036                                          bool AcceptInvalidDecl) {
3037  // If this is a single, fully-resolved result and we don't need ADL,
3038  // just build an ordinary singleton decl ref.
3039  if (!NeedsADL && R.isSingleResult() &&
3040      !R.getAsSingle<FunctionTemplateDecl>() &&
3041      !ShouldLookupResultBeMultiVersionOverload(R))
3042    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3043                                    R.getRepresentativeDecl(), nullptr,
3044                                    AcceptInvalidDecl);
3045
3046  // We only need to check the declaration if there's exactly one
3047  // result, because in the overloaded case the results can only be
3048  // functions and function templates.
3049  if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3050      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
3051    return ExprError();
3052
3053  // Otherwise, just build an unresolved lookup expression.  Suppress
3054  // any lookup-related diagnostics; we'll hash these out later, when
3055  // we've picked a target.
3056  R.suppressDiagnostics();
3057
3058  UnresolvedLookupExpr *ULE
3059    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3060                                   SS.getWithLocInContext(Context),
3061                                   R.getLookupNameInfo(),
3062                                   NeedsADL, R.isOverloadedResult(),
3063                                   R.begin(), R.end());
3064
3065  return ULE;
3066}
3067
3068static void
3069diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
3070                                   ValueDecl *var, DeclContext *DC);
3071
3072/// Complete semantic analysis for a reference to the given declaration.
3073ExprResult Sema::BuildDeclarationNameExpr(
3074    const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3075    NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3076    bool AcceptInvalidDecl) {
3077  assert(D && "Cannot refer to a NULL declaration");
3078  assert(!isa<FunctionTemplateDecl>(D) &&
3079         "Cannot refer unambiguously to a function template");
3080
3081  SourceLocation Loc = NameInfo.getLoc();
3082  if (CheckDeclInExpr(*this, Loc, D))
3083    return ExprError();
3084
3085  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3086    // Specifically diagnose references to class templates that are missing
3087    // a template argument list.
3088    diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3089    return ExprError();
3090  }
3091
3092  // Make sure that we're referring to a value.
3093  ValueDecl *VD = dyn_cast<ValueDecl>(D);
3094  if (!VD) {
3095    Diag(Loc, diag::err_ref_non_value)
3096      << D << SS.getRange();
3097    Diag(D->getLocation(), diag::note_declared_at);
3098    return ExprError();
3099  }
3100
3101  // Check whether this declaration can be used. Note that we suppress
3102  // this check when we're going to perform argument-dependent lookup
3103  // on this function name, because this might not be the function
3104  // that overload resolution actually selects.
3105  if (DiagnoseUseOfDecl(VD, Loc))
3106    return ExprError();
3107
3108  // Only create DeclRefExpr's for valid Decl's.
3109  if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3110    return ExprError();
3111
3112  // Handle members of anonymous structs and unions.  If we got here,
3113  // and the reference is to a class member indirect field, then this
3114  // must be the subject of a pointer-to-member expression.
3115  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3116    if (!indirectField->isCXXClassMember())
3117      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3118                                                      indirectField);
3119
3120  {
3121    QualType type = VD->getType();
3122    if (type.isNull())
3123      return ExprError();
3124    ExprValueKind valueKind = VK_RValue;
3125
3126    switch (D->getKind()) {
3127    // Ignore all the non-ValueDecl kinds.
3128#define ABSTRACT_DECL(kind)
3129#define VALUE(type, base)
3130#define DECL(type, base) \
3131    case Decl::type:
3132#include "clang/AST/DeclNodes.inc"
3133      llvm_unreachable("invalid value decl kind");
3134
3135    // These shouldn't make it here.
3136    case Decl::ObjCAtDefsField:
3137      llvm_unreachable("forming non-member reference to ivar?");
3138
3139    // Enum constants are always r-values and never references.
3140    // Unresolved using declarations are dependent.
3141    case Decl::EnumConstant:
3142    case Decl::UnresolvedUsingValue:
3143    case Decl::OMPDeclareReduction:
3144    case Decl::OMPDeclareMapper:
3145      valueKind = VK_RValue;
3146      break;
3147
3148    // Fields and indirect fields that got here must be for
3149    // pointer-to-member expressions; we just call them l-values for
3150    // internal consistency, because this subexpression doesn't really
3151    // exist in the high-level semantics.
3152    case Decl::Field:
3153    case Decl::IndirectField:
3154    case Decl::ObjCIvar:
3155      assert(getLangOpts().CPlusPlus &&
3156             "building reference to field in C?");
3157
3158      // These can't have reference type in well-formed programs, but
3159      // for internal consistency we do this anyway.
3160      type = type.getNonReferenceType();
3161      valueKind = VK_LValue;
3162      break;
3163
3164    // Non-type template parameters are either l-values or r-values
3165    // depending on the type.
3166    case Decl::NonTypeTemplateParm: {
3167      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3168        type = reftype->getPointeeType();
3169        valueKind = VK_LValue; // even if the parameter is an r-value reference
3170        break;
3171      }
3172
3173      // For non-references, we need to strip qualifiers just in case
3174      // the template parameter was declared as 'const int' or whatever.
3175      valueKind = VK_RValue;
3176      type = type.getUnqualifiedType();
3177      break;
3178    }
3179
3180    case Decl::Var:
3181    case Decl::VarTemplateSpecialization:
3182    case Decl::VarTemplatePartialSpecialization:
3183    case Decl::Decomposition:
3184    case Decl::OMPCapturedExpr:
3185      // In C, "extern void blah;" is valid and is an r-value.
3186      if (!getLangOpts().CPlusPlus &&
3187          !type.hasQualifiers() &&
3188          type->isVoidType()) {
3189        valueKind = VK_RValue;
3190        break;
3191      }
3192      LLVM_FALLTHROUGH;
3193
3194    case Decl::ImplicitParam:
3195    case Decl::ParmVar: {
3196      // These are always l-values.
3197      valueKind = VK_LValue;
3198      type = type.getNonReferenceType();
3199
3200      // FIXME: Does the addition of const really only apply in
3201      // potentially-evaluated contexts? Since the variable isn't actually
3202      // captured in an unevaluated context, it seems that the answer is no.
3203      if (!isUnevaluatedContext()) {
3204        QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3205        if (!CapturedType.isNull())
3206          type = CapturedType;
3207      }
3208
3209      break;
3210    }
3211
3212    case Decl::Binding: {
3213      // These are always lvalues.
3214      valueKind = VK_LValue;
3215      type = type.getNonReferenceType();
3216      // FIXME: Support lambda-capture of BindingDecls, once CWG actually
3217      // decides how that's supposed to work.
3218      auto *BD = cast<BindingDecl>(VD);
3219      if (BD->getDeclContext() != CurContext) {
3220        auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
3221        if (DD && DD->hasLocalStorage())
3222          diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
3223      }
3224      break;
3225    }
3226
3227    case Decl::Function: {
3228      if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3229        if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
3230          type = Context.BuiltinFnTy;
3231          valueKind = VK_RValue;
3232          break;
3233        }
3234      }
3235
3236      const FunctionType *fty = type->castAs<FunctionType>();
3237
3238      // If we're referring to a function with an __unknown_anytype
3239      // result type, make the entire expression __unknown_anytype.
3240      if (fty->getReturnType() == Context.UnknownAnyTy) {
3241        type = Context.UnknownAnyTy;
3242        valueKind = VK_RValue;
3243        break;
3244      }
3245
3246      // Functions are l-values in C++.
3247      if (getLangOpts().CPlusPlus) {
3248        valueKind = VK_LValue;
3249        break;
3250      }
3251
3252      // C99 DR 316 says that, if a function type comes from a
3253      // function definition (without a prototype), that type is only
3254      // used for checking compatibility. Therefore, when referencing
3255      // the function, we pretend that we don't have the full function
3256      // type.
3257      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
3258          isa<FunctionProtoType>(fty))
3259        type = Context.getFunctionNoProtoType(fty->getReturnType(),
3260                                              fty->getExtInfo());
3261
3262      // Functions are r-values in C.
3263      valueKind = VK_RValue;
3264      break;
3265    }
3266
3267    case Decl::CXXDeductionGuide:
3268      llvm_unreachable("building reference to deduction guide");
3269
3270    case Decl::MSProperty:
3271      valueKind = VK_LValue;
3272      break;
3273
3274    case Decl::CXXMethod:
3275      // If we're referring to a method with an __unknown_anytype
3276      // result type, make the entire expression __unknown_anytype.
3277      // This should only be possible with a type written directly.
3278      if (const FunctionProtoType *proto
3279            = dyn_cast<FunctionProtoType>(VD->getType()))
3280        if (proto->getReturnType() == Context.UnknownAnyTy) {
3281          type = Context.UnknownAnyTy;
3282          valueKind = VK_RValue;
3283          break;
3284        }
3285
3286      // C++ methods are l-values if static, r-values if non-static.
3287      if (cast<CXXMethodDecl>(VD)->isStatic()) {
3288        valueKind = VK_LValue;
3289        break;
3290      }
3291      LLVM_FALLTHROUGH;
3292
3293    case Decl::CXXConversion:
3294    case Decl::CXXDestructor:
3295    case Decl::CXXConstructor:
3296      valueKind = VK_RValue;
3297      break;
3298    }
3299
3300    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3301                            /*FIXME: TemplateKWLoc*/ SourceLocation(),
3302                            TemplateArgs);
3303  }
3304}
3305
3306static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3307                                    SmallString<32> &Target) {
3308  Target.resize(CharByteWidth * (Source.size() + 1));
3309  char *ResultPtr = &Target[0];
3310  const llvm::UTF8 *ErrorPtr;
3311  bool success =
3312      llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3313  (void)success;
3314  assert(success);
3315  Target.resize(ResultPtr - &Target[0]);
3316}
3317
3318ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3319                                     PredefinedExpr::IdentKind IK) {
3320  // Pick the current block, lambda, captured statement or function.
3321  Decl *currentDecl = nullptr;
3322  if (const BlockScopeInfo *BSI = getCurBlock())
3323    currentDecl = BSI->TheDecl;
3324  else if (const LambdaScopeInfo *LSI = getCurLambda())
3325    currentDecl = LSI->CallOperator;
3326  else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3327    currentDecl = CSI->TheCapturedDecl;
3328  else
3329    currentDecl = getCurFunctionOrMethodDecl();
3330
3331  if (!currentDecl) {
3332    Diag(Loc, diag::ext_predef_outside_function);
3333    currentDecl = Context.getTranslationUnitDecl();
3334  }
3335
3336  QualType ResTy;
3337  StringLiteral *SL = nullptr;
3338  if (cast<DeclContext>(currentDecl)->isDependentContext())
3339    ResTy = Context.DependentTy;
3340  else {
3341    // Pre-defined identifiers are of type char[x], where x is the length of
3342    // the string.
3343    auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3344    unsigned Length = Str.length();
3345
3346    llvm::APInt LengthI(32, Length + 1);
3347    if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3348      ResTy =
3349          Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3350      SmallString<32> RawChars;
3351      ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3352                              Str, RawChars);
3353      ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3354                                           ArrayType::Normal,
3355                                           /*IndexTypeQuals*/ 0);
3356      SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3357                                 /*Pascal*/ false, ResTy, Loc);
3358    } else {
3359      ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3360      ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3361                                           ArrayType::Normal,
3362                                           /*IndexTypeQuals*/ 0);
3363      SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3364                                 /*Pascal*/ false, ResTy, Loc);
3365    }
3366  }
3367
3368  return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3369}
3370
3371ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3372  PredefinedExpr::IdentKind IK;
3373
3374  switch (Kind) {
3375  default: llvm_unreachable("Unknown simple primary expr!");
3376  case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3377  case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3378  case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3379  case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3380  case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3381  case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3382  case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3383  }
3384
3385  return BuildPredefinedExpr(Loc, IK);
3386}
3387
3388ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3389  SmallString<16> CharBuffer;
3390  bool Invalid = false;
3391  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3392  if (Invalid)
3393    return ExprError();
3394
3395  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3396                            PP, Tok.getKind());
3397  if (Literal.hadError())
3398    return ExprError();
3399
3400  QualType Ty;
3401  if (Literal.isWide())
3402    Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3403  else if (Literal.isUTF8() && getLangOpts().Char8)
3404    Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3405  else if (Literal.isUTF16())
3406    Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3407  else if (Literal.isUTF32())
3408    Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3409  else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3410    Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3411  else
3412    Ty = Context.CharTy;  // 'x' -> char in C++
3413
3414  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3415  if (Literal.isWide())
3416    Kind = CharacterLiteral::Wide;
3417  else if (Literal.isUTF16())
3418    Kind = CharacterLiteral::UTF16;
3419  else if (Literal.isUTF32())
3420    Kind = CharacterLiteral::UTF32;
3421  else if (Literal.isUTF8())
3422    Kind = CharacterLiteral::UTF8;
3423
3424  Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3425                                             Tok.getLocation());
3426
3427  if (Literal.getUDSuffix().empty())
3428    return Lit;
3429
3430  // We're building a user-defined literal.
3431  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3432  SourceLocation UDSuffixLoc =
3433    getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3434
3435  // Make sure we're allowed user-defined literals here.
3436  if (!UDLScope)
3437    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3438
3439  // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3440  //   operator "" X (ch)
3441  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3442                                        Lit, Tok.getLocation());
3443}
3444
3445ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3446  unsigned IntSize = Context.getTargetInfo().getIntWidth();
3447  return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3448                                Context.IntTy, Loc);
3449}
3450
3451static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3452                                  QualType Ty, SourceLocation Loc) {
3453  const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3454
3455  using llvm::APFloat;
3456  APFloat Val(Format);
3457
3458  APFloat::opStatus result = Literal.GetFloatValue(Val);
3459
3460  // Overflow is always an error, but underflow is only an error if
3461  // we underflowed to zero (APFloat reports denormals as underflow).
3462  if ((result & APFloat::opOverflow) ||
3463      ((result & APFloat::opUnderflow) && Val.isZero())) {
3464    unsigned diagnostic;
3465    SmallString<20> buffer;
3466    if (result & APFloat::opOverflow) {
3467      diagnostic = diag::warn_float_overflow;
3468      APFloat::getLargest(Format).toString(buffer);
3469    } else {
3470      diagnostic = diag::warn_float_underflow;
3471      APFloat::getSmallest(Format).toString(buffer);
3472    }
3473
3474    S.Diag(Loc, diagnostic)
3475      << Ty
3476      << StringRef(buffer.data(), buffer.size());
3477  }
3478
3479  bool isExact = (result == APFloat::opOK);
3480  return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3481}
3482
3483bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3484  assert(E && "Invalid expression");
3485
3486  if (E->isValueDependent())
3487    return false;
3488
3489  QualType QT = E->getType();
3490  if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3491    Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3492    return true;
3493  }
3494
3495  llvm::APSInt ValueAPS;
3496  ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3497
3498  if (R.isInvalid())
3499    return true;
3500
3501  bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3502  if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3503    Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3504        << ValueAPS.toString(10) << ValueIsPositive;
3505    return true;
3506  }
3507
3508  return false;
3509}
3510
3511ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3512  // Fast path for a single digit (which is quite common).  A single digit
3513  // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3514  if (Tok.getLength() == 1) {
3515    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3516    return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3517  }
3518
3519  SmallString<128> SpellingBuffer;
3520  // NumericLiteralParser wants to overread by one character.  Add padding to
3521  // the buffer in case the token is copied to the buffer.  If getSpelling()
3522  // returns a StringRef to the memory buffer, it should have a null char at
3523  // the EOF, so it is also safe.
3524  SpellingBuffer.resize(Tok.getLength() + 1);
3525
3526  // Get the spelling of the token, which eliminates trigraphs, etc.
3527  bool Invalid = false;
3528  StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3529  if (Invalid)
3530    return ExprError();
3531
3532  NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
3533  if (Literal.hadError)
3534    return ExprError();
3535
3536  if (Literal.hasUDSuffix()) {
3537    // We're building a user-defined literal.
3538    IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3539    SourceLocation UDSuffixLoc =
3540      getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3541
3542    // Make sure we're allowed user-defined literals here.
3543    if (!UDLScope)
3544      return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3545
3546    QualType CookedTy;
3547    if (Literal.isFloatingLiteral()) {
3548      // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3549      // long double, the literal is treated as a call of the form
3550      //   operator "" X (f L)
3551      CookedTy = Context.LongDoubleTy;
3552    } else {
3553      // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3554      // unsigned long long, the literal is treated as a call of the form
3555      //   operator "" X (n ULL)
3556      CookedTy = Context.UnsignedLongLongTy;
3557    }
3558
3559    DeclarationName OpName =
3560      Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3561    DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3562    OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3563
3564    SourceLocation TokLoc = Tok.getLocation();
3565
3566    // Perform literal operator lookup to determine if we're building a raw
3567    // literal or a cooked one.
3568    LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3569    switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3570                                  /*AllowRaw*/ true, /*AllowTemplate*/ true,
3571                                  /*AllowStringTemplate*/ false,
3572                                  /*DiagnoseMissing*/ !Literal.isImaginary)) {
3573    case LOLR_ErrorNoDiagnostic:
3574      // Lookup failure for imaginary constants isn't fatal, there's still the
3575      // GNU extension producing _Complex types.
3576      break;
3577    case LOLR_Error:
3578      return ExprError();
3579    case LOLR_Cooked: {
3580      Expr *Lit;
3581      if (Literal.isFloatingLiteral()) {
3582        Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3583      } else {
3584        llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3585        if (Literal.GetIntegerValue(ResultVal))
3586          Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3587              << /* Unsigned */ 1;
3588        Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3589                                     Tok.getLocation());
3590      }
3591      return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3592    }
3593
3594    case LOLR_Raw: {
3595      // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3596      // literal is treated as a call of the form
3597      //   operator "" X ("n")
3598      unsigned Length = Literal.getUDSuffixOffset();
3599      QualType StrTy = Context.getConstantArrayType(
3600          Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3601          llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3602      Expr *Lit = StringLiteral::Create(
3603          Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3604          /*Pascal*/false, StrTy, &TokLoc, 1);
3605      return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3606    }
3607
3608    case LOLR_Template: {
3609      // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3610      // template), L is treated as a call fo the form
3611      //   operator "" X <'c1', 'c2', ... 'ck'>()
3612      // where n is the source character sequence c1 c2 ... ck.
3613      TemplateArgumentListInfo ExplicitArgs;
3614      unsigned CharBits = Context.getIntWidth(Context.CharTy);
3615      bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3616      llvm::APSInt Value(CharBits, CharIsUnsigned);
3617      for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3618        Value = TokSpelling[I];
3619        TemplateArgument Arg(Context, Value, Context.CharTy);
3620        TemplateArgumentLocInfo ArgInfo;
3621        ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3622      }
3623      return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3624                                      &ExplicitArgs);
3625    }
3626    case LOLR_StringTemplate:
3627      llvm_unreachable("unexpected literal operator lookup result");
3628    }
3629  }
3630
3631  Expr *Res;
3632
3633  if (Literal.isFixedPointLiteral()) {
3634    QualType Ty;
3635
3636    if (Literal.isAccum) {
3637      if (Literal.isHalf) {
3638        Ty = Context.ShortAccumTy;
3639      } else if (Literal.isLong) {
3640        Ty = Context.LongAccumTy;
3641      } else {
3642        Ty = Context.AccumTy;
3643      }
3644    } else if (Literal.isFract) {
3645      if (Literal.isHalf) {
3646        Ty = Context.ShortFractTy;
3647      } else if (Literal.isLong) {
3648        Ty = Context.LongFractTy;
3649      } else {
3650        Ty = Context.FractTy;
3651      }
3652    }
3653
3654    if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3655
3656    bool isSigned = !Literal.isUnsigned;
3657    unsigned scale = Context.getFixedPointScale(Ty);
3658    unsigned bit_width = Context.getTypeInfo(Ty).Width;
3659
3660    llvm::APInt Val(bit_width, 0, isSigned);
3661    bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3662    bool ValIsZero = Val.isNullValue() && !Overflowed;
3663
3664    auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3665    if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3666      // Clause 6.4.4 - The value of a constant shall be in the range of
3667      // representable values for its type, with exception for constants of a
3668      // fract type with a value of exactly 1; such a constant shall denote
3669      // the maximal value for the type.
3670      --Val;
3671    else if (Val.ugt(MaxVal) || Overflowed)
3672      Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3673
3674    Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3675                                              Tok.getLocation(), scale);
3676  } else if (Literal.isFloatingLiteral()) {
3677    QualType Ty;
3678    if (Literal.isHalf){
3679      if (getOpenCLOptions().isEnabled("cl_khr_fp16"))
3680        Ty = Context.HalfTy;
3681      else {
3682        Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3683        return ExprError();
3684      }
3685    } else if (Literal.isFloat)
3686      Ty = Context.FloatTy;
3687    else if (Literal.isLong)
3688      Ty = Context.LongDoubleTy;
3689    else if (Literal.isFloat16)
3690      Ty = Context.Float16Ty;
3691    else if (Literal.isFloat128)
3692      Ty = Context.Float128Ty;
3693    else
3694      Ty = Context.DoubleTy;
3695
3696    Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3697
3698    if (Ty == Context.DoubleTy) {
3699      if (getLangOpts().SinglePrecisionConstants) {
3700        const BuiltinType *BTy = Ty->getAs<BuiltinType>();
3701        if (BTy->getKind() != BuiltinType::Float) {
3702          Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3703        }
3704      } else if (getLangOpts().OpenCL &&
3705                 !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
3706        // Impose single-precision float type when cl_khr_fp64 is not enabled.
3707        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3708        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3709      }
3710    }
3711  } else if (!Literal.isIntegerLiteral()) {
3712    return ExprError();
3713  } else {
3714    QualType Ty;
3715
3716    // 'long long' is a C99 or C++11 feature.
3717    if (!getLangOpts().C99 && Literal.isLongLong) {
3718      if (getLangOpts().CPlusPlus)
3719        Diag(Tok.getLocation(),
3720             getLangOpts().CPlusPlus11 ?
3721             diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3722      else
3723        Diag(Tok.getLocation(), diag::ext_c99_longlong);
3724    }
3725
3726    // Get the value in the widest-possible width.
3727    unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3728    llvm::APInt ResultVal(MaxWidth, 0);
3729
3730    if (Literal.GetIntegerValue(ResultVal)) {
3731      // If this value didn't fit into uintmax_t, error and force to ull.
3732      Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3733          << /* Unsigned */ 1;
3734      Ty = Context.UnsignedLongLongTy;
3735      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3736             "long long is not intmax_t?");
3737    } else {
3738      // If this value fits into a ULL, try to figure out what else it fits into
3739      // according to the rules of C99 6.4.4.1p5.
3740
3741      // Octal, Hexadecimal, and integers with a U suffix are allowed to
3742      // be an unsigned int.
3743      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3744
3745      // Check from smallest to largest, picking the smallest type we can.
3746      unsigned Width = 0;
3747
3748      // Microsoft specific integer suffixes are explicitly sized.
3749      if (Literal.MicrosoftInteger) {
3750        if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3751          Width = 8;
3752          Ty = Context.CharTy;
3753        } else {
3754          Width = Literal.MicrosoftInteger;
3755          Ty = Context.getIntTypeForBitwidth(Width,
3756                                             /*Signed=*/!Literal.isUnsigned);
3757        }
3758      }
3759
3760      if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
3761        // Are int/unsigned possibilities?
3762        unsigned IntSize = Context.getTargetInfo().getIntWidth();
3763
3764        // Does it fit in a unsigned int?
3765        if (ResultVal.isIntN(IntSize)) {
3766          // Does it fit in a signed int?
3767          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3768            Ty = Context.IntTy;
3769          else if (AllowUnsigned)
3770            Ty = Context.UnsignedIntTy;
3771          Width = IntSize;
3772        }
3773      }
3774
3775      // Are long/unsigned long possibilities?
3776      if (Ty.isNull() && !Literal.isLongLong) {
3777        unsigned LongSize = Context.getTargetInfo().getLongWidth();
3778
3779        // Does it fit in a unsigned long?
3780        if (ResultVal.isIntN(LongSize)) {
3781          // Does it fit in a signed long?
3782          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3783            Ty = Context.LongTy;
3784          else if (AllowUnsigned)
3785            Ty = Context.UnsignedLongTy;
3786          // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3787          // is compatible.
3788          else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3789            const unsigned LongLongSize =
3790                Context.getTargetInfo().getLongLongWidth();
3791            Diag(Tok.getLocation(),
3792                 getLangOpts().CPlusPlus
3793                     ? Literal.isLong
3794                           ? diag::warn_old_implicitly_unsigned_long_cxx
3795                           : /*C++98 UB*/ diag::
3796                                 ext_old_implicitly_unsigned_long_cxx
3797                     : diag::warn_old_implicitly_unsigned_long)
3798                << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3799                                            : /*will be ill-formed*/ 1);
3800            Ty = Context.UnsignedLongTy;
3801          }
3802          Width = LongSize;
3803        }
3804      }
3805
3806      // Check long long if needed.
3807      if (Ty.isNull()) {
3808        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3809
3810        // Does it fit in a unsigned long long?
3811        if (ResultVal.isIntN(LongLongSize)) {
3812          // Does it fit in a signed long long?
3813          // To be compatible with MSVC, hex integer literals ending with the
3814          // LL or i64 suffix are always signed in Microsoft mode.
3815          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3816              (getLangOpts().MSVCCompat && Literal.isLongLong)))
3817            Ty = Context.LongLongTy;
3818          else if (AllowUnsigned)
3819            Ty = Context.UnsignedLongLongTy;
3820          Width = LongLongSize;
3821        }
3822      }
3823
3824      // If we still couldn't decide a type, we probably have something that
3825      // does not fit in a signed long long, but has no U suffix.
3826      if (Ty.isNull()) {
3827        Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
3828        Ty = Context.UnsignedLongLongTy;
3829        Width = Context.getTargetInfo().getLongLongWidth();
3830      }
3831
3832      if (ResultVal.getBitWidth() != Width)
3833        ResultVal = ResultVal.trunc(Width);
3834    }
3835    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3836  }
3837
3838  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3839  if (Literal.isImaginary) {
3840    Res = new (Context) ImaginaryLiteral(Res,
3841                                        Context.getComplexType(Res->getType()));
3842
3843    Diag(Tok.getLocation(), diag::ext_imaginary_constant);
3844  }
3845  return Res;
3846}
3847
3848ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3849  assert(E && "ActOnParenExpr() missing expr");
3850  return new (Context) ParenExpr(L, R, E);
3851}
3852
3853static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3854                                         SourceLocation Loc,
3855                                         SourceRange ArgRange) {
3856  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3857  // scalar or vector data type argument..."
3858  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3859  // type (C99 6.2.5p18) or void.
3860  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3861    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3862      << T << ArgRange;
3863    return true;
3864  }
3865
3866  assert((T->isVoidType() || !T->isIncompleteType()) &&
3867         "Scalar types should always be complete");
3868  return false;
3869}
3870
3871static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3872                                           SourceLocation Loc,
3873                                           SourceRange ArgRange,
3874                                           UnaryExprOrTypeTrait TraitKind) {
3875  // Invalid types must be hard errors for SFINAE in C++.
3876  if (S.LangOpts.CPlusPlus)
3877    return true;
3878
3879  // C99 6.5.3.4p1:
3880  if (T->isFunctionType() &&
3881      (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
3882       TraitKind == UETT_PreferredAlignOf)) {
3883    // sizeof(function)/alignof(function) is allowed as an extension.
3884    S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3885      << TraitKind << ArgRange;
3886    return false;
3887  }
3888
3889  // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
3890  // this is an error (OpenCL v1.1 s6.3.k)
3891  if (T->isVoidType()) {
3892    unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
3893                                        : diag::ext_sizeof_alignof_void_type;
3894    S.Diag(Loc, DiagID) << TraitKind << ArgRange;
3895    return false;
3896  }
3897
3898  return true;
3899}
3900
3901static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3902                                             SourceLocation Loc,
3903                                             SourceRange ArgRange,
3904                                             UnaryExprOrTypeTrait TraitKind) {
3905  // Reject sizeof(interface) and sizeof(interface<proto>) if the
3906  // runtime doesn't allow it.
3907  if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3908    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3909      << T << (TraitKind == UETT_SizeOf)
3910      << ArgRange;
3911    return true;
3912  }
3913
3914  return false;
3915}
3916
3917/// Check whether E is a pointer from a decayed array type (the decayed
3918/// pointer type is equal to T) and emit a warning if it is.
3919static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3920                                     Expr *E) {
3921  // Don't warn if the operation changed the type.
3922  if (T != E->getType())
3923    return;
3924
3925  // Now look for array decays.
3926  ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3927  if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3928    return;
3929
3930  S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3931                                             << ICE->getType()
3932                                             << ICE->getSubExpr()->getType();
3933}
3934
3935/// Check the constraints on expression operands to unary type expression
3936/// and type traits.
3937///
3938/// Completes any types necessary and validates the constraints on the operand
3939/// expression. The logic mostly mirrors the type-based overload, but may modify
3940/// the expression as it completes the type for that expression through template
3941/// instantiation, etc.
3942bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3943                                            UnaryExprOrTypeTrait ExprKind) {
3944  QualType ExprTy = E->getType();
3945  assert(!ExprTy->isReferenceType());
3946
3947  bool IsUnevaluatedOperand =
3948      (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
3949       ExprKind == UETT_PreferredAlignOf);
3950  if (IsUnevaluatedOperand) {
3951    ExprResult Result = CheckUnevaluatedOperand(E);
3952    if (Result.isInvalid())
3953      return true;
3954    E = Result.get();
3955  }
3956
3957  if (ExprKind == UETT_VecStep)
3958    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3959                                        E->getSourceRange());
3960
3961  // Whitelist some types as extensions
3962  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3963                                      E->getSourceRange(), ExprKind))
3964    return false;
3965
3966  // 'alignof' applied to an expression only requires the base element type of
3967  // the expression to be complete. 'sizeof' requires the expression's type to
3968  // be complete (and will attempt to complete it if it's an array of unknown
3969  // bound).
3970  if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
3971    if (RequireCompleteType(E->getExprLoc(),
3972                            Context.getBaseElementType(E->getType()),
3973                            diag::err_sizeof_alignof_incomplete_type, ExprKind,
3974                            E->getSourceRange()))
3975      return true;
3976  } else {
3977    if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
3978                                ExprKind, E->getSourceRange()))
3979      return true;
3980  }
3981
3982  // Completing the expression's type may have changed it.
3983  ExprTy = E->getType();
3984  assert(!ExprTy->isReferenceType());
3985
3986  if (ExprTy->isFunctionType()) {
3987    Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
3988      << ExprKind << E->getSourceRange();
3989    return true;
3990  }
3991
3992  // The operand for sizeof and alignof is in an unevaluated expression context,
3993  // so side effects could result in unintended consequences.
3994  if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
3995      E->HasSideEffects(Context, false))
3996    Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
3997
3998  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3999                                       E->getSourceRange(), ExprKind))
4000    return true;
4001
4002  if (ExprKind == UETT_SizeOf) {
4003    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4004      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4005        QualType OType = PVD->getOriginalType();
4006        QualType Type = PVD->getType();
4007        if (Type->isPointerType() && OType->isArrayType()) {
4008          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4009            << Type << OType;
4010          Diag(PVD->getLocation(), diag::note_declared_at);
4011        }
4012      }
4013    }
4014
4015    // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4016    // decays into a pointer and returns an unintended result. This is most
4017    // likely a typo for "sizeof(array) op x".
4018    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4019      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4020                               BO->getLHS());
4021      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4022                               BO->getRHS());
4023    }
4024  }
4025
4026  return false;
4027}
4028
4029/// Check the constraints on operands to unary expression and type
4030/// traits.
4031///
4032/// This will complete any types necessary, and validate the various constraints
4033/// on those operands.
4034///
4035/// The UsualUnaryConversions() function is *not* called by this routine.
4036/// C99 6.3.2.1p[2-4] all state:
4037///   Except when it is the operand of the sizeof operator ...
4038///
4039/// C++ [expr.sizeof]p4
4040///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4041///   standard conversions are not applied to the operand of sizeof.
4042///
4043/// This policy is followed for all of the unary trait expressions.
4044bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4045                                            SourceLocation OpLoc,
4046                                            SourceRange ExprRange,
4047                                            UnaryExprOrTypeTrait ExprKind) {
4048  if (ExprType->isDependentType())
4049    return false;
4050
4051  // C++ [expr.sizeof]p2:
4052  //     When applied to a reference or a reference type, the result
4053  //     is the size of the referenced type.
4054  // C++11 [expr.alignof]p3:
4055  //     When alignof is applied to a reference type, the result
4056  //     shall be the alignment of the referenced type.
4057  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4058    ExprType = Ref->getPointeeType();
4059
4060  // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4061  //   When alignof or _Alignof is applied to an array type, the result
4062  //   is the alignment of the element type.
4063  if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4064      ExprKind == UETT_OpenMPRequiredSimdAlign)
4065    ExprType = Context.getBaseElementType(ExprType);
4066
4067  if (ExprKind == UETT_VecStep)
4068    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4069
4070  // Whitelist some types as extensions
4071  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4072                                      ExprKind))
4073    return false;
4074
4075  if (RequireCompleteType(OpLoc, ExprType,
4076                          diag::err_sizeof_alignof_incomplete_type,
4077                          ExprKind, ExprRange))
4078    return true;
4079
4080  if (ExprType->isFunctionType()) {
4081    Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4082      << ExprKind << ExprRange;
4083    return true;
4084  }
4085
4086  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4087                                       ExprKind))
4088    return true;
4089
4090  return false;
4091}
4092
4093static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4094  // Cannot know anything else if the expression is dependent.
4095  if (E->isTypeDependent())
4096    return false;
4097
4098  if (E->getObjectKind() == OK_BitField) {
4099    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4100       << 1 << E->getSourceRange();
4101    return true;
4102  }
4103
4104  ValueDecl *D = nullptr;
4105  Expr *Inner = E->IgnoreParens();
4106  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4107    D = DRE->getDecl();
4108  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4109    D = ME->getMemberDecl();
4110  }
4111
4112  // If it's a field, require the containing struct to have a
4113  // complete definition so that we can compute the layout.
4114  //
4115  // This can happen in C++11 onwards, either by naming the member
4116  // in a way that is not transformed into a member access expression
4117  // (in an unevaluated operand, for instance), or by naming the member
4118  // in a trailing-return-type.
4119  //
4120  // For the record, since __alignof__ on expressions is a GCC
4121  // extension, GCC seems to permit this but always gives the
4122  // nonsensical answer 0.
4123  //
4124  // We don't really need the layout here --- we could instead just
4125  // directly check for all the appropriate alignment-lowing
4126  // attributes --- but that would require duplicating a lot of
4127  // logic that just isn't worth duplicating for such a marginal
4128  // use-case.
4129  if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4130    // Fast path this check, since we at least know the record has a
4131    // definition if we can find a member of it.
4132    if (!FD->getParent()->isCompleteDefinition()) {
4133      S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4134        << E->getSourceRange();
4135      return true;
4136    }
4137
4138    // Otherwise, if it's a field, and the field doesn't have
4139    // reference type, then it must have a complete type (or be a
4140    // flexible array member, which we explicitly want to
4141    // white-list anyway), which makes the following checks trivial.
4142    if (!FD->getType()->isReferenceType())
4143      return false;
4144  }
4145
4146  return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4147}
4148
4149bool Sema::CheckVecStepExpr(Expr *E) {
4150  E = E->IgnoreParens();
4151
4152  // Cannot know anything else if the expression is dependent.
4153  if (E->isTypeDependent())
4154    return false;
4155
4156  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4157}
4158
4159static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4160                                        CapturingScopeInfo *CSI) {
4161  assert(T->isVariablyModifiedType());
4162  assert(CSI != nullptr);
4163
4164  // We're going to walk down into the type and look for VLA expressions.
4165  do {
4166    const Type *Ty = T.getTypePtr();
4167    switch (Ty->getTypeClass()) {
4168#define TYPE(Class, Base)
4169#define ABSTRACT_TYPE(Class, Base)
4170#define NON_CANONICAL_TYPE(Class, Base)
4171#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4172#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4173#include "clang/AST/TypeNodes.inc"
4174      T = QualType();
4175      break;
4176    // These types are never variably-modified.
4177    case Type::Builtin:
4178    case Type::Complex:
4179    case Type::Vector:
4180    case Type::ExtVector:
4181    case Type::Record:
4182    case Type::Enum:
4183    case Type::Elaborated:
4184    case Type::TemplateSpecialization:
4185    case Type::ObjCObject:
4186    case Type::ObjCInterface:
4187    case Type::ObjCObjectPointer:
4188    case Type::ObjCTypeParam:
4189    case Type::Pipe:
4190      llvm_unreachable("type class is never variably-modified!");
4191    case Type::Adjusted:
4192      T = cast<AdjustedType>(Ty)->getOriginalType();
4193      break;
4194    case Type::Decayed:
4195      T = cast<DecayedType>(Ty)->getPointeeType();
4196      break;
4197    case Type::Pointer:
4198      T = cast<PointerType>(Ty)->getPointeeType();
4199      break;
4200    case Type::BlockPointer:
4201      T = cast<BlockPointerType>(Ty)->getPointeeType();
4202      break;
4203    case Type::LValueReference:
4204    case Type::RValueReference:
4205      T = cast<ReferenceType>(Ty)->getPointeeType();
4206      break;
4207    case Type::MemberPointer:
4208      T = cast<MemberPointerType>(Ty)->getPointeeType();
4209      break;
4210    case Type::ConstantArray:
4211    case Type::IncompleteArray:
4212      // Losing element qualification here is fine.
4213      T = cast<ArrayType>(Ty)->getElementType();
4214      break;
4215    case Type::VariableArray: {
4216      // Losing element qualification here is fine.
4217      const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4218
4219      // Unknown size indication requires no size computation.
4220      // Otherwise, evaluate and record it.
4221      auto Size = VAT->getSizeExpr();
4222      if (Size && !CSI->isVLATypeCaptured(VAT) &&
4223          (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4224        CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4225
4226      T = VAT->getElementType();
4227      break;
4228    }
4229    case Type::FunctionProto:
4230    case Type::FunctionNoProto:
4231      T = cast<FunctionType>(Ty)->getReturnType();
4232      break;
4233    case Type::Paren:
4234    case Type::TypeOf:
4235    case Type::UnaryTransform:
4236    case Type::Attributed:
4237    case Type::SubstTemplateTypeParm:
4238    case Type::PackExpansion:
4239    case Type::MacroQualified:
4240      // Keep walking after single level desugaring.
4241      T = T.getSingleStepDesugaredType(Context);
4242      break;
4243    case Type::Typedef:
4244      T = cast<TypedefType>(Ty)->desugar();
4245      break;
4246    case Type::Decltype:
4247      T = cast<DecltypeType>(Ty)->desugar();
4248      break;
4249    case Type::Auto:
4250    case Type::DeducedTemplateSpecialization:
4251      T = cast<DeducedType>(Ty)->getDeducedType();
4252      break;
4253    case Type::TypeOfExpr:
4254      T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4255      break;
4256    case Type::Atomic:
4257      T = cast<AtomicType>(Ty)->getValueType();
4258      break;
4259    }
4260  } while (!T.isNull() && T->isVariablyModifiedType());
4261}
4262
4263/// Build a sizeof or alignof expression given a type operand.
4264ExprResult
4265Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4266                                     SourceLocation OpLoc,
4267                                     UnaryExprOrTypeTrait ExprKind,
4268                                     SourceRange R) {
4269  if (!TInfo)
4270    return ExprError();
4271
4272  QualType T = TInfo->getType();
4273
4274  if (!T->isDependentType() &&
4275      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4276    return ExprError();
4277
4278  if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4279    if (auto *TT = T->getAs<TypedefType>()) {
4280      for (auto I = FunctionScopes.rbegin(),
4281                E = std::prev(FunctionScopes.rend());
4282           I != E; ++I) {
4283        auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4284        if (CSI == nullptr)
4285          break;
4286        DeclContext *DC = nullptr;
4287        if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4288          DC = LSI->CallOperator;
4289        else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4290          DC = CRSI->TheCapturedDecl;
4291        else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4292          DC = BSI->TheDecl;
4293        if (DC) {
4294          if (DC->containsDecl(TT->getDecl()))
4295            break;
4296          captureVariablyModifiedType(Context, T, CSI);
4297        }
4298      }
4299    }
4300  }
4301
4302  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4303  return new (Context) UnaryExprOrTypeTraitExpr(
4304      ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4305}
4306
4307/// Build a sizeof or alignof expression given an expression
4308/// operand.
4309ExprResult
4310Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4311                                     UnaryExprOrTypeTrait ExprKind) {
4312  ExprResult PE = CheckPlaceholderExpr(E);
4313  if (PE.isInvalid())
4314    return ExprError();
4315
4316  E = PE.get();
4317
4318  // Verify that the operand is valid.
4319  bool isInvalid = false;
4320  if (E->isTypeDependent()) {
4321    // Delay type-checking for type-dependent expressions.
4322  } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4323    isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4324  } else if (ExprKind == UETT_VecStep) {
4325    isInvalid = CheckVecStepExpr(E);
4326  } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4327      Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4328      isInvalid = true;
4329  } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4330    Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4331    isInvalid = true;
4332  } else {
4333    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4334  }
4335
4336  if (isInvalid)
4337    return ExprError();
4338
4339  if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4340    PE = TransformToPotentiallyEvaluated(E);
4341    if (PE.isInvalid()) return ExprError();
4342    E = PE.get();
4343  }
4344
4345  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4346  return new (Context) UnaryExprOrTypeTraitExpr(
4347      ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4348}
4349
4350/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4351/// expr and the same for @c alignof and @c __alignof
4352/// Note that the ArgRange is invalid if isType is false.
4353ExprResult
4354Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4355                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
4356                                    void *TyOrEx, SourceRange ArgRange) {
4357  // If error parsing type, ignore.
4358  if (!TyOrEx) return ExprError();
4359
4360  if (IsType) {
4361    TypeSourceInfo *TInfo;
4362    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4363    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4364  }
4365
4366  Expr *ArgEx = (Expr *)TyOrEx;
4367  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4368  return Result;
4369}
4370
4371static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4372                                     bool IsReal) {
4373  if (V.get()->isTypeDependent())
4374    return S.Context.DependentTy;
4375
4376  // _Real and _Imag are only l-values for normal l-values.
4377  if (V.get()->getObjectKind() != OK_Ordinary) {
4378    V = S.DefaultLvalueConversion(V.get());
4379    if (V.isInvalid())
4380      return QualType();
4381  }
4382
4383  // These operators return the element type of a complex type.
4384  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4385    return CT->getElementType();
4386
4387  // Otherwise they pass through real integer and floating point types here.
4388  if (V.get()->getType()->isArithmeticType())
4389    return V.get()->getType();
4390
4391  // Test for placeholders.
4392  ExprResult PR = S.CheckPlaceholderExpr(V.get());
4393  if (PR.isInvalid()) return QualType();
4394  if (PR.get() != V.get()) {
4395    V = PR;
4396    return CheckRealImagOperand(S, V, Loc, IsReal);
4397  }
4398
4399  // Reject anything else.
4400  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4401    << (IsReal ? "__real" : "__imag");
4402  return QualType();
4403}
4404
4405
4406
4407ExprResult
4408Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4409                          tok::TokenKind Kind, Expr *Input) {
4410  UnaryOperatorKind Opc;
4411  switch (Kind) {
4412  default: llvm_unreachable("Unknown unary op!");
4413  case tok::plusplus:   Opc = UO_PostInc; break;
4414  case tok::minusminus: Opc = UO_PostDec; break;
4415  }
4416
4417  // Since this might is a postfix expression, get rid of ParenListExprs.
4418  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4419  if (Result.isInvalid()) return ExprError();
4420  Input = Result.get();
4421
4422  return BuildUnaryOp(S, OpLoc, Opc, Input);
4423}
4424
4425/// Diagnose if arithmetic on the given ObjC pointer is illegal.
4426///
4427/// \return true on error
4428static bool checkArithmeticOnObjCPointer(Sema &S,
4429                                         SourceLocation opLoc,
4430                                         Expr *op) {
4431  assert(op->getType()->isObjCObjectPointerType());
4432  if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4433      !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4434    return false;
4435
4436  S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4437    << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4438    << op->getSourceRange();
4439  return true;
4440}
4441
4442static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4443  auto *BaseNoParens = Base->IgnoreParens();
4444  if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4445    return MSProp->getPropertyDecl()->getType()->isArrayType();
4446  return isa<MSPropertySubscriptExpr>(BaseNoParens);
4447}
4448
4449ExprResult
4450Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
4451                              Expr *idx, SourceLocation rbLoc) {
4452  if (base && !base->getType().isNull() &&
4453      base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
4454    return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
4455                                    /*Length=*/nullptr, rbLoc);
4456
4457  // Since this might be a postfix expression, get rid of ParenListExprs.
4458  if (isa<ParenListExpr>(base)) {
4459    ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4460    if (result.isInvalid()) return ExprError();
4461    base = result.get();
4462  }
4463
4464  // A comma-expression as the index is deprecated in C++2a onwards.
4465  if (getLangOpts().CPlusPlus2a &&
4466      ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4467       (isa<CXXOperatorCallExpr>(idx) &&
4468        cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) {
4469    Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4470      << SourceRange(base->getBeginLoc(), rbLoc);
4471  }
4472
4473  // Handle any non-overload placeholder types in the base and index
4474  // expressions.  We can't handle overloads here because the other
4475  // operand might be an overloadable type, in which case the overload
4476  // resolution for the operator overload should get the first crack
4477  // at the overload.
4478  bool IsMSPropertySubscript = false;
4479  if (base->getType()->isNonOverloadPlaceholderType()) {
4480    IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4481    if (!IsMSPropertySubscript) {
4482      ExprResult result = CheckPlaceholderExpr(base);
4483      if (result.isInvalid())
4484        return ExprError();
4485      base = result.get();
4486    }
4487  }
4488  if (idx->getType()->isNonOverloadPlaceholderType()) {
4489    ExprResult result = CheckPlaceholderExpr(idx);
4490    if (result.isInvalid()) return ExprError();
4491    idx = result.get();
4492  }
4493
4494  // Build an unanalyzed expression if either operand is type-dependent.
4495  if (getLangOpts().CPlusPlus &&
4496      (base->isTypeDependent() || idx->isTypeDependent())) {
4497    return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
4498                                            VK_LValue, OK_Ordinary, rbLoc);
4499  }
4500
4501  // MSDN, property (C++)
4502  // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4503  // This attribute can also be used in the declaration of an empty array in a
4504  // class or structure definition. For example:
4505  // __declspec(property(get=GetX, put=PutX)) int x[];
4506  // The above statement indicates that x[] can be used with one or more array
4507  // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4508  // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4509  if (IsMSPropertySubscript) {
4510    // Build MS property subscript expression if base is MS property reference
4511    // or MS property subscript.
4512    return new (Context) MSPropertySubscriptExpr(
4513        base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
4514  }
4515
4516  // Use C++ overloaded-operator rules if either operand has record
4517  // type.  The spec says to do this if either type is *overloadable*,
4518  // but enum types can't declare subscript operators or conversion
4519  // operators, so there's nothing interesting for overload resolution
4520  // to do if there aren't any record types involved.
4521  //
4522  // ObjC pointers have their own subscripting logic that is not tied
4523  // to overload resolution and so should not take this path.
4524  if (getLangOpts().CPlusPlus &&
4525      (base->getType()->isRecordType() ||
4526       (!base->getType()->isObjCObjectPointerType() &&
4527        idx->getType()->isRecordType()))) {
4528    return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
4529  }
4530
4531  ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
4532
4533  if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4534    CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4535
4536  return Res;
4537}
4538
4539void Sema::CheckAddressOfNoDeref(const Expr *E) {
4540  ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4541  const Expr *StrippedExpr = E->IgnoreParenImpCasts();
4542
4543  // For expressions like `&(*s).b`, the base is recorded and what should be
4544  // checked.
4545  const MemberExpr *Member = nullptr;
4546  while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
4547    StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
4548
4549  LastRecord.PossibleDerefs.erase(StrippedExpr);
4550}
4551
4552void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
4553  QualType ResultTy = E->getType();
4554  ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4555
4556  // Bail if the element is an array since it is not memory access.
4557  if (isa<ArrayType>(ResultTy))
4558    return;
4559
4560  if (ResultTy->hasAttr(attr::NoDeref)) {
4561    LastRecord.PossibleDerefs.insert(E);
4562    return;
4563  }
4564
4565  // Check if the base type is a pointer to a member access of a struct
4566  // marked with noderef.
4567  const Expr *Base = E->getBase();
4568  QualType BaseTy = Base->getType();
4569  if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
4570    // Not a pointer access
4571    return;
4572
4573  const MemberExpr *Member = nullptr;
4574  while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
4575         Member->isArrow())
4576    Base = Member->getBase();
4577
4578  if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
4579    if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
4580      LastRecord.PossibleDerefs.insert(E);
4581  }
4582}
4583
4584ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
4585                                          Expr *LowerBound,
4586                                          SourceLocation ColonLoc, Expr *Length,
4587                                          SourceLocation RBLoc) {
4588  if (Base->getType()->isPlaceholderType() &&
4589      !Base->getType()->isSpecificPlaceholderType(
4590          BuiltinType::OMPArraySection)) {
4591    ExprResult Result = CheckPlaceholderExpr(Base);
4592    if (Result.isInvalid())
4593      return ExprError();
4594    Base = Result.get();
4595  }
4596  if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4597    ExprResult Result = CheckPlaceholderExpr(LowerBound);
4598    if (Result.isInvalid())
4599      return ExprError();
4600    Result = DefaultLvalueConversion(Result.get());
4601    if (Result.isInvalid())
4602      return ExprError();
4603    LowerBound = Result.get();
4604  }
4605  if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4606    ExprResult Result = CheckPlaceholderExpr(Length);
4607    if (Result.isInvalid())
4608      return ExprError();
4609    Result = DefaultLvalueConversion(Result.get());
4610    if (Result.isInvalid())
4611      return ExprError();
4612    Length = Result.get();
4613  }
4614
4615  // Build an unanalyzed expression if either operand is type-dependent.
4616  if (Base->isTypeDependent() ||
4617      (LowerBound &&
4618       (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4619      (Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
4620    return new (Context)
4621        OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
4622                            VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4623  }
4624
4625  // Perform default conversions.
4626  QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
4627  QualType ResultTy;
4628  if (OriginalTy->isAnyPointerType()) {
4629    ResultTy = OriginalTy->getPointeeType();
4630  } else if (OriginalTy->isArrayType()) {
4631    ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
4632  } else {
4633    return ExprError(
4634        Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
4635        << Base->getSourceRange());
4636  }
4637  // C99 6.5.2.1p1
4638  if (LowerBound) {
4639    auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
4640                                                      LowerBound);
4641    if (Res.isInvalid())
4642      return ExprError(Diag(LowerBound->getExprLoc(),
4643                            diag::err_omp_typecheck_section_not_integer)
4644                       << 0 << LowerBound->getSourceRange());
4645    LowerBound = Res.get();
4646
4647    if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4648        LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4649      Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
4650          << 0 << LowerBound->getSourceRange();
4651  }
4652  if (Length) {
4653    auto Res =
4654        PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
4655    if (Res.isInvalid())
4656      return ExprError(Diag(Length->getExprLoc(),
4657                            diag::err_omp_typecheck_section_not_integer)
4658                       << 1 << Length->getSourceRange());
4659    Length = Res.get();
4660
4661    if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4662        Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4663      Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
4664          << 1 << Length->getSourceRange();
4665  }
4666
4667  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4668  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4669  // type. Note that functions are not objects, and that (in C99 parlance)
4670  // incomplete types are not object types.
4671  if (ResultTy->isFunctionType()) {
4672    Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
4673        << ResultTy << Base->getSourceRange();
4674    return ExprError();
4675  }
4676
4677  if (RequireCompleteType(Base->getExprLoc(), ResultTy,
4678                          diag::err_omp_section_incomplete_type, Base))
4679    return ExprError();
4680
4681  if (LowerBound && !OriginalTy->isAnyPointerType()) {
4682    Expr::EvalResult Result;
4683    if (LowerBound->EvaluateAsInt(Result, Context)) {
4684      // OpenMP 4.5, [2.4 Array Sections]
4685      // The array section must be a subset of the original array.
4686      llvm::APSInt LowerBoundValue = Result.Val.getInt();
4687      if (LowerBoundValue.isNegative()) {
4688        Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
4689            << LowerBound->getSourceRange();
4690        return ExprError();
4691      }
4692    }
4693  }
4694
4695  if (Length) {
4696    Expr::EvalResult Result;
4697    if (Length->EvaluateAsInt(Result, Context)) {
4698      // OpenMP 4.5, [2.4 Array Sections]
4699      // The length must evaluate to non-negative integers.
4700      llvm::APSInt LengthValue = Result.Val.getInt();
4701      if (LengthValue.isNegative()) {
4702        Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
4703            << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
4704            << Length->getSourceRange();
4705        return ExprError();
4706      }
4707    }
4708  } else if (ColonLoc.isValid() &&
4709             (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
4710                                      !OriginalTy->isVariableArrayType()))) {
4711    // OpenMP 4.5, [2.4 Array Sections]
4712    // When the size of the array dimension is not known, the length must be
4713    // specified explicitly.
4714    Diag(ColonLoc, diag::err_omp_section_length_undefined)
4715        << (!OriginalTy.isNull() && OriginalTy->isArrayType());
4716    return ExprError();
4717  }
4718
4719  if (!Base->getType()->isSpecificPlaceholderType(
4720          BuiltinType::OMPArraySection)) {
4721    ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
4722    if (Result.isInvalid())
4723      return ExprError();
4724    Base = Result.get();
4725  }
4726  return new (Context)
4727      OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
4728                          VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4729}
4730
4731ExprResult
4732Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
4733                                      Expr *Idx, SourceLocation RLoc) {
4734  Expr *LHSExp = Base;
4735  Expr *RHSExp = Idx;
4736
4737  ExprValueKind VK = VK_LValue;
4738  ExprObjectKind OK = OK_Ordinary;
4739
4740  // Per C++ core issue 1213, the result is an xvalue if either operand is
4741  // a non-lvalue array, and an lvalue otherwise.
4742  if (getLangOpts().CPlusPlus11) {
4743    for (auto *Op : {LHSExp, RHSExp}) {
4744      Op = Op->IgnoreImplicit();
4745      if (Op->getType()->isArrayType() && !Op->isLValue())
4746        VK = VK_XValue;
4747    }
4748  }
4749
4750  // Perform default conversions.
4751  if (!LHSExp->getType()->getAs<VectorType>()) {
4752    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
4753    if (Result.isInvalid())
4754      return ExprError();
4755    LHSExp = Result.get();
4756  }
4757  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
4758  if (Result.isInvalid())
4759    return ExprError();
4760  RHSExp = Result.get();
4761
4762  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
4763
4764  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
4765  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
4766  // in the subscript position. As a result, we need to derive the array base
4767  // and index from the expression types.
4768  Expr *BaseExpr, *IndexExpr;
4769  QualType ResultType;
4770  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
4771    BaseExpr = LHSExp;
4772    IndexExpr = RHSExp;
4773    ResultType = Context.DependentTy;
4774  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
4775    BaseExpr = LHSExp;
4776    IndexExpr = RHSExp;
4777    ResultType = PTy->getPointeeType();
4778  } else if (const ObjCObjectPointerType *PTy =
4779               LHSTy->getAs<ObjCObjectPointerType>()) {
4780    BaseExpr = LHSExp;
4781    IndexExpr = RHSExp;
4782
4783    // Use custom logic if this should be the pseudo-object subscript
4784    // expression.
4785    if (!LangOpts.isSubscriptPointerArithmetic())
4786      return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
4787                                          nullptr);
4788
4789    ResultType = PTy->getPointeeType();
4790  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
4791     // Handle the uncommon case of "123[Ptr]".
4792    BaseExpr = RHSExp;
4793    IndexExpr = LHSExp;
4794    ResultType = PTy->getPointeeType();
4795  } else if (const ObjCObjectPointerType *PTy =
4796               RHSTy->getAs<ObjCObjectPointerType>()) {
4797     // Handle the uncommon case of "123[Ptr]".
4798    BaseExpr = RHSExp;
4799    IndexExpr = LHSExp;
4800    ResultType = PTy->getPointeeType();
4801    if (!LangOpts.isSubscriptPointerArithmetic()) {
4802      Diag(LLoc, diag::err_subscript_nonfragile_interface)
4803        << ResultType << BaseExpr->getSourceRange();
4804      return ExprError();
4805    }
4806  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
4807    BaseExpr = LHSExp;    // vectors: V[123]
4808    IndexExpr = RHSExp;
4809    // We apply C++ DR1213 to vector subscripting too.
4810    if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) {
4811      ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
4812      if (Materialized.isInvalid())
4813        return ExprError();
4814      LHSExp = Materialized.get();
4815    }
4816    VK = LHSExp->getValueKind();
4817    if (VK != VK_RValue)
4818      OK = OK_VectorComponent;
4819
4820    ResultType = VTy->getElementType();
4821    QualType BaseType = BaseExpr->getType();
4822    Qualifiers BaseQuals = BaseType.getQualifiers();
4823    Qualifiers MemberQuals = ResultType.getQualifiers();
4824    Qualifiers Combined = BaseQuals + MemberQuals;
4825    if (Combined != MemberQuals)
4826      ResultType = Context.getQualifiedType(ResultType, Combined);
4827  } else if (LHSTy->isArrayType()) {
4828    // If we see an array that wasn't promoted by
4829    // DefaultFunctionArrayLvalueConversion, it must be an array that
4830    // wasn't promoted because of the C90 rule that doesn't
4831    // allow promoting non-lvalue arrays.  Warn, then
4832    // force the promotion here.
4833    Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
4834        << LHSExp->getSourceRange();
4835    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
4836                               CK_ArrayToPointerDecay).get();
4837    LHSTy = LHSExp->getType();
4838
4839    BaseExpr = LHSExp;
4840    IndexExpr = RHSExp;
4841    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
4842  } else if (RHSTy->isArrayType()) {
4843    // Same as previous, except for 123[f().a] case
4844    Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
4845        << RHSExp->getSourceRange();
4846    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
4847                               CK_ArrayToPointerDecay).get();
4848    RHSTy = RHSExp->getType();
4849
4850    BaseExpr = RHSExp;
4851    IndexExpr = LHSExp;
4852    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
4853  } else {
4854    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
4855       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
4856  }
4857  // C99 6.5.2.1p1
4858  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
4859    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
4860                     << IndexExpr->getSourceRange());
4861
4862  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4863       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4864         && !IndexExpr->isTypeDependent())
4865    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
4866
4867  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4868  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4869  // type. Note that Functions are not objects, and that (in C99 parlance)
4870  // incomplete types are not object types.
4871  if (ResultType->isFunctionType()) {
4872    Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
4873        << ResultType << BaseExpr->getSourceRange();
4874    return ExprError();
4875  }
4876
4877  if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
4878    // GNU extension: subscripting on pointer to void
4879    Diag(LLoc, diag::ext_gnu_subscript_void_type)
4880      << BaseExpr->getSourceRange();
4881
4882    // C forbids expressions of unqualified void type from being l-values.
4883    // See IsCForbiddenLValueType.
4884    if (!ResultType.hasQualifiers()) VK = VK_RValue;
4885  } else if (!ResultType->isDependentType() &&
4886      RequireCompleteType(LLoc, ResultType,
4887                          diag::err_subscript_incomplete_type, BaseExpr))
4888    return ExprError();
4889
4890  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
4891         !ResultType.isCForbiddenLValueType());
4892
4893  if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
4894      FunctionScopes.size() > 1) {
4895    if (auto *TT =
4896            LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
4897      for (auto I = FunctionScopes.rbegin(),
4898                E = std::prev(FunctionScopes.rend());
4899           I != E; ++I) {
4900        auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4901        if (CSI == nullptr)
4902          break;
4903        DeclContext *DC = nullptr;
4904        if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4905          DC = LSI->CallOperator;
4906        else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4907          DC = CRSI->TheCapturedDecl;
4908        else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4909          DC = BSI->TheDecl;
4910        if (DC) {
4911          if (DC->containsDecl(TT->getDecl()))
4912            break;
4913          captureVariablyModifiedType(
4914              Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
4915        }
4916      }
4917    }
4918  }
4919
4920  return new (Context)
4921      ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
4922}
4923
4924bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
4925                                  ParmVarDecl *Param) {
4926  if (Param->hasUnparsedDefaultArg()) {
4927    Diag(CallLoc,
4928         diag::err_use_of_default_argument_to_function_declared_later) <<
4929      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
4930    Diag(UnparsedDefaultArgLocs[Param],
4931         diag::note_default_argument_declared_here);
4932    return true;
4933  }
4934
4935  if (Param->hasUninstantiatedDefaultArg()) {
4936    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
4937
4938    EnterExpressionEvaluationContext EvalContext(
4939        *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
4940
4941    // Instantiate the expression.
4942    //
4943    // FIXME: Pass in a correct Pattern argument, otherwise
4944    // getTemplateInstantiationArgs uses the lexical context of FD, e.g.
4945    //
4946    // template<typename T>
4947    // struct A {
4948    //   static int FooImpl();
4949    //
4950    //   template<typename Tp>
4951    //   // bug: default argument A<T>::FooImpl() is evaluated with 2-level
4952    //   // template argument list [[T], [Tp]], should be [[Tp]].
4953    //   friend A<Tp> Foo(int a);
4954    // };
4955    //
4956    // template<typename T>
4957    // A<T> Foo(int a = A<T>::FooImpl());
4958    MultiLevelTemplateArgumentList MutiLevelArgList
4959      = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
4960
4961    InstantiatingTemplate Inst(*this, CallLoc, Param,
4962                               MutiLevelArgList.getInnermost());
4963    if (Inst.isInvalid())
4964      return true;
4965    if (Inst.isAlreadyInstantiating()) {
4966      Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
4967      Param->setInvalidDecl();
4968      return true;
4969    }
4970
4971    ExprResult Result;
4972    {
4973      // C++ [dcl.fct.default]p5:
4974      //   The names in the [default argument] expression are bound, and
4975      //   the semantic constraints are checked, at the point where the
4976      //   default argument expression appears.
4977      ContextRAII SavedContext(*this, FD);
4978      LocalInstantiationScope Local(*this);
4979      runWithSufficientStackSpace(CallLoc, [&] {
4980        Result = SubstInitializer(UninstExpr, MutiLevelArgList,
4981                                  /*DirectInit*/false);
4982      });
4983    }
4984    if (Result.isInvalid())
4985      return true;
4986
4987    // Check the expression as an initializer for the parameter.
4988    InitializedEntity Entity
4989      = InitializedEntity::InitializeParameter(Context, Param);
4990    InitializationKind Kind = InitializationKind::CreateCopy(
4991        Param->getLocation(),
4992        /*FIXME:EqualLoc*/ UninstExpr->getBeginLoc());
4993    Expr *ResultE = Result.getAs<Expr>();
4994
4995    InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
4996    Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
4997    if (Result.isInvalid())
4998      return true;
4999
5000    Result =
5001        ActOnFinishFullExpr(Result.getAs<Expr>(), Param->getOuterLocStart(),
5002                            /*DiscardedValue*/ false);
5003    if (Result.isInvalid())
5004      return true;
5005
5006    // Remember the instantiated default argument.
5007    Param->setDefaultArg(Result.getAs<Expr>());
5008    if (ASTMutationListener *L = getASTMutationListener()) {
5009      L->DefaultArgumentInstantiated(Param);
5010    }
5011  }
5012
5013  // If the default argument expression is not set yet, we are building it now.
5014  if (!Param->hasInit()) {
5015    Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5016    Param->setInvalidDecl();
5017    return true;
5018  }
5019
5020  // If the default expression creates temporaries, we need to
5021  // push them to the current stack of expression temporaries so they'll
5022  // be properly destroyed.
5023  // FIXME: We should really be rebuilding the default argument with new
5024  // bound temporaries; see the comment in PR5810.
5025  // We don't need to do that with block decls, though, because
5026  // blocks in default argument expression can never capture anything.
5027  if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
5028    // Set the "needs cleanups" bit regardless of whether there are
5029    // any explicit objects.
5030    Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
5031
5032    // Append all the objects to the cleanup list.  Right now, this
5033    // should always be a no-op, because blocks in default argument
5034    // expressions should never be able to capture anything.
5035    assert(!Init->getNumObjects() &&
5036           "default argument expression has capturing blocks?");
5037  }
5038
5039  // We already type-checked the argument, so we know it works.
5040  // Just mark all of the declarations in this potentially-evaluated expression
5041  // as being "referenced".
5042  EnterExpressionEvaluationContext EvalContext(
5043      *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5044  MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
5045                                   /*SkipLocalVariables=*/true);
5046  return false;
5047}
5048
5049ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5050                                        FunctionDecl *FD, ParmVarDecl *Param) {
5051  if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
5052    return ExprError();
5053  return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
5054}
5055
5056Sema::VariadicCallType
5057Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5058                          Expr *Fn) {
5059  if (Proto && Proto->isVariadic()) {
5060    if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
5061      return VariadicConstructor;
5062    else if (Fn && Fn->getType()->isBlockPointerType())
5063      return VariadicBlock;
5064    else if (FDecl) {
5065      if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5066        if (Method->isInstance())
5067          return VariadicMethod;
5068    } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5069      return VariadicMethod;
5070    return VariadicFunction;
5071  }
5072  return VariadicDoesNotApply;
5073}
5074
5075namespace {
5076class FunctionCallCCC final : public FunctionCallFilterCCC {
5077public:
5078  FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5079                  unsigned NumArgs, MemberExpr *ME)
5080      : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5081        FunctionName(FuncName) {}
5082
5083  bool ValidateCandidate(const TypoCorrection &candidate) override {
5084    if (!candidate.getCorrectionSpecifier() ||
5085        candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5086      return false;
5087    }
5088
5089    return FunctionCallFilterCCC::ValidateCandidate(candidate);
5090  }
5091
5092  std::unique_ptr<CorrectionCandidateCallback> clone() override {
5093    return std::make_unique<FunctionCallCCC>(*this);
5094  }
5095
5096private:
5097  const IdentifierInfo *const FunctionName;
5098};
5099}
5100
5101static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5102                                               FunctionDecl *FDecl,
5103                                               ArrayRef<Expr *> Args) {
5104  MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5105  DeclarationName FuncName = FDecl->getDeclName();
5106  SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5107
5108  FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5109  if (TypoCorrection Corrected = S.CorrectTypo(
5110          DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5111          S.getScopeForContext(S.CurContext), nullptr, CCC,
5112          Sema::CTK_ErrorRecovery)) {
5113    if (NamedDecl *ND = Corrected.getFoundDecl()) {
5114      if (Corrected.isOverloaded()) {
5115        OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5116        OverloadCandidateSet::iterator Best;
5117        for (NamedDecl *CD : Corrected) {
5118          if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5119            S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5120                                   OCS);
5121        }
5122        switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5123        case OR_Success:
5124          ND = Best->FoundDecl;
5125          Corrected.setCorrectionDecl(ND);
5126          break;
5127        default:
5128          break;
5129        }
5130      }
5131      ND = ND->getUnderlyingDecl();
5132      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5133        return Corrected;
5134    }
5135  }
5136  return TypoCorrection();
5137}
5138
5139/// ConvertArgumentsForCall - Converts the arguments specified in
5140/// Args/NumArgs to the parameter types of the function FDecl with
5141/// function prototype Proto. Call is the call expression itself, and
5142/// Fn is the function expression. For a C++ member function, this
5143/// routine does not attempt to convert the object argument. Returns
5144/// true if the call is ill-formed.
5145bool
5146Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5147                              FunctionDecl *FDecl,
5148                              const FunctionProtoType *Proto,
5149                              ArrayRef<Expr *> Args,
5150                              SourceLocation RParenLoc,
5151                              bool IsExecConfig) {
5152  // Bail out early if calling a builtin with custom typechecking.
5153  if (FDecl)
5154    if (unsigned ID = FDecl->getBuiltinID())
5155      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5156        return false;
5157
5158  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5159  // assignment, to the types of the corresponding parameter, ...
5160  unsigned NumParams = Proto->getNumParams();
5161  bool Invalid = false;
5162  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5163  unsigned FnKind = Fn->getType()->isBlockPointerType()
5164                       ? 1 /* block */
5165                       : (IsExecConfig ? 3 /* kernel function (exec config) */
5166                                       : 0 /* function */);
5167
5168  // If too few arguments are available (and we don't have default
5169  // arguments for the remaining parameters), don't make the call.
5170  if (Args.size() < NumParams) {
5171    if (Args.size() < MinArgs) {
5172      TypoCorrection TC;
5173      if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5174        unsigned diag_id =
5175            MinArgs == NumParams && !Proto->isVariadic()
5176                ? diag::err_typecheck_call_too_few_args_suggest
5177                : diag::err_typecheck_call_too_few_args_at_least_suggest;
5178        diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
5179                                        << static_cast<unsigned>(Args.size())
5180                                        << TC.getCorrectionRange());
5181      } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
5182        Diag(RParenLoc,
5183             MinArgs == NumParams && !Proto->isVariadic()
5184                 ? diag::err_typecheck_call_too_few_args_one
5185                 : diag::err_typecheck_call_too_few_args_at_least_one)
5186            << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
5187      else
5188        Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5189                            ? diag::err_typecheck_call_too_few_args
5190                            : diag::err_typecheck_call_too_few_args_at_least)
5191            << FnKind << MinArgs << static_cast<unsigned>(Args.size())
5192            << Fn->getSourceRange();
5193
5194      // Emit the location of the prototype.
5195      if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5196        Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl;
5197
5198      return true;
5199    }
5200    // We reserve space for the default arguments when we create
5201    // the call expression, before calling ConvertArgumentsForCall.
5202    assert((Call->getNumArgs() == NumParams) &&
5203           "We should have reserved space for the default arguments before!");
5204  }
5205
5206  // If too many are passed and not variadic, error on the extras and drop
5207  // them.
5208  if (Args.size() > NumParams) {
5209    if (!Proto->isVariadic()) {
5210      TypoCorrection TC;
5211      if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5212        unsigned diag_id =
5213            MinArgs == NumParams && !Proto->isVariadic()
5214                ? diag::err_typecheck_call_too_many_args_suggest
5215                : diag::err_typecheck_call_too_many_args_at_most_suggest;
5216        diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
5217                                        << static_cast<unsigned>(Args.size())
5218                                        << TC.getCorrectionRange());
5219      } else if (NumParams == 1 && FDecl &&
5220                 FDecl->getParamDecl(0)->getDeclName())
5221        Diag(Args[NumParams]->getBeginLoc(),
5222             MinArgs == NumParams
5223                 ? diag::err_typecheck_call_too_many_args_one
5224                 : diag::err_typecheck_call_too_many_args_at_most_one)
5225            << FnKind << FDecl->getParamDecl(0)
5226            << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
5227            << SourceRange(Args[NumParams]->getBeginLoc(),
5228                           Args.back()->getEndLoc());
5229      else
5230        Diag(Args[NumParams]->getBeginLoc(),
5231             MinArgs == NumParams
5232                 ? diag::err_typecheck_call_too_many_args
5233                 : diag::err_typecheck_call_too_many_args_at_most)
5234            << FnKind << NumParams << static_cast<unsigned>(Args.size())
5235            << Fn->getSourceRange()
5236            << SourceRange(Args[NumParams]->getBeginLoc(),
5237                           Args.back()->getEndLoc());
5238
5239      // Emit the location of the prototype.
5240      if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5241        Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl;
5242
5243      // This deletes the extra arguments.
5244      Call->shrinkNumArgs(NumParams);
5245      return true;
5246    }
5247  }
5248  SmallVector<Expr *, 8> AllArgs;
5249  VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5250
5251  Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5252                                   AllArgs, CallType);
5253  if (Invalid)
5254    return true;
5255  unsigned TotalNumArgs = AllArgs.size();
5256  for (unsigned i = 0; i < TotalNumArgs; ++i)
5257    Call->setArg(i, AllArgs[i]);
5258
5259  return false;
5260}
5261
5262bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5263                                  const FunctionProtoType *Proto,
5264                                  unsigned FirstParam, ArrayRef<Expr *> Args,
5265                                  SmallVectorImpl<Expr *> &AllArgs,
5266                                  VariadicCallType CallType, bool AllowExplicit,
5267                                  bool IsListInitialization) {
5268  unsigned NumParams = Proto->getNumParams();
5269  bool Invalid = false;
5270  size_t ArgIx = 0;
5271  // Continue to check argument types (even if we have too few/many args).
5272  for (unsigned i = FirstParam; i < NumParams; i++) {
5273    QualType ProtoArgType = Proto->getParamType(i);
5274
5275    Expr *Arg;
5276    ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5277    if (ArgIx < Args.size()) {
5278      Arg = Args[ArgIx++];
5279
5280      if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5281                              diag::err_call_incomplete_argument, Arg))
5282        return true;
5283
5284      // Strip the unbridged-cast placeholder expression off, if applicable.
5285      bool CFAudited = false;
5286      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5287          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5288          (!Param || !Param->hasAttr<CFConsumedAttr>()))
5289        Arg = stripARCUnbridgedCast(Arg);
5290      else if (getLangOpts().ObjCAutoRefCount &&
5291               FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5292               (!Param || !Param->hasAttr<CFConsumedAttr>()))
5293        CFAudited = true;
5294
5295      if (Proto->getExtParameterInfo(i).isNoEscape())
5296        if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
5297          BE->getBlockDecl()->setDoesNotEscape();
5298
5299      InitializedEntity Entity =
5300          Param ? InitializedEntity::InitializeParameter(Context, Param,
5301                                                         ProtoArgType)
5302                : InitializedEntity::InitializeParameter(
5303                      Context, ProtoArgType, Proto->isParamConsumed(i));
5304
5305      // Remember that parameter belongs to a CF audited API.
5306      if (CFAudited)
5307        Entity.setParameterCFAudited();
5308
5309      ExprResult ArgE = PerformCopyInitialization(
5310          Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
5311      if (ArgE.isInvalid())
5312        return true;
5313
5314      Arg = ArgE.getAs<Expr>();
5315    } else {
5316      assert(Param && "can't use default arguments without a known callee");
5317
5318      ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
5319      if (ArgExpr.isInvalid())
5320        return true;
5321
5322      Arg = ArgExpr.getAs<Expr>();
5323    }
5324
5325    // Check for array bounds violations for each argument to the call. This
5326    // check only triggers warnings when the argument isn't a more complex Expr
5327    // with its own checking, such as a BinaryOperator.
5328    CheckArrayAccess(Arg);
5329
5330    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
5331    CheckStaticArrayArgument(CallLoc, Param, Arg);
5332
5333    AllArgs.push_back(Arg);
5334  }
5335
5336  // If this is a variadic call, handle args passed through "...".
5337  if (CallType != VariadicDoesNotApply) {
5338    // Assume that extern "C" functions with variadic arguments that
5339    // return __unknown_anytype aren't *really* variadic.
5340    if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
5341        FDecl->isExternC()) {
5342      for (Expr *A : Args.slice(ArgIx)) {
5343        QualType paramType; // ignored
5344        ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
5345        Invalid |= arg.isInvalid();
5346        AllArgs.push_back(arg.get());
5347      }
5348
5349    // Otherwise do argument promotion, (C99 6.5.2.2p7).
5350    } else {
5351      for (Expr *A : Args.slice(ArgIx)) {
5352        ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
5353        Invalid |= Arg.isInvalid();
5354        // Copy blocks to the heap.
5355        if (A->getType()->isBlockPointerType())
5356          maybeExtendBlockObject(Arg);
5357        AllArgs.push_back(Arg.get());
5358      }
5359    }
5360
5361    // Check for array bounds violations.
5362    for (Expr *A : Args.slice(ArgIx))
5363      CheckArrayAccess(A);
5364  }
5365  return Invalid;
5366}
5367
5368static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
5369  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
5370  if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
5371    TL = DTL.getOriginalLoc();
5372  if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
5373    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
5374      << ATL.getLocalSourceRange();
5375}
5376
5377/// CheckStaticArrayArgument - If the given argument corresponds to a static
5378/// array parameter, check that it is non-null, and that if it is formed by
5379/// array-to-pointer decay, the underlying array is sufficiently large.
5380///
5381/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
5382/// array type derivation, then for each call to the function, the value of the
5383/// corresponding actual argument shall provide access to the first element of
5384/// an array with at least as many elements as specified by the size expression.
5385void
5386Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
5387                               ParmVarDecl *Param,
5388                               const Expr *ArgExpr) {
5389  // Static array parameters are not supported in C++.
5390  if (!Param || getLangOpts().CPlusPlus)
5391    return;
5392
5393  QualType OrigTy = Param->getOriginalType();
5394
5395  const ArrayType *AT = Context.getAsArrayType(OrigTy);
5396  if (!AT || AT->getSizeModifier() != ArrayType::Static)
5397    return;
5398
5399  if (ArgExpr->isNullPointerConstant(Context,
5400                                     Expr::NPC_NeverValueDependent)) {
5401    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
5402    DiagnoseCalleeStaticArrayParam(*this, Param);
5403    return;
5404  }
5405
5406  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
5407  if (!CAT)
5408    return;
5409
5410  const ConstantArrayType *ArgCAT =
5411    Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
5412  if (!ArgCAT)
5413    return;
5414
5415  if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
5416                                             ArgCAT->getElementType())) {
5417    if (ArgCAT->getSize().ult(CAT->getSize())) {
5418      Diag(CallLoc, diag::warn_static_array_too_small)
5419          << ArgExpr->getSourceRange()
5420          << (unsigned)ArgCAT->getSize().getZExtValue()
5421          << (unsigned)CAT->getSize().getZExtValue() << 0;
5422      DiagnoseCalleeStaticArrayParam(*this, Param);
5423    }
5424    return;
5425  }
5426
5427  Optional<CharUnits> ArgSize =
5428      getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
5429  Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
5430  if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
5431    Diag(CallLoc, diag::warn_static_array_too_small)
5432        << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
5433        << (unsigned)ParmSize->getQuantity() << 1;
5434    DiagnoseCalleeStaticArrayParam(*this, Param);
5435  }
5436}
5437
5438/// Given a function expression of unknown-any type, try to rebuild it
5439/// to have a function type.
5440static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
5441
5442/// Is the given type a placeholder that we need to lower out
5443/// immediately during argument processing?
5444static bool isPlaceholderToRemoveAsArg(QualType type) {
5445  // Placeholders are never sugared.
5446  const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
5447  if (!placeholder) return false;
5448
5449  switch (placeholder->getKind()) {
5450  // Ignore all the non-placeholder types.
5451#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
5452  case BuiltinType::Id:
5453#include "clang/Basic/OpenCLImageTypes.def"
5454#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
5455  case BuiltinType::Id:
5456#include "clang/Basic/OpenCLExtensionTypes.def"
5457  // In practice we'll never use this, since all SVE types are sugared
5458  // via TypedefTypes rather than exposed directly as BuiltinTypes.
5459#define SVE_TYPE(Name, Id, SingletonId) \
5460  case BuiltinType::Id:
5461#include "clang/Basic/AArch64SVEACLETypes.def"
5462#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
5463#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
5464#include "clang/AST/BuiltinTypes.def"
5465    return false;
5466
5467  // We cannot lower out overload sets; they might validly be resolved
5468  // by the call machinery.
5469  case BuiltinType::Overload:
5470    return false;
5471
5472  // Unbridged casts in ARC can be handled in some call positions and
5473  // should be left in place.
5474  case BuiltinType::ARCUnbridgedCast:
5475    return false;
5476
5477  // Pseudo-objects should be converted as soon as possible.
5478  case BuiltinType::PseudoObject:
5479    return true;
5480
5481  // The debugger mode could theoretically but currently does not try
5482  // to resolve unknown-typed arguments based on known parameter types.
5483  case BuiltinType::UnknownAny:
5484    return true;
5485
5486  // These are always invalid as call arguments and should be reported.
5487  case BuiltinType::BoundMember:
5488  case BuiltinType::BuiltinFn:
5489  case BuiltinType::OMPArraySection:
5490    return true;
5491
5492  }
5493  llvm_unreachable("bad builtin type kind");
5494}
5495
5496/// Check an argument list for placeholders that we won't try to
5497/// handle later.
5498static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
5499  // Apply this processing to all the arguments at once instead of
5500  // dying at the first failure.
5501  bool hasInvalid = false;
5502  for (size_t i = 0, e = args.size(); i != e; i++) {
5503    if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
5504      ExprResult result = S.CheckPlaceholderExpr(args[i]);
5505      if (result.isInvalid()) hasInvalid = true;
5506      else args[i] = result.get();
5507    } else if (hasInvalid) {
5508      (void)S.CorrectDelayedTyposInExpr(args[i]);
5509    }
5510  }
5511  return hasInvalid;
5512}
5513
5514/// If a builtin function has a pointer argument with no explicit address
5515/// space, then it should be able to accept a pointer to any address
5516/// space as input.  In order to do this, we need to replace the
5517/// standard builtin declaration with one that uses the same address space
5518/// as the call.
5519///
5520/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
5521///                  it does not contain any pointer arguments without
5522///                  an address space qualifer.  Otherwise the rewritten
5523///                  FunctionDecl is returned.
5524/// TODO: Handle pointer return types.
5525static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
5526                                                FunctionDecl *FDecl,
5527                                                MultiExprArg ArgExprs) {
5528
5529  QualType DeclType = FDecl->getType();
5530  const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
5531
5532  if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
5533      ArgExprs.size() < FT->getNumParams())
5534    return nullptr;
5535
5536  bool NeedsNewDecl = false;
5537  unsigned i = 0;
5538  SmallVector<QualType, 8> OverloadParams;
5539
5540  for (QualType ParamType : FT->param_types()) {
5541
5542    // Convert array arguments to pointer to simplify type lookup.
5543    ExprResult ArgRes =
5544        Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
5545    if (ArgRes.isInvalid())
5546      return nullptr;
5547    Expr *Arg = ArgRes.get();
5548    QualType ArgType = Arg->getType();
5549    if (!ParamType->isPointerType() ||
5550        ParamType.hasAddressSpace() ||
5551        !ArgType->isPointerType() ||
5552        !ArgType->getPointeeType().hasAddressSpace()) {
5553      OverloadParams.push_back(ParamType);
5554      continue;
5555    }
5556
5557    QualType PointeeType = ParamType->getPointeeType();
5558    if (PointeeType.hasAddressSpace())
5559      continue;
5560
5561    NeedsNewDecl = true;
5562    LangAS AS = ArgType->getPointeeType().getAddressSpace();
5563
5564    PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
5565    OverloadParams.push_back(Context.getPointerType(PointeeType));
5566  }
5567
5568  if (!NeedsNewDecl)
5569    return nullptr;
5570
5571  FunctionProtoType::ExtProtoInfo EPI;
5572  EPI.Variadic = FT->isVariadic();
5573  QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
5574                                                OverloadParams, EPI);
5575  DeclContext *Parent = FDecl->getParent();
5576  FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
5577                                                    FDecl->getLocation(),
5578                                                    FDecl->getLocation(),
5579                                                    FDecl->getIdentifier(),
5580                                                    OverloadTy,
5581                                                    /*TInfo=*/nullptr,
5582                                                    SC_Extern, false,
5583                                                    /*hasPrototype=*/true);
5584  SmallVector<ParmVarDecl*, 16> Params;
5585  FT = cast<FunctionProtoType>(OverloadTy);
5586  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
5587    QualType ParamType = FT->getParamType(i);
5588    ParmVarDecl *Parm =
5589        ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
5590                                SourceLocation(), nullptr, ParamType,
5591                                /*TInfo=*/nullptr, SC_None, nullptr);
5592    Parm->setScopeInfo(0, i);
5593    Params.push_back(Parm);
5594  }
5595  OverloadDecl->setParams(Params);
5596  return OverloadDecl;
5597}
5598
5599static void checkDirectCallValidity(Sema &S, const Expr *Fn,
5600                                    FunctionDecl *Callee,
5601                                    MultiExprArg ArgExprs) {
5602  // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
5603  // similar attributes) really don't like it when functions are called with an
5604  // invalid number of args.
5605  if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
5606                         /*PartialOverloading=*/false) &&
5607      !Callee->isVariadic())
5608    return;
5609  if (Callee->getMinRequiredArguments() > ArgExprs.size())
5610    return;
5611
5612  if (const EnableIfAttr *Attr = S.CheckEnableIf(Callee, ArgExprs, true)) {
5613    S.Diag(Fn->getBeginLoc(),
5614           isa<CXXMethodDecl>(Callee)
5615               ? diag::err_ovl_no_viable_member_function_in_call
5616               : diag::err_ovl_no_viable_function_in_call)
5617        << Callee << Callee->getSourceRange();
5618    S.Diag(Callee->getLocation(),
5619           diag::note_ovl_candidate_disabled_by_function_cond_attr)
5620        << Attr->getCond()->getSourceRange() << Attr->getMessage();
5621    return;
5622  }
5623}
5624
5625static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
5626    const UnresolvedMemberExpr *const UME, Sema &S) {
5627
5628  const auto GetFunctionLevelDCIfCXXClass =
5629      [](Sema &S) -> const CXXRecordDecl * {
5630    const DeclContext *const DC = S.getFunctionLevelDeclContext();
5631    if (!DC || !DC->getParent())
5632      return nullptr;
5633
5634    // If the call to some member function was made from within a member
5635    // function body 'M' return return 'M's parent.
5636    if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
5637      return MD->getParent()->getCanonicalDecl();
5638    // else the call was made from within a default member initializer of a
5639    // class, so return the class.
5640    if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
5641      return RD->getCanonicalDecl();
5642    return nullptr;
5643  };
5644  // If our DeclContext is neither a member function nor a class (in the
5645  // case of a lambda in a default member initializer), we can't have an
5646  // enclosing 'this'.
5647
5648  const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
5649  if (!CurParentClass)
5650    return false;
5651
5652  // The naming class for implicit member functions call is the class in which
5653  // name lookup starts.
5654  const CXXRecordDecl *const NamingClass =
5655      UME->getNamingClass()->getCanonicalDecl();
5656  assert(NamingClass && "Must have naming class even for implicit access");
5657
5658  // If the unresolved member functions were found in a 'naming class' that is
5659  // related (either the same or derived from) to the class that contains the
5660  // member function that itself contained the implicit member access.
5661
5662  return CurParentClass == NamingClass ||
5663         CurParentClass->isDerivedFrom(NamingClass);
5664}
5665
5666static void
5667tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
5668    Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
5669
5670  if (!UME)
5671    return;
5672
5673  LambdaScopeInfo *const CurLSI = S.getCurLambda();
5674  // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
5675  // already been captured, or if this is an implicit member function call (if
5676  // it isn't, an attempt to capture 'this' should already have been made).
5677  if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
5678      !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
5679    return;
5680
5681  // Check if the naming class in which the unresolved members were found is
5682  // related (same as or is a base of) to the enclosing class.
5683
5684  if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
5685    return;
5686
5687
5688  DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
5689  // If the enclosing function is not dependent, then this lambda is
5690  // capture ready, so if we can capture this, do so.
5691  if (!EnclosingFunctionCtx->isDependentContext()) {
5692    // If the current lambda and all enclosing lambdas can capture 'this' -
5693    // then go ahead and capture 'this' (since our unresolved overload set
5694    // contains at least one non-static member function).
5695    if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
5696      S.CheckCXXThisCapture(CallLoc);
5697  } else if (S.CurContext->isDependentContext()) {
5698    // ... since this is an implicit member reference, that might potentially
5699    // involve a 'this' capture, mark 'this' for potential capture in
5700    // enclosing lambdas.
5701    if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
5702      CurLSI->addPotentialThisCapture(CallLoc);
5703  }
5704}
5705
5706ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
5707                               MultiExprArg ArgExprs, SourceLocation RParenLoc,
5708                               Expr *ExecConfig) {
5709  ExprResult Call =
5710      BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig);
5711  if (Call.isInvalid())
5712    return Call;
5713
5714  // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
5715  // language modes.
5716  if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
5717    if (ULE->hasExplicitTemplateArgs() &&
5718        ULE->decls_begin() == ULE->decls_end()) {
5719      Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus2a
5720                                 ? diag::warn_cxx17_compat_adl_only_template_id
5721                                 : diag::ext_adl_only_template_id)
5722          << ULE->getName();
5723    }
5724  }
5725
5726  return Call;
5727}
5728
5729/// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
5730/// This provides the location of the left/right parens and a list of comma
5731/// locations.
5732ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
5733                               MultiExprArg ArgExprs, SourceLocation RParenLoc,
5734                               Expr *ExecConfig, bool IsExecConfig) {
5735  // Since this might be a postfix expression, get rid of ParenListExprs.
5736  ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
5737  if (Result.isInvalid()) return ExprError();
5738  Fn = Result.get();
5739
5740  if (checkArgsForPlaceholders(*this, ArgExprs))
5741    return ExprError();
5742
5743  if (getLangOpts().CPlusPlus) {
5744    // If this is a pseudo-destructor expression, build the call immediately.
5745    if (isa<CXXPseudoDestructorExpr>(Fn)) {
5746      if (!ArgExprs.empty()) {
5747        // Pseudo-destructor calls should not have any arguments.
5748        Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
5749            << FixItHint::CreateRemoval(
5750                   SourceRange(ArgExprs.front()->getBeginLoc(),
5751                               ArgExprs.back()->getEndLoc()));
5752      }
5753
5754      return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
5755                              VK_RValue, RParenLoc);
5756    }
5757    if (Fn->getType() == Context.PseudoObjectTy) {
5758      ExprResult result = CheckPlaceholderExpr(Fn);
5759      if (result.isInvalid()) return ExprError();
5760      Fn = result.get();
5761    }
5762
5763    // Determine whether this is a dependent call inside a C++ template,
5764    // in which case we won't do any semantic analysis now.
5765    if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
5766      if (ExecConfig) {
5767        return CUDAKernelCallExpr::Create(
5768            Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
5769            Context.DependentTy, VK_RValue, RParenLoc);
5770      } else {
5771
5772        tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
5773            *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
5774            Fn->getBeginLoc());
5775
5776        return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
5777                                VK_RValue, RParenLoc);
5778      }
5779    }
5780
5781    // Determine whether this is a call to an object (C++ [over.call.object]).
5782    if (Fn->getType()->isRecordType())
5783      return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
5784                                          RParenLoc);
5785
5786    if (Fn->getType() == Context.UnknownAnyTy) {
5787      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
5788      if (result.isInvalid()) return ExprError();
5789      Fn = result.get();
5790    }
5791
5792    if (Fn->getType() == Context.BoundMemberTy) {
5793      return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
5794                                       RParenLoc);
5795    }
5796  }
5797
5798  // Check for overloaded calls.  This can happen even in C due to extensions.
5799  if (Fn->getType() == Context.OverloadTy) {
5800    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
5801
5802    // We aren't supposed to apply this logic if there's an '&' involved.
5803    if (!find.HasFormOfMemberPointer) {
5804      if (Expr::hasAnyTypeDependentArguments(ArgExprs))
5805        return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
5806                                VK_RValue, RParenLoc);
5807      OverloadExpr *ovl = find.Expression;
5808      if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
5809        return BuildOverloadedCallExpr(
5810            Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
5811            /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
5812      return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
5813                                       RParenLoc);
5814    }
5815  }
5816
5817  // If we're directly calling a function, get the appropriate declaration.
5818  if (Fn->getType() == Context.UnknownAnyTy) {
5819    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
5820    if (result.isInvalid()) return ExprError();
5821    Fn = result.get();
5822  }
5823
5824  Expr *NakedFn = Fn->IgnoreParens();
5825
5826  bool CallingNDeclIndirectly = false;
5827  NamedDecl *NDecl = nullptr;
5828  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
5829    if (UnOp->getOpcode() == UO_AddrOf) {
5830      CallingNDeclIndirectly = true;
5831      NakedFn = UnOp->getSubExpr()->IgnoreParens();
5832    }
5833  }
5834
5835  if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
5836    NDecl = DRE->getDecl();
5837
5838    FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
5839    if (FDecl && FDecl->getBuiltinID()) {
5840      // Rewrite the function decl for this builtin by replacing parameters
5841      // with no explicit address space with the address space of the arguments
5842      // in ArgExprs.
5843      if ((FDecl =
5844               rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
5845        NDecl = FDecl;
5846        Fn = DeclRefExpr::Create(
5847            Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
5848            SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
5849            nullptr, DRE->isNonOdrUse());
5850      }
5851    }
5852  } else if (isa<MemberExpr>(NakedFn))
5853    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
5854
5855  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
5856    if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
5857                                      FD, /*Complain=*/true, Fn->getBeginLoc()))
5858      return ExprError();
5859
5860    if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn))
5861      return ExprError();
5862
5863    checkDirectCallValidity(*this, Fn, FD, ArgExprs);
5864  }
5865
5866  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
5867                               ExecConfig, IsExecConfig);
5868}
5869
5870/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
5871///
5872/// __builtin_astype( value, dst type )
5873///
5874ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
5875                                 SourceLocation BuiltinLoc,
5876                                 SourceLocation RParenLoc) {
5877  ExprValueKind VK = VK_RValue;
5878  ExprObjectKind OK = OK_Ordinary;
5879  QualType DstTy = GetTypeFromParser(ParsedDestTy);
5880  QualType SrcTy = E->getType();
5881  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
5882    return ExprError(Diag(BuiltinLoc,
5883                          diag::err_invalid_astype_of_different_size)
5884                     << DstTy
5885                     << SrcTy
5886                     << E->getSourceRange());
5887  return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
5888}
5889
5890/// ActOnConvertVectorExpr - create a new convert-vector expression from the
5891/// provided arguments.
5892///
5893/// __builtin_convertvector( value, dst type )
5894///
5895ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5896                                        SourceLocation BuiltinLoc,
5897                                        SourceLocation RParenLoc) {
5898  TypeSourceInfo *TInfo;
5899  GetTypeFromParser(ParsedDestTy, &TInfo);
5900  return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
5901}
5902
5903/// BuildResolvedCallExpr - Build a call to a resolved expression,
5904/// i.e. an expression not of \p OverloadTy.  The expression should
5905/// unary-convert to an expression of function-pointer or
5906/// block-pointer type.
5907///
5908/// \param NDecl the declaration being called, if available
5909ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
5910                                       SourceLocation LParenLoc,
5911                                       ArrayRef<Expr *> Args,
5912                                       SourceLocation RParenLoc, Expr *Config,
5913                                       bool IsExecConfig, ADLCallKind UsesADL) {
5914  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
5915  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
5916
5917  // Functions with 'interrupt' attribute cannot be called directly.
5918  if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
5919    Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
5920    return ExprError();
5921  }
5922
5923  // Interrupt handlers don't save off the VFP regs automatically on ARM,
5924  // so there's some risk when calling out to non-interrupt handler functions
5925  // that the callee might not preserve them. This is easy to diagnose here,
5926  // but can be very challenging to debug.
5927  if (auto *Caller = getCurFunctionDecl())
5928    if (Caller->hasAttr<ARMInterruptAttr>()) {
5929      bool VFP = Context.getTargetInfo().hasFeature("vfp");
5930      if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>()))
5931        Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
5932    }
5933
5934  // Promote the function operand.
5935  // We special-case function promotion here because we only allow promoting
5936  // builtin functions to function pointers in the callee of a call.
5937  ExprResult Result;
5938  QualType ResultTy;
5939  if (BuiltinID &&
5940      Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
5941    // Extract the return type from the (builtin) function pointer type.
5942    // FIXME Several builtins still have setType in
5943    // Sema::CheckBuiltinFunctionCall. One should review their definitions in
5944    // Builtins.def to ensure they are correct before removing setType calls.
5945    QualType FnPtrTy = Context.getPointerType(FDecl->getType());
5946    Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
5947    ResultTy = FDecl->getCallResultType();
5948  } else {
5949    Result = CallExprUnaryConversions(Fn);
5950    ResultTy = Context.BoolTy;
5951  }
5952  if (Result.isInvalid())
5953    return ExprError();
5954  Fn = Result.get();
5955
5956  // Check for a valid function type, but only if it is not a builtin which
5957  // requires custom type checking. These will be handled by
5958  // CheckBuiltinFunctionCall below just after creation of the call expression.
5959  const FunctionType *FuncT = nullptr;
5960  if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
5961  retry:
5962    if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
5963      // C99 6.5.2.2p1 - "The expression that denotes the called function shall
5964      // have type pointer to function".
5965      FuncT = PT->getPointeeType()->getAs<FunctionType>();
5966      if (!FuncT)
5967        return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5968                         << Fn->getType() << Fn->getSourceRange());
5969    } else if (const BlockPointerType *BPT =
5970                   Fn->getType()->getAs<BlockPointerType>()) {
5971      FuncT = BPT->getPointeeType()->castAs<FunctionType>();
5972    } else {
5973      // Handle calls to expressions of unknown-any type.
5974      if (Fn->getType() == Context.UnknownAnyTy) {
5975        ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
5976        if (rewrite.isInvalid())
5977          return ExprError();
5978        Fn = rewrite.get();
5979        goto retry;
5980      }
5981
5982      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5983                       << Fn->getType() << Fn->getSourceRange());
5984    }
5985  }
5986
5987  // Get the number of parameters in the function prototype, if any.
5988  // We will allocate space for max(Args.size(), NumParams) arguments
5989  // in the call expression.
5990  const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
5991  unsigned NumParams = Proto ? Proto->getNumParams() : 0;
5992
5993  CallExpr *TheCall;
5994  if (Config) {
5995    assert(UsesADL == ADLCallKind::NotADL &&
5996           "CUDAKernelCallExpr should not use ADL");
5997    TheCall =
5998        CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config), Args,
5999                                   ResultTy, VK_RValue, RParenLoc, NumParams);
6000  } else {
6001    TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
6002                               RParenLoc, NumParams, UsesADL);
6003  }
6004
6005  if (!getLangOpts().CPlusPlus) {
6006    // Forget about the nulled arguments since typo correction
6007    // do not handle them well.
6008    TheCall->shrinkNumArgs(Args.size());
6009    // C cannot always handle TypoExpr nodes in builtin calls and direct
6010    // function calls as their argument checking don't necessarily handle
6011    // dependent types properly, so make sure any TypoExprs have been
6012    // dealt with.
6013    ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
6014    if (!Result.isUsable()) return ExprError();
6015    CallExpr *TheOldCall = TheCall;
6016    TheCall = dyn_cast<CallExpr>(Result.get());
6017    bool CorrectedTypos = TheCall != TheOldCall;
6018    if (!TheCall) return Result;
6019    Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6020
6021    // A new call expression node was created if some typos were corrected.
6022    // However it may not have been constructed with enough storage. In this
6023    // case, rebuild the node with enough storage. The waste of space is
6024    // immaterial since this only happens when some typos were corrected.
6025    if (CorrectedTypos && Args.size() < NumParams) {
6026      if (Config)
6027        TheCall = CUDAKernelCallExpr::Create(
6028            Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_RValue,
6029            RParenLoc, NumParams);
6030      else
6031        TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
6032                                   RParenLoc, NumParams, UsesADL);
6033    }
6034    // We can now handle the nulled arguments for the default arguments.
6035    TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
6036  }
6037
6038  // Bail out early if calling a builtin with custom type checking.
6039  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
6040    return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6041
6042  if (getLangOpts().CUDA) {
6043    if (Config) {
6044      // CUDA: Kernel calls must be to global functions
6045      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
6046        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
6047            << FDecl << Fn->getSourceRange());
6048
6049      // CUDA: Kernel function must have 'void' return type
6050      if (!FuncT->getReturnType()->isVoidType() &&
6051          !FuncT->getReturnType()->getAs<AutoType>() &&
6052          !FuncT->getReturnType()->isInstantiationDependentType())
6053        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
6054            << Fn->getType() << Fn->getSourceRange());
6055    } else {
6056      // CUDA: Calls to global functions must be configured
6057      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6058        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
6059            << FDecl << Fn->getSourceRange());
6060    }
6061  }
6062
6063  // Check for a valid return type
6064  if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
6065                          FDecl))
6066    return ExprError();
6067
6068  // We know the result type of the call, set it.
6069  TheCall->setType(FuncT->getCallResultType(Context));
6070  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
6071
6072  if (Proto) {
6073    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6074                                IsExecConfig))
6075      return ExprError();
6076  } else {
6077    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
6078
6079    if (FDecl) {
6080      // Check if we have too few/too many template arguments, based
6081      // on our knowledge of the function definition.
6082      const FunctionDecl *Def = nullptr;
6083      if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
6084        Proto = Def->getType()->getAs<FunctionProtoType>();
6085       if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6086          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
6087          << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6088      }
6089
6090      // If the function we're calling isn't a function prototype, but we have
6091      // a function prototype from a prior declaratiom, use that prototype.
6092      if (!FDecl->hasPrototype())
6093        Proto = FDecl->getType()->getAs<FunctionProtoType>();
6094    }
6095
6096    // Promote the arguments (C99 6.5.2.2p6).
6097    for (unsigned i = 0, e = Args.size(); i != e; i++) {
6098      Expr *Arg = Args[i];
6099
6100      if (Proto && i < Proto->getNumParams()) {
6101        InitializedEntity Entity = InitializedEntity::InitializeParameter(
6102            Context, Proto->getParamType(i), Proto->isParamConsumed(i));
6103        ExprResult ArgE =
6104            PerformCopyInitialization(Entity, SourceLocation(), Arg);
6105        if (ArgE.isInvalid())
6106          return true;
6107
6108        Arg = ArgE.getAs<Expr>();
6109
6110      } else {
6111        ExprResult ArgE = DefaultArgumentPromotion(Arg);
6112
6113        if (ArgE.isInvalid())
6114          return true;
6115
6116        Arg = ArgE.getAs<Expr>();
6117      }
6118
6119      if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
6120                              diag::err_call_incomplete_argument, Arg))
6121        return ExprError();
6122
6123      TheCall->setArg(i, Arg);
6124    }
6125  }
6126
6127  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6128    if (!Method->isStatic())
6129      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
6130        << Fn->getSourceRange());
6131
6132  // Check for sentinels
6133  if (NDecl)
6134    DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
6135
6136  // Do special checking on direct calls to functions.
6137  if (FDecl) {
6138    if (CheckFunctionCall(FDecl, TheCall, Proto))
6139      return ExprError();
6140
6141    checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
6142
6143    if (BuiltinID)
6144      return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6145  } else if (NDecl) {
6146    if (CheckPointerCall(NDecl, TheCall, Proto))
6147      return ExprError();
6148  } else {
6149    if (CheckOtherCall(TheCall, Proto))
6150      return ExprError();
6151  }
6152
6153  return MaybeBindToTemporary(TheCall);
6154}
6155
6156ExprResult
6157Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
6158                           SourceLocation RParenLoc, Expr *InitExpr) {
6159  assert(Ty && "ActOnCompoundLiteral(): missing type");
6160  assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
6161
6162  TypeSourceInfo *TInfo;
6163  QualType literalType = GetTypeFromParser(Ty, &TInfo);
6164  if (!TInfo)
6165    TInfo = Context.getTrivialTypeSourceInfo(literalType);
6166
6167  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
6168}
6169
6170ExprResult
6171Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
6172                               SourceLocation RParenLoc, Expr *LiteralExpr) {
6173  QualType literalType = TInfo->getType();
6174
6175  if (literalType->isArrayType()) {
6176    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
6177          diag::err_illegal_decl_array_incomplete_type,
6178          SourceRange(LParenLoc,
6179                      LiteralExpr->getSourceRange().getEnd())))
6180      return ExprError();
6181    if (literalType->isVariableArrayType())
6182      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
6183        << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
6184  } else if (!literalType->isDependentType() &&
6185             RequireCompleteType(LParenLoc, literalType,
6186               diag::err_typecheck_decl_incomplete_type,
6187               SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6188    return ExprError();
6189
6190  InitializedEntity Entity
6191    = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
6192  InitializationKind Kind
6193    = InitializationKind::CreateCStyleCast(LParenLoc,
6194                                           SourceRange(LParenLoc, RParenLoc),
6195                                           /*InitList=*/true);
6196  InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
6197  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
6198                                      &literalType);
6199  if (Result.isInvalid())
6200    return ExprError();
6201  LiteralExpr = Result.get();
6202
6203  bool isFileScope = !CurContext->isFunctionOrMethod();
6204
6205  // In C, compound literals are l-values for some reason.
6206  // For GCC compatibility, in C++, file-scope array compound literals with
6207  // constant initializers are also l-values, and compound literals are
6208  // otherwise prvalues.
6209  //
6210  // (GCC also treats C++ list-initialized file-scope array prvalues with
6211  // constant initializers as l-values, but that's non-conforming, so we don't
6212  // follow it there.)
6213  //
6214  // FIXME: It would be better to handle the lvalue cases as materializing and
6215  // lifetime-extending a temporary object, but our materialized temporaries
6216  // representation only supports lifetime extension from a variable, not "out
6217  // of thin air".
6218  // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
6219  // is bound to the result of applying array-to-pointer decay to the compound
6220  // literal.
6221  // FIXME: GCC supports compound literals of reference type, which should
6222  // obviously have a value kind derived from the kind of reference involved.
6223  ExprValueKind VK =
6224      (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
6225          ? VK_RValue
6226          : VK_LValue;
6227
6228  if (isFileScope)
6229    if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
6230      for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
6231        Expr *Init = ILE->getInit(i);
6232        ILE->setInit(i, ConstantExpr::Create(Context, Init));
6233      }
6234
6235  auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
6236                                              VK, LiteralExpr, isFileScope);
6237  if (isFileScope) {
6238    if (!LiteralExpr->isTypeDependent() &&
6239        !LiteralExpr->isValueDependent() &&
6240        !literalType->isDependentType()) // C99 6.5.2.5p3
6241      if (CheckForConstantInitializer(LiteralExpr, literalType))
6242        return ExprError();
6243  } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
6244             literalType.getAddressSpace() != LangAS::Default) {
6245    // Embedded-C extensions to C99 6.5.2.5:
6246    //   "If the compound literal occurs inside the body of a function, the
6247    //   type name shall not be qualified by an address-space qualifier."
6248    Diag(LParenLoc, diag::err_compound_literal_with_address_space)
6249      << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
6250    return ExprError();
6251  }
6252
6253  // Compound literals that have automatic storage duration are destroyed at
6254  // the end of the scope. Emit diagnostics if it is or contains a C union type
6255  // that is non-trivial to destruct.
6256  if (!isFileScope)
6257    if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
6258      checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
6259                            NTCUC_CompoundLiteral, NTCUK_Destruct);
6260
6261  if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
6262      E->getType().hasNonTrivialToPrimitiveCopyCUnion())
6263    checkNonTrivialCUnionInInitializer(E->getInitializer(),
6264                                       E->getInitializer()->getExprLoc());
6265
6266  return MaybeBindToTemporary(E);
6267}
6268
6269ExprResult
6270Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
6271                    SourceLocation RBraceLoc) {
6272  // Only produce each kind of designated initialization diagnostic once.
6273  SourceLocation FirstDesignator;
6274  bool DiagnosedArrayDesignator = false;
6275  bool DiagnosedNestedDesignator = false;
6276  bool DiagnosedMixedDesignator = false;
6277
6278  // Check that any designated initializers are syntactically valid in the
6279  // current language mode.
6280  for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
6281    if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
6282      if (FirstDesignator.isInvalid())
6283        FirstDesignator = DIE->getBeginLoc();
6284
6285      if (!getLangOpts().CPlusPlus)
6286        break;
6287
6288      if (!DiagnosedNestedDesignator && DIE->size() > 1) {
6289        DiagnosedNestedDesignator = true;
6290        Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
6291          << DIE->getDesignatorsSourceRange();
6292      }
6293
6294      for (auto &Desig : DIE->designators()) {
6295        if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
6296          DiagnosedArrayDesignator = true;
6297          Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
6298            << Desig.getSourceRange();
6299        }
6300      }
6301
6302      if (!DiagnosedMixedDesignator &&
6303          !isa<DesignatedInitExpr>(InitArgList[0])) {
6304        DiagnosedMixedDesignator = true;
6305        Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
6306          << DIE->getSourceRange();
6307        Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
6308          << InitArgList[0]->getSourceRange();
6309      }
6310    } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
6311               isa<DesignatedInitExpr>(InitArgList[0])) {
6312      DiagnosedMixedDesignator = true;
6313      auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
6314      Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
6315        << DIE->getSourceRange();
6316      Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
6317        << InitArgList[I]->getSourceRange();
6318    }
6319  }
6320
6321  if (FirstDesignator.isValid()) {
6322    // Only diagnose designated initiaization as a C++20 extension if we didn't
6323    // already diagnose use of (non-C++20) C99 designator syntax.
6324    if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
6325        !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
6326      Diag(FirstDesignator, getLangOpts().CPlusPlus2a
6327                                ? diag::warn_cxx17_compat_designated_init
6328                                : diag::ext_cxx_designated_init);
6329    } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
6330      Diag(FirstDesignator, diag::ext_designated_init);
6331    }
6332  }
6333
6334  return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
6335}
6336
6337ExprResult
6338Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
6339                    SourceLocation RBraceLoc) {
6340  // Semantic analysis for initializers is done by ActOnDeclarator() and
6341  // CheckInitializer() - it requires knowledge of the object being initialized.
6342
6343  // Immediately handle non-overload placeholders.  Overloads can be
6344  // resolved contextually, but everything else here can't.
6345  for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
6346    if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
6347      ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
6348
6349      // Ignore failures; dropping the entire initializer list because
6350      // of one failure would be terrible for indexing/etc.
6351      if (result.isInvalid()) continue;
6352
6353      InitArgList[I] = result.get();
6354    }
6355  }
6356
6357  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
6358                                               RBraceLoc);
6359  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
6360  return E;
6361}
6362
6363/// Do an explicit extend of the given block pointer if we're in ARC.
6364void Sema::maybeExtendBlockObject(ExprResult &E) {
6365  assert(E.get()->getType()->isBlockPointerType());
6366  assert(E.get()->isRValue());
6367
6368  // Only do this in an r-value context.
6369  if (!getLangOpts().ObjCAutoRefCount) return;
6370
6371  E = ImplicitCastExpr::Create(Context, E.get()->getType(),
6372                               CK_ARCExtendBlockObject, E.get(),
6373                               /*base path*/ nullptr, VK_RValue);
6374  Cleanup.setExprNeedsCleanups(true);
6375}
6376
6377/// Prepare a conversion of the given expression to an ObjC object
6378/// pointer type.
6379CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
6380  QualType type = E.get()->getType();
6381  if (type->isObjCObjectPointerType()) {
6382    return CK_BitCast;
6383  } else if (type->isBlockPointerType()) {
6384    maybeExtendBlockObject(E);
6385    return CK_BlockPointerToObjCPointerCast;
6386  } else {
6387    assert(type->isPointerType());
6388    return CK_CPointerToObjCPointerCast;
6389  }
6390}
6391
6392/// Prepares for a scalar cast, performing all the necessary stages
6393/// except the final cast and returning the kind required.
6394CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
6395  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
6396  // Also, callers should have filtered out the invalid cases with
6397  // pointers.  Everything else should be possible.
6398
6399  QualType SrcTy = Src.get()->getType();
6400  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
6401    return CK_NoOp;
6402
6403  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
6404  case Type::STK_MemberPointer:
6405    llvm_unreachable("member pointer type in C");
6406
6407  case Type::STK_CPointer:
6408  case Type::STK_BlockPointer:
6409  case Type::STK_ObjCObjectPointer:
6410    switch (DestTy->getScalarTypeKind()) {
6411    case Type::STK_CPointer: {
6412      LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
6413      LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
6414      if (SrcAS != DestAS)
6415        return CK_AddressSpaceConversion;
6416      if (Context.hasCvrSimilarType(SrcTy, DestTy))
6417        return CK_NoOp;
6418      return CK_BitCast;
6419    }
6420    case Type::STK_BlockPointer:
6421      return (SrcKind == Type::STK_BlockPointer
6422                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
6423    case Type::STK_ObjCObjectPointer:
6424      if (SrcKind == Type::STK_ObjCObjectPointer)
6425        return CK_BitCast;
6426      if (SrcKind == Type::STK_CPointer)
6427        return CK_CPointerToObjCPointerCast;
6428      maybeExtendBlockObject(Src);
6429      return CK_BlockPointerToObjCPointerCast;
6430    case Type::STK_Bool:
6431      return CK_PointerToBoolean;
6432    case Type::STK_Integral:
6433      return CK_PointerToIntegral;
6434    case Type::STK_Floating:
6435    case Type::STK_FloatingComplex:
6436    case Type::STK_IntegralComplex:
6437    case Type::STK_MemberPointer:
6438    case Type::STK_FixedPoint:
6439      llvm_unreachable("illegal cast from pointer");
6440    }
6441    llvm_unreachable("Should have returned before this");
6442
6443  case Type::STK_FixedPoint:
6444    switch (DestTy->getScalarTypeKind()) {
6445    case Type::STK_FixedPoint:
6446      return CK_FixedPointCast;
6447    case Type::STK_Bool:
6448      return CK_FixedPointToBoolean;
6449    case Type::STK_Integral:
6450      return CK_FixedPointToIntegral;
6451    case Type::STK_Floating:
6452    case Type::STK_IntegralComplex:
6453    case Type::STK_FloatingComplex:
6454      Diag(Src.get()->getExprLoc(),
6455           diag::err_unimplemented_conversion_with_fixed_point_type)
6456          << DestTy;
6457      return CK_IntegralCast;
6458    case Type::STK_CPointer:
6459    case Type::STK_ObjCObjectPointer:
6460    case Type::STK_BlockPointer:
6461    case Type::STK_MemberPointer:
6462      llvm_unreachable("illegal cast to pointer type");
6463    }
6464    llvm_unreachable("Should have returned before this");
6465
6466  case Type::STK_Bool: // casting from bool is like casting from an integer
6467  case Type::STK_Integral:
6468    switch (DestTy->getScalarTypeKind()) {
6469    case Type::STK_CPointer:
6470    case Type::STK_ObjCObjectPointer:
6471    case Type::STK_BlockPointer:
6472      if (Src.get()->isNullPointerConstant(Context,
6473                                           Expr::NPC_ValueDependentIsNull))
6474        return CK_NullToPointer;
6475      return CK_IntegralToPointer;
6476    case Type::STK_Bool:
6477      return CK_IntegralToBoolean;
6478    case Type::STK_Integral:
6479      return CK_IntegralCast;
6480    case Type::STK_Floating:
6481      return CK_IntegralToFloating;
6482    case Type::STK_IntegralComplex:
6483      Src = ImpCastExprToType(Src.get(),
6484                      DestTy->castAs<ComplexType>()->getElementType(),
6485                      CK_IntegralCast);
6486      return CK_IntegralRealToComplex;
6487    case Type::STK_FloatingComplex:
6488      Src = ImpCastExprToType(Src.get(),
6489                      DestTy->castAs<ComplexType>()->getElementType(),
6490                      CK_IntegralToFloating);
6491      return CK_FloatingRealToComplex;
6492    case Type::STK_MemberPointer:
6493      llvm_unreachable("member pointer type in C");
6494    case Type::STK_FixedPoint:
6495      return CK_IntegralToFixedPoint;
6496    }
6497    llvm_unreachable("Should have returned before this");
6498
6499  case Type::STK_Floating:
6500    switch (DestTy->getScalarTypeKind()) {
6501    case Type::STK_Floating:
6502      return CK_FloatingCast;
6503    case Type::STK_Bool:
6504      return CK_FloatingToBoolean;
6505    case Type::STK_Integral:
6506      return CK_FloatingToIntegral;
6507    case Type::STK_FloatingComplex:
6508      Src = ImpCastExprToType(Src.get(),
6509                              DestTy->castAs<ComplexType>()->getElementType(),
6510                              CK_FloatingCast);
6511      return CK_FloatingRealToComplex;
6512    case Type::STK_IntegralComplex:
6513      Src = ImpCastExprToType(Src.get(),
6514                              DestTy->castAs<ComplexType>()->getElementType(),
6515                              CK_FloatingToIntegral);
6516      return CK_IntegralRealToComplex;
6517    case Type::STK_CPointer:
6518    case Type::STK_ObjCObjectPointer:
6519    case Type::STK_BlockPointer:
6520      llvm_unreachable("valid float->pointer cast?");
6521    case Type::STK_MemberPointer:
6522      llvm_unreachable("member pointer type in C");
6523    case Type::STK_FixedPoint:
6524      Diag(Src.get()->getExprLoc(),
6525           diag::err_unimplemented_conversion_with_fixed_point_type)
6526          << SrcTy;
6527      return CK_IntegralCast;
6528    }
6529    llvm_unreachable("Should have returned before this");
6530
6531  case Type::STK_FloatingComplex:
6532    switch (DestTy->getScalarTypeKind()) {
6533    case Type::STK_FloatingComplex:
6534      return CK_FloatingComplexCast;
6535    case Type::STK_IntegralComplex:
6536      return CK_FloatingComplexToIntegralComplex;
6537    case Type::STK_Floating: {
6538      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
6539      if (Context.hasSameType(ET, DestTy))
6540        return CK_FloatingComplexToReal;
6541      Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
6542      return CK_FloatingCast;
6543    }
6544    case Type::STK_Bool:
6545      return CK_FloatingComplexToBoolean;
6546    case Type::STK_Integral:
6547      Src = ImpCastExprToType(Src.get(),
6548                              SrcTy->castAs<ComplexType>()->getElementType(),
6549                              CK_FloatingComplexToReal);
6550      return CK_FloatingToIntegral;
6551    case Type::STK_CPointer:
6552    case Type::STK_ObjCObjectPointer:
6553    case Type::STK_BlockPointer:
6554      llvm_unreachable("valid complex float->pointer cast?");
6555    case Type::STK_MemberPointer:
6556      llvm_unreachable("member pointer type in C");
6557    case Type::STK_FixedPoint:
6558      Diag(Src.get()->getExprLoc(),
6559           diag::err_unimplemented_conversion_with_fixed_point_type)
6560          << SrcTy;
6561      return CK_IntegralCast;
6562    }
6563    llvm_unreachable("Should have returned before this");
6564
6565  case Type::STK_IntegralComplex:
6566    switch (DestTy->getScalarTypeKind()) {
6567    case Type::STK_FloatingComplex:
6568      return CK_IntegralComplexToFloatingComplex;
6569    case Type::STK_IntegralComplex:
6570      return CK_IntegralComplexCast;
6571    case Type::STK_Integral: {
6572      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
6573      if (Context.hasSameType(ET, DestTy))
6574        return CK_IntegralComplexToReal;
6575      Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
6576      return CK_IntegralCast;
6577    }
6578    case Type::STK_Bool:
6579      return CK_IntegralComplexToBoolean;
6580    case Type::STK_Floating:
6581      Src = ImpCastExprToType(Src.get(),
6582                              SrcTy->castAs<ComplexType>()->getElementType(),
6583                              CK_IntegralComplexToReal);
6584      return CK_IntegralToFloating;
6585    case Type::STK_CPointer:
6586    case Type::STK_ObjCObjectPointer:
6587    case Type::STK_BlockPointer:
6588      llvm_unreachable("valid complex int->pointer cast?");
6589    case Type::STK_MemberPointer:
6590      llvm_unreachable("member pointer type in C");
6591    case Type::STK_FixedPoint:
6592      Diag(Src.get()->getExprLoc(),
6593           diag::err_unimplemented_conversion_with_fixed_point_type)
6594          << SrcTy;
6595      return CK_IntegralCast;
6596    }
6597    llvm_unreachable("Should have returned before this");
6598  }
6599
6600  llvm_unreachable("Unhandled scalar cast");
6601}
6602
6603static bool breakDownVectorType(QualType type, uint64_t &len,
6604                                QualType &eltType) {
6605  // Vectors are simple.
6606  if (const VectorType *vecType = type->getAs<VectorType>()) {
6607    len = vecType->getNumElements();
6608    eltType = vecType->getElementType();
6609    assert(eltType->isScalarType());
6610    return true;
6611  }
6612
6613  // We allow lax conversion to and from non-vector types, but only if
6614  // they're real types (i.e. non-complex, non-pointer scalar types).
6615  if (!type->isRealType()) return false;
6616
6617  len = 1;
6618  eltType = type;
6619  return true;
6620}
6621
6622/// Are the two types lax-compatible vector types?  That is, given
6623/// that one of them is a vector, do they have equal storage sizes,
6624/// where the storage size is the number of elements times the element
6625/// size?
6626///
6627/// This will also return false if either of the types is neither a
6628/// vector nor a real type.
6629bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
6630  assert(destTy->isVectorType() || srcTy->isVectorType());
6631
6632  // Disallow lax conversions between scalars and ExtVectors (these
6633  // conversions are allowed for other vector types because common headers
6634  // depend on them).  Most scalar OP ExtVector cases are handled by the
6635  // splat path anyway, which does what we want (convert, not bitcast).
6636  // What this rules out for ExtVectors is crazy things like char4*float.
6637  if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
6638  if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
6639
6640  uint64_t srcLen, destLen;
6641  QualType srcEltTy, destEltTy;
6642  if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
6643  if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
6644
6645  // ASTContext::getTypeSize will return the size rounded up to a
6646  // power of 2, so instead of using that, we need to use the raw
6647  // element size multiplied by the element count.
6648  uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
6649  uint64_t destEltSize = Context.getTypeSize(destEltTy);
6650
6651  return (srcLen * srcEltSize == destLen * destEltSize);
6652}
6653
6654/// Is this a legal conversion between two types, one of which is
6655/// known to be a vector type?
6656bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
6657  assert(destTy->isVectorType() || srcTy->isVectorType());
6658
6659  switch (Context.getLangOpts().getLaxVectorConversions()) {
6660  case LangOptions::LaxVectorConversionKind::None:
6661    return false;
6662
6663  case LangOptions::LaxVectorConversionKind::Integer:
6664    if (!srcTy->isIntegralOrEnumerationType()) {
6665      auto *Vec = srcTy->getAs<VectorType>();
6666      if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
6667        return false;
6668    }
6669    if (!destTy->isIntegralOrEnumerationType()) {
6670      auto *Vec = destTy->getAs<VectorType>();
6671      if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
6672        return false;
6673    }
6674    // OK, integer (vector) -> integer (vector) bitcast.
6675    break;
6676
6677    case LangOptions::LaxVectorConversionKind::All:
6678    break;
6679  }
6680
6681  return areLaxCompatibleVectorTypes(srcTy, destTy);
6682}
6683
6684bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
6685                           CastKind &Kind) {
6686  assert(VectorTy->isVectorType() && "Not a vector type!");
6687
6688  if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
6689    if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
6690      return Diag(R.getBegin(),
6691                  Ty->isVectorType() ?
6692                  diag::err_invalid_conversion_between_vectors :
6693                  diag::err_invalid_conversion_between_vector_and_integer)
6694        << VectorTy << Ty << R;
6695  } else
6696    return Diag(R.getBegin(),
6697                diag::err_invalid_conversion_between_vector_and_scalar)
6698      << VectorTy << Ty << R;
6699
6700  Kind = CK_BitCast;
6701  return false;
6702}
6703
6704ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
6705  QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
6706
6707  if (DestElemTy == SplattedExpr->getType())
6708    return SplattedExpr;
6709
6710  assert(DestElemTy->isFloatingType() ||
6711         DestElemTy->isIntegralOrEnumerationType());
6712
6713  CastKind CK;
6714  if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
6715    // OpenCL requires that we convert `true` boolean expressions to -1, but
6716    // only when splatting vectors.
6717    if (DestElemTy->isFloatingType()) {
6718      // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
6719      // in two steps: boolean to signed integral, then to floating.
6720      ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
6721                                                 CK_BooleanToSignedIntegral);
6722      SplattedExpr = CastExprRes.get();
6723      CK = CK_IntegralToFloating;
6724    } else {
6725      CK = CK_BooleanToSignedIntegral;
6726    }
6727  } else {
6728    ExprResult CastExprRes = SplattedExpr;
6729    CK = PrepareScalarCast(CastExprRes, DestElemTy);
6730    if (CastExprRes.isInvalid())
6731      return ExprError();
6732    SplattedExpr = CastExprRes.get();
6733  }
6734  return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
6735}
6736
6737ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
6738                                    Expr *CastExpr, CastKind &Kind) {
6739  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
6740
6741  QualType SrcTy = CastExpr->getType();
6742
6743  // If SrcTy is a VectorType, the total size must match to explicitly cast to
6744  // an ExtVectorType.
6745  // In OpenCL, casts between vectors of different types are not allowed.
6746  // (See OpenCL 6.2).
6747  if (SrcTy->isVectorType()) {
6748    if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
6749        (getLangOpts().OpenCL &&
6750         !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
6751      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
6752        << DestTy << SrcTy << R;
6753      return ExprError();
6754    }
6755    Kind = CK_BitCast;
6756    return CastExpr;
6757  }
6758
6759  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
6760  // conversion will take place first from scalar to elt type, and then
6761  // splat from elt type to vector.
6762  if (SrcTy->isPointerType())
6763    return Diag(R.getBegin(),
6764                diag::err_invalid_conversion_between_vector_and_scalar)
6765      << DestTy << SrcTy << R;
6766
6767  Kind = CK_VectorSplat;
6768  return prepareVectorSplat(DestTy, CastExpr);
6769}
6770
6771ExprResult
6772Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
6773                    Declarator &D, ParsedType &Ty,
6774                    SourceLocation RParenLoc, Expr *CastExpr) {
6775  assert(!D.isInvalidType() && (CastExpr != nullptr) &&
6776         "ActOnCastExpr(): missing type or expr");
6777
6778  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
6779  if (D.isInvalidType())
6780    return ExprError();
6781
6782  if (getLangOpts().CPlusPlus) {
6783    // Check that there are no default arguments (C++ only).
6784    CheckExtraCXXDefaultArguments(D);
6785  } else {
6786    // Make sure any TypoExprs have been dealt with.
6787    ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
6788    if (!Res.isUsable())
6789      return ExprError();
6790    CastExpr = Res.get();
6791  }
6792
6793  checkUnusedDeclAttributes(D);
6794
6795  QualType castType = castTInfo->getType();
6796  Ty = CreateParsedType(castType, castTInfo);
6797
6798  bool isVectorLiteral = false;
6799
6800  // Check for an altivec or OpenCL literal,
6801  // i.e. all the elements are integer constants.
6802  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
6803  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
6804  if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
6805       && castType->isVectorType() && (PE || PLE)) {
6806    if (PLE && PLE->getNumExprs() == 0) {
6807      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
6808      return ExprError();
6809    }
6810    if (PE || PLE->getNumExprs() == 1) {
6811      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
6812      if (!E->isTypeDependent() && !E->getType()->isVectorType())
6813        isVectorLiteral = true;
6814    }
6815    else
6816      isVectorLiteral = true;
6817  }
6818
6819  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
6820  // then handle it as such.
6821  if (isVectorLiteral)
6822    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
6823
6824  // If the Expr being casted is a ParenListExpr, handle it specially.
6825  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
6826  // sequence of BinOp comma operators.
6827  if (isa<ParenListExpr>(CastExpr)) {
6828    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
6829    if (Result.isInvalid()) return ExprError();
6830    CastExpr = Result.get();
6831  }
6832
6833  if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
6834      !getSourceManager().isInSystemMacro(LParenLoc))
6835    Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
6836
6837  CheckTollFreeBridgeCast(castType, CastExpr);
6838
6839  CheckObjCBridgeRelatedCast(castType, CastExpr);
6840
6841  DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
6842
6843  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
6844}
6845
6846ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
6847                                    SourceLocation RParenLoc, Expr *E,
6848                                    TypeSourceInfo *TInfo) {
6849  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
6850         "Expected paren or paren list expression");
6851
6852  Expr **exprs;
6853  unsigned numExprs;
6854  Expr *subExpr;
6855  SourceLocation LiteralLParenLoc, LiteralRParenLoc;
6856  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
6857    LiteralLParenLoc = PE->getLParenLoc();
6858    LiteralRParenLoc = PE->getRParenLoc();
6859    exprs = PE->getExprs();
6860    numExprs = PE->getNumExprs();
6861  } else { // isa<ParenExpr> by assertion at function entrance
6862    LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
6863    LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
6864    subExpr = cast<ParenExpr>(E)->getSubExpr();
6865    exprs = &subExpr;
6866    numExprs = 1;
6867  }
6868
6869  QualType Ty = TInfo->getType();
6870  assert(Ty->isVectorType() && "Expected vector type");
6871
6872  SmallVector<Expr *, 8> initExprs;
6873  const VectorType *VTy = Ty->castAs<VectorType>();
6874  unsigned numElems = VTy->getNumElements();
6875
6876  // '(...)' form of vector initialization in AltiVec: the number of
6877  // initializers must be one or must match the size of the vector.
6878  // If a single value is specified in the initializer then it will be
6879  // replicated to all the components of the vector
6880  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
6881    // The number of initializers must be one or must match the size of the
6882    // vector. If a single value is specified in the initializer then it will
6883    // be replicated to all the components of the vector
6884    if (numExprs == 1) {
6885      QualType ElemTy = VTy->getElementType();
6886      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
6887      if (Literal.isInvalid())
6888        return ExprError();
6889      Literal = ImpCastExprToType(Literal.get(), ElemTy,
6890                                  PrepareScalarCast(Literal, ElemTy));
6891      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
6892    }
6893    else if (numExprs < numElems) {
6894      Diag(E->getExprLoc(),
6895           diag::err_incorrect_number_of_vector_initializers);
6896      return ExprError();
6897    }
6898    else
6899      initExprs.append(exprs, exprs + numExprs);
6900  }
6901  else {
6902    // For OpenCL, when the number of initializers is a single value,
6903    // it will be replicated to all components of the vector.
6904    if (getLangOpts().OpenCL &&
6905        VTy->getVectorKind() == VectorType::GenericVector &&
6906        numExprs == 1) {
6907        QualType ElemTy = VTy->getElementType();
6908        ExprResult Literal = DefaultLvalueConversion(exprs[0]);
6909        if (Literal.isInvalid())
6910          return ExprError();
6911        Literal = ImpCastExprToType(Literal.get(), ElemTy,
6912                                    PrepareScalarCast(Literal, ElemTy));
6913        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
6914    }
6915
6916    initExprs.append(exprs, exprs + numExprs);
6917  }
6918  // FIXME: This means that pretty-printing the final AST will produce curly
6919  // braces instead of the original commas.
6920  InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
6921                                                   initExprs, LiteralRParenLoc);
6922  initE->setType(Ty);
6923  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
6924}
6925
6926/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
6927/// the ParenListExpr into a sequence of comma binary operators.
6928ExprResult
6929Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
6930  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
6931  if (!E)
6932    return OrigExpr;
6933
6934  ExprResult Result(E->getExpr(0));
6935
6936  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
6937    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
6938                        E->getExpr(i));
6939
6940  if (Result.isInvalid()) return ExprError();
6941
6942  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
6943}
6944
6945ExprResult Sema::ActOnParenListExpr(SourceLocation L,
6946                                    SourceLocation R,
6947                                    MultiExprArg Val) {
6948  return ParenListExpr::Create(Context, L, Val, R);
6949}
6950
6951/// Emit a specialized diagnostic when one expression is a null pointer
6952/// constant and the other is not a pointer.  Returns true if a diagnostic is
6953/// emitted.
6954bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
6955                                      SourceLocation QuestionLoc) {
6956  Expr *NullExpr = LHSExpr;
6957  Expr *NonPointerExpr = RHSExpr;
6958  Expr::NullPointerConstantKind NullKind =
6959      NullExpr->isNullPointerConstant(Context,
6960                                      Expr::NPC_ValueDependentIsNotNull);
6961
6962  if (NullKind == Expr::NPCK_NotNull) {
6963    NullExpr = RHSExpr;
6964    NonPointerExpr = LHSExpr;
6965    NullKind =
6966        NullExpr->isNullPointerConstant(Context,
6967                                        Expr::NPC_ValueDependentIsNotNull);
6968  }
6969
6970  if (NullKind == Expr::NPCK_NotNull)
6971    return false;
6972
6973  if (NullKind == Expr::NPCK_ZeroExpression)
6974    return false;
6975
6976  if (NullKind == Expr::NPCK_ZeroLiteral) {
6977    // In this case, check to make sure that we got here from a "NULL"
6978    // string in the source code.
6979    NullExpr = NullExpr->IgnoreParenImpCasts();
6980    SourceLocation loc = NullExpr->getExprLoc();
6981    if (!findMacroSpelling(loc, "NULL"))
6982      return false;
6983  }
6984
6985  int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
6986  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
6987      << NonPointerExpr->getType() << DiagType
6988      << NonPointerExpr->getSourceRange();
6989  return true;
6990}
6991
6992/// Return false if the condition expression is valid, true otherwise.
6993static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
6994  QualType CondTy = Cond->getType();
6995
6996  // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
6997  if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
6998    S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
6999      << CondTy << Cond->getSourceRange();
7000    return true;
7001  }
7002
7003  // C99 6.5.15p2
7004  if (CondTy->isScalarType()) return false;
7005
7006  S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
7007    << CondTy << Cond->getSourceRange();
7008  return true;
7009}
7010
7011/// Handle when one or both operands are void type.
7012static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
7013                                         ExprResult &RHS) {
7014    Expr *LHSExpr = LHS.get();
7015    Expr *RHSExpr = RHS.get();
7016
7017    if (!LHSExpr->getType()->isVoidType())
7018      S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7019          << RHSExpr->getSourceRange();
7020    if (!RHSExpr->getType()->isVoidType())
7021      S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7022          << LHSExpr->getSourceRange();
7023    LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
7024    RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
7025    return S.Context.VoidTy;
7026}
7027
7028/// Return false if the NullExpr can be promoted to PointerTy,
7029/// true otherwise.
7030static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7031                                        QualType PointerTy) {
7032  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7033      !NullExpr.get()->isNullPointerConstant(S.Context,
7034                                            Expr::NPC_ValueDependentIsNull))
7035    return true;
7036
7037  NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
7038  return false;
7039}
7040
7041/// Checks compatibility between two pointers and return the resulting
7042/// type.
7043static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
7044                                                     ExprResult &RHS,
7045                                                     SourceLocation Loc) {
7046  QualType LHSTy = LHS.get()->getType();
7047  QualType RHSTy = RHS.get()->getType();
7048
7049  if (S.Context.hasSameType(LHSTy, RHSTy)) {
7050    // Two identical pointers types are always compatible.
7051    return LHSTy;
7052  }
7053
7054  QualType lhptee, rhptee;
7055
7056  // Get the pointee types.
7057  bool IsBlockPointer = false;
7058  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
7059    lhptee = LHSBTy->getPointeeType();
7060    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
7061    IsBlockPointer = true;
7062  } else {
7063    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7064    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7065  }
7066
7067  // C99 6.5.15p6: If both operands are pointers to compatible types or to
7068  // differently qualified versions of compatible types, the result type is
7069  // a pointer to an appropriately qualified version of the composite
7070  // type.
7071
7072  // Only CVR-qualifiers exist in the standard, and the differently-qualified
7073  // clause doesn't make sense for our extensions. E.g. address space 2 should
7074  // be incompatible with address space 3: they may live on different devices or
7075  // anything.
7076  Qualifiers lhQual = lhptee.getQualifiers();
7077  Qualifiers rhQual = rhptee.getQualifiers();
7078
7079  LangAS ResultAddrSpace = LangAS::Default;
7080  LangAS LAddrSpace = lhQual.getAddressSpace();
7081  LangAS RAddrSpace = rhQual.getAddressSpace();
7082
7083  // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
7084  // spaces is disallowed.
7085  if (lhQual.isAddressSpaceSupersetOf(rhQual))
7086    ResultAddrSpace = LAddrSpace;
7087  else if (rhQual.isAddressSpaceSupersetOf(lhQual))
7088    ResultAddrSpace = RAddrSpace;
7089  else {
7090    S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7091        << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
7092        << RHS.get()->getSourceRange();
7093    return QualType();
7094  }
7095
7096  unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
7097  auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
7098  lhQual.removeCVRQualifiers();
7099  rhQual.removeCVRQualifiers();
7100
7101  // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
7102  // (C99 6.7.3) for address spaces. We assume that the check should behave in
7103  // the same manner as it's defined for CVR qualifiers, so for OpenCL two
7104  // qual types are compatible iff
7105  //  * corresponded types are compatible
7106  //  * CVR qualifiers are equal
7107  //  * address spaces are equal
7108  // Thus for conditional operator we merge CVR and address space unqualified
7109  // pointees and if there is a composite type we return a pointer to it with
7110  // merged qualifiers.
7111  LHSCastKind =
7112      LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7113  RHSCastKind =
7114      RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7115  lhQual.removeAddressSpace();
7116  rhQual.removeAddressSpace();
7117
7118  lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
7119  rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
7120
7121  QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
7122
7123  if (CompositeTy.isNull()) {
7124    // In this situation, we assume void* type. No especially good
7125    // reason, but this is what gcc does, and we do have to pick
7126    // to get a consistent AST.
7127    QualType incompatTy;
7128    incompatTy = S.Context.getPointerType(
7129        S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
7130    LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
7131    RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
7132
7133    // FIXME: For OpenCL the warning emission and cast to void* leaves a room
7134    // for casts between types with incompatible address space qualifiers.
7135    // For the following code the compiler produces casts between global and
7136    // local address spaces of the corresponded innermost pointees:
7137    // local int *global *a;
7138    // global int *global *b;
7139    // a = (0 ? a : b); // see C99 6.5.16.1.p1.
7140    S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
7141        << LHSTy << RHSTy << LHS.get()->getSourceRange()
7142        << RHS.get()->getSourceRange();
7143
7144    return incompatTy;
7145  }
7146
7147  // The pointer types are compatible.
7148  // In case of OpenCL ResultTy should have the address space qualifier
7149  // which is a superset of address spaces of both the 2nd and the 3rd
7150  // operands of the conditional operator.
7151  QualType ResultTy = [&, ResultAddrSpace]() {
7152    if (S.getLangOpts().OpenCL) {
7153      Qualifiers CompositeQuals = CompositeTy.getQualifiers();
7154      CompositeQuals.setAddressSpace(ResultAddrSpace);
7155      return S.Context
7156          .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
7157          .withCVRQualifiers(MergedCVRQual);
7158    }
7159    return CompositeTy.withCVRQualifiers(MergedCVRQual);
7160  }();
7161  if (IsBlockPointer)
7162    ResultTy = S.Context.getBlockPointerType(ResultTy);
7163  else
7164    ResultTy = S.Context.getPointerType(ResultTy);
7165
7166  LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
7167  RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
7168  return ResultTy;
7169}
7170
7171/// Return the resulting type when the operands are both block pointers.
7172static QualType checkConditionalBlockPointerCompatibility(Sema &S,
7173                                                          ExprResult &LHS,
7174                                                          ExprResult &RHS,
7175                                                          SourceLocation Loc) {
7176  QualType LHSTy = LHS.get()->getType();
7177  QualType RHSTy = RHS.get()->getType();
7178
7179  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
7180    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
7181      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
7182      LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7183      RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7184      return destType;
7185    }
7186    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
7187      << LHSTy << RHSTy << LHS.get()->getSourceRange()
7188      << RHS.get()->getSourceRange();
7189    return QualType();
7190  }
7191
7192  // We have 2 block pointer types.
7193  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
7194}
7195
7196/// Return the resulting type when the operands are both pointers.
7197static QualType
7198checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
7199                                            ExprResult &RHS,
7200                                            SourceLocation Loc) {
7201  // get the pointer types
7202  QualType LHSTy = LHS.get()->getType();
7203  QualType RHSTy = RHS.get()->getType();
7204
7205  // get the "pointed to" types
7206  QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7207  QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7208
7209  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
7210  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
7211    // Figure out necessary qualifiers (C99 6.5.15p6)
7212    QualType destPointee
7213      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
7214    QualType destType = S.Context.getPointerType(destPointee);
7215    // Add qualifiers if necessary.
7216    LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
7217    // Promote to void*.
7218    RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7219    return destType;
7220  }
7221  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
7222    QualType destPointee
7223      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
7224    QualType destType = S.Context.getPointerType(destPointee);
7225    // Add qualifiers if necessary.
7226    RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
7227    // Promote to void*.
7228    LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7229    return destType;
7230  }
7231
7232  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
7233}
7234
7235/// Return false if the first expression is not an integer and the second
7236/// expression is not a pointer, true otherwise.
7237static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
7238                                        Expr* PointerExpr, SourceLocation Loc,
7239                                        bool IsIntFirstExpr) {
7240  if (!PointerExpr->getType()->isPointerType() ||
7241      !Int.get()->getType()->isIntegerType())
7242    return false;
7243
7244  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
7245  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
7246
7247  S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
7248    << Expr1->getType() << Expr2->getType()
7249    << Expr1->getSourceRange() << Expr2->getSourceRange();
7250  Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
7251                            CK_IntegralToPointer);
7252  return true;
7253}
7254
7255/// Simple conversion between integer and floating point types.
7256///
7257/// Used when handling the OpenCL conditional operator where the
7258/// condition is a vector while the other operands are scalar.
7259///
7260/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
7261/// types are either integer or floating type. Between the two
7262/// operands, the type with the higher rank is defined as the "result
7263/// type". The other operand needs to be promoted to the same type. No
7264/// other type promotion is allowed. We cannot use
7265/// UsualArithmeticConversions() for this purpose, since it always
7266/// promotes promotable types.
7267static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
7268                                            ExprResult &RHS,
7269                                            SourceLocation QuestionLoc) {
7270  LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
7271  if (LHS.isInvalid())
7272    return QualType();
7273  RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
7274  if (RHS.isInvalid())
7275    return QualType();
7276
7277  // For conversion purposes, we ignore any qualifiers.
7278  // For example, "const float" and "float" are equivalent.
7279  QualType LHSType =
7280    S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
7281  QualType RHSType =
7282    S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
7283
7284  if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
7285    S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
7286      << LHSType << LHS.get()->getSourceRange();
7287    return QualType();
7288  }
7289
7290  if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
7291    S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
7292      << RHSType << RHS.get()->getSourceRange();
7293    return QualType();
7294  }
7295
7296  // If both types are identical, no conversion is needed.
7297  if (LHSType == RHSType)
7298    return LHSType;
7299
7300  // Now handle "real" floating types (i.e. float, double, long double).
7301  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
7302    return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
7303                                 /*IsCompAssign = */ false);
7304
7305  // Finally, we have two differing integer types.
7306  return handleIntegerConversion<doIntegralCast, doIntegralCast>
7307  (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
7308}
7309
7310/// Convert scalar operands to a vector that matches the
7311///        condition in length.
7312///
7313/// Used when handling the OpenCL conditional operator where the
7314/// condition is a vector while the other operands are scalar.
7315///
7316/// We first compute the "result type" for the scalar operands
7317/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
7318/// into a vector of that type where the length matches the condition
7319/// vector type. s6.11.6 requires that the element types of the result
7320/// and the condition must have the same number of bits.
7321static QualType
7322OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
7323                              QualType CondTy, SourceLocation QuestionLoc) {
7324  QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
7325  if (ResTy.isNull()) return QualType();
7326
7327  const VectorType *CV = CondTy->getAs<VectorType>();
7328  assert(CV);
7329
7330  // Determine the vector result type
7331  unsigned NumElements = CV->getNumElements();
7332  QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
7333
7334  // Ensure that all types have the same number of bits
7335  if (S.Context.getTypeSize(CV->getElementType())
7336      != S.Context.getTypeSize(ResTy)) {
7337    // Since VectorTy is created internally, it does not pretty print
7338    // with an OpenCL name. Instead, we just print a description.
7339    std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
7340    SmallString<64> Str;
7341    llvm::raw_svector_ostream OS(Str);
7342    OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
7343    S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
7344      << CondTy << OS.str();
7345    return QualType();
7346  }
7347
7348  // Convert operands to the vector result type
7349  LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
7350  RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
7351
7352  return VectorTy;
7353}
7354
7355/// Return false if this is a valid OpenCL condition vector
7356static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
7357                                       SourceLocation QuestionLoc) {
7358  // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
7359  // integral type.
7360  const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
7361  assert(CondTy);
7362  QualType EleTy = CondTy->getElementType();
7363  if (EleTy->isIntegerType()) return false;
7364
7365  S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7366    << Cond->getType() << Cond->getSourceRange();
7367  return true;
7368}
7369
7370/// Return false if the vector condition type and the vector
7371///        result type are compatible.
7372///
7373/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
7374/// number of elements, and their element types have the same number
7375/// of bits.
7376static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
7377                              SourceLocation QuestionLoc) {
7378  const VectorType *CV = CondTy->getAs<VectorType>();
7379  const VectorType *RV = VecResTy->getAs<VectorType>();
7380  assert(CV && RV);
7381
7382  if (CV->getNumElements() != RV->getNumElements()) {
7383    S.Diag(QuestionLoc, diag::err_conditional_vector_size)
7384      << CondTy << VecResTy;
7385    return true;
7386  }
7387
7388  QualType CVE = CV->getElementType();
7389  QualType RVE = RV->getElementType();
7390
7391  if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
7392    S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
7393      << CondTy << VecResTy;
7394    return true;
7395  }
7396
7397  return false;
7398}
7399
7400/// Return the resulting type for the conditional operator in
7401///        OpenCL (aka "ternary selection operator", OpenCL v1.1
7402///        s6.3.i) when the condition is a vector type.
7403static QualType
7404OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
7405                             ExprResult &LHS, ExprResult &RHS,
7406                             SourceLocation QuestionLoc) {
7407  Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
7408  if (Cond.isInvalid())
7409    return QualType();
7410  QualType CondTy = Cond.get()->getType();
7411
7412  if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
7413    return QualType();
7414
7415  // If either operand is a vector then find the vector type of the
7416  // result as specified in OpenCL v1.1 s6.3.i.
7417  if (LHS.get()->getType()->isVectorType() ||
7418      RHS.get()->getType()->isVectorType()) {
7419    QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
7420                                              /*isCompAssign*/false,
7421                                              /*AllowBothBool*/true,
7422                                              /*AllowBoolConversions*/false);
7423    if (VecResTy.isNull()) return QualType();
7424    // The result type must match the condition type as specified in
7425    // OpenCL v1.1 s6.11.6.
7426    if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
7427      return QualType();
7428    return VecResTy;
7429  }
7430
7431  // Both operands are scalar.
7432  return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
7433}
7434
7435/// Return true if the Expr is block type
7436static bool checkBlockType(Sema &S, const Expr *E) {
7437  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
7438    QualType Ty = CE->getCallee()->getType();
7439    if (Ty->isBlockPointerType()) {
7440      S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
7441      return true;
7442    }
7443  }
7444  return false;
7445}
7446
7447/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
7448/// In that case, LHS = cond.
7449/// C99 6.5.15
7450QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
7451                                        ExprResult &RHS, ExprValueKind &VK,
7452                                        ExprObjectKind &OK,
7453                                        SourceLocation QuestionLoc) {
7454
7455  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
7456  if (!LHSResult.isUsable()) return QualType();
7457  LHS = LHSResult;
7458
7459  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
7460  if (!RHSResult.isUsable()) return QualType();
7461  RHS = RHSResult;
7462
7463  // C++ is sufficiently different to merit its own checker.
7464  if (getLangOpts().CPlusPlus)
7465    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
7466
7467  VK = VK_RValue;
7468  OK = OK_Ordinary;
7469
7470  // The OpenCL operator with a vector condition is sufficiently
7471  // different to merit its own checker.
7472  if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType())
7473    return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
7474
7475  // First, check the condition.
7476  Cond = UsualUnaryConversions(Cond.get());
7477  if (Cond.isInvalid())
7478    return QualType();
7479  if (checkCondition(*this, Cond.get(), QuestionLoc))
7480    return QualType();
7481
7482  // Now check the two expressions.
7483  if (LHS.get()->getType()->isVectorType() ||
7484      RHS.get()->getType()->isVectorType())
7485    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
7486                               /*AllowBothBool*/true,
7487                               /*AllowBoolConversions*/false);
7488
7489  QualType ResTy =
7490      UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
7491  if (LHS.isInvalid() || RHS.isInvalid())
7492    return QualType();
7493
7494  QualType LHSTy = LHS.get()->getType();
7495  QualType RHSTy = RHS.get()->getType();
7496
7497  // Diagnose attempts to convert between __float128 and long double where
7498  // such conversions currently can't be handled.
7499  if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
7500    Diag(QuestionLoc,
7501         diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
7502      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7503    return QualType();
7504  }
7505
7506  // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
7507  // selection operator (?:).
7508  if (getLangOpts().OpenCL &&
7509      (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
7510    return QualType();
7511  }
7512
7513  // If both operands have arithmetic type, do the usual arithmetic conversions
7514  // to find a common type: C99 6.5.15p3,5.
7515  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
7516    LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
7517    RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
7518
7519    return ResTy;
7520  }
7521
7522  // If both operands are the same structure or union type, the result is that
7523  // type.
7524  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
7525    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
7526      if (LHSRT->getDecl() == RHSRT->getDecl())
7527        // "If both the operands have structure or union type, the result has
7528        // that type."  This implies that CV qualifiers are dropped.
7529        return LHSTy.getUnqualifiedType();
7530    // FIXME: Type of conditional expression must be complete in C mode.
7531  }
7532
7533  // C99 6.5.15p5: "If both operands have void type, the result has void type."
7534  // The following || allows only one side to be void (a GCC-ism).
7535  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
7536    return checkConditionalVoidType(*this, LHS, RHS);
7537  }
7538
7539  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
7540  // the type of the other operand."
7541  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
7542  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
7543
7544  // All objective-c pointer type analysis is done here.
7545  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
7546                                                        QuestionLoc);
7547  if (LHS.isInvalid() || RHS.isInvalid())
7548    return QualType();
7549  if (!compositeType.isNull())
7550    return compositeType;
7551
7552
7553  // Handle block pointer types.
7554  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
7555    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
7556                                                     QuestionLoc);
7557
7558  // Check constraints for C object pointers types (C99 6.5.15p3,6).
7559  if (LHSTy->isPointerType() && RHSTy->isPointerType())
7560    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
7561                                                       QuestionLoc);
7562
7563  // GCC compatibility: soften pointer/integer mismatch.  Note that
7564  // null pointers have been filtered out by this point.
7565  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
7566      /*IsIntFirstExpr=*/true))
7567    return RHSTy;
7568  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
7569      /*IsIntFirstExpr=*/false))
7570    return LHSTy;
7571
7572  // Emit a better diagnostic if one of the expressions is a null pointer
7573  // constant and the other is not a pointer type. In this case, the user most
7574  // likely forgot to take the address of the other expression.
7575  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
7576    return QualType();
7577
7578  // Otherwise, the operands are not compatible.
7579  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
7580    << LHSTy << RHSTy << LHS.get()->getSourceRange()
7581    << RHS.get()->getSourceRange();
7582  return QualType();
7583}
7584
7585/// FindCompositeObjCPointerType - Helper method to find composite type of
7586/// two objective-c pointer types of the two input expressions.
7587QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
7588                                            SourceLocation QuestionLoc) {
7589  QualType LHSTy = LHS.get()->getType();
7590  QualType RHSTy = RHS.get()->getType();
7591
7592  // Handle things like Class and struct objc_class*.  Here we case the result
7593  // to the pseudo-builtin, because that will be implicitly cast back to the
7594  // redefinition type if an attempt is made to access its fields.
7595  if (LHSTy->isObjCClassType() &&
7596      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
7597    RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
7598    return LHSTy;
7599  }
7600  if (RHSTy->isObjCClassType() &&
7601      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
7602    LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
7603    return RHSTy;
7604  }
7605  // And the same for struct objc_object* / id
7606  if (LHSTy->isObjCIdType() &&
7607      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
7608    RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
7609    return LHSTy;
7610  }
7611  if (RHSTy->isObjCIdType() &&
7612      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
7613    LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
7614    return RHSTy;
7615  }
7616  // And the same for struct objc_selector* / SEL
7617  if (Context.isObjCSelType(LHSTy) &&
7618      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
7619    RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
7620    return LHSTy;
7621  }
7622  if (Context.isObjCSelType(RHSTy) &&
7623      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
7624    LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
7625    return RHSTy;
7626  }
7627  // Check constraints for Objective-C object pointers types.
7628  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
7629
7630    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
7631      // Two identical object pointer types are always compatible.
7632      return LHSTy;
7633    }
7634    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
7635    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
7636    QualType compositeType = LHSTy;
7637
7638    // If both operands are interfaces and either operand can be
7639    // assigned to the other, use that type as the composite
7640    // type. This allows
7641    //   xxx ? (A*) a : (B*) b
7642    // where B is a subclass of A.
7643    //
7644    // Additionally, as for assignment, if either type is 'id'
7645    // allow silent coercion. Finally, if the types are
7646    // incompatible then make sure to use 'id' as the composite
7647    // type so the result is acceptable for sending messages to.
7648
7649    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
7650    // It could return the composite type.
7651    if (!(compositeType =
7652          Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
7653      // Nothing more to do.
7654    } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
7655      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
7656    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
7657      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
7658    } else if ((LHSOPT->isObjCQualifiedIdType() ||
7659                RHSOPT->isObjCQualifiedIdType()) &&
7660               Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
7661                                                         true)) {
7662      // Need to handle "id<xx>" explicitly.
7663      // GCC allows qualified id and any Objective-C type to devolve to
7664      // id. Currently localizing to here until clear this should be
7665      // part of ObjCQualifiedIdTypesAreCompatible.
7666      compositeType = Context.getObjCIdType();
7667    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
7668      compositeType = Context.getObjCIdType();
7669    } else {
7670      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
7671      << LHSTy << RHSTy
7672      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7673      QualType incompatTy = Context.getObjCIdType();
7674      LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
7675      RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
7676      return incompatTy;
7677    }
7678    // The object pointer types are compatible.
7679    LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
7680    RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
7681    return compositeType;
7682  }
7683  // Check Objective-C object pointer types and 'void *'
7684  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
7685    if (getLangOpts().ObjCAutoRefCount) {
7686      // ARC forbids the implicit conversion of object pointers to 'void *',
7687      // so these types are not compatible.
7688      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
7689          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7690      LHS = RHS = true;
7691      return QualType();
7692    }
7693    QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7694    QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
7695    QualType destPointee
7696    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
7697    QualType destType = Context.getPointerType(destPointee);
7698    // Add qualifiers if necessary.
7699    LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
7700    // Promote to void*.
7701    RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7702    return destType;
7703  }
7704  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
7705    if (getLangOpts().ObjCAutoRefCount) {
7706      // ARC forbids the implicit conversion of object pointers to 'void *',
7707      // so these types are not compatible.
7708      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
7709          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7710      LHS = RHS = true;
7711      return QualType();
7712    }
7713    QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
7714    QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7715    QualType destPointee
7716    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
7717    QualType destType = Context.getPointerType(destPointee);
7718    // Add qualifiers if necessary.
7719    RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
7720    // Promote to void*.
7721    LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7722    return destType;
7723  }
7724  return QualType();
7725}
7726
7727/// SuggestParentheses - Emit a note with a fixit hint that wraps
7728/// ParenRange in parentheses.
7729static void SuggestParentheses(Sema &Self, SourceLocation Loc,
7730                               const PartialDiagnostic &Note,
7731                               SourceRange ParenRange) {
7732  SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
7733  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
7734      EndLoc.isValid()) {
7735    Self.Diag(Loc, Note)
7736      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
7737      << FixItHint::CreateInsertion(EndLoc, ")");
7738  } else {
7739    // We can't display the parentheses, so just show the bare note.
7740    Self.Diag(Loc, Note) << ParenRange;
7741  }
7742}
7743
7744static bool IsArithmeticOp(BinaryOperatorKind Opc) {
7745  return BinaryOperator::isAdditiveOp(Opc) ||
7746         BinaryOperator::isMultiplicativeOp(Opc) ||
7747         BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
7748  // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
7749  // not any of the logical operators.  Bitwise-xor is commonly used as a
7750  // logical-xor because there is no logical-xor operator.  The logical
7751  // operators, including uses of xor, have a high false positive rate for
7752  // precedence warnings.
7753}
7754
7755/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
7756/// expression, either using a built-in or overloaded operator,
7757/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
7758/// expression.
7759static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
7760                                   Expr **RHSExprs) {
7761  // Don't strip parenthesis: we should not warn if E is in parenthesis.
7762  E = E->IgnoreImpCasts();
7763  E = E->IgnoreConversionOperator();
7764  E = E->IgnoreImpCasts();
7765  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
7766    E = MTE->getSubExpr();
7767    E = E->IgnoreImpCasts();
7768  }
7769
7770  // Built-in binary operator.
7771  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
7772    if (IsArithmeticOp(OP->getOpcode())) {
7773      *Opcode = OP->getOpcode();
7774      *RHSExprs = OP->getRHS();
7775      return true;
7776    }
7777  }
7778
7779  // Overloaded operator.
7780  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
7781    if (Call->getNumArgs() != 2)
7782      return false;
7783
7784    // Make sure this is really a binary operator that is safe to pass into
7785    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
7786    OverloadedOperatorKind OO = Call->getOperator();
7787    if (OO < OO_Plus || OO > OO_Arrow ||
7788        OO == OO_PlusPlus || OO == OO_MinusMinus)
7789      return false;
7790
7791    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
7792    if (IsArithmeticOp(OpKind)) {
7793      *Opcode = OpKind;
7794      *RHSExprs = Call->getArg(1);
7795      return true;
7796    }
7797  }
7798
7799  return false;
7800}
7801
7802/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
7803/// or is a logical expression such as (x==y) which has int type, but is
7804/// commonly interpreted as boolean.
7805static bool ExprLooksBoolean(Expr *E) {
7806  E = E->IgnoreParenImpCasts();
7807
7808  if (E->getType()->isBooleanType())
7809    return true;
7810  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
7811    return OP->isComparisonOp() || OP->isLogicalOp();
7812  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
7813    return OP->getOpcode() == UO_LNot;
7814  if (E->getType()->isPointerType())
7815    return true;
7816  // FIXME: What about overloaded operator calls returning "unspecified boolean
7817  // type"s (commonly pointer-to-members)?
7818
7819  return false;
7820}
7821
7822/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
7823/// and binary operator are mixed in a way that suggests the programmer assumed
7824/// the conditional operator has higher precedence, for example:
7825/// "int x = a + someBinaryCondition ? 1 : 2".
7826static void DiagnoseConditionalPrecedence(Sema &Self,
7827                                          SourceLocation OpLoc,
7828                                          Expr *Condition,
7829                                          Expr *LHSExpr,
7830                                          Expr *RHSExpr) {
7831  BinaryOperatorKind CondOpcode;
7832  Expr *CondRHS;
7833
7834  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
7835    return;
7836  if (!ExprLooksBoolean(CondRHS))
7837    return;
7838
7839  // The condition is an arithmetic binary expression, with a right-
7840  // hand side that looks boolean, so warn.
7841
7842  unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
7843                        ? diag::warn_precedence_bitwise_conditional
7844                        : diag::warn_precedence_conditional;
7845
7846  Self.Diag(OpLoc, DiagID)
7847      << Condition->getSourceRange()
7848      << BinaryOperator::getOpcodeStr(CondOpcode);
7849
7850  SuggestParentheses(
7851      Self, OpLoc,
7852      Self.PDiag(diag::note_precedence_silence)
7853          << BinaryOperator::getOpcodeStr(CondOpcode),
7854      SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
7855
7856  SuggestParentheses(Self, OpLoc,
7857                     Self.PDiag(diag::note_precedence_conditional_first),
7858                     SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
7859}
7860
7861/// Compute the nullability of a conditional expression.
7862static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
7863                                              QualType LHSTy, QualType RHSTy,
7864                                              ASTContext &Ctx) {
7865  if (!ResTy->isAnyPointerType())
7866    return ResTy;
7867
7868  auto GetNullability = [&Ctx](QualType Ty) {
7869    Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
7870    if (Kind)
7871      return *Kind;
7872    return NullabilityKind::Unspecified;
7873  };
7874
7875  auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
7876  NullabilityKind MergedKind;
7877
7878  // Compute nullability of a binary conditional expression.
7879  if (IsBin) {
7880    if (LHSKind == NullabilityKind::NonNull)
7881      MergedKind = NullabilityKind::NonNull;
7882    else
7883      MergedKind = RHSKind;
7884  // Compute nullability of a normal conditional expression.
7885  } else {
7886    if (LHSKind == NullabilityKind::Nullable ||
7887        RHSKind == NullabilityKind::Nullable)
7888      MergedKind = NullabilityKind::Nullable;
7889    else if (LHSKind == NullabilityKind::NonNull)
7890      MergedKind = RHSKind;
7891    else if (RHSKind == NullabilityKind::NonNull)
7892      MergedKind = LHSKind;
7893    else
7894      MergedKind = NullabilityKind::Unspecified;
7895  }
7896
7897  // Return if ResTy already has the correct nullability.
7898  if (GetNullability(ResTy) == MergedKind)
7899    return ResTy;
7900
7901  // Strip all nullability from ResTy.
7902  while (ResTy->getNullability(Ctx))
7903    ResTy = ResTy.getSingleStepDesugaredType(Ctx);
7904
7905  // Create a new AttributedType with the new nullability kind.
7906  auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
7907  return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
7908}
7909
7910/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
7911/// in the case of a the GNU conditional expr extension.
7912ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
7913                                    SourceLocation ColonLoc,
7914                                    Expr *CondExpr, Expr *LHSExpr,
7915                                    Expr *RHSExpr) {
7916  if (!getLangOpts().CPlusPlus) {
7917    // C cannot handle TypoExpr nodes in the condition because it
7918    // doesn't handle dependent types properly, so make sure any TypoExprs have
7919    // been dealt with before checking the operands.
7920    ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
7921    ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
7922    ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
7923
7924    if (!CondResult.isUsable())
7925      return ExprError();
7926
7927    if (LHSExpr) {
7928      if (!LHSResult.isUsable())
7929        return ExprError();
7930    }
7931
7932    if (!RHSResult.isUsable())
7933      return ExprError();
7934
7935    CondExpr = CondResult.get();
7936    LHSExpr = LHSResult.get();
7937    RHSExpr = RHSResult.get();
7938  }
7939
7940  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
7941  // was the condition.
7942  OpaqueValueExpr *opaqueValue = nullptr;
7943  Expr *commonExpr = nullptr;
7944  if (!LHSExpr) {
7945    commonExpr = CondExpr;
7946    // Lower out placeholder types first.  This is important so that we don't
7947    // try to capture a placeholder. This happens in few cases in C++; such
7948    // as Objective-C++'s dictionary subscripting syntax.
7949    if (commonExpr->hasPlaceholderType()) {
7950      ExprResult result = CheckPlaceholderExpr(commonExpr);
7951      if (!result.isUsable()) return ExprError();
7952      commonExpr = result.get();
7953    }
7954    // We usually want to apply unary conversions *before* saving, except
7955    // in the special case of a C++ l-value conditional.
7956    if (!(getLangOpts().CPlusPlus
7957          && !commonExpr->isTypeDependent()
7958          && commonExpr->getValueKind() == RHSExpr->getValueKind()
7959          && commonExpr->isGLValue()
7960          && commonExpr->isOrdinaryOrBitFieldObject()
7961          && RHSExpr->isOrdinaryOrBitFieldObject()
7962          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
7963      ExprResult commonRes = UsualUnaryConversions(commonExpr);
7964      if (commonRes.isInvalid())
7965        return ExprError();
7966      commonExpr = commonRes.get();
7967    }
7968
7969    // If the common expression is a class or array prvalue, materialize it
7970    // so that we can safely refer to it multiple times.
7971    if (commonExpr->isRValue() && (commonExpr->getType()->isRecordType() ||
7972                                   commonExpr->getType()->isArrayType())) {
7973      ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
7974      if (MatExpr.isInvalid())
7975        return ExprError();
7976      commonExpr = MatExpr.get();
7977    }
7978
7979    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
7980                                                commonExpr->getType(),
7981                                                commonExpr->getValueKind(),
7982                                                commonExpr->getObjectKind(),
7983                                                commonExpr);
7984    LHSExpr = CondExpr = opaqueValue;
7985  }
7986
7987  QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
7988  ExprValueKind VK = VK_RValue;
7989  ExprObjectKind OK = OK_Ordinary;
7990  ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
7991  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
7992                                             VK, OK, QuestionLoc);
7993  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
7994      RHS.isInvalid())
7995    return ExprError();
7996
7997  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
7998                                RHS.get());
7999
8000  CheckBoolLikeConversion(Cond.get(), QuestionLoc);
8001
8002  result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
8003                                         Context);
8004
8005  if (!commonExpr)
8006    return new (Context)
8007        ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8008                            RHS.get(), result, VK, OK);
8009
8010  return new (Context) BinaryConditionalOperator(
8011      commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8012      ColonLoc, result, VK, OK);
8013}
8014
8015// checkPointerTypesForAssignment - This is a very tricky routine (despite
8016// being closely modeled after the C99 spec:-). The odd characteristic of this
8017// routine is it effectively iqnores the qualifiers on the top level pointee.
8018// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8019// FIXME: add a couple examples in this comment.
8020static Sema::AssignConvertType
8021checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
8022  assert(LHSType.isCanonical() && "LHS not canonicalized!");
8023  assert(RHSType.isCanonical() && "RHS not canonicalized!");
8024
8025  // get the "pointed to" type (ignoring qualifiers at the top level)
8026  const Type *lhptee, *rhptee;
8027  Qualifiers lhq, rhq;
8028  std::tie(lhptee, lhq) =
8029      cast<PointerType>(LHSType)->getPointeeType().split().asPair();
8030  std::tie(rhptee, rhq) =
8031      cast<PointerType>(RHSType)->getPointeeType().split().asPair();
8032
8033  Sema::AssignConvertType ConvTy = Sema::Compatible;
8034
8035  // C99 6.5.16.1p1: This following citation is common to constraints
8036  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
8037  // qualifiers of the type *pointed to* by the right;
8038
8039  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
8040  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
8041      lhq.compatiblyIncludesObjCLifetime(rhq)) {
8042    // Ignore lifetime for further calculation.
8043    lhq.removeObjCLifetime();
8044    rhq.removeObjCLifetime();
8045  }
8046
8047  if (!lhq.compatiblyIncludes(rhq)) {
8048    // Treat address-space mismatches as fatal.
8049    if (!lhq.isAddressSpaceSupersetOf(rhq))
8050      return Sema::IncompatiblePointerDiscardsQualifiers;
8051
8052    // It's okay to add or remove GC or lifetime qualifiers when converting to
8053    // and from void*.
8054    else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
8055                        .compatiblyIncludes(
8056                                rhq.withoutObjCGCAttr().withoutObjCLifetime())
8057             && (lhptee->isVoidType() || rhptee->isVoidType()))
8058      ; // keep old
8059
8060    // Treat lifetime mismatches as fatal.
8061    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
8062      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
8063
8064    // For GCC/MS compatibility, other qualifier mismatches are treated
8065    // as still compatible in C.
8066    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8067  }
8068
8069  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
8070  // incomplete type and the other is a pointer to a qualified or unqualified
8071  // version of void...
8072  if (lhptee->isVoidType()) {
8073    if (rhptee->isIncompleteOrObjectType())
8074      return ConvTy;
8075
8076    // As an extension, we allow cast to/from void* to function pointer.
8077    assert(rhptee->isFunctionType());
8078    return Sema::FunctionVoidPointer;
8079  }
8080
8081  if (rhptee->isVoidType()) {
8082    if (lhptee->isIncompleteOrObjectType())
8083      return ConvTy;
8084
8085    // As an extension, we allow cast to/from void* to function pointer.
8086    assert(lhptee->isFunctionType());
8087    return Sema::FunctionVoidPointer;
8088  }
8089
8090  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
8091  // unqualified versions of compatible types, ...
8092  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
8093  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
8094    // Check if the pointee types are compatible ignoring the sign.
8095    // We explicitly check for char so that we catch "char" vs
8096    // "unsigned char" on systems where "char" is unsigned.
8097    if (lhptee->isCharType())
8098      ltrans = S.Context.UnsignedCharTy;
8099    else if (lhptee->hasSignedIntegerRepresentation())
8100      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
8101
8102    if (rhptee->isCharType())
8103      rtrans = S.Context.UnsignedCharTy;
8104    else if (rhptee->hasSignedIntegerRepresentation())
8105      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
8106
8107    if (ltrans == rtrans) {
8108      // Types are compatible ignoring the sign. Qualifier incompatibility
8109      // takes priority over sign incompatibility because the sign
8110      // warning can be disabled.
8111      if (ConvTy != Sema::Compatible)
8112        return ConvTy;
8113
8114      return Sema::IncompatiblePointerSign;
8115    }
8116
8117    // If we are a multi-level pointer, it's possible that our issue is simply
8118    // one of qualification - e.g. char ** -> const char ** is not allowed. If
8119    // the eventual target type is the same and the pointers have the same
8120    // level of indirection, this must be the issue.
8121    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
8122      do {
8123        std::tie(lhptee, lhq) =
8124          cast<PointerType>(lhptee)->getPointeeType().split().asPair();
8125        std::tie(rhptee, rhq) =
8126          cast<PointerType>(rhptee)->getPointeeType().split().asPair();
8127
8128        // Inconsistent address spaces at this point is invalid, even if the
8129        // address spaces would be compatible.
8130        // FIXME: This doesn't catch address space mismatches for pointers of
8131        // different nesting levels, like:
8132        //   __local int *** a;
8133        //   int ** b = a;
8134        // It's not clear how to actually determine when such pointers are
8135        // invalidly incompatible.
8136        if (lhq.getAddressSpace() != rhq.getAddressSpace())
8137          return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
8138
8139      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
8140
8141      if (lhptee == rhptee)
8142        return Sema::IncompatibleNestedPointerQualifiers;
8143    }
8144
8145    // General pointer incompatibility takes priority over qualifiers.
8146    return Sema::IncompatiblePointer;
8147  }
8148  if (!S.getLangOpts().CPlusPlus &&
8149      S.IsFunctionConversion(ltrans, rtrans, ltrans))
8150    return Sema::IncompatiblePointer;
8151  return ConvTy;
8152}
8153
8154/// checkBlockPointerTypesForAssignment - This routine determines whether two
8155/// block pointer types are compatible or whether a block and normal pointer
8156/// are compatible. It is more restrict than comparing two function pointer
8157// types.
8158static Sema::AssignConvertType
8159checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
8160                                    QualType RHSType) {
8161  assert(LHSType.isCanonical() && "LHS not canonicalized!");
8162  assert(RHSType.isCanonical() && "RHS not canonicalized!");
8163
8164  QualType lhptee, rhptee;
8165
8166  // get the "pointed to" type (ignoring qualifiers at the top level)
8167  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
8168  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
8169
8170  // In C++, the types have to match exactly.
8171  if (S.getLangOpts().CPlusPlus)
8172    return Sema::IncompatibleBlockPointer;
8173
8174  Sema::AssignConvertType ConvTy = Sema::Compatible;
8175
8176  // For blocks we enforce that qualifiers are identical.
8177  Qualifiers LQuals = lhptee.getLocalQualifiers();
8178  Qualifiers RQuals = rhptee.getLocalQualifiers();
8179  if (S.getLangOpts().OpenCL) {
8180    LQuals.removeAddressSpace();
8181    RQuals.removeAddressSpace();
8182  }
8183  if (LQuals != RQuals)
8184    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8185
8186  // FIXME: OpenCL doesn't define the exact compile time semantics for a block
8187  // assignment.
8188  // The current behavior is similar to C++ lambdas. A block might be
8189  // assigned to a variable iff its return type and parameters are compatible
8190  // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
8191  // an assignment. Presumably it should behave in way that a function pointer
8192  // assignment does in C, so for each parameter and return type:
8193  //  * CVR and address space of LHS should be a superset of CVR and address
8194  //  space of RHS.
8195  //  * unqualified types should be compatible.
8196  if (S.getLangOpts().OpenCL) {
8197    if (!S.Context.typesAreBlockPointerCompatible(
8198            S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
8199            S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
8200      return Sema::IncompatibleBlockPointer;
8201  } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
8202    return Sema::IncompatibleBlockPointer;
8203
8204  return ConvTy;
8205}
8206
8207/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
8208/// for assignment compatibility.
8209static Sema::AssignConvertType
8210checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
8211                                   QualType RHSType) {
8212  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
8213  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
8214
8215  if (LHSType->isObjCBuiltinType()) {
8216    // Class is not compatible with ObjC object pointers.
8217    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
8218        !RHSType->isObjCQualifiedClassType())
8219      return Sema::IncompatiblePointer;
8220    return Sema::Compatible;
8221  }
8222  if (RHSType->isObjCBuiltinType()) {
8223    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
8224        !LHSType->isObjCQualifiedClassType())
8225      return Sema::IncompatiblePointer;
8226    return Sema::Compatible;
8227  }
8228  QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
8229  QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
8230
8231  if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
8232      // make an exception for id<P>
8233      !LHSType->isObjCQualifiedIdType())
8234    return Sema::CompatiblePointerDiscardsQualifiers;
8235
8236  if (S.Context.typesAreCompatible(LHSType, RHSType))
8237    return Sema::Compatible;
8238  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
8239    return Sema::IncompatibleObjCQualifiedId;
8240  return Sema::IncompatiblePointer;
8241}
8242
8243Sema::AssignConvertType
8244Sema::CheckAssignmentConstraints(SourceLocation Loc,
8245                                 QualType LHSType, QualType RHSType) {
8246  // Fake up an opaque expression.  We don't actually care about what
8247  // cast operations are required, so if CheckAssignmentConstraints
8248  // adds casts to this they'll be wasted, but fortunately that doesn't
8249  // usually happen on valid code.
8250  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
8251  ExprResult RHSPtr = &RHSExpr;
8252  CastKind K;
8253
8254  return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
8255}
8256
8257/// This helper function returns true if QT is a vector type that has element
8258/// type ElementType.
8259static bool isVector(QualType QT, QualType ElementType) {
8260  if (const VectorType *VT = QT->getAs<VectorType>())
8261    return VT->getElementType() == ElementType;
8262  return false;
8263}
8264
8265/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
8266/// has code to accommodate several GCC extensions when type checking
8267/// pointers. Here are some objectionable examples that GCC considers warnings:
8268///
8269///  int a, *pint;
8270///  short *pshort;
8271///  struct foo *pfoo;
8272///
8273///  pint = pshort; // warning: assignment from incompatible pointer type
8274///  a = pint; // warning: assignment makes integer from pointer without a cast
8275///  pint = a; // warning: assignment makes pointer from integer without a cast
8276///  pint = pfoo; // warning: assignment from incompatible pointer type
8277///
8278/// As a result, the code for dealing with pointers is more complex than the
8279/// C99 spec dictates.
8280///
8281/// Sets 'Kind' for any result kind except Incompatible.
8282Sema::AssignConvertType
8283Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
8284                                 CastKind &Kind, bool ConvertRHS) {
8285  QualType RHSType = RHS.get()->getType();
8286  QualType OrigLHSType = LHSType;
8287
8288  // Get canonical types.  We're not formatting these types, just comparing
8289  // them.
8290  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
8291  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
8292
8293  // Common case: no conversion required.
8294  if (LHSType == RHSType) {
8295    Kind = CK_NoOp;
8296    return Compatible;
8297  }
8298
8299  // If we have an atomic type, try a non-atomic assignment, then just add an
8300  // atomic qualification step.
8301  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
8302    Sema::AssignConvertType result =
8303      CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
8304    if (result != Compatible)
8305      return result;
8306    if (Kind != CK_NoOp && ConvertRHS)
8307      RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
8308    Kind = CK_NonAtomicToAtomic;
8309    return Compatible;
8310  }
8311
8312  // If the left-hand side is a reference type, then we are in a
8313  // (rare!) case where we've allowed the use of references in C,
8314  // e.g., as a parameter type in a built-in function. In this case,
8315  // just make sure that the type referenced is compatible with the
8316  // right-hand side type. The caller is responsible for adjusting
8317  // LHSType so that the resulting expression does not have reference
8318  // type.
8319  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
8320    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
8321      Kind = CK_LValueBitCast;
8322      return Compatible;
8323    }
8324    return Incompatible;
8325  }
8326
8327  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
8328  // to the same ExtVector type.
8329  if (LHSType->isExtVectorType()) {
8330    if (RHSType->isExtVectorType())
8331      return Incompatible;
8332    if (RHSType->isArithmeticType()) {
8333      // CK_VectorSplat does T -> vector T, so first cast to the element type.
8334      if (ConvertRHS)
8335        RHS = prepareVectorSplat(LHSType, RHS.get());
8336      Kind = CK_VectorSplat;
8337      return Compatible;
8338    }
8339  }
8340
8341  // Conversions to or from vector type.
8342  if (LHSType->isVectorType() || RHSType->isVectorType()) {
8343    if (LHSType->isVectorType() && RHSType->isVectorType()) {
8344      // Allow assignments of an AltiVec vector type to an equivalent GCC
8345      // vector type and vice versa
8346      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
8347        Kind = CK_BitCast;
8348        return Compatible;
8349      }
8350
8351      // If we are allowing lax vector conversions, and LHS and RHS are both
8352      // vectors, the total size only needs to be the same. This is a bitcast;
8353      // no bits are changed but the result type is different.
8354      if (isLaxVectorConversion(RHSType, LHSType)) {
8355        Kind = CK_BitCast;
8356        return IncompatibleVectors;
8357      }
8358    }
8359
8360    // When the RHS comes from another lax conversion (e.g. binops between
8361    // scalars and vectors) the result is canonicalized as a vector. When the
8362    // LHS is also a vector, the lax is allowed by the condition above. Handle
8363    // the case where LHS is a scalar.
8364    if (LHSType->isScalarType()) {
8365      const VectorType *VecType = RHSType->getAs<VectorType>();
8366      if (VecType && VecType->getNumElements() == 1 &&
8367          isLaxVectorConversion(RHSType, LHSType)) {
8368        ExprResult *VecExpr = &RHS;
8369        *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
8370        Kind = CK_BitCast;
8371        return Compatible;
8372      }
8373    }
8374
8375    return Incompatible;
8376  }
8377
8378  // Diagnose attempts to convert between __float128 and long double where
8379  // such conversions currently can't be handled.
8380  if (unsupportedTypeConversion(*this, LHSType, RHSType))
8381    return Incompatible;
8382
8383  // Disallow assigning a _Complex to a real type in C++ mode since it simply
8384  // discards the imaginary part.
8385  if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
8386      !LHSType->getAs<ComplexType>())
8387    return Incompatible;
8388
8389  // Arithmetic conversions.
8390  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
8391      !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
8392    if (ConvertRHS)
8393      Kind = PrepareScalarCast(RHS, LHSType);
8394    return Compatible;
8395  }
8396
8397  // Conversions to normal pointers.
8398  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
8399    // U* -> T*
8400    if (isa<PointerType>(RHSType)) {
8401      LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
8402      LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
8403      if (AddrSpaceL != AddrSpaceR)
8404        Kind = CK_AddressSpaceConversion;
8405      else if (Context.hasCvrSimilarType(RHSType, LHSType))
8406        Kind = CK_NoOp;
8407      else
8408        Kind = CK_BitCast;
8409      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
8410    }
8411
8412    // int -> T*
8413    if (RHSType->isIntegerType()) {
8414      Kind = CK_IntegralToPointer; // FIXME: null?
8415      return IntToPointer;
8416    }
8417
8418    // C pointers are not compatible with ObjC object pointers,
8419    // with two exceptions:
8420    if (isa<ObjCObjectPointerType>(RHSType)) {
8421      //  - conversions to void*
8422      if (LHSPointer->getPointeeType()->isVoidType()) {
8423        Kind = CK_BitCast;
8424        return Compatible;
8425      }
8426
8427      //  - conversions from 'Class' to the redefinition type
8428      if (RHSType->isObjCClassType() &&
8429          Context.hasSameType(LHSType,
8430                              Context.getObjCClassRedefinitionType())) {
8431        Kind = CK_BitCast;
8432        return Compatible;
8433      }
8434
8435      Kind = CK_BitCast;
8436      return IncompatiblePointer;
8437    }
8438
8439    // U^ -> void*
8440    if (RHSType->getAs<BlockPointerType>()) {
8441      if (LHSPointer->getPointeeType()->isVoidType()) {
8442        LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
8443        LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
8444                                ->getPointeeType()
8445                                .getAddressSpace();
8446        Kind =
8447            AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
8448        return Compatible;
8449      }
8450    }
8451
8452    return Incompatible;
8453  }
8454
8455  // Conversions to block pointers.
8456  if (isa<BlockPointerType>(LHSType)) {
8457    // U^ -> T^
8458    if (RHSType->isBlockPointerType()) {
8459      LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
8460                              ->getPointeeType()
8461                              .getAddressSpace();
8462      LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
8463                              ->getPointeeType()
8464                              .getAddressSpace();
8465      Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
8466      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
8467    }
8468
8469    // int or null -> T^
8470    if (RHSType->isIntegerType()) {
8471      Kind = CK_IntegralToPointer; // FIXME: null
8472      return IntToBlockPointer;
8473    }
8474
8475    // id -> T^
8476    if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
8477      Kind = CK_AnyPointerToBlockPointerCast;
8478      return Compatible;
8479    }
8480
8481    // void* -> T^
8482    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
8483      if (RHSPT->getPointeeType()->isVoidType()) {
8484        Kind = CK_AnyPointerToBlockPointerCast;
8485        return Compatible;
8486      }
8487
8488    return Incompatible;
8489  }
8490
8491  // Conversions to Objective-C pointers.
8492  if (isa<ObjCObjectPointerType>(LHSType)) {
8493    // A* -> B*
8494    if (RHSType->isObjCObjectPointerType()) {
8495      Kind = CK_BitCast;
8496      Sema::AssignConvertType result =
8497        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
8498      if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
8499          result == Compatible &&
8500          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
8501        result = IncompatibleObjCWeakRef;
8502      return result;
8503    }
8504
8505    // int or null -> A*
8506    if (RHSType->isIntegerType()) {
8507      Kind = CK_IntegralToPointer; // FIXME: null
8508      return IntToPointer;
8509    }
8510
8511    // In general, C pointers are not compatible with ObjC object pointers,
8512    // with two exceptions:
8513    if (isa<PointerType>(RHSType)) {
8514      Kind = CK_CPointerToObjCPointerCast;
8515
8516      //  - conversions from 'void*'
8517      if (RHSType->isVoidPointerType()) {
8518        return Compatible;
8519      }
8520
8521      //  - conversions to 'Class' from its redefinition type
8522      if (LHSType->isObjCClassType() &&
8523          Context.hasSameType(RHSType,
8524                              Context.getObjCClassRedefinitionType())) {
8525        return Compatible;
8526      }
8527
8528      return IncompatiblePointer;
8529    }
8530
8531    // Only under strict condition T^ is compatible with an Objective-C pointer.
8532    if (RHSType->isBlockPointerType() &&
8533        LHSType->isBlockCompatibleObjCPointerType(Context)) {
8534      if (ConvertRHS)
8535        maybeExtendBlockObject(RHS);
8536      Kind = CK_BlockPointerToObjCPointerCast;
8537      return Compatible;
8538    }
8539
8540    return Incompatible;
8541  }
8542
8543  // Conversions from pointers that are not covered by the above.
8544  if (isa<PointerType>(RHSType)) {
8545    // T* -> _Bool
8546    if (LHSType == Context.BoolTy) {
8547      Kind = CK_PointerToBoolean;
8548      return Compatible;
8549    }
8550
8551    // T* -> int
8552    if (LHSType->isIntegerType()) {
8553      Kind = CK_PointerToIntegral;
8554      return PointerToInt;
8555    }
8556
8557    return Incompatible;
8558  }
8559
8560  // Conversions from Objective-C pointers that are not covered by the above.
8561  if (isa<ObjCObjectPointerType>(RHSType)) {
8562    // T* -> _Bool
8563    if (LHSType == Context.BoolTy) {
8564      Kind = CK_PointerToBoolean;
8565      return Compatible;
8566    }
8567
8568    // T* -> int
8569    if (LHSType->isIntegerType()) {
8570      Kind = CK_PointerToIntegral;
8571      return PointerToInt;
8572    }
8573
8574    return Incompatible;
8575  }
8576
8577  // struct A -> struct B
8578  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
8579    if (Context.typesAreCompatible(LHSType, RHSType)) {
8580      Kind = CK_NoOp;
8581      return Compatible;
8582    }
8583  }
8584
8585  if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
8586    Kind = CK_IntToOCLSampler;
8587    return Compatible;
8588  }
8589
8590  return Incompatible;
8591}
8592
8593/// Constructs a transparent union from an expression that is
8594/// used to initialize the transparent union.
8595static void ConstructTransparentUnion(Sema &S, ASTContext &C,
8596                                      ExprResult &EResult, QualType UnionType,
8597                                      FieldDecl *Field) {
8598  // Build an initializer list that designates the appropriate member
8599  // of the transparent union.
8600  Expr *E = EResult.get();
8601  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
8602                                                   E, SourceLocation());
8603  Initializer->setType(UnionType);
8604  Initializer->setInitializedFieldInUnion(Field);
8605
8606  // Build a compound literal constructing a value of the transparent
8607  // union type from this initializer list.
8608  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
8609  EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
8610                                        VK_RValue, Initializer, false);
8611}
8612
8613Sema::AssignConvertType
8614Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
8615                                               ExprResult &RHS) {
8616  QualType RHSType = RHS.get()->getType();
8617
8618  // If the ArgType is a Union type, we want to handle a potential
8619  // transparent_union GCC extension.
8620  const RecordType *UT = ArgType->getAsUnionType();
8621  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
8622    return Incompatible;
8623
8624  // The field to initialize within the transparent union.
8625  RecordDecl *UD = UT->getDecl();
8626  FieldDecl *InitField = nullptr;
8627  // It's compatible if the expression matches any of the fields.
8628  for (auto *it : UD->fields()) {
8629    if (it->getType()->isPointerType()) {
8630      // If the transparent union contains a pointer type, we allow:
8631      // 1) void pointer
8632      // 2) null pointer constant
8633      if (RHSType->isPointerType())
8634        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
8635          RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
8636          InitField = it;
8637          break;
8638        }
8639
8640      if (RHS.get()->isNullPointerConstant(Context,
8641                                           Expr::NPC_ValueDependentIsNull)) {
8642        RHS = ImpCastExprToType(RHS.get(), it->getType(),
8643                                CK_NullToPointer);
8644        InitField = it;
8645        break;
8646      }
8647    }
8648
8649    CastKind Kind;
8650    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
8651          == Compatible) {
8652      RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
8653      InitField = it;
8654      break;
8655    }
8656  }
8657
8658  if (!InitField)
8659    return Incompatible;
8660
8661  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
8662  return Compatible;
8663}
8664
8665Sema::AssignConvertType
8666Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
8667                                       bool Diagnose,
8668                                       bool DiagnoseCFAudited,
8669                                       bool ConvertRHS) {
8670  // We need to be able to tell the caller whether we diagnosed a problem, if
8671  // they ask us to issue diagnostics.
8672  assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
8673
8674  // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
8675  // we can't avoid *all* modifications at the moment, so we need some somewhere
8676  // to put the updated value.
8677  ExprResult LocalRHS = CallerRHS;
8678  ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
8679
8680  if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
8681    if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
8682      if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8683          !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8684        Diag(RHS.get()->getExprLoc(),
8685             diag::warn_noderef_to_dereferenceable_pointer)
8686            << RHS.get()->getSourceRange();
8687      }
8688    }
8689  }
8690
8691  if (getLangOpts().CPlusPlus) {
8692    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
8693      // C++ 5.17p3: If the left operand is not of class type, the
8694      // expression is implicitly converted (C++ 4) to the
8695      // cv-unqualified type of the left operand.
8696      QualType RHSType = RHS.get()->getType();
8697      if (Diagnose) {
8698        RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
8699                                        AA_Assigning);
8700      } else {
8701        ImplicitConversionSequence ICS =
8702            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
8703                                  /*SuppressUserConversions=*/false,
8704                                  /*AllowExplicit=*/false,
8705                                  /*InOverloadResolution=*/false,
8706                                  /*CStyle=*/false,
8707                                  /*AllowObjCWritebackConversion=*/false);
8708        if (ICS.isFailure())
8709          return Incompatible;
8710        RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
8711                                        ICS, AA_Assigning);
8712      }
8713      if (RHS.isInvalid())
8714        return Incompatible;
8715      Sema::AssignConvertType result = Compatible;
8716      if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
8717          !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
8718        result = IncompatibleObjCWeakRef;
8719      return result;
8720    }
8721
8722    // FIXME: Currently, we fall through and treat C++ classes like C
8723    // structures.
8724    // FIXME: We also fall through for atomics; not sure what should
8725    // happen there, though.
8726  } else if (RHS.get()->getType() == Context.OverloadTy) {
8727    // As a set of extensions to C, we support overloading on functions. These
8728    // functions need to be resolved here.
8729    DeclAccessPair DAP;
8730    if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
8731            RHS.get(), LHSType, /*Complain=*/false, DAP))
8732      RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
8733    else
8734      return Incompatible;
8735  }
8736
8737  // C99 6.5.16.1p1: the left operand is a pointer and the right is
8738  // a null pointer constant.
8739  if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
8740       LHSType->isBlockPointerType()) &&
8741      RHS.get()->isNullPointerConstant(Context,
8742                                       Expr::NPC_ValueDependentIsNull)) {
8743    if (Diagnose || ConvertRHS) {
8744      CastKind Kind;
8745      CXXCastPath Path;
8746      CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
8747                             /*IgnoreBaseAccess=*/false, Diagnose);
8748      if (ConvertRHS)
8749        RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
8750    }
8751    return Compatible;
8752  }
8753
8754  // OpenCL queue_t type assignment.
8755  if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
8756                                 Context, Expr::NPC_ValueDependentIsNull)) {
8757    RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
8758    return Compatible;
8759  }
8760
8761  // This check seems unnatural, however it is necessary to ensure the proper
8762  // conversion of functions/arrays. If the conversion were done for all
8763  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
8764  // expressions that suppress this implicit conversion (&, sizeof).
8765  //
8766  // Suppress this for references: C++ 8.5.3p5.
8767  if (!LHSType->isReferenceType()) {
8768    // FIXME: We potentially allocate here even if ConvertRHS is false.
8769    RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
8770    if (RHS.isInvalid())
8771      return Incompatible;
8772  }
8773  CastKind Kind;
8774  Sema::AssignConvertType result =
8775    CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
8776
8777  // C99 6.5.16.1p2: The value of the right operand is converted to the
8778  // type of the assignment expression.
8779  // CheckAssignmentConstraints allows the left-hand side to be a reference,
8780  // so that we can use references in built-in functions even in C.
8781  // The getNonReferenceType() call makes sure that the resulting expression
8782  // does not have reference type.
8783  if (result != Incompatible && RHS.get()->getType() != LHSType) {
8784    QualType Ty = LHSType.getNonLValueExprType(Context);
8785    Expr *E = RHS.get();
8786
8787    // Check for various Objective-C errors. If we are not reporting
8788    // diagnostics and just checking for errors, e.g., during overload
8789    // resolution, return Incompatible to indicate the failure.
8790    if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
8791        CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
8792                            Diagnose, DiagnoseCFAudited) != ACR_okay) {
8793      if (!Diagnose)
8794        return Incompatible;
8795    }
8796    if (getLangOpts().ObjC &&
8797        (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
8798                                           E->getType(), E, Diagnose) ||
8799         ConversionToObjCStringLiteralCheck(LHSType, E, Diagnose))) {
8800      if (!Diagnose)
8801        return Incompatible;
8802      // Replace the expression with a corrected version and continue so we
8803      // can find further errors.
8804      RHS = E;
8805      return Compatible;
8806    }
8807
8808    if (ConvertRHS)
8809      RHS = ImpCastExprToType(E, Ty, Kind);
8810  }
8811
8812  return result;
8813}
8814
8815namespace {
8816/// The original operand to an operator, prior to the application of the usual
8817/// arithmetic conversions and converting the arguments of a builtin operator
8818/// candidate.
8819struct OriginalOperand {
8820  explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
8821    if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
8822      Op = MTE->getSubExpr();
8823    if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
8824      Op = BTE->getSubExpr();
8825    if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
8826      Orig = ICE->getSubExprAsWritten();
8827      Conversion = ICE->getConversionFunction();
8828    }
8829  }
8830
8831  QualType getType() const { return Orig->getType(); }
8832
8833  Expr *Orig;
8834  NamedDecl *Conversion;
8835};
8836}
8837
8838QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
8839                               ExprResult &RHS) {
8840  OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
8841
8842  Diag(Loc, diag::err_typecheck_invalid_operands)
8843    << OrigLHS.getType() << OrigRHS.getType()
8844    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8845
8846  // If a user-defined conversion was applied to either of the operands prior
8847  // to applying the built-in operator rules, tell the user about it.
8848  if (OrigLHS.Conversion) {
8849    Diag(OrigLHS.Conversion->getLocation(),
8850         diag::note_typecheck_invalid_operands_converted)
8851      << 0 << LHS.get()->getType();
8852  }
8853  if (OrigRHS.Conversion) {
8854    Diag(OrigRHS.Conversion->getLocation(),
8855         diag::note_typecheck_invalid_operands_converted)
8856      << 1 << RHS.get()->getType();
8857  }
8858
8859  return QualType();
8860}
8861
8862// Diagnose cases where a scalar was implicitly converted to a vector and
8863// diagnose the underlying types. Otherwise, diagnose the error
8864// as invalid vector logical operands for non-C++ cases.
8865QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
8866                                            ExprResult &RHS) {
8867  QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
8868  QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
8869
8870  bool LHSNatVec = LHSType->isVectorType();
8871  bool RHSNatVec = RHSType->isVectorType();
8872
8873  if (!(LHSNatVec && RHSNatVec)) {
8874    Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
8875    Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
8876    Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
8877        << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
8878        << Vector->getSourceRange();
8879    return QualType();
8880  }
8881
8882  Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
8883      << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
8884      << RHS.get()->getSourceRange();
8885
8886  return QualType();
8887}
8888
8889/// Try to convert a value of non-vector type to a vector type by converting
8890/// the type to the element type of the vector and then performing a splat.
8891/// If the language is OpenCL, we only use conversions that promote scalar
8892/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
8893/// for float->int.
8894///
8895/// OpenCL V2.0 6.2.6.p2:
8896/// An error shall occur if any scalar operand type has greater rank
8897/// than the type of the vector element.
8898///
8899/// \param scalar - if non-null, actually perform the conversions
8900/// \return true if the operation fails (but without diagnosing the failure)
8901static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
8902                                     QualType scalarTy,
8903                                     QualType vectorEltTy,
8904                                     QualType vectorTy,
8905                                     unsigned &DiagID) {
8906  // The conversion to apply to the scalar before splatting it,
8907  // if necessary.
8908  CastKind scalarCast = CK_NoOp;
8909
8910  if (vectorEltTy->isIntegralType(S.Context)) {
8911    if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
8912        (scalarTy->isIntegerType() &&
8913         S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
8914      DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
8915      return true;
8916    }
8917    if (!scalarTy->isIntegralType(S.Context))
8918      return true;
8919    scalarCast = CK_IntegralCast;
8920  } else if (vectorEltTy->isRealFloatingType()) {
8921    if (scalarTy->isRealFloatingType()) {
8922      if (S.getLangOpts().OpenCL &&
8923          S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
8924        DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
8925        return true;
8926      }
8927      scalarCast = CK_FloatingCast;
8928    }
8929    else if (scalarTy->isIntegralType(S.Context))
8930      scalarCast = CK_IntegralToFloating;
8931    else
8932      return true;
8933  } else {
8934    return true;
8935  }
8936
8937  // Adjust scalar if desired.
8938  if (scalar) {
8939    if (scalarCast != CK_NoOp)
8940      *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
8941    *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
8942  }
8943  return false;
8944}
8945
8946/// Convert vector E to a vector with the same number of elements but different
8947/// element type.
8948static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
8949  const auto *VecTy = E->getType()->getAs<VectorType>();
8950  assert(VecTy && "Expression E must be a vector");
8951  QualType NewVecTy = S.Context.getVectorType(ElementType,
8952                                              VecTy->getNumElements(),
8953                                              VecTy->getVectorKind());
8954
8955  // Look through the implicit cast. Return the subexpression if its type is
8956  // NewVecTy.
8957  if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
8958    if (ICE->getSubExpr()->getType() == NewVecTy)
8959      return ICE->getSubExpr();
8960
8961  auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
8962  return S.ImpCastExprToType(E, NewVecTy, Cast);
8963}
8964
8965/// Test if a (constant) integer Int can be casted to another integer type
8966/// IntTy without losing precision.
8967static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
8968                                      QualType OtherIntTy) {
8969  QualType IntTy = Int->get()->getType().getUnqualifiedType();
8970
8971  // Reject cases where the value of the Int is unknown as that would
8972  // possibly cause truncation, but accept cases where the scalar can be
8973  // demoted without loss of precision.
8974  Expr::EvalResult EVResult;
8975  bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
8976  int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
8977  bool IntSigned = IntTy->hasSignedIntegerRepresentation();
8978  bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
8979
8980  if (CstInt) {
8981    // If the scalar is constant and is of a higher order and has more active
8982    // bits that the vector element type, reject it.
8983    llvm::APSInt Result = EVResult.Val.getInt();
8984    unsigned NumBits = IntSigned
8985                           ? (Result.isNegative() ? Result.getMinSignedBits()
8986                                                  : Result.getActiveBits())
8987                           : Result.getActiveBits();
8988    if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
8989      return true;
8990
8991    // If the signedness of the scalar type and the vector element type
8992    // differs and the number of bits is greater than that of the vector
8993    // element reject it.
8994    return (IntSigned != OtherIntSigned &&
8995            NumBits > S.Context.getIntWidth(OtherIntTy));
8996  }
8997
8998  // Reject cases where the value of the scalar is not constant and it's
8999  // order is greater than that of the vector element type.
9000  return (Order < 0);
9001}
9002
9003/// Test if a (constant) integer Int can be casted to floating point type
9004/// FloatTy without losing precision.
9005static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
9006                                     QualType FloatTy) {
9007  QualType IntTy = Int->get()->getType().getUnqualifiedType();
9008
9009  // Determine if the integer constant can be expressed as a floating point
9010  // number of the appropriate type.
9011  Expr::EvalResult EVResult;
9012  bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9013
9014  uint64_t Bits = 0;
9015  if (CstInt) {
9016    // Reject constants that would be truncated if they were converted to
9017    // the floating point type. Test by simple to/from conversion.
9018    // FIXME: Ideally the conversion to an APFloat and from an APFloat
9019    //        could be avoided if there was a convertFromAPInt method
9020    //        which could signal back if implicit truncation occurred.
9021    llvm::APSInt Result = EVResult.Val.getInt();
9022    llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
9023    Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
9024                           llvm::APFloat::rmTowardZero);
9025    llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
9026                             !IntTy->hasSignedIntegerRepresentation());
9027    bool Ignored = false;
9028    Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
9029                           &Ignored);
9030    if (Result != ConvertBack)
9031      return true;
9032  } else {
9033    // Reject types that cannot be fully encoded into the mantissa of
9034    // the float.
9035    Bits = S.Context.getTypeSize(IntTy);
9036    unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
9037        S.Context.getFloatTypeSemantics(FloatTy));
9038    if (Bits > FloatPrec)
9039      return true;
9040  }
9041
9042  return false;
9043}
9044
9045/// Attempt to convert and splat Scalar into a vector whose types matches
9046/// Vector following GCC conversion rules. The rule is that implicit
9047/// conversion can occur when Scalar can be casted to match Vector's element
9048/// type without causing truncation of Scalar.
9049static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
9050                                        ExprResult *Vector) {
9051  QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
9052  QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
9053  const VectorType *VT = VectorTy->getAs<VectorType>();
9054
9055  assert(!isa<ExtVectorType>(VT) &&
9056         "ExtVectorTypes should not be handled here!");
9057
9058  QualType VectorEltTy = VT->getElementType();
9059
9060  // Reject cases where the vector element type or the scalar element type are
9061  // not integral or floating point types.
9062  if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
9063    return true;
9064
9065  // The conversion to apply to the scalar before splatting it,
9066  // if necessary.
9067  CastKind ScalarCast = CK_NoOp;
9068
9069  // Accept cases where the vector elements are integers and the scalar is
9070  // an integer.
9071  // FIXME: Notionally if the scalar was a floating point value with a precise
9072  //        integral representation, we could cast it to an appropriate integer
9073  //        type and then perform the rest of the checks here. GCC will perform
9074  //        this conversion in some cases as determined by the input language.
9075  //        We should accept it on a language independent basis.
9076  if (VectorEltTy->isIntegralType(S.Context) &&
9077      ScalarTy->isIntegralType(S.Context) &&
9078      S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
9079
9080    if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
9081      return true;
9082
9083    ScalarCast = CK_IntegralCast;
9084  } else if (VectorEltTy->isIntegralType(S.Context) &&
9085             ScalarTy->isRealFloatingType()) {
9086    if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
9087      ScalarCast = CK_FloatingToIntegral;
9088    else
9089      return true;
9090  } else if (VectorEltTy->isRealFloatingType()) {
9091    if (ScalarTy->isRealFloatingType()) {
9092
9093      // Reject cases where the scalar type is not a constant and has a higher
9094      // Order than the vector element type.
9095      llvm::APFloat Result(0.0);
9096      bool CstScalar = Scalar->get()->EvaluateAsFloat(Result, S.Context);
9097      int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
9098      if (!CstScalar && Order < 0)
9099        return true;
9100
9101      // If the scalar cannot be safely casted to the vector element type,
9102      // reject it.
9103      if (CstScalar) {
9104        bool Truncated = false;
9105        Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
9106                       llvm::APFloat::rmNearestTiesToEven, &Truncated);
9107        if (Truncated)
9108          return true;
9109      }
9110
9111      ScalarCast = CK_FloatingCast;
9112    } else if (ScalarTy->isIntegralType(S.Context)) {
9113      if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
9114        return true;
9115
9116      ScalarCast = CK_IntegralToFloating;
9117    } else
9118      return true;
9119  }
9120
9121  // Adjust scalar if desired.
9122  if (Scalar) {
9123    if (ScalarCast != CK_NoOp)
9124      *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
9125    *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
9126  }
9127  return false;
9128}
9129
9130QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
9131                                   SourceLocation Loc, bool IsCompAssign,
9132                                   bool AllowBothBool,
9133                                   bool AllowBoolConversions) {
9134  if (!IsCompAssign) {
9135    LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
9136    if (LHS.isInvalid())
9137      return QualType();
9138  }
9139  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
9140  if (RHS.isInvalid())
9141    return QualType();
9142
9143  // For conversion purposes, we ignore any qualifiers.
9144  // For example, "const float" and "float" are equivalent.
9145  QualType LHSType = LHS.get()->getType().getUnqualifiedType();
9146  QualType RHSType = RHS.get()->getType().getUnqualifiedType();
9147
9148  const VectorType *LHSVecType = LHSType->getAs<VectorType>();
9149  const VectorType *RHSVecType = RHSType->getAs<VectorType>();
9150  assert(LHSVecType || RHSVecType);
9151
9152  // AltiVec-style "vector bool op vector bool" combinations are allowed
9153  // for some operators but not others.
9154  if (!AllowBothBool &&
9155      LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
9156      RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
9157    return InvalidOperands(Loc, LHS, RHS);
9158
9159  // If the vector types are identical, return.
9160  if (Context.hasSameType(LHSType, RHSType))
9161    return LHSType;
9162
9163  // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
9164  if (LHSVecType && RHSVecType &&
9165      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9166    if (isa<ExtVectorType>(LHSVecType)) {
9167      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9168      return LHSType;
9169    }
9170
9171    if (!IsCompAssign)
9172      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
9173    return RHSType;
9174  }
9175
9176  // AllowBoolConversions says that bool and non-bool AltiVec vectors
9177  // can be mixed, with the result being the non-bool type.  The non-bool
9178  // operand must have integer element type.
9179  if (AllowBoolConversions && LHSVecType && RHSVecType &&
9180      LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
9181      (Context.getTypeSize(LHSVecType->getElementType()) ==
9182       Context.getTypeSize(RHSVecType->getElementType()))) {
9183    if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
9184        LHSVecType->getElementType()->isIntegerType() &&
9185        RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
9186      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9187      return LHSType;
9188    }
9189    if (!IsCompAssign &&
9190        LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
9191        RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
9192        RHSVecType->getElementType()->isIntegerType()) {
9193      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
9194      return RHSType;
9195    }
9196  }
9197
9198  // If there's a vector type and a scalar, try to convert the scalar to
9199  // the vector element type and splat.
9200  unsigned DiagID = diag::err_typecheck_vector_not_convertable;
9201  if (!RHSVecType) {
9202    if (isa<ExtVectorType>(LHSVecType)) {
9203      if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
9204                                    LHSVecType->getElementType(), LHSType,
9205                                    DiagID))
9206        return LHSType;
9207    } else {
9208      if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
9209        return LHSType;
9210    }
9211  }
9212  if (!LHSVecType) {
9213    if (isa<ExtVectorType>(RHSVecType)) {
9214      if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
9215                                    LHSType, RHSVecType->getElementType(),
9216                                    RHSType, DiagID))
9217        return RHSType;
9218    } else {
9219      if (LHS.get()->getValueKind() == VK_LValue ||
9220          !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
9221        return RHSType;
9222    }
9223  }
9224
9225  // FIXME: The code below also handles conversion between vectors and
9226  // non-scalars, we should break this down into fine grained specific checks
9227  // and emit proper diagnostics.
9228  QualType VecType = LHSVecType ? LHSType : RHSType;
9229  const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
9230  QualType OtherType = LHSVecType ? RHSType : LHSType;
9231  ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
9232  if (isLaxVectorConversion(OtherType, VecType)) {
9233    // If we're allowing lax vector conversions, only the total (data) size
9234    // needs to be the same. For non compound assignment, if one of the types is
9235    // scalar, the result is always the vector type.
9236    if (!IsCompAssign) {
9237      *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
9238      return VecType;
9239    // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
9240    // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
9241    // type. Note that this is already done by non-compound assignments in
9242    // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
9243    // <1 x T> -> T. The result is also a vector type.
9244    } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
9245               (OtherType->isScalarType() && VT->getNumElements() == 1)) {
9246      ExprResult *RHSExpr = &RHS;
9247      *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
9248      return VecType;
9249    }
9250  }
9251
9252  // Okay, the expression is invalid.
9253
9254  // If there's a non-vector, non-real operand, diagnose that.
9255  if ((!RHSVecType && !RHSType->isRealType()) ||
9256      (!LHSVecType && !LHSType->isRealType())) {
9257    Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
9258      << LHSType << RHSType
9259      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9260    return QualType();
9261  }
9262
9263  // OpenCL V1.1 6.2.6.p1:
9264  // If the operands are of more than one vector type, then an error shall
9265  // occur. Implicit conversions between vector types are not permitted, per
9266  // section 6.2.1.
9267  if (getLangOpts().OpenCL &&
9268      RHSVecType && isa<ExtVectorType>(RHSVecType) &&
9269      LHSVecType && isa<ExtVectorType>(LHSVecType)) {
9270    Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
9271                                                           << RHSType;
9272    return QualType();
9273  }
9274
9275
9276  // If there is a vector type that is not a ExtVector and a scalar, we reach
9277  // this point if scalar could not be converted to the vector's element type
9278  // without truncation.
9279  if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
9280      (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
9281    QualType Scalar = LHSVecType ? RHSType : LHSType;
9282    QualType Vector = LHSVecType ? LHSType : RHSType;
9283    unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
9284    Diag(Loc,
9285         diag::err_typecheck_vector_not_convertable_implict_truncation)
9286        << ScalarOrVector << Scalar << Vector;
9287
9288    return QualType();
9289  }
9290
9291  // Otherwise, use the generic diagnostic.
9292  Diag(Loc, DiagID)
9293    << LHSType << RHSType
9294    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9295  return QualType();
9296}
9297
9298// checkArithmeticNull - Detect when a NULL constant is used improperly in an
9299// expression.  These are mainly cases where the null pointer is used as an
9300// integer instead of a pointer.
9301static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
9302                                SourceLocation Loc, bool IsCompare) {
9303  // The canonical way to check for a GNU null is with isNullPointerConstant,
9304  // but we use a bit of a hack here for speed; this is a relatively
9305  // hot path, and isNullPointerConstant is slow.
9306  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
9307  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
9308
9309  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
9310
9311  // Avoid analyzing cases where the result will either be invalid (and
9312  // diagnosed as such) or entirely valid and not something to warn about.
9313  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
9314      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
9315    return;
9316
9317  // Comparison operations would not make sense with a null pointer no matter
9318  // what the other expression is.
9319  if (!IsCompare) {
9320    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
9321        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
9322        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
9323    return;
9324  }
9325
9326  // The rest of the operations only make sense with a null pointer
9327  // if the other expression is a pointer.
9328  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
9329      NonNullType->canDecayToPointerType())
9330    return;
9331
9332  S.Diag(Loc, diag::warn_null_in_comparison_operation)
9333      << LHSNull /* LHS is NULL */ << NonNullType
9334      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9335}
9336
9337static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
9338                                          SourceLocation Loc) {
9339  const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
9340  const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
9341  if (!LUE || !RUE)
9342    return;
9343  if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
9344      RUE->getKind() != UETT_SizeOf)
9345    return;
9346
9347  const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
9348  QualType LHSTy = LHSArg->getType();
9349  QualType RHSTy;
9350
9351  if (RUE->isArgumentType())
9352    RHSTy = RUE->getArgumentType();
9353  else
9354    RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
9355
9356  if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
9357    if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
9358      return;
9359
9360    S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
9361    if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
9362      if (const ValueDecl *LHSArgDecl = DRE->getDecl())
9363        S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
9364            << LHSArgDecl;
9365    }
9366  } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
9367    QualType ArrayElemTy = ArrayTy->getElementType();
9368    if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
9369        ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
9370        ArrayElemTy->isCharType() ||
9371        S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
9372      return;
9373    S.Diag(Loc, diag::warn_division_sizeof_array)
9374        << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
9375    if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
9376      if (const ValueDecl *LHSArgDecl = DRE->getDecl())
9377        S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
9378            << LHSArgDecl;
9379    }
9380
9381    S.Diag(Loc, diag::note_precedence_silence) << RHS;
9382  }
9383}
9384
9385static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
9386                                               ExprResult &RHS,
9387                                               SourceLocation Loc, bool IsDiv) {
9388  // Check for division/remainder by zero.
9389  Expr::EvalResult RHSValue;
9390  if (!RHS.get()->isValueDependent() &&
9391      RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
9392      RHSValue.Val.getInt() == 0)
9393    S.DiagRuntimeBehavior(Loc, RHS.get(),
9394                          S.PDiag(diag::warn_remainder_division_by_zero)
9395                            << IsDiv << RHS.get()->getSourceRange());
9396}
9397
9398QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
9399                                           SourceLocation Loc,
9400                                           bool IsCompAssign, bool IsDiv) {
9401  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
9402
9403  if (LHS.get()->getType()->isVectorType() ||
9404      RHS.get()->getType()->isVectorType())
9405    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
9406                               /*AllowBothBool*/getLangOpts().AltiVec,
9407                               /*AllowBoolConversions*/false);
9408
9409  QualType compType = UsualArithmeticConversions(
9410      LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
9411  if (LHS.isInvalid() || RHS.isInvalid())
9412    return QualType();
9413
9414
9415  if (compType.isNull() || !compType->isArithmeticType())
9416    return InvalidOperands(Loc, LHS, RHS);
9417  if (IsDiv) {
9418    DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
9419    DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
9420  }
9421  return compType;
9422}
9423
9424QualType Sema::CheckRemainderOperands(
9425  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
9426  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
9427
9428  if (LHS.get()->getType()->isVectorType() ||
9429      RHS.get()->getType()->isVectorType()) {
9430    if (LHS.get()->getType()->hasIntegerRepresentation() &&
9431        RHS.get()->getType()->hasIntegerRepresentation())
9432      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
9433                                 /*AllowBothBool*/getLangOpts().AltiVec,
9434                                 /*AllowBoolConversions*/false);
9435    return InvalidOperands(Loc, LHS, RHS);
9436  }
9437
9438  QualType compType = UsualArithmeticConversions(
9439      LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
9440  if (LHS.isInvalid() || RHS.isInvalid())
9441    return QualType();
9442
9443  if (compType.isNull() || !compType->isIntegerType())
9444    return InvalidOperands(Loc, LHS, RHS);
9445  DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
9446  return compType;
9447}
9448
9449/// Diagnose invalid arithmetic on two void pointers.
9450static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
9451                                                Expr *LHSExpr, Expr *RHSExpr) {
9452  S.Diag(Loc, S.getLangOpts().CPlusPlus
9453                ? diag::err_typecheck_pointer_arith_void_type
9454                : diag::ext_gnu_void_ptr)
9455    << 1 /* two pointers */ << LHSExpr->getSourceRange()
9456                            << RHSExpr->getSourceRange();
9457}
9458
9459/// Diagnose invalid arithmetic on a void pointer.
9460static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
9461                                            Expr *Pointer) {
9462  S.Diag(Loc, S.getLangOpts().CPlusPlus
9463                ? diag::err_typecheck_pointer_arith_void_type
9464                : diag::ext_gnu_void_ptr)
9465    << 0 /* one pointer */ << Pointer->getSourceRange();
9466}
9467
9468/// Diagnose invalid arithmetic on a null pointer.
9469///
9470/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
9471/// idiom, which we recognize as a GNU extension.
9472///
9473static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
9474                                            Expr *Pointer, bool IsGNUIdiom) {
9475  if (IsGNUIdiom)
9476    S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
9477      << Pointer->getSourceRange();
9478  else
9479    S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
9480      << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
9481}
9482
9483/// Diagnose invalid arithmetic on two function pointers.
9484static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
9485                                                    Expr *LHS, Expr *RHS) {
9486  assert(LHS->getType()->isAnyPointerType());
9487  assert(RHS->getType()->isAnyPointerType());
9488  S.Diag(Loc, S.getLangOpts().CPlusPlus
9489                ? diag::err_typecheck_pointer_arith_function_type
9490                : diag::ext_gnu_ptr_func_arith)
9491    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
9492    // We only show the second type if it differs from the first.
9493    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
9494                                                   RHS->getType())
9495    << RHS->getType()->getPointeeType()
9496    << LHS->getSourceRange() << RHS->getSourceRange();
9497}
9498
9499/// Diagnose invalid arithmetic on a function pointer.
9500static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
9501                                                Expr *Pointer) {
9502  assert(Pointer->getType()->isAnyPointerType());
9503  S.Diag(Loc, S.getLangOpts().CPlusPlus
9504                ? diag::err_typecheck_pointer_arith_function_type
9505                : diag::ext_gnu_ptr_func_arith)
9506    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
9507    << 0 /* one pointer, so only one type */
9508    << Pointer->getSourceRange();
9509}
9510
9511/// Emit error if Operand is incomplete pointer type
9512///
9513/// \returns True if pointer has incomplete type
9514static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
9515                                                 Expr *Operand) {
9516  QualType ResType = Operand->getType();
9517  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
9518    ResType = ResAtomicType->getValueType();
9519
9520  assert(ResType->isAnyPointerType() && !ResType->isDependentType());
9521  QualType PointeeTy = ResType->getPointeeType();
9522  return S.RequireCompleteType(Loc, PointeeTy,
9523                               diag::err_typecheck_arithmetic_incomplete_type,
9524                               PointeeTy, Operand->getSourceRange());
9525}
9526
9527/// Check the validity of an arithmetic pointer operand.
9528///
9529/// If the operand has pointer type, this code will check for pointer types
9530/// which are invalid in arithmetic operations. These will be diagnosed
9531/// appropriately, including whether or not the use is supported as an
9532/// extension.
9533///
9534/// \returns True when the operand is valid to use (even if as an extension).
9535static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
9536                                            Expr *Operand) {
9537  QualType ResType = Operand->getType();
9538  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
9539    ResType = ResAtomicType->getValueType();
9540
9541  if (!ResType->isAnyPointerType()) return true;
9542
9543  QualType PointeeTy = ResType->getPointeeType();
9544  if (PointeeTy->isVoidType()) {
9545    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
9546    return !S.getLangOpts().CPlusPlus;
9547  }
9548  if (PointeeTy->isFunctionType()) {
9549    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
9550    return !S.getLangOpts().CPlusPlus;
9551  }
9552
9553  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
9554
9555  return true;
9556}
9557
9558/// Check the validity of a binary arithmetic operation w.r.t. pointer
9559/// operands.
9560///
9561/// This routine will diagnose any invalid arithmetic on pointer operands much
9562/// like \see checkArithmeticOpPointerOperand. However, it has special logic
9563/// for emitting a single diagnostic even for operations where both LHS and RHS
9564/// are (potentially problematic) pointers.
9565///
9566/// \returns True when the operand is valid to use (even if as an extension).
9567static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
9568                                                Expr *LHSExpr, Expr *RHSExpr) {
9569  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
9570  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
9571  if (!isLHSPointer && !isRHSPointer) return true;
9572
9573  QualType LHSPointeeTy, RHSPointeeTy;
9574  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
9575  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
9576
9577  // if both are pointers check if operation is valid wrt address spaces
9578  if (S.getLangOpts().OpenCL && isLHSPointer && isRHSPointer) {
9579    const PointerType *lhsPtr = LHSExpr->getType()->castAs<PointerType>();
9580    const PointerType *rhsPtr = RHSExpr->getType()->castAs<PointerType>();
9581    if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
9582      S.Diag(Loc,
9583             diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
9584          << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
9585          << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
9586      return false;
9587    }
9588  }
9589
9590  // Check for arithmetic on pointers to incomplete types.
9591  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
9592  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
9593  if (isLHSVoidPtr || isRHSVoidPtr) {
9594    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
9595    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
9596    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
9597
9598    return !S.getLangOpts().CPlusPlus;
9599  }
9600
9601  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
9602  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
9603  if (isLHSFuncPtr || isRHSFuncPtr) {
9604    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
9605    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
9606                                                                RHSExpr);
9607    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
9608
9609    return !S.getLangOpts().CPlusPlus;
9610  }
9611
9612  if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
9613    return false;
9614  if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
9615    return false;
9616
9617  return true;
9618}
9619
9620/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
9621/// literal.
9622static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
9623                                  Expr *LHSExpr, Expr *RHSExpr) {
9624  StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
9625  Expr* IndexExpr = RHSExpr;
9626  if (!StrExpr) {
9627    StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
9628    IndexExpr = LHSExpr;
9629  }
9630
9631  bool IsStringPlusInt = StrExpr &&
9632      IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
9633  if (!IsStringPlusInt || IndexExpr->isValueDependent())
9634    return;
9635
9636  SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
9637  Self.Diag(OpLoc, diag::warn_string_plus_int)
9638      << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
9639
9640  // Only print a fixit for "str" + int, not for int + "str".
9641  if (IndexExpr == RHSExpr) {
9642    SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
9643    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
9644        << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
9645        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
9646        << FixItHint::CreateInsertion(EndLoc, "]");
9647  } else
9648    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
9649}
9650
9651/// Emit a warning when adding a char literal to a string.
9652static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
9653                                   Expr *LHSExpr, Expr *RHSExpr) {
9654  const Expr *StringRefExpr = LHSExpr;
9655  const CharacterLiteral *CharExpr =
9656      dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
9657
9658  if (!CharExpr) {
9659    CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
9660    StringRefExpr = RHSExpr;
9661  }
9662
9663  if (!CharExpr || !StringRefExpr)
9664    return;
9665
9666  const QualType StringType = StringRefExpr->getType();
9667
9668  // Return if not a PointerType.
9669  if (!StringType->isAnyPointerType())
9670    return;
9671
9672  // Return if not a CharacterType.
9673  if (!StringType->getPointeeType()->isAnyCharacterType())
9674    return;
9675
9676  ASTContext &Ctx = Self.getASTContext();
9677  SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
9678
9679  const QualType CharType = CharExpr->getType();
9680  if (!CharType->isAnyCharacterType() &&
9681      CharType->isIntegerType() &&
9682      llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
9683    Self.Diag(OpLoc, diag::warn_string_plus_char)
9684        << DiagRange << Ctx.CharTy;
9685  } else {
9686    Self.Diag(OpLoc, diag::warn_string_plus_char)
9687        << DiagRange << CharExpr->getType();
9688  }
9689
9690  // Only print a fixit for str + char, not for char + str.
9691  if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
9692    SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
9693    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
9694        << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
9695        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
9696        << FixItHint::CreateInsertion(EndLoc, "]");
9697  } else {
9698    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
9699  }
9700}
9701
9702/// Emit error when two pointers are incompatible.
9703static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
9704                                           Expr *LHSExpr, Expr *RHSExpr) {
9705  assert(LHSExpr->getType()->isAnyPointerType());
9706  assert(RHSExpr->getType()->isAnyPointerType());
9707  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
9708    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
9709    << RHSExpr->getSourceRange();
9710}
9711
9712// C99 6.5.6
9713QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
9714                                     SourceLocation Loc, BinaryOperatorKind Opc,
9715                                     QualType* CompLHSTy) {
9716  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
9717
9718  if (LHS.get()->getType()->isVectorType() ||
9719      RHS.get()->getType()->isVectorType()) {
9720    QualType compType = CheckVectorOperands(
9721        LHS, RHS, Loc, CompLHSTy,
9722        /*AllowBothBool*/getLangOpts().AltiVec,
9723        /*AllowBoolConversions*/getLangOpts().ZVector);
9724    if (CompLHSTy) *CompLHSTy = compType;
9725    return compType;
9726  }
9727
9728  QualType compType = UsualArithmeticConversions(
9729      LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
9730  if (LHS.isInvalid() || RHS.isInvalid())
9731    return QualType();
9732
9733  // Diagnose "string literal" '+' int and string '+' "char literal".
9734  if (Opc == BO_Add) {
9735    diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
9736    diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
9737  }
9738
9739  // handle the common case first (both operands are arithmetic).
9740  if (!compType.isNull() && compType->isArithmeticType()) {
9741    if (CompLHSTy) *CompLHSTy = compType;
9742    return compType;
9743  }
9744
9745  // Type-checking.  Ultimately the pointer's going to be in PExp;
9746  // note that we bias towards the LHS being the pointer.
9747  Expr *PExp = LHS.get(), *IExp = RHS.get();
9748
9749  bool isObjCPointer;
9750  if (PExp->getType()->isPointerType()) {
9751    isObjCPointer = false;
9752  } else if (PExp->getType()->isObjCObjectPointerType()) {
9753    isObjCPointer = true;
9754  } else {
9755    std::swap(PExp, IExp);
9756    if (PExp->getType()->isPointerType()) {
9757      isObjCPointer = false;
9758    } else if (PExp->getType()->isObjCObjectPointerType()) {
9759      isObjCPointer = true;
9760    } else {
9761      return InvalidOperands(Loc, LHS, RHS);
9762    }
9763  }
9764  assert(PExp->getType()->isAnyPointerType());
9765
9766  if (!IExp->getType()->isIntegerType())
9767    return InvalidOperands(Loc, LHS, RHS);
9768
9769  // Adding to a null pointer results in undefined behavior.
9770  if (PExp->IgnoreParenCasts()->isNullPointerConstant(
9771          Context, Expr::NPC_ValueDependentIsNotNull)) {
9772    // In C++ adding zero to a null pointer is defined.
9773    Expr::EvalResult KnownVal;
9774    if (!getLangOpts().CPlusPlus ||
9775        (!IExp->isValueDependent() &&
9776         (!IExp->EvaluateAsInt(KnownVal, Context) ||
9777          KnownVal.Val.getInt() != 0))) {
9778      // Check the conditions to see if this is the 'p = nullptr + n' idiom.
9779      bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
9780          Context, BO_Add, PExp, IExp);
9781      diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
9782    }
9783  }
9784
9785  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
9786    return QualType();
9787
9788  if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
9789    return QualType();
9790
9791  // Check array bounds for pointer arithemtic
9792  CheckArrayAccess(PExp, IExp);
9793
9794  if (CompLHSTy) {
9795    QualType LHSTy = Context.isPromotableBitField(LHS.get());
9796    if (LHSTy.isNull()) {
9797      LHSTy = LHS.get()->getType();
9798      if (LHSTy->isPromotableIntegerType())
9799        LHSTy = Context.getPromotedIntegerType(LHSTy);
9800    }
9801    *CompLHSTy = LHSTy;
9802  }
9803
9804  return PExp->getType();
9805}
9806
9807// C99 6.5.6
9808QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
9809                                        SourceLocation Loc,
9810                                        QualType* CompLHSTy) {
9811  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
9812
9813  if (LHS.get()->getType()->isVectorType() ||
9814      RHS.get()->getType()->isVectorType()) {
9815    QualType compType = CheckVectorOperands(
9816        LHS, RHS, Loc, CompLHSTy,
9817        /*AllowBothBool*/getLangOpts().AltiVec,
9818        /*AllowBoolConversions*/getLangOpts().ZVector);
9819    if (CompLHSTy) *CompLHSTy = compType;
9820    return compType;
9821  }
9822
9823  QualType compType = UsualArithmeticConversions(
9824      LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
9825  if (LHS.isInvalid() || RHS.isInvalid())
9826    return QualType();
9827
9828  // Enforce type constraints: C99 6.5.6p3.
9829
9830  // Handle the common case first (both operands are arithmetic).
9831  if (!compType.isNull() && compType->isArithmeticType()) {
9832    if (CompLHSTy) *CompLHSTy = compType;
9833    return compType;
9834  }
9835
9836  // Either ptr - int   or   ptr - ptr.
9837  if (LHS.get()->getType()->isAnyPointerType()) {
9838    QualType lpointee = LHS.get()->getType()->getPointeeType();
9839
9840    // Diagnose bad cases where we step over interface counts.
9841    if (LHS.get()->getType()->isObjCObjectPointerType() &&
9842        checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
9843      return QualType();
9844
9845    // The result type of a pointer-int computation is the pointer type.
9846    if (RHS.get()->getType()->isIntegerType()) {
9847      // Subtracting from a null pointer should produce a warning.
9848      // The last argument to the diagnose call says this doesn't match the
9849      // GNU int-to-pointer idiom.
9850      if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
9851                                           Expr::NPC_ValueDependentIsNotNull)) {
9852        // In C++ adding zero to a null pointer is defined.
9853        Expr::EvalResult KnownVal;
9854        if (!getLangOpts().CPlusPlus ||
9855            (!RHS.get()->isValueDependent() &&
9856             (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
9857              KnownVal.Val.getInt() != 0))) {
9858          diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
9859        }
9860      }
9861
9862      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
9863        return QualType();
9864
9865      // Check array bounds for pointer arithemtic
9866      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
9867                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);
9868
9869      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
9870      return LHS.get()->getType();
9871    }
9872
9873    // Handle pointer-pointer subtractions.
9874    if (const PointerType *RHSPTy
9875          = RHS.get()->getType()->getAs<PointerType>()) {
9876      QualType rpointee = RHSPTy->getPointeeType();
9877
9878      if (getLangOpts().CPlusPlus) {
9879        // Pointee types must be the same: C++ [expr.add]
9880        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
9881          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
9882        }
9883      } else {
9884        // Pointee types must be compatible C99 6.5.6p3
9885        if (!Context.typesAreCompatible(
9886                Context.getCanonicalType(lpointee).getUnqualifiedType(),
9887                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
9888          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
9889          return QualType();
9890        }
9891      }
9892
9893      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
9894                                               LHS.get(), RHS.get()))
9895        return QualType();
9896
9897      // FIXME: Add warnings for nullptr - ptr.
9898
9899      // The pointee type may have zero size.  As an extension, a structure or
9900      // union may have zero size or an array may have zero length.  In this
9901      // case subtraction does not make sense.
9902      if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
9903        CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
9904        if (ElementSize.isZero()) {
9905          Diag(Loc,diag::warn_sub_ptr_zero_size_types)
9906            << rpointee.getUnqualifiedType()
9907            << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9908        }
9909      }
9910
9911      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
9912      return Context.getPointerDiffType();
9913    }
9914  }
9915
9916  return InvalidOperands(Loc, LHS, RHS);
9917}
9918
9919static bool isScopedEnumerationType(QualType T) {
9920  if (const EnumType *ET = T->getAs<EnumType>())
9921    return ET->getDecl()->isScoped();
9922  return false;
9923}
9924
9925static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
9926                                   SourceLocation Loc, BinaryOperatorKind Opc,
9927                                   QualType LHSType) {
9928  // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
9929  // so skip remaining warnings as we don't want to modify values within Sema.
9930  if (S.getLangOpts().OpenCL)
9931    return;
9932
9933  // Check right/shifter operand
9934  Expr::EvalResult RHSResult;
9935  if (RHS.get()->isValueDependent() ||
9936      !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
9937    return;
9938  llvm::APSInt Right = RHSResult.Val.getInt();
9939
9940  if (Right.isNegative()) {
9941    S.DiagRuntimeBehavior(Loc, RHS.get(),
9942                          S.PDiag(diag::warn_shift_negative)
9943                            << RHS.get()->getSourceRange());
9944    return;
9945  }
9946  llvm::APInt LeftBits(Right.getBitWidth(),
9947                       S.Context.getTypeSize(LHS.get()->getType()));
9948  if (Right.uge(LeftBits)) {
9949    S.DiagRuntimeBehavior(Loc, RHS.get(),
9950                          S.PDiag(diag::warn_shift_gt_typewidth)
9951                            << RHS.get()->getSourceRange());
9952    return;
9953  }
9954  if (Opc != BO_Shl)
9955    return;
9956
9957  // When left shifting an ICE which is signed, we can check for overflow which
9958  // according to C++ standards prior to C++2a has undefined behavior
9959  // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
9960  // more than the maximum value representable in the result type, so never
9961  // warn for those. (FIXME: Unsigned left-shift overflow in a constant
9962  // expression is still probably a bug.)
9963  Expr::EvalResult LHSResult;
9964  if (LHS.get()->isValueDependent() ||
9965      LHSType->hasUnsignedIntegerRepresentation() ||
9966      !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
9967    return;
9968  llvm::APSInt Left = LHSResult.Val.getInt();
9969
9970  // If LHS does not have a signed type and non-negative value
9971  // then, the behavior is undefined before C++2a. Warn about it.
9972  if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
9973      !S.getLangOpts().CPlusPlus2a) {
9974    S.DiagRuntimeBehavior(Loc, LHS.get(),
9975                          S.PDiag(diag::warn_shift_lhs_negative)
9976                            << LHS.get()->getSourceRange());
9977    return;
9978  }
9979
9980  llvm::APInt ResultBits =
9981      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
9982  if (LeftBits.uge(ResultBits))
9983    return;
9984  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
9985  Result = Result.shl(Right);
9986
9987  // Print the bit representation of the signed integer as an unsigned
9988  // hexadecimal number.
9989  SmallString<40> HexResult;
9990  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
9991
9992  // If we are only missing a sign bit, this is less likely to result in actual
9993  // bugs -- if the result is cast back to an unsigned type, it will have the
9994  // expected value. Thus we place this behind a different warning that can be
9995  // turned off separately if needed.
9996  if (LeftBits == ResultBits - 1) {
9997    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
9998        << HexResult << LHSType
9999        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10000    return;
10001  }
10002
10003  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
10004    << HexResult.str() << Result.getMinSignedBits() << LHSType
10005    << Left.getBitWidth() << LHS.get()->getSourceRange()
10006    << RHS.get()->getSourceRange();
10007}
10008
10009/// Return the resulting type when a vector is shifted
10010///        by a scalar or vector shift amount.
10011static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
10012                                 SourceLocation Loc, bool IsCompAssign) {
10013  // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
10014  if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
10015      !LHS.get()->getType()->isVectorType()) {
10016    S.Diag(Loc, diag::err_shift_rhs_only_vector)
10017      << RHS.get()->getType() << LHS.get()->getType()
10018      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10019    return QualType();
10020  }
10021
10022  if (!IsCompAssign) {
10023    LHS = S.UsualUnaryConversions(LHS.get());
10024    if (LHS.isInvalid()) return QualType();
10025  }
10026
10027  RHS = S.UsualUnaryConversions(RHS.get());
10028  if (RHS.isInvalid()) return QualType();
10029
10030  QualType LHSType = LHS.get()->getType();
10031  // Note that LHS might be a scalar because the routine calls not only in
10032  // OpenCL case.
10033  const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
10034  QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
10035
10036  // Note that RHS might not be a vector.
10037  QualType RHSType = RHS.get()->getType();
10038  const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
10039  QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
10040
10041  // The operands need to be integers.
10042  if (!LHSEleType->isIntegerType()) {
10043    S.Diag(Loc, diag::err_typecheck_expect_int)
10044      << LHS.get()->getType() << LHS.get()->getSourceRange();
10045    return QualType();
10046  }
10047
10048  if (!RHSEleType->isIntegerType()) {
10049    S.Diag(Loc, diag::err_typecheck_expect_int)
10050      << RHS.get()->getType() << RHS.get()->getSourceRange();
10051    return QualType();
10052  }
10053
10054  if (!LHSVecTy) {
10055    assert(RHSVecTy);
10056    if (IsCompAssign)
10057      return RHSType;
10058    if (LHSEleType != RHSEleType) {
10059      LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
10060      LHSEleType = RHSEleType;
10061    }
10062    QualType VecTy =
10063        S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
10064    LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
10065    LHSType = VecTy;
10066  } else if (RHSVecTy) {
10067    // OpenCL v1.1 s6.3.j says that for vector types, the operators
10068    // are applied component-wise. So if RHS is a vector, then ensure
10069    // that the number of elements is the same as LHS...
10070    if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
10071      S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10072        << LHS.get()->getType() << RHS.get()->getType()
10073        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10074      return QualType();
10075    }
10076    if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
10077      const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
10078      const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
10079      if (LHSBT != RHSBT &&
10080          S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
10081        S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
10082            << LHS.get()->getType() << RHS.get()->getType()
10083            << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10084      }
10085    }
10086  } else {
10087    // ...else expand RHS to match the number of elements in LHS.
10088    QualType VecTy =
10089      S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
10090    RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
10091  }
10092
10093  return LHSType;
10094}
10095
10096// C99 6.5.7
10097QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
10098                                  SourceLocation Loc, BinaryOperatorKind Opc,
10099                                  bool IsCompAssign) {
10100  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10101
10102  // Vector shifts promote their scalar inputs to vector type.
10103  if (LHS.get()->getType()->isVectorType() ||
10104      RHS.get()->getType()->isVectorType()) {
10105    if (LangOpts.ZVector) {
10106      // The shift operators for the z vector extensions work basically
10107      // like general shifts, except that neither the LHS nor the RHS is
10108      // allowed to be a "vector bool".
10109      if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
10110        if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
10111          return InvalidOperands(Loc, LHS, RHS);
10112      if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
10113        if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10114          return InvalidOperands(Loc, LHS, RHS);
10115    }
10116    return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
10117  }
10118
10119  // Shifts don't perform usual arithmetic conversions, they just do integer
10120  // promotions on each operand. C99 6.5.7p3
10121
10122  // For the LHS, do usual unary conversions, but then reset them away
10123  // if this is a compound assignment.
10124  ExprResult OldLHS = LHS;
10125  LHS = UsualUnaryConversions(LHS.get());
10126  if (LHS.isInvalid())
10127    return QualType();
10128  QualType LHSType = LHS.get()->getType();
10129  if (IsCompAssign) LHS = OldLHS;
10130
10131  // The RHS is simpler.
10132  RHS = UsualUnaryConversions(RHS.get());
10133  if (RHS.isInvalid())
10134    return QualType();
10135  QualType RHSType = RHS.get()->getType();
10136
10137  // C99 6.5.7p2: Each of the operands shall have integer type.
10138  if (!LHSType->hasIntegerRepresentation() ||
10139      !RHSType->hasIntegerRepresentation())
10140    return InvalidOperands(Loc, LHS, RHS);
10141
10142  // C++0x: Don't allow scoped enums. FIXME: Use something better than
10143  // hasIntegerRepresentation() above instead of this.
10144  if (isScopedEnumerationType(LHSType) ||
10145      isScopedEnumerationType(RHSType)) {
10146    return InvalidOperands(Loc, LHS, RHS);
10147  }
10148  // Sanity-check shift operands
10149  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
10150
10151  // "The type of the result is that of the promoted left operand."
10152  return LHSType;
10153}
10154
10155/// Diagnose bad pointer comparisons.
10156static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
10157                                              ExprResult &LHS, ExprResult &RHS,
10158                                              bool IsError) {
10159  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
10160                      : diag::ext_typecheck_comparison_of_distinct_pointers)
10161    << LHS.get()->getType() << RHS.get()->getType()
10162    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10163}
10164
10165/// Returns false if the pointers are converted to a composite type,
10166/// true otherwise.
10167static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
10168                                           ExprResult &LHS, ExprResult &RHS) {
10169  // C++ [expr.rel]p2:
10170  //   [...] Pointer conversions (4.10) and qualification
10171  //   conversions (4.4) are performed on pointer operands (or on
10172  //   a pointer operand and a null pointer constant) to bring
10173  //   them to their composite pointer type. [...]
10174  //
10175  // C++ [expr.eq]p1 uses the same notion for (in)equality
10176  // comparisons of pointers.
10177
10178  QualType LHSType = LHS.get()->getType();
10179  QualType RHSType = RHS.get()->getType();
10180  assert(LHSType->isPointerType() || RHSType->isPointerType() ||
10181         LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
10182
10183  QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
10184  if (T.isNull()) {
10185    if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
10186        (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
10187      diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
10188    else
10189      S.InvalidOperands(Loc, LHS, RHS);
10190    return true;
10191  }
10192
10193  return false;
10194}
10195
10196static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
10197                                                    ExprResult &LHS,
10198                                                    ExprResult &RHS,
10199                                                    bool IsError) {
10200  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
10201                      : diag::ext_typecheck_comparison_of_fptr_to_void)
10202    << LHS.get()->getType() << RHS.get()->getType()
10203    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10204}
10205
10206static bool isObjCObjectLiteral(ExprResult &E) {
10207  switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
10208  case Stmt::ObjCArrayLiteralClass:
10209  case Stmt::ObjCDictionaryLiteralClass:
10210  case Stmt::ObjCStringLiteralClass:
10211  case Stmt::ObjCBoxedExprClass:
10212    return true;
10213  default:
10214    // Note that ObjCBoolLiteral is NOT an object literal!
10215    return false;
10216  }
10217}
10218
10219static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
10220  const ObjCObjectPointerType *Type =
10221    LHS->getType()->getAs<ObjCObjectPointerType>();
10222
10223  // If this is not actually an Objective-C object, bail out.
10224  if (!Type)
10225    return false;
10226
10227  // Get the LHS object's interface type.
10228  QualType InterfaceType = Type->getPointeeType();
10229
10230  // If the RHS isn't an Objective-C object, bail out.
10231  if (!RHS->getType()->isObjCObjectPointerType())
10232    return false;
10233
10234  // Try to find the -isEqual: method.
10235  Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
10236  ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
10237                                                      InterfaceType,
10238                                                      /*IsInstance=*/true);
10239  if (!Method) {
10240    if (Type->isObjCIdType()) {
10241      // For 'id', just check the global pool.
10242      Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
10243                                                  /*receiverId=*/true);
10244    } else {
10245      // Check protocols.
10246      Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
10247                                             /*IsInstance=*/true);
10248    }
10249  }
10250
10251  if (!Method)
10252    return false;
10253
10254  QualType T = Method->parameters()[0]->getType();
10255  if (!T->isObjCObjectPointerType())
10256    return false;
10257
10258  QualType R = Method->getReturnType();
10259  if (!R->isScalarType())
10260    return false;
10261
10262  return true;
10263}
10264
10265Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
10266  FromE = FromE->IgnoreParenImpCasts();
10267  switch (FromE->getStmtClass()) {
10268    default:
10269      break;
10270    case Stmt::ObjCStringLiteralClass:
10271      // "string literal"
10272      return LK_String;
10273    case Stmt::ObjCArrayLiteralClass:
10274      // "array literal"
10275      return LK_Array;
10276    case Stmt::ObjCDictionaryLiteralClass:
10277      // "dictionary literal"
10278      return LK_Dictionary;
10279    case Stmt::BlockExprClass:
10280      return LK_Block;
10281    case Stmt::ObjCBoxedExprClass: {
10282      Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
10283      switch (Inner->getStmtClass()) {
10284        case Stmt::IntegerLiteralClass:
10285        case Stmt::FloatingLiteralClass:
10286        case Stmt::CharacterLiteralClass:
10287        case Stmt::ObjCBoolLiteralExprClass:
10288        case Stmt::CXXBoolLiteralExprClass:
10289          // "numeric literal"
10290          return LK_Numeric;
10291        case Stmt::ImplicitCastExprClass: {
10292          CastKind CK = cast<CastExpr>(Inner)->getCastKind();
10293          // Boolean literals can be represented by implicit casts.
10294          if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
10295            return LK_Numeric;
10296          break;
10297        }
10298        default:
10299          break;
10300      }
10301      return LK_Boxed;
10302    }
10303  }
10304  return LK_None;
10305}
10306
10307static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
10308                                          ExprResult &LHS, ExprResult &RHS,
10309                                          BinaryOperator::Opcode Opc){
10310  Expr *Literal;
10311  Expr *Other;
10312  if (isObjCObjectLiteral(LHS)) {
10313    Literal = LHS.get();
10314    Other = RHS.get();
10315  } else {
10316    Literal = RHS.get();
10317    Other = LHS.get();
10318  }
10319
10320  // Don't warn on comparisons against nil.
10321  Other = Other->IgnoreParenCasts();
10322  if (Other->isNullPointerConstant(S.getASTContext(),
10323                                   Expr::NPC_ValueDependentIsNotNull))
10324    return;
10325
10326  // This should be kept in sync with warn_objc_literal_comparison.
10327  // LK_String should always be after the other literals, since it has its own
10328  // warning flag.
10329  Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
10330  assert(LiteralKind != Sema::LK_Block);
10331  if (LiteralKind == Sema::LK_None) {
10332    llvm_unreachable("Unknown Objective-C object literal kind");
10333  }
10334
10335  if (LiteralKind == Sema::LK_String)
10336    S.Diag(Loc, diag::warn_objc_string_literal_comparison)
10337      << Literal->getSourceRange();
10338  else
10339    S.Diag(Loc, diag::warn_objc_literal_comparison)
10340      << LiteralKind << Literal->getSourceRange();
10341
10342  if (BinaryOperator::isEqualityOp(Opc) &&
10343      hasIsEqualMethod(S, LHS.get(), RHS.get())) {
10344    SourceLocation Start = LHS.get()->getBeginLoc();
10345    SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
10346    CharSourceRange OpRange =
10347      CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
10348
10349    S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
10350      << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
10351      << FixItHint::CreateReplacement(OpRange, " isEqual:")
10352      << FixItHint::CreateInsertion(End, "]");
10353  }
10354}
10355
10356/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
10357static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
10358                                           ExprResult &RHS, SourceLocation Loc,
10359                                           BinaryOperatorKind Opc) {
10360  // Check that left hand side is !something.
10361  UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
10362  if (!UO || UO->getOpcode() != UO_LNot) return;
10363
10364  // Only check if the right hand side is non-bool arithmetic type.
10365  if (RHS.get()->isKnownToHaveBooleanValue()) return;
10366
10367  // Make sure that the something in !something is not bool.
10368  Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
10369  if (SubExpr->isKnownToHaveBooleanValue()) return;
10370
10371  // Emit warning.
10372  bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
10373  S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
10374      << Loc << IsBitwiseOp;
10375
10376  // First note suggest !(x < y)
10377  SourceLocation FirstOpen = SubExpr->getBeginLoc();
10378  SourceLocation FirstClose = RHS.get()->getEndLoc();
10379  FirstClose = S.getLocForEndOfToken(FirstClose);
10380  if (FirstClose.isInvalid())
10381    FirstOpen = SourceLocation();
10382  S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
10383      << IsBitwiseOp
10384      << FixItHint::CreateInsertion(FirstOpen, "(")
10385      << FixItHint::CreateInsertion(FirstClose, ")");
10386
10387  // Second note suggests (!x) < y
10388  SourceLocation SecondOpen = LHS.get()->getBeginLoc();
10389  SourceLocation SecondClose = LHS.get()->getEndLoc();
10390  SecondClose = S.getLocForEndOfToken(SecondClose);
10391  if (SecondClose.isInvalid())
10392    SecondOpen = SourceLocation();
10393  S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
10394      << FixItHint::CreateInsertion(SecondOpen, "(")
10395      << FixItHint::CreateInsertion(SecondClose, ")");
10396}
10397
10398// Returns true if E refers to a non-weak array.
10399static bool checkForArray(const Expr *E) {
10400  const ValueDecl *D = nullptr;
10401  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
10402    D = DR->getDecl();
10403  } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
10404    if (Mem->isImplicitAccess())
10405      D = Mem->getMemberDecl();
10406  }
10407  if (!D)
10408    return false;
10409  return D->getType()->isArrayType() && !D->isWeak();
10410}
10411
10412/// Diagnose some forms of syntactically-obvious tautological comparison.
10413static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
10414                                           Expr *LHS, Expr *RHS,
10415                                           BinaryOperatorKind Opc) {
10416  Expr *LHSStripped = LHS->IgnoreParenImpCasts();
10417  Expr *RHSStripped = RHS->IgnoreParenImpCasts();
10418
10419  QualType LHSType = LHS->getType();
10420  QualType RHSType = RHS->getType();
10421  if (LHSType->hasFloatingRepresentation() ||
10422      (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
10423      S.inTemplateInstantiation())
10424    return;
10425
10426  // Comparisons between two array types are ill-formed for operator<=>, so
10427  // we shouldn't emit any additional warnings about it.
10428  if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
10429    return;
10430
10431  // For non-floating point types, check for self-comparisons of the form
10432  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
10433  // often indicate logic errors in the program.
10434  //
10435  // NOTE: Don't warn about comparison expressions resulting from macro
10436  // expansion. Also don't warn about comparisons which are only self
10437  // comparisons within a template instantiation. The warnings should catch
10438  // obvious cases in the definition of the template anyways. The idea is to
10439  // warn when the typed comparison operator will always evaluate to the same
10440  // result.
10441
10442  // Used for indexing into %select in warn_comparison_always
10443  enum {
10444    AlwaysConstant,
10445    AlwaysTrue,
10446    AlwaysFalse,
10447    AlwaysEqual, // std::strong_ordering::equal from operator<=>
10448  };
10449
10450  // C++2a [depr.array.comp]:
10451  //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
10452  //   operands of array type are deprecated.
10453  if (S.getLangOpts().CPlusPlus2a && LHSStripped->getType()->isArrayType() &&
10454      RHSStripped->getType()->isArrayType()) {
10455    S.Diag(Loc, diag::warn_depr_array_comparison)
10456        << LHS->getSourceRange() << RHS->getSourceRange()
10457        << LHSStripped->getType() << RHSStripped->getType();
10458    // Carry on to produce the tautological comparison warning, if this
10459    // expression is potentially-evaluated, we can resolve the array to a
10460    // non-weak declaration, and so on.
10461  }
10462
10463  if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
10464    if (Expr::isSameComparisonOperand(LHS, RHS)) {
10465      unsigned Result;
10466      switch (Opc) {
10467      case BO_EQ:
10468      case BO_LE:
10469      case BO_GE:
10470        Result = AlwaysTrue;
10471        break;
10472      case BO_NE:
10473      case BO_LT:
10474      case BO_GT:
10475        Result = AlwaysFalse;
10476        break;
10477      case BO_Cmp:
10478        Result = AlwaysEqual;
10479        break;
10480      default:
10481        Result = AlwaysConstant;
10482        break;
10483      }
10484      S.DiagRuntimeBehavior(Loc, nullptr,
10485                            S.PDiag(diag::warn_comparison_always)
10486                                << 0 /*self-comparison*/
10487                                << Result);
10488    } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
10489      // What is it always going to evaluate to?
10490      unsigned Result;
10491      switch (Opc) {
10492      case BO_EQ: // e.g. array1 == array2
10493        Result = AlwaysFalse;
10494        break;
10495      case BO_NE: // e.g. array1 != array2
10496        Result = AlwaysTrue;
10497        break;
10498      default: // e.g. array1 <= array2
10499        // The best we can say is 'a constant'
10500        Result = AlwaysConstant;
10501        break;
10502      }
10503      S.DiagRuntimeBehavior(Loc, nullptr,
10504                            S.PDiag(diag::warn_comparison_always)
10505                                << 1 /*array comparison*/
10506                                << Result);
10507    }
10508  }
10509
10510  if (isa<CastExpr>(LHSStripped))
10511    LHSStripped = LHSStripped->IgnoreParenCasts();
10512  if (isa<CastExpr>(RHSStripped))
10513    RHSStripped = RHSStripped->IgnoreParenCasts();
10514
10515  // Warn about comparisons against a string constant (unless the other
10516  // operand is null); the user probably wants string comparison function.
10517  Expr *LiteralString = nullptr;
10518  Expr *LiteralStringStripped = nullptr;
10519  if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
10520      !RHSStripped->isNullPointerConstant(S.Context,
10521                                          Expr::NPC_ValueDependentIsNull)) {
10522    LiteralString = LHS;
10523    LiteralStringStripped = LHSStripped;
10524  } else if ((isa<StringLiteral>(RHSStripped) ||
10525              isa<ObjCEncodeExpr>(RHSStripped)) &&
10526             !LHSStripped->isNullPointerConstant(S.Context,
10527                                          Expr::NPC_ValueDependentIsNull)) {
10528    LiteralString = RHS;
10529    LiteralStringStripped = RHSStripped;
10530  }
10531
10532  if (LiteralString) {
10533    S.DiagRuntimeBehavior(Loc, nullptr,
10534                          S.PDiag(diag::warn_stringcompare)
10535                              << isa<ObjCEncodeExpr>(LiteralStringStripped)
10536                              << LiteralString->getSourceRange());
10537  }
10538}
10539
10540static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
10541  switch (CK) {
10542  default: {
10543#ifndef NDEBUG
10544    llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
10545                 << "\n";
10546#endif
10547    llvm_unreachable("unhandled cast kind");
10548  }
10549  case CK_UserDefinedConversion:
10550    return ICK_Identity;
10551  case CK_LValueToRValue:
10552    return ICK_Lvalue_To_Rvalue;
10553  case CK_ArrayToPointerDecay:
10554    return ICK_Array_To_Pointer;
10555  case CK_FunctionToPointerDecay:
10556    return ICK_Function_To_Pointer;
10557  case CK_IntegralCast:
10558    return ICK_Integral_Conversion;
10559  case CK_FloatingCast:
10560    return ICK_Floating_Conversion;
10561  case CK_IntegralToFloating:
10562  case CK_FloatingToIntegral:
10563    return ICK_Floating_Integral;
10564  case CK_IntegralComplexCast:
10565  case CK_FloatingComplexCast:
10566  case CK_FloatingComplexToIntegralComplex:
10567  case CK_IntegralComplexToFloatingComplex:
10568    return ICK_Complex_Conversion;
10569  case CK_FloatingComplexToReal:
10570  case CK_FloatingRealToComplex:
10571  case CK_IntegralComplexToReal:
10572  case CK_IntegralRealToComplex:
10573    return ICK_Complex_Real;
10574  }
10575}
10576
10577static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
10578                                             QualType FromType,
10579                                             SourceLocation Loc) {
10580  // Check for a narrowing implicit conversion.
10581  StandardConversionSequence SCS;
10582  SCS.setAsIdentityConversion();
10583  SCS.setToType(0, FromType);
10584  SCS.setToType(1, ToType);
10585  if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10586    SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
10587
10588  APValue PreNarrowingValue;
10589  QualType PreNarrowingType;
10590  switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
10591                               PreNarrowingType,
10592                               /*IgnoreFloatToIntegralConversion*/ true)) {
10593  case NK_Dependent_Narrowing:
10594    // Implicit conversion to a narrower type, but the expression is
10595    // value-dependent so we can't tell whether it's actually narrowing.
10596  case NK_Not_Narrowing:
10597    return false;
10598
10599  case NK_Constant_Narrowing:
10600    // Implicit conversion to a narrower type, and the value is not a constant
10601    // expression.
10602    S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
10603        << /*Constant*/ 1
10604        << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
10605    return true;
10606
10607  case NK_Variable_Narrowing:
10608    // Implicit conversion to a narrower type, and the value is not a constant
10609    // expression.
10610  case NK_Type_Narrowing:
10611    S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
10612        << /*Constant*/ 0 << FromType << ToType;
10613    // TODO: It's not a constant expression, but what if the user intended it
10614    // to be? Can we produce notes to help them figure out why it isn't?
10615    return true;
10616  }
10617  llvm_unreachable("unhandled case in switch");
10618}
10619
10620static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
10621                                                         ExprResult &LHS,
10622                                                         ExprResult &RHS,
10623                                                         SourceLocation Loc) {
10624  QualType LHSType = LHS.get()->getType();
10625  QualType RHSType = RHS.get()->getType();
10626  // Dig out the original argument type and expression before implicit casts
10627  // were applied. These are the types/expressions we need to check the
10628  // [expr.spaceship] requirements against.
10629  ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
10630  ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
10631  QualType LHSStrippedType = LHSStripped.get()->getType();
10632  QualType RHSStrippedType = RHSStripped.get()->getType();
10633
10634  // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
10635  // other is not, the program is ill-formed.
10636  if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
10637    S.InvalidOperands(Loc, LHSStripped, RHSStripped);
10638    return QualType();
10639  }
10640
10641  // FIXME: Consider combining this with checkEnumArithmeticConversions.
10642  int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
10643                    RHSStrippedType->isEnumeralType();
10644  if (NumEnumArgs == 1) {
10645    bool LHSIsEnum = LHSStrippedType->isEnumeralType();
10646    QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
10647    if (OtherTy->hasFloatingRepresentation()) {
10648      S.InvalidOperands(Loc, LHSStripped, RHSStripped);
10649      return QualType();
10650    }
10651  }
10652  if (NumEnumArgs == 2) {
10653    // C++2a [expr.spaceship]p5: If both operands have the same enumeration
10654    // type E, the operator yields the result of converting the operands
10655    // to the underlying type of E and applying <=> to the converted operands.
10656    if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
10657      S.InvalidOperands(Loc, LHS, RHS);
10658      return QualType();
10659    }
10660    QualType IntType =
10661        LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
10662    assert(IntType->isArithmeticType());
10663
10664    // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
10665    // promote the boolean type, and all other promotable integer types, to
10666    // avoid this.
10667    if (IntType->isPromotableIntegerType())
10668      IntType = S.Context.getPromotedIntegerType(IntType);
10669
10670    LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
10671    RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
10672    LHSType = RHSType = IntType;
10673  }
10674
10675  // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
10676  // usual arithmetic conversions are applied to the operands.
10677  QualType Type =
10678      S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
10679  if (LHS.isInvalid() || RHS.isInvalid())
10680    return QualType();
10681  if (Type.isNull())
10682    return S.InvalidOperands(Loc, LHS, RHS);
10683
10684  Optional<ComparisonCategoryType> CCT =
10685      getComparisonCategoryForBuiltinCmp(Type);
10686  if (!CCT)
10687    return S.InvalidOperands(Loc, LHS, RHS);
10688
10689  bool HasNarrowing = checkThreeWayNarrowingConversion(
10690      S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
10691  HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
10692                                                   RHS.get()->getBeginLoc());
10693  if (HasNarrowing)
10694    return QualType();
10695
10696  assert(!Type.isNull() && "composite type for <=> has not been set");
10697
10698  return S.CheckComparisonCategoryType(
10699      *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
10700}
10701
10702static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
10703                                                 ExprResult &RHS,
10704                                                 SourceLocation Loc,
10705                                                 BinaryOperatorKind Opc) {
10706  if (Opc == BO_Cmp)
10707    return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
10708
10709  // C99 6.5.8p3 / C99 6.5.9p4
10710  QualType Type =
10711      S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
10712  if (LHS.isInvalid() || RHS.isInvalid())
10713    return QualType();
10714  if (Type.isNull())
10715    return S.InvalidOperands(Loc, LHS, RHS);
10716  assert(Type->isArithmeticType() || Type->isEnumeralType());
10717
10718  if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
10719    return S.InvalidOperands(Loc, LHS, RHS);
10720
10721  // Check for comparisons of floating point operands using != and ==.
10722  if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
10723    S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
10724
10725  // The result of comparisons is 'bool' in C++, 'int' in C.
10726  return S.Context.getLogicalOperationType();
10727}
10728
10729void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
10730  if (!NullE.get()->getType()->isAnyPointerType())
10731    return;
10732  int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
10733  if (!E.get()->getType()->isAnyPointerType() &&
10734      E.get()->isNullPointerConstant(Context,
10735                                     Expr::NPC_ValueDependentIsNotNull) ==
10736        Expr::NPCK_ZeroExpression) {
10737    if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
10738      if (CL->getValue() == 0)
10739        Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
10740            << NullValue
10741            << FixItHint::CreateReplacement(E.get()->getExprLoc(),
10742                                            NullValue ? "NULL" : "(void *)0");
10743    } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
10744        TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
10745        QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
10746        if (T == Context.CharTy)
10747          Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
10748              << NullValue
10749              << FixItHint::CreateReplacement(E.get()->getExprLoc(),
10750                                              NullValue ? "NULL" : "(void *)0");
10751      }
10752  }
10753}
10754
10755// C99 6.5.8, C++ [expr.rel]
10756QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
10757                                    SourceLocation Loc,
10758                                    BinaryOperatorKind Opc) {
10759  bool IsRelational = BinaryOperator::isRelationalOp(Opc);
10760  bool IsThreeWay = Opc == BO_Cmp;
10761  bool IsOrdered = IsRelational || IsThreeWay;
10762  auto IsAnyPointerType = [](ExprResult E) {
10763    QualType Ty = E.get()->getType();
10764    return Ty->isPointerType() || Ty->isMemberPointerType();
10765  };
10766
10767  // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
10768  // type, array-to-pointer, ..., conversions are performed on both operands to
10769  // bring them to their composite type.
10770  // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
10771  // any type-related checks.
10772  if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
10773    LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10774    if (LHS.isInvalid())
10775      return QualType();
10776    RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10777    if (RHS.isInvalid())
10778      return QualType();
10779  } else {
10780    LHS = DefaultLvalueConversion(LHS.get());
10781    if (LHS.isInvalid())
10782      return QualType();
10783    RHS = DefaultLvalueConversion(RHS.get());
10784    if (RHS.isInvalid())
10785      return QualType();
10786  }
10787
10788  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
10789  if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
10790    CheckPtrComparisonWithNullChar(LHS, RHS);
10791    CheckPtrComparisonWithNullChar(RHS, LHS);
10792  }
10793
10794  // Handle vector comparisons separately.
10795  if (LHS.get()->getType()->isVectorType() ||
10796      RHS.get()->getType()->isVectorType())
10797    return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
10798
10799  diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
10800  diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
10801
10802  QualType LHSType = LHS.get()->getType();
10803  QualType RHSType = RHS.get()->getType();
10804  if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
10805      (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
10806    return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
10807
10808  const Expr::NullPointerConstantKind LHSNullKind =
10809      LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
10810  const Expr::NullPointerConstantKind RHSNullKind =
10811      RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
10812  bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
10813  bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
10814
10815  auto computeResultTy = [&]() {
10816    if (Opc != BO_Cmp)
10817      return Context.getLogicalOperationType();
10818    assert(getLangOpts().CPlusPlus);
10819    assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
10820
10821    QualType CompositeTy = LHS.get()->getType();
10822    assert(!CompositeTy->isReferenceType());
10823
10824    Optional<ComparisonCategoryType> CCT =
10825        getComparisonCategoryForBuiltinCmp(CompositeTy);
10826    if (!CCT)
10827      return InvalidOperands(Loc, LHS, RHS);
10828
10829    if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
10830      // P0946R0: Comparisons between a null pointer constant and an object
10831      // pointer result in std::strong_equality, which is ill-formed under
10832      // P1959R0.
10833      Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
10834          << (LHSIsNull ? LHS.get()->getSourceRange()
10835                        : RHS.get()->getSourceRange());
10836      return QualType();
10837    }
10838
10839    return CheckComparisonCategoryType(
10840        *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
10841  };
10842
10843  if (!IsOrdered && LHSIsNull != RHSIsNull) {
10844    bool IsEquality = Opc == BO_EQ;
10845    if (RHSIsNull)
10846      DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
10847                                   RHS.get()->getSourceRange());
10848    else
10849      DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
10850                                   LHS.get()->getSourceRange());
10851  }
10852
10853  if ((LHSType->isIntegerType() && !LHSIsNull) ||
10854      (RHSType->isIntegerType() && !RHSIsNull)) {
10855    // Skip normal pointer conversion checks in this case; we have better
10856    // diagnostics for this below.
10857  } else if (getLangOpts().CPlusPlus) {
10858    // Equality comparison of a function pointer to a void pointer is invalid,
10859    // but we allow it as an extension.
10860    // FIXME: If we really want to allow this, should it be part of composite
10861    // pointer type computation so it works in conditionals too?
10862    if (!IsOrdered &&
10863        ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
10864         (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
10865      // This is a gcc extension compatibility comparison.
10866      // In a SFINAE context, we treat this as a hard error to maintain
10867      // conformance with the C++ standard.
10868      diagnoseFunctionPointerToVoidComparison(
10869          *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
10870
10871      if (isSFINAEContext())
10872        return QualType();
10873
10874      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10875      return computeResultTy();
10876    }
10877
10878    // C++ [expr.eq]p2:
10879    //   If at least one operand is a pointer [...] bring them to their
10880    //   composite pointer type.
10881    // C++ [expr.spaceship]p6
10882    //  If at least one of the operands is of pointer type, [...] bring them
10883    //  to their composite pointer type.
10884    // C++ [expr.rel]p2:
10885    //   If both operands are pointers, [...] bring them to their composite
10886    //   pointer type.
10887    // For <=>, the only valid non-pointer types are arrays and functions, and
10888    // we already decayed those, so this is really the same as the relational
10889    // comparison rule.
10890    if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
10891            (IsOrdered ? 2 : 1) &&
10892        (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
10893                                         RHSType->isObjCObjectPointerType()))) {
10894      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
10895        return QualType();
10896      return computeResultTy();
10897    }
10898  } else if (LHSType->isPointerType() &&
10899             RHSType->isPointerType()) { // C99 6.5.8p2
10900    // All of the following pointer-related warnings are GCC extensions, except
10901    // when handling null pointer constants.
10902    QualType LCanPointeeTy =
10903      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
10904    QualType RCanPointeeTy =
10905      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
10906
10907    // C99 6.5.9p2 and C99 6.5.8p2
10908    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
10909                                   RCanPointeeTy.getUnqualifiedType())) {
10910      // Valid unless a relational comparison of function pointers
10911      if (IsRelational && LCanPointeeTy->isFunctionType()) {
10912        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
10913          << LHSType << RHSType << LHS.get()->getSourceRange()
10914          << RHS.get()->getSourceRange();
10915      }
10916    } else if (!IsRelational &&
10917               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
10918      // Valid unless comparison between non-null pointer and function pointer
10919      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
10920          && !LHSIsNull && !RHSIsNull)
10921        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
10922                                                /*isError*/false);
10923    } else {
10924      // Invalid
10925      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
10926    }
10927    if (LCanPointeeTy != RCanPointeeTy) {
10928      // Treat NULL constant as a special case in OpenCL.
10929      if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
10930        const PointerType *LHSPtr = LHSType->castAs<PointerType>();
10931        if (!LHSPtr->isAddressSpaceOverlapping(*RHSType->castAs<PointerType>())) {
10932          Diag(Loc,
10933               diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10934              << LHSType << RHSType << 0 /* comparison */
10935              << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10936        }
10937      }
10938      LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
10939      LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
10940      CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
10941                                               : CK_BitCast;
10942      if (LHSIsNull && !RHSIsNull)
10943        LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
10944      else
10945        RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
10946    }
10947    return computeResultTy();
10948  }
10949
10950  if (getLangOpts().CPlusPlus) {
10951    // C++ [expr.eq]p4:
10952    //   Two operands of type std::nullptr_t or one operand of type
10953    //   std::nullptr_t and the other a null pointer constant compare equal.
10954    if (!IsOrdered && LHSIsNull && RHSIsNull) {
10955      if (LHSType->isNullPtrType()) {
10956        RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10957        return computeResultTy();
10958      }
10959      if (RHSType->isNullPtrType()) {
10960        LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
10961        return computeResultTy();
10962      }
10963    }
10964
10965    // Comparison of Objective-C pointers and block pointers against nullptr_t.
10966    // These aren't covered by the composite pointer type rules.
10967    if (!IsOrdered && RHSType->isNullPtrType() &&
10968        (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
10969      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10970      return computeResultTy();
10971    }
10972    if (!IsOrdered && LHSType->isNullPtrType() &&
10973        (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
10974      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
10975      return computeResultTy();
10976    }
10977
10978    if (IsRelational &&
10979        ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
10980         (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
10981      // HACK: Relational comparison of nullptr_t against a pointer type is
10982      // invalid per DR583, but we allow it within std::less<> and friends,
10983      // since otherwise common uses of it break.
10984      // FIXME: Consider removing this hack once LWG fixes std::less<> and
10985      // friends to have std::nullptr_t overload candidates.
10986      DeclContext *DC = CurContext;
10987      if (isa<FunctionDecl>(DC))
10988        DC = DC->getParent();
10989      if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
10990        if (CTSD->isInStdNamespace() &&
10991            llvm::StringSwitch<bool>(CTSD->getName())
10992                .Cases("less", "less_equal", "greater", "greater_equal", true)
10993                .Default(false)) {
10994          if (RHSType->isNullPtrType())
10995            RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10996          else
10997            LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
10998          return computeResultTy();
10999        }
11000      }
11001    }
11002
11003    // C++ [expr.eq]p2:
11004    //   If at least one operand is a pointer to member, [...] bring them to
11005    //   their composite pointer type.
11006    if (!IsOrdered &&
11007        (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
11008      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
11009        return QualType();
11010      else
11011        return computeResultTy();
11012    }
11013  }
11014
11015  // Handle block pointer types.
11016  if (!IsOrdered && LHSType->isBlockPointerType() &&
11017      RHSType->isBlockPointerType()) {
11018    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
11019    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
11020
11021    if (!LHSIsNull && !RHSIsNull &&
11022        !Context.typesAreCompatible(lpointee, rpointee)) {
11023      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
11024        << LHSType << RHSType << LHS.get()->getSourceRange()
11025        << RHS.get()->getSourceRange();
11026    }
11027    RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11028    return computeResultTy();
11029  }
11030
11031  // Allow block pointers to be compared with null pointer constants.
11032  if (!IsOrdered
11033      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
11034          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
11035    if (!LHSIsNull && !RHSIsNull) {
11036      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
11037             ->getPointeeType()->isVoidType())
11038            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
11039                ->getPointeeType()->isVoidType())))
11040        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
11041          << LHSType << RHSType << LHS.get()->getSourceRange()
11042          << RHS.get()->getSourceRange();
11043    }
11044    if (LHSIsNull && !RHSIsNull)
11045      LHS = ImpCastExprToType(LHS.get(), RHSType,
11046                              RHSType->isPointerType() ? CK_BitCast
11047                                : CK_AnyPointerToBlockPointerCast);
11048    else
11049      RHS = ImpCastExprToType(RHS.get(), LHSType,
11050                              LHSType->isPointerType() ? CK_BitCast
11051                                : CK_AnyPointerToBlockPointerCast);
11052    return computeResultTy();
11053  }
11054
11055  if (LHSType->isObjCObjectPointerType() ||
11056      RHSType->isObjCObjectPointerType()) {
11057    const PointerType *LPT = LHSType->getAs<PointerType>();
11058    const PointerType *RPT = RHSType->getAs<PointerType>();
11059    if (LPT || RPT) {
11060      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
11061      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
11062
11063      if (!LPtrToVoid && !RPtrToVoid &&
11064          !Context.typesAreCompatible(LHSType, RHSType)) {
11065        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
11066                                          /*isError*/false);
11067      }
11068      // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
11069      // the RHS, but we have test coverage for this behavior.
11070      // FIXME: Consider using convertPointersToCompositeType in C++.
11071      if (LHSIsNull && !RHSIsNull) {
11072        Expr *E = LHS.get();
11073        if (getLangOpts().ObjCAutoRefCount)
11074          CheckObjCConversion(SourceRange(), RHSType, E,
11075                              CCK_ImplicitConversion);
11076        LHS = ImpCastExprToType(E, RHSType,
11077                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
11078      }
11079      else {
11080        Expr *E = RHS.get();
11081        if (getLangOpts().ObjCAutoRefCount)
11082          CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
11083                              /*Diagnose=*/true,
11084                              /*DiagnoseCFAudited=*/false, Opc);
11085        RHS = ImpCastExprToType(E, LHSType,
11086                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
11087      }
11088      return computeResultTy();
11089    }
11090    if (LHSType->isObjCObjectPointerType() &&
11091        RHSType->isObjCObjectPointerType()) {
11092      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
11093        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
11094                                          /*isError*/false);
11095      if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
11096        diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
11097
11098      if (LHSIsNull && !RHSIsNull)
11099        LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11100      else
11101        RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11102      return computeResultTy();
11103    }
11104
11105    if (!IsOrdered && LHSType->isBlockPointerType() &&
11106        RHSType->isBlockCompatibleObjCPointerType(Context)) {
11107      LHS = ImpCastExprToType(LHS.get(), RHSType,
11108                              CK_BlockPointerToObjCPointerCast);
11109      return computeResultTy();
11110    } else if (!IsOrdered &&
11111               LHSType->isBlockCompatibleObjCPointerType(Context) &&
11112               RHSType->isBlockPointerType()) {
11113      RHS = ImpCastExprToType(RHS.get(), LHSType,
11114                              CK_BlockPointerToObjCPointerCast);
11115      return computeResultTy();
11116    }
11117  }
11118  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
11119      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
11120    unsigned DiagID = 0;
11121    bool isError = false;
11122    if (LangOpts.DebuggerSupport) {
11123      // Under a debugger, allow the comparison of pointers to integers,
11124      // since users tend to want to compare addresses.
11125    } else if ((LHSIsNull && LHSType->isIntegerType()) ||
11126               (RHSIsNull && RHSType->isIntegerType())) {
11127      if (IsOrdered) {
11128        isError = getLangOpts().CPlusPlus;
11129        DiagID =
11130          isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
11131                  : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
11132      }
11133    } else if (getLangOpts().CPlusPlus) {
11134      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
11135      isError = true;
11136    } else if (IsOrdered)
11137      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
11138    else
11139      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
11140
11141    if (DiagID) {
11142      Diag(Loc, DiagID)
11143        << LHSType << RHSType << LHS.get()->getSourceRange()
11144        << RHS.get()->getSourceRange();
11145      if (isError)
11146        return QualType();
11147    }
11148
11149    if (LHSType->isIntegerType())
11150      LHS = ImpCastExprToType(LHS.get(), RHSType,
11151                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
11152    else
11153      RHS = ImpCastExprToType(RHS.get(), LHSType,
11154                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
11155    return computeResultTy();
11156  }
11157
11158  // Handle block pointers.
11159  if (!IsOrdered && RHSIsNull
11160      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
11161    RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11162    return computeResultTy();
11163  }
11164  if (!IsOrdered && LHSIsNull
11165      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
11166    LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11167    return computeResultTy();
11168  }
11169
11170  if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
11171    if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
11172      return computeResultTy();
11173    }
11174
11175    if (LHSType->isQueueT() && RHSType->isQueueT()) {
11176      return computeResultTy();
11177    }
11178
11179    if (LHSIsNull && RHSType->isQueueT()) {
11180      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11181      return computeResultTy();
11182    }
11183
11184    if (LHSType->isQueueT() && RHSIsNull) {
11185      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11186      return computeResultTy();
11187    }
11188  }
11189
11190  return InvalidOperands(Loc, LHS, RHS);
11191}
11192
11193// Return a signed ext_vector_type that is of identical size and number of
11194// elements. For floating point vectors, return an integer type of identical
11195// size and number of elements. In the non ext_vector_type case, search from
11196// the largest type to the smallest type to avoid cases where long long == long,
11197// where long gets picked over long long.
11198QualType Sema::GetSignedVectorType(QualType V) {
11199  const VectorType *VTy = V->castAs<VectorType>();
11200  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
11201
11202  if (isa<ExtVectorType>(VTy)) {
11203    if (TypeSize == Context.getTypeSize(Context.CharTy))
11204      return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
11205    else if (TypeSize == Context.getTypeSize(Context.ShortTy))
11206      return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
11207    else if (TypeSize == Context.getTypeSize(Context.IntTy))
11208      return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
11209    else if (TypeSize == Context.getTypeSize(Context.LongTy))
11210      return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
11211    assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
11212           "Unhandled vector element size in vector compare");
11213    return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
11214  }
11215
11216  if (TypeSize == Context.getTypeSize(Context.LongLongTy))
11217    return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
11218                                 VectorType::GenericVector);
11219  else if (TypeSize == Context.getTypeSize(Context.LongTy))
11220    return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
11221                                 VectorType::GenericVector);
11222  else if (TypeSize == Context.getTypeSize(Context.IntTy))
11223    return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
11224                                 VectorType::GenericVector);
11225  else if (TypeSize == Context.getTypeSize(Context.ShortTy))
11226    return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
11227                                 VectorType::GenericVector);
11228  assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
11229         "Unhandled vector element size in vector compare");
11230  return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
11231                               VectorType::GenericVector);
11232}
11233
11234/// CheckVectorCompareOperands - vector comparisons are a clang extension that
11235/// operates on extended vector types.  Instead of producing an IntTy result,
11236/// like a scalar comparison, a vector comparison produces a vector of integer
11237/// types.
11238QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
11239                                          SourceLocation Loc,
11240                                          BinaryOperatorKind Opc) {
11241  if (Opc == BO_Cmp) {
11242    Diag(Loc, diag::err_three_way_vector_comparison);
11243    return QualType();
11244  }
11245
11246  // Check to make sure we're operating on vectors of the same type and width,
11247  // Allowing one side to be a scalar of element type.
11248  QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
11249                              /*AllowBothBool*/true,
11250                              /*AllowBoolConversions*/getLangOpts().ZVector);
11251  if (vType.isNull())
11252    return vType;
11253
11254  QualType LHSType = LHS.get()->getType();
11255
11256  // If AltiVec, the comparison results in a numeric type, i.e.
11257  // bool for C++, int for C
11258  if (getLangOpts().AltiVec &&
11259      vType->castAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
11260    return Context.getLogicalOperationType();
11261
11262  // For non-floating point types, check for self-comparisons of the form
11263  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
11264  // often indicate logic errors in the program.
11265  diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
11266
11267  // Check for comparisons of floating point operands using != and ==.
11268  if (BinaryOperator::isEqualityOp(Opc) &&
11269      LHSType->hasFloatingRepresentation()) {
11270    assert(RHS.get()->getType()->hasFloatingRepresentation());
11271    CheckFloatComparison(Loc, LHS.get(), RHS.get());
11272  }
11273
11274  // Return a signed type for the vector.
11275  return GetSignedVectorType(vType);
11276}
11277
11278static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
11279                                    const ExprResult &XorRHS,
11280                                    const SourceLocation Loc) {
11281  // Do not diagnose macros.
11282  if (Loc.isMacroID())
11283    return;
11284
11285  bool Negative = false;
11286  bool ExplicitPlus = false;
11287  const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
11288  const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
11289
11290  if (!LHSInt)
11291    return;
11292  if (!RHSInt) {
11293    // Check negative literals.
11294    if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
11295      UnaryOperatorKind Opc = UO->getOpcode();
11296      if (Opc != UO_Minus && Opc != UO_Plus)
11297        return;
11298      RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
11299      if (!RHSInt)
11300        return;
11301      Negative = (Opc == UO_Minus);
11302      ExplicitPlus = !Negative;
11303    } else {
11304      return;
11305    }
11306  }
11307
11308  const llvm::APInt &LeftSideValue = LHSInt->getValue();
11309  llvm::APInt RightSideValue = RHSInt->getValue();
11310  if (LeftSideValue != 2 && LeftSideValue != 10)
11311    return;
11312
11313  if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
11314    return;
11315
11316  CharSourceRange ExprRange = CharSourceRange::getCharRange(
11317      LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
11318  llvm::StringRef ExprStr =
11319      Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
11320
11321  CharSourceRange XorRange =
11322      CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11323  llvm::StringRef XorStr =
11324      Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
11325  // Do not diagnose if xor keyword/macro is used.
11326  if (XorStr == "xor")
11327    return;
11328
11329  std::string LHSStr = Lexer::getSourceText(
11330      CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
11331      S.getSourceManager(), S.getLangOpts());
11332  std::string RHSStr = Lexer::getSourceText(
11333      CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
11334      S.getSourceManager(), S.getLangOpts());
11335
11336  if (Negative) {
11337    RightSideValue = -RightSideValue;
11338    RHSStr = "-" + RHSStr;
11339  } else if (ExplicitPlus) {
11340    RHSStr = "+" + RHSStr;
11341  }
11342
11343  StringRef LHSStrRef = LHSStr;
11344  StringRef RHSStrRef = RHSStr;
11345  // Do not diagnose literals with digit separators, binary, hexadecimal, octal
11346  // literals.
11347  if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
11348      RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
11349      LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
11350      RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
11351      (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
11352      (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
11353      LHSStrRef.find('\'') != StringRef::npos ||
11354      RHSStrRef.find('\'') != StringRef::npos)
11355    return;
11356
11357  bool SuggestXor = S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
11358  const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
11359  int64_t RightSideIntValue = RightSideValue.getSExtValue();
11360  if (LeftSideValue == 2 && RightSideIntValue >= 0) {
11361    std::string SuggestedExpr = "1 << " + RHSStr;
11362    bool Overflow = false;
11363    llvm::APInt One = (LeftSideValue - 1);
11364    llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
11365    if (Overflow) {
11366      if (RightSideIntValue < 64)
11367        S.Diag(Loc, diag::warn_xor_used_as_pow_base)
11368            << ExprStr << XorValue.toString(10, true) << ("1LL << " + RHSStr)
11369            << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
11370      else if (RightSideIntValue == 64)
11371        S.Diag(Loc, diag::warn_xor_used_as_pow) << ExprStr << XorValue.toString(10, true);
11372      else
11373        return;
11374    } else {
11375      S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
11376          << ExprStr << XorValue.toString(10, true) << SuggestedExpr
11377          << PowValue.toString(10, true)
11378          << FixItHint::CreateReplacement(
11379                 ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
11380    }
11381
11382    S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0x2 ^ " + RHSStr) << SuggestXor;
11383  } else if (LeftSideValue == 10) {
11384    std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
11385    S.Diag(Loc, diag::warn_xor_used_as_pow_base)
11386        << ExprStr << XorValue.toString(10, true) << SuggestedValue
11387        << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
11388    S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0xA ^ " + RHSStr) << SuggestXor;
11389  }
11390}
11391
11392QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
11393                                          SourceLocation Loc) {
11394  // Ensure that either both operands are of the same vector type, or
11395  // one operand is of a vector type and the other is of its element type.
11396  QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
11397                                       /*AllowBothBool*/true,
11398                                       /*AllowBoolConversions*/false);
11399  if (vType.isNull())
11400    return InvalidOperands(Loc, LHS, RHS);
11401  if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
11402      !getLangOpts().OpenCLCPlusPlus && vType->hasFloatingRepresentation())
11403    return InvalidOperands(Loc, LHS, RHS);
11404  // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
11405  //        usage of the logical operators && and || with vectors in C. This
11406  //        check could be notionally dropped.
11407  if (!getLangOpts().CPlusPlus &&
11408      !(isa<ExtVectorType>(vType->getAs<VectorType>())))
11409    return InvalidLogicalVectorOperands(Loc, LHS, RHS);
11410
11411  return GetSignedVectorType(LHS.get()->getType());
11412}
11413
11414inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
11415                                           SourceLocation Loc,
11416                                           BinaryOperatorKind Opc) {
11417  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11418
11419  bool IsCompAssign =
11420      Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
11421
11422  if (LHS.get()->getType()->isVectorType() ||
11423      RHS.get()->getType()->isVectorType()) {
11424    if (LHS.get()->getType()->hasIntegerRepresentation() &&
11425        RHS.get()->getType()->hasIntegerRepresentation())
11426      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11427                        /*AllowBothBool*/true,
11428                        /*AllowBoolConversions*/getLangOpts().ZVector);
11429    return InvalidOperands(Loc, LHS, RHS);
11430  }
11431
11432  if (Opc == BO_And)
11433    diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
11434
11435  if (LHS.get()->getType()->hasFloatingRepresentation() ||
11436      RHS.get()->getType()->hasFloatingRepresentation())
11437    return InvalidOperands(Loc, LHS, RHS);
11438
11439  ExprResult LHSResult = LHS, RHSResult = RHS;
11440  QualType compType = UsualArithmeticConversions(
11441      LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
11442  if (LHSResult.isInvalid() || RHSResult.isInvalid())
11443    return QualType();
11444  LHS = LHSResult.get();
11445  RHS = RHSResult.get();
11446
11447  if (Opc == BO_Xor)
11448    diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
11449
11450  if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
11451    return compType;
11452  return InvalidOperands(Loc, LHS, RHS);
11453}
11454
11455// C99 6.5.[13,14]
11456inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
11457                                           SourceLocation Loc,
11458                                           BinaryOperatorKind Opc) {
11459  // Check vector operands differently.
11460  if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
11461    return CheckVectorLogicalOperands(LHS, RHS, Loc);
11462
11463  bool EnumConstantInBoolContext = false;
11464  for (const ExprResult &HS : {LHS, RHS}) {
11465    if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
11466      const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
11467      if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
11468        EnumConstantInBoolContext = true;
11469    }
11470  }
11471
11472  if (EnumConstantInBoolContext)
11473    Diag(Loc, diag::warn_enum_constant_in_bool_context);
11474
11475  // Diagnose cases where the user write a logical and/or but probably meant a
11476  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
11477  // is a constant.
11478  if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
11479      !LHS.get()->getType()->isBooleanType() &&
11480      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
11481      // Don't warn in macros or template instantiations.
11482      !Loc.isMacroID() && !inTemplateInstantiation()) {
11483    // If the RHS can be constant folded, and if it constant folds to something
11484    // that isn't 0 or 1 (which indicate a potential logical operation that
11485    // happened to fold to true/false) then warn.
11486    // Parens on the RHS are ignored.
11487    Expr::EvalResult EVResult;
11488    if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
11489      llvm::APSInt Result = EVResult.Val.getInt();
11490      if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
11491           !RHS.get()->getExprLoc().isMacroID()) ||
11492          (Result != 0 && Result != 1)) {
11493        Diag(Loc, diag::warn_logical_instead_of_bitwise)
11494          << RHS.get()->getSourceRange()
11495          << (Opc == BO_LAnd ? "&&" : "||");
11496        // Suggest replacing the logical operator with the bitwise version
11497        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
11498            << (Opc == BO_LAnd ? "&" : "|")
11499            << FixItHint::CreateReplacement(SourceRange(
11500                                                 Loc, getLocForEndOfToken(Loc)),
11501                                            Opc == BO_LAnd ? "&" : "|");
11502        if (Opc == BO_LAnd)
11503          // Suggest replacing "Foo() && kNonZero" with "Foo()"
11504          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
11505              << FixItHint::CreateRemoval(
11506                     SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
11507                                 RHS.get()->getEndLoc()));
11508      }
11509    }
11510  }
11511
11512  if (!Context.getLangOpts().CPlusPlus) {
11513    // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
11514    // not operate on the built-in scalar and vector float types.
11515    if (Context.getLangOpts().OpenCL &&
11516        Context.getLangOpts().OpenCLVersion < 120) {
11517      if (LHS.get()->getType()->isFloatingType() ||
11518          RHS.get()->getType()->isFloatingType())
11519        return InvalidOperands(Loc, LHS, RHS);
11520    }
11521
11522    LHS = UsualUnaryConversions(LHS.get());
11523    if (LHS.isInvalid())
11524      return QualType();
11525
11526    RHS = UsualUnaryConversions(RHS.get());
11527    if (RHS.isInvalid())
11528      return QualType();
11529
11530    if (!LHS.get()->getType()->isScalarType() ||
11531        !RHS.get()->getType()->isScalarType())
11532      return InvalidOperands(Loc, LHS, RHS);
11533
11534    return Context.IntTy;
11535  }
11536
11537  // The following is safe because we only use this method for
11538  // non-overloadable operands.
11539
11540  // C++ [expr.log.and]p1
11541  // C++ [expr.log.or]p1
11542  // The operands are both contextually converted to type bool.
11543  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
11544  if (LHSRes.isInvalid())
11545    return InvalidOperands(Loc, LHS, RHS);
11546  LHS = LHSRes;
11547
11548  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
11549  if (RHSRes.isInvalid())
11550    return InvalidOperands(Loc, LHS, RHS);
11551  RHS = RHSRes;
11552
11553  // C++ [expr.log.and]p2
11554  // C++ [expr.log.or]p2
11555  // The result is a bool.
11556  return Context.BoolTy;
11557}
11558
11559static bool IsReadonlyMessage(Expr *E, Sema &S) {
11560  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
11561  if (!ME) return false;
11562  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
11563  ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
11564      ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
11565  if (!Base) return false;
11566  return Base->getMethodDecl() != nullptr;
11567}
11568
11569/// Is the given expression (which must be 'const') a reference to a
11570/// variable which was originally non-const, but which has become
11571/// 'const' due to being captured within a block?
11572enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
11573static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
11574  assert(E->isLValue() && E->getType().isConstQualified());
11575  E = E->IgnoreParens();
11576
11577  // Must be a reference to a declaration from an enclosing scope.
11578  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
11579  if (!DRE) return NCCK_None;
11580  if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
11581
11582  // The declaration must be a variable which is not declared 'const'.
11583  VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
11584  if (!var) return NCCK_None;
11585  if (var->getType().isConstQualified()) return NCCK_None;
11586  assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
11587
11588  // Decide whether the first capture was for a block or a lambda.
11589  DeclContext *DC = S.CurContext, *Prev = nullptr;
11590  // Decide whether the first capture was for a block or a lambda.
11591  while (DC) {
11592    // For init-capture, it is possible that the variable belongs to the
11593    // template pattern of the current context.
11594    if (auto *FD = dyn_cast<FunctionDecl>(DC))
11595      if (var->isInitCapture() &&
11596          FD->getTemplateInstantiationPattern() == var->getDeclContext())
11597        break;
11598    if (DC == var->getDeclContext())
11599      break;
11600    Prev = DC;
11601    DC = DC->getParent();
11602  }
11603  // Unless we have an init-capture, we've gone one step too far.
11604  if (!var->isInitCapture())
11605    DC = Prev;
11606  return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
11607}
11608
11609static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
11610  Ty = Ty.getNonReferenceType();
11611  if (IsDereference && Ty->isPointerType())
11612    Ty = Ty->getPointeeType();
11613  return !Ty.isConstQualified();
11614}
11615
11616// Update err_typecheck_assign_const and note_typecheck_assign_const
11617// when this enum is changed.
11618enum {
11619  ConstFunction,
11620  ConstVariable,
11621  ConstMember,
11622  ConstMethod,
11623  NestedConstMember,
11624  ConstUnknown,  // Keep as last element
11625};
11626
11627/// Emit the "read-only variable not assignable" error and print notes to give
11628/// more information about why the variable is not assignable, such as pointing
11629/// to the declaration of a const variable, showing that a method is const, or
11630/// that the function is returning a const reference.
11631static void DiagnoseConstAssignment(Sema &S, const Expr *E,
11632                                    SourceLocation Loc) {
11633  SourceRange ExprRange = E->getSourceRange();
11634
11635  // Only emit one error on the first const found.  All other consts will emit
11636  // a note to the error.
11637  bool DiagnosticEmitted = false;
11638
11639  // Track if the current expression is the result of a dereference, and if the
11640  // next checked expression is the result of a dereference.
11641  bool IsDereference = false;
11642  bool NextIsDereference = false;
11643
11644  // Loop to process MemberExpr chains.
11645  while (true) {
11646    IsDereference = NextIsDereference;
11647
11648    E = E->IgnoreImplicit()->IgnoreParenImpCasts();
11649    if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
11650      NextIsDereference = ME->isArrow();
11651      const ValueDecl *VD = ME->getMemberDecl();
11652      if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
11653        // Mutable fields can be modified even if the class is const.
11654        if (Field->isMutable()) {
11655          assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
11656          break;
11657        }
11658
11659        if (!IsTypeModifiable(Field->getType(), IsDereference)) {
11660          if (!DiagnosticEmitted) {
11661            S.Diag(Loc, diag::err_typecheck_assign_const)
11662                << ExprRange << ConstMember << false /*static*/ << Field
11663                << Field->getType();
11664            DiagnosticEmitted = true;
11665          }
11666          S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
11667              << ConstMember << false /*static*/ << Field << Field->getType()
11668              << Field->getSourceRange();
11669        }
11670        E = ME->getBase();
11671        continue;
11672      } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
11673        if (VDecl->getType().isConstQualified()) {
11674          if (!DiagnosticEmitted) {
11675            S.Diag(Loc, diag::err_typecheck_assign_const)
11676                << ExprRange << ConstMember << true /*static*/ << VDecl
11677                << VDecl->getType();
11678            DiagnosticEmitted = true;
11679          }
11680          S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
11681              << ConstMember << true /*static*/ << VDecl << VDecl->getType()
11682              << VDecl->getSourceRange();
11683        }
11684        // Static fields do not inherit constness from parents.
11685        break;
11686      }
11687      break; // End MemberExpr
11688    } else if (const ArraySubscriptExpr *ASE =
11689                   dyn_cast<ArraySubscriptExpr>(E)) {
11690      E = ASE->getBase()->IgnoreParenImpCasts();
11691      continue;
11692    } else if (const ExtVectorElementExpr *EVE =
11693                   dyn_cast<ExtVectorElementExpr>(E)) {
11694      E = EVE->getBase()->IgnoreParenImpCasts();
11695      continue;
11696    }
11697    break;
11698  }
11699
11700  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
11701    // Function calls
11702    const FunctionDecl *FD = CE->getDirectCallee();
11703    if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
11704      if (!DiagnosticEmitted) {
11705        S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
11706                                                      << ConstFunction << FD;
11707        DiagnosticEmitted = true;
11708      }
11709      S.Diag(FD->getReturnTypeSourceRange().getBegin(),
11710             diag::note_typecheck_assign_const)
11711          << ConstFunction << FD << FD->getReturnType()
11712          << FD->getReturnTypeSourceRange();
11713    }
11714  } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
11715    // Point to variable declaration.
11716    if (const ValueDecl *VD = DRE->getDecl()) {
11717      if (!IsTypeModifiable(VD->getType(), IsDereference)) {
11718        if (!DiagnosticEmitted) {
11719          S.Diag(Loc, diag::err_typecheck_assign_const)
11720              << ExprRange << ConstVariable << VD << VD->getType();
11721          DiagnosticEmitted = true;
11722        }
11723        S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
11724            << ConstVariable << VD << VD->getType() << VD->getSourceRange();
11725      }
11726    }
11727  } else if (isa<CXXThisExpr>(E)) {
11728    if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
11729      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
11730        if (MD->isConst()) {
11731          if (!DiagnosticEmitted) {
11732            S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
11733                                                          << ConstMethod << MD;
11734            DiagnosticEmitted = true;
11735          }
11736          S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
11737              << ConstMethod << MD << MD->getSourceRange();
11738        }
11739      }
11740    }
11741  }
11742
11743  if (DiagnosticEmitted)
11744    return;
11745
11746  // Can't determine a more specific message, so display the generic error.
11747  S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
11748}
11749
11750enum OriginalExprKind {
11751  OEK_Variable,
11752  OEK_Member,
11753  OEK_LValue
11754};
11755
11756static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
11757                                         const RecordType *Ty,
11758                                         SourceLocation Loc, SourceRange Range,
11759                                         OriginalExprKind OEK,
11760                                         bool &DiagnosticEmitted) {
11761  std::vector<const RecordType *> RecordTypeList;
11762  RecordTypeList.push_back(Ty);
11763  unsigned NextToCheckIndex = 0;
11764  // We walk the record hierarchy breadth-first to ensure that we print
11765  // diagnostics in field nesting order.
11766  while (RecordTypeList.size() > NextToCheckIndex) {
11767    bool IsNested = NextToCheckIndex > 0;
11768    for (const FieldDecl *Field :
11769         RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
11770      // First, check every field for constness.
11771      QualType FieldTy = Field->getType();
11772      if (FieldTy.isConstQualified()) {
11773        if (!DiagnosticEmitted) {
11774          S.Diag(Loc, diag::err_typecheck_assign_const)
11775              << Range << NestedConstMember << OEK << VD
11776              << IsNested << Field;
11777          DiagnosticEmitted = true;
11778        }
11779        S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
11780            << NestedConstMember << IsNested << Field
11781            << FieldTy << Field->getSourceRange();
11782      }
11783
11784      // Then we append it to the list to check next in order.
11785      FieldTy = FieldTy.getCanonicalType();
11786      if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
11787        if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
11788          RecordTypeList.push_back(FieldRecTy);
11789      }
11790    }
11791    ++NextToCheckIndex;
11792  }
11793}
11794
11795/// Emit an error for the case where a record we are trying to assign to has a
11796/// const-qualified field somewhere in its hierarchy.
11797static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
11798                                         SourceLocation Loc) {
11799  QualType Ty = E->getType();
11800  assert(Ty->isRecordType() && "lvalue was not record?");
11801  SourceRange Range = E->getSourceRange();
11802  const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
11803  bool DiagEmitted = false;
11804
11805  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
11806    DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
11807            Range, OEK_Member, DiagEmitted);
11808  else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
11809    DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
11810            Range, OEK_Variable, DiagEmitted);
11811  else
11812    DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
11813            Range, OEK_LValue, DiagEmitted);
11814  if (!DiagEmitted)
11815    DiagnoseConstAssignment(S, E, Loc);
11816}
11817
11818/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
11819/// emit an error and return true.  If so, return false.
11820static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
11821  assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
11822
11823  S.CheckShadowingDeclModification(E, Loc);
11824
11825  SourceLocation OrigLoc = Loc;
11826  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
11827                                                              &Loc);
11828  if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
11829    IsLV = Expr::MLV_InvalidMessageExpression;
11830  if (IsLV == Expr::MLV_Valid)
11831    return false;
11832
11833  unsigned DiagID = 0;
11834  bool NeedType = false;
11835  switch (IsLV) { // C99 6.5.16p2
11836  case Expr::MLV_ConstQualified:
11837    // Use a specialized diagnostic when we're assigning to an object
11838    // from an enclosing function or block.
11839    if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
11840      if (NCCK == NCCK_Block)
11841        DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
11842      else
11843        DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
11844      break;
11845    }
11846
11847    // In ARC, use some specialized diagnostics for occasions where we
11848    // infer 'const'.  These are always pseudo-strong variables.
11849    if (S.getLangOpts().ObjCAutoRefCount) {
11850      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
11851      if (declRef && isa<VarDecl>(declRef->getDecl())) {
11852        VarDecl *var = cast<VarDecl>(declRef->getDecl());
11853
11854        // Use the normal diagnostic if it's pseudo-__strong but the
11855        // user actually wrote 'const'.
11856        if (var->isARCPseudoStrong() &&
11857            (!var->getTypeSourceInfo() ||
11858             !var->getTypeSourceInfo()->getType().isConstQualified())) {
11859          // There are three pseudo-strong cases:
11860          //  - self
11861          ObjCMethodDecl *method = S.getCurMethodDecl();
11862          if (method && var == method->getSelfDecl()) {
11863            DiagID = method->isClassMethod()
11864              ? diag::err_typecheck_arc_assign_self_class_method
11865              : diag::err_typecheck_arc_assign_self;
11866
11867          //  - Objective-C externally_retained attribute.
11868          } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
11869                     isa<ParmVarDecl>(var)) {
11870            DiagID = diag::err_typecheck_arc_assign_externally_retained;
11871
11872          //  - fast enumeration variables
11873          } else {
11874            DiagID = diag::err_typecheck_arr_assign_enumeration;
11875          }
11876
11877          SourceRange Assign;
11878          if (Loc != OrigLoc)
11879            Assign = SourceRange(OrigLoc, OrigLoc);
11880          S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
11881          // We need to preserve the AST regardless, so migration tool
11882          // can do its job.
11883          return false;
11884        }
11885      }
11886    }
11887
11888    // If none of the special cases above are triggered, then this is a
11889    // simple const assignment.
11890    if (DiagID == 0) {
11891      DiagnoseConstAssignment(S, E, Loc);
11892      return true;
11893    }
11894
11895    break;
11896  case Expr::MLV_ConstAddrSpace:
11897    DiagnoseConstAssignment(S, E, Loc);
11898    return true;
11899  case Expr::MLV_ConstQualifiedField:
11900    DiagnoseRecursiveConstFields(S, E, Loc);
11901    return true;
11902  case Expr::MLV_ArrayType:
11903  case Expr::MLV_ArrayTemporary:
11904    DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
11905    NeedType = true;
11906    break;
11907  case Expr::MLV_NotObjectType:
11908    DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
11909    NeedType = true;
11910    break;
11911  case Expr::MLV_LValueCast:
11912    DiagID = diag::err_typecheck_lvalue_casts_not_supported;
11913    break;
11914  case Expr::MLV_Valid:
11915    llvm_unreachable("did not take early return for MLV_Valid");
11916  case Expr::MLV_InvalidExpression:
11917  case Expr::MLV_MemberFunction:
11918  case Expr::MLV_ClassTemporary:
11919    DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
11920    break;
11921  case Expr::MLV_IncompleteType:
11922  case Expr::MLV_IncompleteVoidType:
11923    return S.RequireCompleteType(Loc, E->getType(),
11924             diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
11925  case Expr::MLV_DuplicateVectorComponents:
11926    DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
11927    break;
11928  case Expr::MLV_NoSetterProperty:
11929    llvm_unreachable("readonly properties should be processed differently");
11930  case Expr::MLV_InvalidMessageExpression:
11931    DiagID = diag::err_readonly_message_assignment;
11932    break;
11933  case Expr::MLV_SubObjCPropertySetting:
11934    DiagID = diag::err_no_subobject_property_setting;
11935    break;
11936  }
11937
11938  SourceRange Assign;
11939  if (Loc != OrigLoc)
11940    Assign = SourceRange(OrigLoc, OrigLoc);
11941  if (NeedType)
11942    S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
11943  else
11944    S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
11945  return true;
11946}
11947
11948static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
11949                                         SourceLocation Loc,
11950                                         Sema &Sema) {
11951  if (Sema.inTemplateInstantiation())
11952    return;
11953  if (Sema.isUnevaluatedContext())
11954    return;
11955  if (Loc.isInvalid() || Loc.isMacroID())
11956    return;
11957  if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
11958    return;
11959
11960  // C / C++ fields
11961  MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
11962  MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
11963  if (ML && MR) {
11964    if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
11965      return;
11966    const ValueDecl *LHSDecl =
11967        cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
11968    const ValueDecl *RHSDecl =
11969        cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
11970    if (LHSDecl != RHSDecl)
11971      return;
11972    if (LHSDecl->getType().isVolatileQualified())
11973      return;
11974    if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
11975      if (RefTy->getPointeeType().isVolatileQualified())
11976        return;
11977
11978    Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
11979  }
11980
11981  // Objective-C instance variables
11982  ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
11983  ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
11984  if (OL && OR && OL->getDecl() == OR->getDecl()) {
11985    DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
11986    DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
11987    if (RL && RR && RL->getDecl() == RR->getDecl())
11988      Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
11989  }
11990}
11991
11992// C99 6.5.16.1
11993QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
11994                                       SourceLocation Loc,
11995                                       QualType CompoundType) {
11996  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
11997
11998  // Verify that LHS is a modifiable lvalue, and emit error if not.
11999  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
12000    return QualType();
12001
12002  QualType LHSType = LHSExpr->getType();
12003  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
12004                                             CompoundType;
12005  // OpenCL v1.2 s6.1.1.1 p2:
12006  // The half data type can only be used to declare a pointer to a buffer that
12007  // contains half values
12008  if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
12009    LHSType->isHalfType()) {
12010    Diag(Loc, diag::err_opencl_half_load_store) << 1
12011        << LHSType.getUnqualifiedType();
12012    return QualType();
12013  }
12014
12015  AssignConvertType ConvTy;
12016  if (CompoundType.isNull()) {
12017    Expr *RHSCheck = RHS.get();
12018
12019    CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
12020
12021    QualType LHSTy(LHSType);
12022    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
12023    if (RHS.isInvalid())
12024      return QualType();
12025    // Special case of NSObject attributes on c-style pointer types.
12026    if (ConvTy == IncompatiblePointer &&
12027        ((Context.isObjCNSObjectType(LHSType) &&
12028          RHSType->isObjCObjectPointerType()) ||
12029         (Context.isObjCNSObjectType(RHSType) &&
12030          LHSType->isObjCObjectPointerType())))
12031      ConvTy = Compatible;
12032
12033    if (ConvTy == Compatible &&
12034        LHSType->isObjCObjectType())
12035        Diag(Loc, diag::err_objc_object_assignment)
12036          << LHSType;
12037
12038    // If the RHS is a unary plus or minus, check to see if they = and + are
12039    // right next to each other.  If so, the user may have typo'd "x =+ 4"
12040    // instead of "x += 4".
12041    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
12042      RHSCheck = ICE->getSubExpr();
12043    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
12044      if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
12045          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
12046          // Only if the two operators are exactly adjacent.
12047          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
12048          // And there is a space or other character before the subexpr of the
12049          // unary +/-.  We don't want to warn on "x=-1".
12050          Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
12051          UO->getSubExpr()->getBeginLoc().isFileID()) {
12052        Diag(Loc, diag::warn_not_compound_assign)
12053          << (UO->getOpcode() == UO_Plus ? "+" : "-")
12054          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
12055      }
12056    }
12057
12058    if (ConvTy == Compatible) {
12059      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
12060        // Warn about retain cycles where a block captures the LHS, but
12061        // not if the LHS is a simple variable into which the block is
12062        // being stored...unless that variable can be captured by reference!
12063        const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
12064        const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
12065        if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
12066          checkRetainCycles(LHSExpr, RHS.get());
12067      }
12068
12069      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
12070          LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
12071        // It is safe to assign a weak reference into a strong variable.
12072        // Although this code can still have problems:
12073        //   id x = self.weakProp;
12074        //   id y = self.weakProp;
12075        // we do not warn to warn spuriously when 'x' and 'y' are on separate
12076        // paths through the function. This should be revisited if
12077        // -Wrepeated-use-of-weak is made flow-sensitive.
12078        // For ObjCWeak only, we do not warn if the assign is to a non-weak
12079        // variable, which will be valid for the current autorelease scope.
12080        if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12081                             RHS.get()->getBeginLoc()))
12082          getCurFunction()->markSafeWeakUse(RHS.get());
12083
12084      } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
12085        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
12086      }
12087    }
12088  } else {
12089    // Compound assignment "x += y"
12090    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
12091  }
12092
12093  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
12094                               RHS.get(), AA_Assigning))
12095    return QualType();
12096
12097  CheckForNullPointerDereference(*this, LHSExpr);
12098
12099  if (getLangOpts().CPlusPlus2a && LHSType.isVolatileQualified()) {
12100    if (CompoundType.isNull()) {
12101      // C++2a [expr.ass]p5:
12102      //   A simple-assignment whose left operand is of a volatile-qualified
12103      //   type is deprecated unless the assignment is either a discarded-value
12104      //   expression or an unevaluated operand
12105      ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
12106    } else {
12107      // C++2a [expr.ass]p6:
12108      //   [Compound-assignment] expressions are deprecated if E1 has
12109      //   volatile-qualified type
12110      Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
12111    }
12112  }
12113
12114  // C99 6.5.16p3: The type of an assignment expression is the type of the
12115  // left operand unless the left operand has qualified type, in which case
12116  // it is the unqualified version of the type of the left operand.
12117  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
12118  // is converted to the type of the assignment expression (above).
12119  // C++ 5.17p1: the type of the assignment expression is that of its left
12120  // operand.
12121  return (getLangOpts().CPlusPlus
12122          ? LHSType : LHSType.getUnqualifiedType());
12123}
12124
12125// Only ignore explicit casts to void.
12126static bool IgnoreCommaOperand(const Expr *E) {
12127  E = E->IgnoreParens();
12128
12129  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
12130    if (CE->getCastKind() == CK_ToVoid) {
12131      return true;
12132    }
12133
12134    // static_cast<void> on a dependent type will not show up as CK_ToVoid.
12135    if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
12136        CE->getSubExpr()->getType()->isDependentType()) {
12137      return true;
12138    }
12139  }
12140
12141  return false;
12142}
12143
12144// Look for instances where it is likely the comma operator is confused with
12145// another operator.  There is a whitelist of acceptable expressions for the
12146// left hand side of the comma operator, otherwise emit a warning.
12147void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
12148  // No warnings in macros
12149  if (Loc.isMacroID())
12150    return;
12151
12152  // Don't warn in template instantiations.
12153  if (inTemplateInstantiation())
12154    return;
12155
12156  // Scope isn't fine-grained enough to whitelist the specific cases, so
12157  // instead, skip more than needed, then call back into here with the
12158  // CommaVisitor in SemaStmt.cpp.
12159  // The whitelisted locations are the initialization and increment portions
12160  // of a for loop.  The additional checks are on the condition of
12161  // if statements, do/while loops, and for loops.
12162  // Differences in scope flags for C89 mode requires the extra logic.
12163  const unsigned ForIncrementFlags =
12164      getLangOpts().C99 || getLangOpts().CPlusPlus
12165          ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
12166          : Scope::ContinueScope | Scope::BreakScope;
12167  const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
12168  const unsigned ScopeFlags = getCurScope()->getFlags();
12169  if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
12170      (ScopeFlags & ForInitFlags) == ForInitFlags)
12171    return;
12172
12173  // If there are multiple comma operators used together, get the RHS of the
12174  // of the comma operator as the LHS.
12175  while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
12176    if (BO->getOpcode() != BO_Comma)
12177      break;
12178    LHS = BO->getRHS();
12179  }
12180
12181  // Only allow some expressions on LHS to not warn.
12182  if (IgnoreCommaOperand(LHS))
12183    return;
12184
12185  Diag(Loc, diag::warn_comma_operator);
12186  Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
12187      << LHS->getSourceRange()
12188      << FixItHint::CreateInsertion(LHS->getBeginLoc(),
12189                                    LangOpts.CPlusPlus ? "static_cast<void>("
12190                                                       : "(void)(")
12191      << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
12192                                    ")");
12193}
12194
12195// C99 6.5.17
12196static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
12197                                   SourceLocation Loc) {
12198  LHS = S.CheckPlaceholderExpr(LHS.get());
12199  RHS = S.CheckPlaceholderExpr(RHS.get());
12200  if (LHS.isInvalid() || RHS.isInvalid())
12201    return QualType();
12202
12203  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
12204  // operands, but not unary promotions.
12205  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
12206
12207  // So we treat the LHS as a ignored value, and in C++ we allow the
12208  // containing site to determine what should be done with the RHS.
12209  LHS = S.IgnoredValueConversions(LHS.get());
12210  if (LHS.isInvalid())
12211    return QualType();
12212
12213  S.DiagnoseUnusedExprResult(LHS.get());
12214
12215  if (!S.getLangOpts().CPlusPlus) {
12216    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
12217    if (RHS.isInvalid())
12218      return QualType();
12219    if (!RHS.get()->getType()->isVoidType())
12220      S.RequireCompleteType(Loc, RHS.get()->getType(),
12221                            diag::err_incomplete_type);
12222  }
12223
12224  if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
12225    S.DiagnoseCommaOperator(LHS.get(), Loc);
12226
12227  return RHS.get()->getType();
12228}
12229
12230/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
12231/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
12232static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
12233                                               ExprValueKind &VK,
12234                                               ExprObjectKind &OK,
12235                                               SourceLocation OpLoc,
12236                                               bool IsInc, bool IsPrefix) {
12237  if (Op->isTypeDependent())
12238    return S.Context.DependentTy;
12239
12240  QualType ResType = Op->getType();
12241  // Atomic types can be used for increment / decrement where the non-atomic
12242  // versions can, so ignore the _Atomic() specifier for the purpose of
12243  // checking.
12244  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
12245    ResType = ResAtomicType->getValueType();
12246
12247  assert(!ResType.isNull() && "no type for increment/decrement expression");
12248
12249  if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
12250    // Decrement of bool is not allowed.
12251    if (!IsInc) {
12252      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
12253      return QualType();
12254    }
12255    // Increment of bool sets it to true, but is deprecated.
12256    S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
12257                                              : diag::warn_increment_bool)
12258      << Op->getSourceRange();
12259  } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
12260    // Error on enum increments and decrements in C++ mode
12261    S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
12262    return QualType();
12263  } else if (ResType->isRealType()) {
12264    // OK!
12265  } else if (ResType->isPointerType()) {
12266    // C99 6.5.2.4p2, 6.5.6p2
12267    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
12268      return QualType();
12269  } else if (ResType->isObjCObjectPointerType()) {
12270    // On modern runtimes, ObjC pointer arithmetic is forbidden.
12271    // Otherwise, we just need a complete type.
12272    if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
12273        checkArithmeticOnObjCPointer(S, OpLoc, Op))
12274      return QualType();
12275  } else if (ResType->isAnyComplexType()) {
12276    // C99 does not support ++/-- on complex types, we allow as an extension.
12277    S.Diag(OpLoc, diag::ext_integer_increment_complex)
12278      << ResType << Op->getSourceRange();
12279  } else if (ResType->isPlaceholderType()) {
12280    ExprResult PR = S.CheckPlaceholderExpr(Op);
12281    if (PR.isInvalid()) return QualType();
12282    return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
12283                                          IsInc, IsPrefix);
12284  } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
12285    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
12286  } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
12287             (ResType->castAs<VectorType>()->getVectorKind() !=
12288              VectorType::AltiVecBool)) {
12289    // The z vector extensions allow ++ and -- for non-bool vectors.
12290  } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
12291            ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
12292    // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
12293  } else {
12294    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
12295      << ResType << int(IsInc) << Op->getSourceRange();
12296    return QualType();
12297  }
12298  // At this point, we know we have a real, complex or pointer type.
12299  // Now make sure the operand is a modifiable lvalue.
12300  if (CheckForModifiableLvalue(Op, OpLoc, S))
12301    return QualType();
12302  if (S.getLangOpts().CPlusPlus2a && ResType.isVolatileQualified()) {
12303    // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
12304    //   An operand with volatile-qualified type is deprecated
12305    S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
12306        << IsInc << ResType;
12307  }
12308  // In C++, a prefix increment is the same type as the operand. Otherwise
12309  // (in C or with postfix), the increment is the unqualified type of the
12310  // operand.
12311  if (IsPrefix && S.getLangOpts().CPlusPlus) {
12312    VK = VK_LValue;
12313    OK = Op->getObjectKind();
12314    return ResType;
12315  } else {
12316    VK = VK_RValue;
12317    return ResType.getUnqualifiedType();
12318  }
12319}
12320
12321
12322/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
12323/// This routine allows us to typecheck complex/recursive expressions
12324/// where the declaration is needed for type checking. We only need to
12325/// handle cases when the expression references a function designator
12326/// or is an lvalue. Here are some examples:
12327///  - &(x) => x
12328///  - &*****f => f for f a function designator.
12329///  - &s.xx => s
12330///  - &s.zz[1].yy -> s, if zz is an array
12331///  - *(x + 1) -> x, if x is an array
12332///  - &"123"[2] -> 0
12333///  - & __real__ x -> x
12334static ValueDecl *getPrimaryDecl(Expr *E) {
12335  switch (E->getStmtClass()) {
12336  case Stmt::DeclRefExprClass:
12337    return cast<DeclRefExpr>(E)->getDecl();
12338  case Stmt::MemberExprClass:
12339    // If this is an arrow operator, the address is an offset from
12340    // the base's value, so the object the base refers to is
12341    // irrelevant.
12342    if (cast<MemberExpr>(E)->isArrow())
12343      return nullptr;
12344    // Otherwise, the expression refers to a part of the base
12345    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
12346  case Stmt::ArraySubscriptExprClass: {
12347    // FIXME: This code shouldn't be necessary!  We should catch the implicit
12348    // promotion of register arrays earlier.
12349    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
12350    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
12351      if (ICE->getSubExpr()->getType()->isArrayType())
12352        return getPrimaryDecl(ICE->getSubExpr());
12353    }
12354    return nullptr;
12355  }
12356  case Stmt::UnaryOperatorClass: {
12357    UnaryOperator *UO = cast<UnaryOperator>(E);
12358
12359    switch(UO->getOpcode()) {
12360    case UO_Real:
12361    case UO_Imag:
12362    case UO_Extension:
12363      return getPrimaryDecl(UO->getSubExpr());
12364    default:
12365      return nullptr;
12366    }
12367  }
12368  case Stmt::ParenExprClass:
12369    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
12370  case Stmt::ImplicitCastExprClass:
12371    // If the result of an implicit cast is an l-value, we care about
12372    // the sub-expression; otherwise, the result here doesn't matter.
12373    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
12374  default:
12375    return nullptr;
12376  }
12377}
12378
12379namespace {
12380  enum {
12381    AO_Bit_Field = 0,
12382    AO_Vector_Element = 1,
12383    AO_Property_Expansion = 2,
12384    AO_Register_Variable = 3,
12385    AO_No_Error = 4
12386  };
12387}
12388/// Diagnose invalid operand for address of operations.
12389///
12390/// \param Type The type of operand which cannot have its address taken.
12391static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
12392                                         Expr *E, unsigned Type) {
12393  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
12394}
12395
12396/// CheckAddressOfOperand - The operand of & must be either a function
12397/// designator or an lvalue designating an object. If it is an lvalue, the
12398/// object cannot be declared with storage class register or be a bit field.
12399/// Note: The usual conversions are *not* applied to the operand of the &
12400/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
12401/// In C++, the operand might be an overloaded function name, in which case
12402/// we allow the '&' but retain the overloaded-function type.
12403QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
12404  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
12405    if (PTy->getKind() == BuiltinType::Overload) {
12406      Expr *E = OrigOp.get()->IgnoreParens();
12407      if (!isa<OverloadExpr>(E)) {
12408        assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
12409        Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
12410          << OrigOp.get()->getSourceRange();
12411        return QualType();
12412      }
12413
12414      OverloadExpr *Ovl = cast<OverloadExpr>(E);
12415      if (isa<UnresolvedMemberExpr>(Ovl))
12416        if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
12417          Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
12418            << OrigOp.get()->getSourceRange();
12419          return QualType();
12420        }
12421
12422      return Context.OverloadTy;
12423    }
12424
12425    if (PTy->getKind() == BuiltinType::UnknownAny)
12426      return Context.UnknownAnyTy;
12427
12428    if (PTy->getKind() == BuiltinType::BoundMember) {
12429      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
12430        << OrigOp.get()->getSourceRange();
12431      return QualType();
12432    }
12433
12434    OrigOp = CheckPlaceholderExpr(OrigOp.get());
12435    if (OrigOp.isInvalid()) return QualType();
12436  }
12437
12438  if (OrigOp.get()->isTypeDependent())
12439    return Context.DependentTy;
12440
12441  assert(!OrigOp.get()->getType()->isPlaceholderType());
12442
12443  // Make sure to ignore parentheses in subsequent checks
12444  Expr *op = OrigOp.get()->IgnoreParens();
12445
12446  // In OpenCL captures for blocks called as lambda functions
12447  // are located in the private address space. Blocks used in
12448  // enqueue_kernel can be located in a different address space
12449  // depending on a vendor implementation. Thus preventing
12450  // taking an address of the capture to avoid invalid AS casts.
12451  if (LangOpts.OpenCL) {
12452    auto* VarRef = dyn_cast<DeclRefExpr>(op);
12453    if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
12454      Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
12455      return QualType();
12456    }
12457  }
12458
12459  if (getLangOpts().C99) {
12460    // Implement C99-only parts of addressof rules.
12461    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
12462      if (uOp->getOpcode() == UO_Deref)
12463        // Per C99 6.5.3.2, the address of a deref always returns a valid result
12464        // (assuming the deref expression is valid).
12465        return uOp->getSubExpr()->getType();
12466    }
12467    // Technically, there should be a check for array subscript
12468    // expressions here, but the result of one is always an lvalue anyway.
12469  }
12470  ValueDecl *dcl = getPrimaryDecl(op);
12471
12472  if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
12473    if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
12474                                           op->getBeginLoc()))
12475      return QualType();
12476
12477  Expr::LValueClassification lval = op->ClassifyLValue(Context);
12478  unsigned AddressOfError = AO_No_Error;
12479
12480  if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
12481    bool sfinae = (bool)isSFINAEContext();
12482    Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
12483                                  : diag::ext_typecheck_addrof_temporary)
12484      << op->getType() << op->getSourceRange();
12485    if (sfinae)
12486      return QualType();
12487    // Materialize the temporary as an lvalue so that we can take its address.
12488    OrigOp = op =
12489        CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
12490  } else if (isa<ObjCSelectorExpr>(op)) {
12491    return Context.getPointerType(op->getType());
12492  } else if (lval == Expr::LV_MemberFunction) {
12493    // If it's an instance method, make a member pointer.
12494    // The expression must have exactly the form &A::foo.
12495
12496    // If the underlying expression isn't a decl ref, give up.
12497    if (!isa<DeclRefExpr>(op)) {
12498      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
12499        << OrigOp.get()->getSourceRange();
12500      return QualType();
12501    }
12502    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
12503    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
12504
12505    // The id-expression was parenthesized.
12506    if (OrigOp.get() != DRE) {
12507      Diag(OpLoc, diag::err_parens_pointer_member_function)
12508        << OrigOp.get()->getSourceRange();
12509
12510    // The method was named without a qualifier.
12511    } else if (!DRE->getQualifier()) {
12512      if (MD->getParent()->getName().empty())
12513        Diag(OpLoc, diag::err_unqualified_pointer_member_function)
12514          << op->getSourceRange();
12515      else {
12516        SmallString<32> Str;
12517        StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
12518        Diag(OpLoc, diag::err_unqualified_pointer_member_function)
12519          << op->getSourceRange()
12520          << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
12521      }
12522    }
12523
12524    // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
12525    if (isa<CXXDestructorDecl>(MD))
12526      Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
12527
12528    QualType MPTy = Context.getMemberPointerType(
12529        op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
12530    // Under the MS ABI, lock down the inheritance model now.
12531    if (Context.getTargetInfo().getCXXABI().isMicrosoft())
12532      (void)isCompleteType(OpLoc, MPTy);
12533    return MPTy;
12534  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
12535    // C99 6.5.3.2p1
12536    // The operand must be either an l-value or a function designator
12537    if (!op->getType()->isFunctionType()) {
12538      // Use a special diagnostic for loads from property references.
12539      if (isa<PseudoObjectExpr>(op)) {
12540        AddressOfError = AO_Property_Expansion;
12541      } else {
12542        Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
12543          << op->getType() << op->getSourceRange();
12544        return QualType();
12545      }
12546    }
12547  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
12548    // The operand cannot be a bit-field
12549    AddressOfError = AO_Bit_Field;
12550  } else if (op->getObjectKind() == OK_VectorComponent) {
12551    // The operand cannot be an element of a vector
12552    AddressOfError = AO_Vector_Element;
12553  } else if (dcl) { // C99 6.5.3.2p1
12554    // We have an lvalue with a decl. Make sure the decl is not declared
12555    // with the register storage-class specifier.
12556    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
12557      // in C++ it is not error to take address of a register
12558      // variable (c++03 7.1.1P3)
12559      if (vd->getStorageClass() == SC_Register &&
12560          !getLangOpts().CPlusPlus) {
12561        AddressOfError = AO_Register_Variable;
12562      }
12563    } else if (isa<MSPropertyDecl>(dcl)) {
12564      AddressOfError = AO_Property_Expansion;
12565    } else if (isa<FunctionTemplateDecl>(dcl)) {
12566      return Context.OverloadTy;
12567    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
12568      // Okay: we can take the address of a field.
12569      // Could be a pointer to member, though, if there is an explicit
12570      // scope qualifier for the class.
12571      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
12572        DeclContext *Ctx = dcl->getDeclContext();
12573        if (Ctx && Ctx->isRecord()) {
12574          if (dcl->getType()->isReferenceType()) {
12575            Diag(OpLoc,
12576                 diag::err_cannot_form_pointer_to_member_of_reference_type)
12577              << dcl->getDeclName() << dcl->getType();
12578            return QualType();
12579          }
12580
12581          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
12582            Ctx = Ctx->getParent();
12583
12584          QualType MPTy = Context.getMemberPointerType(
12585              op->getType(),
12586              Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
12587          // Under the MS ABI, lock down the inheritance model now.
12588          if (Context.getTargetInfo().getCXXABI().isMicrosoft())
12589            (void)isCompleteType(OpLoc, MPTy);
12590          return MPTy;
12591        }
12592      }
12593    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
12594               !isa<BindingDecl>(dcl))
12595      llvm_unreachable("Unknown/unexpected decl type");
12596  }
12597
12598  if (AddressOfError != AO_No_Error) {
12599    diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
12600    return QualType();
12601  }
12602
12603  if (lval == Expr::LV_IncompleteVoidType) {
12604    // Taking the address of a void variable is technically illegal, but we
12605    // allow it in cases which are otherwise valid.
12606    // Example: "extern void x; void* y = &x;".
12607    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
12608  }
12609
12610  // If the operand has type "type", the result has type "pointer to type".
12611  if (op->getType()->isObjCObjectType())
12612    return Context.getObjCObjectPointerType(op->getType());
12613
12614  CheckAddressOfPackedMember(op);
12615
12616  return Context.getPointerType(op->getType());
12617}
12618
12619static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
12620  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
12621  if (!DRE)
12622    return;
12623  const Decl *D = DRE->getDecl();
12624  if (!D)
12625    return;
12626  const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
12627  if (!Param)
12628    return;
12629  if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
12630    if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
12631      return;
12632  if (FunctionScopeInfo *FD = S.getCurFunction())
12633    if (!FD->ModifiedNonNullParams.count(Param))
12634      FD->ModifiedNonNullParams.insert(Param);
12635}
12636
12637/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
12638static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
12639                                        SourceLocation OpLoc) {
12640  if (Op->isTypeDependent())
12641    return S.Context.DependentTy;
12642
12643  ExprResult ConvResult = S.UsualUnaryConversions(Op);
12644  if (ConvResult.isInvalid())
12645    return QualType();
12646  Op = ConvResult.get();
12647  QualType OpTy = Op->getType();
12648  QualType Result;
12649
12650  if (isa<CXXReinterpretCastExpr>(Op)) {
12651    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
12652    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
12653                                     Op->getSourceRange());
12654  }
12655
12656  if (const PointerType *PT = OpTy->getAs<PointerType>())
12657  {
12658    Result = PT->getPointeeType();
12659  }
12660  else if (const ObjCObjectPointerType *OPT =
12661             OpTy->getAs<ObjCObjectPointerType>())
12662    Result = OPT->getPointeeType();
12663  else {
12664    ExprResult PR = S.CheckPlaceholderExpr(Op);
12665    if (PR.isInvalid()) return QualType();
12666    if (PR.get() != Op)
12667      return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
12668  }
12669
12670  if (Result.isNull()) {
12671    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
12672      << OpTy << Op->getSourceRange();
12673    return QualType();
12674  }
12675
12676  // Note that per both C89 and C99, indirection is always legal, even if Result
12677  // is an incomplete type or void.  It would be possible to warn about
12678  // dereferencing a void pointer, but it's completely well-defined, and such a
12679  // warning is unlikely to catch any mistakes. In C++, indirection is not valid
12680  // for pointers to 'void' but is fine for any other pointer type:
12681  //
12682  // C++ [expr.unary.op]p1:
12683  //   [...] the expression to which [the unary * operator] is applied shall
12684  //   be a pointer to an object type, or a pointer to a function type
12685  if (S.getLangOpts().CPlusPlus && Result->isVoidType())
12686    S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
12687      << OpTy << Op->getSourceRange();
12688
12689  // Dereferences are usually l-values...
12690  VK = VK_LValue;
12691
12692  // ...except that certain expressions are never l-values in C.
12693  if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
12694    VK = VK_RValue;
12695
12696  return Result;
12697}
12698
12699BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
12700  BinaryOperatorKind Opc;
12701  switch (Kind) {
12702  default: llvm_unreachable("Unknown binop!");
12703  case tok::periodstar:           Opc = BO_PtrMemD; break;
12704  case tok::arrowstar:            Opc = BO_PtrMemI; break;
12705  case tok::star:                 Opc = BO_Mul; break;
12706  case tok::slash:                Opc = BO_Div; break;
12707  case tok::percent:              Opc = BO_Rem; break;
12708  case tok::plus:                 Opc = BO_Add; break;
12709  case tok::minus:                Opc = BO_Sub; break;
12710  case tok::lessless:             Opc = BO_Shl; break;
12711  case tok::greatergreater:       Opc = BO_Shr; break;
12712  case tok::lessequal:            Opc = BO_LE; break;
12713  case tok::less:                 Opc = BO_LT; break;
12714  case tok::greaterequal:         Opc = BO_GE; break;
12715  case tok::greater:              Opc = BO_GT; break;
12716  case tok::exclaimequal:         Opc = BO_NE; break;
12717  case tok::equalequal:           Opc = BO_EQ; break;
12718  case tok::spaceship:            Opc = BO_Cmp; break;
12719  case tok::amp:                  Opc = BO_And; break;
12720  case tok::caret:                Opc = BO_Xor; break;
12721  case tok::pipe:                 Opc = BO_Or; break;
12722  case tok::ampamp:               Opc = BO_LAnd; break;
12723  case tok::pipepipe:             Opc = BO_LOr; break;
12724  case tok::equal:                Opc = BO_Assign; break;
12725  case tok::starequal:            Opc = BO_MulAssign; break;
12726  case tok::slashequal:           Opc = BO_DivAssign; break;
12727  case tok::percentequal:         Opc = BO_RemAssign; break;
12728  case tok::plusequal:            Opc = BO_AddAssign; break;
12729  case tok::minusequal:           Opc = BO_SubAssign; break;
12730  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
12731  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
12732  case tok::ampequal:             Opc = BO_AndAssign; break;
12733  case tok::caretequal:           Opc = BO_XorAssign; break;
12734  case tok::pipeequal:            Opc = BO_OrAssign; break;
12735  case tok::comma:                Opc = BO_Comma; break;
12736  }
12737  return Opc;
12738}
12739
12740static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
12741  tok::TokenKind Kind) {
12742  UnaryOperatorKind Opc;
12743  switch (Kind) {
12744  default: llvm_unreachable("Unknown unary op!");
12745  case tok::plusplus:     Opc = UO_PreInc; break;
12746  case tok::minusminus:   Opc = UO_PreDec; break;
12747  case tok::amp:          Opc = UO_AddrOf; break;
12748  case tok::star:         Opc = UO_Deref; break;
12749  case tok::plus:         Opc = UO_Plus; break;
12750  case tok::minus:        Opc = UO_Minus; break;
12751  case tok::tilde:        Opc = UO_Not; break;
12752  case tok::exclaim:      Opc = UO_LNot; break;
12753  case tok::kw___real:    Opc = UO_Real; break;
12754  case tok::kw___imag:    Opc = UO_Imag; break;
12755  case tok::kw___extension__: Opc = UO_Extension; break;
12756  }
12757  return Opc;
12758}
12759
12760/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
12761/// This warning suppressed in the event of macro expansions.
12762static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
12763                                   SourceLocation OpLoc, bool IsBuiltin) {
12764  if (S.inTemplateInstantiation())
12765    return;
12766  if (S.isUnevaluatedContext())
12767    return;
12768  if (OpLoc.isInvalid() || OpLoc.isMacroID())
12769    return;
12770  LHSExpr = LHSExpr->IgnoreParenImpCasts();
12771  RHSExpr = RHSExpr->IgnoreParenImpCasts();
12772  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
12773  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
12774  if (!LHSDeclRef || !RHSDeclRef ||
12775      LHSDeclRef->getLocation().isMacroID() ||
12776      RHSDeclRef->getLocation().isMacroID())
12777    return;
12778  const ValueDecl *LHSDecl =
12779    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
12780  const ValueDecl *RHSDecl =
12781    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
12782  if (LHSDecl != RHSDecl)
12783    return;
12784  if (LHSDecl->getType().isVolatileQualified())
12785    return;
12786  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
12787    if (RefTy->getPointeeType().isVolatileQualified())
12788      return;
12789
12790  S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
12791                          : diag::warn_self_assignment_overloaded)
12792      << LHSDeclRef->getType() << LHSExpr->getSourceRange()
12793      << RHSExpr->getSourceRange();
12794}
12795
12796/// Check if a bitwise-& is performed on an Objective-C pointer.  This
12797/// is usually indicative of introspection within the Objective-C pointer.
12798static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
12799                                          SourceLocation OpLoc) {
12800  if (!S.getLangOpts().ObjC)
12801    return;
12802
12803  const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
12804  const Expr *LHS = L.get();
12805  const Expr *RHS = R.get();
12806
12807  if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
12808    ObjCPointerExpr = LHS;
12809    OtherExpr = RHS;
12810  }
12811  else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
12812    ObjCPointerExpr = RHS;
12813    OtherExpr = LHS;
12814  }
12815
12816  // This warning is deliberately made very specific to reduce false
12817  // positives with logic that uses '&' for hashing.  This logic mainly
12818  // looks for code trying to introspect into tagged pointers, which
12819  // code should generally never do.
12820  if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
12821    unsigned Diag = diag::warn_objc_pointer_masking;
12822    // Determine if we are introspecting the result of performSelectorXXX.
12823    const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
12824    // Special case messages to -performSelector and friends, which
12825    // can return non-pointer values boxed in a pointer value.
12826    // Some clients may wish to silence warnings in this subcase.
12827    if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
12828      Selector S = ME->getSelector();
12829      StringRef SelArg0 = S.getNameForSlot(0);
12830      if (SelArg0.startswith("performSelector"))
12831        Diag = diag::warn_objc_pointer_masking_performSelector;
12832    }
12833
12834    S.Diag(OpLoc, Diag)
12835      << ObjCPointerExpr->getSourceRange();
12836  }
12837}
12838
12839static NamedDecl *getDeclFromExpr(Expr *E) {
12840  if (!E)
12841    return nullptr;
12842  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
12843    return DRE->getDecl();
12844  if (auto *ME = dyn_cast<MemberExpr>(E))
12845    return ME->getMemberDecl();
12846  if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
12847    return IRE->getDecl();
12848  return nullptr;
12849}
12850
12851// This helper function promotes a binary operator's operands (which are of a
12852// half vector type) to a vector of floats and then truncates the result to
12853// a vector of either half or short.
12854static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
12855                                      BinaryOperatorKind Opc, QualType ResultTy,
12856                                      ExprValueKind VK, ExprObjectKind OK,
12857                                      bool IsCompAssign, SourceLocation OpLoc,
12858                                      FPOptions FPFeatures) {
12859  auto &Context = S.getASTContext();
12860  assert((isVector(ResultTy, Context.HalfTy) ||
12861          isVector(ResultTy, Context.ShortTy)) &&
12862         "Result must be a vector of half or short");
12863  assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
12864         isVector(RHS.get()->getType(), Context.HalfTy) &&
12865         "both operands expected to be a half vector");
12866
12867  RHS = convertVector(RHS.get(), Context.FloatTy, S);
12868  QualType BinOpResTy = RHS.get()->getType();
12869
12870  // If Opc is a comparison, ResultType is a vector of shorts. In that case,
12871  // change BinOpResTy to a vector of ints.
12872  if (isVector(ResultTy, Context.ShortTy))
12873    BinOpResTy = S.GetSignedVectorType(BinOpResTy);
12874
12875  if (IsCompAssign)
12876    return new (Context) CompoundAssignOperator(
12877        LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, BinOpResTy, BinOpResTy,
12878        OpLoc, FPFeatures);
12879
12880  LHS = convertVector(LHS.get(), Context.FloatTy, S);
12881  auto *BO = new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, BinOpResTy,
12882                                          VK, OK, OpLoc, FPFeatures);
12883  return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
12884}
12885
12886static std::pair<ExprResult, ExprResult>
12887CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
12888                           Expr *RHSExpr) {
12889  ExprResult LHS = LHSExpr, RHS = RHSExpr;
12890  if (!S.getLangOpts().CPlusPlus) {
12891    // C cannot handle TypoExpr nodes on either side of a binop because it
12892    // doesn't handle dependent types properly, so make sure any TypoExprs have
12893    // been dealt with before checking the operands.
12894    LHS = S.CorrectDelayedTyposInExpr(LHS);
12895    RHS = S.CorrectDelayedTyposInExpr(RHS, [Opc, LHS](Expr *E) {
12896      if (Opc != BO_Assign)
12897        return ExprResult(E);
12898      // Avoid correcting the RHS to the same Expr as the LHS.
12899      Decl *D = getDeclFromExpr(E);
12900      return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
12901    });
12902  }
12903  return std::make_pair(LHS, RHS);
12904}
12905
12906/// Returns true if conversion between vectors of halfs and vectors of floats
12907/// is needed.
12908static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
12909                                     QualType SrcType) {
12910  return OpRequiresConversion && !Ctx.getLangOpts().NativeHalfType &&
12911         !Ctx.getTargetInfo().useFP16ConversionIntrinsics() &&
12912         isVector(SrcType, Ctx.HalfTy);
12913}
12914
12915/// CreateBuiltinBinOp - Creates a new built-in binary operation with
12916/// operator @p Opc at location @c TokLoc. This routine only supports
12917/// built-in operations; ActOnBinOp handles overloaded operators.
12918ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
12919                                    BinaryOperatorKind Opc,
12920                                    Expr *LHSExpr, Expr *RHSExpr) {
12921  if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
12922    // The syntax only allows initializer lists on the RHS of assignment,
12923    // so we don't need to worry about accepting invalid code for
12924    // non-assignment operators.
12925    // C++11 5.17p9:
12926    //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
12927    //   of x = {} is x = T().
12928    InitializationKind Kind = InitializationKind::CreateDirectList(
12929        RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
12930    InitializedEntity Entity =
12931        InitializedEntity::InitializeTemporary(LHSExpr->getType());
12932    InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
12933    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
12934    if (Init.isInvalid())
12935      return Init;
12936    RHSExpr = Init.get();
12937  }
12938
12939  ExprResult LHS = LHSExpr, RHS = RHSExpr;
12940  QualType ResultTy;     // Result type of the binary operator.
12941  // The following two variables are used for compound assignment operators
12942  QualType CompLHSTy;    // Type of LHS after promotions for computation
12943  QualType CompResultTy; // Type of computation result
12944  ExprValueKind VK = VK_RValue;
12945  ExprObjectKind OK = OK_Ordinary;
12946  bool ConvertHalfVec = false;
12947
12948  std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
12949  if (!LHS.isUsable() || !RHS.isUsable())
12950    return ExprError();
12951
12952  if (getLangOpts().OpenCL) {
12953    QualType LHSTy = LHSExpr->getType();
12954    QualType RHSTy = RHSExpr->getType();
12955    // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
12956    // the ATOMIC_VAR_INIT macro.
12957    if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
12958      SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
12959      if (BO_Assign == Opc)
12960        Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
12961      else
12962        ResultTy = InvalidOperands(OpLoc, LHS, RHS);
12963      return ExprError();
12964    }
12965
12966    // OpenCL special types - image, sampler, pipe, and blocks are to be used
12967    // only with a builtin functions and therefore should be disallowed here.
12968    if (LHSTy->isImageType() || RHSTy->isImageType() ||
12969        LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
12970        LHSTy->isPipeType() || RHSTy->isPipeType() ||
12971        LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
12972      ResultTy = InvalidOperands(OpLoc, LHS, RHS);
12973      return ExprError();
12974    }
12975  }
12976
12977  // Diagnose operations on the unsupported types for OpenMP device compilation.
12978  if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) {
12979    if (Opc != BO_Assign && Opc != BO_Comma) {
12980      checkOpenMPDeviceExpr(LHSExpr);
12981      checkOpenMPDeviceExpr(RHSExpr);
12982    }
12983  }
12984
12985  switch (Opc) {
12986  case BO_Assign:
12987    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
12988    if (getLangOpts().CPlusPlus &&
12989        LHS.get()->getObjectKind() != OK_ObjCProperty) {
12990      VK = LHS.get()->getValueKind();
12991      OK = LHS.get()->getObjectKind();
12992    }
12993    if (!ResultTy.isNull()) {
12994      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
12995      DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
12996
12997      // Avoid copying a block to the heap if the block is assigned to a local
12998      // auto variable that is declared in the same scope as the block. This
12999      // optimization is unsafe if the local variable is declared in an outer
13000      // scope. For example:
13001      //
13002      // BlockTy b;
13003      // {
13004      //   b = ^{...};
13005      // }
13006      // // It is unsafe to invoke the block here if it wasn't copied to the
13007      // // heap.
13008      // b();
13009
13010      if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
13011        if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
13012          if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
13013            if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
13014              BE->getBlockDecl()->setCanAvoidCopyToHeap();
13015
13016      if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
13017        checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
13018                              NTCUC_Assignment, NTCUK_Copy);
13019    }
13020    RecordModifiableNonNullParam(*this, LHS.get());
13021    break;
13022  case BO_PtrMemD:
13023  case BO_PtrMemI:
13024    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
13025                                            Opc == BO_PtrMemI);
13026    break;
13027  case BO_Mul:
13028  case BO_Div:
13029    ConvertHalfVec = true;
13030    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
13031                                           Opc == BO_Div);
13032    break;
13033  case BO_Rem:
13034    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
13035    break;
13036  case BO_Add:
13037    ConvertHalfVec = true;
13038    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
13039    break;
13040  case BO_Sub:
13041    ConvertHalfVec = true;
13042    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
13043    break;
13044  case BO_Shl:
13045  case BO_Shr:
13046    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
13047    break;
13048  case BO_LE:
13049  case BO_LT:
13050  case BO_GE:
13051  case BO_GT:
13052    ConvertHalfVec = true;
13053    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13054    break;
13055  case BO_EQ:
13056  case BO_NE:
13057    ConvertHalfVec = true;
13058    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13059    break;
13060  case BO_Cmp:
13061    ConvertHalfVec = true;
13062    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13063    assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
13064    break;
13065  case BO_And:
13066    checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
13067    LLVM_FALLTHROUGH;
13068  case BO_Xor:
13069  case BO_Or:
13070    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
13071    break;
13072  case BO_LAnd:
13073  case BO_LOr:
13074    ConvertHalfVec = true;
13075    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
13076    break;
13077  case BO_MulAssign:
13078  case BO_DivAssign:
13079    ConvertHalfVec = true;
13080    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
13081                                               Opc == BO_DivAssign);
13082    CompLHSTy = CompResultTy;
13083    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13084      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13085    break;
13086  case BO_RemAssign:
13087    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
13088    CompLHSTy = CompResultTy;
13089    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13090      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13091    break;
13092  case BO_AddAssign:
13093    ConvertHalfVec = true;
13094    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
13095    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13096      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13097    break;
13098  case BO_SubAssign:
13099    ConvertHalfVec = true;
13100    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
13101    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13102      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13103    break;
13104  case BO_ShlAssign:
13105  case BO_ShrAssign:
13106    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
13107    CompLHSTy = CompResultTy;
13108    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13109      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13110    break;
13111  case BO_AndAssign:
13112  case BO_OrAssign: // fallthrough
13113    DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
13114    LLVM_FALLTHROUGH;
13115  case BO_XorAssign:
13116    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
13117    CompLHSTy = CompResultTy;
13118    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13119      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13120    break;
13121  case BO_Comma:
13122    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
13123    if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
13124      VK = RHS.get()->getValueKind();
13125      OK = RHS.get()->getObjectKind();
13126    }
13127    break;
13128  }
13129  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
13130    return ExprError();
13131
13132  if (ResultTy->isRealFloatingType() &&
13133      (getLangOpts().getFPRoundingMode() != LangOptions::FPR_ToNearest ||
13134       getLangOpts().getFPExceptionMode() != LangOptions::FPE_Ignore))
13135    // Mark the current function as usng floating point constrained intrinsics
13136    if (FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
13137      F->setUsesFPIntrin(true);
13138    }
13139
13140  // Some of the binary operations require promoting operands of half vector to
13141  // float vectors and truncating the result back to half vector. For now, we do
13142  // this only when HalfArgsAndReturn is set (that is, when the target is arm or
13143  // arm64).
13144  assert(isVector(RHS.get()->getType(), Context.HalfTy) ==
13145         isVector(LHS.get()->getType(), Context.HalfTy) &&
13146         "both sides are half vectors or neither sides are");
13147  ConvertHalfVec = needsConversionOfHalfVec(ConvertHalfVec, Context,
13148                                            LHS.get()->getType());
13149
13150  // Check for array bounds violations for both sides of the BinaryOperator
13151  CheckArrayAccess(LHS.get());
13152  CheckArrayAccess(RHS.get());
13153
13154  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
13155    NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
13156                                                 &Context.Idents.get("object_setClass"),
13157                                                 SourceLocation(), LookupOrdinaryName);
13158    if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
13159      SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
13160      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
13161          << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
13162                                        "object_setClass(")
13163          << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
13164                                          ",")
13165          << FixItHint::CreateInsertion(RHSLocEnd, ")");
13166    }
13167    else
13168      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
13169  }
13170  else if (const ObjCIvarRefExpr *OIRE =
13171           dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
13172    DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
13173
13174  // Opc is not a compound assignment if CompResultTy is null.
13175  if (CompResultTy.isNull()) {
13176    if (ConvertHalfVec)
13177      return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
13178                                 OpLoc, FPFeatures);
13179    return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
13180                                        OK, OpLoc, FPFeatures);
13181  }
13182
13183  // Handle compound assignments.
13184  if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
13185      OK_ObjCProperty) {
13186    VK = VK_LValue;
13187    OK = LHS.get()->getObjectKind();
13188  }
13189
13190  if (ConvertHalfVec)
13191    return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
13192                               OpLoc, FPFeatures);
13193
13194  return new (Context) CompoundAssignOperator(
13195      LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
13196      OpLoc, FPFeatures);
13197}
13198
13199/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
13200/// operators are mixed in a way that suggests that the programmer forgot that
13201/// comparison operators have higher precedence. The most typical example of
13202/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
13203static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
13204                                      SourceLocation OpLoc, Expr *LHSExpr,
13205                                      Expr *RHSExpr) {
13206  BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
13207  BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
13208
13209  // Check that one of the sides is a comparison operator and the other isn't.
13210  bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
13211  bool isRightComp = RHSBO && RHSBO->isComparisonOp();
13212  if (isLeftComp == isRightComp)
13213    return;
13214
13215  // Bitwise operations are sometimes used as eager logical ops.
13216  // Don't diagnose this.
13217  bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
13218  bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
13219  if (isLeftBitwise || isRightBitwise)
13220    return;
13221
13222  SourceRange DiagRange = isLeftComp
13223                              ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
13224                              : SourceRange(OpLoc, RHSExpr->getEndLoc());
13225  StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
13226  SourceRange ParensRange =
13227      isLeftComp
13228          ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
13229          : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
13230
13231  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
13232    << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
13233  SuggestParentheses(Self, OpLoc,
13234    Self.PDiag(diag::note_precedence_silence) << OpStr,
13235    (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
13236  SuggestParentheses(Self, OpLoc,
13237    Self.PDiag(diag::note_precedence_bitwise_first)
13238      << BinaryOperator::getOpcodeStr(Opc),
13239    ParensRange);
13240}
13241
13242/// It accepts a '&&' expr that is inside a '||' one.
13243/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
13244/// in parentheses.
13245static void
13246EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
13247                                       BinaryOperator *Bop) {
13248  assert(Bop->getOpcode() == BO_LAnd);
13249  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
13250      << Bop->getSourceRange() << OpLoc;
13251  SuggestParentheses(Self, Bop->getOperatorLoc(),
13252    Self.PDiag(diag::note_precedence_silence)
13253      << Bop->getOpcodeStr(),
13254    Bop->getSourceRange());
13255}
13256
13257/// Returns true if the given expression can be evaluated as a constant
13258/// 'true'.
13259static bool EvaluatesAsTrue(Sema &S, Expr *E) {
13260  bool Res;
13261  return !E->isValueDependent() &&
13262         E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
13263}
13264
13265/// Returns true if the given expression can be evaluated as a constant
13266/// 'false'.
13267static bool EvaluatesAsFalse(Sema &S, Expr *E) {
13268  bool Res;
13269  return !E->isValueDependent() &&
13270         E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
13271}
13272
13273/// Look for '&&' in the left hand of a '||' expr.
13274static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
13275                                             Expr *LHSExpr, Expr *RHSExpr) {
13276  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
13277    if (Bop->getOpcode() == BO_LAnd) {
13278      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
13279      if (EvaluatesAsFalse(S, RHSExpr))
13280        return;
13281      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
13282      if (!EvaluatesAsTrue(S, Bop->getLHS()))
13283        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
13284    } else if (Bop->getOpcode() == BO_LOr) {
13285      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
13286        // If it's "a || b && 1 || c" we didn't warn earlier for
13287        // "a || b && 1", but warn now.
13288        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
13289          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
13290      }
13291    }
13292  }
13293}
13294
13295/// Look for '&&' in the right hand of a '||' expr.
13296static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
13297                                             Expr *LHSExpr, Expr *RHSExpr) {
13298  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
13299    if (Bop->getOpcode() == BO_LAnd) {
13300      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
13301      if (EvaluatesAsFalse(S, LHSExpr))
13302        return;
13303      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
13304      if (!EvaluatesAsTrue(S, Bop->getRHS()))
13305        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
13306    }
13307  }
13308}
13309
13310/// Look for bitwise op in the left or right hand of a bitwise op with
13311/// lower precedence and emit a diagnostic together with a fixit hint that wraps
13312/// the '&' expression in parentheses.
13313static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
13314                                         SourceLocation OpLoc, Expr *SubExpr) {
13315  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
13316    if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
13317      S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
13318        << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
13319        << Bop->getSourceRange() << OpLoc;
13320      SuggestParentheses(S, Bop->getOperatorLoc(),
13321        S.PDiag(diag::note_precedence_silence)
13322          << Bop->getOpcodeStr(),
13323        Bop->getSourceRange());
13324    }
13325  }
13326}
13327
13328static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
13329                                    Expr *SubExpr, StringRef Shift) {
13330  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
13331    if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
13332      StringRef Op = Bop->getOpcodeStr();
13333      S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
13334          << Bop->getSourceRange() << OpLoc << Shift << Op;
13335      SuggestParentheses(S, Bop->getOperatorLoc(),
13336          S.PDiag(diag::note_precedence_silence) << Op,
13337          Bop->getSourceRange());
13338    }
13339  }
13340}
13341
13342static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
13343                                 Expr *LHSExpr, Expr *RHSExpr) {
13344  CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
13345  if (!OCE)
13346    return;
13347
13348  FunctionDecl *FD = OCE->getDirectCallee();
13349  if (!FD || !FD->isOverloadedOperator())
13350    return;
13351
13352  OverloadedOperatorKind Kind = FD->getOverloadedOperator();
13353  if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
13354    return;
13355
13356  S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
13357      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
13358      << (Kind == OO_LessLess);
13359  SuggestParentheses(S, OCE->getOperatorLoc(),
13360                     S.PDiag(diag::note_precedence_silence)
13361                         << (Kind == OO_LessLess ? "<<" : ">>"),
13362                     OCE->getSourceRange());
13363  SuggestParentheses(
13364      S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
13365      SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
13366}
13367
13368/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
13369/// precedence.
13370static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
13371                                    SourceLocation OpLoc, Expr *LHSExpr,
13372                                    Expr *RHSExpr){
13373  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
13374  if (BinaryOperator::isBitwiseOp(Opc))
13375    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
13376
13377  // Diagnose "arg1 & arg2 | arg3"
13378  if ((Opc == BO_Or || Opc == BO_Xor) &&
13379      !OpLoc.isMacroID()/* Don't warn in macros. */) {
13380    DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
13381    DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
13382  }
13383
13384  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
13385  // We don't warn for 'assert(a || b && "bad")' since this is safe.
13386  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
13387    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
13388    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
13389  }
13390
13391  if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
13392      || Opc == BO_Shr) {
13393    StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
13394    DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
13395    DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
13396  }
13397
13398  // Warn on overloaded shift operators and comparisons, such as:
13399  // cout << 5 == 4;
13400  if (BinaryOperator::isComparisonOp(Opc))
13401    DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
13402}
13403
13404// Binary Operators.  'Tok' is the token for the operator.
13405ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
13406                            tok::TokenKind Kind,
13407                            Expr *LHSExpr, Expr *RHSExpr) {
13408  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
13409  assert(LHSExpr && "ActOnBinOp(): missing left expression");
13410  assert(RHSExpr && "ActOnBinOp(): missing right expression");
13411
13412  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
13413  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
13414
13415  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
13416}
13417
13418/// Build an overloaded binary operator expression in the given scope.
13419static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
13420                                       BinaryOperatorKind Opc,
13421                                       Expr *LHS, Expr *RHS) {
13422  switch (Opc) {
13423  case BO_Assign:
13424  case BO_DivAssign:
13425  case BO_RemAssign:
13426  case BO_SubAssign:
13427  case BO_AndAssign:
13428  case BO_OrAssign:
13429  case BO_XorAssign:
13430    DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
13431    CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
13432    break;
13433  default:
13434    break;
13435  }
13436
13437  // Find all of the overloaded operators visible from this
13438  // point. We perform both an operator-name lookup from the local
13439  // scope and an argument-dependent lookup based on the types of
13440  // the arguments.
13441  UnresolvedSet<16> Functions;
13442  OverloadedOperatorKind OverOp
13443    = BinaryOperator::getOverloadedOperator(Opc);
13444  if (Sc && OverOp != OO_None && OverOp != OO_Equal)
13445    S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
13446                                   RHS->getType(), Functions);
13447
13448  // In C++20 onwards, we may have a second operator to look up.
13449  if (S.getLangOpts().CPlusPlus2a) {
13450    if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
13451      S.LookupOverloadedOperatorName(ExtraOp, Sc, LHS->getType(),
13452                                     RHS->getType(), Functions);
13453  }
13454
13455  // Build the (potentially-overloaded, potentially-dependent)
13456  // binary operation.
13457  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
13458}
13459
13460ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
13461                            BinaryOperatorKind Opc,
13462                            Expr *LHSExpr, Expr *RHSExpr) {
13463  ExprResult LHS, RHS;
13464  std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
13465  if (!LHS.isUsable() || !RHS.isUsable())
13466    return ExprError();
13467  LHSExpr = LHS.get();
13468  RHSExpr = RHS.get();
13469
13470  // We want to end up calling one of checkPseudoObjectAssignment
13471  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
13472  // both expressions are overloadable or either is type-dependent),
13473  // or CreateBuiltinBinOp (in any other case).  We also want to get
13474  // any placeholder types out of the way.
13475
13476  // Handle pseudo-objects in the LHS.
13477  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
13478    // Assignments with a pseudo-object l-value need special analysis.
13479    if (pty->getKind() == BuiltinType::PseudoObject &&
13480        BinaryOperator::isAssignmentOp(Opc))
13481      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
13482
13483    // Don't resolve overloads if the other type is overloadable.
13484    if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
13485      // We can't actually test that if we still have a placeholder,
13486      // though.  Fortunately, none of the exceptions we see in that
13487      // code below are valid when the LHS is an overload set.  Note
13488      // that an overload set can be dependently-typed, but it never
13489      // instantiates to having an overloadable type.
13490      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
13491      if (resolvedRHS.isInvalid()) return ExprError();
13492      RHSExpr = resolvedRHS.get();
13493
13494      if (RHSExpr->isTypeDependent() ||
13495          RHSExpr->getType()->isOverloadableType())
13496        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13497    }
13498
13499    // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
13500    // template, diagnose the missing 'template' keyword instead of diagnosing
13501    // an invalid use of a bound member function.
13502    //
13503    // Note that "A::x < b" might be valid if 'b' has an overloadable type due
13504    // to C++1z [over.over]/1.4, but we already checked for that case above.
13505    if (Opc == BO_LT && inTemplateInstantiation() &&
13506        (pty->getKind() == BuiltinType::BoundMember ||
13507         pty->getKind() == BuiltinType::Overload)) {
13508      auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
13509      if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
13510          std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
13511            return isa<FunctionTemplateDecl>(ND);
13512          })) {
13513        Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
13514                                : OE->getNameLoc(),
13515             diag::err_template_kw_missing)
13516          << OE->getName().getAsString() << "";
13517        return ExprError();
13518      }
13519    }
13520
13521    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
13522    if (LHS.isInvalid()) return ExprError();
13523    LHSExpr = LHS.get();
13524  }
13525
13526  // Handle pseudo-objects in the RHS.
13527  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
13528    // An overload in the RHS can potentially be resolved by the type
13529    // being assigned to.
13530    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
13531      if (getLangOpts().CPlusPlus &&
13532          (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
13533           LHSExpr->getType()->isOverloadableType()))
13534        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13535
13536      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
13537    }
13538
13539    // Don't resolve overloads if the other type is overloadable.
13540    if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
13541        LHSExpr->getType()->isOverloadableType())
13542      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13543
13544    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
13545    if (!resolvedRHS.isUsable()) return ExprError();
13546    RHSExpr = resolvedRHS.get();
13547  }
13548
13549  if (getLangOpts().CPlusPlus) {
13550    // If either expression is type-dependent, always build an
13551    // overloaded op.
13552    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
13553      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13554
13555    // Otherwise, build an overloaded op if either expression has an
13556    // overloadable type.
13557    if (LHSExpr->getType()->isOverloadableType() ||
13558        RHSExpr->getType()->isOverloadableType())
13559      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13560  }
13561
13562  // Build a built-in binary operation.
13563  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
13564}
13565
13566static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
13567  if (T.isNull() || T->isDependentType())
13568    return false;
13569
13570  if (!T->isPromotableIntegerType())
13571    return true;
13572
13573  return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
13574}
13575
13576ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
13577                                      UnaryOperatorKind Opc,
13578                                      Expr *InputExpr) {
13579  ExprResult Input = InputExpr;
13580  ExprValueKind VK = VK_RValue;
13581  ExprObjectKind OK = OK_Ordinary;
13582  QualType resultType;
13583  bool CanOverflow = false;
13584
13585  bool ConvertHalfVec = false;
13586  if (getLangOpts().OpenCL) {
13587    QualType Ty = InputExpr->getType();
13588    // The only legal unary operation for atomics is '&'.
13589    if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
13590    // OpenCL special types - image, sampler, pipe, and blocks are to be used
13591    // only with a builtin functions and therefore should be disallowed here.
13592        (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
13593        || Ty->isBlockPointerType())) {
13594      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13595                       << InputExpr->getType()
13596                       << Input.get()->getSourceRange());
13597    }
13598  }
13599  // Diagnose operations on the unsupported types for OpenMP device compilation.
13600  if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) {
13601    if (UnaryOperator::isIncrementDecrementOp(Opc) ||
13602        UnaryOperator::isArithmeticOp(Opc))
13603      checkOpenMPDeviceExpr(InputExpr);
13604  }
13605
13606  switch (Opc) {
13607  case UO_PreInc:
13608  case UO_PreDec:
13609  case UO_PostInc:
13610  case UO_PostDec:
13611    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
13612                                                OpLoc,
13613                                                Opc == UO_PreInc ||
13614                                                Opc == UO_PostInc,
13615                                                Opc == UO_PreInc ||
13616                                                Opc == UO_PreDec);
13617    CanOverflow = isOverflowingIntegerType(Context, resultType);
13618    break;
13619  case UO_AddrOf:
13620    resultType = CheckAddressOfOperand(Input, OpLoc);
13621    CheckAddressOfNoDeref(InputExpr);
13622    RecordModifiableNonNullParam(*this, InputExpr);
13623    break;
13624  case UO_Deref: {
13625    Input = DefaultFunctionArrayLvalueConversion(Input.get());
13626    if (Input.isInvalid()) return ExprError();
13627    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
13628    break;
13629  }
13630  case UO_Plus:
13631  case UO_Minus:
13632    CanOverflow = Opc == UO_Minus &&
13633                  isOverflowingIntegerType(Context, Input.get()->getType());
13634    Input = UsualUnaryConversions(Input.get());
13635    if (Input.isInvalid()) return ExprError();
13636    // Unary plus and minus require promoting an operand of half vector to a
13637    // float vector and truncating the result back to a half vector. For now, we
13638    // do this only when HalfArgsAndReturns is set (that is, when the target is
13639    // arm or arm64).
13640    ConvertHalfVec =
13641        needsConversionOfHalfVec(true, Context, Input.get()->getType());
13642
13643    // If the operand is a half vector, promote it to a float vector.
13644    if (ConvertHalfVec)
13645      Input = convertVector(Input.get(), Context.FloatTy, *this);
13646    resultType = Input.get()->getType();
13647    if (resultType->isDependentType())
13648      break;
13649    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
13650      break;
13651    else if (resultType->isVectorType() &&
13652             // The z vector extensions don't allow + or - with bool vectors.
13653             (!Context.getLangOpts().ZVector ||
13654              resultType->castAs<VectorType>()->getVectorKind() !=
13655              VectorType::AltiVecBool))
13656      break;
13657    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
13658             Opc == UO_Plus &&
13659             resultType->isPointerType())
13660      break;
13661
13662    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13663      << resultType << Input.get()->getSourceRange());
13664
13665  case UO_Not: // bitwise complement
13666    Input = UsualUnaryConversions(Input.get());
13667    if (Input.isInvalid())
13668      return ExprError();
13669    resultType = Input.get()->getType();
13670    if (resultType->isDependentType())
13671      break;
13672    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
13673    if (resultType->isComplexType() || resultType->isComplexIntegerType())
13674      // C99 does not support '~' for complex conjugation.
13675      Diag(OpLoc, diag::ext_integer_complement_complex)
13676          << resultType << Input.get()->getSourceRange();
13677    else if (resultType->hasIntegerRepresentation())
13678      break;
13679    else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
13680      // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
13681      // on vector float types.
13682      QualType T = resultType->castAs<ExtVectorType>()->getElementType();
13683      if (!T->isIntegerType())
13684        return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13685                          << resultType << Input.get()->getSourceRange());
13686    } else {
13687      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13688                       << resultType << Input.get()->getSourceRange());
13689    }
13690    break;
13691
13692  case UO_LNot: // logical negation
13693    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
13694    Input = DefaultFunctionArrayLvalueConversion(Input.get());
13695    if (Input.isInvalid()) return ExprError();
13696    resultType = Input.get()->getType();
13697
13698    // Though we still have to promote half FP to float...
13699    if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
13700      Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
13701      resultType = Context.FloatTy;
13702    }
13703
13704    if (resultType->isDependentType())
13705      break;
13706    if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
13707      // C99 6.5.3.3p1: ok, fallthrough;
13708      if (Context.getLangOpts().CPlusPlus) {
13709        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
13710        // operand contextually converted to bool.
13711        Input = ImpCastExprToType(Input.get(), Context.BoolTy,
13712                                  ScalarTypeToBooleanCastKind(resultType));
13713      } else if (Context.getLangOpts().OpenCL &&
13714                 Context.getLangOpts().OpenCLVersion < 120) {
13715        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
13716        // operate on scalar float types.
13717        if (!resultType->isIntegerType() && !resultType->isPointerType())
13718          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13719                           << resultType << Input.get()->getSourceRange());
13720      }
13721    } else if (resultType->isExtVectorType()) {
13722      if (Context.getLangOpts().OpenCL &&
13723          Context.getLangOpts().OpenCLVersion < 120 &&
13724          !Context.getLangOpts().OpenCLCPlusPlus) {
13725        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
13726        // operate on vector float types.
13727        QualType T = resultType->castAs<ExtVectorType>()->getElementType();
13728        if (!T->isIntegerType())
13729          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13730                           << resultType << Input.get()->getSourceRange());
13731      }
13732      // Vector logical not returns the signed variant of the operand type.
13733      resultType = GetSignedVectorType(resultType);
13734      break;
13735    } else {
13736      // FIXME: GCC's vector extension permits the usage of '!' with a vector
13737      //        type in C++. We should allow that here too.
13738      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13739        << resultType << Input.get()->getSourceRange());
13740    }
13741
13742    // LNot always has type int. C99 6.5.3.3p5.
13743    // In C++, it's bool. C++ 5.3.1p8
13744    resultType = Context.getLogicalOperationType();
13745    break;
13746  case UO_Real:
13747  case UO_Imag:
13748    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
13749    // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
13750    // complex l-values to ordinary l-values and all other values to r-values.
13751    if (Input.isInvalid()) return ExprError();
13752    if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
13753      if (Input.get()->getValueKind() != VK_RValue &&
13754          Input.get()->getObjectKind() == OK_Ordinary)
13755        VK = Input.get()->getValueKind();
13756    } else if (!getLangOpts().CPlusPlus) {
13757      // In C, a volatile scalar is read by __imag. In C++, it is not.
13758      Input = DefaultLvalueConversion(Input.get());
13759    }
13760    break;
13761  case UO_Extension:
13762    resultType = Input.get()->getType();
13763    VK = Input.get()->getValueKind();
13764    OK = Input.get()->getObjectKind();
13765    break;
13766  case UO_Coawait:
13767    // It's unnecessary to represent the pass-through operator co_await in the
13768    // AST; just return the input expression instead.
13769    assert(!Input.get()->getType()->isDependentType() &&
13770                   "the co_await expression must be non-dependant before "
13771                   "building operator co_await");
13772    return Input;
13773  }
13774  if (resultType.isNull() || Input.isInvalid())
13775    return ExprError();
13776
13777  // Check for array bounds violations in the operand of the UnaryOperator,
13778  // except for the '*' and '&' operators that have to be handled specially
13779  // by CheckArrayAccess (as there are special cases like &array[arraysize]
13780  // that are explicitly defined as valid by the standard).
13781  if (Opc != UO_AddrOf && Opc != UO_Deref)
13782    CheckArrayAccess(Input.get());
13783
13784  auto *UO = new (Context)
13785      UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc, CanOverflow);
13786
13787  if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
13788      !isa<ArrayType>(UO->getType().getDesugaredType(Context)))
13789    ExprEvalContexts.back().PossibleDerefs.insert(UO);
13790
13791  // Convert the result back to a half vector.
13792  if (ConvertHalfVec)
13793    return convertVector(UO, Context.HalfTy, *this);
13794  return UO;
13795}
13796
13797/// Determine whether the given expression is a qualified member
13798/// access expression, of a form that could be turned into a pointer to member
13799/// with the address-of operator.
13800bool Sema::isQualifiedMemberAccess(Expr *E) {
13801  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13802    if (!DRE->getQualifier())
13803      return false;
13804
13805    ValueDecl *VD = DRE->getDecl();
13806    if (!VD->isCXXClassMember())
13807      return false;
13808
13809    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
13810      return true;
13811    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
13812      return Method->isInstance();
13813
13814    return false;
13815  }
13816
13817  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
13818    if (!ULE->getQualifier())
13819      return false;
13820
13821    for (NamedDecl *D : ULE->decls()) {
13822      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
13823        if (Method->isInstance())
13824          return true;
13825      } else {
13826        // Overload set does not contain methods.
13827        break;
13828      }
13829    }
13830
13831    return false;
13832  }
13833
13834  return false;
13835}
13836
13837ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
13838                              UnaryOperatorKind Opc, Expr *Input) {
13839  // First things first: handle placeholders so that the
13840  // overloaded-operator check considers the right type.
13841  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
13842    // Increment and decrement of pseudo-object references.
13843    if (pty->getKind() == BuiltinType::PseudoObject &&
13844        UnaryOperator::isIncrementDecrementOp(Opc))
13845      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
13846
13847    // extension is always a builtin operator.
13848    if (Opc == UO_Extension)
13849      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13850
13851    // & gets special logic for several kinds of placeholder.
13852    // The builtin code knows what to do.
13853    if (Opc == UO_AddrOf &&
13854        (pty->getKind() == BuiltinType::Overload ||
13855         pty->getKind() == BuiltinType::UnknownAny ||
13856         pty->getKind() == BuiltinType::BoundMember))
13857      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13858
13859    // Anything else needs to be handled now.
13860    ExprResult Result = CheckPlaceholderExpr(Input);
13861    if (Result.isInvalid()) return ExprError();
13862    Input = Result.get();
13863  }
13864
13865  if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
13866      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
13867      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
13868    // Find all of the overloaded operators visible from this
13869    // point. We perform both an operator-name lookup from the local
13870    // scope and an argument-dependent lookup based on the types of
13871    // the arguments.
13872    UnresolvedSet<16> Functions;
13873    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
13874    if (S && OverOp != OO_None)
13875      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
13876                                   Functions);
13877
13878    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
13879  }
13880
13881  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13882}
13883
13884// Unary Operators.  'Tok' is the token for the operator.
13885ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
13886                              tok::TokenKind Op, Expr *Input) {
13887  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
13888}
13889
13890/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
13891ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
13892                                LabelDecl *TheDecl) {
13893  TheDecl->markUsed(Context);
13894  // Create the AST node.  The address of a label always has type 'void*'.
13895  return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
13896                                     Context.getPointerType(Context.VoidTy));
13897}
13898
13899void Sema::ActOnStartStmtExpr() {
13900  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
13901}
13902
13903void Sema::ActOnStmtExprError() {
13904  // Note that function is also called by TreeTransform when leaving a
13905  // StmtExpr scope without rebuilding anything.
13906
13907  DiscardCleanupsInEvaluationContext();
13908  PopExpressionEvaluationContext();
13909}
13910
13911ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
13912                               SourceLocation RPLoc) {
13913  return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
13914}
13915
13916ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
13917                               SourceLocation RPLoc, unsigned TemplateDepth) {
13918  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
13919  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
13920
13921  if (hasAnyUnrecoverableErrorsInThisFunction())
13922    DiscardCleanupsInEvaluationContext();
13923  assert(!Cleanup.exprNeedsCleanups() &&
13924         "cleanups within StmtExpr not correctly bound!");
13925  PopExpressionEvaluationContext();
13926
13927  // FIXME: there are a variety of strange constraints to enforce here, for
13928  // example, it is not possible to goto into a stmt expression apparently.
13929  // More semantic analysis is needed.
13930
13931  // If there are sub-stmts in the compound stmt, take the type of the last one
13932  // as the type of the stmtexpr.
13933  QualType Ty = Context.VoidTy;
13934  bool StmtExprMayBindToTemp = false;
13935  if (!Compound->body_empty()) {
13936    // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
13937    if (const auto *LastStmt =
13938            dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
13939      if (const Expr *Value = LastStmt->getExprStmt()) {
13940        StmtExprMayBindToTemp = true;
13941        Ty = Value->getType();
13942      }
13943    }
13944  }
13945
13946  // FIXME: Check that expression type is complete/non-abstract; statement
13947  // expressions are not lvalues.
13948  Expr *ResStmtExpr =
13949      new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
13950  if (StmtExprMayBindToTemp)
13951    return MaybeBindToTemporary(ResStmtExpr);
13952  return ResStmtExpr;
13953}
13954
13955ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
13956  if (ER.isInvalid())
13957    return ExprError();
13958
13959  // Do function/array conversion on the last expression, but not
13960  // lvalue-to-rvalue.  However, initialize an unqualified type.
13961  ER = DefaultFunctionArrayConversion(ER.get());
13962  if (ER.isInvalid())
13963    return ExprError();
13964  Expr *E = ER.get();
13965
13966  if (E->isTypeDependent())
13967    return E;
13968
13969  // In ARC, if the final expression ends in a consume, splice
13970  // the consume out and bind it later.  In the alternate case
13971  // (when dealing with a retainable type), the result
13972  // initialization will create a produce.  In both cases the
13973  // result will be +1, and we'll need to balance that out with
13974  // a bind.
13975  auto *Cast = dyn_cast<ImplicitCastExpr>(E);
13976  if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
13977    return Cast->getSubExpr();
13978
13979  // FIXME: Provide a better location for the initialization.
13980  return PerformCopyInitialization(
13981      InitializedEntity::InitializeStmtExprResult(
13982          E->getBeginLoc(), E->getType().getUnqualifiedType()),
13983      SourceLocation(), E);
13984}
13985
13986ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
13987                                      TypeSourceInfo *TInfo,
13988                                      ArrayRef<OffsetOfComponent> Components,
13989                                      SourceLocation RParenLoc) {
13990  QualType ArgTy = TInfo->getType();
13991  bool Dependent = ArgTy->isDependentType();
13992  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
13993
13994  // We must have at least one component that refers to the type, and the first
13995  // one is known to be a field designator.  Verify that the ArgTy represents
13996  // a struct/union/class.
13997  if (!Dependent && !ArgTy->isRecordType())
13998    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
13999                       << ArgTy << TypeRange);
14000
14001  // Type must be complete per C99 7.17p3 because a declaring a variable
14002  // with an incomplete type would be ill-formed.
14003  if (!Dependent
14004      && RequireCompleteType(BuiltinLoc, ArgTy,
14005                             diag::err_offsetof_incomplete_type, TypeRange))
14006    return ExprError();
14007
14008  bool DidWarnAboutNonPOD = false;
14009  QualType CurrentType = ArgTy;
14010  SmallVector<OffsetOfNode, 4> Comps;
14011  SmallVector<Expr*, 4> Exprs;
14012  for (const OffsetOfComponent &OC : Components) {
14013    if (OC.isBrackets) {
14014      // Offset of an array sub-field.  TODO: Should we allow vector elements?
14015      if (!CurrentType->isDependentType()) {
14016        const ArrayType *AT = Context.getAsArrayType(CurrentType);
14017        if(!AT)
14018          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
14019                           << CurrentType);
14020        CurrentType = AT->getElementType();
14021      } else
14022        CurrentType = Context.DependentTy;
14023
14024      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
14025      if (IdxRval.isInvalid())
14026        return ExprError();
14027      Expr *Idx = IdxRval.get();
14028
14029      // The expression must be an integral expression.
14030      // FIXME: An integral constant expression?
14031      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
14032          !Idx->getType()->isIntegerType())
14033        return ExprError(
14034            Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
14035            << Idx->getSourceRange());
14036
14037      // Record this array index.
14038      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
14039      Exprs.push_back(Idx);
14040      continue;
14041    }
14042
14043    // Offset of a field.
14044    if (CurrentType->isDependentType()) {
14045      // We have the offset of a field, but we can't look into the dependent
14046      // type. Just record the identifier of the field.
14047      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
14048      CurrentType = Context.DependentTy;
14049      continue;
14050    }
14051
14052    // We need to have a complete type to look into.
14053    if (RequireCompleteType(OC.LocStart, CurrentType,
14054                            diag::err_offsetof_incomplete_type))
14055      return ExprError();
14056
14057    // Look for the designated field.
14058    const RecordType *RC = CurrentType->getAs<RecordType>();
14059    if (!RC)
14060      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
14061                       << CurrentType);
14062    RecordDecl *RD = RC->getDecl();
14063
14064    // C++ [lib.support.types]p5:
14065    //   The macro offsetof accepts a restricted set of type arguments in this
14066    //   International Standard. type shall be a POD structure or a POD union
14067    //   (clause 9).
14068    // C++11 [support.types]p4:
14069    //   If type is not a standard-layout class (Clause 9), the results are
14070    //   undefined.
14071    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
14072      bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
14073      unsigned DiagID =
14074        LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
14075                            : diag::ext_offsetof_non_pod_type;
14076
14077      if (!IsSafe && !DidWarnAboutNonPOD &&
14078          DiagRuntimeBehavior(BuiltinLoc, nullptr,
14079                              PDiag(DiagID)
14080                              << SourceRange(Components[0].LocStart, OC.LocEnd)
14081                              << CurrentType))
14082        DidWarnAboutNonPOD = true;
14083    }
14084
14085    // Look for the field.
14086    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
14087    LookupQualifiedName(R, RD);
14088    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
14089    IndirectFieldDecl *IndirectMemberDecl = nullptr;
14090    if (!MemberDecl) {
14091      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
14092        MemberDecl = IndirectMemberDecl->getAnonField();
14093    }
14094
14095    if (!MemberDecl)
14096      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
14097                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
14098                                                              OC.LocEnd));
14099
14100    // C99 7.17p3:
14101    //   (If the specified member is a bit-field, the behavior is undefined.)
14102    //
14103    // We diagnose this as an error.
14104    if (MemberDecl->isBitField()) {
14105      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
14106        << MemberDecl->getDeclName()
14107        << SourceRange(BuiltinLoc, RParenLoc);
14108      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
14109      return ExprError();
14110    }
14111
14112    RecordDecl *Parent = MemberDecl->getParent();
14113    if (IndirectMemberDecl)
14114      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
14115
14116    // If the member was found in a base class, introduce OffsetOfNodes for
14117    // the base class indirections.
14118    CXXBasePaths Paths;
14119    if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
14120                      Paths)) {
14121      if (Paths.getDetectedVirtual()) {
14122        Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
14123          << MemberDecl->getDeclName()
14124          << SourceRange(BuiltinLoc, RParenLoc);
14125        return ExprError();
14126      }
14127
14128      CXXBasePath &Path = Paths.front();
14129      for (const CXXBasePathElement &B : Path)
14130        Comps.push_back(OffsetOfNode(B.Base));
14131    }
14132
14133    if (IndirectMemberDecl) {
14134      for (auto *FI : IndirectMemberDecl->chain()) {
14135        assert(isa<FieldDecl>(FI));
14136        Comps.push_back(OffsetOfNode(OC.LocStart,
14137                                     cast<FieldDecl>(FI), OC.LocEnd));
14138      }
14139    } else
14140      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
14141
14142    CurrentType = MemberDecl->getType().getNonReferenceType();
14143  }
14144
14145  return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
14146                              Comps, Exprs, RParenLoc);
14147}
14148
14149ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
14150                                      SourceLocation BuiltinLoc,
14151                                      SourceLocation TypeLoc,
14152                                      ParsedType ParsedArgTy,
14153                                      ArrayRef<OffsetOfComponent> Components,
14154                                      SourceLocation RParenLoc) {
14155
14156  TypeSourceInfo *ArgTInfo;
14157  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
14158  if (ArgTy.isNull())
14159    return ExprError();
14160
14161  if (!ArgTInfo)
14162    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
14163
14164  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
14165}
14166
14167
14168ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
14169                                 Expr *CondExpr,
14170                                 Expr *LHSExpr, Expr *RHSExpr,
14171                                 SourceLocation RPLoc) {
14172  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
14173
14174  ExprValueKind VK = VK_RValue;
14175  ExprObjectKind OK = OK_Ordinary;
14176  QualType resType;
14177  bool ValueDependent = false;
14178  bool CondIsTrue = false;
14179  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
14180    resType = Context.DependentTy;
14181    ValueDependent = true;
14182  } else {
14183    // The conditional expression is required to be a constant expression.
14184    llvm::APSInt condEval(32);
14185    ExprResult CondICE
14186      = VerifyIntegerConstantExpression(CondExpr, &condEval,
14187          diag::err_typecheck_choose_expr_requires_constant, false);
14188    if (CondICE.isInvalid())
14189      return ExprError();
14190    CondExpr = CondICE.get();
14191    CondIsTrue = condEval.getZExtValue();
14192
14193    // If the condition is > zero, then the AST type is the same as the LHSExpr.
14194    Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
14195
14196    resType = ActiveExpr->getType();
14197    ValueDependent = ActiveExpr->isValueDependent();
14198    VK = ActiveExpr->getValueKind();
14199    OK = ActiveExpr->getObjectKind();
14200  }
14201
14202  return new (Context)
14203      ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
14204                 CondIsTrue, resType->isDependentType(), ValueDependent);
14205}
14206
14207//===----------------------------------------------------------------------===//
14208// Clang Extensions.
14209//===----------------------------------------------------------------------===//
14210
14211/// ActOnBlockStart - This callback is invoked when a block literal is started.
14212void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
14213  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
14214
14215  if (LangOpts.CPlusPlus) {
14216    MangleNumberingContext *MCtx;
14217    Decl *ManglingContextDecl;
14218    std::tie(MCtx, ManglingContextDecl) =
14219        getCurrentMangleNumberContext(Block->getDeclContext());
14220    if (MCtx) {
14221      unsigned ManglingNumber = MCtx->getManglingNumber(Block);
14222      Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
14223    }
14224  }
14225
14226  PushBlockScope(CurScope, Block);
14227  CurContext->addDecl(Block);
14228  if (CurScope)
14229    PushDeclContext(CurScope, Block);
14230  else
14231    CurContext = Block;
14232
14233  getCurBlock()->HasImplicitReturnType = true;
14234
14235  // Enter a new evaluation context to insulate the block from any
14236  // cleanups from the enclosing full-expression.
14237  PushExpressionEvaluationContext(
14238      ExpressionEvaluationContext::PotentiallyEvaluated);
14239}
14240
14241void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
14242                               Scope *CurScope) {
14243  assert(ParamInfo.getIdentifier() == nullptr &&
14244         "block-id should have no identifier!");
14245  assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteralContext);
14246  BlockScopeInfo *CurBlock = getCurBlock();
14247
14248  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
14249  QualType T = Sig->getType();
14250
14251  // FIXME: We should allow unexpanded parameter packs here, but that would,
14252  // in turn, make the block expression contain unexpanded parameter packs.
14253  if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
14254    // Drop the parameters.
14255    FunctionProtoType::ExtProtoInfo EPI;
14256    EPI.HasTrailingReturn = false;
14257    EPI.TypeQuals.addConst();
14258    T = Context.getFunctionType(Context.DependentTy, None, EPI);
14259    Sig = Context.getTrivialTypeSourceInfo(T);
14260  }
14261
14262  // GetTypeForDeclarator always produces a function type for a block
14263  // literal signature.  Furthermore, it is always a FunctionProtoType
14264  // unless the function was written with a typedef.
14265  assert(T->isFunctionType() &&
14266         "GetTypeForDeclarator made a non-function block signature");
14267
14268  // Look for an explicit signature in that function type.
14269  FunctionProtoTypeLoc ExplicitSignature;
14270
14271  if ((ExplicitSignature = Sig->getTypeLoc()
14272                               .getAsAdjusted<FunctionProtoTypeLoc>())) {
14273
14274    // Check whether that explicit signature was synthesized by
14275    // GetTypeForDeclarator.  If so, don't save that as part of the
14276    // written signature.
14277    if (ExplicitSignature.getLocalRangeBegin() ==
14278        ExplicitSignature.getLocalRangeEnd()) {
14279      // This would be much cheaper if we stored TypeLocs instead of
14280      // TypeSourceInfos.
14281      TypeLoc Result = ExplicitSignature.getReturnLoc();
14282      unsigned Size = Result.getFullDataSize();
14283      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
14284      Sig->getTypeLoc().initializeFullCopy(Result, Size);
14285
14286      ExplicitSignature = FunctionProtoTypeLoc();
14287    }
14288  }
14289
14290  CurBlock->TheDecl->setSignatureAsWritten(Sig);
14291  CurBlock->FunctionType = T;
14292
14293  const FunctionType *Fn = T->getAs<FunctionType>();
14294  QualType RetTy = Fn->getReturnType();
14295  bool isVariadic =
14296    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
14297
14298  CurBlock->TheDecl->setIsVariadic(isVariadic);
14299
14300  // Context.DependentTy is used as a placeholder for a missing block
14301  // return type.  TODO:  what should we do with declarators like:
14302  //   ^ * { ... }
14303  // If the answer is "apply template argument deduction"....
14304  if (RetTy != Context.DependentTy) {
14305    CurBlock->ReturnType = RetTy;
14306    CurBlock->TheDecl->setBlockMissingReturnType(false);
14307    CurBlock->HasImplicitReturnType = false;
14308  }
14309
14310  // Push block parameters from the declarator if we had them.
14311  SmallVector<ParmVarDecl*, 8> Params;
14312  if (ExplicitSignature) {
14313    for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
14314      ParmVarDecl *Param = ExplicitSignature.getParam(I);
14315      if (Param->getIdentifier() == nullptr &&
14316          !Param->isImplicit() &&
14317          !Param->isInvalidDecl() &&
14318          !getLangOpts().CPlusPlus)
14319        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
14320      Params.push_back(Param);
14321    }
14322
14323  // Fake up parameter variables if we have a typedef, like
14324  //   ^ fntype { ... }
14325  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
14326    for (const auto &I : Fn->param_types()) {
14327      ParmVarDecl *Param = BuildParmVarDeclForTypedef(
14328          CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
14329      Params.push_back(Param);
14330    }
14331  }
14332
14333  // Set the parameters on the block decl.
14334  if (!Params.empty()) {
14335    CurBlock->TheDecl->setParams(Params);
14336    CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
14337                             /*CheckParameterNames=*/false);
14338  }
14339
14340  // Finally we can process decl attributes.
14341  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
14342
14343  // Put the parameter variables in scope.
14344  for (auto AI : CurBlock->TheDecl->parameters()) {
14345    AI->setOwningFunction(CurBlock->TheDecl);
14346
14347    // If this has an identifier, add it to the scope stack.
14348    if (AI->getIdentifier()) {
14349      CheckShadow(CurBlock->TheScope, AI);
14350
14351      PushOnScopeChains(AI, CurBlock->TheScope);
14352    }
14353  }
14354}
14355
14356/// ActOnBlockError - If there is an error parsing a block, this callback
14357/// is invoked to pop the information about the block from the action impl.
14358void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
14359  // Leave the expression-evaluation context.
14360  DiscardCleanupsInEvaluationContext();
14361  PopExpressionEvaluationContext();
14362
14363  // Pop off CurBlock, handle nested blocks.
14364  PopDeclContext();
14365  PopFunctionScopeInfo();
14366}
14367
14368/// ActOnBlockStmtExpr - This is called when the body of a block statement
14369/// literal was successfully completed.  ^(int x){...}
14370ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
14371                                    Stmt *Body, Scope *CurScope) {
14372  // If blocks are disabled, emit an error.
14373  if (!LangOpts.Blocks)
14374    Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
14375
14376  // Leave the expression-evaluation context.
14377  if (hasAnyUnrecoverableErrorsInThisFunction())
14378    DiscardCleanupsInEvaluationContext();
14379  assert(!Cleanup.exprNeedsCleanups() &&
14380         "cleanups within block not correctly bound!");
14381  PopExpressionEvaluationContext();
14382
14383  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
14384  BlockDecl *BD = BSI->TheDecl;
14385
14386  if (BSI->HasImplicitReturnType)
14387    deduceClosureReturnType(*BSI);
14388
14389  QualType RetTy = Context.VoidTy;
14390  if (!BSI->ReturnType.isNull())
14391    RetTy = BSI->ReturnType;
14392
14393  bool NoReturn = BD->hasAttr<NoReturnAttr>();
14394  QualType BlockTy;
14395
14396  // If the user wrote a function type in some form, try to use that.
14397  if (!BSI->FunctionType.isNull()) {
14398    const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
14399
14400    FunctionType::ExtInfo Ext = FTy->getExtInfo();
14401    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
14402
14403    // Turn protoless block types into nullary block types.
14404    if (isa<FunctionNoProtoType>(FTy)) {
14405      FunctionProtoType::ExtProtoInfo EPI;
14406      EPI.ExtInfo = Ext;
14407      BlockTy = Context.getFunctionType(RetTy, None, EPI);
14408
14409    // Otherwise, if we don't need to change anything about the function type,
14410    // preserve its sugar structure.
14411    } else if (FTy->getReturnType() == RetTy &&
14412               (!NoReturn || FTy->getNoReturnAttr())) {
14413      BlockTy = BSI->FunctionType;
14414
14415    // Otherwise, make the minimal modifications to the function type.
14416    } else {
14417      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
14418      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
14419      EPI.TypeQuals = Qualifiers();
14420      EPI.ExtInfo = Ext;
14421      BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
14422    }
14423
14424  // If we don't have a function type, just build one from nothing.
14425  } else {
14426    FunctionProtoType::ExtProtoInfo EPI;
14427    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
14428    BlockTy = Context.getFunctionType(RetTy, None, EPI);
14429  }
14430
14431  DiagnoseUnusedParameters(BD->parameters());
14432  BlockTy = Context.getBlockPointerType(BlockTy);
14433
14434  // If needed, diagnose invalid gotos and switches in the block.
14435  if (getCurFunction()->NeedsScopeChecking() &&
14436      !PP.isCodeCompletionEnabled())
14437    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
14438
14439  BD->setBody(cast<CompoundStmt>(Body));
14440
14441  if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
14442    DiagnoseUnguardedAvailabilityViolations(BD);
14443
14444  // Try to apply the named return value optimization. We have to check again
14445  // if we can do this, though, because blocks keep return statements around
14446  // to deduce an implicit return type.
14447  if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
14448      !BD->isDependentContext())
14449    computeNRVO(Body, BSI);
14450
14451  if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
14452      RetTy.hasNonTrivialToPrimitiveCopyCUnion())
14453    checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
14454                          NTCUK_Destruct|NTCUK_Copy);
14455
14456  PopDeclContext();
14457
14458  // Pop the block scope now but keep it alive to the end of this function.
14459  AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
14460  PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
14461
14462  // Set the captured variables on the block.
14463  SmallVector<BlockDecl::Capture, 4> Captures;
14464  for (Capture &Cap : BSI->Captures) {
14465    if (Cap.isInvalid() || Cap.isThisCapture())
14466      continue;
14467
14468    VarDecl *Var = Cap.getVariable();
14469    Expr *CopyExpr = nullptr;
14470    if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
14471      if (const RecordType *Record =
14472              Cap.getCaptureType()->getAs<RecordType>()) {
14473        // The capture logic needs the destructor, so make sure we mark it.
14474        // Usually this is unnecessary because most local variables have
14475        // their destructors marked at declaration time, but parameters are
14476        // an exception because it's technically only the call site that
14477        // actually requires the destructor.
14478        if (isa<ParmVarDecl>(Var))
14479          FinalizeVarWithDestructor(Var, Record);
14480
14481        // Enter a separate potentially-evaluated context while building block
14482        // initializers to isolate their cleanups from those of the block
14483        // itself.
14484        // FIXME: Is this appropriate even when the block itself occurs in an
14485        // unevaluated operand?
14486        EnterExpressionEvaluationContext EvalContext(
14487            *this, ExpressionEvaluationContext::PotentiallyEvaluated);
14488
14489        SourceLocation Loc = Cap.getLocation();
14490
14491        ExprResult Result = BuildDeclarationNameExpr(
14492            CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
14493
14494        // According to the blocks spec, the capture of a variable from
14495        // the stack requires a const copy constructor.  This is not true
14496        // of the copy/move done to move a __block variable to the heap.
14497        if (!Result.isInvalid() &&
14498            !Result.get()->getType().isConstQualified()) {
14499          Result = ImpCastExprToType(Result.get(),
14500                                     Result.get()->getType().withConst(),
14501                                     CK_NoOp, VK_LValue);
14502        }
14503
14504        if (!Result.isInvalid()) {
14505          Result = PerformCopyInitialization(
14506              InitializedEntity::InitializeBlock(Var->getLocation(),
14507                                                 Cap.getCaptureType(), false),
14508              Loc, Result.get());
14509        }
14510
14511        // Build a full-expression copy expression if initialization
14512        // succeeded and used a non-trivial constructor.  Recover from
14513        // errors by pretending that the copy isn't necessary.
14514        if (!Result.isInvalid() &&
14515            !cast<CXXConstructExpr>(Result.get())->getConstructor()
14516                ->isTrivial()) {
14517          Result = MaybeCreateExprWithCleanups(Result);
14518          CopyExpr = Result.get();
14519        }
14520      }
14521    }
14522
14523    BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
14524                              CopyExpr);
14525    Captures.push_back(NewCap);
14526  }
14527  BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
14528
14529  BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
14530
14531  // If the block isn't obviously global, i.e. it captures anything at
14532  // all, then we need to do a few things in the surrounding context:
14533  if (Result->getBlockDecl()->hasCaptures()) {
14534    // First, this expression has a new cleanup object.
14535    ExprCleanupObjects.push_back(Result->getBlockDecl());
14536    Cleanup.setExprNeedsCleanups(true);
14537
14538    // It also gets a branch-protected scope if any of the captured
14539    // variables needs destruction.
14540    for (const auto &CI : Result->getBlockDecl()->captures()) {
14541      const VarDecl *var = CI.getVariable();
14542      if (var->getType().isDestructedType() != QualType::DK_none) {
14543        setFunctionHasBranchProtectedScope();
14544        break;
14545      }
14546    }
14547  }
14548
14549  if (getCurFunction())
14550    getCurFunction()->addBlock(BD);
14551
14552  return Result;
14553}
14554
14555ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
14556                            SourceLocation RPLoc) {
14557  TypeSourceInfo *TInfo;
14558  GetTypeFromParser(Ty, &TInfo);
14559  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
14560}
14561
14562ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
14563                                Expr *E, TypeSourceInfo *TInfo,
14564                                SourceLocation RPLoc) {
14565  Expr *OrigExpr = E;
14566  bool IsMS = false;
14567
14568  // CUDA device code does not support varargs.
14569  if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
14570    if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
14571      CUDAFunctionTarget T = IdentifyCUDATarget(F);
14572      if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
14573        return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
14574    }
14575  }
14576
14577  // NVPTX does not support va_arg expression.
14578  if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
14579      Context.getTargetInfo().getTriple().isNVPTX())
14580    targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
14581
14582  // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
14583  // as Microsoft ABI on an actual Microsoft platform, where
14584  // __builtin_ms_va_list and __builtin_va_list are the same.)
14585  if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
14586      Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
14587    QualType MSVaListType = Context.getBuiltinMSVaListType();
14588    if (Context.hasSameType(MSVaListType, E->getType())) {
14589      if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
14590        return ExprError();
14591      IsMS = true;
14592    }
14593  }
14594
14595  // Get the va_list type
14596  QualType VaListType = Context.getBuiltinVaListType();
14597  if (!IsMS) {
14598    if (VaListType->isArrayType()) {
14599      // Deal with implicit array decay; for example, on x86-64,
14600      // va_list is an array, but it's supposed to decay to
14601      // a pointer for va_arg.
14602      VaListType = Context.getArrayDecayedType(VaListType);
14603      // Make sure the input expression also decays appropriately.
14604      ExprResult Result = UsualUnaryConversions(E);
14605      if (Result.isInvalid())
14606        return ExprError();
14607      E = Result.get();
14608    } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
14609      // If va_list is a record type and we are compiling in C++ mode,
14610      // check the argument using reference binding.
14611      InitializedEntity Entity = InitializedEntity::InitializeParameter(
14612          Context, Context.getLValueReferenceType(VaListType), false);
14613      ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
14614      if (Init.isInvalid())
14615        return ExprError();
14616      E = Init.getAs<Expr>();
14617    } else {
14618      // Otherwise, the va_list argument must be an l-value because
14619      // it is modified by va_arg.
14620      if (!E->isTypeDependent() &&
14621          CheckForModifiableLvalue(E, BuiltinLoc, *this))
14622        return ExprError();
14623    }
14624  }
14625
14626  if (!IsMS && !E->isTypeDependent() &&
14627      !Context.hasSameType(VaListType, E->getType()))
14628    return ExprError(
14629        Diag(E->getBeginLoc(),
14630             diag::err_first_argument_to_va_arg_not_of_type_va_list)
14631        << OrigExpr->getType() << E->getSourceRange());
14632
14633  if (!TInfo->getType()->isDependentType()) {
14634    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
14635                            diag::err_second_parameter_to_va_arg_incomplete,
14636                            TInfo->getTypeLoc()))
14637      return ExprError();
14638
14639    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
14640                               TInfo->getType(),
14641                               diag::err_second_parameter_to_va_arg_abstract,
14642                               TInfo->getTypeLoc()))
14643      return ExprError();
14644
14645    if (!TInfo->getType().isPODType(Context)) {
14646      Diag(TInfo->getTypeLoc().getBeginLoc(),
14647           TInfo->getType()->isObjCLifetimeType()
14648             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
14649             : diag::warn_second_parameter_to_va_arg_not_pod)
14650        << TInfo->getType()
14651        << TInfo->getTypeLoc().getSourceRange();
14652    }
14653
14654    // Check for va_arg where arguments of the given type will be promoted
14655    // (i.e. this va_arg is guaranteed to have undefined behavior).
14656    QualType PromoteType;
14657    if (TInfo->getType()->isPromotableIntegerType()) {
14658      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
14659      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
14660        PromoteType = QualType();
14661    }
14662    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
14663      PromoteType = Context.DoubleTy;
14664    if (!PromoteType.isNull())
14665      DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
14666                  PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
14667                          << TInfo->getType()
14668                          << PromoteType
14669                          << TInfo->getTypeLoc().getSourceRange());
14670  }
14671
14672  QualType T = TInfo->getType().getNonLValueExprType(Context);
14673  return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
14674}
14675
14676ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
14677  // The type of __null will be int or long, depending on the size of
14678  // pointers on the target.
14679  QualType Ty;
14680  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
14681  if (pw == Context.getTargetInfo().getIntWidth())
14682    Ty = Context.IntTy;
14683  else if (pw == Context.getTargetInfo().getLongWidth())
14684    Ty = Context.LongTy;
14685  else if (pw == Context.getTargetInfo().getLongLongWidth())
14686    Ty = Context.LongLongTy;
14687  else {
14688    llvm_unreachable("I don't know size of pointer!");
14689  }
14690
14691  return new (Context) GNUNullExpr(Ty, TokenLoc);
14692}
14693
14694ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
14695                                    SourceLocation BuiltinLoc,
14696                                    SourceLocation RPLoc) {
14697  return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
14698}
14699
14700ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
14701                                    SourceLocation BuiltinLoc,
14702                                    SourceLocation RPLoc,
14703                                    DeclContext *ParentContext) {
14704  return new (Context)
14705      SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
14706}
14707
14708bool Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp,
14709                                              bool Diagnose) {
14710  if (!getLangOpts().ObjC)
14711    return false;
14712
14713  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
14714  if (!PT)
14715    return false;
14716
14717  if (!PT->isObjCIdType()) {
14718    // Check if the destination is the 'NSString' interface.
14719    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
14720    if (!ID || !ID->getIdentifier()->isStr("NSString"))
14721      return false;
14722  }
14723
14724  // Ignore any parens, implicit casts (should only be
14725  // array-to-pointer decays), and not-so-opaque values.  The last is
14726  // important for making this trigger for property assignments.
14727  Expr *SrcExpr = Exp->IgnoreParenImpCasts();
14728  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
14729    if (OV->getSourceExpr())
14730      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
14731
14732  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
14733  if (!SL || !SL->isAscii())
14734    return false;
14735  if (Diagnose) {
14736    Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
14737        << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
14738    Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
14739  }
14740  return true;
14741}
14742
14743static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
14744                                              const Expr *SrcExpr) {
14745  if (!DstType->isFunctionPointerType() ||
14746      !SrcExpr->getType()->isFunctionType())
14747    return false;
14748
14749  auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
14750  if (!DRE)
14751    return false;
14752
14753  auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
14754  if (!FD)
14755    return false;
14756
14757  return !S.checkAddressOfFunctionIsAvailable(FD,
14758                                              /*Complain=*/true,
14759                                              SrcExpr->getBeginLoc());
14760}
14761
14762bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
14763                                    SourceLocation Loc,
14764                                    QualType DstType, QualType SrcType,
14765                                    Expr *SrcExpr, AssignmentAction Action,
14766                                    bool *Complained) {
14767  if (Complained)
14768    *Complained = false;
14769
14770  // Decode the result (notice that AST's are still created for extensions).
14771  bool CheckInferredResultType = false;
14772  bool isInvalid = false;
14773  unsigned DiagKind = 0;
14774  FixItHint Hint;
14775  ConversionFixItGenerator ConvHints;
14776  bool MayHaveConvFixit = false;
14777  bool MayHaveFunctionDiff = false;
14778  const ObjCInterfaceDecl *IFace = nullptr;
14779  const ObjCProtocolDecl *PDecl = nullptr;
14780
14781  switch (ConvTy) {
14782  case Compatible:
14783      DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
14784      return false;
14785
14786  case PointerToInt:
14787    DiagKind = diag::ext_typecheck_convert_pointer_int;
14788    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
14789    MayHaveConvFixit = true;
14790    break;
14791  case IntToPointer:
14792    DiagKind = diag::ext_typecheck_convert_int_pointer;
14793    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
14794    MayHaveConvFixit = true;
14795    break;
14796  case IncompatiblePointer:
14797    if (Action == AA_Passing_CFAudited)
14798      DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
14799    else if (SrcType->isFunctionPointerType() &&
14800             DstType->isFunctionPointerType())
14801      DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
14802    else
14803      DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
14804
14805    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
14806      SrcType->isObjCObjectPointerType();
14807    if (Hint.isNull() && !CheckInferredResultType) {
14808      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
14809    }
14810    else if (CheckInferredResultType) {
14811      SrcType = SrcType.getUnqualifiedType();
14812      DstType = DstType.getUnqualifiedType();
14813    }
14814    MayHaveConvFixit = true;
14815    break;
14816  case IncompatiblePointerSign:
14817    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
14818    break;
14819  case FunctionVoidPointer:
14820    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
14821    break;
14822  case IncompatiblePointerDiscardsQualifiers: {
14823    // Perform array-to-pointer decay if necessary.
14824    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
14825
14826    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
14827    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
14828    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
14829      DiagKind = diag::err_typecheck_incompatible_address_space;
14830      break;
14831
14832    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
14833      DiagKind = diag::err_typecheck_incompatible_ownership;
14834      break;
14835    }
14836
14837    llvm_unreachable("unknown error case for discarding qualifiers!");
14838    // fallthrough
14839  }
14840  case CompatiblePointerDiscardsQualifiers:
14841    // If the qualifiers lost were because we were applying the
14842    // (deprecated) C++ conversion from a string literal to a char*
14843    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
14844    // Ideally, this check would be performed in
14845    // checkPointerTypesForAssignment. However, that would require a
14846    // bit of refactoring (so that the second argument is an
14847    // expression, rather than a type), which should be done as part
14848    // of a larger effort to fix checkPointerTypesForAssignment for
14849    // C++ semantics.
14850    if (getLangOpts().CPlusPlus &&
14851        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
14852      return false;
14853    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
14854    break;
14855  case IncompatibleNestedPointerQualifiers:
14856    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
14857    break;
14858  case IncompatibleNestedPointerAddressSpaceMismatch:
14859    DiagKind = diag::err_typecheck_incompatible_nested_address_space;
14860    break;
14861  case IntToBlockPointer:
14862    DiagKind = diag::err_int_to_block_pointer;
14863    break;
14864  case IncompatibleBlockPointer:
14865    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
14866    break;
14867  case IncompatibleObjCQualifiedId: {
14868    if (SrcType->isObjCQualifiedIdType()) {
14869      const ObjCObjectPointerType *srcOPT =
14870                SrcType->castAs<ObjCObjectPointerType>();
14871      for (auto *srcProto : srcOPT->quals()) {
14872        PDecl = srcProto;
14873        break;
14874      }
14875      if (const ObjCInterfaceType *IFaceT =
14876            DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
14877        IFace = IFaceT->getDecl();
14878    }
14879    else if (DstType->isObjCQualifiedIdType()) {
14880      const ObjCObjectPointerType *dstOPT =
14881        DstType->castAs<ObjCObjectPointerType>();
14882      for (auto *dstProto : dstOPT->quals()) {
14883        PDecl = dstProto;
14884        break;
14885      }
14886      if (const ObjCInterfaceType *IFaceT =
14887            SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
14888        IFace = IFaceT->getDecl();
14889    }
14890    DiagKind = diag::warn_incompatible_qualified_id;
14891    break;
14892  }
14893  case IncompatibleVectors:
14894    DiagKind = diag::warn_incompatible_vectors;
14895    break;
14896  case IncompatibleObjCWeakRef:
14897    DiagKind = diag::err_arc_weak_unavailable_assign;
14898    break;
14899  case Incompatible:
14900    if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
14901      if (Complained)
14902        *Complained = true;
14903      return true;
14904    }
14905
14906    DiagKind = diag::err_typecheck_convert_incompatible;
14907    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
14908    MayHaveConvFixit = true;
14909    isInvalid = true;
14910    MayHaveFunctionDiff = true;
14911    break;
14912  }
14913
14914  QualType FirstType, SecondType;
14915  switch (Action) {
14916  case AA_Assigning:
14917  case AA_Initializing:
14918    // The destination type comes first.
14919    FirstType = DstType;
14920    SecondType = SrcType;
14921    break;
14922
14923  case AA_Returning:
14924  case AA_Passing:
14925  case AA_Passing_CFAudited:
14926  case AA_Converting:
14927  case AA_Sending:
14928  case AA_Casting:
14929    // The source type comes first.
14930    FirstType = SrcType;
14931    SecondType = DstType;
14932    break;
14933  }
14934
14935  PartialDiagnostic FDiag = PDiag(DiagKind);
14936  if (Action == AA_Passing_CFAudited)
14937    FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
14938  else
14939    FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
14940
14941  // If we can fix the conversion, suggest the FixIts.
14942  assert(ConvHints.isNull() || Hint.isNull());
14943  if (!ConvHints.isNull()) {
14944    for (FixItHint &H : ConvHints.Hints)
14945      FDiag << H;
14946  } else {
14947    FDiag << Hint;
14948  }
14949  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
14950
14951  if (MayHaveFunctionDiff)
14952    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
14953
14954  Diag(Loc, FDiag);
14955  if (DiagKind == diag::warn_incompatible_qualified_id &&
14956      PDecl && IFace && !IFace->hasDefinition())
14957      Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
14958        << IFace << PDecl;
14959
14960  if (SecondType == Context.OverloadTy)
14961    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
14962                              FirstType, /*TakingAddress=*/true);
14963
14964  if (CheckInferredResultType)
14965    EmitRelatedResultTypeNote(SrcExpr);
14966
14967  if (Action == AA_Returning && ConvTy == IncompatiblePointer)
14968    EmitRelatedResultTypeNoteForReturn(DstType);
14969
14970  if (Complained)
14971    *Complained = true;
14972  return isInvalid;
14973}
14974
14975ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
14976                                                 llvm::APSInt *Result) {
14977  class SimpleICEDiagnoser : public VerifyICEDiagnoser {
14978  public:
14979    void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
14980      S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
14981    }
14982  } Diagnoser;
14983
14984  return VerifyIntegerConstantExpression(E, Result, Diagnoser);
14985}
14986
14987ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
14988                                                 llvm::APSInt *Result,
14989                                                 unsigned DiagID,
14990                                                 bool AllowFold) {
14991  class IDDiagnoser : public VerifyICEDiagnoser {
14992    unsigned DiagID;
14993
14994  public:
14995    IDDiagnoser(unsigned DiagID)
14996      : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
14997
14998    void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
14999      S.Diag(Loc, DiagID) << SR;
15000    }
15001  } Diagnoser(DiagID);
15002
15003  return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
15004}
15005
15006void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
15007                                            SourceRange SR) {
15008  S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
15009}
15010
15011ExprResult
15012Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
15013                                      VerifyICEDiagnoser &Diagnoser,
15014                                      bool AllowFold) {
15015  SourceLocation DiagLoc = E->getBeginLoc();
15016
15017  if (getLangOpts().CPlusPlus11) {
15018    // C++11 [expr.const]p5:
15019    //   If an expression of literal class type is used in a context where an
15020    //   integral constant expression is required, then that class type shall
15021    //   have a single non-explicit conversion function to an integral or
15022    //   unscoped enumeration type
15023    ExprResult Converted;
15024    class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
15025    public:
15026      CXX11ConvertDiagnoser(bool Silent)
15027          : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
15028                                Silent, true) {}
15029
15030      SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
15031                                           QualType T) override {
15032        return S.Diag(Loc, diag::err_ice_not_integral) << T;
15033      }
15034
15035      SemaDiagnosticBuilder diagnoseIncomplete(
15036          Sema &S, SourceLocation Loc, QualType T) override {
15037        return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
15038      }
15039
15040      SemaDiagnosticBuilder diagnoseExplicitConv(
15041          Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
15042        return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
15043      }
15044
15045      SemaDiagnosticBuilder noteExplicitConv(
15046          Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
15047        return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
15048                 << ConvTy->isEnumeralType() << ConvTy;
15049      }
15050
15051      SemaDiagnosticBuilder diagnoseAmbiguous(
15052          Sema &S, SourceLocation Loc, QualType T) override {
15053        return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
15054      }
15055
15056      SemaDiagnosticBuilder noteAmbiguous(
15057          Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
15058        return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
15059                 << ConvTy->isEnumeralType() << ConvTy;
15060      }
15061
15062      SemaDiagnosticBuilder diagnoseConversion(
15063          Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
15064        llvm_unreachable("conversion functions are permitted");
15065      }
15066    } ConvertDiagnoser(Diagnoser.Suppress);
15067
15068    Converted = PerformContextualImplicitConversion(DiagLoc, E,
15069                                                    ConvertDiagnoser);
15070    if (Converted.isInvalid())
15071      return Converted;
15072    E = Converted.get();
15073    if (!E->getType()->isIntegralOrUnscopedEnumerationType())
15074      return ExprError();
15075  } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
15076    // An ICE must be of integral or unscoped enumeration type.
15077    if (!Diagnoser.Suppress)
15078      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
15079    return ExprError();
15080  }
15081
15082  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
15083  // in the non-ICE case.
15084  if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
15085    if (Result)
15086      *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
15087    if (!isa<ConstantExpr>(E))
15088      E = ConstantExpr::Create(Context, E);
15089    return E;
15090  }
15091
15092  Expr::EvalResult EvalResult;
15093  SmallVector<PartialDiagnosticAt, 8> Notes;
15094  EvalResult.Diag = &Notes;
15095
15096  // Try to evaluate the expression, and produce diagnostics explaining why it's
15097  // not a constant expression as a side-effect.
15098  bool Folded =
15099      E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
15100      EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
15101
15102  if (!isa<ConstantExpr>(E))
15103    E = ConstantExpr::Create(Context, E, EvalResult.Val);
15104
15105  // In C++11, we can rely on diagnostics being produced for any expression
15106  // which is not a constant expression. If no diagnostics were produced, then
15107  // this is a constant expression.
15108  if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
15109    if (Result)
15110      *Result = EvalResult.Val.getInt();
15111    return E;
15112  }
15113
15114  // If our only note is the usual "invalid subexpression" note, just point
15115  // the caret at its location rather than producing an essentially
15116  // redundant note.
15117  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
15118        diag::note_invalid_subexpr_in_const_expr) {
15119    DiagLoc = Notes[0].first;
15120    Notes.clear();
15121  }
15122
15123  if (!Folded || !AllowFold) {
15124    if (!Diagnoser.Suppress) {
15125      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
15126      for (const PartialDiagnosticAt &Note : Notes)
15127        Diag(Note.first, Note.second);
15128    }
15129
15130    return ExprError();
15131  }
15132
15133  Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
15134  for (const PartialDiagnosticAt &Note : Notes)
15135    Diag(Note.first, Note.second);
15136
15137  if (Result)
15138    *Result = EvalResult.Val.getInt();
15139  return E;
15140}
15141
15142namespace {
15143  // Handle the case where we conclude a expression which we speculatively
15144  // considered to be unevaluated is actually evaluated.
15145  class TransformToPE : public TreeTransform<TransformToPE> {
15146    typedef TreeTransform<TransformToPE> BaseTransform;
15147
15148  public:
15149    TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
15150
15151    // Make sure we redo semantic analysis
15152    bool AlwaysRebuild() { return true; }
15153    bool ReplacingOriginal() { return true; }
15154
15155    // We need to special-case DeclRefExprs referring to FieldDecls which
15156    // are not part of a member pointer formation; normal TreeTransforming
15157    // doesn't catch this case because of the way we represent them in the AST.
15158    // FIXME: This is a bit ugly; is it really the best way to handle this
15159    // case?
15160    //
15161    // Error on DeclRefExprs referring to FieldDecls.
15162    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
15163      if (isa<FieldDecl>(E->getDecl()) &&
15164          !SemaRef.isUnevaluatedContext())
15165        return SemaRef.Diag(E->getLocation(),
15166                            diag::err_invalid_non_static_member_use)
15167            << E->getDecl() << E->getSourceRange();
15168
15169      return BaseTransform::TransformDeclRefExpr(E);
15170    }
15171
15172    // Exception: filter out member pointer formation
15173    ExprResult TransformUnaryOperator(UnaryOperator *E) {
15174      if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
15175        return E;
15176
15177      return BaseTransform::TransformUnaryOperator(E);
15178    }
15179
15180    // The body of a lambda-expression is in a separate expression evaluation
15181    // context so never needs to be transformed.
15182    // FIXME: Ideally we wouldn't transform the closure type either, and would
15183    // just recreate the capture expressions and lambda expression.
15184    StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
15185      return SkipLambdaBody(E, Body);
15186    }
15187  };
15188}
15189
15190ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
15191  assert(isUnevaluatedContext() &&
15192         "Should only transform unevaluated expressions");
15193  ExprEvalContexts.back().Context =
15194      ExprEvalContexts[ExprEvalContexts.size()-2].Context;
15195  if (isUnevaluatedContext())
15196    return E;
15197  return TransformToPE(*this).TransformExpr(E);
15198}
15199
15200void
15201Sema::PushExpressionEvaluationContext(
15202    ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
15203    ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
15204  ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
15205                                LambdaContextDecl, ExprContext);
15206  Cleanup.reset();
15207  if (!MaybeODRUseExprs.empty())
15208    std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
15209}
15210
15211void
15212Sema::PushExpressionEvaluationContext(
15213    ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
15214    ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
15215  Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
15216  PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
15217}
15218
15219namespace {
15220
15221const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
15222  PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
15223  if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
15224    if (E->getOpcode() == UO_Deref)
15225      return CheckPossibleDeref(S, E->getSubExpr());
15226  } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
15227    return CheckPossibleDeref(S, E->getBase());
15228  } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
15229    return CheckPossibleDeref(S, E->getBase());
15230  } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
15231    QualType Inner;
15232    QualType Ty = E->getType();
15233    if (const auto *Ptr = Ty->getAs<PointerType>())
15234      Inner = Ptr->getPointeeType();
15235    else if (const auto *Arr = S.Context.getAsArrayType(Ty))
15236      Inner = Arr->getElementType();
15237    else
15238      return nullptr;
15239
15240    if (Inner->hasAttr(attr::NoDeref))
15241      return E;
15242  }
15243  return nullptr;
15244}
15245
15246} // namespace
15247
15248void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
15249  for (const Expr *E : Rec.PossibleDerefs) {
15250    const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
15251    if (DeclRef) {
15252      const ValueDecl *Decl = DeclRef->getDecl();
15253      Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
15254          << Decl->getName() << E->getSourceRange();
15255      Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
15256    } else {
15257      Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
15258          << E->getSourceRange();
15259    }
15260  }
15261  Rec.PossibleDerefs.clear();
15262}
15263
15264/// Check whether E, which is either a discarded-value expression or an
15265/// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
15266/// and if so, remove it from the list of volatile-qualified assignments that
15267/// we are going to warn are deprecated.
15268void Sema::CheckUnusedVolatileAssignment(Expr *E) {
15269  if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus2a)
15270    return;
15271
15272  // Note: ignoring parens here is not justified by the standard rules, but
15273  // ignoring parentheses seems like a more reasonable approach, and this only
15274  // drives a deprecation warning so doesn't affect conformance.
15275  if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
15276    if (BO->getOpcode() == BO_Assign) {
15277      auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
15278      LHSs.erase(std::remove(LHSs.begin(), LHSs.end(), BO->getLHS()),
15279                 LHSs.end());
15280    }
15281  }
15282}
15283
15284void Sema::PopExpressionEvaluationContext() {
15285  ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
15286  unsigned NumTypos = Rec.NumTypos;
15287
15288  if (!Rec.Lambdas.empty()) {
15289    using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
15290    if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() ||
15291        (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17)) {
15292      unsigned D;
15293      if (Rec.isUnevaluated()) {
15294        // C++11 [expr.prim.lambda]p2:
15295        //   A lambda-expression shall not appear in an unevaluated operand
15296        //   (Clause 5).
15297        D = diag::err_lambda_unevaluated_operand;
15298      } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
15299        // C++1y [expr.const]p2:
15300        //   A conditional-expression e is a core constant expression unless the
15301        //   evaluation of e, following the rules of the abstract machine, would
15302        //   evaluate [...] a lambda-expression.
15303        D = diag::err_lambda_in_constant_expression;
15304      } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
15305        // C++17 [expr.prim.lamda]p2:
15306        // A lambda-expression shall not appear [...] in a template-argument.
15307        D = diag::err_lambda_in_invalid_context;
15308      } else
15309        llvm_unreachable("Couldn't infer lambda error message.");
15310
15311      for (const auto *L : Rec.Lambdas)
15312        Diag(L->getBeginLoc(), D);
15313    }
15314  }
15315
15316  WarnOnPendingNoDerefs(Rec);
15317
15318  // Warn on any volatile-qualified simple-assignments that are not discarded-
15319  // value expressions nor unevaluated operands (those cases get removed from
15320  // this list by CheckUnusedVolatileAssignment).
15321  for (auto *BO : Rec.VolatileAssignmentLHSs)
15322    Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
15323        << BO->getType();
15324
15325  // When are coming out of an unevaluated context, clear out any
15326  // temporaries that we may have created as part of the evaluation of
15327  // the expression in that context: they aren't relevant because they
15328  // will never be constructed.
15329  if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
15330    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
15331                             ExprCleanupObjects.end());
15332    Cleanup = Rec.ParentCleanup;
15333    CleanupVarDeclMarking();
15334    std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
15335  // Otherwise, merge the contexts together.
15336  } else {
15337    Cleanup.mergeFrom(Rec.ParentCleanup);
15338    MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
15339                            Rec.SavedMaybeODRUseExprs.end());
15340  }
15341
15342  // Pop the current expression evaluation context off the stack.
15343  ExprEvalContexts.pop_back();
15344
15345  // The global expression evaluation context record is never popped.
15346  ExprEvalContexts.back().NumTypos += NumTypos;
15347}
15348
15349void Sema::DiscardCleanupsInEvaluationContext() {
15350  ExprCleanupObjects.erase(
15351         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
15352         ExprCleanupObjects.end());
15353  Cleanup.reset();
15354  MaybeODRUseExprs.clear();
15355}
15356
15357ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
15358  ExprResult Result = CheckPlaceholderExpr(E);
15359  if (Result.isInvalid())
15360    return ExprError();
15361  E = Result.get();
15362  if (!E->getType()->isVariablyModifiedType())
15363    return E;
15364  return TransformToPotentiallyEvaluated(E);
15365}
15366
15367/// Are we in a context that is potentially constant evaluated per C++20
15368/// [expr.const]p12?
15369static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
15370  /// C++2a [expr.const]p12:
15371  //   An expression or conversion is potentially constant evaluated if it is
15372  switch (SemaRef.ExprEvalContexts.back().Context) {
15373    case Sema::ExpressionEvaluationContext::ConstantEvaluated:
15374      // -- a manifestly constant-evaluated expression,
15375    case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
15376    case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
15377    case Sema::ExpressionEvaluationContext::DiscardedStatement:
15378      // -- a potentially-evaluated expression,
15379    case Sema::ExpressionEvaluationContext::UnevaluatedList:
15380      // -- an immediate subexpression of a braced-init-list,
15381
15382      // -- [FIXME] an expression of the form & cast-expression that occurs
15383      //    within a templated entity
15384      // -- a subexpression of one of the above that is not a subexpression of
15385      // a nested unevaluated operand.
15386      return true;
15387
15388    case Sema::ExpressionEvaluationContext::Unevaluated:
15389    case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
15390      // Expressions in this context are never evaluated.
15391      return false;
15392  }
15393  llvm_unreachable("Invalid context");
15394}
15395
15396/// Return true if this function has a calling convention that requires mangling
15397/// in the size of the parameter pack.
15398static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
15399  // These manglings don't do anything on non-Windows or non-x86 platforms, so
15400  // we don't need parameter type sizes.
15401  const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
15402  if (!TT.isOSWindows() || !TT.isX86())
15403    return false;
15404
15405  // If this is C++ and this isn't an extern "C" function, parameters do not
15406  // need to be complete. In this case, C++ mangling will apply, which doesn't
15407  // use the size of the parameters.
15408  if (S.getLangOpts().CPlusPlus && !FD->isExternC())
15409    return false;
15410
15411  // Stdcall, fastcall, and vectorcall need this special treatment.
15412  CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
15413  switch (CC) {
15414  case CC_X86StdCall:
15415  case CC_X86FastCall:
15416  case CC_X86VectorCall:
15417    return true;
15418  default:
15419    break;
15420  }
15421  return false;
15422}
15423
15424/// Require that all of the parameter types of function be complete. Normally,
15425/// parameter types are only required to be complete when a function is called
15426/// or defined, but to mangle functions with certain calling conventions, the
15427/// mangler needs to know the size of the parameter list. In this situation,
15428/// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
15429/// the function as _foo@0, i.e. zero bytes of parameters, which will usually
15430/// result in a linker error. Clang doesn't implement this behavior, and instead
15431/// attempts to error at compile time.
15432static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
15433                                                  SourceLocation Loc) {
15434  class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
15435    FunctionDecl *FD;
15436    ParmVarDecl *Param;
15437
15438  public:
15439    ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
15440        : FD(FD), Param(Param) {}
15441
15442    void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
15443      CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
15444      StringRef CCName;
15445      switch (CC) {
15446      case CC_X86StdCall:
15447        CCName = "stdcall";
15448        break;
15449      case CC_X86FastCall:
15450        CCName = "fastcall";
15451        break;
15452      case CC_X86VectorCall:
15453        CCName = "vectorcall";
15454        break;
15455      default:
15456        llvm_unreachable("CC does not need mangling");
15457      }
15458
15459      S.Diag(Loc, diag::err_cconv_incomplete_param_type)
15460          << Param->getDeclName() << FD->getDeclName() << CCName;
15461    }
15462  };
15463
15464  for (ParmVarDecl *Param : FD->parameters()) {
15465    ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
15466    S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
15467  }
15468}
15469
15470namespace {
15471enum class OdrUseContext {
15472  /// Declarations in this context are not odr-used.
15473  None,
15474  /// Declarations in this context are formally odr-used, but this is a
15475  /// dependent context.
15476  Dependent,
15477  /// Declarations in this context are odr-used but not actually used (yet).
15478  FormallyOdrUsed,
15479  /// Declarations in this context are used.
15480  Used
15481};
15482}
15483
15484/// Are we within a context in which references to resolved functions or to
15485/// variables result in odr-use?
15486static OdrUseContext isOdrUseContext(Sema &SemaRef) {
15487  OdrUseContext Result;
15488
15489  switch (SemaRef.ExprEvalContexts.back().Context) {
15490    case Sema::ExpressionEvaluationContext::Unevaluated:
15491    case Sema::ExpressionEvaluationContext::UnevaluatedList:
15492    case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
15493      return OdrUseContext::None;
15494
15495    case Sema::ExpressionEvaluationContext::ConstantEvaluated:
15496    case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
15497      Result = OdrUseContext::Used;
15498      break;
15499
15500    case Sema::ExpressionEvaluationContext::DiscardedStatement:
15501      Result = OdrUseContext::FormallyOdrUsed;
15502      break;
15503
15504    case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
15505      // A default argument formally results in odr-use, but doesn't actually
15506      // result in a use in any real sense until it itself is used.
15507      Result = OdrUseContext::FormallyOdrUsed;
15508      break;
15509  }
15510
15511  if (SemaRef.CurContext->isDependentContext())
15512    return OdrUseContext::Dependent;
15513
15514  return Result;
15515}
15516
15517static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
15518  return Func->isConstexpr() &&
15519         (Func->isImplicitlyInstantiable() || !Func->isUserProvided());
15520}
15521
15522/// Mark a function referenced, and check whether it is odr-used
15523/// (C++ [basic.def.odr]p2, C99 6.9p3)
15524void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
15525                                  bool MightBeOdrUse) {
15526  assert(Func && "No function?");
15527
15528  Func->setReferenced();
15529
15530  // Recursive functions aren't really used until they're used from some other
15531  // context.
15532  bool IsRecursiveCall = CurContext == Func;
15533
15534  // C++11 [basic.def.odr]p3:
15535  //   A function whose name appears as a potentially-evaluated expression is
15536  //   odr-used if it is the unique lookup result or the selected member of a
15537  //   set of overloaded functions [...].
15538  //
15539  // We (incorrectly) mark overload resolution as an unevaluated context, so we
15540  // can just check that here.
15541  OdrUseContext OdrUse =
15542      MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
15543  if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
15544    OdrUse = OdrUseContext::FormallyOdrUsed;
15545
15546  // Trivial default constructors and destructors are never actually used.
15547  // FIXME: What about other special members?
15548  if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
15549      OdrUse == OdrUseContext::Used) {
15550    if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
15551      if (Constructor->isDefaultConstructor())
15552        OdrUse = OdrUseContext::FormallyOdrUsed;
15553    if (isa<CXXDestructorDecl>(Func))
15554      OdrUse = OdrUseContext::FormallyOdrUsed;
15555  }
15556
15557  // C++20 [expr.const]p12:
15558  //   A function [...] is needed for constant evaluation if it is [...] a
15559  //   constexpr function that is named by an expression that is potentially
15560  //   constant evaluated
15561  bool NeededForConstantEvaluation =
15562      isPotentiallyConstantEvaluatedContext(*this) &&
15563      isImplicitlyDefinableConstexprFunction(Func);
15564
15565  // Determine whether we require a function definition to exist, per
15566  // C++11 [temp.inst]p3:
15567  //   Unless a function template specialization has been explicitly
15568  //   instantiated or explicitly specialized, the function template
15569  //   specialization is implicitly instantiated when the specialization is
15570  //   referenced in a context that requires a function definition to exist.
15571  // C++20 [temp.inst]p7:
15572  //   The existence of a definition of a [...] function is considered to
15573  //   affect the semantics of the program if the [...] function is needed for
15574  //   constant evaluation by an expression
15575  // C++20 [basic.def.odr]p10:
15576  //   Every program shall contain exactly one definition of every non-inline
15577  //   function or variable that is odr-used in that program outside of a
15578  //   discarded statement
15579  // C++20 [special]p1:
15580  //   The implementation will implicitly define [defaulted special members]
15581  //   if they are odr-used or needed for constant evaluation.
15582  //
15583  // Note that we skip the implicit instantiation of templates that are only
15584  // used in unused default arguments or by recursive calls to themselves.
15585  // This is formally non-conforming, but seems reasonable in practice.
15586  bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
15587                                             NeededForConstantEvaluation);
15588
15589  // C++14 [temp.expl.spec]p6:
15590  //   If a template [...] is explicitly specialized then that specialization
15591  //   shall be declared before the first use of that specialization that would
15592  //   cause an implicit instantiation to take place, in every translation unit
15593  //   in which such a use occurs
15594  if (NeedDefinition &&
15595      (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
15596       Func->getMemberSpecializationInfo()))
15597    checkSpecializationVisibility(Loc, Func);
15598
15599  if (getLangOpts().CUDA)
15600    CheckCUDACall(Loc, Func);
15601
15602  // If we need a definition, try to create one.
15603  if (NeedDefinition && !Func->getBody()) {
15604    runWithSufficientStackSpace(Loc, [&] {
15605      if (CXXConstructorDecl *Constructor =
15606              dyn_cast<CXXConstructorDecl>(Func)) {
15607        Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
15608        if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
15609          if (Constructor->isDefaultConstructor()) {
15610            if (Constructor->isTrivial() &&
15611                !Constructor->hasAttr<DLLExportAttr>())
15612              return;
15613            DefineImplicitDefaultConstructor(Loc, Constructor);
15614          } else if (Constructor->isCopyConstructor()) {
15615            DefineImplicitCopyConstructor(Loc, Constructor);
15616          } else if (Constructor->isMoveConstructor()) {
15617            DefineImplicitMoveConstructor(Loc, Constructor);
15618          }
15619        } else if (Constructor->getInheritedConstructor()) {
15620          DefineInheritingConstructor(Loc, Constructor);
15621        }
15622      } else if (CXXDestructorDecl *Destructor =
15623                     dyn_cast<CXXDestructorDecl>(Func)) {
15624        Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
15625        if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
15626          if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
15627            return;
15628          DefineImplicitDestructor(Loc, Destructor);
15629        }
15630        if (Destructor->isVirtual() && getLangOpts().AppleKext)
15631          MarkVTableUsed(Loc, Destructor->getParent());
15632      } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
15633        if (MethodDecl->isOverloadedOperator() &&
15634            MethodDecl->getOverloadedOperator() == OO_Equal) {
15635          MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
15636          if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
15637            if (MethodDecl->isCopyAssignmentOperator())
15638              DefineImplicitCopyAssignment(Loc, MethodDecl);
15639            else if (MethodDecl->isMoveAssignmentOperator())
15640              DefineImplicitMoveAssignment(Loc, MethodDecl);
15641          }
15642        } else if (isa<CXXConversionDecl>(MethodDecl) &&
15643                   MethodDecl->getParent()->isLambda()) {
15644          CXXConversionDecl *Conversion =
15645              cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
15646          if (Conversion->isLambdaToBlockPointerConversion())
15647            DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
15648          else
15649            DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
15650        } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
15651          MarkVTableUsed(Loc, MethodDecl->getParent());
15652      }
15653
15654      if (Func->isDefaulted() && !Func->isDeleted()) {
15655        DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
15656        if (DCK != DefaultedComparisonKind::None)
15657          DefineDefaultedComparison(Loc, Func, DCK);
15658      }
15659
15660      // Implicit instantiation of function templates and member functions of
15661      // class templates.
15662      if (Func->isImplicitlyInstantiable()) {
15663        TemplateSpecializationKind TSK =
15664            Func->getTemplateSpecializationKindForInstantiation();
15665        SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
15666        bool FirstInstantiation = PointOfInstantiation.isInvalid();
15667        if (FirstInstantiation) {
15668          PointOfInstantiation = Loc;
15669          Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
15670        } else if (TSK != TSK_ImplicitInstantiation) {
15671          // Use the point of use as the point of instantiation, instead of the
15672          // point of explicit instantiation (which we track as the actual point
15673          // of instantiation). This gives better backtraces in diagnostics.
15674          PointOfInstantiation = Loc;
15675        }
15676
15677        if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
15678            Func->isConstexpr()) {
15679          if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
15680              cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
15681              CodeSynthesisContexts.size())
15682            PendingLocalImplicitInstantiations.push_back(
15683                std::make_pair(Func, PointOfInstantiation));
15684          else if (Func->isConstexpr())
15685            // Do not defer instantiations of constexpr functions, to avoid the
15686            // expression evaluator needing to call back into Sema if it sees a
15687            // call to such a function.
15688            InstantiateFunctionDefinition(PointOfInstantiation, Func);
15689          else {
15690            Func->setInstantiationIsPending(true);
15691            PendingInstantiations.push_back(
15692                std::make_pair(Func, PointOfInstantiation));
15693            // Notify the consumer that a function was implicitly instantiated.
15694            Consumer.HandleCXXImplicitFunctionInstantiation(Func);
15695          }
15696        }
15697      } else {
15698        // Walk redefinitions, as some of them may be instantiable.
15699        for (auto i : Func->redecls()) {
15700          if (!i->isUsed(false) && i->isImplicitlyInstantiable())
15701            MarkFunctionReferenced(Loc, i, MightBeOdrUse);
15702        }
15703      }
15704    });
15705  }
15706
15707  // C++14 [except.spec]p17:
15708  //   An exception-specification is considered to be needed when:
15709  //   - the function is odr-used or, if it appears in an unevaluated operand,
15710  //     would be odr-used if the expression were potentially-evaluated;
15711  //
15712  // Note, we do this even if MightBeOdrUse is false. That indicates that the
15713  // function is a pure virtual function we're calling, and in that case the
15714  // function was selected by overload resolution and we need to resolve its
15715  // exception specification for a different reason.
15716  const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
15717  if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
15718    ResolveExceptionSpec(Loc, FPT);
15719
15720  // If this is the first "real" use, act on that.
15721  if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
15722    // Keep track of used but undefined functions.
15723    if (!Func->isDefined()) {
15724      if (mightHaveNonExternalLinkage(Func))
15725        UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
15726      else if (Func->getMostRecentDecl()->isInlined() &&
15727               !LangOpts.GNUInline &&
15728               !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
15729        UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
15730      else if (isExternalWithNoLinkageType(Func))
15731        UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
15732    }
15733
15734    // Some x86 Windows calling conventions mangle the size of the parameter
15735    // pack into the name. Computing the size of the parameters requires the
15736    // parameter types to be complete. Check that now.
15737    if (funcHasParameterSizeMangling(*this, Func))
15738      CheckCompleteParameterTypesForMangler(*this, Func, Loc);
15739
15740    Func->markUsed(Context);
15741  }
15742
15743  if (LangOpts.OpenMP) {
15744    markOpenMPDeclareVariantFuncsReferenced(Loc, Func, MightBeOdrUse);
15745    if (LangOpts.OpenMPIsDevice)
15746      checkOpenMPDeviceFunction(Loc, Func);
15747    else
15748      checkOpenMPHostFunction(Loc, Func);
15749  }
15750}
15751
15752/// Directly mark a variable odr-used. Given a choice, prefer to use
15753/// MarkVariableReferenced since it does additional checks and then
15754/// calls MarkVarDeclODRUsed.
15755/// If the variable must be captured:
15756///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
15757///  - else capture it in the DeclContext that maps to the
15758///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
15759static void
15760MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
15761                   const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
15762  // Keep track of used but undefined variables.
15763  // FIXME: We shouldn't suppress this warning for static data members.
15764  if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
15765      (!Var->isExternallyVisible() || Var->isInline() ||
15766       SemaRef.isExternalWithNoLinkageType(Var)) &&
15767      !(Var->isStaticDataMember() && Var->hasInit())) {
15768    SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
15769    if (old.isInvalid())
15770      old = Loc;
15771  }
15772  QualType CaptureType, DeclRefType;
15773  if (SemaRef.LangOpts.OpenMP)
15774    SemaRef.tryCaptureOpenMPLambdas(Var);
15775  SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
15776    /*EllipsisLoc*/ SourceLocation(),
15777    /*BuildAndDiagnose*/ true,
15778    CaptureType, DeclRefType,
15779    FunctionScopeIndexToStopAt);
15780
15781  Var->markUsed(SemaRef.Context);
15782}
15783
15784void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
15785                                             SourceLocation Loc,
15786                                             unsigned CapturingScopeIndex) {
15787  MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
15788}
15789
15790static void
15791diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
15792                                   ValueDecl *var, DeclContext *DC) {
15793  DeclContext *VarDC = var->getDeclContext();
15794
15795  //  If the parameter still belongs to the translation unit, then
15796  //  we're actually just using one parameter in the declaration of
15797  //  the next.
15798  if (isa<ParmVarDecl>(var) &&
15799      isa<TranslationUnitDecl>(VarDC))
15800    return;
15801
15802  // For C code, don't diagnose about capture if we're not actually in code
15803  // right now; it's impossible to write a non-constant expression outside of
15804  // function context, so we'll get other (more useful) diagnostics later.
15805  //
15806  // For C++, things get a bit more nasty... it would be nice to suppress this
15807  // diagnostic for certain cases like using a local variable in an array bound
15808  // for a member of a local class, but the correct predicate is not obvious.
15809  if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
15810    return;
15811
15812  unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
15813  unsigned ContextKind = 3; // unknown
15814  if (isa<CXXMethodDecl>(VarDC) &&
15815      cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
15816    ContextKind = 2;
15817  } else if (isa<FunctionDecl>(VarDC)) {
15818    ContextKind = 0;
15819  } else if (isa<BlockDecl>(VarDC)) {
15820    ContextKind = 1;
15821  }
15822
15823  S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
15824    << var << ValueKind << ContextKind << VarDC;
15825  S.Diag(var->getLocation(), diag::note_entity_declared_at)
15826      << var;
15827
15828  // FIXME: Add additional diagnostic info about class etc. which prevents
15829  // capture.
15830}
15831
15832
15833static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
15834                                      bool &SubCapturesAreNested,
15835                                      QualType &CaptureType,
15836                                      QualType &DeclRefType) {
15837   // Check whether we've already captured it.
15838  if (CSI->CaptureMap.count(Var)) {
15839    // If we found a capture, any subcaptures are nested.
15840    SubCapturesAreNested = true;
15841
15842    // Retrieve the capture type for this variable.
15843    CaptureType = CSI->getCapture(Var).getCaptureType();
15844
15845    // Compute the type of an expression that refers to this variable.
15846    DeclRefType = CaptureType.getNonReferenceType();
15847
15848    // Similarly to mutable captures in lambda, all the OpenMP captures by copy
15849    // are mutable in the sense that user can change their value - they are
15850    // private instances of the captured declarations.
15851    const Capture &Cap = CSI->getCapture(Var);
15852    if (Cap.isCopyCapture() &&
15853        !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
15854        !(isa<CapturedRegionScopeInfo>(CSI) &&
15855          cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
15856      DeclRefType.addConst();
15857    return true;
15858  }
15859  return false;
15860}
15861
15862// Only block literals, captured statements, and lambda expressions can
15863// capture; other scopes don't work.
15864static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
15865                                 SourceLocation Loc,
15866                                 const bool Diagnose, Sema &S) {
15867  if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
15868    return getLambdaAwareParentOfDeclContext(DC);
15869  else if (Var->hasLocalStorage()) {
15870    if (Diagnose)
15871       diagnoseUncapturableValueReference(S, Loc, Var, DC);
15872  }
15873  return nullptr;
15874}
15875
15876// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
15877// certain types of variables (unnamed, variably modified types etc.)
15878// so check for eligibility.
15879static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
15880                                 SourceLocation Loc,
15881                                 const bool Diagnose, Sema &S) {
15882
15883  bool IsBlock = isa<BlockScopeInfo>(CSI);
15884  bool IsLambda = isa<LambdaScopeInfo>(CSI);
15885
15886  // Lambdas are not allowed to capture unnamed variables
15887  // (e.g. anonymous unions).
15888  // FIXME: The C++11 rule don't actually state this explicitly, but I'm
15889  // assuming that's the intent.
15890  if (IsLambda && !Var->getDeclName()) {
15891    if (Diagnose) {
15892      S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
15893      S.Diag(Var->getLocation(), diag::note_declared_at);
15894    }
15895    return false;
15896  }
15897
15898  // Prohibit variably-modified types in blocks; they're difficult to deal with.
15899  if (Var->getType()->isVariablyModifiedType() && IsBlock) {
15900    if (Diagnose) {
15901      S.Diag(Loc, diag::err_ref_vm_type);
15902      S.Diag(Var->getLocation(), diag::note_previous_decl)
15903        << Var->getDeclName();
15904    }
15905    return false;
15906  }
15907  // Prohibit structs with flexible array members too.
15908  // We cannot capture what is in the tail end of the struct.
15909  if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
15910    if (VTTy->getDecl()->hasFlexibleArrayMember()) {
15911      if (Diagnose) {
15912        if (IsBlock)
15913          S.Diag(Loc, diag::err_ref_flexarray_type);
15914        else
15915          S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
15916            << Var->getDeclName();
15917        S.Diag(Var->getLocation(), diag::note_previous_decl)
15918          << Var->getDeclName();
15919      }
15920      return false;
15921    }
15922  }
15923  const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
15924  // Lambdas and captured statements are not allowed to capture __block
15925  // variables; they don't support the expected semantics.
15926  if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
15927    if (Diagnose) {
15928      S.Diag(Loc, diag::err_capture_block_variable)
15929        << Var->getDeclName() << !IsLambda;
15930      S.Diag(Var->getLocation(), diag::note_previous_decl)
15931        << Var->getDeclName();
15932    }
15933    return false;
15934  }
15935  // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
15936  if (S.getLangOpts().OpenCL && IsBlock &&
15937      Var->getType()->isBlockPointerType()) {
15938    if (Diagnose)
15939      S.Diag(Loc, diag::err_opencl_block_ref_block);
15940    return false;
15941  }
15942
15943  return true;
15944}
15945
15946// Returns true if the capture by block was successful.
15947static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
15948                                 SourceLocation Loc,
15949                                 const bool BuildAndDiagnose,
15950                                 QualType &CaptureType,
15951                                 QualType &DeclRefType,
15952                                 const bool Nested,
15953                                 Sema &S, bool Invalid) {
15954  bool ByRef = false;
15955
15956  // Blocks are not allowed to capture arrays, excepting OpenCL.
15957  // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
15958  // (decayed to pointers).
15959  if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
15960    if (BuildAndDiagnose) {
15961      S.Diag(Loc, diag::err_ref_array_type);
15962      S.Diag(Var->getLocation(), diag::note_previous_decl)
15963      << Var->getDeclName();
15964      Invalid = true;
15965    } else {
15966      return false;
15967    }
15968  }
15969
15970  // Forbid the block-capture of autoreleasing variables.
15971  if (!Invalid &&
15972      CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
15973    if (BuildAndDiagnose) {
15974      S.Diag(Loc, diag::err_arc_autoreleasing_capture)
15975        << /*block*/ 0;
15976      S.Diag(Var->getLocation(), diag::note_previous_decl)
15977        << Var->getDeclName();
15978      Invalid = true;
15979    } else {
15980      return false;
15981    }
15982  }
15983
15984  // Warn about implicitly autoreleasing indirect parameters captured by blocks.
15985  if (const auto *PT = CaptureType->getAs<PointerType>()) {
15986    QualType PointeeTy = PT->getPointeeType();
15987
15988    if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
15989        PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
15990        !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
15991      if (BuildAndDiagnose) {
15992        SourceLocation VarLoc = Var->getLocation();
15993        S.Diag(Loc, diag::warn_block_capture_autoreleasing);
15994        S.Diag(VarLoc, diag::note_declare_parameter_strong);
15995      }
15996    }
15997  }
15998
15999  const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
16000  if (HasBlocksAttr || CaptureType->isReferenceType() ||
16001      (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
16002    // Block capture by reference does not change the capture or
16003    // declaration reference types.
16004    ByRef = true;
16005  } else {
16006    // Block capture by copy introduces 'const'.
16007    CaptureType = CaptureType.getNonReferenceType().withConst();
16008    DeclRefType = CaptureType;
16009  }
16010
16011  // Actually capture the variable.
16012  if (BuildAndDiagnose)
16013    BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
16014                    CaptureType, Invalid);
16015
16016  return !Invalid;
16017}
16018
16019
16020/// Capture the given variable in the captured region.
16021static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
16022                                    VarDecl *Var,
16023                                    SourceLocation Loc,
16024                                    const bool BuildAndDiagnose,
16025                                    QualType &CaptureType,
16026                                    QualType &DeclRefType,
16027                                    const bool RefersToCapturedVariable,
16028                                    Sema &S, bool Invalid) {
16029  // By default, capture variables by reference.
16030  bool ByRef = true;
16031  // Using an LValue reference type is consistent with Lambdas (see below).
16032  if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
16033    if (S.isOpenMPCapturedDecl(Var)) {
16034      bool HasConst = DeclRefType.isConstQualified();
16035      DeclRefType = DeclRefType.getUnqualifiedType();
16036      // Don't lose diagnostics about assignments to const.
16037      if (HasConst)
16038        DeclRefType.addConst();
16039    }
16040    ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
16041                                    RSI->OpenMPCaptureLevel);
16042  }
16043
16044  if (ByRef)
16045    CaptureType = S.Context.getLValueReferenceType(DeclRefType);
16046  else
16047    CaptureType = DeclRefType;
16048
16049  // Actually capture the variable.
16050  if (BuildAndDiagnose)
16051    RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
16052                    Loc, SourceLocation(), CaptureType, Invalid);
16053
16054  return !Invalid;
16055}
16056
16057/// Capture the given variable in the lambda.
16058static bool captureInLambda(LambdaScopeInfo *LSI,
16059                            VarDecl *Var,
16060                            SourceLocation Loc,
16061                            const bool BuildAndDiagnose,
16062                            QualType &CaptureType,
16063                            QualType &DeclRefType,
16064                            const bool RefersToCapturedVariable,
16065                            const Sema::TryCaptureKind Kind,
16066                            SourceLocation EllipsisLoc,
16067                            const bool IsTopScope,
16068                            Sema &S, bool Invalid) {
16069  // Determine whether we are capturing by reference or by value.
16070  bool ByRef = false;
16071  if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
16072    ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
16073  } else {
16074    ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
16075  }
16076
16077  // Compute the type of the field that will capture this variable.
16078  if (ByRef) {
16079    // C++11 [expr.prim.lambda]p15:
16080    //   An entity is captured by reference if it is implicitly or
16081    //   explicitly captured but not captured by copy. It is
16082    //   unspecified whether additional unnamed non-static data
16083    //   members are declared in the closure type for entities
16084    //   captured by reference.
16085    //
16086    // FIXME: It is not clear whether we want to build an lvalue reference
16087    // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
16088    // to do the former, while EDG does the latter. Core issue 1249 will
16089    // clarify, but for now we follow GCC because it's a more permissive and
16090    // easily defensible position.
16091    CaptureType = S.Context.getLValueReferenceType(DeclRefType);
16092  } else {
16093    // C++11 [expr.prim.lambda]p14:
16094    //   For each entity captured by copy, an unnamed non-static
16095    //   data member is declared in the closure type. The
16096    //   declaration order of these members is unspecified. The type
16097    //   of such a data member is the type of the corresponding
16098    //   captured entity if the entity is not a reference to an
16099    //   object, or the referenced type otherwise. [Note: If the
16100    //   captured entity is a reference to a function, the
16101    //   corresponding data member is also a reference to a
16102    //   function. - end note ]
16103    if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
16104      if (!RefType->getPointeeType()->isFunctionType())
16105        CaptureType = RefType->getPointeeType();
16106    }
16107
16108    // Forbid the lambda copy-capture of autoreleasing variables.
16109    if (!Invalid &&
16110        CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
16111      if (BuildAndDiagnose) {
16112        S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
16113        S.Diag(Var->getLocation(), diag::note_previous_decl)
16114          << Var->getDeclName();
16115        Invalid = true;
16116      } else {
16117        return false;
16118      }
16119    }
16120
16121    // Make sure that by-copy captures are of a complete and non-abstract type.
16122    if (!Invalid && BuildAndDiagnose) {
16123      if (!CaptureType->isDependentType() &&
16124          S.RequireCompleteType(Loc, CaptureType,
16125                                diag::err_capture_of_incomplete_type,
16126                                Var->getDeclName()))
16127        Invalid = true;
16128      else if (S.RequireNonAbstractType(Loc, CaptureType,
16129                                        diag::err_capture_of_abstract_type))
16130        Invalid = true;
16131    }
16132  }
16133
16134  // Compute the type of a reference to this captured variable.
16135  if (ByRef)
16136    DeclRefType = CaptureType.getNonReferenceType();
16137  else {
16138    // C++ [expr.prim.lambda]p5:
16139    //   The closure type for a lambda-expression has a public inline
16140    //   function call operator [...]. This function call operator is
16141    //   declared const (9.3.1) if and only if the lambda-expression's
16142    //   parameter-declaration-clause is not followed by mutable.
16143    DeclRefType = CaptureType.getNonReferenceType();
16144    if (!LSI->Mutable && !CaptureType->isReferenceType())
16145      DeclRefType.addConst();
16146  }
16147
16148  // Add the capture.
16149  if (BuildAndDiagnose)
16150    LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
16151                    Loc, EllipsisLoc, CaptureType, Invalid);
16152
16153  return !Invalid;
16154}
16155
16156bool Sema::tryCaptureVariable(
16157    VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
16158    SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
16159    QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
16160  // An init-capture is notionally from the context surrounding its
16161  // declaration, but its parent DC is the lambda class.
16162  DeclContext *VarDC = Var->getDeclContext();
16163  if (Var->isInitCapture())
16164    VarDC = VarDC->getParent();
16165
16166  DeclContext *DC = CurContext;
16167  const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
16168      ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
16169  // We need to sync up the Declaration Context with the
16170  // FunctionScopeIndexToStopAt
16171  if (FunctionScopeIndexToStopAt) {
16172    unsigned FSIndex = FunctionScopes.size() - 1;
16173    while (FSIndex != MaxFunctionScopesIndex) {
16174      DC = getLambdaAwareParentOfDeclContext(DC);
16175      --FSIndex;
16176    }
16177  }
16178
16179
16180  // If the variable is declared in the current context, there is no need to
16181  // capture it.
16182  if (VarDC == DC) return true;
16183
16184  // Capture global variables if it is required to use private copy of this
16185  // variable.
16186  bool IsGlobal = !Var->hasLocalStorage();
16187  if (IsGlobal &&
16188      !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
16189                                                MaxFunctionScopesIndex)))
16190    return true;
16191  Var = Var->getCanonicalDecl();
16192
16193  // Walk up the stack to determine whether we can capture the variable,
16194  // performing the "simple" checks that don't depend on type. We stop when
16195  // we've either hit the declared scope of the variable or find an existing
16196  // capture of that variable.  We start from the innermost capturing-entity
16197  // (the DC) and ensure that all intervening capturing-entities
16198  // (blocks/lambdas etc.) between the innermost capturer and the variable`s
16199  // declcontext can either capture the variable or have already captured
16200  // the variable.
16201  CaptureType = Var->getType();
16202  DeclRefType = CaptureType.getNonReferenceType();
16203  bool Nested = false;
16204  bool Explicit = (Kind != TryCapture_Implicit);
16205  unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
16206  do {
16207    // Only block literals, captured statements, and lambda expressions can
16208    // capture; other scopes don't work.
16209    DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
16210                                                              ExprLoc,
16211                                                              BuildAndDiagnose,
16212                                                              *this);
16213    // We need to check for the parent *first* because, if we *have*
16214    // private-captured a global variable, we need to recursively capture it in
16215    // intermediate blocks, lambdas, etc.
16216    if (!ParentDC) {
16217      if (IsGlobal) {
16218        FunctionScopesIndex = MaxFunctionScopesIndex - 1;
16219        break;
16220      }
16221      return true;
16222    }
16223
16224    FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
16225    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
16226
16227
16228    // Check whether we've already captured it.
16229    if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
16230                                             DeclRefType)) {
16231      CSI->getCapture(Var).markUsed(BuildAndDiagnose);
16232      break;
16233    }
16234    // If we are instantiating a generic lambda call operator body,
16235    // we do not want to capture new variables.  What was captured
16236    // during either a lambdas transformation or initial parsing
16237    // should be used.
16238    if (isGenericLambdaCallOperatorSpecialization(DC)) {
16239      if (BuildAndDiagnose) {
16240        LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
16241        if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
16242          Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
16243          Diag(Var->getLocation(), diag::note_previous_decl)
16244             << Var->getDeclName();
16245          Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
16246        } else
16247          diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
16248      }
16249      return true;
16250    }
16251
16252    // Try to capture variable-length arrays types.
16253    if (Var->getType()->isVariablyModifiedType()) {
16254      // We're going to walk down into the type and look for VLA
16255      // expressions.
16256      QualType QTy = Var->getType();
16257      if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
16258        QTy = PVD->getOriginalType();
16259      captureVariablyModifiedType(Context, QTy, CSI);
16260    }
16261
16262    if (getLangOpts().OpenMP) {
16263      if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
16264        // OpenMP private variables should not be captured in outer scope, so
16265        // just break here. Similarly, global variables that are captured in a
16266        // target region should not be captured outside the scope of the region.
16267        if (RSI->CapRegionKind == CR_OpenMP) {
16268          bool IsOpenMPPrivateDecl = isOpenMPPrivateDecl(Var, RSI->OpenMPLevel);
16269          // If the variable is private (i.e. not captured) and has variably
16270          // modified type, we still need to capture the type for correct
16271          // codegen in all regions, associated with the construct. Currently,
16272          // it is captured in the innermost captured region only.
16273          if (IsOpenMPPrivateDecl && Var->getType()->isVariablyModifiedType()) {
16274            QualType QTy = Var->getType();
16275            if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
16276              QTy = PVD->getOriginalType();
16277            for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
16278                 I < E; ++I) {
16279              auto *OuterRSI = cast<CapturedRegionScopeInfo>(
16280                  FunctionScopes[FunctionScopesIndex - I]);
16281              assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
16282                     "Wrong number of captured regions associated with the "
16283                     "OpenMP construct.");
16284              captureVariablyModifiedType(Context, QTy, OuterRSI);
16285            }
16286          }
16287          bool IsTargetCap = !IsOpenMPPrivateDecl &&
16288                             isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel);
16289          // When we detect target captures we are looking from inside the
16290          // target region, therefore we need to propagate the capture from the
16291          // enclosing region. Therefore, the capture is not initially nested.
16292          if (IsTargetCap)
16293            adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
16294
16295          if (IsTargetCap || IsOpenMPPrivateDecl) {
16296            Nested = !IsTargetCap;
16297            DeclRefType = DeclRefType.getUnqualifiedType();
16298            CaptureType = Context.getLValueReferenceType(DeclRefType);
16299            break;
16300          }
16301        }
16302      }
16303    }
16304    if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
16305      // No capture-default, and this is not an explicit capture
16306      // so cannot capture this variable.
16307      if (BuildAndDiagnose) {
16308        Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
16309        Diag(Var->getLocation(), diag::note_previous_decl)
16310          << Var->getDeclName();
16311        if (cast<LambdaScopeInfo>(CSI)->Lambda)
16312          Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getBeginLoc(),
16313               diag::note_lambda_decl);
16314        // FIXME: If we error out because an outer lambda can not implicitly
16315        // capture a variable that an inner lambda explicitly captures, we
16316        // should have the inner lambda do the explicit capture - because
16317        // it makes for cleaner diagnostics later.  This would purely be done
16318        // so that the diagnostic does not misleadingly claim that a variable
16319        // can not be captured by a lambda implicitly even though it is captured
16320        // explicitly.  Suggestion:
16321        //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
16322        //    at the function head
16323        //  - cache the StartingDeclContext - this must be a lambda
16324        //  - captureInLambda in the innermost lambda the variable.
16325      }
16326      return true;
16327    }
16328
16329    FunctionScopesIndex--;
16330    DC = ParentDC;
16331    Explicit = false;
16332  } while (!VarDC->Equals(DC));
16333
16334  // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
16335  // computing the type of the capture at each step, checking type-specific
16336  // requirements, and adding captures if requested.
16337  // If the variable had already been captured previously, we start capturing
16338  // at the lambda nested within that one.
16339  bool Invalid = false;
16340  for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
16341       ++I) {
16342    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
16343
16344    // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
16345    // certain types of variables (unnamed, variably modified types etc.)
16346    // so check for eligibility.
16347    if (!Invalid)
16348      Invalid =
16349          !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
16350
16351    // After encountering an error, if we're actually supposed to capture, keep
16352    // capturing in nested contexts to suppress any follow-on diagnostics.
16353    if (Invalid && !BuildAndDiagnose)
16354      return true;
16355
16356    if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
16357      Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
16358                               DeclRefType, Nested, *this, Invalid);
16359      Nested = true;
16360    } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
16361      Invalid = !captureInCapturedRegion(RSI, Var, ExprLoc, BuildAndDiagnose,
16362                                         CaptureType, DeclRefType, Nested,
16363                                         *this, Invalid);
16364      Nested = true;
16365    } else {
16366      LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
16367      Invalid =
16368          !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
16369                           DeclRefType, Nested, Kind, EllipsisLoc,
16370                           /*IsTopScope*/ I == N - 1, *this, Invalid);
16371      Nested = true;
16372    }
16373
16374    if (Invalid && !BuildAndDiagnose)
16375      return true;
16376  }
16377  return Invalid;
16378}
16379
16380bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
16381                              TryCaptureKind Kind, SourceLocation EllipsisLoc) {
16382  QualType CaptureType;
16383  QualType DeclRefType;
16384  return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
16385                            /*BuildAndDiagnose=*/true, CaptureType,
16386                            DeclRefType, nullptr);
16387}
16388
16389bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
16390  QualType CaptureType;
16391  QualType DeclRefType;
16392  return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
16393                             /*BuildAndDiagnose=*/false, CaptureType,
16394                             DeclRefType, nullptr);
16395}
16396
16397QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
16398  QualType CaptureType;
16399  QualType DeclRefType;
16400
16401  // Determine whether we can capture this variable.
16402  if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
16403                         /*BuildAndDiagnose=*/false, CaptureType,
16404                         DeclRefType, nullptr))
16405    return QualType();
16406
16407  return DeclRefType;
16408}
16409
16410namespace {
16411// Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
16412// The produced TemplateArgumentListInfo* points to data stored within this
16413// object, so should only be used in contexts where the pointer will not be
16414// used after the CopiedTemplateArgs object is destroyed.
16415class CopiedTemplateArgs {
16416  bool HasArgs;
16417  TemplateArgumentListInfo TemplateArgStorage;
16418public:
16419  template<typename RefExpr>
16420  CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
16421    if (HasArgs)
16422      E->copyTemplateArgumentsInto(TemplateArgStorage);
16423  }
16424  operator TemplateArgumentListInfo*()
16425#ifdef __has_cpp_attribute
16426#if __has_cpp_attribute(clang::lifetimebound)
16427  [[clang::lifetimebound]]
16428#endif
16429#endif
16430  {
16431    return HasArgs ? &TemplateArgStorage : nullptr;
16432  }
16433};
16434}
16435
16436/// Walk the set of potential results of an expression and mark them all as
16437/// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
16438///
16439/// \return A new expression if we found any potential results, ExprEmpty() if
16440///         not, and ExprError() if we diagnosed an error.
16441static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
16442                                                      NonOdrUseReason NOUR) {
16443  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
16444  // an object that satisfies the requirements for appearing in a
16445  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
16446  // is immediately applied."  This function handles the lvalue-to-rvalue
16447  // conversion part.
16448  //
16449  // If we encounter a node that claims to be an odr-use but shouldn't be, we
16450  // transform it into the relevant kind of non-odr-use node and rebuild the
16451  // tree of nodes leading to it.
16452  //
16453  // This is a mini-TreeTransform that only transforms a restricted subset of
16454  // nodes (and only certain operands of them).
16455
16456  // Rebuild a subexpression.
16457  auto Rebuild = [&](Expr *Sub) {
16458    return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
16459  };
16460
16461  // Check whether a potential result satisfies the requirements of NOUR.
16462  auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
16463    // Any entity other than a VarDecl is always odr-used whenever it's named
16464    // in a potentially-evaluated expression.
16465    auto *VD = dyn_cast<VarDecl>(D);
16466    if (!VD)
16467      return true;
16468
16469    // C++2a [basic.def.odr]p4:
16470    //   A variable x whose name appears as a potentially-evalauted expression
16471    //   e is odr-used by e unless
16472    //   -- x is a reference that is usable in constant expressions, or
16473    //   -- x is a variable of non-reference type that is usable in constant
16474    //      expressions and has no mutable subobjects, and e is an element of
16475    //      the set of potential results of an expression of
16476    //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
16477    //      conversion is applied, or
16478    //   -- x is a variable of non-reference type, and e is an element of the
16479    //      set of potential results of a discarded-value expression to which
16480    //      the lvalue-to-rvalue conversion is not applied
16481    //
16482    // We check the first bullet and the "potentially-evaluated" condition in
16483    // BuildDeclRefExpr. We check the type requirements in the second bullet
16484    // in CheckLValueToRValueConversionOperand below.
16485    switch (NOUR) {
16486    case NOUR_None:
16487    case NOUR_Unevaluated:
16488      llvm_unreachable("unexpected non-odr-use-reason");
16489
16490    case NOUR_Constant:
16491      // Constant references were handled when they were built.
16492      if (VD->getType()->isReferenceType())
16493        return true;
16494      if (auto *RD = VD->getType()->getAsCXXRecordDecl())
16495        if (RD->hasMutableFields())
16496          return true;
16497      if (!VD->isUsableInConstantExpressions(S.Context))
16498        return true;
16499      break;
16500
16501    case NOUR_Discarded:
16502      if (VD->getType()->isReferenceType())
16503        return true;
16504      break;
16505    }
16506    return false;
16507  };
16508
16509  // Mark that this expression does not constitute an odr-use.
16510  auto MarkNotOdrUsed = [&] {
16511    S.MaybeODRUseExprs.erase(E);
16512    if (LambdaScopeInfo *LSI = S.getCurLambda())
16513      LSI->markVariableExprAsNonODRUsed(E);
16514  };
16515
16516  // C++2a [basic.def.odr]p2:
16517  //   The set of potential results of an expression e is defined as follows:
16518  switch (E->getStmtClass()) {
16519  //   -- If e is an id-expression, ...
16520  case Expr::DeclRefExprClass: {
16521    auto *DRE = cast<DeclRefExpr>(E);
16522    if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
16523      break;
16524
16525    // Rebuild as a non-odr-use DeclRefExpr.
16526    MarkNotOdrUsed();
16527    return DeclRefExpr::Create(
16528        S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
16529        DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
16530        DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
16531        DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
16532  }
16533
16534  case Expr::FunctionParmPackExprClass: {
16535    auto *FPPE = cast<FunctionParmPackExpr>(E);
16536    // If any of the declarations in the pack is odr-used, then the expression
16537    // as a whole constitutes an odr-use.
16538    for (VarDecl *D : *FPPE)
16539      if (IsPotentialResultOdrUsed(D))
16540        return ExprEmpty();
16541
16542    // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
16543    // nothing cares about whether we marked this as an odr-use, but it might
16544    // be useful for non-compiler tools.
16545    MarkNotOdrUsed();
16546    break;
16547  }
16548
16549  //   -- If e is a subscripting operation with an array operand...
16550  case Expr::ArraySubscriptExprClass: {
16551    auto *ASE = cast<ArraySubscriptExpr>(E);
16552    Expr *OldBase = ASE->getBase()->IgnoreImplicit();
16553    if (!OldBase->getType()->isArrayType())
16554      break;
16555    ExprResult Base = Rebuild(OldBase);
16556    if (!Base.isUsable())
16557      return Base;
16558    Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
16559    Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
16560    SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
16561    return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
16562                                     ASE->getRBracketLoc());
16563  }
16564
16565  case Expr::MemberExprClass: {
16566    auto *ME = cast<MemberExpr>(E);
16567    // -- If e is a class member access expression [...] naming a non-static
16568    //    data member...
16569    if (isa<FieldDecl>(ME->getMemberDecl())) {
16570      ExprResult Base = Rebuild(ME->getBase());
16571      if (!Base.isUsable())
16572        return Base;
16573      return MemberExpr::Create(
16574          S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
16575          ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
16576          ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
16577          CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
16578          ME->getObjectKind(), ME->isNonOdrUse());
16579    }
16580
16581    if (ME->getMemberDecl()->isCXXInstanceMember())
16582      break;
16583
16584    // -- If e is a class member access expression naming a static data member,
16585    //    ...
16586    if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
16587      break;
16588
16589    // Rebuild as a non-odr-use MemberExpr.
16590    MarkNotOdrUsed();
16591    return MemberExpr::Create(
16592        S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
16593        ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
16594        ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
16595        ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
16596    return ExprEmpty();
16597  }
16598
16599  case Expr::BinaryOperatorClass: {
16600    auto *BO = cast<BinaryOperator>(E);
16601    Expr *LHS = BO->getLHS();
16602    Expr *RHS = BO->getRHS();
16603    // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
16604    if (BO->getOpcode() == BO_PtrMemD) {
16605      ExprResult Sub = Rebuild(LHS);
16606      if (!Sub.isUsable())
16607        return Sub;
16608      LHS = Sub.get();
16609    //   -- If e is a comma expression, ...
16610    } else if (BO->getOpcode() == BO_Comma) {
16611      ExprResult Sub = Rebuild(RHS);
16612      if (!Sub.isUsable())
16613        return Sub;
16614      RHS = Sub.get();
16615    } else {
16616      break;
16617    }
16618    return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
16619                        LHS, RHS);
16620  }
16621
16622  //   -- If e has the form (e1)...
16623  case Expr::ParenExprClass: {
16624    auto *PE = cast<ParenExpr>(E);
16625    ExprResult Sub = Rebuild(PE->getSubExpr());
16626    if (!Sub.isUsable())
16627      return Sub;
16628    return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
16629  }
16630
16631  //   -- If e is a glvalue conditional expression, ...
16632  // We don't apply this to a binary conditional operator. FIXME: Should we?
16633  case Expr::ConditionalOperatorClass: {
16634    auto *CO = cast<ConditionalOperator>(E);
16635    ExprResult LHS = Rebuild(CO->getLHS());
16636    if (LHS.isInvalid())
16637      return ExprError();
16638    ExprResult RHS = Rebuild(CO->getRHS());
16639    if (RHS.isInvalid())
16640      return ExprError();
16641    if (!LHS.isUsable() && !RHS.isUsable())
16642      return ExprEmpty();
16643    if (!LHS.isUsable())
16644      LHS = CO->getLHS();
16645    if (!RHS.isUsable())
16646      RHS = CO->getRHS();
16647    return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
16648                                CO->getCond(), LHS.get(), RHS.get());
16649  }
16650
16651  // [Clang extension]
16652  //   -- If e has the form __extension__ e1...
16653  case Expr::UnaryOperatorClass: {
16654    auto *UO = cast<UnaryOperator>(E);
16655    if (UO->getOpcode() != UO_Extension)
16656      break;
16657    ExprResult Sub = Rebuild(UO->getSubExpr());
16658    if (!Sub.isUsable())
16659      return Sub;
16660    return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
16661                          Sub.get());
16662  }
16663
16664  // [Clang extension]
16665  //   -- If e has the form _Generic(...), the set of potential results is the
16666  //      union of the sets of potential results of the associated expressions.
16667  case Expr::GenericSelectionExprClass: {
16668    auto *GSE = cast<GenericSelectionExpr>(E);
16669
16670    SmallVector<Expr *, 4> AssocExprs;
16671    bool AnyChanged = false;
16672    for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
16673      ExprResult AssocExpr = Rebuild(OrigAssocExpr);
16674      if (AssocExpr.isInvalid())
16675        return ExprError();
16676      if (AssocExpr.isUsable()) {
16677        AssocExprs.push_back(AssocExpr.get());
16678        AnyChanged = true;
16679      } else {
16680        AssocExprs.push_back(OrigAssocExpr);
16681      }
16682    }
16683
16684    return AnyChanged ? S.CreateGenericSelectionExpr(
16685                            GSE->getGenericLoc(), GSE->getDefaultLoc(),
16686                            GSE->getRParenLoc(), GSE->getControllingExpr(),
16687                            GSE->getAssocTypeSourceInfos(), AssocExprs)
16688                      : ExprEmpty();
16689  }
16690
16691  // [Clang extension]
16692  //   -- If e has the form __builtin_choose_expr(...), the set of potential
16693  //      results is the union of the sets of potential results of the
16694  //      second and third subexpressions.
16695  case Expr::ChooseExprClass: {
16696    auto *CE = cast<ChooseExpr>(E);
16697
16698    ExprResult LHS = Rebuild(CE->getLHS());
16699    if (LHS.isInvalid())
16700      return ExprError();
16701
16702    ExprResult RHS = Rebuild(CE->getLHS());
16703    if (RHS.isInvalid())
16704      return ExprError();
16705
16706    if (!LHS.get() && !RHS.get())
16707      return ExprEmpty();
16708    if (!LHS.isUsable())
16709      LHS = CE->getLHS();
16710    if (!RHS.isUsable())
16711      RHS = CE->getRHS();
16712
16713    return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
16714                             RHS.get(), CE->getRParenLoc());
16715  }
16716
16717  // Step through non-syntactic nodes.
16718  case Expr::ConstantExprClass: {
16719    auto *CE = cast<ConstantExpr>(E);
16720    ExprResult Sub = Rebuild(CE->getSubExpr());
16721    if (!Sub.isUsable())
16722      return Sub;
16723    return ConstantExpr::Create(S.Context, Sub.get());
16724  }
16725
16726  // We could mostly rely on the recursive rebuilding to rebuild implicit
16727  // casts, but not at the top level, so rebuild them here.
16728  case Expr::ImplicitCastExprClass: {
16729    auto *ICE = cast<ImplicitCastExpr>(E);
16730    // Only step through the narrow set of cast kinds we expect to encounter.
16731    // Anything else suggests we've left the region in which potential results
16732    // can be found.
16733    switch (ICE->getCastKind()) {
16734    case CK_NoOp:
16735    case CK_DerivedToBase:
16736    case CK_UncheckedDerivedToBase: {
16737      ExprResult Sub = Rebuild(ICE->getSubExpr());
16738      if (!Sub.isUsable())
16739        return Sub;
16740      CXXCastPath Path(ICE->path());
16741      return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
16742                                 ICE->getValueKind(), &Path);
16743    }
16744
16745    default:
16746      break;
16747    }
16748    break;
16749  }
16750
16751  default:
16752    break;
16753  }
16754
16755  // Can't traverse through this node. Nothing to do.
16756  return ExprEmpty();
16757}
16758
16759ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
16760  // Check whether the operand is or contains an object of non-trivial C union
16761  // type.
16762  if (E->getType().isVolatileQualified() &&
16763      (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
16764       E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
16765    checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
16766                          Sema::NTCUC_LValueToRValueVolatile,
16767                          NTCUK_Destruct|NTCUK_Copy);
16768
16769  // C++2a [basic.def.odr]p4:
16770  //   [...] an expression of non-volatile-qualified non-class type to which
16771  //   the lvalue-to-rvalue conversion is applied [...]
16772  if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
16773    return E;
16774
16775  ExprResult Result =
16776      rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
16777  if (Result.isInvalid())
16778    return ExprError();
16779  return Result.get() ? Result : E;
16780}
16781
16782ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
16783  Res = CorrectDelayedTyposInExpr(Res);
16784
16785  if (!Res.isUsable())
16786    return Res;
16787
16788  // If a constant-expression is a reference to a variable where we delay
16789  // deciding whether it is an odr-use, just assume we will apply the
16790  // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
16791  // (a non-type template argument), we have special handling anyway.
16792  return CheckLValueToRValueConversionOperand(Res.get());
16793}
16794
16795void Sema::CleanupVarDeclMarking() {
16796  // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
16797  // call.
16798  MaybeODRUseExprSet LocalMaybeODRUseExprs;
16799  std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
16800
16801  for (Expr *E : LocalMaybeODRUseExprs) {
16802    if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
16803      MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
16804                         DRE->getLocation(), *this);
16805    } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
16806      MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
16807                         *this);
16808    } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
16809      for (VarDecl *VD : *FP)
16810        MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
16811    } else {
16812      llvm_unreachable("Unexpected expression");
16813    }
16814  }
16815
16816  assert(MaybeODRUseExprs.empty() &&
16817         "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
16818}
16819
16820static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
16821                                    VarDecl *Var, Expr *E) {
16822  assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
16823          isa<FunctionParmPackExpr>(E)) &&
16824         "Invalid Expr argument to DoMarkVarDeclReferenced");
16825  Var->setReferenced();
16826
16827  if (Var->isInvalidDecl())
16828    return;
16829
16830  auto *MSI = Var->getMemberSpecializationInfo();
16831  TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
16832                                       : Var->getTemplateSpecializationKind();
16833
16834  OdrUseContext OdrUse = isOdrUseContext(SemaRef);
16835  bool UsableInConstantExpr =
16836      Var->mightBeUsableInConstantExpressions(SemaRef.Context);
16837
16838  // C++20 [expr.const]p12:
16839  //   A variable [...] is needed for constant evaluation if it is [...] a
16840  //   variable whose name appears as a potentially constant evaluated
16841  //   expression that is either a contexpr variable or is of non-volatile
16842  //   const-qualified integral type or of reference type
16843  bool NeededForConstantEvaluation =
16844      isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
16845
16846  bool NeedDefinition =
16847      OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
16848
16849  VarTemplateSpecializationDecl *VarSpec =
16850      dyn_cast<VarTemplateSpecializationDecl>(Var);
16851  assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
16852         "Can't instantiate a partial template specialization.");
16853
16854  // If this might be a member specialization of a static data member, check
16855  // the specialization is visible. We already did the checks for variable
16856  // template specializations when we created them.
16857  if (NeedDefinition && TSK != TSK_Undeclared &&
16858      !isa<VarTemplateSpecializationDecl>(Var))
16859    SemaRef.checkSpecializationVisibility(Loc, Var);
16860
16861  // Perform implicit instantiation of static data members, static data member
16862  // templates of class templates, and variable template specializations. Delay
16863  // instantiations of variable templates, except for those that could be used
16864  // in a constant expression.
16865  if (NeedDefinition && isTemplateInstantiation(TSK)) {
16866    // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
16867    // instantiation declaration if a variable is usable in a constant
16868    // expression (among other cases).
16869    bool TryInstantiating =
16870        TSK == TSK_ImplicitInstantiation ||
16871        (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
16872
16873    if (TryInstantiating) {
16874      SourceLocation PointOfInstantiation =
16875          MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
16876      bool FirstInstantiation = PointOfInstantiation.isInvalid();
16877      if (FirstInstantiation) {
16878        PointOfInstantiation = Loc;
16879        if (MSI)
16880          MSI->setPointOfInstantiation(PointOfInstantiation);
16881        else
16882          Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
16883      }
16884
16885      bool InstantiationDependent = false;
16886      bool IsNonDependent =
16887          VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
16888                        VarSpec->getTemplateArgsInfo(), InstantiationDependent)
16889                  : true;
16890
16891      // Do not instantiate specializations that are still type-dependent.
16892      if (IsNonDependent) {
16893        if (UsableInConstantExpr) {
16894          // Do not defer instantiations of variables that could be used in a
16895          // constant expression.
16896          SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
16897            SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
16898          });
16899        } else if (FirstInstantiation ||
16900                   isa<VarTemplateSpecializationDecl>(Var)) {
16901          // FIXME: For a specialization of a variable template, we don't
16902          // distinguish between "declaration and type implicitly instantiated"
16903          // and "implicit instantiation of definition requested", so we have
16904          // no direct way to avoid enqueueing the pending instantiation
16905          // multiple times.
16906          SemaRef.PendingInstantiations
16907              .push_back(std::make_pair(Var, PointOfInstantiation));
16908        }
16909      }
16910    }
16911  }
16912
16913  // C++2a [basic.def.odr]p4:
16914  //   A variable x whose name appears as a potentially-evaluated expression e
16915  //   is odr-used by e unless
16916  //   -- x is a reference that is usable in constant expressions
16917  //   -- x is a variable of non-reference type that is usable in constant
16918  //      expressions and has no mutable subobjects [FIXME], and e is an
16919  //      element of the set of potential results of an expression of
16920  //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
16921  //      conversion is applied
16922  //   -- x is a variable of non-reference type, and e is an element of the set
16923  //      of potential results of a discarded-value expression to which the
16924  //      lvalue-to-rvalue conversion is not applied [FIXME]
16925  //
16926  // We check the first part of the second bullet here, and
16927  // Sema::CheckLValueToRValueConversionOperand deals with the second part.
16928  // FIXME: To get the third bullet right, we need to delay this even for
16929  // variables that are not usable in constant expressions.
16930
16931  // If we already know this isn't an odr-use, there's nothing more to do.
16932  if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
16933    if (DRE->isNonOdrUse())
16934      return;
16935  if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
16936    if (ME->isNonOdrUse())
16937      return;
16938
16939  switch (OdrUse) {
16940  case OdrUseContext::None:
16941    assert((!E || isa<FunctionParmPackExpr>(E)) &&
16942           "missing non-odr-use marking for unevaluated decl ref");
16943    break;
16944
16945  case OdrUseContext::FormallyOdrUsed:
16946    // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
16947    // behavior.
16948    break;
16949
16950  case OdrUseContext::Used:
16951    // If we might later find that this expression isn't actually an odr-use,
16952    // delay the marking.
16953    if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
16954      SemaRef.MaybeODRUseExprs.insert(E);
16955    else
16956      MarkVarDeclODRUsed(Var, Loc, SemaRef);
16957    break;
16958
16959  case OdrUseContext::Dependent:
16960    // If this is a dependent context, we don't need to mark variables as
16961    // odr-used, but we may still need to track them for lambda capture.
16962    // FIXME: Do we also need to do this inside dependent typeid expressions
16963    // (which are modeled as unevaluated at this point)?
16964    const bool RefersToEnclosingScope =
16965        (SemaRef.CurContext != Var->getDeclContext() &&
16966         Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
16967    if (RefersToEnclosingScope) {
16968      LambdaScopeInfo *const LSI =
16969          SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
16970      if (LSI && (!LSI->CallOperator ||
16971                  !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
16972        // If a variable could potentially be odr-used, defer marking it so
16973        // until we finish analyzing the full expression for any
16974        // lvalue-to-rvalue
16975        // or discarded value conversions that would obviate odr-use.
16976        // Add it to the list of potential captures that will be analyzed
16977        // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
16978        // unless the variable is a reference that was initialized by a constant
16979        // expression (this will never need to be captured or odr-used).
16980        //
16981        // FIXME: We can simplify this a lot after implementing P0588R1.
16982        assert(E && "Capture variable should be used in an expression.");
16983        if (!Var->getType()->isReferenceType() ||
16984            !Var->isUsableInConstantExpressions(SemaRef.Context))
16985          LSI->addPotentialCapture(E->IgnoreParens());
16986      }
16987    }
16988    break;
16989  }
16990}
16991
16992/// Mark a variable referenced, and check whether it is odr-used
16993/// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
16994/// used directly for normal expressions referring to VarDecl.
16995void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
16996  DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
16997}
16998
16999static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
17000                               Decl *D, Expr *E, bool MightBeOdrUse) {
17001  if (SemaRef.isInOpenMPDeclareTargetContext())
17002    SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
17003
17004  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
17005    DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
17006    return;
17007  }
17008
17009  SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
17010
17011  // If this is a call to a method via a cast, also mark the method in the
17012  // derived class used in case codegen can devirtualize the call.
17013  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
17014  if (!ME)
17015    return;
17016  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
17017  if (!MD)
17018    return;
17019  // Only attempt to devirtualize if this is truly a virtual call.
17020  bool IsVirtualCall = MD->isVirtual() &&
17021                          ME->performsVirtualDispatch(SemaRef.getLangOpts());
17022  if (!IsVirtualCall)
17023    return;
17024
17025  // If it's possible to devirtualize the call, mark the called function
17026  // referenced.
17027  CXXMethodDecl *DM = MD->getDevirtualizedMethod(
17028      ME->getBase(), SemaRef.getLangOpts().AppleKext);
17029  if (DM)
17030    SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
17031}
17032
17033/// Perform reference-marking and odr-use handling for a DeclRefExpr.
17034void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
17035  // TODO: update this with DR# once a defect report is filed.
17036  // C++11 defect. The address of a pure member should not be an ODR use, even
17037  // if it's a qualified reference.
17038  bool OdrUse = true;
17039  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
17040    if (Method->isVirtual() &&
17041        !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
17042      OdrUse = false;
17043  MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
17044}
17045
17046/// Perform reference-marking and odr-use handling for a MemberExpr.
17047void Sema::MarkMemberReferenced(MemberExpr *E) {
17048  // C++11 [basic.def.odr]p2:
17049  //   A non-overloaded function whose name appears as a potentially-evaluated
17050  //   expression or a member of a set of candidate functions, if selected by
17051  //   overload resolution when referred to from a potentially-evaluated
17052  //   expression, is odr-used, unless it is a pure virtual function and its
17053  //   name is not explicitly qualified.
17054  bool MightBeOdrUse = true;
17055  if (E->performsVirtualDispatch(getLangOpts())) {
17056    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
17057      if (Method->isPure())
17058        MightBeOdrUse = false;
17059  }
17060  SourceLocation Loc =
17061      E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
17062  MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
17063}
17064
17065/// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
17066void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
17067  for (VarDecl *VD : *E)
17068    MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true);
17069}
17070
17071/// Perform marking for a reference to an arbitrary declaration.  It
17072/// marks the declaration referenced, and performs odr-use checking for
17073/// functions and variables. This method should not be used when building a
17074/// normal expression which refers to a variable.
17075void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
17076                                 bool MightBeOdrUse) {
17077  if (MightBeOdrUse) {
17078    if (auto *VD = dyn_cast<VarDecl>(D)) {
17079      MarkVariableReferenced(Loc, VD);
17080      return;
17081    }
17082  }
17083  if (auto *FD = dyn_cast<FunctionDecl>(D)) {
17084    MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
17085    return;
17086  }
17087  D->setReferenced();
17088}
17089
17090namespace {
17091  // Mark all of the declarations used by a type as referenced.
17092  // FIXME: Not fully implemented yet! We need to have a better understanding
17093  // of when we're entering a context we should not recurse into.
17094  // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
17095  // TreeTransforms rebuilding the type in a new context. Rather than
17096  // duplicating the TreeTransform logic, we should consider reusing it here.
17097  // Currently that causes problems when rebuilding LambdaExprs.
17098  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
17099    Sema &S;
17100    SourceLocation Loc;
17101
17102  public:
17103    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
17104
17105    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
17106
17107    bool TraverseTemplateArgument(const TemplateArgument &Arg);
17108  };
17109}
17110
17111bool MarkReferencedDecls::TraverseTemplateArgument(
17112    const TemplateArgument &Arg) {
17113  {
17114    // A non-type template argument is a constant-evaluated context.
17115    EnterExpressionEvaluationContext Evaluated(
17116        S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
17117    if (Arg.getKind() == TemplateArgument::Declaration) {
17118      if (Decl *D = Arg.getAsDecl())
17119        S.MarkAnyDeclReferenced(Loc, D, true);
17120    } else if (Arg.getKind() == TemplateArgument::Expression) {
17121      S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
17122    }
17123  }
17124
17125  return Inherited::TraverseTemplateArgument(Arg);
17126}
17127
17128void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
17129  MarkReferencedDecls Marker(*this, Loc);
17130  Marker.TraverseType(T);
17131}
17132
17133namespace {
17134  /// Helper class that marks all of the declarations referenced by
17135  /// potentially-evaluated subexpressions as "referenced".
17136  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
17137    Sema &S;
17138    bool SkipLocalVariables;
17139
17140  public:
17141    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
17142
17143    EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
17144      : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
17145
17146    void VisitDeclRefExpr(DeclRefExpr *E) {
17147      // If we were asked not to visit local variables, don't.
17148      if (SkipLocalVariables) {
17149        if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
17150          if (VD->hasLocalStorage())
17151            return;
17152      }
17153
17154      S.MarkDeclRefReferenced(E);
17155    }
17156
17157    void VisitMemberExpr(MemberExpr *E) {
17158      S.MarkMemberReferenced(E);
17159      Inherited::VisitMemberExpr(E);
17160    }
17161
17162    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
17163      S.MarkFunctionReferenced(
17164          E->getBeginLoc(),
17165          const_cast<CXXDestructorDecl *>(E->getTemporary()->getDestructor()));
17166      Visit(E->getSubExpr());
17167    }
17168
17169    void VisitCXXNewExpr(CXXNewExpr *E) {
17170      if (E->getOperatorNew())
17171        S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorNew());
17172      if (E->getOperatorDelete())
17173        S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorDelete());
17174      Inherited::VisitCXXNewExpr(E);
17175    }
17176
17177    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
17178      if (E->getOperatorDelete())
17179        S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorDelete());
17180      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
17181      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
17182        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
17183        S.MarkFunctionReferenced(E->getBeginLoc(), S.LookupDestructor(Record));
17184      }
17185
17186      Inherited::VisitCXXDeleteExpr(E);
17187    }
17188
17189    void VisitCXXConstructExpr(CXXConstructExpr *E) {
17190      S.MarkFunctionReferenced(E->getBeginLoc(), E->getConstructor());
17191      Inherited::VisitCXXConstructExpr(E);
17192    }
17193
17194    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
17195      Visit(E->getExpr());
17196    }
17197  };
17198}
17199
17200/// Mark any declarations that appear within this expression or any
17201/// potentially-evaluated subexpressions as "referenced".
17202///
17203/// \param SkipLocalVariables If true, don't mark local variables as
17204/// 'referenced'.
17205void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
17206                                            bool SkipLocalVariables) {
17207  EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
17208}
17209
17210/// Emit a diagnostic that describes an effect on the run-time behavior
17211/// of the program being compiled.
17212///
17213/// This routine emits the given diagnostic when the code currently being
17214/// type-checked is "potentially evaluated", meaning that there is a
17215/// possibility that the code will actually be executable. Code in sizeof()
17216/// expressions, code used only during overload resolution, etc., are not
17217/// potentially evaluated. This routine will suppress such diagnostics or,
17218/// in the absolutely nutty case of potentially potentially evaluated
17219/// expressions (C++ typeid), queue the diagnostic to potentially emit it
17220/// later.
17221///
17222/// This routine should be used for all diagnostics that describe the run-time
17223/// behavior of a program, such as passing a non-POD value through an ellipsis.
17224/// Failure to do so will likely result in spurious diagnostics or failures
17225/// during overload resolution or within sizeof/alignof/typeof/typeid.
17226bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
17227                               const PartialDiagnostic &PD) {
17228  switch (ExprEvalContexts.back().Context) {
17229  case ExpressionEvaluationContext::Unevaluated:
17230  case ExpressionEvaluationContext::UnevaluatedList:
17231  case ExpressionEvaluationContext::UnevaluatedAbstract:
17232  case ExpressionEvaluationContext::DiscardedStatement:
17233    // The argument will never be evaluated, so don't complain.
17234    break;
17235
17236  case ExpressionEvaluationContext::ConstantEvaluated:
17237    // Relevant diagnostics should be produced by constant evaluation.
17238    break;
17239
17240  case ExpressionEvaluationContext::PotentiallyEvaluated:
17241  case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17242    if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
17243      FunctionScopes.back()->PossiblyUnreachableDiags.
17244        push_back(sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
17245      return true;
17246    }
17247
17248    // The initializer of a constexpr variable or of the first declaration of a
17249    // static data member is not syntactically a constant evaluated constant,
17250    // but nonetheless is always required to be a constant expression, so we
17251    // can skip diagnosing.
17252    // FIXME: Using the mangling context here is a hack.
17253    if (auto *VD = dyn_cast_or_null<VarDecl>(
17254            ExprEvalContexts.back().ManglingContextDecl)) {
17255      if (VD->isConstexpr() ||
17256          (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
17257        break;
17258      // FIXME: For any other kind of variable, we should build a CFG for its
17259      // initializer and check whether the context in question is reachable.
17260    }
17261
17262    Diag(Loc, PD);
17263    return true;
17264  }
17265
17266  return false;
17267}
17268
17269bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
17270                               const PartialDiagnostic &PD) {
17271  return DiagRuntimeBehavior(
17272      Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
17273}
17274
17275bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
17276                               CallExpr *CE, FunctionDecl *FD) {
17277  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
17278    return false;
17279
17280  // If we're inside a decltype's expression, don't check for a valid return
17281  // type or construct temporaries until we know whether this is the last call.
17282  if (ExprEvalContexts.back().ExprContext ==
17283      ExpressionEvaluationContextRecord::EK_Decltype) {
17284    ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
17285    return false;
17286  }
17287
17288  class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
17289    FunctionDecl *FD;
17290    CallExpr *CE;
17291
17292  public:
17293    CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
17294      : FD(FD), CE(CE) { }
17295
17296    void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
17297      if (!FD) {
17298        S.Diag(Loc, diag::err_call_incomplete_return)
17299          << T << CE->getSourceRange();
17300        return;
17301      }
17302
17303      S.Diag(Loc, diag::err_call_function_incomplete_return)
17304        << CE->getSourceRange() << FD->getDeclName() << T;
17305      S.Diag(FD->getLocation(), diag::note_entity_declared_at)
17306          << FD->getDeclName();
17307    }
17308  } Diagnoser(FD, CE);
17309
17310  if (RequireCompleteType(Loc, ReturnType, Diagnoser))
17311    return true;
17312
17313  return false;
17314}
17315
17316// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
17317// will prevent this condition from triggering, which is what we want.
17318void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
17319  SourceLocation Loc;
17320
17321  unsigned diagnostic = diag::warn_condition_is_assignment;
17322  bool IsOrAssign = false;
17323
17324  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
17325    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
17326      return;
17327
17328    IsOrAssign = Op->getOpcode() == BO_OrAssign;
17329
17330    // Greylist some idioms by putting them into a warning subcategory.
17331    if (ObjCMessageExpr *ME
17332          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
17333      Selector Sel = ME->getSelector();
17334
17335      // self = [<foo> init...]
17336      if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
17337        diagnostic = diag::warn_condition_is_idiomatic_assignment;
17338
17339      // <foo> = [<bar> nextObject]
17340      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
17341        diagnostic = diag::warn_condition_is_idiomatic_assignment;
17342    }
17343
17344    Loc = Op->getOperatorLoc();
17345  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
17346    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
17347      return;
17348
17349    IsOrAssign = Op->getOperator() == OO_PipeEqual;
17350    Loc = Op->getOperatorLoc();
17351  } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
17352    return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
17353  else {
17354    // Not an assignment.
17355    return;
17356  }
17357
17358  Diag(Loc, diagnostic) << E->getSourceRange();
17359
17360  SourceLocation Open = E->getBeginLoc();
17361  SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
17362  Diag(Loc, diag::note_condition_assign_silence)
17363        << FixItHint::CreateInsertion(Open, "(")
17364        << FixItHint::CreateInsertion(Close, ")");
17365
17366  if (IsOrAssign)
17367    Diag(Loc, diag::note_condition_or_assign_to_comparison)
17368      << FixItHint::CreateReplacement(Loc, "!=");
17369  else
17370    Diag(Loc, diag::note_condition_assign_to_comparison)
17371      << FixItHint::CreateReplacement(Loc, "==");
17372}
17373
17374/// Redundant parentheses over an equality comparison can indicate
17375/// that the user intended an assignment used as condition.
17376void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
17377  // Don't warn if the parens came from a macro.
17378  SourceLocation parenLoc = ParenE->getBeginLoc();
17379  if (parenLoc.isInvalid() || parenLoc.isMacroID())
17380    return;
17381  // Don't warn for dependent expressions.
17382  if (ParenE->isTypeDependent())
17383    return;
17384
17385  Expr *E = ParenE->IgnoreParens();
17386
17387  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
17388    if (opE->getOpcode() == BO_EQ &&
17389        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
17390                                                           == Expr::MLV_Valid) {
17391      SourceLocation Loc = opE->getOperatorLoc();
17392
17393      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
17394      SourceRange ParenERange = ParenE->getSourceRange();
17395      Diag(Loc, diag::note_equality_comparison_silence)
17396        << FixItHint::CreateRemoval(ParenERange.getBegin())
17397        << FixItHint::CreateRemoval(ParenERange.getEnd());
17398      Diag(Loc, diag::note_equality_comparison_to_assign)
17399        << FixItHint::CreateReplacement(Loc, "=");
17400    }
17401}
17402
17403ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
17404                                       bool IsConstexpr) {
17405  DiagnoseAssignmentAsCondition(E);
17406  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
17407    DiagnoseEqualityWithExtraParens(parenE);
17408
17409  ExprResult result = CheckPlaceholderExpr(E);
17410  if (result.isInvalid()) return ExprError();
17411  E = result.get();
17412
17413  if (!E->isTypeDependent()) {
17414    if (getLangOpts().CPlusPlus)
17415      return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
17416
17417    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
17418    if (ERes.isInvalid())
17419      return ExprError();
17420    E = ERes.get();
17421
17422    QualType T = E->getType();
17423    if (!T->isScalarType()) { // C99 6.8.4.1p1
17424      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
17425        << T << E->getSourceRange();
17426      return ExprError();
17427    }
17428    CheckBoolLikeConversion(E, Loc);
17429  }
17430
17431  return E;
17432}
17433
17434Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
17435                                           Expr *SubExpr, ConditionKind CK) {
17436  // Empty conditions are valid in for-statements.
17437  if (!SubExpr)
17438    return ConditionResult();
17439
17440  ExprResult Cond;
17441  switch (CK) {
17442  case ConditionKind::Boolean:
17443    Cond = CheckBooleanCondition(Loc, SubExpr);
17444    break;
17445
17446  case ConditionKind::ConstexprIf:
17447    Cond = CheckBooleanCondition(Loc, SubExpr, true);
17448    break;
17449
17450  case ConditionKind::Switch:
17451    Cond = CheckSwitchCondition(Loc, SubExpr);
17452    break;
17453  }
17454  if (Cond.isInvalid())
17455    return ConditionError();
17456
17457  // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
17458  FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
17459  if (!FullExpr.get())
17460    return ConditionError();
17461
17462  return ConditionResult(*this, nullptr, FullExpr,
17463                         CK == ConditionKind::ConstexprIf);
17464}
17465
17466namespace {
17467  /// A visitor for rebuilding a call to an __unknown_any expression
17468  /// to have an appropriate type.
17469  struct RebuildUnknownAnyFunction
17470    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
17471
17472    Sema &S;
17473
17474    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
17475
17476    ExprResult VisitStmt(Stmt *S) {
17477      llvm_unreachable("unexpected statement!");
17478    }
17479
17480    ExprResult VisitExpr(Expr *E) {
17481      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
17482        << E->getSourceRange();
17483      return ExprError();
17484    }
17485
17486    /// Rebuild an expression which simply semantically wraps another
17487    /// expression which it shares the type and value kind of.
17488    template <class T> ExprResult rebuildSugarExpr(T *E) {
17489      ExprResult SubResult = Visit(E->getSubExpr());
17490      if (SubResult.isInvalid()) return ExprError();
17491
17492      Expr *SubExpr = SubResult.get();
17493      E->setSubExpr(SubExpr);
17494      E->setType(SubExpr->getType());
17495      E->setValueKind(SubExpr->getValueKind());
17496      assert(E->getObjectKind() == OK_Ordinary);
17497      return E;
17498    }
17499
17500    ExprResult VisitParenExpr(ParenExpr *E) {
17501      return rebuildSugarExpr(E);
17502    }
17503
17504    ExprResult VisitUnaryExtension(UnaryOperator *E) {
17505      return rebuildSugarExpr(E);
17506    }
17507
17508    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
17509      ExprResult SubResult = Visit(E->getSubExpr());
17510      if (SubResult.isInvalid()) return ExprError();
17511
17512      Expr *SubExpr = SubResult.get();
17513      E->setSubExpr(SubExpr);
17514      E->setType(S.Context.getPointerType(SubExpr->getType()));
17515      assert(E->getValueKind() == VK_RValue);
17516      assert(E->getObjectKind() == OK_Ordinary);
17517      return E;
17518    }
17519
17520    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
17521      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
17522
17523      E->setType(VD->getType());
17524
17525      assert(E->getValueKind() == VK_RValue);
17526      if (S.getLangOpts().CPlusPlus &&
17527          !(isa<CXXMethodDecl>(VD) &&
17528            cast<CXXMethodDecl>(VD)->isInstance()))
17529        E->setValueKind(VK_LValue);
17530
17531      return E;
17532    }
17533
17534    ExprResult VisitMemberExpr(MemberExpr *E) {
17535      return resolveDecl(E, E->getMemberDecl());
17536    }
17537
17538    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
17539      return resolveDecl(E, E->getDecl());
17540    }
17541  };
17542}
17543
17544/// Given a function expression of unknown-any type, try to rebuild it
17545/// to have a function type.
17546static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
17547  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
17548  if (Result.isInvalid()) return ExprError();
17549  return S.DefaultFunctionArrayConversion(Result.get());
17550}
17551
17552namespace {
17553  /// A visitor for rebuilding an expression of type __unknown_anytype
17554  /// into one which resolves the type directly on the referring
17555  /// expression.  Strict preservation of the original source
17556  /// structure is not a goal.
17557  struct RebuildUnknownAnyExpr
17558    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
17559
17560    Sema &S;
17561
17562    /// The current destination type.
17563    QualType DestType;
17564
17565    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
17566      : S(S), DestType(CastType) {}
17567
17568    ExprResult VisitStmt(Stmt *S) {
17569      llvm_unreachable("unexpected statement!");
17570    }
17571
17572    ExprResult VisitExpr(Expr *E) {
17573      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
17574        << E->getSourceRange();
17575      return ExprError();
17576    }
17577
17578    ExprResult VisitCallExpr(CallExpr *E);
17579    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
17580
17581    /// Rebuild an expression which simply semantically wraps another
17582    /// expression which it shares the type and value kind of.
17583    template <class T> ExprResult rebuildSugarExpr(T *E) {
17584      ExprResult SubResult = Visit(E->getSubExpr());
17585      if (SubResult.isInvalid()) return ExprError();
17586      Expr *SubExpr = SubResult.get();
17587      E->setSubExpr(SubExpr);
17588      E->setType(SubExpr->getType());
17589      E->setValueKind(SubExpr->getValueKind());
17590      assert(E->getObjectKind() == OK_Ordinary);
17591      return E;
17592    }
17593
17594    ExprResult VisitParenExpr(ParenExpr *E) {
17595      return rebuildSugarExpr(E);
17596    }
17597
17598    ExprResult VisitUnaryExtension(UnaryOperator *E) {
17599      return rebuildSugarExpr(E);
17600    }
17601
17602    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
17603      const PointerType *Ptr = DestType->getAs<PointerType>();
17604      if (!Ptr) {
17605        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
17606          << E->getSourceRange();
17607        return ExprError();
17608      }
17609
17610      if (isa<CallExpr>(E->getSubExpr())) {
17611        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
17612          << E->getSourceRange();
17613        return ExprError();
17614      }
17615
17616      assert(E->getValueKind() == VK_RValue);
17617      assert(E->getObjectKind() == OK_Ordinary);
17618      E->setType(DestType);
17619
17620      // Build the sub-expression as if it were an object of the pointee type.
17621      DestType = Ptr->getPointeeType();
17622      ExprResult SubResult = Visit(E->getSubExpr());
17623      if (SubResult.isInvalid()) return ExprError();
17624      E->setSubExpr(SubResult.get());
17625      return E;
17626    }
17627
17628    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
17629
17630    ExprResult resolveDecl(Expr *E, ValueDecl *VD);
17631
17632    ExprResult VisitMemberExpr(MemberExpr *E) {
17633      return resolveDecl(E, E->getMemberDecl());
17634    }
17635
17636    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
17637      return resolveDecl(E, E->getDecl());
17638    }
17639  };
17640}
17641
17642/// Rebuilds a call expression which yielded __unknown_anytype.
17643ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
17644  Expr *CalleeExpr = E->getCallee();
17645
17646  enum FnKind {
17647    FK_MemberFunction,
17648    FK_FunctionPointer,
17649    FK_BlockPointer
17650  };
17651
17652  FnKind Kind;
17653  QualType CalleeType = CalleeExpr->getType();
17654  if (CalleeType == S.Context.BoundMemberTy) {
17655    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
17656    Kind = FK_MemberFunction;
17657    CalleeType = Expr::findBoundMemberType(CalleeExpr);
17658  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
17659    CalleeType = Ptr->getPointeeType();
17660    Kind = FK_FunctionPointer;
17661  } else {
17662    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
17663    Kind = FK_BlockPointer;
17664  }
17665  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
17666
17667  // Verify that this is a legal result type of a function.
17668  if (DestType->isArrayType() || DestType->isFunctionType()) {
17669    unsigned diagID = diag::err_func_returning_array_function;
17670    if (Kind == FK_BlockPointer)
17671      diagID = diag::err_block_returning_array_function;
17672
17673    S.Diag(E->getExprLoc(), diagID)
17674      << DestType->isFunctionType() << DestType;
17675    return ExprError();
17676  }
17677
17678  // Otherwise, go ahead and set DestType as the call's result.
17679  E->setType(DestType.getNonLValueExprType(S.Context));
17680  E->setValueKind(Expr::getValueKindForType(DestType));
17681  assert(E->getObjectKind() == OK_Ordinary);
17682
17683  // Rebuild the function type, replacing the result type with DestType.
17684  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
17685  if (Proto) {
17686    // __unknown_anytype(...) is a special case used by the debugger when
17687    // it has no idea what a function's signature is.
17688    //
17689    // We want to build this call essentially under the K&R
17690    // unprototyped rules, but making a FunctionNoProtoType in C++
17691    // would foul up all sorts of assumptions.  However, we cannot
17692    // simply pass all arguments as variadic arguments, nor can we
17693    // portably just call the function under a non-variadic type; see
17694    // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
17695    // However, it turns out that in practice it is generally safe to
17696    // call a function declared as "A foo(B,C,D);" under the prototype
17697    // "A foo(B,C,D,...);".  The only known exception is with the
17698    // Windows ABI, where any variadic function is implicitly cdecl
17699    // regardless of its normal CC.  Therefore we change the parameter
17700    // types to match the types of the arguments.
17701    //
17702    // This is a hack, but it is far superior to moving the
17703    // corresponding target-specific code from IR-gen to Sema/AST.
17704
17705    ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
17706    SmallVector<QualType, 8> ArgTypes;
17707    if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
17708      ArgTypes.reserve(E->getNumArgs());
17709      for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
17710        Expr *Arg = E->getArg(i);
17711        QualType ArgType = Arg->getType();
17712        if (E->isLValue()) {
17713          ArgType = S.Context.getLValueReferenceType(ArgType);
17714        } else if (E->isXValue()) {
17715          ArgType = S.Context.getRValueReferenceType(ArgType);
17716        }
17717        ArgTypes.push_back(ArgType);
17718      }
17719      ParamTypes = ArgTypes;
17720    }
17721    DestType = S.Context.getFunctionType(DestType, ParamTypes,
17722                                         Proto->getExtProtoInfo());
17723  } else {
17724    DestType = S.Context.getFunctionNoProtoType(DestType,
17725                                                FnType->getExtInfo());
17726  }
17727
17728  // Rebuild the appropriate pointer-to-function type.
17729  switch (Kind) {
17730  case FK_MemberFunction:
17731    // Nothing to do.
17732    break;
17733
17734  case FK_FunctionPointer:
17735    DestType = S.Context.getPointerType(DestType);
17736    break;
17737
17738  case FK_BlockPointer:
17739    DestType = S.Context.getBlockPointerType(DestType);
17740    break;
17741  }
17742
17743  // Finally, we can recurse.
17744  ExprResult CalleeResult = Visit(CalleeExpr);
17745  if (!CalleeResult.isUsable()) return ExprError();
17746  E->setCallee(CalleeResult.get());
17747
17748  // Bind a temporary if necessary.
17749  return S.MaybeBindToTemporary(E);
17750}
17751
17752ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
17753  // Verify that this is a legal result type of a call.
17754  if (DestType->isArrayType() || DestType->isFunctionType()) {
17755    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
17756      << DestType->isFunctionType() << DestType;
17757    return ExprError();
17758  }
17759
17760  // Rewrite the method result type if available.
17761  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
17762    assert(Method->getReturnType() == S.Context.UnknownAnyTy);
17763    Method->setReturnType(DestType);
17764  }
17765
17766  // Change the type of the message.
17767  E->setType(DestType.getNonReferenceType());
17768  E->setValueKind(Expr::getValueKindForType(DestType));
17769
17770  return S.MaybeBindToTemporary(E);
17771}
17772
17773ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
17774  // The only case we should ever see here is a function-to-pointer decay.
17775  if (E->getCastKind() == CK_FunctionToPointerDecay) {
17776    assert(E->getValueKind() == VK_RValue);
17777    assert(E->getObjectKind() == OK_Ordinary);
17778
17779    E->setType(DestType);
17780
17781    // Rebuild the sub-expression as the pointee (function) type.
17782    DestType = DestType->castAs<PointerType>()->getPointeeType();
17783
17784    ExprResult Result = Visit(E->getSubExpr());
17785    if (!Result.isUsable()) return ExprError();
17786
17787    E->setSubExpr(Result.get());
17788    return E;
17789  } else if (E->getCastKind() == CK_LValueToRValue) {
17790    assert(E->getValueKind() == VK_RValue);
17791    assert(E->getObjectKind() == OK_Ordinary);
17792
17793    assert(isa<BlockPointerType>(E->getType()));
17794
17795    E->setType(DestType);
17796
17797    // The sub-expression has to be a lvalue reference, so rebuild it as such.
17798    DestType = S.Context.getLValueReferenceType(DestType);
17799
17800    ExprResult Result = Visit(E->getSubExpr());
17801    if (!Result.isUsable()) return ExprError();
17802
17803    E->setSubExpr(Result.get());
17804    return E;
17805  } else {
17806    llvm_unreachable("Unhandled cast type!");
17807  }
17808}
17809
17810ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
17811  ExprValueKind ValueKind = VK_LValue;
17812  QualType Type = DestType;
17813
17814  // We know how to make this work for certain kinds of decls:
17815
17816  //  - functions
17817  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
17818    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
17819      DestType = Ptr->getPointeeType();
17820      ExprResult Result = resolveDecl(E, VD);
17821      if (Result.isInvalid()) return ExprError();
17822      return S.ImpCastExprToType(Result.get(), Type,
17823                                 CK_FunctionToPointerDecay, VK_RValue);
17824    }
17825
17826    if (!Type->isFunctionType()) {
17827      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
17828        << VD << E->getSourceRange();
17829      return ExprError();
17830    }
17831    if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
17832      // We must match the FunctionDecl's type to the hack introduced in
17833      // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
17834      // type. See the lengthy commentary in that routine.
17835      QualType FDT = FD->getType();
17836      const FunctionType *FnType = FDT->castAs<FunctionType>();
17837      const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
17838      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
17839      if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
17840        SourceLocation Loc = FD->getLocation();
17841        FunctionDecl *NewFD = FunctionDecl::Create(
17842            S.Context, FD->getDeclContext(), Loc, Loc,
17843            FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
17844            SC_None, false /*isInlineSpecified*/, FD->hasPrototype(),
17845            /*ConstexprKind*/ CSK_unspecified);
17846
17847        if (FD->getQualifier())
17848          NewFD->setQualifierInfo(FD->getQualifierLoc());
17849
17850        SmallVector<ParmVarDecl*, 16> Params;
17851        for (const auto &AI : FT->param_types()) {
17852          ParmVarDecl *Param =
17853            S.BuildParmVarDeclForTypedef(FD, Loc, AI);
17854          Param->setScopeInfo(0, Params.size());
17855          Params.push_back(Param);
17856        }
17857        NewFD->setParams(Params);
17858        DRE->setDecl(NewFD);
17859        VD = DRE->getDecl();
17860      }
17861    }
17862
17863    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
17864      if (MD->isInstance()) {
17865        ValueKind = VK_RValue;
17866        Type = S.Context.BoundMemberTy;
17867      }
17868
17869    // Function references aren't l-values in C.
17870    if (!S.getLangOpts().CPlusPlus)
17871      ValueKind = VK_RValue;
17872
17873  //  - variables
17874  } else if (isa<VarDecl>(VD)) {
17875    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
17876      Type = RefTy->getPointeeType();
17877    } else if (Type->isFunctionType()) {
17878      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
17879        << VD << E->getSourceRange();
17880      return ExprError();
17881    }
17882
17883  //  - nothing else
17884  } else {
17885    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
17886      << VD << E->getSourceRange();
17887    return ExprError();
17888  }
17889
17890  // Modifying the declaration like this is friendly to IR-gen but
17891  // also really dangerous.
17892  VD->setType(DestType);
17893  E->setType(Type);
17894  E->setValueKind(ValueKind);
17895  return E;
17896}
17897
17898/// Check a cast of an unknown-any type.  We intentionally only
17899/// trigger this for C-style casts.
17900ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
17901                                     Expr *CastExpr, CastKind &CastKind,
17902                                     ExprValueKind &VK, CXXCastPath &Path) {
17903  // The type we're casting to must be either void or complete.
17904  if (!CastType->isVoidType() &&
17905      RequireCompleteType(TypeRange.getBegin(), CastType,
17906                          diag::err_typecheck_cast_to_incomplete))
17907    return ExprError();
17908
17909  // Rewrite the casted expression from scratch.
17910  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
17911  if (!result.isUsable()) return ExprError();
17912
17913  CastExpr = result.get();
17914  VK = CastExpr->getValueKind();
17915  CastKind = CK_NoOp;
17916
17917  return CastExpr;
17918}
17919
17920ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
17921  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
17922}
17923
17924ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
17925                                    Expr *arg, QualType &paramType) {
17926  // If the syntactic form of the argument is not an explicit cast of
17927  // any sort, just do default argument promotion.
17928  ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
17929  if (!castArg) {
17930    ExprResult result = DefaultArgumentPromotion(arg);
17931    if (result.isInvalid()) return ExprError();
17932    paramType = result.get()->getType();
17933    return result;
17934  }
17935
17936  // Otherwise, use the type that was written in the explicit cast.
17937  assert(!arg->hasPlaceholderType());
17938  paramType = castArg->getTypeAsWritten();
17939
17940  // Copy-initialize a parameter of that type.
17941  InitializedEntity entity =
17942    InitializedEntity::InitializeParameter(Context, paramType,
17943                                           /*consumed*/ false);
17944  return PerformCopyInitialization(entity, callLoc, arg);
17945}
17946
17947static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
17948  Expr *orig = E;
17949  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
17950  while (true) {
17951    E = E->IgnoreParenImpCasts();
17952    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
17953      E = call->getCallee();
17954      diagID = diag::err_uncasted_call_of_unknown_any;
17955    } else {
17956      break;
17957    }
17958  }
17959
17960  SourceLocation loc;
17961  NamedDecl *d;
17962  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
17963    loc = ref->getLocation();
17964    d = ref->getDecl();
17965  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
17966    loc = mem->getMemberLoc();
17967    d = mem->getMemberDecl();
17968  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
17969    diagID = diag::err_uncasted_call_of_unknown_any;
17970    loc = msg->getSelectorStartLoc();
17971    d = msg->getMethodDecl();
17972    if (!d) {
17973      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
17974        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
17975        << orig->getSourceRange();
17976      return ExprError();
17977    }
17978  } else {
17979    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
17980      << E->getSourceRange();
17981    return ExprError();
17982  }
17983
17984  S.Diag(loc, diagID) << d << orig->getSourceRange();
17985
17986  // Never recoverable.
17987  return ExprError();
17988}
17989
17990/// Check for operands with placeholder types and complain if found.
17991/// Returns ExprError() if there was an error and no recovery was possible.
17992ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
17993  if (!getLangOpts().CPlusPlus) {
17994    // C cannot handle TypoExpr nodes on either side of a binop because it
17995    // doesn't handle dependent types properly, so make sure any TypoExprs have
17996    // been dealt with before checking the operands.
17997    ExprResult Result = CorrectDelayedTyposInExpr(E);
17998    if (!Result.isUsable()) return ExprError();
17999    E = Result.get();
18000  }
18001
18002  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
18003  if (!placeholderType) return E;
18004
18005  switch (placeholderType->getKind()) {
18006
18007  // Overloaded expressions.
18008  case BuiltinType::Overload: {
18009    // Try to resolve a single function template specialization.
18010    // This is obligatory.
18011    ExprResult Result = E;
18012    if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
18013      return Result;
18014
18015    // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
18016    // leaves Result unchanged on failure.
18017    Result = E;
18018    if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
18019      return Result;
18020
18021    // If that failed, try to recover with a call.
18022    tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
18023                         /*complain*/ true);
18024    return Result;
18025  }
18026
18027  // Bound member functions.
18028  case BuiltinType::BoundMember: {
18029    ExprResult result = E;
18030    const Expr *BME = E->IgnoreParens();
18031    PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
18032    // Try to give a nicer diagnostic if it is a bound member that we recognize.
18033    if (isa<CXXPseudoDestructorExpr>(BME)) {
18034      PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
18035    } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
18036      if (ME->getMemberNameInfo().getName().getNameKind() ==
18037          DeclarationName::CXXDestructorName)
18038        PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
18039    }
18040    tryToRecoverWithCall(result, PD,
18041                         /*complain*/ true);
18042    return result;
18043  }
18044
18045  // ARC unbridged casts.
18046  case BuiltinType::ARCUnbridgedCast: {
18047    Expr *realCast = stripARCUnbridgedCast(E);
18048    diagnoseARCUnbridgedCast(realCast);
18049    return realCast;
18050  }
18051
18052  // Expressions of unknown type.
18053  case BuiltinType::UnknownAny:
18054    return diagnoseUnknownAnyExpr(*this, E);
18055
18056  // Pseudo-objects.
18057  case BuiltinType::PseudoObject:
18058    return checkPseudoObjectRValue(E);
18059
18060  case BuiltinType::BuiltinFn: {
18061    // Accept __noop without parens by implicitly converting it to a call expr.
18062    auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
18063    if (DRE) {
18064      auto *FD = cast<FunctionDecl>(DRE->getDecl());
18065      if (FD->getBuiltinID() == Builtin::BI__noop) {
18066        E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
18067                              CK_BuiltinFnToFnPtr)
18068                .get();
18069        return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
18070                                VK_RValue, SourceLocation());
18071      }
18072    }
18073
18074    Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
18075    return ExprError();
18076  }
18077
18078  // Expressions of unknown type.
18079  case BuiltinType::OMPArraySection:
18080    Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
18081    return ExprError();
18082
18083  // Everything else should be impossible.
18084#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
18085  case BuiltinType::Id:
18086#include "clang/Basic/OpenCLImageTypes.def"
18087#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
18088  case BuiltinType::Id:
18089#include "clang/Basic/OpenCLExtensionTypes.def"
18090#define SVE_TYPE(Name, Id, SingletonId) \
18091  case BuiltinType::Id:
18092#include "clang/Basic/AArch64SVEACLETypes.def"
18093#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
18094#define PLACEHOLDER_TYPE(Id, SingletonId)
18095#include "clang/AST/BuiltinTypes.def"
18096    break;
18097  }
18098
18099  llvm_unreachable("invalid placeholder type!");
18100}
18101
18102bool Sema::CheckCaseExpression(Expr *E) {
18103  if (E->isTypeDependent())
18104    return true;
18105  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
18106    return E->getType()->isIntegralOrEnumerationType();
18107  return false;
18108}
18109
18110/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
18111ExprResult
18112Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
18113  assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
18114         "Unknown Objective-C Boolean value!");
18115  QualType BoolT = Context.ObjCBuiltinBoolTy;
18116  if (!Context.getBOOLDecl()) {
18117    LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
18118                        Sema::LookupOrdinaryName);
18119    if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
18120      NamedDecl *ND = Result.getFoundDecl();
18121      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
18122        Context.setBOOLDecl(TD);
18123    }
18124  }
18125  if (Context.getBOOLDecl())
18126    BoolT = Context.getBOOLType();
18127  return new (Context)
18128      ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
18129}
18130
18131ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
18132    llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
18133    SourceLocation RParen) {
18134
18135  StringRef Platform = getASTContext().getTargetInfo().getPlatformName();
18136
18137  auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
18138    return Spec.getPlatform() == Platform;
18139  });
18140
18141  VersionTuple Version;
18142  if (Spec != AvailSpecs.end())
18143    Version = Spec->getVersion();
18144
18145  // The use of `@available` in the enclosing function should be analyzed to
18146  // warn when it's used inappropriately (i.e. not if(@available)).
18147  if (getCurFunctionOrMethodDecl())
18148    getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
18149  else if (getCurBlock() || getCurLambda())
18150    getCurFunction()->HasPotentialAvailabilityViolations = true;
18151
18152  return new (Context)
18153      ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
18154}
18155
18156bool Sema::IsDependentFunctionNameExpr(Expr *E) {
18157  assert(E->isTypeDependent());
18158  return isa<UnresolvedLookupExpr>(E);
18159}
18160