1//===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements extra semantic analysis beyond what is enforced
10//  by the C type system.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/AttrIterator.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclBase.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclarationName.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/Expr.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/ExprOpenMP.h"
29#include "clang/AST/FormatString.h"
30#include "clang/AST/NSAPI.h"
31#include "clang/AST/NonTrivialTypeVisitor.h"
32#include "clang/AST/OperationKinds.h"
33#include "clang/AST/Stmt.h"
34#include "clang/AST/TemplateBase.h"
35#include "clang/AST/Type.h"
36#include "clang/AST/TypeLoc.h"
37#include "clang/AST/UnresolvedSet.h"
38#include "clang/Basic/AddressSpaces.h"
39#include "clang/Basic/CharInfo.h"
40#include "clang/Basic/Diagnostic.h"
41#include "clang/Basic/IdentifierTable.h"
42#include "clang/Basic/LLVM.h"
43#include "clang/Basic/LangOptions.h"
44#include "clang/Basic/OpenCLOptions.h"
45#include "clang/Basic/OperatorKinds.h"
46#include "clang/Basic/PartialDiagnostic.h"
47#include "clang/Basic/SourceLocation.h"
48#include "clang/Basic/SourceManager.h"
49#include "clang/Basic/Specifiers.h"
50#include "clang/Basic/SyncScope.h"
51#include "clang/Basic/TargetBuiltins.h"
52#include "clang/Basic/TargetCXXABI.h"
53#include "clang/Basic/TargetInfo.h"
54#include "clang/Basic/TypeTraits.h"
55#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
56#include "clang/Sema/Initialization.h"
57#include "clang/Sema/Lookup.h"
58#include "clang/Sema/Ownership.h"
59#include "clang/Sema/Scope.h"
60#include "clang/Sema/ScopeInfo.h"
61#include "clang/Sema/Sema.h"
62#include "clang/Sema/SemaInternal.h"
63#include "llvm/ADT/APFloat.h"
64#include "llvm/ADT/APInt.h"
65#include "llvm/ADT/APSInt.h"
66#include "llvm/ADT/ArrayRef.h"
67#include "llvm/ADT/DenseMap.h"
68#include "llvm/ADT/FoldingSet.h"
69#include "llvm/ADT/None.h"
70#include "llvm/ADT/Optional.h"
71#include "llvm/ADT/STLExtras.h"
72#include "llvm/ADT/SmallBitVector.h"
73#include "llvm/ADT/SmallPtrSet.h"
74#include "llvm/ADT/SmallString.h"
75#include "llvm/ADT/SmallVector.h"
76#include "llvm/ADT/StringRef.h"
77#include "llvm/ADT/StringSwitch.h"
78#include "llvm/ADT/Triple.h"
79#include "llvm/Support/AtomicOrdering.h"
80#include "llvm/Support/Casting.h"
81#include "llvm/Support/Compiler.h"
82#include "llvm/Support/ConvertUTF.h"
83#include "llvm/Support/ErrorHandling.h"
84#include "llvm/Support/Format.h"
85#include "llvm/Support/Locale.h"
86#include "llvm/Support/MathExtras.h"
87#include "llvm/Support/SaveAndRestore.h"
88#include "llvm/Support/raw_ostream.h"
89#include <algorithm>
90#include <cassert>
91#include <cstddef>
92#include <cstdint>
93#include <functional>
94#include <limits>
95#include <string>
96#include <tuple>
97#include <utility>
98
99using namespace clang;
100using namespace sema;
101
102SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
103                                                    unsigned ByteNo) const {
104  return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
105                               Context.getTargetInfo());
106}
107
108/// Checks that a call expression's argument count is the desired number.
109/// This is useful when doing custom type-checking.  Returns true on error.
110static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
111  unsigned argCount = call->getNumArgs();
112  if (argCount == desiredArgCount) return false;
113
114  if (argCount < desiredArgCount)
115    return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
116           << 0 /*function call*/ << desiredArgCount << argCount
117           << call->getSourceRange();
118
119  // Highlight all the excess arguments.
120  SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
121                    call->getArg(argCount - 1)->getEndLoc());
122
123  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
124    << 0 /*function call*/ << desiredArgCount << argCount
125    << call->getArg(1)->getSourceRange();
126}
127
128/// Check that the first argument to __builtin_annotation is an integer
129/// and the second argument is a non-wide string literal.
130static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
131  if (checkArgCount(S, TheCall, 2))
132    return true;
133
134  // First argument should be an integer.
135  Expr *ValArg = TheCall->getArg(0);
136  QualType Ty = ValArg->getType();
137  if (!Ty->isIntegerType()) {
138    S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
139        << ValArg->getSourceRange();
140    return true;
141  }
142
143  // Second argument should be a constant string.
144  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
145  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
146  if (!Literal || !Literal->isAscii()) {
147    S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
148        << StrArg->getSourceRange();
149    return true;
150  }
151
152  TheCall->setType(Ty);
153  return false;
154}
155
156static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
157  // We need at least one argument.
158  if (TheCall->getNumArgs() < 1) {
159    S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
160        << 0 << 1 << TheCall->getNumArgs()
161        << TheCall->getCallee()->getSourceRange();
162    return true;
163  }
164
165  // All arguments should be wide string literals.
166  for (Expr *Arg : TheCall->arguments()) {
167    auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
168    if (!Literal || !Literal->isWide()) {
169      S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
170          << Arg->getSourceRange();
171      return true;
172    }
173  }
174
175  return false;
176}
177
178/// Check that the argument to __builtin_addressof is a glvalue, and set the
179/// result type to the corresponding pointer type.
180static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
181  if (checkArgCount(S, TheCall, 1))
182    return true;
183
184  ExprResult Arg(TheCall->getArg(0));
185  QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
186  if (ResultType.isNull())
187    return true;
188
189  TheCall->setArg(0, Arg.get());
190  TheCall->setType(ResultType);
191  return false;
192}
193
194/// Check the number of arguments and set the result type to
195/// the argument type.
196static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
197  if (checkArgCount(S, TheCall, 1))
198    return true;
199
200  TheCall->setType(TheCall->getArg(0)->getType());
201  return false;
202}
203
204/// Check that the value argument for __builtin_is_aligned(value, alignment) and
205/// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
206/// type (but not a function pointer) and that the alignment is a power-of-two.
207static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
208  if (checkArgCount(S, TheCall, 2))
209    return true;
210
211  clang::Expr *Source = TheCall->getArg(0);
212  bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
213
214  auto IsValidIntegerType = [](QualType Ty) {
215    return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
216  };
217  QualType SrcTy = Source->getType();
218  // We should also be able to use it with arrays (but not functions!).
219  if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
220    SrcTy = S.Context.getDecayedType(SrcTy);
221  }
222  if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
223      SrcTy->isFunctionPointerType()) {
224    // FIXME: this is not quite the right error message since we don't allow
225    // floating point types, or member pointers.
226    S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
227        << SrcTy;
228    return true;
229  }
230
231  clang::Expr *AlignOp = TheCall->getArg(1);
232  if (!IsValidIntegerType(AlignOp->getType())) {
233    S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
234        << AlignOp->getType();
235    return true;
236  }
237  Expr::EvalResult AlignResult;
238  unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
239  // We can't check validity of alignment if it is type dependent.
240  if (!AlignOp->isInstantiationDependent() &&
241      AlignOp->EvaluateAsInt(AlignResult, S.Context,
242                             Expr::SE_AllowSideEffects)) {
243    llvm::APSInt AlignValue = AlignResult.Val.getInt();
244    llvm::APSInt MaxValue(
245        llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
246    if (AlignValue < 1) {
247      S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
248      return true;
249    }
250    if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
251      S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
252          << MaxValue.toString(10);
253      return true;
254    }
255    if (!AlignValue.isPowerOf2()) {
256      S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
257      return true;
258    }
259    if (AlignValue == 1) {
260      S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
261          << IsBooleanAlignBuiltin;
262    }
263  }
264
265  ExprResult SrcArg = S.PerformCopyInitialization(
266      InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
267      SourceLocation(), Source);
268  if (SrcArg.isInvalid())
269    return true;
270  TheCall->setArg(0, SrcArg.get());
271  ExprResult AlignArg =
272      S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
273                                      S.Context, AlignOp->getType(), false),
274                                  SourceLocation(), AlignOp);
275  if (AlignArg.isInvalid())
276    return true;
277  TheCall->setArg(1, AlignArg.get());
278  // For align_up/align_down, the return type is the same as the (potentially
279  // decayed) argument type including qualifiers. For is_aligned(), the result
280  // is always bool.
281  TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
282  return false;
283}
284
285static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) {
286  if (checkArgCount(S, TheCall, 3))
287    return true;
288
289  // First two arguments should be integers.
290  for (unsigned I = 0; I < 2; ++I) {
291    ExprResult Arg = TheCall->getArg(I);
292    QualType Ty = Arg.get()->getType();
293    if (!Ty->isIntegerType()) {
294      S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
295          << Ty << Arg.get()->getSourceRange();
296      return true;
297    }
298    InitializedEntity Entity = InitializedEntity::InitializeParameter(
299        S.getASTContext(), Ty, /*consume*/ false);
300    Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
301    if (Arg.isInvalid())
302      return true;
303    TheCall->setArg(I, Arg.get());
304  }
305
306  // Third argument should be a pointer to a non-const integer.
307  // IRGen correctly handles volatile, restrict, and address spaces, and
308  // the other qualifiers aren't possible.
309  {
310    ExprResult Arg = TheCall->getArg(2);
311    QualType Ty = Arg.get()->getType();
312    const auto *PtrTy = Ty->getAs<PointerType>();
313    if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() &&
314          !PtrTy->getPointeeType().isConstQualified())) {
315      S.Diag(Arg.get()->getBeginLoc(),
316             diag::err_overflow_builtin_must_be_ptr_int)
317          << Ty << Arg.get()->getSourceRange();
318      return true;
319    }
320    InitializedEntity Entity = InitializedEntity::InitializeParameter(
321        S.getASTContext(), Ty, /*consume*/ false);
322    Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
323    if (Arg.isInvalid())
324      return true;
325    TheCall->setArg(2, Arg.get());
326  }
327  return false;
328}
329
330static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
331  if (checkArgCount(S, BuiltinCall, 2))
332    return true;
333
334  SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
335  Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
336  Expr *Call = BuiltinCall->getArg(0);
337  Expr *Chain = BuiltinCall->getArg(1);
338
339  if (Call->getStmtClass() != Stmt::CallExprClass) {
340    S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
341        << Call->getSourceRange();
342    return true;
343  }
344
345  auto CE = cast<CallExpr>(Call);
346  if (CE->getCallee()->getType()->isBlockPointerType()) {
347    S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
348        << Call->getSourceRange();
349    return true;
350  }
351
352  const Decl *TargetDecl = CE->getCalleeDecl();
353  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
354    if (FD->getBuiltinID()) {
355      S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
356          << Call->getSourceRange();
357      return true;
358    }
359
360  if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
361    S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
362        << Call->getSourceRange();
363    return true;
364  }
365
366  ExprResult ChainResult = S.UsualUnaryConversions(Chain);
367  if (ChainResult.isInvalid())
368    return true;
369  if (!ChainResult.get()->getType()->isPointerType()) {
370    S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
371        << Chain->getSourceRange();
372    return true;
373  }
374
375  QualType ReturnTy = CE->getCallReturnType(S.Context);
376  QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
377  QualType BuiltinTy = S.Context.getFunctionType(
378      ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
379  QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
380
381  Builtin =
382      S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
383
384  BuiltinCall->setType(CE->getType());
385  BuiltinCall->setValueKind(CE->getValueKind());
386  BuiltinCall->setObjectKind(CE->getObjectKind());
387  BuiltinCall->setCallee(Builtin);
388  BuiltinCall->setArg(1, ChainResult.get());
389
390  return false;
391}
392
393/// Check a call to BuiltinID for buffer overflows. If BuiltinID is a
394/// __builtin_*_chk function, then use the object size argument specified in the
395/// source. Otherwise, infer the object size using __builtin_object_size.
396void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
397                                               CallExpr *TheCall) {
398  // FIXME: There are some more useful checks we could be doing here:
399  //  - Analyze the format string of sprintf to see how much of buffer is used.
400  //  - Evaluate strlen of strcpy arguments, use as object size.
401
402  if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
403      isConstantEvaluated())
404    return;
405
406  unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
407  if (!BuiltinID)
408    return;
409
410  unsigned DiagID = 0;
411  bool IsChkVariant = false;
412  unsigned SizeIndex, ObjectIndex;
413  switch (BuiltinID) {
414  default:
415    return;
416  case Builtin::BI__builtin___memcpy_chk:
417  case Builtin::BI__builtin___memmove_chk:
418  case Builtin::BI__builtin___memset_chk:
419  case Builtin::BI__builtin___strlcat_chk:
420  case Builtin::BI__builtin___strlcpy_chk:
421  case Builtin::BI__builtin___strncat_chk:
422  case Builtin::BI__builtin___strncpy_chk:
423  case Builtin::BI__builtin___stpncpy_chk:
424  case Builtin::BI__builtin___memccpy_chk:
425  case Builtin::BI__builtin___mempcpy_chk: {
426    DiagID = diag::warn_builtin_chk_overflow;
427    IsChkVariant = true;
428    SizeIndex = TheCall->getNumArgs() - 2;
429    ObjectIndex = TheCall->getNumArgs() - 1;
430    break;
431  }
432
433  case Builtin::BI__builtin___snprintf_chk:
434  case Builtin::BI__builtin___vsnprintf_chk: {
435    DiagID = diag::warn_builtin_chk_overflow;
436    IsChkVariant = true;
437    SizeIndex = 1;
438    ObjectIndex = 3;
439    break;
440  }
441
442  case Builtin::BIstrncat:
443  case Builtin::BI__builtin_strncat:
444  case Builtin::BIstrncpy:
445  case Builtin::BI__builtin_strncpy:
446  case Builtin::BIstpncpy:
447  case Builtin::BI__builtin_stpncpy: {
448    // Whether these functions overflow depends on the runtime strlen of the
449    // string, not just the buffer size, so emitting the "always overflow"
450    // diagnostic isn't quite right. We should still diagnose passing a buffer
451    // size larger than the destination buffer though; this is a runtime abort
452    // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
453    DiagID = diag::warn_fortify_source_size_mismatch;
454    SizeIndex = TheCall->getNumArgs() - 1;
455    ObjectIndex = 0;
456    break;
457  }
458
459  case Builtin::BImemcpy:
460  case Builtin::BI__builtin_memcpy:
461  case Builtin::BImemmove:
462  case Builtin::BI__builtin_memmove:
463  case Builtin::BImemset:
464  case Builtin::BI__builtin_memset:
465  case Builtin::BImempcpy:
466  case Builtin::BI__builtin_mempcpy: {
467    DiagID = diag::warn_fortify_source_overflow;
468    SizeIndex = TheCall->getNumArgs() - 1;
469    ObjectIndex = 0;
470    break;
471  }
472  case Builtin::BIsnprintf:
473  case Builtin::BI__builtin_snprintf:
474  case Builtin::BIvsnprintf:
475  case Builtin::BI__builtin_vsnprintf: {
476    DiagID = diag::warn_fortify_source_size_mismatch;
477    SizeIndex = 1;
478    ObjectIndex = 0;
479    break;
480  }
481  }
482
483  llvm::APSInt ObjectSize;
484  // For __builtin___*_chk, the object size is explicitly provided by the caller
485  // (usually using __builtin_object_size). Use that value to check this call.
486  if (IsChkVariant) {
487    Expr::EvalResult Result;
488    Expr *SizeArg = TheCall->getArg(ObjectIndex);
489    if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
490      return;
491    ObjectSize = Result.Val.getInt();
492
493  // Otherwise, try to evaluate an imaginary call to __builtin_object_size.
494  } else {
495    // If the parameter has a pass_object_size attribute, then we should use its
496    // (potentially) more strict checking mode. Otherwise, conservatively assume
497    // type 0.
498    int BOSType = 0;
499    if (const auto *POS =
500            FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>())
501      BOSType = POS->getType();
502
503    Expr *ObjArg = TheCall->getArg(ObjectIndex);
504    uint64_t Result;
505    if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
506      return;
507    // Get the object size in the target's size_t width.
508    const TargetInfo &TI = getASTContext().getTargetInfo();
509    unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
510    ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
511  }
512
513  // Evaluate the number of bytes of the object that this call will use.
514  Expr::EvalResult Result;
515  Expr *UsedSizeArg = TheCall->getArg(SizeIndex);
516  if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext()))
517    return;
518  llvm::APSInt UsedSize = Result.Val.getInt();
519
520  if (UsedSize.ule(ObjectSize))
521    return;
522
523  StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
524  // Skim off the details of whichever builtin was called to produce a better
525  // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
526  if (IsChkVariant) {
527    FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
528    FunctionName = FunctionName.drop_back(std::strlen("_chk"));
529  } else if (FunctionName.startswith("__builtin_")) {
530    FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
531  }
532
533  DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
534                      PDiag(DiagID)
535                          << FunctionName << ObjectSize.toString(/*Radix=*/10)
536                          << UsedSize.toString(/*Radix=*/10));
537}
538
539static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
540                                     Scope::ScopeFlags NeededScopeFlags,
541                                     unsigned DiagID) {
542  // Scopes aren't available during instantiation. Fortunately, builtin
543  // functions cannot be template args so they cannot be formed through template
544  // instantiation. Therefore checking once during the parse is sufficient.
545  if (SemaRef.inTemplateInstantiation())
546    return false;
547
548  Scope *S = SemaRef.getCurScope();
549  while (S && !S->isSEHExceptScope())
550    S = S->getParent();
551  if (!S || !(S->getFlags() & NeededScopeFlags)) {
552    auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
553    SemaRef.Diag(TheCall->getExprLoc(), DiagID)
554        << DRE->getDecl()->getIdentifier();
555    return true;
556  }
557
558  return false;
559}
560
561static inline bool isBlockPointer(Expr *Arg) {
562  return Arg->getType()->isBlockPointerType();
563}
564
565/// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
566/// void*, which is a requirement of device side enqueue.
567static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
568  const BlockPointerType *BPT =
569      cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
570  ArrayRef<QualType> Params =
571      BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
572  unsigned ArgCounter = 0;
573  bool IllegalParams = false;
574  // Iterate through the block parameters until either one is found that is not
575  // a local void*, or the block is valid.
576  for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
577       I != E; ++I, ++ArgCounter) {
578    if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
579        (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
580            LangAS::opencl_local) {
581      // Get the location of the error. If a block literal has been passed
582      // (BlockExpr) then we can point straight to the offending argument,
583      // else we just point to the variable reference.
584      SourceLocation ErrorLoc;
585      if (isa<BlockExpr>(BlockArg)) {
586        BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
587        ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
588      } else if (isa<DeclRefExpr>(BlockArg)) {
589        ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
590      }
591      S.Diag(ErrorLoc,
592             diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
593      IllegalParams = true;
594    }
595  }
596
597  return IllegalParams;
598}
599
600static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
601  if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) {
602    S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
603        << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
604    return true;
605  }
606  return false;
607}
608
609static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
610  if (checkArgCount(S, TheCall, 2))
611    return true;
612
613  if (checkOpenCLSubgroupExt(S, TheCall))
614    return true;
615
616  // First argument is an ndrange_t type.
617  Expr *NDRangeArg = TheCall->getArg(0);
618  if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
619    S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
620        << TheCall->getDirectCallee() << "'ndrange_t'";
621    return true;
622  }
623
624  Expr *BlockArg = TheCall->getArg(1);
625  if (!isBlockPointer(BlockArg)) {
626    S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
627        << TheCall->getDirectCallee() << "block";
628    return true;
629  }
630  return checkOpenCLBlockArgs(S, BlockArg);
631}
632
633/// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
634/// get_kernel_work_group_size
635/// and get_kernel_preferred_work_group_size_multiple builtin functions.
636static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
637  if (checkArgCount(S, TheCall, 1))
638    return true;
639
640  Expr *BlockArg = TheCall->getArg(0);
641  if (!isBlockPointer(BlockArg)) {
642    S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
643        << TheCall->getDirectCallee() << "block";
644    return true;
645  }
646  return checkOpenCLBlockArgs(S, BlockArg);
647}
648
649/// Diagnose integer type and any valid implicit conversion to it.
650static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
651                                      const QualType &IntType);
652
653static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
654                                            unsigned Start, unsigned End) {
655  bool IllegalParams = false;
656  for (unsigned I = Start; I <= End; ++I)
657    IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
658                                              S.Context.getSizeType());
659  return IllegalParams;
660}
661
662/// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
663/// 'local void*' parameter of passed block.
664static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
665                                           Expr *BlockArg,
666                                           unsigned NumNonVarArgs) {
667  const BlockPointerType *BPT =
668      cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
669  unsigned NumBlockParams =
670      BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
671  unsigned TotalNumArgs = TheCall->getNumArgs();
672
673  // For each argument passed to the block, a corresponding uint needs to
674  // be passed to describe the size of the local memory.
675  if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
676    S.Diag(TheCall->getBeginLoc(),
677           diag::err_opencl_enqueue_kernel_local_size_args);
678    return true;
679  }
680
681  // Check that the sizes of the local memory are specified by integers.
682  return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
683                                         TotalNumArgs - 1);
684}
685
686/// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
687/// overload formats specified in Table 6.13.17.1.
688/// int enqueue_kernel(queue_t queue,
689///                    kernel_enqueue_flags_t flags,
690///                    const ndrange_t ndrange,
691///                    void (^block)(void))
692/// int enqueue_kernel(queue_t queue,
693///                    kernel_enqueue_flags_t flags,
694///                    const ndrange_t ndrange,
695///                    uint num_events_in_wait_list,
696///                    clk_event_t *event_wait_list,
697///                    clk_event_t *event_ret,
698///                    void (^block)(void))
699/// int enqueue_kernel(queue_t queue,
700///                    kernel_enqueue_flags_t flags,
701///                    const ndrange_t ndrange,
702///                    void (^block)(local void*, ...),
703///                    uint size0, ...)
704/// int enqueue_kernel(queue_t queue,
705///                    kernel_enqueue_flags_t flags,
706///                    const ndrange_t ndrange,
707///                    uint num_events_in_wait_list,
708///                    clk_event_t *event_wait_list,
709///                    clk_event_t *event_ret,
710///                    void (^block)(local void*, ...),
711///                    uint size0, ...)
712static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
713  unsigned NumArgs = TheCall->getNumArgs();
714
715  if (NumArgs < 4) {
716    S.Diag(TheCall->getBeginLoc(),
717           diag::err_typecheck_call_too_few_args_at_least)
718        << 0 << 4 << NumArgs;
719    return true;
720  }
721
722  Expr *Arg0 = TheCall->getArg(0);
723  Expr *Arg1 = TheCall->getArg(1);
724  Expr *Arg2 = TheCall->getArg(2);
725  Expr *Arg3 = TheCall->getArg(3);
726
727  // First argument always needs to be a queue_t type.
728  if (!Arg0->getType()->isQueueT()) {
729    S.Diag(TheCall->getArg(0)->getBeginLoc(),
730           diag::err_opencl_builtin_expected_type)
731        << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
732    return true;
733  }
734
735  // Second argument always needs to be a kernel_enqueue_flags_t enum value.
736  if (!Arg1->getType()->isIntegerType()) {
737    S.Diag(TheCall->getArg(1)->getBeginLoc(),
738           diag::err_opencl_builtin_expected_type)
739        << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
740    return true;
741  }
742
743  // Third argument is always an ndrange_t type.
744  if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
745    S.Diag(TheCall->getArg(2)->getBeginLoc(),
746           diag::err_opencl_builtin_expected_type)
747        << TheCall->getDirectCallee() << "'ndrange_t'";
748    return true;
749  }
750
751  // With four arguments, there is only one form that the function could be
752  // called in: no events and no variable arguments.
753  if (NumArgs == 4) {
754    // check that the last argument is the right block type.
755    if (!isBlockPointer(Arg3)) {
756      S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
757          << TheCall->getDirectCallee() << "block";
758      return true;
759    }
760    // we have a block type, check the prototype
761    const BlockPointerType *BPT =
762        cast<BlockPointerType>(Arg3->getType().getCanonicalType());
763    if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
764      S.Diag(Arg3->getBeginLoc(),
765             diag::err_opencl_enqueue_kernel_blocks_no_args);
766      return true;
767    }
768    return false;
769  }
770  // we can have block + varargs.
771  if (isBlockPointer(Arg3))
772    return (checkOpenCLBlockArgs(S, Arg3) ||
773            checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
774  // last two cases with either exactly 7 args or 7 args and varargs.
775  if (NumArgs >= 7) {
776    // check common block argument.
777    Expr *Arg6 = TheCall->getArg(6);
778    if (!isBlockPointer(Arg6)) {
779      S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
780          << TheCall->getDirectCallee() << "block";
781      return true;
782    }
783    if (checkOpenCLBlockArgs(S, Arg6))
784      return true;
785
786    // Forth argument has to be any integer type.
787    if (!Arg3->getType()->isIntegerType()) {
788      S.Diag(TheCall->getArg(3)->getBeginLoc(),
789             diag::err_opencl_builtin_expected_type)
790          << TheCall->getDirectCallee() << "integer";
791      return true;
792    }
793    // check remaining common arguments.
794    Expr *Arg4 = TheCall->getArg(4);
795    Expr *Arg5 = TheCall->getArg(5);
796
797    // Fifth argument is always passed as a pointer to clk_event_t.
798    if (!Arg4->isNullPointerConstant(S.Context,
799                                     Expr::NPC_ValueDependentIsNotNull) &&
800        !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
801      S.Diag(TheCall->getArg(4)->getBeginLoc(),
802             diag::err_opencl_builtin_expected_type)
803          << TheCall->getDirectCallee()
804          << S.Context.getPointerType(S.Context.OCLClkEventTy);
805      return true;
806    }
807
808    // Sixth argument is always passed as a pointer to clk_event_t.
809    if (!Arg5->isNullPointerConstant(S.Context,
810                                     Expr::NPC_ValueDependentIsNotNull) &&
811        !(Arg5->getType()->isPointerType() &&
812          Arg5->getType()->getPointeeType()->isClkEventT())) {
813      S.Diag(TheCall->getArg(5)->getBeginLoc(),
814             diag::err_opencl_builtin_expected_type)
815          << TheCall->getDirectCallee()
816          << S.Context.getPointerType(S.Context.OCLClkEventTy);
817      return true;
818    }
819
820    if (NumArgs == 7)
821      return false;
822
823    return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
824  }
825
826  // None of the specific case has been detected, give generic error
827  S.Diag(TheCall->getBeginLoc(),
828         diag::err_opencl_enqueue_kernel_incorrect_args);
829  return true;
830}
831
832/// Returns OpenCL access qual.
833static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
834    return D->getAttr<OpenCLAccessAttr>();
835}
836
837/// Returns true if pipe element type is different from the pointer.
838static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
839  const Expr *Arg0 = Call->getArg(0);
840  // First argument type should always be pipe.
841  if (!Arg0->getType()->isPipeType()) {
842    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
843        << Call->getDirectCallee() << Arg0->getSourceRange();
844    return true;
845  }
846  OpenCLAccessAttr *AccessQual =
847      getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
848  // Validates the access qualifier is compatible with the call.
849  // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
850  // read_only and write_only, and assumed to be read_only if no qualifier is
851  // specified.
852  switch (Call->getDirectCallee()->getBuiltinID()) {
853  case Builtin::BIread_pipe:
854  case Builtin::BIreserve_read_pipe:
855  case Builtin::BIcommit_read_pipe:
856  case Builtin::BIwork_group_reserve_read_pipe:
857  case Builtin::BIsub_group_reserve_read_pipe:
858  case Builtin::BIwork_group_commit_read_pipe:
859  case Builtin::BIsub_group_commit_read_pipe:
860    if (!(!AccessQual || AccessQual->isReadOnly())) {
861      S.Diag(Arg0->getBeginLoc(),
862             diag::err_opencl_builtin_pipe_invalid_access_modifier)
863          << "read_only" << Arg0->getSourceRange();
864      return true;
865    }
866    break;
867  case Builtin::BIwrite_pipe:
868  case Builtin::BIreserve_write_pipe:
869  case Builtin::BIcommit_write_pipe:
870  case Builtin::BIwork_group_reserve_write_pipe:
871  case Builtin::BIsub_group_reserve_write_pipe:
872  case Builtin::BIwork_group_commit_write_pipe:
873  case Builtin::BIsub_group_commit_write_pipe:
874    if (!(AccessQual && AccessQual->isWriteOnly())) {
875      S.Diag(Arg0->getBeginLoc(),
876             diag::err_opencl_builtin_pipe_invalid_access_modifier)
877          << "write_only" << Arg0->getSourceRange();
878      return true;
879    }
880    break;
881  default:
882    break;
883  }
884  return false;
885}
886
887/// Returns true if pipe element type is different from the pointer.
888static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
889  const Expr *Arg0 = Call->getArg(0);
890  const Expr *ArgIdx = Call->getArg(Idx);
891  const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
892  const QualType EltTy = PipeTy->getElementType();
893  const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
894  // The Idx argument should be a pointer and the type of the pointer and
895  // the type of pipe element should also be the same.
896  if (!ArgTy ||
897      !S.Context.hasSameType(
898          EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
899    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
900        << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
901        << ArgIdx->getType() << ArgIdx->getSourceRange();
902    return true;
903  }
904  return false;
905}
906
907// Performs semantic analysis for the read/write_pipe call.
908// \param S Reference to the semantic analyzer.
909// \param Call A pointer to the builtin call.
910// \return True if a semantic error has been found, false otherwise.
911static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
912  // OpenCL v2.0 s6.13.16.2 - The built-in read/write
913  // functions have two forms.
914  switch (Call->getNumArgs()) {
915  case 2:
916    if (checkOpenCLPipeArg(S, Call))
917      return true;
918    // The call with 2 arguments should be
919    // read/write_pipe(pipe T, T*).
920    // Check packet type T.
921    if (checkOpenCLPipePacketType(S, Call, 1))
922      return true;
923    break;
924
925  case 4: {
926    if (checkOpenCLPipeArg(S, Call))
927      return true;
928    // The call with 4 arguments should be
929    // read/write_pipe(pipe T, reserve_id_t, uint, T*).
930    // Check reserve_id_t.
931    if (!Call->getArg(1)->getType()->isReserveIDT()) {
932      S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
933          << Call->getDirectCallee() << S.Context.OCLReserveIDTy
934          << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
935      return true;
936    }
937
938    // Check the index.
939    const Expr *Arg2 = Call->getArg(2);
940    if (!Arg2->getType()->isIntegerType() &&
941        !Arg2->getType()->isUnsignedIntegerType()) {
942      S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
943          << Call->getDirectCallee() << S.Context.UnsignedIntTy
944          << Arg2->getType() << Arg2->getSourceRange();
945      return true;
946    }
947
948    // Check packet type T.
949    if (checkOpenCLPipePacketType(S, Call, 3))
950      return true;
951  } break;
952  default:
953    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
954        << Call->getDirectCallee() << Call->getSourceRange();
955    return true;
956  }
957
958  return false;
959}
960
961// Performs a semantic analysis on the {work_group_/sub_group_
962//        /_}reserve_{read/write}_pipe
963// \param S Reference to the semantic analyzer.
964// \param Call The call to the builtin function to be analyzed.
965// \return True if a semantic error was found, false otherwise.
966static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
967  if (checkArgCount(S, Call, 2))
968    return true;
969
970  if (checkOpenCLPipeArg(S, Call))
971    return true;
972
973  // Check the reserve size.
974  if (!Call->getArg(1)->getType()->isIntegerType() &&
975      !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
976    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
977        << Call->getDirectCallee() << S.Context.UnsignedIntTy
978        << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
979    return true;
980  }
981
982  // Since return type of reserve_read/write_pipe built-in function is
983  // reserve_id_t, which is not defined in the builtin def file , we used int
984  // as return type and need to override the return type of these functions.
985  Call->setType(S.Context.OCLReserveIDTy);
986
987  return false;
988}
989
990// Performs a semantic analysis on {work_group_/sub_group_
991//        /_}commit_{read/write}_pipe
992// \param S Reference to the semantic analyzer.
993// \param Call The call to the builtin function to be analyzed.
994// \return True if a semantic error was found, false otherwise.
995static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
996  if (checkArgCount(S, Call, 2))
997    return true;
998
999  if (checkOpenCLPipeArg(S, Call))
1000    return true;
1001
1002  // Check reserve_id_t.
1003  if (!Call->getArg(1)->getType()->isReserveIDT()) {
1004    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1005        << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1006        << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1007    return true;
1008  }
1009
1010  return false;
1011}
1012
1013// Performs a semantic analysis on the call to built-in Pipe
1014//        Query Functions.
1015// \param S Reference to the semantic analyzer.
1016// \param Call The call to the builtin function to be analyzed.
1017// \return True if a semantic error was found, false otherwise.
1018static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1019  if (checkArgCount(S, Call, 1))
1020    return true;
1021
1022  if (!Call->getArg(0)->getType()->isPipeType()) {
1023    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1024        << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1025    return true;
1026  }
1027
1028  return false;
1029}
1030
1031// OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1032// Performs semantic analysis for the to_global/local/private call.
1033// \param S Reference to the semantic analyzer.
1034// \param BuiltinID ID of the builtin function.
1035// \param Call A pointer to the builtin call.
1036// \return True if a semantic error has been found, false otherwise.
1037static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1038                                    CallExpr *Call) {
1039  if (Call->getNumArgs() != 1) {
1040    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_arg_num)
1041        << Call->getDirectCallee() << Call->getSourceRange();
1042    return true;
1043  }
1044
1045  auto RT = Call->getArg(0)->getType();
1046  if (!RT->isPointerType() || RT->getPointeeType()
1047      .getAddressSpace() == LangAS::opencl_constant) {
1048    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1049        << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1050    return true;
1051  }
1052
1053  if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1054    S.Diag(Call->getArg(0)->getBeginLoc(),
1055           diag::warn_opencl_generic_address_space_arg)
1056        << Call->getDirectCallee()->getNameInfo().getAsString()
1057        << Call->getArg(0)->getSourceRange();
1058  }
1059
1060  RT = RT->getPointeeType();
1061  auto Qual = RT.getQualifiers();
1062  switch (BuiltinID) {
1063  case Builtin::BIto_global:
1064    Qual.setAddressSpace(LangAS::opencl_global);
1065    break;
1066  case Builtin::BIto_local:
1067    Qual.setAddressSpace(LangAS::opencl_local);
1068    break;
1069  case Builtin::BIto_private:
1070    Qual.setAddressSpace(LangAS::opencl_private);
1071    break;
1072  default:
1073    llvm_unreachable("Invalid builtin function");
1074  }
1075  Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1076      RT.getUnqualifiedType(), Qual)));
1077
1078  return false;
1079}
1080
1081static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1082  if (checkArgCount(S, TheCall, 1))
1083    return ExprError();
1084
1085  // Compute __builtin_launder's parameter type from the argument.
1086  // The parameter type is:
1087  //  * The type of the argument if it's not an array or function type,
1088  //  Otherwise,
1089  //  * The decayed argument type.
1090  QualType ParamTy = [&]() {
1091    QualType ArgTy = TheCall->getArg(0)->getType();
1092    if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1093      return S.Context.getPointerType(Ty->getElementType());
1094    if (ArgTy->isFunctionType()) {
1095      return S.Context.getPointerType(ArgTy);
1096    }
1097    return ArgTy;
1098  }();
1099
1100  TheCall->setType(ParamTy);
1101
1102  auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1103    if (!ParamTy->isPointerType())
1104      return 0;
1105    if (ParamTy->isFunctionPointerType())
1106      return 1;
1107    if (ParamTy->isVoidPointerType())
1108      return 2;
1109    return llvm::Optional<unsigned>{};
1110  }();
1111  if (DiagSelect.hasValue()) {
1112    S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1113        << DiagSelect.getValue() << TheCall->getSourceRange();
1114    return ExprError();
1115  }
1116
1117  // We either have an incomplete class type, or we have a class template
1118  // whose instantiation has not been forced. Example:
1119  //
1120  //   template <class T> struct Foo { T value; };
1121  //   Foo<int> *p = nullptr;
1122  //   auto *d = __builtin_launder(p);
1123  if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1124                            diag::err_incomplete_type))
1125    return ExprError();
1126
1127  assert(ParamTy->getPointeeType()->isObjectType() &&
1128         "Unhandled non-object pointer case");
1129
1130  InitializedEntity Entity =
1131      InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1132  ExprResult Arg =
1133      S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1134  if (Arg.isInvalid())
1135    return ExprError();
1136  TheCall->setArg(0, Arg.get());
1137
1138  return TheCall;
1139}
1140
1141// Emit an error and return true if the current architecture is not in the list
1142// of supported architectures.
1143static bool
1144CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1145                          ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1146  llvm::Triple::ArchType CurArch =
1147      S.getASTContext().getTargetInfo().getTriple().getArch();
1148  if (llvm::is_contained(SupportedArchs, CurArch))
1149    return false;
1150  S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1151      << TheCall->getSourceRange();
1152  return true;
1153}
1154
1155ExprResult
1156Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1157                               CallExpr *TheCall) {
1158  ExprResult TheCallResult(TheCall);
1159
1160  // Find out if any arguments are required to be integer constant expressions.
1161  unsigned ICEArguments = 0;
1162  ASTContext::GetBuiltinTypeError Error;
1163  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1164  if (Error != ASTContext::GE_None)
1165    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1166
1167  // If any arguments are required to be ICE's, check and diagnose.
1168  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1169    // Skip arguments not required to be ICE's.
1170    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1171
1172    llvm::APSInt Result;
1173    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1174      return true;
1175    ICEArguments &= ~(1 << ArgNo);
1176  }
1177
1178  switch (BuiltinID) {
1179  case Builtin::BI__builtin___CFStringMakeConstantString:
1180    assert(TheCall->getNumArgs() == 1 &&
1181           "Wrong # arguments to builtin CFStringMakeConstantString");
1182    if (CheckObjCString(TheCall->getArg(0)))
1183      return ExprError();
1184    break;
1185  case Builtin::BI__builtin_ms_va_start:
1186  case Builtin::BI__builtin_stdarg_start:
1187  case Builtin::BI__builtin_va_start:
1188    if (SemaBuiltinVAStart(BuiltinID, TheCall))
1189      return ExprError();
1190    break;
1191  case Builtin::BI__va_start: {
1192    switch (Context.getTargetInfo().getTriple().getArch()) {
1193    case llvm::Triple::aarch64:
1194    case llvm::Triple::arm:
1195    case llvm::Triple::thumb:
1196      if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1197        return ExprError();
1198      break;
1199    default:
1200      if (SemaBuiltinVAStart(BuiltinID, TheCall))
1201        return ExprError();
1202      break;
1203    }
1204    break;
1205  }
1206
1207  // The acquire, release, and no fence variants are ARM and AArch64 only.
1208  case Builtin::BI_interlockedbittestandset_acq:
1209  case Builtin::BI_interlockedbittestandset_rel:
1210  case Builtin::BI_interlockedbittestandset_nf:
1211  case Builtin::BI_interlockedbittestandreset_acq:
1212  case Builtin::BI_interlockedbittestandreset_rel:
1213  case Builtin::BI_interlockedbittestandreset_nf:
1214    if (CheckBuiltinTargetSupport(
1215            *this, BuiltinID, TheCall,
1216            {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1217      return ExprError();
1218    break;
1219
1220  // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1221  case Builtin::BI_bittest64:
1222  case Builtin::BI_bittestandcomplement64:
1223  case Builtin::BI_bittestandreset64:
1224  case Builtin::BI_bittestandset64:
1225  case Builtin::BI_interlockedbittestandreset64:
1226  case Builtin::BI_interlockedbittestandset64:
1227    if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1228                                  {llvm::Triple::x86_64, llvm::Triple::arm,
1229                                   llvm::Triple::thumb, llvm::Triple::aarch64}))
1230      return ExprError();
1231    break;
1232
1233  case Builtin::BI__builtin_isgreater:
1234  case Builtin::BI__builtin_isgreaterequal:
1235  case Builtin::BI__builtin_isless:
1236  case Builtin::BI__builtin_islessequal:
1237  case Builtin::BI__builtin_islessgreater:
1238  case Builtin::BI__builtin_isunordered:
1239    if (SemaBuiltinUnorderedCompare(TheCall))
1240      return ExprError();
1241    break;
1242  case Builtin::BI__builtin_fpclassify:
1243    if (SemaBuiltinFPClassification(TheCall, 6))
1244      return ExprError();
1245    break;
1246  case Builtin::BI__builtin_isfinite:
1247  case Builtin::BI__builtin_isinf:
1248  case Builtin::BI__builtin_isinf_sign:
1249  case Builtin::BI__builtin_isnan:
1250  case Builtin::BI__builtin_isnormal:
1251  case Builtin::BI__builtin_signbit:
1252  case Builtin::BI__builtin_signbitf:
1253  case Builtin::BI__builtin_signbitl:
1254    if (SemaBuiltinFPClassification(TheCall, 1))
1255      return ExprError();
1256    break;
1257  case Builtin::BI__builtin_shufflevector:
1258    return SemaBuiltinShuffleVector(TheCall);
1259    // TheCall will be freed by the smart pointer here, but that's fine, since
1260    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1261  case Builtin::BI__builtin_prefetch:
1262    if (SemaBuiltinPrefetch(TheCall))
1263      return ExprError();
1264    break;
1265  case Builtin::BI__builtin_alloca_with_align:
1266    if (SemaBuiltinAllocaWithAlign(TheCall))
1267      return ExprError();
1268    LLVM_FALLTHROUGH;
1269  case Builtin::BI__builtin_alloca:
1270    Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1271        << TheCall->getDirectCallee();
1272    break;
1273  case Builtin::BI__assume:
1274  case Builtin::BI__builtin_assume:
1275    if (SemaBuiltinAssume(TheCall))
1276      return ExprError();
1277    break;
1278  case Builtin::BI__builtin_assume_aligned:
1279    if (SemaBuiltinAssumeAligned(TheCall))
1280      return ExprError();
1281    break;
1282  case Builtin::BI__builtin_dynamic_object_size:
1283  case Builtin::BI__builtin_object_size:
1284    if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1285      return ExprError();
1286    break;
1287  case Builtin::BI__builtin_longjmp:
1288    if (SemaBuiltinLongjmp(TheCall))
1289      return ExprError();
1290    break;
1291  case Builtin::BI__builtin_setjmp:
1292    if (SemaBuiltinSetjmp(TheCall))
1293      return ExprError();
1294    break;
1295  case Builtin::BI_setjmp:
1296  case Builtin::BI_setjmpex:
1297    if (checkArgCount(*this, TheCall, 1))
1298      return true;
1299    break;
1300  case Builtin::BI__builtin_classify_type:
1301    if (checkArgCount(*this, TheCall, 1)) return true;
1302    TheCall->setType(Context.IntTy);
1303    break;
1304  case Builtin::BI__builtin_constant_p: {
1305    if (checkArgCount(*this, TheCall, 1)) return true;
1306    ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1307    if (Arg.isInvalid()) return true;
1308    TheCall->setArg(0, Arg.get());
1309    TheCall->setType(Context.IntTy);
1310    break;
1311  }
1312  case Builtin::BI__builtin_launder:
1313    return SemaBuiltinLaunder(*this, TheCall);
1314  case Builtin::BI__sync_fetch_and_add:
1315  case Builtin::BI__sync_fetch_and_add_1:
1316  case Builtin::BI__sync_fetch_and_add_2:
1317  case Builtin::BI__sync_fetch_and_add_4:
1318  case Builtin::BI__sync_fetch_and_add_8:
1319  case Builtin::BI__sync_fetch_and_add_16:
1320  case Builtin::BI__sync_fetch_and_sub:
1321  case Builtin::BI__sync_fetch_and_sub_1:
1322  case Builtin::BI__sync_fetch_and_sub_2:
1323  case Builtin::BI__sync_fetch_and_sub_4:
1324  case Builtin::BI__sync_fetch_and_sub_8:
1325  case Builtin::BI__sync_fetch_and_sub_16:
1326  case Builtin::BI__sync_fetch_and_or:
1327  case Builtin::BI__sync_fetch_and_or_1:
1328  case Builtin::BI__sync_fetch_and_or_2:
1329  case Builtin::BI__sync_fetch_and_or_4:
1330  case Builtin::BI__sync_fetch_and_or_8:
1331  case Builtin::BI__sync_fetch_and_or_16:
1332  case Builtin::BI__sync_fetch_and_and:
1333  case Builtin::BI__sync_fetch_and_and_1:
1334  case Builtin::BI__sync_fetch_and_and_2:
1335  case Builtin::BI__sync_fetch_and_and_4:
1336  case Builtin::BI__sync_fetch_and_and_8:
1337  case Builtin::BI__sync_fetch_and_and_16:
1338  case Builtin::BI__sync_fetch_and_xor:
1339  case Builtin::BI__sync_fetch_and_xor_1:
1340  case Builtin::BI__sync_fetch_and_xor_2:
1341  case Builtin::BI__sync_fetch_and_xor_4:
1342  case Builtin::BI__sync_fetch_and_xor_8:
1343  case Builtin::BI__sync_fetch_and_xor_16:
1344  case Builtin::BI__sync_fetch_and_nand:
1345  case Builtin::BI__sync_fetch_and_nand_1:
1346  case Builtin::BI__sync_fetch_and_nand_2:
1347  case Builtin::BI__sync_fetch_and_nand_4:
1348  case Builtin::BI__sync_fetch_and_nand_8:
1349  case Builtin::BI__sync_fetch_and_nand_16:
1350  case Builtin::BI__sync_add_and_fetch:
1351  case Builtin::BI__sync_add_and_fetch_1:
1352  case Builtin::BI__sync_add_and_fetch_2:
1353  case Builtin::BI__sync_add_and_fetch_4:
1354  case Builtin::BI__sync_add_and_fetch_8:
1355  case Builtin::BI__sync_add_and_fetch_16:
1356  case Builtin::BI__sync_sub_and_fetch:
1357  case Builtin::BI__sync_sub_and_fetch_1:
1358  case Builtin::BI__sync_sub_and_fetch_2:
1359  case Builtin::BI__sync_sub_and_fetch_4:
1360  case Builtin::BI__sync_sub_and_fetch_8:
1361  case Builtin::BI__sync_sub_and_fetch_16:
1362  case Builtin::BI__sync_and_and_fetch:
1363  case Builtin::BI__sync_and_and_fetch_1:
1364  case Builtin::BI__sync_and_and_fetch_2:
1365  case Builtin::BI__sync_and_and_fetch_4:
1366  case Builtin::BI__sync_and_and_fetch_8:
1367  case Builtin::BI__sync_and_and_fetch_16:
1368  case Builtin::BI__sync_or_and_fetch:
1369  case Builtin::BI__sync_or_and_fetch_1:
1370  case Builtin::BI__sync_or_and_fetch_2:
1371  case Builtin::BI__sync_or_and_fetch_4:
1372  case Builtin::BI__sync_or_and_fetch_8:
1373  case Builtin::BI__sync_or_and_fetch_16:
1374  case Builtin::BI__sync_xor_and_fetch:
1375  case Builtin::BI__sync_xor_and_fetch_1:
1376  case Builtin::BI__sync_xor_and_fetch_2:
1377  case Builtin::BI__sync_xor_and_fetch_4:
1378  case Builtin::BI__sync_xor_and_fetch_8:
1379  case Builtin::BI__sync_xor_and_fetch_16:
1380  case Builtin::BI__sync_nand_and_fetch:
1381  case Builtin::BI__sync_nand_and_fetch_1:
1382  case Builtin::BI__sync_nand_and_fetch_2:
1383  case Builtin::BI__sync_nand_and_fetch_4:
1384  case Builtin::BI__sync_nand_and_fetch_8:
1385  case Builtin::BI__sync_nand_and_fetch_16:
1386  case Builtin::BI__sync_val_compare_and_swap:
1387  case Builtin::BI__sync_val_compare_and_swap_1:
1388  case Builtin::BI__sync_val_compare_and_swap_2:
1389  case Builtin::BI__sync_val_compare_and_swap_4:
1390  case Builtin::BI__sync_val_compare_and_swap_8:
1391  case Builtin::BI__sync_val_compare_and_swap_16:
1392  case Builtin::BI__sync_bool_compare_and_swap:
1393  case Builtin::BI__sync_bool_compare_and_swap_1:
1394  case Builtin::BI__sync_bool_compare_and_swap_2:
1395  case Builtin::BI__sync_bool_compare_and_swap_4:
1396  case Builtin::BI__sync_bool_compare_and_swap_8:
1397  case Builtin::BI__sync_bool_compare_and_swap_16:
1398  case Builtin::BI__sync_lock_test_and_set:
1399  case Builtin::BI__sync_lock_test_and_set_1:
1400  case Builtin::BI__sync_lock_test_and_set_2:
1401  case Builtin::BI__sync_lock_test_and_set_4:
1402  case Builtin::BI__sync_lock_test_and_set_8:
1403  case Builtin::BI__sync_lock_test_and_set_16:
1404  case Builtin::BI__sync_lock_release:
1405  case Builtin::BI__sync_lock_release_1:
1406  case Builtin::BI__sync_lock_release_2:
1407  case Builtin::BI__sync_lock_release_4:
1408  case Builtin::BI__sync_lock_release_8:
1409  case Builtin::BI__sync_lock_release_16:
1410  case Builtin::BI__sync_swap:
1411  case Builtin::BI__sync_swap_1:
1412  case Builtin::BI__sync_swap_2:
1413  case Builtin::BI__sync_swap_4:
1414  case Builtin::BI__sync_swap_8:
1415  case Builtin::BI__sync_swap_16:
1416    return SemaBuiltinAtomicOverloaded(TheCallResult);
1417  case Builtin::BI__sync_synchronize:
1418    Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1419        << TheCall->getCallee()->getSourceRange();
1420    break;
1421  case Builtin::BI__builtin_nontemporal_load:
1422  case Builtin::BI__builtin_nontemporal_store:
1423    return SemaBuiltinNontemporalOverloaded(TheCallResult);
1424#define BUILTIN(ID, TYPE, ATTRS)
1425#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1426  case Builtin::BI##ID: \
1427    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1428#include "clang/Basic/Builtins.def"
1429  case Builtin::BI__annotation:
1430    if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1431      return ExprError();
1432    break;
1433  case Builtin::BI__builtin_annotation:
1434    if (SemaBuiltinAnnotation(*this, TheCall))
1435      return ExprError();
1436    break;
1437  case Builtin::BI__builtin_addressof:
1438    if (SemaBuiltinAddressof(*this, TheCall))
1439      return ExprError();
1440    break;
1441  case Builtin::BI__builtin_is_aligned:
1442  case Builtin::BI__builtin_align_up:
1443  case Builtin::BI__builtin_align_down:
1444    if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1445      return ExprError();
1446    break;
1447  case Builtin::BI__builtin_add_overflow:
1448  case Builtin::BI__builtin_sub_overflow:
1449  case Builtin::BI__builtin_mul_overflow:
1450    if (SemaBuiltinOverflow(*this, TheCall))
1451      return ExprError();
1452    break;
1453  case Builtin::BI__builtin_operator_new:
1454  case Builtin::BI__builtin_operator_delete: {
1455    bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1456    ExprResult Res =
1457        SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1458    if (Res.isInvalid())
1459      CorrectDelayedTyposInExpr(TheCallResult.get());
1460    return Res;
1461  }
1462  case Builtin::BI__builtin_dump_struct: {
1463    // We first want to ensure we are called with 2 arguments
1464    if (checkArgCount(*this, TheCall, 2))
1465      return ExprError();
1466    // Ensure that the first argument is of type 'struct XX *'
1467    const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1468    const QualType PtrArgType = PtrArg->getType();
1469    if (!PtrArgType->isPointerType() ||
1470        !PtrArgType->getPointeeType()->isRecordType()) {
1471      Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1472          << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1473          << "structure pointer";
1474      return ExprError();
1475    }
1476
1477    // Ensure that the second argument is of type 'FunctionType'
1478    const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1479    const QualType FnPtrArgType = FnPtrArg->getType();
1480    if (!FnPtrArgType->isPointerType()) {
1481      Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1482          << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1483          << FnPtrArgType << "'int (*)(const char *, ...)'";
1484      return ExprError();
1485    }
1486
1487    const auto *FuncType =
1488        FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1489
1490    if (!FuncType) {
1491      Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1492          << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1493          << FnPtrArgType << "'int (*)(const char *, ...)'";
1494      return ExprError();
1495    }
1496
1497    if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1498      if (!FT->getNumParams()) {
1499        Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1500            << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1501            << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1502        return ExprError();
1503      }
1504      QualType PT = FT->getParamType(0);
1505      if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1506          !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1507          !PT->getPointeeType().isConstQualified()) {
1508        Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1509            << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1510            << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1511        return ExprError();
1512      }
1513    }
1514
1515    TheCall->setType(Context.IntTy);
1516    break;
1517  }
1518  case Builtin::BI__builtin_preserve_access_index:
1519    if (SemaBuiltinPreserveAI(*this, TheCall))
1520      return ExprError();
1521    break;
1522  case Builtin::BI__builtin_call_with_static_chain:
1523    if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1524      return ExprError();
1525    break;
1526  case Builtin::BI__exception_code:
1527  case Builtin::BI_exception_code:
1528    if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1529                                 diag::err_seh___except_block))
1530      return ExprError();
1531    break;
1532  case Builtin::BI__exception_info:
1533  case Builtin::BI_exception_info:
1534    if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1535                                 diag::err_seh___except_filter))
1536      return ExprError();
1537    break;
1538  case Builtin::BI__GetExceptionInfo:
1539    if (checkArgCount(*this, TheCall, 1))
1540      return ExprError();
1541
1542    if (CheckCXXThrowOperand(
1543            TheCall->getBeginLoc(),
1544            Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1545            TheCall))
1546      return ExprError();
1547
1548    TheCall->setType(Context.VoidPtrTy);
1549    break;
1550  // OpenCL v2.0, s6.13.16 - Pipe functions
1551  case Builtin::BIread_pipe:
1552  case Builtin::BIwrite_pipe:
1553    // Since those two functions are declared with var args, we need a semantic
1554    // check for the argument.
1555    if (SemaBuiltinRWPipe(*this, TheCall))
1556      return ExprError();
1557    break;
1558  case Builtin::BIreserve_read_pipe:
1559  case Builtin::BIreserve_write_pipe:
1560  case Builtin::BIwork_group_reserve_read_pipe:
1561  case Builtin::BIwork_group_reserve_write_pipe:
1562    if (SemaBuiltinReserveRWPipe(*this, TheCall))
1563      return ExprError();
1564    break;
1565  case Builtin::BIsub_group_reserve_read_pipe:
1566  case Builtin::BIsub_group_reserve_write_pipe:
1567    if (checkOpenCLSubgroupExt(*this, TheCall) ||
1568        SemaBuiltinReserveRWPipe(*this, TheCall))
1569      return ExprError();
1570    break;
1571  case Builtin::BIcommit_read_pipe:
1572  case Builtin::BIcommit_write_pipe:
1573  case Builtin::BIwork_group_commit_read_pipe:
1574  case Builtin::BIwork_group_commit_write_pipe:
1575    if (SemaBuiltinCommitRWPipe(*this, TheCall))
1576      return ExprError();
1577    break;
1578  case Builtin::BIsub_group_commit_read_pipe:
1579  case Builtin::BIsub_group_commit_write_pipe:
1580    if (checkOpenCLSubgroupExt(*this, TheCall) ||
1581        SemaBuiltinCommitRWPipe(*this, TheCall))
1582      return ExprError();
1583    break;
1584  case Builtin::BIget_pipe_num_packets:
1585  case Builtin::BIget_pipe_max_packets:
1586    if (SemaBuiltinPipePackets(*this, TheCall))
1587      return ExprError();
1588    break;
1589  case Builtin::BIto_global:
1590  case Builtin::BIto_local:
1591  case Builtin::BIto_private:
1592    if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1593      return ExprError();
1594    break;
1595  // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1596  case Builtin::BIenqueue_kernel:
1597    if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1598      return ExprError();
1599    break;
1600  case Builtin::BIget_kernel_work_group_size:
1601  case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1602    if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1603      return ExprError();
1604    break;
1605  case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1606  case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1607    if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1608      return ExprError();
1609    break;
1610  case Builtin::BI__builtin_os_log_format:
1611  case Builtin::BI__builtin_os_log_format_buffer_size:
1612    if (SemaBuiltinOSLogFormat(TheCall))
1613      return ExprError();
1614    break;
1615  }
1616
1617  // Since the target specific builtins for each arch overlap, only check those
1618  // of the arch we are compiling for.
1619  if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
1620    switch (Context.getTargetInfo().getTriple().getArch()) {
1621      case llvm::Triple::arm:
1622      case llvm::Triple::armeb:
1623      case llvm::Triple::thumb:
1624      case llvm::Triple::thumbeb:
1625        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
1626          return ExprError();
1627        break;
1628      case llvm::Triple::aarch64:
1629      case llvm::Triple::aarch64_32:
1630      case llvm::Triple::aarch64_be:
1631        if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
1632          return ExprError();
1633        break;
1634      case llvm::Triple::bpfeb:
1635      case llvm::Triple::bpfel:
1636        if (CheckBPFBuiltinFunctionCall(BuiltinID, TheCall))
1637          return ExprError();
1638        break;
1639      case llvm::Triple::hexagon:
1640        if (CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall))
1641          return ExprError();
1642        break;
1643      case llvm::Triple::mips:
1644      case llvm::Triple::mipsel:
1645      case llvm::Triple::mips64:
1646      case llvm::Triple::mips64el:
1647        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
1648          return ExprError();
1649        break;
1650      case llvm::Triple::systemz:
1651        if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall))
1652          return ExprError();
1653        break;
1654      case llvm::Triple::x86:
1655      case llvm::Triple::x86_64:
1656        if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
1657          return ExprError();
1658        break;
1659      case llvm::Triple::ppc:
1660      case llvm::Triple::ppc64:
1661      case llvm::Triple::ppc64le:
1662        if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall))
1663          return ExprError();
1664        break;
1665      default:
1666        break;
1667    }
1668  }
1669
1670  return TheCallResult;
1671}
1672
1673// Get the valid immediate range for the specified NEON type code.
1674static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
1675  NeonTypeFlags Type(t);
1676  int IsQuad = ForceQuad ? true : Type.isQuad();
1677  switch (Type.getEltType()) {
1678  case NeonTypeFlags::Int8:
1679  case NeonTypeFlags::Poly8:
1680    return shift ? 7 : (8 << IsQuad) - 1;
1681  case NeonTypeFlags::Int16:
1682  case NeonTypeFlags::Poly16:
1683    return shift ? 15 : (4 << IsQuad) - 1;
1684  case NeonTypeFlags::Int32:
1685    return shift ? 31 : (2 << IsQuad) - 1;
1686  case NeonTypeFlags::Int64:
1687  case NeonTypeFlags::Poly64:
1688    return shift ? 63 : (1 << IsQuad) - 1;
1689  case NeonTypeFlags::Poly128:
1690    return shift ? 127 : (1 << IsQuad) - 1;
1691  case NeonTypeFlags::Float16:
1692    assert(!shift && "cannot shift float types!");
1693    return (4 << IsQuad) - 1;
1694  case NeonTypeFlags::Float32:
1695    assert(!shift && "cannot shift float types!");
1696    return (2 << IsQuad) - 1;
1697  case NeonTypeFlags::Float64:
1698    assert(!shift && "cannot shift float types!");
1699    return (1 << IsQuad) - 1;
1700  }
1701  llvm_unreachable("Invalid NeonTypeFlag!");
1702}
1703
1704/// getNeonEltType - Return the QualType corresponding to the elements of
1705/// the vector type specified by the NeonTypeFlags.  This is used to check
1706/// the pointer arguments for Neon load/store intrinsics.
1707static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
1708                               bool IsPolyUnsigned, bool IsInt64Long) {
1709  switch (Flags.getEltType()) {
1710  case NeonTypeFlags::Int8:
1711    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
1712  case NeonTypeFlags::Int16:
1713    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
1714  case NeonTypeFlags::Int32:
1715    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
1716  case NeonTypeFlags::Int64:
1717    if (IsInt64Long)
1718      return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
1719    else
1720      return Flags.isUnsigned() ? Context.UnsignedLongLongTy
1721                                : Context.LongLongTy;
1722  case NeonTypeFlags::Poly8:
1723    return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
1724  case NeonTypeFlags::Poly16:
1725    return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
1726  case NeonTypeFlags::Poly64:
1727    if (IsInt64Long)
1728      return Context.UnsignedLongTy;
1729    else
1730      return Context.UnsignedLongLongTy;
1731  case NeonTypeFlags::Poly128:
1732    break;
1733  case NeonTypeFlags::Float16:
1734    return Context.HalfTy;
1735  case NeonTypeFlags::Float32:
1736    return Context.FloatTy;
1737  case NeonTypeFlags::Float64:
1738    return Context.DoubleTy;
1739  }
1740  llvm_unreachable("Invalid NeonTypeFlag!");
1741}
1742
1743bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1744  llvm::APSInt Result;
1745  uint64_t mask = 0;
1746  unsigned TV = 0;
1747  int PtrArgNum = -1;
1748  bool HasConstPtr = false;
1749  switch (BuiltinID) {
1750#define GET_NEON_OVERLOAD_CHECK
1751#include "clang/Basic/arm_neon.inc"
1752#include "clang/Basic/arm_fp16.inc"
1753#undef GET_NEON_OVERLOAD_CHECK
1754  }
1755
1756  // For NEON intrinsics which are overloaded on vector element type, validate
1757  // the immediate which specifies which variant to emit.
1758  unsigned ImmArg = TheCall->getNumArgs()-1;
1759  if (mask) {
1760    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
1761      return true;
1762
1763    TV = Result.getLimitedValue(64);
1764    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
1765      return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
1766             << TheCall->getArg(ImmArg)->getSourceRange();
1767  }
1768
1769  if (PtrArgNum >= 0) {
1770    // Check that pointer arguments have the specified type.
1771    Expr *Arg = TheCall->getArg(PtrArgNum);
1772    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
1773      Arg = ICE->getSubExpr();
1774    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
1775    QualType RHSTy = RHS.get()->getType();
1776
1777    llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
1778    bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
1779                          Arch == llvm::Triple::aarch64_32 ||
1780                          Arch == llvm::Triple::aarch64_be;
1781    bool IsInt64Long =
1782        Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
1783    QualType EltTy =
1784        getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
1785    if (HasConstPtr)
1786      EltTy = EltTy.withConst();
1787    QualType LHSTy = Context.getPointerType(EltTy);
1788    AssignConvertType ConvTy;
1789    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
1790    if (RHS.isInvalid())
1791      return true;
1792    if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
1793                                 RHS.get(), AA_Assigning))
1794      return true;
1795  }
1796
1797  // For NEON intrinsics which take an immediate value as part of the
1798  // instruction, range check them here.
1799  unsigned i = 0, l = 0, u = 0;
1800  switch (BuiltinID) {
1801  default:
1802    return false;
1803  #define GET_NEON_IMMEDIATE_CHECK
1804  #include "clang/Basic/arm_neon.inc"
1805  #include "clang/Basic/arm_fp16.inc"
1806  #undef GET_NEON_IMMEDIATE_CHECK
1807  }
1808
1809  return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1810}
1811
1812bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1813  switch (BuiltinID) {
1814  default:
1815    return false;
1816  #include "clang/Basic/arm_mve_builtin_sema.inc"
1817  }
1818}
1819
1820bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
1821                                        unsigned MaxWidth) {
1822  assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
1823          BuiltinID == ARM::BI__builtin_arm_ldaex ||
1824          BuiltinID == ARM::BI__builtin_arm_strex ||
1825          BuiltinID == ARM::BI__builtin_arm_stlex ||
1826          BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1827          BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1828          BuiltinID == AArch64::BI__builtin_arm_strex ||
1829          BuiltinID == AArch64::BI__builtin_arm_stlex) &&
1830         "unexpected ARM builtin");
1831  bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
1832                 BuiltinID == ARM::BI__builtin_arm_ldaex ||
1833                 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1834                 BuiltinID == AArch64::BI__builtin_arm_ldaex;
1835
1836  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1837
1838  // Ensure that we have the proper number of arguments.
1839  if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
1840    return true;
1841
1842  // Inspect the pointer argument of the atomic builtin.  This should always be
1843  // a pointer type, whose element is an integral scalar or pointer type.
1844  // Because it is a pointer type, we don't have to worry about any implicit
1845  // casts here.
1846  Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
1847  ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
1848  if (PointerArgRes.isInvalid())
1849    return true;
1850  PointerArg = PointerArgRes.get();
1851
1852  const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
1853  if (!pointerType) {
1854    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
1855        << PointerArg->getType() << PointerArg->getSourceRange();
1856    return true;
1857  }
1858
1859  // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
1860  // task is to insert the appropriate casts into the AST. First work out just
1861  // what the appropriate type is.
1862  QualType ValType = pointerType->getPointeeType();
1863  QualType AddrType = ValType.getUnqualifiedType().withVolatile();
1864  if (IsLdrex)
1865    AddrType.addConst();
1866
1867  // Issue a warning if the cast is dodgy.
1868  CastKind CastNeeded = CK_NoOp;
1869  if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
1870    CastNeeded = CK_BitCast;
1871    Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
1872        << PointerArg->getType() << Context.getPointerType(AddrType)
1873        << AA_Passing << PointerArg->getSourceRange();
1874  }
1875
1876  // Finally, do the cast and replace the argument with the corrected version.
1877  AddrType = Context.getPointerType(AddrType);
1878  PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
1879  if (PointerArgRes.isInvalid())
1880    return true;
1881  PointerArg = PointerArgRes.get();
1882
1883  TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
1884
1885  // In general, we allow ints, floats and pointers to be loaded and stored.
1886  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1887      !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
1888    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
1889        << PointerArg->getType() << PointerArg->getSourceRange();
1890    return true;
1891  }
1892
1893  // But ARM doesn't have instructions to deal with 128-bit versions.
1894  if (Context.getTypeSize(ValType) > MaxWidth) {
1895    assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
1896    Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
1897        << PointerArg->getType() << PointerArg->getSourceRange();
1898    return true;
1899  }
1900
1901  switch (ValType.getObjCLifetime()) {
1902  case Qualifiers::OCL_None:
1903  case Qualifiers::OCL_ExplicitNone:
1904    // okay
1905    break;
1906
1907  case Qualifiers::OCL_Weak:
1908  case Qualifiers::OCL_Strong:
1909  case Qualifiers::OCL_Autoreleasing:
1910    Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
1911        << ValType << PointerArg->getSourceRange();
1912    return true;
1913  }
1914
1915  if (IsLdrex) {
1916    TheCall->setType(ValType);
1917    return false;
1918  }
1919
1920  // Initialize the argument to be stored.
1921  ExprResult ValArg = TheCall->getArg(0);
1922  InitializedEntity Entity = InitializedEntity::InitializeParameter(
1923      Context, ValType, /*consume*/ false);
1924  ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
1925  if (ValArg.isInvalid())
1926    return true;
1927  TheCall->setArg(0, ValArg.get());
1928
1929  // __builtin_arm_strex always returns an int. It's marked as such in the .def,
1930  // but the custom checker bypasses all default analysis.
1931  TheCall->setType(Context.IntTy);
1932  return false;
1933}
1934
1935bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1936  if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
1937      BuiltinID == ARM::BI__builtin_arm_ldaex ||
1938      BuiltinID == ARM::BI__builtin_arm_strex ||
1939      BuiltinID == ARM::BI__builtin_arm_stlex) {
1940    return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
1941  }
1942
1943  if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
1944    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1945      SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
1946  }
1947
1948  if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
1949      BuiltinID == ARM::BI__builtin_arm_wsr64)
1950    return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
1951
1952  if (BuiltinID == ARM::BI__builtin_arm_rsr ||
1953      BuiltinID == ARM::BI__builtin_arm_rsrp ||
1954      BuiltinID == ARM::BI__builtin_arm_wsr ||
1955      BuiltinID == ARM::BI__builtin_arm_wsrp)
1956    return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1957
1958  if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
1959    return true;
1960  if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
1961    return true;
1962
1963  // For intrinsics which take an immediate value as part of the instruction,
1964  // range check them here.
1965  // FIXME: VFP Intrinsics should error if VFP not present.
1966  switch (BuiltinID) {
1967  default: return false;
1968  case ARM::BI__builtin_arm_ssat:
1969    return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
1970  case ARM::BI__builtin_arm_usat:
1971    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
1972  case ARM::BI__builtin_arm_ssat16:
1973    return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
1974  case ARM::BI__builtin_arm_usat16:
1975    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
1976  case ARM::BI__builtin_arm_vcvtr_f:
1977  case ARM::BI__builtin_arm_vcvtr_d:
1978    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
1979  case ARM::BI__builtin_arm_dmb:
1980  case ARM::BI__builtin_arm_dsb:
1981  case ARM::BI__builtin_arm_isb:
1982  case ARM::BI__builtin_arm_dbg:
1983    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
1984  }
1985}
1986
1987bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
1988                                         CallExpr *TheCall) {
1989  if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1990      BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1991      BuiltinID == AArch64::BI__builtin_arm_strex ||
1992      BuiltinID == AArch64::BI__builtin_arm_stlex) {
1993    return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
1994  }
1995
1996  if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
1997    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1998      SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
1999      SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2000      SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2001  }
2002
2003  if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2004      BuiltinID == AArch64::BI__builtin_arm_wsr64)
2005    return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2006
2007  // Memory Tagging Extensions (MTE) Intrinsics
2008  if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2009      BuiltinID == AArch64::BI__builtin_arm_addg ||
2010      BuiltinID == AArch64::BI__builtin_arm_gmi ||
2011      BuiltinID == AArch64::BI__builtin_arm_ldg ||
2012      BuiltinID == AArch64::BI__builtin_arm_stg ||
2013      BuiltinID == AArch64::BI__builtin_arm_subp) {
2014    return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2015  }
2016
2017  if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2018      BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2019      BuiltinID == AArch64::BI__builtin_arm_wsr ||
2020      BuiltinID == AArch64::BI__builtin_arm_wsrp)
2021    return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2022
2023  // Only check the valid encoding range. Any constant in this range would be
2024  // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2025  // an exception for incorrect registers. This matches MSVC behavior.
2026  if (BuiltinID == AArch64::BI_ReadStatusReg ||
2027      BuiltinID == AArch64::BI_WriteStatusReg)
2028    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2029
2030  if (BuiltinID == AArch64::BI__getReg)
2031    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2032
2033  if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
2034    return true;
2035
2036  // For intrinsics which take an immediate value as part of the instruction,
2037  // range check them here.
2038  unsigned i = 0, l = 0, u = 0;
2039  switch (BuiltinID) {
2040  default: return false;
2041  case AArch64::BI__builtin_arm_dmb:
2042  case AArch64::BI__builtin_arm_dsb:
2043  case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2044  case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2045  }
2046
2047  return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2048}
2049
2050bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2051                                       CallExpr *TheCall) {
2052  assert(BuiltinID == BPF::BI__builtin_preserve_field_info &&
2053         "unexpected ARM builtin");
2054
2055  if (checkArgCount(*this, TheCall, 2))
2056    return true;
2057
2058  // The first argument needs to be a record field access.
2059  // If it is an array element access, we delay decision
2060  // to BPF backend to check whether the access is a
2061  // field access or not.
2062  Expr *Arg = TheCall->getArg(0);
2063  if (Arg->getType()->getAsPlaceholderType() ||
2064      (Arg->IgnoreParens()->getObjectKind() != OK_BitField &&
2065       !dyn_cast<MemberExpr>(Arg->IgnoreParens()) &&
2066       !dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()))) {
2067    Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_field)
2068        << 1 << Arg->getSourceRange();
2069    return true;
2070  }
2071
2072  // The second argument needs to be a constant int
2073  llvm::APSInt Value;
2074  if (!TheCall->getArg(1)->isIntegerConstantExpr(Value, Context)) {
2075    Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_const)
2076        << 2 << Arg->getSourceRange();
2077    return true;
2078  }
2079
2080  TheCall->setType(Context.UnsignedIntTy);
2081  return false;
2082}
2083
2084bool Sema::CheckHexagonBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall) {
2085  struct BuiltinAndString {
2086    unsigned BuiltinID;
2087    const char *Str;
2088  };
2089
2090  static BuiltinAndString ValidCPU[] = {
2091    { Hexagon::BI__builtin_HEXAGON_A6_vcmpbeq_notany, "v65,v66" },
2092    { Hexagon::BI__builtin_HEXAGON_A6_vminub_RdP, "v62,v65,v66" },
2093    { Hexagon::BI__builtin_HEXAGON_F2_dfadd, "v66" },
2094    { Hexagon::BI__builtin_HEXAGON_F2_dfsub, "v66" },
2095    { Hexagon::BI__builtin_HEXAGON_M2_mnaci, "v66" },
2096    { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffb, "v62,v65,v66" },
2097    { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffub, "v62,v65,v66" },
2098    { Hexagon::BI__builtin_HEXAGON_S2_mask, "v66" },
2099    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, "v60,v62,v65,v66" },
2100    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, "v60,v62,v65,v66" },
2101    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, "v60,v62,v65,v66" },
2102    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, "v60,v62,v65,v66" },
2103    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, "v60,v62,v65,v66" },
2104    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, "v60,v62,v65,v66" },
2105    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, "v60,v62,v65,v66" },
2106    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, "v60,v62,v65,v66" },
2107    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, "v60,v62,v65,v66" },
2108    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, "v60,v62,v65,v66" },
2109    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, "v60,v62,v65,v66" },
2110    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, "v60,v62,v65,v66" },
2111    { Hexagon::BI__builtin_HEXAGON_S6_vsplatrbp, "v62,v65,v66" },
2112    { Hexagon::BI__builtin_HEXAGON_S6_vtrunehb_ppp, "v62,v65,v66" },
2113    { Hexagon::BI__builtin_HEXAGON_S6_vtrunohb_ppp, "v62,v65,v66" },
2114  };
2115
2116  static BuiltinAndString ValidHVX[] = {
2117    { Hexagon::BI__builtin_HEXAGON_V6_hi, "v60,v62,v65,v66" },
2118    { Hexagon::BI__builtin_HEXAGON_V6_hi_128B, "v60,v62,v65,v66" },
2119    { Hexagon::BI__builtin_HEXAGON_V6_lo, "v60,v62,v65,v66" },
2120    { Hexagon::BI__builtin_HEXAGON_V6_lo_128B, "v60,v62,v65,v66" },
2121    { Hexagon::BI__builtin_HEXAGON_V6_extractw, "v60,v62,v65,v66" },
2122    { Hexagon::BI__builtin_HEXAGON_V6_extractw_128B, "v60,v62,v65,v66" },
2123    { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb, "v62,v65,v66" },
2124    { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb_128B, "v62,v65,v66" },
2125    { Hexagon::BI__builtin_HEXAGON_V6_lvsplath, "v62,v65,v66" },
2126    { Hexagon::BI__builtin_HEXAGON_V6_lvsplath_128B, "v62,v65,v66" },
2127    { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw, "v60,v62,v65,v66" },
2128    { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw_128B, "v60,v62,v65,v66" },
2129    { Hexagon::BI__builtin_HEXAGON_V6_pred_and, "v60,v62,v65,v66" },
2130    { Hexagon::BI__builtin_HEXAGON_V6_pred_and_128B, "v60,v62,v65,v66" },
2131    { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n, "v60,v62,v65,v66" },
2132    { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n_128B, "v60,v62,v65,v66" },
2133    { Hexagon::BI__builtin_HEXAGON_V6_pred_not, "v60,v62,v65,v66" },
2134    { Hexagon::BI__builtin_HEXAGON_V6_pred_not_128B, "v60,v62,v65,v66" },
2135    { Hexagon::BI__builtin_HEXAGON_V6_pred_or, "v60,v62,v65,v66" },
2136    { Hexagon::BI__builtin_HEXAGON_V6_pred_or_128B, "v60,v62,v65,v66" },
2137    { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n, "v60,v62,v65,v66" },
2138    { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n_128B, "v60,v62,v65,v66" },
2139    { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2, "v60,v62,v65,v66" },
2140    { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2_128B, "v60,v62,v65,v66" },
2141    { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2, "v62,v65,v66" },
2142    { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2_128B, "v62,v65,v66" },
2143    { Hexagon::BI__builtin_HEXAGON_V6_pred_xor, "v60,v62,v65,v66" },
2144    { Hexagon::BI__builtin_HEXAGON_V6_pred_xor_128B, "v60,v62,v65,v66" },
2145    { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh, "v62,v65,v66" },
2146    { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh_128B, "v62,v65,v66" },
2147    { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw, "v62,v65,v66" },
2148    { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw_128B, "v62,v65,v66" },
2149    { Hexagon::BI__builtin_HEXAGON_V6_vabsb, "v65,v66" },
2150    { Hexagon::BI__builtin_HEXAGON_V6_vabsb_128B, "v65,v66" },
2151    { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat, "v65,v66" },
2152    { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat_128B, "v65,v66" },
2153    { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh, "v60,v62,v65,v66" },
2154    { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh_128B, "v60,v62,v65,v66" },
2155    { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub, "v60,v62,v65,v66" },
2156    { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub_128B, "v60,v62,v65,v66" },
2157    { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh, "v60,v62,v65,v66" },
2158    { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh_128B, "v60,v62,v65,v66" },
2159    { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw, "v60,v62,v65,v66" },
2160    { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw_128B, "v60,v62,v65,v66" },
2161    { Hexagon::BI__builtin_HEXAGON_V6_vabsh, "v60,v62,v65,v66" },
2162    { Hexagon::BI__builtin_HEXAGON_V6_vabsh_128B, "v60,v62,v65,v66" },
2163    { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat, "v60,v62,v65,v66" },
2164    { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat_128B, "v60,v62,v65,v66" },
2165    { Hexagon::BI__builtin_HEXAGON_V6_vabsw, "v60,v62,v65,v66" },
2166    { Hexagon::BI__builtin_HEXAGON_V6_vabsw_128B, "v60,v62,v65,v66" },
2167    { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat, "v60,v62,v65,v66" },
2168    { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat_128B, "v60,v62,v65,v66" },
2169    { Hexagon::BI__builtin_HEXAGON_V6_vaddb, "v60,v62,v65,v66" },
2170    { Hexagon::BI__builtin_HEXAGON_V6_vaddb_128B, "v60,v62,v65,v66" },
2171    { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv, "v60,v62,v65,v66" },
2172    { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv_128B, "v60,v62,v65,v66" },
2173    { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat, "v62,v65,v66" },
2174    { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_128B, "v62,v65,v66" },
2175    { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv, "v62,v65,v66" },
2176    { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv_128B, "v62,v65,v66" },
2177    { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry, "v62,v65,v66" },
2178    { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B, "v62,v65,v66" },
2179    { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat, "v66" },
2180    { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat_128B, "v66" },
2181    { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh, "v62,v65,v66" },
2182    { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh_128B, "v62,v65,v66" },
2183    { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw, "v62,v65,v66" },
2184    { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw_128B, "v62,v65,v66" },
2185    { Hexagon::BI__builtin_HEXAGON_V6_vaddh, "v60,v62,v65,v66" },
2186    { Hexagon::BI__builtin_HEXAGON_V6_vaddh_128B, "v60,v62,v65,v66" },
2187    { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv, "v60,v62,v65,v66" },
2188    { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv_128B, "v60,v62,v65,v66" },
2189    { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat, "v60,v62,v65,v66" },
2190    { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_128B, "v60,v62,v65,v66" },
2191    { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv, "v60,v62,v65,v66" },
2192    { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv_128B, "v60,v62,v65,v66" },
2193    { Hexagon::BI__builtin_HEXAGON_V6_vaddhw, "v60,v62,v65,v66" },
2194    { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_128B, "v60,v62,v65,v66" },
2195    { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc, "v62,v65,v66" },
2196    { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc_128B, "v62,v65,v66" },
2197    { Hexagon::BI__builtin_HEXAGON_V6_vaddubh, "v60,v62,v65,v66" },
2198    { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_128B, "v60,v62,v65,v66" },
2199    { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc, "v62,v65,v66" },
2200    { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc_128B, "v62,v65,v66" },
2201    { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat, "v60,v62,v65,v66" },
2202    { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_128B, "v60,v62,v65,v66" },
2203    { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv, "v60,v62,v65,v66" },
2204    { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv_128B, "v60,v62,v65,v66" },
2205    { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat, "v62,v65,v66" },
2206    { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat_128B, "v62,v65,v66" },
2207    { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat, "v60,v62,v65,v66" },
2208    { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_128B, "v60,v62,v65,v66" },
2209    { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv, "v60,v62,v65,v66" },
2210    { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv_128B, "v60,v62,v65,v66" },
2211    { Hexagon::BI__builtin_HEXAGON_V6_vadduhw, "v60,v62,v65,v66" },
2212    { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_128B, "v60,v62,v65,v66" },
2213    { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc, "v62,v65,v66" },
2214    { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc_128B, "v62,v65,v66" },
2215    { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat, "v62,v65,v66" },
2216    { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_128B, "v62,v65,v66" },
2217    { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv, "v62,v65,v66" },
2218    { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv_128B, "v62,v65,v66" },
2219    { Hexagon::BI__builtin_HEXAGON_V6_vaddw, "v60,v62,v65,v66" },
2220    { Hexagon::BI__builtin_HEXAGON_V6_vaddw_128B, "v60,v62,v65,v66" },
2221    { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv, "v60,v62,v65,v66" },
2222    { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv_128B, "v60,v62,v65,v66" },
2223    { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat, "v60,v62,v65,v66" },
2224    { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_128B, "v60,v62,v65,v66" },
2225    { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv, "v60,v62,v65,v66" },
2226    { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv_128B, "v60,v62,v65,v66" },
2227    { Hexagon::BI__builtin_HEXAGON_V6_valignb, "v60,v62,v65,v66" },
2228    { Hexagon::BI__builtin_HEXAGON_V6_valignb_128B, "v60,v62,v65,v66" },
2229    { Hexagon::BI__builtin_HEXAGON_V6_valignbi, "v60,v62,v65,v66" },
2230    { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, "v60,v62,v65,v66" },
2231    { Hexagon::BI__builtin_HEXAGON_V6_vand, "v60,v62,v65,v66" },
2232    { Hexagon::BI__builtin_HEXAGON_V6_vand_128B, "v60,v62,v65,v66" },
2233    { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt, "v62,v65,v66" },
2234    { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_128B, "v62,v65,v66" },
2235    { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc, "v62,v65,v66" },
2236    { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc_128B, "v62,v65,v66" },
2237    { Hexagon::BI__builtin_HEXAGON_V6_vandqrt, "v60,v62,v65,v66" },
2238    { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_128B, "v60,v62,v65,v66" },
2239    { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc, "v60,v62,v65,v66" },
2240    { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc_128B, "v60,v62,v65,v66" },
2241    { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv, "v62,v65,v66" },
2242    { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv_128B, "v62,v65,v66" },
2243    { Hexagon::BI__builtin_HEXAGON_V6_vandvqv, "v62,v65,v66" },
2244    { Hexagon::BI__builtin_HEXAGON_V6_vandvqv_128B, "v62,v65,v66" },
2245    { Hexagon::BI__builtin_HEXAGON_V6_vandvrt, "v60,v62,v65,v66" },
2246    { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_128B, "v60,v62,v65,v66" },
2247    { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc, "v60,v62,v65,v66" },
2248    { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc_128B, "v60,v62,v65,v66" },
2249    { Hexagon::BI__builtin_HEXAGON_V6_vaslh, "v60,v62,v65,v66" },
2250    { Hexagon::BI__builtin_HEXAGON_V6_vaslh_128B, "v60,v62,v65,v66" },
2251    { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc, "v65,v66" },
2252    { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc_128B, "v65,v66" },
2253    { Hexagon::BI__builtin_HEXAGON_V6_vaslhv, "v60,v62,v65,v66" },
2254    { Hexagon::BI__builtin_HEXAGON_V6_vaslhv_128B, "v60,v62,v65,v66" },
2255    { Hexagon::BI__builtin_HEXAGON_V6_vaslw, "v60,v62,v65,v66" },
2256    { Hexagon::BI__builtin_HEXAGON_V6_vaslw_128B, "v60,v62,v65,v66" },
2257    { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc, "v60,v62,v65,v66" },
2258    { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc_128B, "v60,v62,v65,v66" },
2259    { Hexagon::BI__builtin_HEXAGON_V6_vaslwv, "v60,v62,v65,v66" },
2260    { Hexagon::BI__builtin_HEXAGON_V6_vaslwv_128B, "v60,v62,v65,v66" },
2261    { Hexagon::BI__builtin_HEXAGON_V6_vasrh, "v60,v62,v65,v66" },
2262    { Hexagon::BI__builtin_HEXAGON_V6_vasrh_128B, "v60,v62,v65,v66" },
2263    { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc, "v65,v66" },
2264    { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc_128B, "v65,v66" },
2265    { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat, "v60,v62,v65,v66" },
2266    { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat_128B, "v60,v62,v65,v66" },
2267    { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat, "v62,v65,v66" },
2268    { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat_128B, "v62,v65,v66" },
2269    { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat, "v60,v62,v65,v66" },
2270    { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat_128B, "v60,v62,v65,v66" },
2271    { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat, "v60,v62,v65,v66" },
2272    { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat_128B, "v60,v62,v65,v66" },
2273    { Hexagon::BI__builtin_HEXAGON_V6_vasrhv, "v60,v62,v65,v66" },
2274    { Hexagon::BI__builtin_HEXAGON_V6_vasrhv_128B, "v60,v62,v65,v66" },
2275    { Hexagon::BI__builtin_HEXAGON_V6_vasr_into, "v66" },
2276    { Hexagon::BI__builtin_HEXAGON_V6_vasr_into_128B, "v66" },
2277    { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat, "v65,v66" },
2278    { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat_128B, "v65,v66" },
2279    { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat, "v65,v66" },
2280    { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat_128B, "v65,v66" },
2281    { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat, "v62,v65,v66" },
2282    { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat_128B, "v62,v65,v66" },
2283    { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat, "v65,v66" },
2284    { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat_128B, "v65,v66" },
2285    { Hexagon::BI__builtin_HEXAGON_V6_vasrw, "v60,v62,v65,v66" },
2286    { Hexagon::BI__builtin_HEXAGON_V6_vasrw_128B, "v60,v62,v65,v66" },
2287    { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc, "v60,v62,v65,v66" },
2288    { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc_128B, "v60,v62,v65,v66" },
2289    { Hexagon::BI__builtin_HEXAGON_V6_vasrwh, "v60,v62,v65,v66" },
2290    { Hexagon::BI__builtin_HEXAGON_V6_vasrwh_128B, "v60,v62,v65,v66" },
2291    { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat, "v60,v62,v65,v66" },
2292    { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat_128B, "v60,v62,v65,v66" },
2293    { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat, "v60,v62,v65,v66" },
2294    { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat_128B, "v60,v62,v65,v66" },
2295    { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat, "v62,v65,v66" },
2296    { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat_128B, "v62,v65,v66" },
2297    { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat, "v60,v62,v65,v66" },
2298    { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat_128B, "v60,v62,v65,v66" },
2299    { Hexagon::BI__builtin_HEXAGON_V6_vasrwv, "v60,v62,v65,v66" },
2300    { Hexagon::BI__builtin_HEXAGON_V6_vasrwv_128B, "v60,v62,v65,v66" },
2301    { Hexagon::BI__builtin_HEXAGON_V6_vassign, "v60,v62,v65,v66" },
2302    { Hexagon::BI__builtin_HEXAGON_V6_vassign_128B, "v60,v62,v65,v66" },
2303    { Hexagon::BI__builtin_HEXAGON_V6_vassignp, "v60,v62,v65,v66" },
2304    { Hexagon::BI__builtin_HEXAGON_V6_vassignp_128B, "v60,v62,v65,v66" },
2305    { Hexagon::BI__builtin_HEXAGON_V6_vavgb, "v65,v66" },
2306    { Hexagon::BI__builtin_HEXAGON_V6_vavgb_128B, "v65,v66" },
2307    { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd, "v65,v66" },
2308    { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd_128B, "v65,v66" },
2309    { Hexagon::BI__builtin_HEXAGON_V6_vavgh, "v60,v62,v65,v66" },
2310    { Hexagon::BI__builtin_HEXAGON_V6_vavgh_128B, "v60,v62,v65,v66" },
2311    { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd, "v60,v62,v65,v66" },
2312    { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd_128B, "v60,v62,v65,v66" },
2313    { Hexagon::BI__builtin_HEXAGON_V6_vavgub, "v60,v62,v65,v66" },
2314    { Hexagon::BI__builtin_HEXAGON_V6_vavgub_128B, "v60,v62,v65,v66" },
2315    { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd, "v60,v62,v65,v66" },
2316    { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd_128B, "v60,v62,v65,v66" },
2317    { Hexagon::BI__builtin_HEXAGON_V6_vavguh, "v60,v62,v65,v66" },
2318    { Hexagon::BI__builtin_HEXAGON_V6_vavguh_128B, "v60,v62,v65,v66" },
2319    { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd, "v60,v62,v65,v66" },
2320    { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd_128B, "v60,v62,v65,v66" },
2321    { Hexagon::BI__builtin_HEXAGON_V6_vavguw, "v65,v66" },
2322    { Hexagon::BI__builtin_HEXAGON_V6_vavguw_128B, "v65,v66" },
2323    { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd, "v65,v66" },
2324    { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd_128B, "v65,v66" },
2325    { Hexagon::BI__builtin_HEXAGON_V6_vavgw, "v60,v62,v65,v66" },
2326    { Hexagon::BI__builtin_HEXAGON_V6_vavgw_128B, "v60,v62,v65,v66" },
2327    { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd, "v60,v62,v65,v66" },
2328    { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd_128B, "v60,v62,v65,v66" },
2329    { Hexagon::BI__builtin_HEXAGON_V6_vcl0h, "v60,v62,v65,v66" },
2330    { Hexagon::BI__builtin_HEXAGON_V6_vcl0h_128B, "v60,v62,v65,v66" },
2331    { Hexagon::BI__builtin_HEXAGON_V6_vcl0w, "v60,v62,v65,v66" },
2332    { Hexagon::BI__builtin_HEXAGON_V6_vcl0w_128B, "v60,v62,v65,v66" },
2333    { Hexagon::BI__builtin_HEXAGON_V6_vcombine, "v60,v62,v65,v66" },
2334    { Hexagon::BI__builtin_HEXAGON_V6_vcombine_128B, "v60,v62,v65,v66" },
2335    { Hexagon::BI__builtin_HEXAGON_V6_vd0, "v60,v62,v65,v66" },
2336    { Hexagon::BI__builtin_HEXAGON_V6_vd0_128B, "v60,v62,v65,v66" },
2337    { Hexagon::BI__builtin_HEXAGON_V6_vdd0, "v65,v66" },
2338    { Hexagon::BI__builtin_HEXAGON_V6_vdd0_128B, "v65,v66" },
2339    { Hexagon::BI__builtin_HEXAGON_V6_vdealb, "v60,v62,v65,v66" },
2340    { Hexagon::BI__builtin_HEXAGON_V6_vdealb_128B, "v60,v62,v65,v66" },
2341    { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w, "v60,v62,v65,v66" },
2342    { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w_128B, "v60,v62,v65,v66" },
2343    { Hexagon::BI__builtin_HEXAGON_V6_vdealh, "v60,v62,v65,v66" },
2344    { Hexagon::BI__builtin_HEXAGON_V6_vdealh_128B, "v60,v62,v65,v66" },
2345    { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd, "v60,v62,v65,v66" },
2346    { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd_128B, "v60,v62,v65,v66" },
2347    { Hexagon::BI__builtin_HEXAGON_V6_vdelta, "v60,v62,v65,v66" },
2348    { Hexagon::BI__builtin_HEXAGON_V6_vdelta_128B, "v60,v62,v65,v66" },
2349    { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus, "v60,v62,v65,v66" },
2350    { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_128B, "v60,v62,v65,v66" },
2351    { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc, "v60,v62,v65,v66" },
2352    { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc_128B, "v60,v62,v65,v66" },
2353    { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv, "v60,v62,v65,v66" },
2354    { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_128B, "v60,v62,v65,v66" },
2355    { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc, "v60,v62,v65,v66" },
2356    { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc_128B, "v60,v62,v65,v66" },
2357    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb, "v60,v62,v65,v66" },
2358    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_128B, "v60,v62,v65,v66" },
2359    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc, "v60,v62,v65,v66" },
2360    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc_128B, "v60,v62,v65,v66" },
2361    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv, "v60,v62,v65,v66" },
2362    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_128B, "v60,v62,v65,v66" },
2363    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc, "v60,v62,v65,v66" },
2364    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc_128B, "v60,v62,v65,v66" },
2365    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat, "v60,v62,v65,v66" },
2366    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_128B, "v60,v62,v65,v66" },
2367    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc, "v60,v62,v65,v66" },
2368    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc_128B, "v60,v62,v65,v66" },
2369    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat, "v60,v62,v65,v66" },
2370    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_128B, "v60,v62,v65,v66" },
2371    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc, "v60,v62,v65,v66" },
2372    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc_128B, "v60,v62,v65,v66" },
2373    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat, "v60,v62,v65,v66" },
2374    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_128B, "v60,v62,v65,v66" },
2375    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc, "v60,v62,v65,v66" },
2376    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc_128B, "v60,v62,v65,v66" },
2377    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat, "v60,v62,v65,v66" },
2378    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_128B, "v60,v62,v65,v66" },
2379    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc, "v60,v62,v65,v66" },
2380    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc_128B, "v60,v62,v65,v66" },
2381    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat, "v60,v62,v65,v66" },
2382    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_128B, "v60,v62,v65,v66" },
2383    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc, "v60,v62,v65,v66" },
2384    { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc_128B, "v60,v62,v65,v66" },
2385    { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh, "v60,v62,v65,v66" },
2386    { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_128B, "v60,v62,v65,v66" },
2387    { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc, "v60,v62,v65,v66" },
2388    { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc_128B, "v60,v62,v65,v66" },
2389    { Hexagon::BI__builtin_HEXAGON_V6_veqb, "v60,v62,v65,v66" },
2390    { Hexagon::BI__builtin_HEXAGON_V6_veqb_128B, "v60,v62,v65,v66" },
2391    { Hexagon::BI__builtin_HEXAGON_V6_veqb_and, "v60,v62,v65,v66" },
2392    { Hexagon::BI__builtin_HEXAGON_V6_veqb_and_128B, "v60,v62,v65,v66" },
2393    { Hexagon::BI__builtin_HEXAGON_V6_veqb_or, "v60,v62,v65,v66" },
2394    { Hexagon::BI__builtin_HEXAGON_V6_veqb_or_128B, "v60,v62,v65,v66" },
2395    { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor, "v60,v62,v65,v66" },
2396    { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor_128B, "v60,v62,v65,v66" },
2397    { Hexagon::BI__builtin_HEXAGON_V6_veqh, "v60,v62,v65,v66" },
2398    { Hexagon::BI__builtin_HEXAGON_V6_veqh_128B, "v60,v62,v65,v66" },
2399    { Hexagon::BI__builtin_HEXAGON_V6_veqh_and, "v60,v62,v65,v66" },
2400    { Hexagon::BI__builtin_HEXAGON_V6_veqh_and_128B, "v60,v62,v65,v66" },
2401    { Hexagon::BI__builtin_HEXAGON_V6_veqh_or, "v60,v62,v65,v66" },
2402    { Hexagon::BI__builtin_HEXAGON_V6_veqh_or_128B, "v60,v62,v65,v66" },
2403    { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor, "v60,v62,v65,v66" },
2404    { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor_128B, "v60,v62,v65,v66" },
2405    { Hexagon::BI__builtin_HEXAGON_V6_veqw, "v60,v62,v65,v66" },
2406    { Hexagon::BI__builtin_HEXAGON_V6_veqw_128B, "v60,v62,v65,v66" },
2407    { Hexagon::BI__builtin_HEXAGON_V6_veqw_and, "v60,v62,v65,v66" },
2408    { Hexagon::BI__builtin_HEXAGON_V6_veqw_and_128B, "v60,v62,v65,v66" },
2409    { Hexagon::BI__builtin_HEXAGON_V6_veqw_or, "v60,v62,v65,v66" },
2410    { Hexagon::BI__builtin_HEXAGON_V6_veqw_or_128B, "v60,v62,v65,v66" },
2411    { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor, "v60,v62,v65,v66" },
2412    { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor_128B, "v60,v62,v65,v66" },
2413    { Hexagon::BI__builtin_HEXAGON_V6_vgtb, "v60,v62,v65,v66" },
2414    { Hexagon::BI__builtin_HEXAGON_V6_vgtb_128B, "v60,v62,v65,v66" },
2415    { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and, "v60,v62,v65,v66" },
2416    { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and_128B, "v60,v62,v65,v66" },
2417    { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or, "v60,v62,v65,v66" },
2418    { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or_128B, "v60,v62,v65,v66" },
2419    { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor, "v60,v62,v65,v66" },
2420    { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor_128B, "v60,v62,v65,v66" },
2421    { Hexagon::BI__builtin_HEXAGON_V6_vgth, "v60,v62,v65,v66" },
2422    { Hexagon::BI__builtin_HEXAGON_V6_vgth_128B, "v60,v62,v65,v66" },
2423    { Hexagon::BI__builtin_HEXAGON_V6_vgth_and, "v60,v62,v65,v66" },
2424    { Hexagon::BI__builtin_HEXAGON_V6_vgth_and_128B, "v60,v62,v65,v66" },
2425    { Hexagon::BI__builtin_HEXAGON_V6_vgth_or, "v60,v62,v65,v66" },
2426    { Hexagon::BI__builtin_HEXAGON_V6_vgth_or_128B, "v60,v62,v65,v66" },
2427    { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor, "v60,v62,v65,v66" },
2428    { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor_128B, "v60,v62,v65,v66" },
2429    { Hexagon::BI__builtin_HEXAGON_V6_vgtub, "v60,v62,v65,v66" },
2430    { Hexagon::BI__builtin_HEXAGON_V6_vgtub_128B, "v60,v62,v65,v66" },
2431    { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and, "v60,v62,v65,v66" },
2432    { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and_128B, "v60,v62,v65,v66" },
2433    { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or, "v60,v62,v65,v66" },
2434    { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or_128B, "v60,v62,v65,v66" },
2435    { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor, "v60,v62,v65,v66" },
2436    { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor_128B, "v60,v62,v65,v66" },
2437    { Hexagon::BI__builtin_HEXAGON_V6_vgtuh, "v60,v62,v65,v66" },
2438    { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_128B, "v60,v62,v65,v66" },
2439    { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and, "v60,v62,v65,v66" },
2440    { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and_128B, "v60,v62,v65,v66" },
2441    { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or, "v60,v62,v65,v66" },
2442    { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or_128B, "v60,v62,v65,v66" },
2443    { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor, "v60,v62,v65,v66" },
2444    { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor_128B, "v60,v62,v65,v66" },
2445    { Hexagon::BI__builtin_HEXAGON_V6_vgtuw, "v60,v62,v65,v66" },
2446    { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_128B, "v60,v62,v65,v66" },
2447    { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and, "v60,v62,v65,v66" },
2448    { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and_128B, "v60,v62,v65,v66" },
2449    { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or, "v60,v62,v65,v66" },
2450    { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or_128B, "v60,v62,v65,v66" },
2451    { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor, "v60,v62,v65,v66" },
2452    { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor_128B, "v60,v62,v65,v66" },
2453    { Hexagon::BI__builtin_HEXAGON_V6_vgtw, "v60,v62,v65,v66" },
2454    { Hexagon::BI__builtin_HEXAGON_V6_vgtw_128B, "v60,v62,v65,v66" },
2455    { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and, "v60,v62,v65,v66" },
2456    { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and_128B, "v60,v62,v65,v66" },
2457    { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or, "v60,v62,v65,v66" },
2458    { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or_128B, "v60,v62,v65,v66" },
2459    { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor, "v60,v62,v65,v66" },
2460    { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor_128B, "v60,v62,v65,v66" },
2461    { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr, "v60,v62,v65,v66" },
2462    { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr_128B, "v60,v62,v65,v66" },
2463    { Hexagon::BI__builtin_HEXAGON_V6_vlalignb, "v60,v62,v65,v66" },
2464    { Hexagon::BI__builtin_HEXAGON_V6_vlalignb_128B, "v60,v62,v65,v66" },
2465    { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, "v60,v62,v65,v66" },
2466    { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, "v60,v62,v65,v66" },
2467    { Hexagon::BI__builtin_HEXAGON_V6_vlsrb, "v62,v65,v66" },
2468    { Hexagon::BI__builtin_HEXAGON_V6_vlsrb_128B, "v62,v65,v66" },
2469    { Hexagon::BI__builtin_HEXAGON_V6_vlsrh, "v60,v62,v65,v66" },
2470    { Hexagon::BI__builtin_HEXAGON_V6_vlsrh_128B, "v60,v62,v65,v66" },
2471    { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv, "v60,v62,v65,v66" },
2472    { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv_128B, "v60,v62,v65,v66" },
2473    { Hexagon::BI__builtin_HEXAGON_V6_vlsrw, "v60,v62,v65,v66" },
2474    { Hexagon::BI__builtin_HEXAGON_V6_vlsrw_128B, "v60,v62,v65,v66" },
2475    { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv, "v60,v62,v65,v66" },
2476    { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv_128B, "v60,v62,v65,v66" },
2477    { Hexagon::BI__builtin_HEXAGON_V6_vlut4, "v65,v66" },
2478    { Hexagon::BI__builtin_HEXAGON_V6_vlut4_128B, "v65,v66" },
2479    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb, "v60,v62,v65,v66" },
2480    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_128B, "v60,v62,v65,v66" },
2481    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi, "v62,v65,v66" },
2482    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi_128B, "v62,v65,v66" },
2483    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm, "v62,v65,v66" },
2484    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm_128B, "v62,v65,v66" },
2485    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc, "v60,v62,v65,v66" },
2486    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc_128B, "v60,v62,v65,v66" },
2487    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci, "v62,v65,v66" },
2488    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci_128B, "v62,v65,v66" },
2489    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh, "v60,v62,v65,v66" },
2490    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_128B, "v60,v62,v65,v66" },
2491    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi, "v62,v65,v66" },
2492    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi_128B, "v62,v65,v66" },
2493    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm, "v62,v65,v66" },
2494    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm_128B, "v62,v65,v66" },
2495    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc, "v60,v62,v65,v66" },
2496    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc_128B, "v60,v62,v65,v66" },
2497    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci, "v62,v65,v66" },
2498    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci_128B, "v62,v65,v66" },
2499    { Hexagon::BI__builtin_HEXAGON_V6_vmaxb, "v62,v65,v66" },
2500    { Hexagon::BI__builtin_HEXAGON_V6_vmaxb_128B, "v62,v65,v66" },
2501    { Hexagon::BI__builtin_HEXAGON_V6_vmaxh, "v60,v62,v65,v66" },
2502    { Hexagon::BI__builtin_HEXAGON_V6_vmaxh_128B, "v60,v62,v65,v66" },
2503    { Hexagon::BI__builtin_HEXAGON_V6_vmaxub, "v60,v62,v65,v66" },
2504    { Hexagon::BI__builtin_HEXAGON_V6_vmaxub_128B, "v60,v62,v65,v66" },
2505    { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh, "v60,v62,v65,v66" },
2506    { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh_128B, "v60,v62,v65,v66" },
2507    { Hexagon::BI__builtin_HEXAGON_V6_vmaxw, "v60,v62,v65,v66" },
2508    { Hexagon::BI__builtin_HEXAGON_V6_vmaxw_128B, "v60,v62,v65,v66" },
2509    { Hexagon::BI__builtin_HEXAGON_V6_vminb, "v62,v65,v66" },
2510    { Hexagon::BI__builtin_HEXAGON_V6_vminb_128B, "v62,v65,v66" },
2511    { Hexagon::BI__builtin_HEXAGON_V6_vminh, "v60,v62,v65,v66" },
2512    { Hexagon::BI__builtin_HEXAGON_V6_vminh_128B, "v60,v62,v65,v66" },
2513    { Hexagon::BI__builtin_HEXAGON_V6_vminub, "v60,v62,v65,v66" },
2514    { Hexagon::BI__builtin_HEXAGON_V6_vminub_128B, "v60,v62,v65,v66" },
2515    { Hexagon::BI__builtin_HEXAGON_V6_vminuh, "v60,v62,v65,v66" },
2516    { Hexagon::BI__builtin_HEXAGON_V6_vminuh_128B, "v60,v62,v65,v66" },
2517    { Hexagon::BI__builtin_HEXAGON_V6_vminw, "v60,v62,v65,v66" },
2518    { Hexagon::BI__builtin_HEXAGON_V6_vminw_128B, "v60,v62,v65,v66" },
2519    { Hexagon::BI__builtin_HEXAGON_V6_vmpabus, "v60,v62,v65,v66" },
2520    { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_128B, "v60,v62,v65,v66" },
2521    { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc, "v60,v62,v65,v66" },
2522    { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc_128B, "v60,v62,v65,v66" },
2523    { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv, "v60,v62,v65,v66" },
2524    { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv_128B, "v60,v62,v65,v66" },
2525    { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu, "v65,v66" },
2526    { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_128B, "v65,v66" },
2527    { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc, "v65,v66" },
2528    { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc_128B, "v65,v66" },
2529    { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv, "v60,v62,v65,v66" },
2530    { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv_128B, "v60,v62,v65,v66" },
2531    { Hexagon::BI__builtin_HEXAGON_V6_vmpahb, "v60,v62,v65,v66" },
2532    { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_128B, "v60,v62,v65,v66" },
2533    { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc, "v60,v62,v65,v66" },
2534    { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc_128B, "v60,v62,v65,v66" },
2535    { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat, "v65,v66" },
2536    { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat_128B, "v65,v66" },
2537    { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb, "v62,v65,v66" },
2538    { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_128B, "v62,v65,v66" },
2539    { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc, "v62,v65,v66" },
2540    { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc_128B, "v62,v65,v66" },
2541    { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat, "v65,v66" },
2542    { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat_128B, "v65,v66" },
2543    { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat, "v65,v66" },
2544    { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat_128B, "v65,v66" },
2545    { Hexagon::BI__builtin_HEXAGON_V6_vmpybus, "v60,v62,v65,v66" },
2546    { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_128B, "v60,v62,v65,v66" },
2547    { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc, "v60,v62,v65,v66" },
2548    { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc_128B, "v60,v62,v65,v66" },
2549    { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv, "v60,v62,v65,v66" },
2550    { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_128B, "v60,v62,v65,v66" },
2551    { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc, "v60,v62,v65,v66" },
2552    { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc_128B, "v60,v62,v65,v66" },
2553    { Hexagon::BI__builtin_HEXAGON_V6_vmpybv, "v60,v62,v65,v66" },
2554    { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_128B, "v60,v62,v65,v66" },
2555    { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc, "v60,v62,v65,v66" },
2556    { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc_128B, "v60,v62,v65,v66" },
2557    { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh, "v60,v62,v65,v66" },
2558    { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_128B, "v60,v62,v65,v66" },
2559    { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64, "v62,v65,v66" },
2560    { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64_128B, "v62,v65,v66" },
2561    { Hexagon::BI__builtin_HEXAGON_V6_vmpyh, "v60,v62,v65,v66" },
2562    { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_128B, "v60,v62,v65,v66" },
2563    { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc, "v65,v66" },
2564    { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc_128B, "v65,v66" },
2565    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc, "v60,v62,v65,v66" },
2566    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc_128B, "v60,v62,v65,v66" },
2567    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs, "v60,v62,v65,v66" },
2568    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs_128B, "v60,v62,v65,v66" },
2569    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss, "v60,v62,v65,v66" },
2570    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss_128B, "v60,v62,v65,v66" },
2571    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus, "v60,v62,v65,v66" },
2572    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_128B, "v60,v62,v65,v66" },
2573    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc, "v60,v62,v65,v66" },
2574    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc_128B, "v60,v62,v65,v66" },
2575    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv, "v60,v62,v65,v66" },
2576    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_128B, "v60,v62,v65,v66" },
2577    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc, "v60,v62,v65,v66" },
2578    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc_128B, "v60,v62,v65,v66" },
2579    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs, "v60,v62,v65,v66" },
2580    { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs_128B, "v60,v62,v65,v66" },
2581    { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh, "v60,v62,v65,v66" },
2582    { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh_128B, "v60,v62,v65,v66" },
2583    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc, "v60,v62,v65,v66" },
2584    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc_128B, "v60,v62,v65,v66" },
2585    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh, "v60,v62,v65,v66" },
2586    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_128B, "v60,v62,v65,v66" },
2587    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc, "v60,v62,v65,v66" },
2588    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc_128B, "v60,v62,v65,v66" },
2589    { Hexagon::BI__builtin_HEXAGON_V6_vmpyih, "v60,v62,v65,v66" },
2590    { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_128B, "v60,v62,v65,v66" },
2591    { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc, "v60,v62,v65,v66" },
2592    { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc_128B, "v60,v62,v65,v66" },
2593    { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb, "v60,v62,v65,v66" },
2594    { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_128B, "v60,v62,v65,v66" },
2595    { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc, "v60,v62,v65,v66" },
2596    { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc_128B, "v60,v62,v65,v66" },
2597    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh, "v60,v62,v65,v66" },
2598    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh_128B, "v60,v62,v65,v66" },
2599    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb, "v60,v62,v65,v66" },
2600    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_128B, "v60,v62,v65,v66" },
2601    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc, "v60,v62,v65,v66" },
2602    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc_128B, "v60,v62,v65,v66" },
2603    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh, "v60,v62,v65,v66" },
2604    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_128B, "v60,v62,v65,v66" },
2605    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc, "v60,v62,v65,v66" },
2606    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc_128B, "v60,v62,v65,v66" },
2607    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub, "v62,v65,v66" },
2608    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_128B, "v62,v65,v66" },
2609    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc, "v62,v65,v66" },
2610    { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc_128B, "v62,v65,v66" },
2611    { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh, "v60,v62,v65,v66" },
2612    { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_128B, "v60,v62,v65,v66" },
2613    { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc, "v62,v65,v66" },
2614    { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc_128B, "v62,v65,v66" },
2615    { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd, "v60,v62,v65,v66" },
2616    { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_128B, "v60,v62,v65,v66" },
2617    { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc, "v60,v62,v65,v66" },
2618    { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc_128B, "v60,v62,v65,v66" },
2619    { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc, "v60,v62,v65,v66" },
2620    { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc_128B, "v60,v62,v65,v66" },
2621    { Hexagon::BI__builtin_HEXAGON_V6_vmpyub, "v60,v62,v65,v66" },
2622    { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_128B, "v60,v62,v65,v66" },
2623    { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc, "v60,v62,v65,v66" },
2624    { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc_128B, "v60,v62,v65,v66" },
2625    { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv, "v60,v62,v65,v66" },
2626    { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_128B, "v60,v62,v65,v66" },
2627    { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc, "v60,v62,v65,v66" },
2628    { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc_128B, "v60,v62,v65,v66" },
2629    { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh, "v60,v62,v65,v66" },
2630    { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_128B, "v60,v62,v65,v66" },
2631    { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc, "v60,v62,v65,v66" },
2632    { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc_128B, "v60,v62,v65,v66" },
2633    { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe, "v65,v66" },
2634    { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_128B, "v65,v66" },
2635    { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc, "v65,v66" },
2636    { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc_128B, "v65,v66" },
2637    { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv, "v60,v62,v65,v66" },
2638    { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_128B, "v60,v62,v65,v66" },
2639    { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc, "v60,v62,v65,v66" },
2640    { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc_128B, "v60,v62,v65,v66" },
2641    { Hexagon::BI__builtin_HEXAGON_V6_vmux, "v60,v62,v65,v66" },
2642    { Hexagon::BI__builtin_HEXAGON_V6_vmux_128B, "v60,v62,v65,v66" },
2643    { Hexagon::BI__builtin_HEXAGON_V6_vnavgb, "v65,v66" },
2644    { Hexagon::BI__builtin_HEXAGON_V6_vnavgb_128B, "v65,v66" },
2645    { Hexagon::BI__builtin_HEXAGON_V6_vnavgh, "v60,v62,v65,v66" },
2646    { Hexagon::BI__builtin_HEXAGON_V6_vnavgh_128B, "v60,v62,v65,v66" },
2647    { Hexagon::BI__builtin_HEXAGON_V6_vnavgub, "v60,v62,v65,v66" },
2648    { Hexagon::BI__builtin_HEXAGON_V6_vnavgub_128B, "v60,v62,v65,v66" },
2649    { Hexagon::BI__builtin_HEXAGON_V6_vnavgw, "v60,v62,v65,v66" },
2650    { Hexagon::BI__builtin_HEXAGON_V6_vnavgw_128B, "v60,v62,v65,v66" },
2651    { Hexagon::BI__builtin_HEXAGON_V6_vnormamth, "v60,v62,v65,v66" },
2652    { Hexagon::BI__builtin_HEXAGON_V6_vnormamth_128B, "v60,v62,v65,v66" },
2653    { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw, "v60,v62,v65,v66" },
2654    { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw_128B, "v60,v62,v65,v66" },
2655    { Hexagon::BI__builtin_HEXAGON_V6_vnot, "v60,v62,v65,v66" },
2656    { Hexagon::BI__builtin_HEXAGON_V6_vnot_128B, "v60,v62,v65,v66" },
2657    { Hexagon::BI__builtin_HEXAGON_V6_vor, "v60,v62,v65,v66" },
2658    { Hexagon::BI__builtin_HEXAGON_V6_vor_128B, "v60,v62,v65,v66" },
2659    { Hexagon::BI__builtin_HEXAGON_V6_vpackeb, "v60,v62,v65,v66" },
2660    { Hexagon::BI__builtin_HEXAGON_V6_vpackeb_128B, "v60,v62,v65,v66" },
2661    { Hexagon::BI__builtin_HEXAGON_V6_vpackeh, "v60,v62,v65,v66" },
2662    { Hexagon::BI__builtin_HEXAGON_V6_vpackeh_128B, "v60,v62,v65,v66" },
2663    { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat, "v60,v62,v65,v66" },
2664    { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat_128B, "v60,v62,v65,v66" },
2665    { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat, "v60,v62,v65,v66" },
2666    { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat_128B, "v60,v62,v65,v66" },
2667    { Hexagon::BI__builtin_HEXAGON_V6_vpackob, "v60,v62,v65,v66" },
2668    { Hexagon::BI__builtin_HEXAGON_V6_vpackob_128B, "v60,v62,v65,v66" },
2669    { Hexagon::BI__builtin_HEXAGON_V6_vpackoh, "v60,v62,v65,v66" },
2670    { Hexagon::BI__builtin_HEXAGON_V6_vpackoh_128B, "v60,v62,v65,v66" },
2671    { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat, "v60,v62,v65,v66" },
2672    { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat_128B, "v60,v62,v65,v66" },
2673    { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat, "v60,v62,v65,v66" },
2674    { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat_128B, "v60,v62,v65,v66" },
2675    { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth, "v60,v62,v65,v66" },
2676    { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth_128B, "v60,v62,v65,v66" },
2677    { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb, "v65,v66" },
2678    { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb_128B, "v65,v66" },
2679    { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh, "v65,v66" },
2680    { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh_128B, "v65,v66" },
2681    { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw, "v65,v66" },
2682    { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw_128B, "v65,v66" },
2683    { Hexagon::BI__builtin_HEXAGON_V6_vrdelta, "v60,v62,v65,v66" },
2684    { Hexagon::BI__builtin_HEXAGON_V6_vrdelta_128B, "v60,v62,v65,v66" },
2685    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt, "v65" },
2686    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_128B, "v65" },
2687    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc, "v65" },
2688    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc_128B, "v65" },
2689    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus, "v60,v62,v65,v66" },
2690    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_128B, "v60,v62,v65,v66" },
2691    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc, "v60,v62,v65,v66" },
2692    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc_128B, "v60,v62,v65,v66" },
2693    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, "v60,v62,v65,v66" },
2694    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, "v60,v62,v65,v66" },
2695    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, "v60,v62,v65,v66" },
2696    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, "v60,v62,v65,v66" },
2697    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv, "v60,v62,v65,v66" },
2698    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_128B, "v60,v62,v65,v66" },
2699    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc, "v60,v62,v65,v66" },
2700    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc_128B, "v60,v62,v65,v66" },
2701    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv, "v60,v62,v65,v66" },
2702    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_128B, "v60,v62,v65,v66" },
2703    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc, "v60,v62,v65,v66" },
2704    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc_128B, "v60,v62,v65,v66" },
2705    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub, "v60,v62,v65,v66" },
2706    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_128B, "v60,v62,v65,v66" },
2707    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc, "v60,v62,v65,v66" },
2708    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc_128B, "v60,v62,v65,v66" },
2709    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, "v60,v62,v65,v66" },
2710    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, "v60,v62,v65,v66" },
2711    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, "v60,v62,v65,v66" },
2712    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, "v60,v62,v65,v66" },
2713    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt, "v65" },
2714    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_128B, "v65" },
2715    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc, "v65" },
2716    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc_128B, "v65" },
2717    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv, "v60,v62,v65,v66" },
2718    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_128B, "v60,v62,v65,v66" },
2719    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc, "v60,v62,v65,v66" },
2720    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc_128B, "v60,v62,v65,v66" },
2721    { Hexagon::BI__builtin_HEXAGON_V6_vror, "v60,v62,v65,v66" },
2722    { Hexagon::BI__builtin_HEXAGON_V6_vror_128B, "v60,v62,v65,v66" },
2723    { Hexagon::BI__builtin_HEXAGON_V6_vrotr, "v66" },
2724    { Hexagon::BI__builtin_HEXAGON_V6_vrotr_128B, "v66" },
2725    { Hexagon::BI__builtin_HEXAGON_V6_vroundhb, "v60,v62,v65,v66" },
2726    { Hexagon::BI__builtin_HEXAGON_V6_vroundhb_128B, "v60,v62,v65,v66" },
2727    { Hexagon::BI__builtin_HEXAGON_V6_vroundhub, "v60,v62,v65,v66" },
2728    { Hexagon::BI__builtin_HEXAGON_V6_vroundhub_128B, "v60,v62,v65,v66" },
2729    { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub, "v62,v65,v66" },
2730    { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub_128B, "v62,v65,v66" },
2731    { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh, "v62,v65,v66" },
2732    { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh_128B, "v62,v65,v66" },
2733    { Hexagon::BI__builtin_HEXAGON_V6_vroundwh, "v60,v62,v65,v66" },
2734    { Hexagon::BI__builtin_HEXAGON_V6_vroundwh_128B, "v60,v62,v65,v66" },
2735    { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh, "v60,v62,v65,v66" },
2736    { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh_128B, "v60,v62,v65,v66" },
2737    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, "v60,v62,v65,v66" },
2738    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, "v60,v62,v65,v66" },
2739    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, "v60,v62,v65,v66" },
2740    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, "v60,v62,v65,v66" },
2741    { Hexagon::BI__builtin_HEXAGON_V6_vsatdw, "v66" },
2742    { Hexagon::BI__builtin_HEXAGON_V6_vsatdw_128B, "v66" },
2743    { Hexagon::BI__builtin_HEXAGON_V6_vsathub, "v60,v62,v65,v66" },
2744    { Hexagon::BI__builtin_HEXAGON_V6_vsathub_128B, "v60,v62,v65,v66" },
2745    { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh, "v62,v65,v66" },
2746    { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh_128B, "v62,v65,v66" },
2747    { Hexagon::BI__builtin_HEXAGON_V6_vsatwh, "v60,v62,v65,v66" },
2748    { Hexagon::BI__builtin_HEXAGON_V6_vsatwh_128B, "v60,v62,v65,v66" },
2749    { Hexagon::BI__builtin_HEXAGON_V6_vsb, "v60,v62,v65,v66" },
2750    { Hexagon::BI__builtin_HEXAGON_V6_vsb_128B, "v60,v62,v65,v66" },
2751    { Hexagon::BI__builtin_HEXAGON_V6_vsh, "v60,v62,v65,v66" },
2752    { Hexagon::BI__builtin_HEXAGON_V6_vsh_128B, "v60,v62,v65,v66" },
2753    { Hexagon::BI__builtin_HEXAGON_V6_vshufeh, "v60,v62,v65,v66" },
2754    { Hexagon::BI__builtin_HEXAGON_V6_vshufeh_128B, "v60,v62,v65,v66" },
2755    { Hexagon::BI__builtin_HEXAGON_V6_vshuffb, "v60,v62,v65,v66" },
2756    { Hexagon::BI__builtin_HEXAGON_V6_vshuffb_128B, "v60,v62,v65,v66" },
2757    { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb, "v60,v62,v65,v66" },
2758    { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb_128B, "v60,v62,v65,v66" },
2759    { Hexagon::BI__builtin_HEXAGON_V6_vshuffh, "v60,v62,v65,v66" },
2760    { Hexagon::BI__builtin_HEXAGON_V6_vshuffh_128B, "v60,v62,v65,v66" },
2761    { Hexagon::BI__builtin_HEXAGON_V6_vshuffob, "v60,v62,v65,v66" },
2762    { Hexagon::BI__builtin_HEXAGON_V6_vshuffob_128B, "v60,v62,v65,v66" },
2763    { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd, "v60,v62,v65,v66" },
2764    { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd_128B, "v60,v62,v65,v66" },
2765    { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb, "v60,v62,v65,v66" },
2766    { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb_128B, "v60,v62,v65,v66" },
2767    { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh, "v60,v62,v65,v66" },
2768    { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh_128B, "v60,v62,v65,v66" },
2769    { Hexagon::BI__builtin_HEXAGON_V6_vshufoh, "v60,v62,v65,v66" },
2770    { Hexagon::BI__builtin_HEXAGON_V6_vshufoh_128B, "v60,v62,v65,v66" },
2771    { Hexagon::BI__builtin_HEXAGON_V6_vsubb, "v60,v62,v65,v66" },
2772    { Hexagon::BI__builtin_HEXAGON_V6_vsubb_128B, "v60,v62,v65,v66" },
2773    { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv, "v60,v62,v65,v66" },
2774    { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv_128B, "v60,v62,v65,v66" },
2775    { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat, "v62,v65,v66" },
2776    { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_128B, "v62,v65,v66" },
2777    { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv, "v62,v65,v66" },
2778    { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv_128B, "v62,v65,v66" },
2779    { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry, "v62,v65,v66" },
2780    { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B, "v62,v65,v66" },
2781    { Hexagon::BI__builtin_HEXAGON_V6_vsubh, "v60,v62,v65,v66" },
2782    { Hexagon::BI__builtin_HEXAGON_V6_vsubh_128B, "v60,v62,v65,v66" },
2783    { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv, "v60,v62,v65,v66" },
2784    { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv_128B, "v60,v62,v65,v66" },
2785    { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat, "v60,v62,v65,v66" },
2786    { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_128B, "v60,v62,v65,v66" },
2787    { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv, "v60,v62,v65,v66" },
2788    { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv_128B, "v60,v62,v65,v66" },
2789    { Hexagon::BI__builtin_HEXAGON_V6_vsubhw, "v60,v62,v65,v66" },
2790    { Hexagon::BI__builtin_HEXAGON_V6_vsubhw_128B, "v60,v62,v65,v66" },
2791    { Hexagon::BI__builtin_HEXAGON_V6_vsububh, "v60,v62,v65,v66" },
2792    { Hexagon::BI__builtin_HEXAGON_V6_vsububh_128B, "v60,v62,v65,v66" },
2793    { Hexagon::BI__builtin_HEXAGON_V6_vsububsat, "v60,v62,v65,v66" },
2794    { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_128B, "v60,v62,v65,v66" },
2795    { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv, "v60,v62,v65,v66" },
2796    { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv_128B, "v60,v62,v65,v66" },
2797    { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat, "v62,v65,v66" },
2798    { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat_128B, "v62,v65,v66" },
2799    { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat, "v60,v62,v65,v66" },
2800    { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_128B, "v60,v62,v65,v66" },
2801    { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv, "v60,v62,v65,v66" },
2802    { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv_128B, "v60,v62,v65,v66" },
2803    { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw, "v60,v62,v65,v66" },
2804    { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw_128B, "v60,v62,v65,v66" },
2805    { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat, "v62,v65,v66" },
2806    { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_128B, "v62,v65,v66" },
2807    { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv, "v62,v65,v66" },
2808    { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv_128B, "v62,v65,v66" },
2809    { Hexagon::BI__builtin_HEXAGON_V6_vsubw, "v60,v62,v65,v66" },
2810    { Hexagon::BI__builtin_HEXAGON_V6_vsubw_128B, "v60,v62,v65,v66" },
2811    { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv, "v60,v62,v65,v66" },
2812    { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv_128B, "v60,v62,v65,v66" },
2813    { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat, "v60,v62,v65,v66" },
2814    { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_128B, "v60,v62,v65,v66" },
2815    { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv, "v60,v62,v65,v66" },
2816    { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv_128B, "v60,v62,v65,v66" },
2817    { Hexagon::BI__builtin_HEXAGON_V6_vswap, "v60,v62,v65,v66" },
2818    { Hexagon::BI__builtin_HEXAGON_V6_vswap_128B, "v60,v62,v65,v66" },
2819    { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb, "v60,v62,v65,v66" },
2820    { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_128B, "v60,v62,v65,v66" },
2821    { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc, "v60,v62,v65,v66" },
2822    { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc_128B, "v60,v62,v65,v66" },
2823    { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus, "v60,v62,v65,v66" },
2824    { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_128B, "v60,v62,v65,v66" },
2825    { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc, "v60,v62,v65,v66" },
2826    { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc_128B, "v60,v62,v65,v66" },
2827    { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb, "v60,v62,v65,v66" },
2828    { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_128B, "v60,v62,v65,v66" },
2829    { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc, "v60,v62,v65,v66" },
2830    { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc_128B, "v60,v62,v65,v66" },
2831    { Hexagon::BI__builtin_HEXAGON_V6_vunpackb, "v60,v62,v65,v66" },
2832    { Hexagon::BI__builtin_HEXAGON_V6_vunpackb_128B, "v60,v62,v65,v66" },
2833    { Hexagon::BI__builtin_HEXAGON_V6_vunpackh, "v60,v62,v65,v66" },
2834    { Hexagon::BI__builtin_HEXAGON_V6_vunpackh_128B, "v60,v62,v65,v66" },
2835    { Hexagon::BI__builtin_HEXAGON_V6_vunpackob, "v60,v62,v65,v66" },
2836    { Hexagon::BI__builtin_HEXAGON_V6_vunpackob_128B, "v60,v62,v65,v66" },
2837    { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh, "v60,v62,v65,v66" },
2838    { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh_128B, "v60,v62,v65,v66" },
2839    { Hexagon::BI__builtin_HEXAGON_V6_vunpackub, "v60,v62,v65,v66" },
2840    { Hexagon::BI__builtin_HEXAGON_V6_vunpackub_128B, "v60,v62,v65,v66" },
2841    { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh, "v60,v62,v65,v66" },
2842    { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh_128B, "v60,v62,v65,v66" },
2843    { Hexagon::BI__builtin_HEXAGON_V6_vxor, "v60,v62,v65,v66" },
2844    { Hexagon::BI__builtin_HEXAGON_V6_vxor_128B, "v60,v62,v65,v66" },
2845    { Hexagon::BI__builtin_HEXAGON_V6_vzb, "v60,v62,v65,v66" },
2846    { Hexagon::BI__builtin_HEXAGON_V6_vzb_128B, "v60,v62,v65,v66" },
2847    { Hexagon::BI__builtin_HEXAGON_V6_vzh, "v60,v62,v65,v66" },
2848    { Hexagon::BI__builtin_HEXAGON_V6_vzh_128B, "v60,v62,v65,v66" },
2849  };
2850
2851  // Sort the tables on first execution so we can binary search them.
2852  auto SortCmp = [](const BuiltinAndString &LHS, const BuiltinAndString &RHS) {
2853    return LHS.BuiltinID < RHS.BuiltinID;
2854  };
2855  static const bool SortOnce =
2856      (llvm::sort(ValidCPU, SortCmp),
2857       llvm::sort(ValidHVX, SortCmp), true);
2858  (void)SortOnce;
2859  auto LowerBoundCmp = [](const BuiltinAndString &BI, unsigned BuiltinID) {
2860    return BI.BuiltinID < BuiltinID;
2861  };
2862
2863  const TargetInfo &TI = Context.getTargetInfo();
2864
2865  const BuiltinAndString *FC =
2866      llvm::lower_bound(ValidCPU, BuiltinID, LowerBoundCmp);
2867  if (FC != std::end(ValidCPU) && FC->BuiltinID == BuiltinID) {
2868    const TargetOptions &Opts = TI.getTargetOpts();
2869    StringRef CPU = Opts.CPU;
2870    if (!CPU.empty()) {
2871      assert(CPU.startswith("hexagon") && "Unexpected CPU name");
2872      CPU.consume_front("hexagon");
2873      SmallVector<StringRef, 3> CPUs;
2874      StringRef(FC->Str).split(CPUs, ',');
2875      if (llvm::none_of(CPUs, [CPU](StringRef S) { return S == CPU; }))
2876        return Diag(TheCall->getBeginLoc(),
2877                    diag::err_hexagon_builtin_unsupported_cpu);
2878    }
2879  }
2880
2881  const BuiltinAndString *FH =
2882      llvm::lower_bound(ValidHVX, BuiltinID, LowerBoundCmp);
2883  if (FH != std::end(ValidHVX) && FH->BuiltinID == BuiltinID) {
2884    if (!TI.hasFeature("hvx"))
2885      return Diag(TheCall->getBeginLoc(),
2886                  diag::err_hexagon_builtin_requires_hvx);
2887
2888    SmallVector<StringRef, 3> HVXs;
2889    StringRef(FH->Str).split(HVXs, ',');
2890    bool IsValid = llvm::any_of(HVXs,
2891                                [&TI] (StringRef V) {
2892                                  std::string F = "hvx" + V.str();
2893                                  return TI.hasFeature(F);
2894                                });
2895    if (!IsValid)
2896      return Diag(TheCall->getBeginLoc(),
2897                  diag::err_hexagon_builtin_unsupported_hvx);
2898  }
2899
2900  return false;
2901}
2902
2903bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2904  struct ArgInfo {
2905    uint8_t OpNum;
2906    bool IsSigned;
2907    uint8_t BitWidth;
2908    uint8_t Align;
2909  };
2910  struct BuiltinInfo {
2911    unsigned BuiltinID;
2912    ArgInfo Infos[2];
2913  };
2914
2915  static BuiltinInfo Infos[] = {
2916    { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
2917    { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
2918    { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
2919    { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  0 }} },
2920    { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
2921    { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
2922    { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
2923    { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
2924    { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
2925    { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
2926    { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
2927
2928    { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
2929    { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
2930    { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
2931    { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
2932    { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
2933    { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
2934    { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
2935    { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
2936    { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
2937    { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
2938    { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
2939
2940    { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
2941    { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
2942    { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
2943    { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
2944    { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
2945    { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
2946    { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
2947    { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
2948    { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
2949    { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
2950    { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
2951    { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
2952    { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
2953    { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
2954    { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
2955    { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
2956    { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
2957    { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
2958    { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
2959    { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
2960    { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
2961    { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
2962    { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
2963    { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
2964    { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
2965    { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
2966    { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
2967    { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
2968    { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
2969    { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
2970    { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
2971    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
2972    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
2973    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
2974    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
2975    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
2976    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
2977    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
2978    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
2979    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
2980    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
2981    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
2982    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
2983    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
2984    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
2985    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
2986    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
2987    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
2988    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
2989    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
2990    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
2991    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2992                                                      {{ 1, false, 6,  0 }} },
2993    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
2994    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
2995    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
2996    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
2997    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
2998    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
2999    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
3000                                                      {{ 1, false, 5,  0 }} },
3001    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
3002    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
3003    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
3004    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
3005    { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
3006    { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
3007                                                       { 2, false, 5,  0 }} },
3008    { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
3009                                                       { 2, false, 6,  0 }} },
3010    { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
3011                                                       { 3, false, 5,  0 }} },
3012    { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
3013                                                       { 3, false, 6,  0 }} },
3014    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
3015    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
3016    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
3017    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
3018    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
3019    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
3020    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
3021    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
3022    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
3023    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
3024    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
3025    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
3026    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
3027    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
3028    { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
3029    { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
3030                                                      {{ 2, false, 4,  0 },
3031                                                       { 3, false, 5,  0 }} },
3032    { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
3033                                                      {{ 2, false, 4,  0 },
3034                                                       { 3, false, 5,  0 }} },
3035    { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
3036                                                      {{ 2, false, 4,  0 },
3037                                                       { 3, false, 5,  0 }} },
3038    { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
3039                                                      {{ 2, false, 4,  0 },
3040                                                       { 3, false, 5,  0 }} },
3041    { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
3042    { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
3043    { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
3044    { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
3045    { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
3046    { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
3047    { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
3048    { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
3049    { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
3050    { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
3051    { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
3052                                                       { 2, false, 5,  0 }} },
3053    { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
3054                                                       { 2, false, 6,  0 }} },
3055    { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
3056    { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
3057    { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
3058    { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
3059    { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
3060    { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
3061    { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
3062    { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
3063    { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
3064                                                      {{ 1, false, 4,  0 }} },
3065    { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
3066    { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
3067                                                      {{ 1, false, 4,  0 }} },
3068    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
3069    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
3070    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
3071    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
3072    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
3073    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
3074    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
3075    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
3076    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
3077    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
3078    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
3079    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
3080    { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
3081    { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
3082    { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
3083    { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
3084    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
3085    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
3086    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
3087    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
3088                                                      {{ 3, false, 1,  0 }} },
3089    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
3090    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
3091    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
3092    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
3093                                                      {{ 3, false, 1,  0 }} },
3094    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
3095    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
3096    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
3097    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
3098                                                      {{ 3, false, 1,  0 }} },
3099  };
3100
3101  // Use a dynamically initialized static to sort the table exactly once on
3102  // first run.
3103  static const bool SortOnce =
3104      (llvm::sort(Infos,
3105                 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
3106                   return LHS.BuiltinID < RHS.BuiltinID;
3107                 }),
3108       true);
3109  (void)SortOnce;
3110
3111  const BuiltinInfo *F = llvm::partition_point(
3112      Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
3113  if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
3114    return false;
3115
3116  bool Error = false;
3117
3118  for (const ArgInfo &A : F->Infos) {
3119    // Ignore empty ArgInfo elements.
3120    if (A.BitWidth == 0)
3121      continue;
3122
3123    int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
3124    int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
3125    if (!A.Align) {
3126      Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3127    } else {
3128      unsigned M = 1 << A.Align;
3129      Min *= M;
3130      Max *= M;
3131      Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
3132               SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
3133    }
3134  }
3135  return Error;
3136}
3137
3138bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
3139                                           CallExpr *TheCall) {
3140  return CheckHexagonBuiltinCpu(BuiltinID, TheCall) ||
3141         CheckHexagonBuiltinArgument(BuiltinID, TheCall);
3142}
3143
3144bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
3145  return CheckMipsBuiltinCpu(BuiltinID, TheCall) ||
3146         CheckMipsBuiltinArgument(BuiltinID, TheCall);
3147}
3148
3149bool Sema::CheckMipsBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall) {
3150  const TargetInfo &TI = Context.getTargetInfo();
3151
3152  if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
3153      BuiltinID <= Mips::BI__builtin_mips_lwx) {
3154    if (!TI.hasFeature("dsp"))
3155      return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
3156  }
3157
3158  if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
3159      BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
3160    if (!TI.hasFeature("dspr2"))
3161      return Diag(TheCall->getBeginLoc(),
3162                  diag::err_mips_builtin_requires_dspr2);
3163  }
3164
3165  if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
3166      BuiltinID <= Mips::BI__builtin_msa_xori_b) {
3167    if (!TI.hasFeature("msa"))
3168      return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
3169  }
3170
3171  return false;
3172}
3173
3174// CheckMipsBuiltinArgument - Checks the constant value passed to the
3175// intrinsic is correct. The switch statement is ordered by DSP, MSA. The
3176// ordering for DSP is unspecified. MSA is ordered by the data format used
3177// by the underlying instruction i.e., df/m, df/n and then by size.
3178//
3179// FIXME: The size tests here should instead be tablegen'd along with the
3180//        definitions from include/clang/Basic/BuiltinsMips.def.
3181// FIXME: GCC is strict on signedness for some of these intrinsics, we should
3182//        be too.
3183bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3184  unsigned i = 0, l = 0, u = 0, m = 0;
3185  switch (BuiltinID) {
3186  default: return false;
3187  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3188  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3189  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3190  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3191  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3192  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3193  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3194  // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3195  // df/m field.
3196  // These intrinsics take an unsigned 3 bit immediate.
3197  case Mips::BI__builtin_msa_bclri_b:
3198  case Mips::BI__builtin_msa_bnegi_b:
3199  case Mips::BI__builtin_msa_bseti_b:
3200  case Mips::BI__builtin_msa_sat_s_b:
3201  case Mips::BI__builtin_msa_sat_u_b:
3202  case Mips::BI__builtin_msa_slli_b:
3203  case Mips::BI__builtin_msa_srai_b:
3204  case Mips::BI__builtin_msa_srari_b:
3205  case Mips::BI__builtin_msa_srli_b:
3206  case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3207  case Mips::BI__builtin_msa_binsli_b:
3208  case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3209  // These intrinsics take an unsigned 4 bit immediate.
3210  case Mips::BI__builtin_msa_bclri_h:
3211  case Mips::BI__builtin_msa_bnegi_h:
3212  case Mips::BI__builtin_msa_bseti_h:
3213  case Mips::BI__builtin_msa_sat_s_h:
3214  case Mips::BI__builtin_msa_sat_u_h:
3215  case Mips::BI__builtin_msa_slli_h:
3216  case Mips::BI__builtin_msa_srai_h:
3217  case Mips::BI__builtin_msa_srari_h:
3218  case Mips::BI__builtin_msa_srli_h:
3219  case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3220  case Mips::BI__builtin_msa_binsli_h:
3221  case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3222  // These intrinsics take an unsigned 5 bit immediate.
3223  // The first block of intrinsics actually have an unsigned 5 bit field,
3224  // not a df/n field.
3225  case Mips::BI__builtin_msa_cfcmsa:
3226  case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3227  case Mips::BI__builtin_msa_clei_u_b:
3228  case Mips::BI__builtin_msa_clei_u_h:
3229  case Mips::BI__builtin_msa_clei_u_w:
3230  case Mips::BI__builtin_msa_clei_u_d:
3231  case Mips::BI__builtin_msa_clti_u_b:
3232  case Mips::BI__builtin_msa_clti_u_h:
3233  case Mips::BI__builtin_msa_clti_u_w:
3234  case Mips::BI__builtin_msa_clti_u_d:
3235  case Mips::BI__builtin_msa_maxi_u_b:
3236  case Mips::BI__builtin_msa_maxi_u_h:
3237  case Mips::BI__builtin_msa_maxi_u_w:
3238  case Mips::BI__builtin_msa_maxi_u_d:
3239  case Mips::BI__builtin_msa_mini_u_b:
3240  case Mips::BI__builtin_msa_mini_u_h:
3241  case Mips::BI__builtin_msa_mini_u_w:
3242  case Mips::BI__builtin_msa_mini_u_d:
3243  case Mips::BI__builtin_msa_addvi_b:
3244  case Mips::BI__builtin_msa_addvi_h:
3245  case Mips::BI__builtin_msa_addvi_w:
3246  case Mips::BI__builtin_msa_addvi_d:
3247  case Mips::BI__builtin_msa_bclri_w:
3248  case Mips::BI__builtin_msa_bnegi_w:
3249  case Mips::BI__builtin_msa_bseti_w:
3250  case Mips::BI__builtin_msa_sat_s_w:
3251  case Mips::BI__builtin_msa_sat_u_w:
3252  case Mips::BI__builtin_msa_slli_w:
3253  case Mips::BI__builtin_msa_srai_w:
3254  case Mips::BI__builtin_msa_srari_w:
3255  case Mips::BI__builtin_msa_srli_w:
3256  case Mips::BI__builtin_msa_srlri_w:
3257  case Mips::BI__builtin_msa_subvi_b:
3258  case Mips::BI__builtin_msa_subvi_h:
3259  case Mips::BI__builtin_msa_subvi_w:
3260  case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3261  case Mips::BI__builtin_msa_binsli_w:
3262  case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3263  // These intrinsics take an unsigned 6 bit immediate.
3264  case Mips::BI__builtin_msa_bclri_d:
3265  case Mips::BI__builtin_msa_bnegi_d:
3266  case Mips::BI__builtin_msa_bseti_d:
3267  case Mips::BI__builtin_msa_sat_s_d:
3268  case Mips::BI__builtin_msa_sat_u_d:
3269  case Mips::BI__builtin_msa_slli_d:
3270  case Mips::BI__builtin_msa_srai_d:
3271  case Mips::BI__builtin_msa_srari_d:
3272  case Mips::BI__builtin_msa_srli_d:
3273  case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3274  case Mips::BI__builtin_msa_binsli_d:
3275  case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3276  // These intrinsics take a signed 5 bit immediate.
3277  case Mips::BI__builtin_msa_ceqi_b:
3278  case Mips::BI__builtin_msa_ceqi_h:
3279  case Mips::BI__builtin_msa_ceqi_w:
3280  case Mips::BI__builtin_msa_ceqi_d:
3281  case Mips::BI__builtin_msa_clti_s_b:
3282  case Mips::BI__builtin_msa_clti_s_h:
3283  case Mips::BI__builtin_msa_clti_s_w:
3284  case Mips::BI__builtin_msa_clti_s_d:
3285  case Mips::BI__builtin_msa_clei_s_b:
3286  case Mips::BI__builtin_msa_clei_s_h:
3287  case Mips::BI__builtin_msa_clei_s_w:
3288  case Mips::BI__builtin_msa_clei_s_d:
3289  case Mips::BI__builtin_msa_maxi_s_b:
3290  case Mips::BI__builtin_msa_maxi_s_h:
3291  case Mips::BI__builtin_msa_maxi_s_w:
3292  case Mips::BI__builtin_msa_maxi_s_d:
3293  case Mips::BI__builtin_msa_mini_s_b:
3294  case Mips::BI__builtin_msa_mini_s_h:
3295  case Mips::BI__builtin_msa_mini_s_w:
3296  case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3297  // These intrinsics take an unsigned 8 bit immediate.
3298  case Mips::BI__builtin_msa_andi_b:
3299  case Mips::BI__builtin_msa_nori_b:
3300  case Mips::BI__builtin_msa_ori_b:
3301  case Mips::BI__builtin_msa_shf_b:
3302  case Mips::BI__builtin_msa_shf_h:
3303  case Mips::BI__builtin_msa_shf_w:
3304  case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3305  case Mips::BI__builtin_msa_bseli_b:
3306  case Mips::BI__builtin_msa_bmnzi_b:
3307  case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3308  // df/n format
3309  // These intrinsics take an unsigned 4 bit immediate.
3310  case Mips::BI__builtin_msa_copy_s_b:
3311  case Mips::BI__builtin_msa_copy_u_b:
3312  case Mips::BI__builtin_msa_insve_b:
3313  case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3314  case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3315  // These intrinsics take an unsigned 3 bit immediate.
3316  case Mips::BI__builtin_msa_copy_s_h:
3317  case Mips::BI__builtin_msa_copy_u_h:
3318  case Mips::BI__builtin_msa_insve_h:
3319  case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3320  case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3321  // These intrinsics take an unsigned 2 bit immediate.
3322  case Mips::BI__builtin_msa_copy_s_w:
3323  case Mips::BI__builtin_msa_copy_u_w:
3324  case Mips::BI__builtin_msa_insve_w:
3325  case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3326  case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3327  // These intrinsics take an unsigned 1 bit immediate.
3328  case Mips::BI__builtin_msa_copy_s_d:
3329  case Mips::BI__builtin_msa_copy_u_d:
3330  case Mips::BI__builtin_msa_insve_d:
3331  case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3332  case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3333  // Memory offsets and immediate loads.
3334  // These intrinsics take a signed 10 bit immediate.
3335  case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3336  case Mips::BI__builtin_msa_ldi_h:
3337  case Mips::BI__builtin_msa_ldi_w:
3338  case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3339  case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3340  case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3341  case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3342  case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3343  case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3344  case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3345  case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3346  case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3347  }
3348
3349  if (!m)
3350    return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3351
3352  return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3353         SemaBuiltinConstantArgMultiple(TheCall, i, m);
3354}
3355
3356bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
3357  unsigned i = 0, l = 0, u = 0;
3358  bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
3359                      BuiltinID == PPC::BI__builtin_divdeu ||
3360                      BuiltinID == PPC::BI__builtin_bpermd;
3361  bool IsTarget64Bit = Context.getTargetInfo()
3362                              .getTypeWidth(Context
3363                                            .getTargetInfo()
3364                                            .getIntPtrType()) == 64;
3365  bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
3366                       BuiltinID == PPC::BI__builtin_divweu ||
3367                       BuiltinID == PPC::BI__builtin_divde ||
3368                       BuiltinID == PPC::BI__builtin_divdeu;
3369
3370  if (Is64BitBltin && !IsTarget64Bit)
3371    return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3372           << TheCall->getSourceRange();
3373
3374  if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) ||
3375      (BuiltinID == PPC::BI__builtin_bpermd &&
3376       !Context.getTargetInfo().hasFeature("bpermd")))
3377    return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3378           << TheCall->getSourceRange();
3379
3380  auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool {
3381    if (!Context.getTargetInfo().hasFeature("vsx"))
3382      return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3383             << TheCall->getSourceRange();
3384    return false;
3385  };
3386
3387  switch (BuiltinID) {
3388  default: return false;
3389  case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3390  case PPC::BI__builtin_altivec_crypto_vshasigmad:
3391    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3392           SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3393  case PPC::BI__builtin_altivec_dss:
3394    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3395  case PPC::BI__builtin_tbegin:
3396  case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3397  case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3398  case PPC::BI__builtin_tabortwc:
3399  case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3400  case PPC::BI__builtin_tabortwci:
3401  case PPC::BI__builtin_tabortdci:
3402    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3403           SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3404  case PPC::BI__builtin_altivec_dst:
3405  case PPC::BI__builtin_altivec_dstt:
3406  case PPC::BI__builtin_altivec_dstst:
3407  case PPC::BI__builtin_altivec_dststt:
3408    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3409  case PPC::BI__builtin_vsx_xxpermdi:
3410  case PPC::BI__builtin_vsx_xxsldwi:
3411    return SemaBuiltinVSX(TheCall);
3412  case PPC::BI__builtin_unpack_vector_int128:
3413    return SemaVSXCheck(TheCall) ||
3414           SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3415  case PPC::BI__builtin_pack_vector_int128:
3416    return SemaVSXCheck(TheCall);
3417  }
3418  return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3419}
3420
3421bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3422                                           CallExpr *TheCall) {
3423  if (BuiltinID == SystemZ::BI__builtin_tabort) {
3424    Expr *Arg = TheCall->getArg(0);
3425    llvm::APSInt AbortCode(32);
3426    if (Arg->isIntegerConstantExpr(AbortCode, Context) &&
3427        AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256)
3428      return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3429             << Arg->getSourceRange();
3430  }
3431
3432  // For intrinsics which take an immediate value as part of the instruction,
3433  // range check them here.
3434  unsigned i = 0, l = 0, u = 0;
3435  switch (BuiltinID) {
3436  default: return false;
3437  case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3438  case SystemZ::BI__builtin_s390_verimb:
3439  case SystemZ::BI__builtin_s390_verimh:
3440  case SystemZ::BI__builtin_s390_verimf:
3441  case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3442  case SystemZ::BI__builtin_s390_vfaeb:
3443  case SystemZ::BI__builtin_s390_vfaeh:
3444  case SystemZ::BI__builtin_s390_vfaef:
3445  case SystemZ::BI__builtin_s390_vfaebs:
3446  case SystemZ::BI__builtin_s390_vfaehs:
3447  case SystemZ::BI__builtin_s390_vfaefs:
3448  case SystemZ::BI__builtin_s390_vfaezb:
3449  case SystemZ::BI__builtin_s390_vfaezh:
3450  case SystemZ::BI__builtin_s390_vfaezf:
3451  case SystemZ::BI__builtin_s390_vfaezbs:
3452  case SystemZ::BI__builtin_s390_vfaezhs:
3453  case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3454  case SystemZ::BI__builtin_s390_vfisb:
3455  case SystemZ::BI__builtin_s390_vfidb:
3456    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3457           SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3458  case SystemZ::BI__builtin_s390_vftcisb:
3459  case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3460  case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3461  case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3462  case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3463  case SystemZ::BI__builtin_s390_vstrcb:
3464  case SystemZ::BI__builtin_s390_vstrch:
3465  case SystemZ::BI__builtin_s390_vstrcf:
3466  case SystemZ::BI__builtin_s390_vstrczb:
3467  case SystemZ::BI__builtin_s390_vstrczh:
3468  case SystemZ::BI__builtin_s390_vstrczf:
3469  case SystemZ::BI__builtin_s390_vstrcbs:
3470  case SystemZ::BI__builtin_s390_vstrchs:
3471  case SystemZ::BI__builtin_s390_vstrcfs:
3472  case SystemZ::BI__builtin_s390_vstrczbs:
3473  case SystemZ::BI__builtin_s390_vstrczhs:
3474  case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3475  case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3476  case SystemZ::BI__builtin_s390_vfminsb:
3477  case SystemZ::BI__builtin_s390_vfmaxsb:
3478  case SystemZ::BI__builtin_s390_vfmindb:
3479  case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3480  case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
3481  case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
3482  }
3483  return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3484}
3485
3486/// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3487/// This checks that the target supports __builtin_cpu_supports and
3488/// that the string argument is constant and valid.
3489static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) {
3490  Expr *Arg = TheCall->getArg(0);
3491
3492  // Check if the argument is a string literal.
3493  if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3494    return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3495           << Arg->getSourceRange();
3496
3497  // Check the contents of the string.
3498  StringRef Feature =
3499      cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3500  if (!S.Context.getTargetInfo().validateCpuSupports(Feature))
3501    return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3502           << Arg->getSourceRange();
3503  return false;
3504}
3505
3506/// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3507/// This checks that the target supports __builtin_cpu_is and
3508/// that the string argument is constant and valid.
3509static bool SemaBuiltinCpuIs(Sema &S, CallExpr *TheCall) {
3510  Expr *Arg = TheCall->getArg(0);
3511
3512  // Check if the argument is a string literal.
3513  if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3514    return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3515           << Arg->getSourceRange();
3516
3517  // Check the contents of the string.
3518  StringRef Feature =
3519      cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3520  if (!S.Context.getTargetInfo().validateCpuIs(Feature))
3521    return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3522           << Arg->getSourceRange();
3523  return false;
3524}
3525
3526// Check if the rounding mode is legal.
3527bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3528  // Indicates if this instruction has rounding control or just SAE.
3529  bool HasRC = false;
3530
3531  unsigned ArgNum = 0;
3532  switch (BuiltinID) {
3533  default:
3534    return false;
3535  case X86::BI__builtin_ia32_vcvttsd2si32:
3536  case X86::BI__builtin_ia32_vcvttsd2si64:
3537  case X86::BI__builtin_ia32_vcvttsd2usi32:
3538  case X86::BI__builtin_ia32_vcvttsd2usi64:
3539  case X86::BI__builtin_ia32_vcvttss2si32:
3540  case X86::BI__builtin_ia32_vcvttss2si64:
3541  case X86::BI__builtin_ia32_vcvttss2usi32:
3542  case X86::BI__builtin_ia32_vcvttss2usi64:
3543    ArgNum = 1;
3544    break;
3545  case X86::BI__builtin_ia32_maxpd512:
3546  case X86::BI__builtin_ia32_maxps512:
3547  case X86::BI__builtin_ia32_minpd512:
3548  case X86::BI__builtin_ia32_minps512:
3549    ArgNum = 2;
3550    break;
3551  case X86::BI__builtin_ia32_cvtps2pd512_mask:
3552  case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3553  case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3554  case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3555  case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3556  case X86::BI__builtin_ia32_cvttps2dq512_mask:
3557  case X86::BI__builtin_ia32_cvttps2qq512_mask:
3558  case X86::BI__builtin_ia32_cvttps2udq512_mask:
3559  case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3560  case X86::BI__builtin_ia32_exp2pd_mask:
3561  case X86::BI__builtin_ia32_exp2ps_mask:
3562  case X86::BI__builtin_ia32_getexppd512_mask:
3563  case X86::BI__builtin_ia32_getexpps512_mask:
3564  case X86::BI__builtin_ia32_rcp28pd_mask:
3565  case X86::BI__builtin_ia32_rcp28ps_mask:
3566  case X86::BI__builtin_ia32_rsqrt28pd_mask:
3567  case X86::BI__builtin_ia32_rsqrt28ps_mask:
3568  case X86::BI__builtin_ia32_vcomisd:
3569  case X86::BI__builtin_ia32_vcomiss:
3570  case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3571    ArgNum = 3;
3572    break;
3573  case X86::BI__builtin_ia32_cmppd512_mask:
3574  case X86::BI__builtin_ia32_cmpps512_mask:
3575  case X86::BI__builtin_ia32_cmpsd_mask:
3576  case X86::BI__builtin_ia32_cmpss_mask:
3577  case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3578  case X86::BI__builtin_ia32_getexpsd128_round_mask:
3579  case X86::BI__builtin_ia32_getexpss128_round_mask:
3580  case X86::BI__builtin_ia32_getmantpd512_mask:
3581  case X86::BI__builtin_ia32_getmantps512_mask:
3582  case X86::BI__builtin_ia32_maxsd_round_mask:
3583  case X86::BI__builtin_ia32_maxss_round_mask:
3584  case X86::BI__builtin_ia32_minsd_round_mask:
3585  case X86::BI__builtin_ia32_minss_round_mask:
3586  case X86::BI__builtin_ia32_rcp28sd_round_mask:
3587  case X86::BI__builtin_ia32_rcp28ss_round_mask:
3588  case X86::BI__builtin_ia32_reducepd512_mask:
3589  case X86::BI__builtin_ia32_reduceps512_mask:
3590  case X86::BI__builtin_ia32_rndscalepd_mask:
3591  case X86::BI__builtin_ia32_rndscaleps_mask:
3592  case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
3593  case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
3594    ArgNum = 4;
3595    break;
3596  case X86::BI__builtin_ia32_fixupimmpd512_mask:
3597  case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3598  case X86::BI__builtin_ia32_fixupimmps512_mask:
3599  case X86::BI__builtin_ia32_fixupimmps512_maskz:
3600  case X86::BI__builtin_ia32_fixupimmsd_mask:
3601  case X86::BI__builtin_ia32_fixupimmsd_maskz:
3602  case X86::BI__builtin_ia32_fixupimmss_mask:
3603  case X86::BI__builtin_ia32_fixupimmss_maskz:
3604  case X86::BI__builtin_ia32_getmantsd_round_mask:
3605  case X86::BI__builtin_ia32_getmantss_round_mask:
3606  case X86::BI__builtin_ia32_rangepd512_mask:
3607  case X86::BI__builtin_ia32_rangeps512_mask:
3608  case X86::BI__builtin_ia32_rangesd128_round_mask:
3609  case X86::BI__builtin_ia32_rangess128_round_mask:
3610  case X86::BI__builtin_ia32_reducesd_mask:
3611  case X86::BI__builtin_ia32_reducess_mask:
3612  case X86::BI__builtin_ia32_rndscalesd_round_mask:
3613  case X86::BI__builtin_ia32_rndscaless_round_mask:
3614    ArgNum = 5;
3615    break;
3616  case X86::BI__builtin_ia32_vcvtsd2si64:
3617  case X86::BI__builtin_ia32_vcvtsd2si32:
3618  case X86::BI__builtin_ia32_vcvtsd2usi32:
3619  case X86::BI__builtin_ia32_vcvtsd2usi64:
3620  case X86::BI__builtin_ia32_vcvtss2si32:
3621  case X86::BI__builtin_ia32_vcvtss2si64:
3622  case X86::BI__builtin_ia32_vcvtss2usi32:
3623  case X86::BI__builtin_ia32_vcvtss2usi64:
3624  case X86::BI__builtin_ia32_sqrtpd512:
3625  case X86::BI__builtin_ia32_sqrtps512:
3626    ArgNum = 1;
3627    HasRC = true;
3628    break;
3629  case X86::BI__builtin_ia32_addpd512:
3630  case X86::BI__builtin_ia32_addps512:
3631  case X86::BI__builtin_ia32_divpd512:
3632  case X86::BI__builtin_ia32_divps512:
3633  case X86::BI__builtin_ia32_mulpd512:
3634  case X86::BI__builtin_ia32_mulps512:
3635  case X86::BI__builtin_ia32_subpd512:
3636  case X86::BI__builtin_ia32_subps512:
3637  case X86::BI__builtin_ia32_cvtsi2sd64:
3638  case X86::BI__builtin_ia32_cvtsi2ss32:
3639  case X86::BI__builtin_ia32_cvtsi2ss64:
3640  case X86::BI__builtin_ia32_cvtusi2sd64:
3641  case X86::BI__builtin_ia32_cvtusi2ss32:
3642  case X86::BI__builtin_ia32_cvtusi2ss64:
3643    ArgNum = 2;
3644    HasRC = true;
3645    break;
3646  case X86::BI__builtin_ia32_cvtdq2ps512_mask:
3647  case X86::BI__builtin_ia32_cvtudq2ps512_mask:
3648  case X86::BI__builtin_ia32_cvtpd2ps512_mask:
3649  case X86::BI__builtin_ia32_cvtpd2dq512_mask:
3650  case X86::BI__builtin_ia32_cvtpd2qq512_mask:
3651  case X86::BI__builtin_ia32_cvtpd2udq512_mask:
3652  case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
3653  case X86::BI__builtin_ia32_cvtps2dq512_mask:
3654  case X86::BI__builtin_ia32_cvtps2qq512_mask:
3655  case X86::BI__builtin_ia32_cvtps2udq512_mask:
3656  case X86::BI__builtin_ia32_cvtps2uqq512_mask:
3657  case X86::BI__builtin_ia32_cvtqq2pd512_mask:
3658  case X86::BI__builtin_ia32_cvtqq2ps512_mask:
3659  case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
3660  case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
3661    ArgNum = 3;
3662    HasRC = true;
3663    break;
3664  case X86::BI__builtin_ia32_addss_round_mask:
3665  case X86::BI__builtin_ia32_addsd_round_mask:
3666  case X86::BI__builtin_ia32_divss_round_mask:
3667  case X86::BI__builtin_ia32_divsd_round_mask:
3668  case X86::BI__builtin_ia32_mulss_round_mask:
3669  case X86::BI__builtin_ia32_mulsd_round_mask:
3670  case X86::BI__builtin_ia32_subss_round_mask:
3671  case X86::BI__builtin_ia32_subsd_round_mask:
3672  case X86::BI__builtin_ia32_scalefpd512_mask:
3673  case X86::BI__builtin_ia32_scalefps512_mask:
3674  case X86::BI__builtin_ia32_scalefsd_round_mask:
3675  case X86::BI__builtin_ia32_scalefss_round_mask:
3676  case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
3677  case X86::BI__builtin_ia32_sqrtsd_round_mask:
3678  case X86::BI__builtin_ia32_sqrtss_round_mask:
3679  case X86::BI__builtin_ia32_vfmaddsd3_mask:
3680  case X86::BI__builtin_ia32_vfmaddsd3_maskz:
3681  case X86::BI__builtin_ia32_vfmaddsd3_mask3:
3682  case X86::BI__builtin_ia32_vfmaddss3_mask:
3683  case X86::BI__builtin_ia32_vfmaddss3_maskz:
3684  case X86::BI__builtin_ia32_vfmaddss3_mask3:
3685  case X86::BI__builtin_ia32_vfmaddpd512_mask:
3686  case X86::BI__builtin_ia32_vfmaddpd512_maskz:
3687  case X86::BI__builtin_ia32_vfmaddpd512_mask3:
3688  case X86::BI__builtin_ia32_vfmsubpd512_mask3:
3689  case X86::BI__builtin_ia32_vfmaddps512_mask:
3690  case X86::BI__builtin_ia32_vfmaddps512_maskz:
3691  case X86::BI__builtin_ia32_vfmaddps512_mask3:
3692  case X86::BI__builtin_ia32_vfmsubps512_mask3:
3693  case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
3694  case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
3695  case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
3696  case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
3697  case X86::BI__builtin_ia32_vfmaddsubps512_mask:
3698  case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
3699  case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
3700  case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
3701    ArgNum = 4;
3702    HasRC = true;
3703    break;
3704  }
3705
3706  llvm::APSInt Result;
3707
3708  // We can't check the value of a dependent argument.
3709  Expr *Arg = TheCall->getArg(ArgNum);
3710  if (Arg->isTypeDependent() || Arg->isValueDependent())
3711    return false;
3712
3713  // Check constant-ness first.
3714  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3715    return true;
3716
3717  // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
3718  // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
3719  // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
3720  // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
3721  if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
3722      Result == 8/*ROUND_NO_EXC*/ ||
3723      (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
3724      (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
3725    return false;
3726
3727  return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
3728         << Arg->getSourceRange();
3729}
3730
3731// Check if the gather/scatter scale is legal.
3732bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
3733                                             CallExpr *TheCall) {
3734  unsigned ArgNum = 0;
3735  switch (BuiltinID) {
3736  default:
3737    return false;
3738  case X86::BI__builtin_ia32_gatherpfdpd:
3739  case X86::BI__builtin_ia32_gatherpfdps:
3740  case X86::BI__builtin_ia32_gatherpfqpd:
3741  case X86::BI__builtin_ia32_gatherpfqps:
3742  case X86::BI__builtin_ia32_scatterpfdpd:
3743  case X86::BI__builtin_ia32_scatterpfdps:
3744  case X86::BI__builtin_ia32_scatterpfqpd:
3745  case X86::BI__builtin_ia32_scatterpfqps:
3746    ArgNum = 3;
3747    break;
3748  case X86::BI__builtin_ia32_gatherd_pd:
3749  case X86::BI__builtin_ia32_gatherd_pd256:
3750  case X86::BI__builtin_ia32_gatherq_pd:
3751  case X86::BI__builtin_ia32_gatherq_pd256:
3752  case X86::BI__builtin_ia32_gatherd_ps:
3753  case X86::BI__builtin_ia32_gatherd_ps256:
3754  case X86::BI__builtin_ia32_gatherq_ps:
3755  case X86::BI__builtin_ia32_gatherq_ps256:
3756  case X86::BI__builtin_ia32_gatherd_q:
3757  case X86::BI__builtin_ia32_gatherd_q256:
3758  case X86::BI__builtin_ia32_gatherq_q:
3759  case X86::BI__builtin_ia32_gatherq_q256:
3760  case X86::BI__builtin_ia32_gatherd_d:
3761  case X86::BI__builtin_ia32_gatherd_d256:
3762  case X86::BI__builtin_ia32_gatherq_d:
3763  case X86::BI__builtin_ia32_gatherq_d256:
3764  case X86::BI__builtin_ia32_gather3div2df:
3765  case X86::BI__builtin_ia32_gather3div2di:
3766  case X86::BI__builtin_ia32_gather3div4df:
3767  case X86::BI__builtin_ia32_gather3div4di:
3768  case X86::BI__builtin_ia32_gather3div4sf:
3769  case X86::BI__builtin_ia32_gather3div4si:
3770  case X86::BI__builtin_ia32_gather3div8sf:
3771  case X86::BI__builtin_ia32_gather3div8si:
3772  case X86::BI__builtin_ia32_gather3siv2df:
3773  case X86::BI__builtin_ia32_gather3siv2di:
3774  case X86::BI__builtin_ia32_gather3siv4df:
3775  case X86::BI__builtin_ia32_gather3siv4di:
3776  case X86::BI__builtin_ia32_gather3siv4sf:
3777  case X86::BI__builtin_ia32_gather3siv4si:
3778  case X86::BI__builtin_ia32_gather3siv8sf:
3779  case X86::BI__builtin_ia32_gather3siv8si:
3780  case X86::BI__builtin_ia32_gathersiv8df:
3781  case X86::BI__builtin_ia32_gathersiv16sf:
3782  case X86::BI__builtin_ia32_gatherdiv8df:
3783  case X86::BI__builtin_ia32_gatherdiv16sf:
3784  case X86::BI__builtin_ia32_gathersiv8di:
3785  case X86::BI__builtin_ia32_gathersiv16si:
3786  case X86::BI__builtin_ia32_gatherdiv8di:
3787  case X86::BI__builtin_ia32_gatherdiv16si:
3788  case X86::BI__builtin_ia32_scatterdiv2df:
3789  case X86::BI__builtin_ia32_scatterdiv2di:
3790  case X86::BI__builtin_ia32_scatterdiv4df:
3791  case X86::BI__builtin_ia32_scatterdiv4di:
3792  case X86::BI__builtin_ia32_scatterdiv4sf:
3793  case X86::BI__builtin_ia32_scatterdiv4si:
3794  case X86::BI__builtin_ia32_scatterdiv8sf:
3795  case X86::BI__builtin_ia32_scatterdiv8si:
3796  case X86::BI__builtin_ia32_scattersiv2df:
3797  case X86::BI__builtin_ia32_scattersiv2di:
3798  case X86::BI__builtin_ia32_scattersiv4df:
3799  case X86::BI__builtin_ia32_scattersiv4di:
3800  case X86::BI__builtin_ia32_scattersiv4sf:
3801  case X86::BI__builtin_ia32_scattersiv4si:
3802  case X86::BI__builtin_ia32_scattersiv8sf:
3803  case X86::BI__builtin_ia32_scattersiv8si:
3804  case X86::BI__builtin_ia32_scattersiv8df:
3805  case X86::BI__builtin_ia32_scattersiv16sf:
3806  case X86::BI__builtin_ia32_scatterdiv8df:
3807  case X86::BI__builtin_ia32_scatterdiv16sf:
3808  case X86::BI__builtin_ia32_scattersiv8di:
3809  case X86::BI__builtin_ia32_scattersiv16si:
3810  case X86::BI__builtin_ia32_scatterdiv8di:
3811  case X86::BI__builtin_ia32_scatterdiv16si:
3812    ArgNum = 4;
3813    break;
3814  }
3815
3816  llvm::APSInt Result;
3817
3818  // We can't check the value of a dependent argument.
3819  Expr *Arg = TheCall->getArg(ArgNum);
3820  if (Arg->isTypeDependent() || Arg->isValueDependent())
3821    return false;
3822
3823  // Check constant-ness first.
3824  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3825    return true;
3826
3827  if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
3828    return false;
3829
3830  return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
3831         << Arg->getSourceRange();
3832}
3833
3834static bool isX86_32Builtin(unsigned BuiltinID) {
3835  // These builtins only work on x86-32 targets.
3836  switch (BuiltinID) {
3837  case X86::BI__builtin_ia32_readeflags_u32:
3838  case X86::BI__builtin_ia32_writeeflags_u32:
3839    return true;
3840  }
3841
3842  return false;
3843}
3844
3845bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
3846  if (BuiltinID == X86::BI__builtin_cpu_supports)
3847    return SemaBuiltinCpuSupports(*this, TheCall);
3848
3849  if (BuiltinID == X86::BI__builtin_cpu_is)
3850    return SemaBuiltinCpuIs(*this, TheCall);
3851
3852  // Check for 32-bit only builtins on a 64-bit target.
3853  const llvm::Triple &TT = Context.getTargetInfo().getTriple();
3854  if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
3855    return Diag(TheCall->getCallee()->getBeginLoc(),
3856                diag::err_32_bit_builtin_64_bit_tgt);
3857
3858  // If the intrinsic has rounding or SAE make sure its valid.
3859  if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
3860    return true;
3861
3862  // If the intrinsic has a gather/scatter scale immediate make sure its valid.
3863  if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
3864    return true;
3865
3866  // For intrinsics which take an immediate value as part of the instruction,
3867  // range check them here.
3868  int i = 0, l = 0, u = 0;
3869  switch (BuiltinID) {
3870  default:
3871    return false;
3872  case X86::BI__builtin_ia32_vec_ext_v2si:
3873  case X86::BI__builtin_ia32_vec_ext_v2di:
3874  case X86::BI__builtin_ia32_vextractf128_pd256:
3875  case X86::BI__builtin_ia32_vextractf128_ps256:
3876  case X86::BI__builtin_ia32_vextractf128_si256:
3877  case X86::BI__builtin_ia32_extract128i256:
3878  case X86::BI__builtin_ia32_extractf64x4_mask:
3879  case X86::BI__builtin_ia32_extracti64x4_mask:
3880  case X86::BI__builtin_ia32_extractf32x8_mask:
3881  case X86::BI__builtin_ia32_extracti32x8_mask:
3882  case X86::BI__builtin_ia32_extractf64x2_256_mask:
3883  case X86::BI__builtin_ia32_extracti64x2_256_mask:
3884  case X86::BI__builtin_ia32_extractf32x4_256_mask:
3885  case X86::BI__builtin_ia32_extracti32x4_256_mask:
3886    i = 1; l = 0; u = 1;
3887    break;
3888  case X86::BI__builtin_ia32_vec_set_v2di:
3889  case X86::BI__builtin_ia32_vinsertf128_pd256:
3890  case X86::BI__builtin_ia32_vinsertf128_ps256:
3891  case X86::BI__builtin_ia32_vinsertf128_si256:
3892  case X86::BI__builtin_ia32_insert128i256:
3893  case X86::BI__builtin_ia32_insertf32x8:
3894  case X86::BI__builtin_ia32_inserti32x8:
3895  case X86::BI__builtin_ia32_insertf64x4:
3896  case X86::BI__builtin_ia32_inserti64x4:
3897  case X86::BI__builtin_ia32_insertf64x2_256:
3898  case X86::BI__builtin_ia32_inserti64x2_256:
3899  case X86::BI__builtin_ia32_insertf32x4_256:
3900  case X86::BI__builtin_ia32_inserti32x4_256:
3901    i = 2; l = 0; u = 1;
3902    break;
3903  case X86::BI__builtin_ia32_vpermilpd:
3904  case X86::BI__builtin_ia32_vec_ext_v4hi:
3905  case X86::BI__builtin_ia32_vec_ext_v4si:
3906  case X86::BI__builtin_ia32_vec_ext_v4sf:
3907  case X86::BI__builtin_ia32_vec_ext_v4di:
3908  case X86::BI__builtin_ia32_extractf32x4_mask:
3909  case X86::BI__builtin_ia32_extracti32x4_mask:
3910  case X86::BI__builtin_ia32_extractf64x2_512_mask:
3911  case X86::BI__builtin_ia32_extracti64x2_512_mask:
3912    i = 1; l = 0; u = 3;
3913    break;
3914  case X86::BI_mm_prefetch:
3915  case X86::BI__builtin_ia32_vec_ext_v8hi:
3916  case X86::BI__builtin_ia32_vec_ext_v8si:
3917    i = 1; l = 0; u = 7;
3918    break;
3919  case X86::BI__builtin_ia32_sha1rnds4:
3920  case X86::BI__builtin_ia32_blendpd:
3921  case X86::BI__builtin_ia32_shufpd:
3922  case X86::BI__builtin_ia32_vec_set_v4hi:
3923  case X86::BI__builtin_ia32_vec_set_v4si:
3924  case X86::BI__builtin_ia32_vec_set_v4di:
3925  case X86::BI__builtin_ia32_shuf_f32x4_256:
3926  case X86::BI__builtin_ia32_shuf_f64x2_256:
3927  case X86::BI__builtin_ia32_shuf_i32x4_256:
3928  case X86::BI__builtin_ia32_shuf_i64x2_256:
3929  case X86::BI__builtin_ia32_insertf64x2_512:
3930  case X86::BI__builtin_ia32_inserti64x2_512:
3931  case X86::BI__builtin_ia32_insertf32x4:
3932  case X86::BI__builtin_ia32_inserti32x4:
3933    i = 2; l = 0; u = 3;
3934    break;
3935  case X86::BI__builtin_ia32_vpermil2pd:
3936  case X86::BI__builtin_ia32_vpermil2pd256:
3937  case X86::BI__builtin_ia32_vpermil2ps:
3938  case X86::BI__builtin_ia32_vpermil2ps256:
3939    i = 3; l = 0; u = 3;
3940    break;
3941  case X86::BI__builtin_ia32_cmpb128_mask:
3942  case X86::BI__builtin_ia32_cmpw128_mask:
3943  case X86::BI__builtin_ia32_cmpd128_mask:
3944  case X86::BI__builtin_ia32_cmpq128_mask:
3945  case X86::BI__builtin_ia32_cmpb256_mask:
3946  case X86::BI__builtin_ia32_cmpw256_mask:
3947  case X86::BI__builtin_ia32_cmpd256_mask:
3948  case X86::BI__builtin_ia32_cmpq256_mask:
3949  case X86::BI__builtin_ia32_cmpb512_mask:
3950  case X86::BI__builtin_ia32_cmpw512_mask:
3951  case X86::BI__builtin_ia32_cmpd512_mask:
3952  case X86::BI__builtin_ia32_cmpq512_mask:
3953  case X86::BI__builtin_ia32_ucmpb128_mask:
3954  case X86::BI__builtin_ia32_ucmpw128_mask:
3955  case X86::BI__builtin_ia32_ucmpd128_mask:
3956  case X86::BI__builtin_ia32_ucmpq128_mask:
3957  case X86::BI__builtin_ia32_ucmpb256_mask:
3958  case X86::BI__builtin_ia32_ucmpw256_mask:
3959  case X86::BI__builtin_ia32_ucmpd256_mask:
3960  case X86::BI__builtin_ia32_ucmpq256_mask:
3961  case X86::BI__builtin_ia32_ucmpb512_mask:
3962  case X86::BI__builtin_ia32_ucmpw512_mask:
3963  case X86::BI__builtin_ia32_ucmpd512_mask:
3964  case X86::BI__builtin_ia32_ucmpq512_mask:
3965  case X86::BI__builtin_ia32_vpcomub:
3966  case X86::BI__builtin_ia32_vpcomuw:
3967  case X86::BI__builtin_ia32_vpcomud:
3968  case X86::BI__builtin_ia32_vpcomuq:
3969  case X86::BI__builtin_ia32_vpcomb:
3970  case X86::BI__builtin_ia32_vpcomw:
3971  case X86::BI__builtin_ia32_vpcomd:
3972  case X86::BI__builtin_ia32_vpcomq:
3973  case X86::BI__builtin_ia32_vec_set_v8hi:
3974  case X86::BI__builtin_ia32_vec_set_v8si:
3975    i = 2; l = 0; u = 7;
3976    break;
3977  case X86::BI__builtin_ia32_vpermilpd256:
3978  case X86::BI__builtin_ia32_roundps:
3979  case X86::BI__builtin_ia32_roundpd:
3980  case X86::BI__builtin_ia32_roundps256:
3981  case X86::BI__builtin_ia32_roundpd256:
3982  case X86::BI__builtin_ia32_getmantpd128_mask:
3983  case X86::BI__builtin_ia32_getmantpd256_mask:
3984  case X86::BI__builtin_ia32_getmantps128_mask:
3985  case X86::BI__builtin_ia32_getmantps256_mask:
3986  case X86::BI__builtin_ia32_getmantpd512_mask:
3987  case X86::BI__builtin_ia32_getmantps512_mask:
3988  case X86::BI__builtin_ia32_vec_ext_v16qi:
3989  case X86::BI__builtin_ia32_vec_ext_v16hi:
3990    i = 1; l = 0; u = 15;
3991    break;
3992  case X86::BI__builtin_ia32_pblendd128:
3993  case X86::BI__builtin_ia32_blendps:
3994  case X86::BI__builtin_ia32_blendpd256:
3995  case X86::BI__builtin_ia32_shufpd256:
3996  case X86::BI__builtin_ia32_roundss:
3997  case X86::BI__builtin_ia32_roundsd:
3998  case X86::BI__builtin_ia32_rangepd128_mask:
3999  case X86::BI__builtin_ia32_rangepd256_mask:
4000  case X86::BI__builtin_ia32_rangepd512_mask:
4001  case X86::BI__builtin_ia32_rangeps128_mask:
4002  case X86::BI__builtin_ia32_rangeps256_mask:
4003  case X86::BI__builtin_ia32_rangeps512_mask:
4004  case X86::BI__builtin_ia32_getmantsd_round_mask:
4005  case X86::BI__builtin_ia32_getmantss_round_mask:
4006  case X86::BI__builtin_ia32_vec_set_v16qi:
4007  case X86::BI__builtin_ia32_vec_set_v16hi:
4008    i = 2; l = 0; u = 15;
4009    break;
4010  case X86::BI__builtin_ia32_vec_ext_v32qi:
4011    i = 1; l = 0; u = 31;
4012    break;
4013  case X86::BI__builtin_ia32_cmpps:
4014  case X86::BI__builtin_ia32_cmpss:
4015  case X86::BI__builtin_ia32_cmppd:
4016  case X86::BI__builtin_ia32_cmpsd:
4017  case X86::BI__builtin_ia32_cmpps256:
4018  case X86::BI__builtin_ia32_cmppd256:
4019  case X86::BI__builtin_ia32_cmpps128_mask:
4020  case X86::BI__builtin_ia32_cmppd128_mask:
4021  case X86::BI__builtin_ia32_cmpps256_mask:
4022  case X86::BI__builtin_ia32_cmppd256_mask:
4023  case X86::BI__builtin_ia32_cmpps512_mask:
4024  case X86::BI__builtin_ia32_cmppd512_mask:
4025  case X86::BI__builtin_ia32_cmpsd_mask:
4026  case X86::BI__builtin_ia32_cmpss_mask:
4027  case X86::BI__builtin_ia32_vec_set_v32qi:
4028    i = 2; l = 0; u = 31;
4029    break;
4030  case X86::BI__builtin_ia32_permdf256:
4031  case X86::BI__builtin_ia32_permdi256:
4032  case X86::BI__builtin_ia32_permdf512:
4033  case X86::BI__builtin_ia32_permdi512:
4034  case X86::BI__builtin_ia32_vpermilps:
4035  case X86::BI__builtin_ia32_vpermilps256:
4036  case X86::BI__builtin_ia32_vpermilpd512:
4037  case X86::BI__builtin_ia32_vpermilps512:
4038  case X86::BI__builtin_ia32_pshufd:
4039  case X86::BI__builtin_ia32_pshufd256:
4040  case X86::BI__builtin_ia32_pshufd512:
4041  case X86::BI__builtin_ia32_pshufhw:
4042  case X86::BI__builtin_ia32_pshufhw256:
4043  case X86::BI__builtin_ia32_pshufhw512:
4044  case X86::BI__builtin_ia32_pshuflw:
4045  case X86::BI__builtin_ia32_pshuflw256:
4046  case X86::BI__builtin_ia32_pshuflw512:
4047  case X86::BI__builtin_ia32_vcvtps2ph:
4048  case X86::BI__builtin_ia32_vcvtps2ph_mask:
4049  case X86::BI__builtin_ia32_vcvtps2ph256:
4050  case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4051  case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4052  case X86::BI__builtin_ia32_rndscaleps_128_mask:
4053  case X86::BI__builtin_ia32_rndscalepd_128_mask:
4054  case X86::BI__builtin_ia32_rndscaleps_256_mask:
4055  case X86::BI__builtin_ia32_rndscalepd_256_mask:
4056  case X86::BI__builtin_ia32_rndscaleps_mask:
4057  case X86::BI__builtin_ia32_rndscalepd_mask:
4058  case X86::BI__builtin_ia32_reducepd128_mask:
4059  case X86::BI__builtin_ia32_reducepd256_mask:
4060  case X86::BI__builtin_ia32_reducepd512_mask:
4061  case X86::BI__builtin_ia32_reduceps128_mask:
4062  case X86::BI__builtin_ia32_reduceps256_mask:
4063  case X86::BI__builtin_ia32_reduceps512_mask:
4064  case X86::BI__builtin_ia32_prold512:
4065  case X86::BI__builtin_ia32_prolq512:
4066  case X86::BI__builtin_ia32_prold128:
4067  case X86::BI__builtin_ia32_prold256:
4068  case X86::BI__builtin_ia32_prolq128:
4069  case X86::BI__builtin_ia32_prolq256:
4070  case X86::BI__builtin_ia32_prord512:
4071  case X86::BI__builtin_ia32_prorq512:
4072  case X86::BI__builtin_ia32_prord128:
4073  case X86::BI__builtin_ia32_prord256:
4074  case X86::BI__builtin_ia32_prorq128:
4075  case X86::BI__builtin_ia32_prorq256:
4076  case X86::BI__builtin_ia32_fpclasspd128_mask:
4077  case X86::BI__builtin_ia32_fpclasspd256_mask:
4078  case X86::BI__builtin_ia32_fpclassps128_mask:
4079  case X86::BI__builtin_ia32_fpclassps256_mask:
4080  case X86::BI__builtin_ia32_fpclassps512_mask:
4081  case X86::BI__builtin_ia32_fpclasspd512_mask:
4082  case X86::BI__builtin_ia32_fpclasssd_mask:
4083  case X86::BI__builtin_ia32_fpclassss_mask:
4084  case X86::BI__builtin_ia32_pslldqi128_byteshift:
4085  case X86::BI__builtin_ia32_pslldqi256_byteshift:
4086  case X86::BI__builtin_ia32_pslldqi512_byteshift:
4087  case X86::BI__builtin_ia32_psrldqi128_byteshift:
4088  case X86::BI__builtin_ia32_psrldqi256_byteshift:
4089  case X86::BI__builtin_ia32_psrldqi512_byteshift:
4090  case X86::BI__builtin_ia32_kshiftliqi:
4091  case X86::BI__builtin_ia32_kshiftlihi:
4092  case X86::BI__builtin_ia32_kshiftlisi:
4093  case X86::BI__builtin_ia32_kshiftlidi:
4094  case X86::BI__builtin_ia32_kshiftriqi:
4095  case X86::BI__builtin_ia32_kshiftrihi:
4096  case X86::BI__builtin_ia32_kshiftrisi:
4097  case X86::BI__builtin_ia32_kshiftridi:
4098    i = 1; l = 0; u = 255;
4099    break;
4100  case X86::BI__builtin_ia32_vperm2f128_pd256:
4101  case X86::BI__builtin_ia32_vperm2f128_ps256:
4102  case X86::BI__builtin_ia32_vperm2f128_si256:
4103  case X86::BI__builtin_ia32_permti256:
4104  case X86::BI__builtin_ia32_pblendw128:
4105  case X86::BI__builtin_ia32_pblendw256:
4106  case X86::BI__builtin_ia32_blendps256:
4107  case X86::BI__builtin_ia32_pblendd256:
4108  case X86::BI__builtin_ia32_palignr128:
4109  case X86::BI__builtin_ia32_palignr256:
4110  case X86::BI__builtin_ia32_palignr512:
4111  case X86::BI__builtin_ia32_alignq512:
4112  case X86::BI__builtin_ia32_alignd512:
4113  case X86::BI__builtin_ia32_alignd128:
4114  case X86::BI__builtin_ia32_alignd256:
4115  case X86::BI__builtin_ia32_alignq128:
4116  case X86::BI__builtin_ia32_alignq256:
4117  case X86::BI__builtin_ia32_vcomisd:
4118  case X86::BI__builtin_ia32_vcomiss:
4119  case X86::BI__builtin_ia32_shuf_f32x4:
4120  case X86::BI__builtin_ia32_shuf_f64x2:
4121  case X86::BI__builtin_ia32_shuf_i32x4:
4122  case X86::BI__builtin_ia32_shuf_i64x2:
4123  case X86::BI__builtin_ia32_shufpd512:
4124  case X86::BI__builtin_ia32_shufps:
4125  case X86::BI__builtin_ia32_shufps256:
4126  case X86::BI__builtin_ia32_shufps512:
4127  case X86::BI__builtin_ia32_dbpsadbw128:
4128  case X86::BI__builtin_ia32_dbpsadbw256:
4129  case X86::BI__builtin_ia32_dbpsadbw512:
4130  case X86::BI__builtin_ia32_vpshldd128:
4131  case X86::BI__builtin_ia32_vpshldd256:
4132  case X86::BI__builtin_ia32_vpshldd512:
4133  case X86::BI__builtin_ia32_vpshldq128:
4134  case X86::BI__builtin_ia32_vpshldq256:
4135  case X86::BI__builtin_ia32_vpshldq512:
4136  case X86::BI__builtin_ia32_vpshldw128:
4137  case X86::BI__builtin_ia32_vpshldw256:
4138  case X86::BI__builtin_ia32_vpshldw512:
4139  case X86::BI__builtin_ia32_vpshrdd128:
4140  case X86::BI__builtin_ia32_vpshrdd256:
4141  case X86::BI__builtin_ia32_vpshrdd512:
4142  case X86::BI__builtin_ia32_vpshrdq128:
4143  case X86::BI__builtin_ia32_vpshrdq256:
4144  case X86::BI__builtin_ia32_vpshrdq512:
4145  case X86::BI__builtin_ia32_vpshrdw128:
4146  case X86::BI__builtin_ia32_vpshrdw256:
4147  case X86::BI__builtin_ia32_vpshrdw512:
4148    i = 2; l = 0; u = 255;
4149    break;
4150  case X86::BI__builtin_ia32_fixupimmpd512_mask:
4151  case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4152  case X86::BI__builtin_ia32_fixupimmps512_mask:
4153  case X86::BI__builtin_ia32_fixupimmps512_maskz:
4154  case X86::BI__builtin_ia32_fixupimmsd_mask:
4155  case X86::BI__builtin_ia32_fixupimmsd_maskz:
4156  case X86::BI__builtin_ia32_fixupimmss_mask:
4157  case X86::BI__builtin_ia32_fixupimmss_maskz:
4158  case X86::BI__builtin_ia32_fixupimmpd128_mask:
4159  case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4160  case X86::BI__builtin_ia32_fixupimmpd256_mask:
4161  case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4162  case X86::BI__builtin_ia32_fixupimmps128_mask:
4163  case X86::BI__builtin_ia32_fixupimmps128_maskz:
4164  case X86::BI__builtin_ia32_fixupimmps256_mask:
4165  case X86::BI__builtin_ia32_fixupimmps256_maskz:
4166  case X86::BI__builtin_ia32_pternlogd512_mask:
4167  case X86::BI__builtin_ia32_pternlogd512_maskz:
4168  case X86::BI__builtin_ia32_pternlogq512_mask:
4169  case X86::BI__builtin_ia32_pternlogq512_maskz:
4170  case X86::BI__builtin_ia32_pternlogd128_mask:
4171  case X86::BI__builtin_ia32_pternlogd128_maskz:
4172  case X86::BI__builtin_ia32_pternlogd256_mask:
4173  case X86::BI__builtin_ia32_pternlogd256_maskz:
4174  case X86::BI__builtin_ia32_pternlogq128_mask:
4175  case X86::BI__builtin_ia32_pternlogq128_maskz:
4176  case X86::BI__builtin_ia32_pternlogq256_mask:
4177  case X86::BI__builtin_ia32_pternlogq256_maskz:
4178    i = 3; l = 0; u = 255;
4179    break;
4180  case X86::BI__builtin_ia32_gatherpfdpd:
4181  case X86::BI__builtin_ia32_gatherpfdps:
4182  case X86::BI__builtin_ia32_gatherpfqpd:
4183  case X86::BI__builtin_ia32_gatherpfqps:
4184  case X86::BI__builtin_ia32_scatterpfdpd:
4185  case X86::BI__builtin_ia32_scatterpfdps:
4186  case X86::BI__builtin_ia32_scatterpfqpd:
4187  case X86::BI__builtin_ia32_scatterpfqps:
4188    i = 4; l = 2; u = 3;
4189    break;
4190  case X86::BI__builtin_ia32_reducesd_mask:
4191  case X86::BI__builtin_ia32_reducess_mask:
4192  case X86::BI__builtin_ia32_rndscalesd_round_mask:
4193  case X86::BI__builtin_ia32_rndscaless_round_mask:
4194    i = 4; l = 0; u = 255;
4195    break;
4196  }
4197
4198  // Note that we don't force a hard error on the range check here, allowing
4199  // template-generated or macro-generated dead code to potentially have out-of-
4200  // range values. These need to code generate, but don't need to necessarily
4201  // make any sense. We use a warning that defaults to an error.
4202  return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4203}
4204
4205/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4206/// parameter with the FormatAttr's correct format_idx and firstDataArg.
4207/// Returns true when the format fits the function and the FormatStringInfo has
4208/// been populated.
4209bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4210                               FormatStringInfo *FSI) {
4211  FSI->HasVAListArg = Format->getFirstArg() == 0;
4212  FSI->FormatIdx = Format->getFormatIdx() - 1;
4213  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4214
4215  // The way the format attribute works in GCC, the implicit this argument
4216  // of member functions is counted. However, it doesn't appear in our own
4217  // lists, so decrement format_idx in that case.
4218  if (IsCXXMember) {
4219    if(FSI->FormatIdx == 0)
4220      return false;
4221    --FSI->FormatIdx;
4222    if (FSI->FirstDataArg != 0)
4223      --FSI->FirstDataArg;
4224  }
4225  return true;
4226}
4227
4228/// Checks if a the given expression evaluates to null.
4229///
4230/// Returns true if the value evaluates to null.
4231static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4232  // If the expression has non-null type, it doesn't evaluate to null.
4233  if (auto nullability
4234        = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4235    if (*nullability == NullabilityKind::NonNull)
4236      return false;
4237  }
4238
4239  // As a special case, transparent unions initialized with zero are
4240  // considered null for the purposes of the nonnull attribute.
4241  if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4242    if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4243      if (const CompoundLiteralExpr *CLE =
4244          dyn_cast<CompoundLiteralExpr>(Expr))
4245        if (const InitListExpr *ILE =
4246            dyn_cast<InitListExpr>(CLE->getInitializer()))
4247          Expr = ILE->getInit(0);
4248  }
4249
4250  bool Result;
4251  return (!Expr->isValueDependent() &&
4252          Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4253          !Result);
4254}
4255
4256static void CheckNonNullArgument(Sema &S,
4257                                 const Expr *ArgExpr,
4258                                 SourceLocation CallSiteLoc) {
4259  if (CheckNonNullExpr(S, ArgExpr))
4260    S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4261                          S.PDiag(diag::warn_null_arg)
4262                              << ArgExpr->getSourceRange());
4263}
4264
4265bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4266  FormatStringInfo FSI;
4267  if ((GetFormatStringType(Format) == FST_NSString) &&
4268      getFormatStringInfo(Format, false, &FSI)) {
4269    Idx = FSI.FormatIdx;
4270    return true;
4271  }
4272  return false;
4273}
4274
4275/// Diagnose use of %s directive in an NSString which is being passed
4276/// as formatting string to formatting method.
4277static void
4278DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4279                                        const NamedDecl *FDecl,
4280                                        Expr **Args,
4281                                        unsigned NumArgs) {
4282  unsigned Idx = 0;
4283  bool Format = false;
4284  ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4285  if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4286    Idx = 2;
4287    Format = true;
4288  }
4289  else
4290    for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4291      if (S.GetFormatNSStringIdx(I, Idx)) {
4292        Format = true;
4293        break;
4294      }
4295    }
4296  if (!Format || NumArgs <= Idx)
4297    return;
4298  const Expr *FormatExpr = Args[Idx];
4299  if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4300    FormatExpr = CSCE->getSubExpr();
4301  const StringLiteral *FormatString;
4302  if (const ObjCStringLiteral *OSL =
4303      dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4304    FormatString = OSL->getString();
4305  else
4306    FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4307  if (!FormatString)
4308    return;
4309  if (S.FormatStringHasSArg(FormatString)) {
4310    S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4311      << "%s" << 1 << 1;
4312    S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4313      << FDecl->getDeclName();
4314  }
4315}
4316
4317/// Determine whether the given type has a non-null nullability annotation.
4318static bool isNonNullType(ASTContext &ctx, QualType type) {
4319  if (auto nullability = type->getNullability(ctx))
4320    return *nullability == NullabilityKind::NonNull;
4321
4322  return false;
4323}
4324
4325static void CheckNonNullArguments(Sema &S,
4326                                  const NamedDecl *FDecl,
4327                                  const FunctionProtoType *Proto,
4328                                  ArrayRef<const Expr *> Args,
4329                                  SourceLocation CallSiteLoc) {
4330  assert((FDecl || Proto) && "Need a function declaration or prototype");
4331
4332  // Already checked by by constant evaluator.
4333  if (S.isConstantEvaluated())
4334    return;
4335  // Check the attributes attached to the method/function itself.
4336  llvm::SmallBitVector NonNullArgs;
4337  if (FDecl) {
4338    // Handle the nonnull attribute on the function/method declaration itself.
4339    for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4340      if (!NonNull->args_size()) {
4341        // Easy case: all pointer arguments are nonnull.
4342        for (const auto *Arg : Args)
4343          if (S.isValidPointerAttrType(Arg->getType()))
4344            CheckNonNullArgument(S, Arg, CallSiteLoc);
4345        return;
4346      }
4347
4348      for (const ParamIdx &Idx : NonNull->args()) {
4349        unsigned IdxAST = Idx.getASTIndex();
4350        if (IdxAST >= Args.size())
4351          continue;
4352        if (NonNullArgs.empty())
4353          NonNullArgs.resize(Args.size());
4354        NonNullArgs.set(IdxAST);
4355      }
4356    }
4357  }
4358
4359  if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4360    // Handle the nonnull attribute on the parameters of the
4361    // function/method.
4362    ArrayRef<ParmVarDecl*> parms;
4363    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4364      parms = FD->parameters();
4365    else
4366      parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4367
4368    unsigned ParamIndex = 0;
4369    for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4370         I != E; ++I, ++ParamIndex) {
4371      const ParmVarDecl *PVD = *I;
4372      if (PVD->hasAttr<NonNullAttr>() ||
4373          isNonNullType(S.Context, PVD->getType())) {
4374        if (NonNullArgs.empty())
4375          NonNullArgs.resize(Args.size());
4376
4377        NonNullArgs.set(ParamIndex);
4378      }
4379    }
4380  } else {
4381    // If we have a non-function, non-method declaration but no
4382    // function prototype, try to dig out the function prototype.
4383    if (!Proto) {
4384      if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4385        QualType type = VD->getType().getNonReferenceType();
4386        if (auto pointerType = type->getAs<PointerType>())
4387          type = pointerType->getPointeeType();
4388        else if (auto blockType = type->getAs<BlockPointerType>())
4389          type = blockType->getPointeeType();
4390        // FIXME: data member pointers?
4391
4392        // Dig out the function prototype, if there is one.
4393        Proto = type->getAs<FunctionProtoType>();
4394      }
4395    }
4396
4397    // Fill in non-null argument information from the nullability
4398    // information on the parameter types (if we have them).
4399    if (Proto) {
4400      unsigned Index = 0;
4401      for (auto paramType : Proto->getParamTypes()) {
4402        if (isNonNullType(S.Context, paramType)) {
4403          if (NonNullArgs.empty())
4404            NonNullArgs.resize(Args.size());
4405
4406          NonNullArgs.set(Index);
4407        }
4408
4409        ++Index;
4410      }
4411    }
4412  }
4413
4414  // Check for non-null arguments.
4415  for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4416       ArgIndex != ArgIndexEnd; ++ArgIndex) {
4417    if (NonNullArgs[ArgIndex])
4418      CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4419  }
4420}
4421
4422/// Handles the checks for format strings, non-POD arguments to vararg
4423/// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
4424/// attributes.
4425void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
4426                     const Expr *ThisArg, ArrayRef<const Expr *> Args,
4427                     bool IsMemberFunction, SourceLocation Loc,
4428                     SourceRange Range, VariadicCallType CallType) {
4429  // FIXME: We should check as much as we can in the template definition.
4430  if (CurContext->isDependentContext())
4431    return;
4432
4433  // Printf and scanf checking.
4434  llvm::SmallBitVector CheckedVarArgs;
4435  if (FDecl) {
4436    for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4437      // Only create vector if there are format attributes.
4438      CheckedVarArgs.resize(Args.size());
4439
4440      CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
4441                           CheckedVarArgs);
4442    }
4443  }
4444
4445  // Refuse POD arguments that weren't caught by the format string
4446  // checks above.
4447  auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
4448  if (CallType != VariadicDoesNotApply &&
4449      (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
4450    unsigned NumParams = Proto ? Proto->getNumParams()
4451                       : FDecl && isa<FunctionDecl>(FDecl)
4452                           ? cast<FunctionDecl>(FDecl)->getNumParams()
4453                       : FDecl && isa<ObjCMethodDecl>(FDecl)
4454                           ? cast<ObjCMethodDecl>(FDecl)->param_size()
4455                       : 0;
4456
4457    for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
4458      // Args[ArgIdx] can be null in malformed code.
4459      if (const Expr *Arg = Args[ArgIdx]) {
4460        if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
4461          checkVariadicArgument(Arg, CallType);
4462      }
4463    }
4464  }
4465
4466  if (FDecl || Proto) {
4467    CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
4468
4469    // Type safety checking.
4470    if (FDecl) {
4471      for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
4472        CheckArgumentWithTypeTag(I, Args, Loc);
4473    }
4474  }
4475
4476  if (FD)
4477    diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
4478}
4479
4480/// CheckConstructorCall - Check a constructor call for correctness and safety
4481/// properties not enforced by the C type system.
4482void Sema::CheckConstructorCall(FunctionDecl *FDecl,
4483                                ArrayRef<const Expr *> Args,
4484                                const FunctionProtoType *Proto,
4485                                SourceLocation Loc) {
4486  VariadicCallType CallType =
4487    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4488  checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
4489            Loc, SourceRange(), CallType);
4490}
4491
4492/// CheckFunctionCall - Check a direct function call for various correctness
4493/// and safety properties not strictly enforced by the C type system.
4494bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
4495                             const FunctionProtoType *Proto) {
4496  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
4497                              isa<CXXMethodDecl>(FDecl);
4498  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
4499                          IsMemberOperatorCall;
4500  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
4501                                                  TheCall->getCallee());
4502  Expr** Args = TheCall->getArgs();
4503  unsigned NumArgs = TheCall->getNumArgs();
4504
4505  Expr *ImplicitThis = nullptr;
4506  if (IsMemberOperatorCall) {
4507    // If this is a call to a member operator, hide the first argument
4508    // from checkCall.
4509    // FIXME: Our choice of AST representation here is less than ideal.
4510    ImplicitThis = Args[0];
4511    ++Args;
4512    --NumArgs;
4513  } else if (IsMemberFunction)
4514    ImplicitThis =
4515        cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
4516
4517  checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
4518            IsMemberFunction, TheCall->getRParenLoc(),
4519            TheCall->getCallee()->getSourceRange(), CallType);
4520
4521  IdentifierInfo *FnInfo = FDecl->getIdentifier();
4522  // None of the checks below are needed for functions that don't have
4523  // simple names (e.g., C++ conversion functions).
4524  if (!FnInfo)
4525    return false;
4526
4527  CheckAbsoluteValueFunction(TheCall, FDecl);
4528  CheckMaxUnsignedZero(TheCall, FDecl);
4529
4530  if (getLangOpts().ObjC)
4531    DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
4532
4533  unsigned CMId = FDecl->getMemoryFunctionKind();
4534  if (CMId == 0)
4535    return false;
4536
4537  // Handle memory setting and copying functions.
4538  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
4539    CheckStrlcpycatArguments(TheCall, FnInfo);
4540  else if (CMId == Builtin::BIstrncat)
4541    CheckStrncatArguments(TheCall, FnInfo);
4542  else
4543    CheckMemaccessArguments(TheCall, CMId, FnInfo);
4544
4545  return false;
4546}
4547
4548bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
4549                               ArrayRef<const Expr *> Args) {
4550  VariadicCallType CallType =
4551      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
4552
4553  checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
4554            /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
4555            CallType);
4556
4557  return false;
4558}
4559
4560bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
4561                            const FunctionProtoType *Proto) {
4562  QualType Ty;
4563  if (const auto *V = dyn_cast<VarDecl>(NDecl))
4564    Ty = V->getType().getNonReferenceType();
4565  else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
4566    Ty = F->getType().getNonReferenceType();
4567  else
4568    return false;
4569
4570  if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
4571      !Ty->isFunctionProtoType())
4572    return false;
4573
4574  VariadicCallType CallType;
4575  if (!Proto || !Proto->isVariadic()) {
4576    CallType = VariadicDoesNotApply;
4577  } else if (Ty->isBlockPointerType()) {
4578    CallType = VariadicBlock;
4579  } else { // Ty->isFunctionPointerType()
4580    CallType = VariadicFunction;
4581  }
4582
4583  checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
4584            llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4585            /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4586            TheCall->getCallee()->getSourceRange(), CallType);
4587
4588  return false;
4589}
4590
4591/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
4592/// such as function pointers returned from functions.
4593bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
4594  VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
4595                                                  TheCall->getCallee());
4596  checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
4597            llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4598            /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4599            TheCall->getCallee()->getSourceRange(), CallType);
4600
4601  return false;
4602}
4603
4604static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
4605  if (!llvm::isValidAtomicOrderingCABI(Ordering))
4606    return false;
4607
4608  auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
4609  switch (Op) {
4610  case AtomicExpr::AO__c11_atomic_init:
4611  case AtomicExpr::AO__opencl_atomic_init:
4612    llvm_unreachable("There is no ordering argument for an init");
4613
4614  case AtomicExpr::AO__c11_atomic_load:
4615  case AtomicExpr::AO__opencl_atomic_load:
4616  case AtomicExpr::AO__atomic_load_n:
4617  case AtomicExpr::AO__atomic_load:
4618    return OrderingCABI != llvm::AtomicOrderingCABI::release &&
4619           OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4620
4621  case AtomicExpr::AO__c11_atomic_store:
4622  case AtomicExpr::AO__opencl_atomic_store:
4623  case AtomicExpr::AO__atomic_store:
4624  case AtomicExpr::AO__atomic_store_n:
4625    return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
4626           OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
4627           OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4628
4629  default:
4630    return true;
4631  }
4632}
4633
4634ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
4635                                         AtomicExpr::AtomicOp Op) {
4636  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
4637  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4638  MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
4639  return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
4640                         DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
4641                         Op);
4642}
4643
4644ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
4645                                 SourceLocation RParenLoc, MultiExprArg Args,
4646                                 AtomicExpr::AtomicOp Op,
4647                                 AtomicArgumentOrder ArgOrder) {
4648  // All the non-OpenCL operations take one of the following forms.
4649  // The OpenCL operations take the __c11 forms with one extra argument for
4650  // synchronization scope.
4651  enum {
4652    // C    __c11_atomic_init(A *, C)
4653    Init,
4654
4655    // C    __c11_atomic_load(A *, int)
4656    Load,
4657
4658    // void __atomic_load(A *, CP, int)
4659    LoadCopy,
4660
4661    // void __atomic_store(A *, CP, int)
4662    Copy,
4663
4664    // C    __c11_atomic_add(A *, M, int)
4665    Arithmetic,
4666
4667    // C    __atomic_exchange_n(A *, CP, int)
4668    Xchg,
4669
4670    // void __atomic_exchange(A *, C *, CP, int)
4671    GNUXchg,
4672
4673    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
4674    C11CmpXchg,
4675
4676    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
4677    GNUCmpXchg
4678  } Form = Init;
4679
4680  const unsigned NumForm = GNUCmpXchg + 1;
4681  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
4682  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
4683  // where:
4684  //   C is an appropriate type,
4685  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
4686  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
4687  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
4688  //   the int parameters are for orderings.
4689
4690  static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
4691      && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
4692      "need to update code for modified forms");
4693  static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
4694                    AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
4695                        AtomicExpr::AO__atomic_load,
4696                "need to update code for modified C11 atomics");
4697  bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
4698                  Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
4699  bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
4700               Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
4701               IsOpenCL;
4702  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
4703             Op == AtomicExpr::AO__atomic_store_n ||
4704             Op == AtomicExpr::AO__atomic_exchange_n ||
4705             Op == AtomicExpr::AO__atomic_compare_exchange_n;
4706  bool IsAddSub = false;
4707
4708  switch (Op) {
4709  case AtomicExpr::AO__c11_atomic_init:
4710  case AtomicExpr::AO__opencl_atomic_init:
4711    Form = Init;
4712    break;
4713
4714  case AtomicExpr::AO__c11_atomic_load:
4715  case AtomicExpr::AO__opencl_atomic_load:
4716  case AtomicExpr::AO__atomic_load_n:
4717    Form = Load;
4718    break;
4719
4720  case AtomicExpr::AO__atomic_load:
4721    Form = LoadCopy;
4722    break;
4723
4724  case AtomicExpr::AO__c11_atomic_store:
4725  case AtomicExpr::AO__opencl_atomic_store:
4726  case AtomicExpr::AO__atomic_store:
4727  case AtomicExpr::AO__atomic_store_n:
4728    Form = Copy;
4729    break;
4730
4731  case AtomicExpr::AO__c11_atomic_fetch_add:
4732  case AtomicExpr::AO__c11_atomic_fetch_sub:
4733  case AtomicExpr::AO__opencl_atomic_fetch_add:
4734  case AtomicExpr::AO__opencl_atomic_fetch_sub:
4735  case AtomicExpr::AO__atomic_fetch_add:
4736  case AtomicExpr::AO__atomic_fetch_sub:
4737  case AtomicExpr::AO__atomic_add_fetch:
4738  case AtomicExpr::AO__atomic_sub_fetch:
4739    IsAddSub = true;
4740    LLVM_FALLTHROUGH;
4741  case AtomicExpr::AO__c11_atomic_fetch_and:
4742  case AtomicExpr::AO__c11_atomic_fetch_or:
4743  case AtomicExpr::AO__c11_atomic_fetch_xor:
4744  case AtomicExpr::AO__opencl_atomic_fetch_and:
4745  case AtomicExpr::AO__opencl_atomic_fetch_or:
4746  case AtomicExpr::AO__opencl_atomic_fetch_xor:
4747  case AtomicExpr::AO__atomic_fetch_and:
4748  case AtomicExpr::AO__atomic_fetch_or:
4749  case AtomicExpr::AO__atomic_fetch_xor:
4750  case AtomicExpr::AO__atomic_fetch_nand:
4751  case AtomicExpr::AO__atomic_and_fetch:
4752  case AtomicExpr::AO__atomic_or_fetch:
4753  case AtomicExpr::AO__atomic_xor_fetch:
4754  case AtomicExpr::AO__atomic_nand_fetch:
4755  case AtomicExpr::AO__c11_atomic_fetch_min:
4756  case AtomicExpr::AO__c11_atomic_fetch_max:
4757  case AtomicExpr::AO__opencl_atomic_fetch_min:
4758  case AtomicExpr::AO__opencl_atomic_fetch_max:
4759  case AtomicExpr::AO__atomic_min_fetch:
4760  case AtomicExpr::AO__atomic_max_fetch:
4761  case AtomicExpr::AO__atomic_fetch_min:
4762  case AtomicExpr::AO__atomic_fetch_max:
4763    Form = Arithmetic;
4764    break;
4765
4766  case AtomicExpr::AO__c11_atomic_exchange:
4767  case AtomicExpr::AO__opencl_atomic_exchange:
4768  case AtomicExpr::AO__atomic_exchange_n:
4769    Form = Xchg;
4770    break;
4771
4772  case AtomicExpr::AO__atomic_exchange:
4773    Form = GNUXchg;
4774    break;
4775
4776  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
4777  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
4778  case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
4779  case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
4780    Form = C11CmpXchg;
4781    break;
4782
4783  case AtomicExpr::AO__atomic_compare_exchange:
4784  case AtomicExpr::AO__atomic_compare_exchange_n:
4785    Form = GNUCmpXchg;
4786    break;
4787  }
4788
4789  unsigned AdjustedNumArgs = NumArgs[Form];
4790  if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
4791    ++AdjustedNumArgs;
4792  // Check we have the right number of arguments.
4793  if (Args.size() < AdjustedNumArgs) {
4794    Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
4795        << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4796        << ExprRange;
4797    return ExprError();
4798  } else if (Args.size() > AdjustedNumArgs) {
4799    Diag(Args[AdjustedNumArgs]->getBeginLoc(),
4800         diag::err_typecheck_call_too_many_args)
4801        << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4802        << ExprRange;
4803    return ExprError();
4804  }
4805
4806  // Inspect the first argument of the atomic operation.
4807  Expr *Ptr = Args[0];
4808  ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
4809  if (ConvertedPtr.isInvalid())
4810    return ExprError();
4811
4812  Ptr = ConvertedPtr.get();
4813  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
4814  if (!pointerType) {
4815    Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
4816        << Ptr->getType() << Ptr->getSourceRange();
4817    return ExprError();
4818  }
4819
4820  // For a __c11 builtin, this should be a pointer to an _Atomic type.
4821  QualType AtomTy = pointerType->getPointeeType(); // 'A'
4822  QualType ValType = AtomTy; // 'C'
4823  if (IsC11) {
4824    if (!AtomTy->isAtomicType()) {
4825      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
4826          << Ptr->getType() << Ptr->getSourceRange();
4827      return ExprError();
4828    }
4829    if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
4830        AtomTy.getAddressSpace() == LangAS::opencl_constant) {
4831      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
4832          << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
4833          << Ptr->getSourceRange();
4834      return ExprError();
4835    }
4836    ValType = AtomTy->castAs<AtomicType>()->getValueType();
4837  } else if (Form != Load && Form != LoadCopy) {
4838    if (ValType.isConstQualified()) {
4839      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
4840          << Ptr->getType() << Ptr->getSourceRange();
4841      return ExprError();
4842    }
4843  }
4844
4845  // For an arithmetic operation, the implied arithmetic must be well-formed.
4846  if (Form == Arithmetic) {
4847    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
4848    if (IsAddSub && !ValType->isIntegerType()
4849        && !ValType->isPointerType()) {
4850      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4851          << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4852      return ExprError();
4853    }
4854    if (!IsAddSub && !ValType->isIntegerType()) {
4855      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
4856          << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4857      return ExprError();
4858    }
4859    if (IsC11 && ValType->isPointerType() &&
4860        RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
4861                            diag::err_incomplete_type)) {
4862      return ExprError();
4863    }
4864  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
4865    // For __atomic_*_n operations, the value type must be a scalar integral or
4866    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
4867    Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4868        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4869    return ExprError();
4870  }
4871
4872  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
4873      !AtomTy->isScalarType()) {
4874    // For GNU atomics, require a trivially-copyable type. This is not part of
4875    // the GNU atomics specification, but we enforce it for sanity.
4876    Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
4877        << Ptr->getType() << Ptr->getSourceRange();
4878    return ExprError();
4879  }
4880
4881  switch (ValType.getObjCLifetime()) {
4882  case Qualifiers::OCL_None:
4883  case Qualifiers::OCL_ExplicitNone:
4884    // okay
4885    break;
4886
4887  case Qualifiers::OCL_Weak:
4888  case Qualifiers::OCL_Strong:
4889  case Qualifiers::OCL_Autoreleasing:
4890    // FIXME: Can this happen? By this point, ValType should be known
4891    // to be trivially copyable.
4892    Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
4893        << ValType << Ptr->getSourceRange();
4894    return ExprError();
4895  }
4896
4897  // All atomic operations have an overload which takes a pointer to a volatile
4898  // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
4899  // into the result or the other operands. Similarly atomic_load takes a
4900  // pointer to a const 'A'.
4901  ValType.removeLocalVolatile();
4902  ValType.removeLocalConst();
4903  QualType ResultType = ValType;
4904  if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
4905      Form == Init)
4906    ResultType = Context.VoidTy;
4907  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
4908    ResultType = Context.BoolTy;
4909
4910  // The type of a parameter passed 'by value'. In the GNU atomics, such
4911  // arguments are actually passed as pointers.
4912  QualType ByValType = ValType; // 'CP'
4913  bool IsPassedByAddress = false;
4914  if (!IsC11 && !IsN) {
4915    ByValType = Ptr->getType();
4916    IsPassedByAddress = true;
4917  }
4918
4919  SmallVector<Expr *, 5> APIOrderedArgs;
4920  if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
4921    APIOrderedArgs.push_back(Args[0]);
4922    switch (Form) {
4923    case Init:
4924    case Load:
4925      APIOrderedArgs.push_back(Args[1]); // Val1/Order
4926      break;
4927    case LoadCopy:
4928    case Copy:
4929    case Arithmetic:
4930    case Xchg:
4931      APIOrderedArgs.push_back(Args[2]); // Val1
4932      APIOrderedArgs.push_back(Args[1]); // Order
4933      break;
4934    case GNUXchg:
4935      APIOrderedArgs.push_back(Args[2]); // Val1
4936      APIOrderedArgs.push_back(Args[3]); // Val2
4937      APIOrderedArgs.push_back(Args[1]); // Order
4938      break;
4939    case C11CmpXchg:
4940      APIOrderedArgs.push_back(Args[2]); // Val1
4941      APIOrderedArgs.push_back(Args[4]); // Val2
4942      APIOrderedArgs.push_back(Args[1]); // Order
4943      APIOrderedArgs.push_back(Args[3]); // OrderFail
4944      break;
4945    case GNUCmpXchg:
4946      APIOrderedArgs.push_back(Args[2]); // Val1
4947      APIOrderedArgs.push_back(Args[4]); // Val2
4948      APIOrderedArgs.push_back(Args[5]); // Weak
4949      APIOrderedArgs.push_back(Args[1]); // Order
4950      APIOrderedArgs.push_back(Args[3]); // OrderFail
4951      break;
4952    }
4953  } else
4954    APIOrderedArgs.append(Args.begin(), Args.end());
4955
4956  // The first argument's non-CV pointer type is used to deduce the type of
4957  // subsequent arguments, except for:
4958  //  - weak flag (always converted to bool)
4959  //  - memory order (always converted to int)
4960  //  - scope  (always converted to int)
4961  for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
4962    QualType Ty;
4963    if (i < NumVals[Form] + 1) {
4964      switch (i) {
4965      case 0:
4966        // The first argument is always a pointer. It has a fixed type.
4967        // It is always dereferenced, a nullptr is undefined.
4968        CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
4969        // Nothing else to do: we already know all we want about this pointer.
4970        continue;
4971      case 1:
4972        // The second argument is the non-atomic operand. For arithmetic, this
4973        // is always passed by value, and for a compare_exchange it is always
4974        // passed by address. For the rest, GNU uses by-address and C11 uses
4975        // by-value.
4976        assert(Form != Load);
4977        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
4978          Ty = ValType;
4979        else if (Form == Copy || Form == Xchg) {
4980          if (IsPassedByAddress) {
4981            // The value pointer is always dereferenced, a nullptr is undefined.
4982            CheckNonNullArgument(*this, APIOrderedArgs[i],
4983                                 ExprRange.getBegin());
4984          }
4985          Ty = ByValType;
4986        } else if (Form == Arithmetic)
4987          Ty = Context.getPointerDiffType();
4988        else {
4989          Expr *ValArg = APIOrderedArgs[i];
4990          // The value pointer is always dereferenced, a nullptr is undefined.
4991          CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
4992          LangAS AS = LangAS::Default;
4993          // Keep address space of non-atomic pointer type.
4994          if (const PointerType *PtrTy =
4995                  ValArg->getType()->getAs<PointerType>()) {
4996            AS = PtrTy->getPointeeType().getAddressSpace();
4997          }
4998          Ty = Context.getPointerType(
4999              Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5000        }
5001        break;
5002      case 2:
5003        // The third argument to compare_exchange / GNU exchange is the desired
5004        // value, either by-value (for the C11 and *_n variant) or as a pointer.
5005        if (IsPassedByAddress)
5006          CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5007        Ty = ByValType;
5008        break;
5009      case 3:
5010        // The fourth argument to GNU compare_exchange is a 'weak' flag.
5011        Ty = Context.BoolTy;
5012        break;
5013      }
5014    } else {
5015      // The order(s) and scope are always converted to int.
5016      Ty = Context.IntTy;
5017    }
5018
5019    InitializedEntity Entity =
5020        InitializedEntity::InitializeParameter(Context, Ty, false);
5021    ExprResult Arg = APIOrderedArgs[i];
5022    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5023    if (Arg.isInvalid())
5024      return true;
5025    APIOrderedArgs[i] = Arg.get();
5026  }
5027
5028  // Permute the arguments into a 'consistent' order.
5029  SmallVector<Expr*, 5> SubExprs;
5030  SubExprs.push_back(Ptr);
5031  switch (Form) {
5032  case Init:
5033    // Note, AtomicExpr::getVal1() has a special case for this atomic.
5034    SubExprs.push_back(APIOrderedArgs[1]); // Val1
5035    break;
5036  case Load:
5037    SubExprs.push_back(APIOrderedArgs[1]); // Order
5038    break;
5039  case LoadCopy:
5040  case Copy:
5041  case Arithmetic:
5042  case Xchg:
5043    SubExprs.push_back(APIOrderedArgs[2]); // Order
5044    SubExprs.push_back(APIOrderedArgs[1]); // Val1
5045    break;
5046  case GNUXchg:
5047    // Note, AtomicExpr::getVal2() has a special case for this atomic.
5048    SubExprs.push_back(APIOrderedArgs[3]); // Order
5049    SubExprs.push_back(APIOrderedArgs[1]); // Val1
5050    SubExprs.push_back(APIOrderedArgs[2]); // Val2
5051    break;
5052  case C11CmpXchg:
5053    SubExprs.push_back(APIOrderedArgs[3]); // Order
5054    SubExprs.push_back(APIOrderedArgs[1]); // Val1
5055    SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5056    SubExprs.push_back(APIOrderedArgs[2]); // Val2
5057    break;
5058  case GNUCmpXchg:
5059    SubExprs.push_back(APIOrderedArgs[4]); // Order
5060    SubExprs.push_back(APIOrderedArgs[1]); // Val1
5061    SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5062    SubExprs.push_back(APIOrderedArgs[2]); // Val2
5063    SubExprs.push_back(APIOrderedArgs[3]); // Weak
5064    break;
5065  }
5066
5067  if (SubExprs.size() >= 2 && Form != Init) {
5068    llvm::APSInt Result(32);
5069    if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
5070        !isValidOrderingForOp(Result.getSExtValue(), Op))
5071      Diag(SubExprs[1]->getBeginLoc(),
5072           diag::warn_atomic_op_has_invalid_memory_order)
5073          << SubExprs[1]->getSourceRange();
5074  }
5075
5076  if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
5077    auto *Scope = Args[Args.size() - 1];
5078    llvm::APSInt Result(32);
5079    if (Scope->isIntegerConstantExpr(Result, Context) &&
5080        !ScopeModel->isValid(Result.getZExtValue())) {
5081      Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
5082          << Scope->getSourceRange();
5083    }
5084    SubExprs.push_back(Scope);
5085  }
5086
5087  AtomicExpr *AE = new (Context)
5088      AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
5089
5090  if ((Op == AtomicExpr::AO__c11_atomic_load ||
5091       Op == AtomicExpr::AO__c11_atomic_store ||
5092       Op == AtomicExpr::AO__opencl_atomic_load ||
5093       Op == AtomicExpr::AO__opencl_atomic_store ) &&
5094      Context.AtomicUsesUnsupportedLibcall(AE))
5095    Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
5096        << ((Op == AtomicExpr::AO__c11_atomic_load ||
5097             Op == AtomicExpr::AO__opencl_atomic_load)
5098                ? 0
5099                : 1);
5100
5101  return AE;
5102}
5103
5104/// checkBuiltinArgument - Given a call to a builtin function, perform
5105/// normal type-checking on the given argument, updating the call in
5106/// place.  This is useful when a builtin function requires custom
5107/// type-checking for some of its arguments but not necessarily all of
5108/// them.
5109///
5110/// Returns true on error.
5111static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
5112  FunctionDecl *Fn = E->getDirectCallee();
5113  assert(Fn && "builtin call without direct callee!");
5114
5115  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
5116  InitializedEntity Entity =
5117    InitializedEntity::InitializeParameter(S.Context, Param);
5118
5119  ExprResult Arg = E->getArg(0);
5120  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
5121  if (Arg.isInvalid())
5122    return true;
5123
5124  E->setArg(ArgIndex, Arg.get());
5125  return false;
5126}
5127
5128/// We have a call to a function like __sync_fetch_and_add, which is an
5129/// overloaded function based on the pointer type of its first argument.
5130/// The main BuildCallExpr routines have already promoted the types of
5131/// arguments because all of these calls are prototyped as void(...).
5132///
5133/// This function goes through and does final semantic checking for these
5134/// builtins, as well as generating any warnings.
5135ExprResult
5136Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
5137  CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
5138  Expr *Callee = TheCall->getCallee();
5139  DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
5140  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5141
5142  // Ensure that we have at least one argument to do type inference from.
5143  if (TheCall->getNumArgs() < 1) {
5144    Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5145        << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
5146    return ExprError();
5147  }
5148
5149  // Inspect the first argument of the atomic builtin.  This should always be
5150  // a pointer type, whose element is an integral scalar or pointer type.
5151  // Because it is a pointer type, we don't have to worry about any implicit
5152  // casts here.
5153  // FIXME: We don't allow floating point scalars as input.
5154  Expr *FirstArg = TheCall->getArg(0);
5155  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
5156  if (FirstArgResult.isInvalid())
5157    return ExprError();
5158  FirstArg = FirstArgResult.get();
5159  TheCall->setArg(0, FirstArg);
5160
5161  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
5162  if (!pointerType) {
5163    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
5164        << FirstArg->getType() << FirstArg->getSourceRange();
5165    return ExprError();
5166  }
5167
5168  QualType ValType = pointerType->getPointeeType();
5169  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5170      !ValType->isBlockPointerType()) {
5171    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
5172        << FirstArg->getType() << FirstArg->getSourceRange();
5173    return ExprError();
5174  }
5175
5176  if (ValType.isConstQualified()) {
5177    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
5178        << FirstArg->getType() << FirstArg->getSourceRange();
5179    return ExprError();
5180  }
5181
5182  switch (ValType.getObjCLifetime()) {
5183  case Qualifiers::OCL_None:
5184  case Qualifiers::OCL_ExplicitNone:
5185    // okay
5186    break;
5187
5188  case Qualifiers::OCL_Weak:
5189  case Qualifiers::OCL_Strong:
5190  case Qualifiers::OCL_Autoreleasing:
5191    Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
5192        << ValType << FirstArg->getSourceRange();
5193    return ExprError();
5194  }
5195
5196  // Strip any qualifiers off ValType.
5197  ValType = ValType.getUnqualifiedType();
5198
5199  // The majority of builtins return a value, but a few have special return
5200  // types, so allow them to override appropriately below.
5201  QualType ResultType = ValType;
5202
5203  // We need to figure out which concrete builtin this maps onto.  For example,
5204  // __sync_fetch_and_add with a 2 byte object turns into
5205  // __sync_fetch_and_add_2.
5206#define BUILTIN_ROW(x) \
5207  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
5208    Builtin::BI##x##_8, Builtin::BI##x##_16 }
5209
5210  static const unsigned BuiltinIndices[][5] = {
5211    BUILTIN_ROW(__sync_fetch_and_add),
5212    BUILTIN_ROW(__sync_fetch_and_sub),
5213    BUILTIN_ROW(__sync_fetch_and_or),
5214    BUILTIN_ROW(__sync_fetch_and_and),
5215    BUILTIN_ROW(__sync_fetch_and_xor),
5216    BUILTIN_ROW(__sync_fetch_and_nand),
5217
5218    BUILTIN_ROW(__sync_add_and_fetch),
5219    BUILTIN_ROW(__sync_sub_and_fetch),
5220    BUILTIN_ROW(__sync_and_and_fetch),
5221    BUILTIN_ROW(__sync_or_and_fetch),
5222    BUILTIN_ROW(__sync_xor_and_fetch),
5223    BUILTIN_ROW(__sync_nand_and_fetch),
5224
5225    BUILTIN_ROW(__sync_val_compare_and_swap),
5226    BUILTIN_ROW(__sync_bool_compare_and_swap),
5227    BUILTIN_ROW(__sync_lock_test_and_set),
5228    BUILTIN_ROW(__sync_lock_release),
5229    BUILTIN_ROW(__sync_swap)
5230  };
5231#undef BUILTIN_ROW
5232
5233  // Determine the index of the size.
5234  unsigned SizeIndex;
5235  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
5236  case 1: SizeIndex = 0; break;
5237  case 2: SizeIndex = 1; break;
5238  case 4: SizeIndex = 2; break;
5239  case 8: SizeIndex = 3; break;
5240  case 16: SizeIndex = 4; break;
5241  default:
5242    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5243        << FirstArg->getType() << FirstArg->getSourceRange();
5244    return ExprError();
5245  }
5246
5247  // Each of these builtins has one pointer argument, followed by some number of
5248  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5249  // that we ignore.  Find out which row of BuiltinIndices to read from as well
5250  // as the number of fixed args.
5251  unsigned BuiltinID = FDecl->getBuiltinID();
5252  unsigned BuiltinIndex, NumFixed = 1;
5253  bool WarnAboutSemanticsChange = false;
5254  switch (BuiltinID) {
5255  default: llvm_unreachable("Unknown overloaded atomic builtin!");
5256  case Builtin::BI__sync_fetch_and_add:
5257  case Builtin::BI__sync_fetch_and_add_1:
5258  case Builtin::BI__sync_fetch_and_add_2:
5259  case Builtin::BI__sync_fetch_and_add_4:
5260  case Builtin::BI__sync_fetch_and_add_8:
5261  case Builtin::BI__sync_fetch_and_add_16:
5262    BuiltinIndex = 0;
5263    break;
5264
5265  case Builtin::BI__sync_fetch_and_sub:
5266  case Builtin::BI__sync_fetch_and_sub_1:
5267  case Builtin::BI__sync_fetch_and_sub_2:
5268  case Builtin::BI__sync_fetch_and_sub_4:
5269  case Builtin::BI__sync_fetch_and_sub_8:
5270  case Builtin::BI__sync_fetch_and_sub_16:
5271    BuiltinIndex = 1;
5272    break;
5273
5274  case Builtin::BI__sync_fetch_and_or:
5275  case Builtin::BI__sync_fetch_and_or_1:
5276  case Builtin::BI__sync_fetch_and_or_2:
5277  case Builtin::BI__sync_fetch_and_or_4:
5278  case Builtin::BI__sync_fetch_and_or_8:
5279  case Builtin::BI__sync_fetch_and_or_16:
5280    BuiltinIndex = 2;
5281    break;
5282
5283  case Builtin::BI__sync_fetch_and_and:
5284  case Builtin::BI__sync_fetch_and_and_1:
5285  case Builtin::BI__sync_fetch_and_and_2:
5286  case Builtin::BI__sync_fetch_and_and_4:
5287  case Builtin::BI__sync_fetch_and_and_8:
5288  case Builtin::BI__sync_fetch_and_and_16:
5289    BuiltinIndex = 3;
5290    break;
5291
5292  case Builtin::BI__sync_fetch_and_xor:
5293  case Builtin::BI__sync_fetch_and_xor_1:
5294  case Builtin::BI__sync_fetch_and_xor_2:
5295  case Builtin::BI__sync_fetch_and_xor_4:
5296  case Builtin::BI__sync_fetch_and_xor_8:
5297  case Builtin::BI__sync_fetch_and_xor_16:
5298    BuiltinIndex = 4;
5299    break;
5300
5301  case Builtin::BI__sync_fetch_and_nand:
5302  case Builtin::BI__sync_fetch_and_nand_1:
5303  case Builtin::BI__sync_fetch_and_nand_2:
5304  case Builtin::BI__sync_fetch_and_nand_4:
5305  case Builtin::BI__sync_fetch_and_nand_8:
5306  case Builtin::BI__sync_fetch_and_nand_16:
5307    BuiltinIndex = 5;
5308    WarnAboutSemanticsChange = true;
5309    break;
5310
5311  case Builtin::BI__sync_add_and_fetch:
5312  case Builtin::BI__sync_add_and_fetch_1:
5313  case Builtin::BI__sync_add_and_fetch_2:
5314  case Builtin::BI__sync_add_and_fetch_4:
5315  case Builtin::BI__sync_add_and_fetch_8:
5316  case Builtin::BI__sync_add_and_fetch_16:
5317    BuiltinIndex = 6;
5318    break;
5319
5320  case Builtin::BI__sync_sub_and_fetch:
5321  case Builtin::BI__sync_sub_and_fetch_1:
5322  case Builtin::BI__sync_sub_and_fetch_2:
5323  case Builtin::BI__sync_sub_and_fetch_4:
5324  case Builtin::BI__sync_sub_and_fetch_8:
5325  case Builtin::BI__sync_sub_and_fetch_16:
5326    BuiltinIndex = 7;
5327    break;
5328
5329  case Builtin::BI__sync_and_and_fetch:
5330  case Builtin::BI__sync_and_and_fetch_1:
5331  case Builtin::BI__sync_and_and_fetch_2:
5332  case Builtin::BI__sync_and_and_fetch_4:
5333  case Builtin::BI__sync_and_and_fetch_8:
5334  case Builtin::BI__sync_and_and_fetch_16:
5335    BuiltinIndex = 8;
5336    break;
5337
5338  case Builtin::BI__sync_or_and_fetch:
5339  case Builtin::BI__sync_or_and_fetch_1:
5340  case Builtin::BI__sync_or_and_fetch_2:
5341  case Builtin::BI__sync_or_and_fetch_4:
5342  case Builtin::BI__sync_or_and_fetch_8:
5343  case Builtin::BI__sync_or_and_fetch_16:
5344    BuiltinIndex = 9;
5345    break;
5346
5347  case Builtin::BI__sync_xor_and_fetch:
5348  case Builtin::BI__sync_xor_and_fetch_1:
5349  case Builtin::BI__sync_xor_and_fetch_2:
5350  case Builtin::BI__sync_xor_and_fetch_4:
5351  case Builtin::BI__sync_xor_and_fetch_8:
5352  case Builtin::BI__sync_xor_and_fetch_16:
5353    BuiltinIndex = 10;
5354    break;
5355
5356  case Builtin::BI__sync_nand_and_fetch:
5357  case Builtin::BI__sync_nand_and_fetch_1:
5358  case Builtin::BI__sync_nand_and_fetch_2:
5359  case Builtin::BI__sync_nand_and_fetch_4:
5360  case Builtin::BI__sync_nand_and_fetch_8:
5361  case Builtin::BI__sync_nand_and_fetch_16:
5362    BuiltinIndex = 11;
5363    WarnAboutSemanticsChange = true;
5364    break;
5365
5366  case Builtin::BI__sync_val_compare_and_swap:
5367  case Builtin::BI__sync_val_compare_and_swap_1:
5368  case Builtin::BI__sync_val_compare_and_swap_2:
5369  case Builtin::BI__sync_val_compare_and_swap_4:
5370  case Builtin::BI__sync_val_compare_and_swap_8:
5371  case Builtin::BI__sync_val_compare_and_swap_16:
5372    BuiltinIndex = 12;
5373    NumFixed = 2;
5374    break;
5375
5376  case Builtin::BI__sync_bool_compare_and_swap:
5377  case Builtin::BI__sync_bool_compare_and_swap_1:
5378  case Builtin::BI__sync_bool_compare_and_swap_2:
5379  case Builtin::BI__sync_bool_compare_and_swap_4:
5380  case Builtin::BI__sync_bool_compare_and_swap_8:
5381  case Builtin::BI__sync_bool_compare_and_swap_16:
5382    BuiltinIndex = 13;
5383    NumFixed = 2;
5384    ResultType = Context.BoolTy;
5385    break;
5386
5387  case Builtin::BI__sync_lock_test_and_set:
5388  case Builtin::BI__sync_lock_test_and_set_1:
5389  case Builtin::BI__sync_lock_test_and_set_2:
5390  case Builtin::BI__sync_lock_test_and_set_4:
5391  case Builtin::BI__sync_lock_test_and_set_8:
5392  case Builtin::BI__sync_lock_test_and_set_16:
5393    BuiltinIndex = 14;
5394    break;
5395
5396  case Builtin::BI__sync_lock_release:
5397  case Builtin::BI__sync_lock_release_1:
5398  case Builtin::BI__sync_lock_release_2:
5399  case Builtin::BI__sync_lock_release_4:
5400  case Builtin::BI__sync_lock_release_8:
5401  case Builtin::BI__sync_lock_release_16:
5402    BuiltinIndex = 15;
5403    NumFixed = 0;
5404    ResultType = Context.VoidTy;
5405    break;
5406
5407  case Builtin::BI__sync_swap:
5408  case Builtin::BI__sync_swap_1:
5409  case Builtin::BI__sync_swap_2:
5410  case Builtin::BI__sync_swap_4:
5411  case Builtin::BI__sync_swap_8:
5412  case Builtin::BI__sync_swap_16:
5413    BuiltinIndex = 16;
5414    break;
5415  }
5416
5417  // Now that we know how many fixed arguments we expect, first check that we
5418  // have at least that many.
5419  if (TheCall->getNumArgs() < 1+NumFixed) {
5420    Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5421        << 0 << 1 + NumFixed << TheCall->getNumArgs()
5422        << Callee->getSourceRange();
5423    return ExprError();
5424  }
5425
5426  Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
5427      << Callee->getSourceRange();
5428
5429  if (WarnAboutSemanticsChange) {
5430    Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
5431        << Callee->getSourceRange();
5432  }
5433
5434  // Get the decl for the concrete builtin from this, we can tell what the
5435  // concrete integer type we should convert to is.
5436  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
5437  const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
5438  FunctionDecl *NewBuiltinDecl;
5439  if (NewBuiltinID == BuiltinID)
5440    NewBuiltinDecl = FDecl;
5441  else {
5442    // Perform builtin lookup to avoid redeclaring it.
5443    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
5444    LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
5445    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
5446    assert(Res.getFoundDecl());
5447    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
5448    if (!NewBuiltinDecl)
5449      return ExprError();
5450  }
5451
5452  // The first argument --- the pointer --- has a fixed type; we
5453  // deduce the types of the rest of the arguments accordingly.  Walk
5454  // the remaining arguments, converting them to the deduced value type.
5455  for (unsigned i = 0; i != NumFixed; ++i) {
5456    ExprResult Arg = TheCall->getArg(i+1);
5457
5458    // GCC does an implicit conversion to the pointer or integer ValType.  This
5459    // can fail in some cases (1i -> int**), check for this error case now.
5460    // Initialize the argument.
5461    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
5462                                                   ValType, /*consume*/ false);
5463    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5464    if (Arg.isInvalid())
5465      return ExprError();
5466
5467    // Okay, we have something that *can* be converted to the right type.  Check
5468    // to see if there is a potentially weird extension going on here.  This can
5469    // happen when you do an atomic operation on something like an char* and
5470    // pass in 42.  The 42 gets converted to char.  This is even more strange
5471    // for things like 45.123 -> char, etc.
5472    // FIXME: Do this check.
5473    TheCall->setArg(i+1, Arg.get());
5474  }
5475
5476  // Create a new DeclRefExpr to refer to the new decl.
5477  DeclRefExpr *NewDRE = DeclRefExpr::Create(
5478      Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
5479      /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
5480      DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
5481
5482  // Set the callee in the CallExpr.
5483  // FIXME: This loses syntactic information.
5484  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
5485  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
5486                                              CK_BuiltinFnToFnPtr);
5487  TheCall->setCallee(PromotedCall.get());
5488
5489  // Change the result type of the call to match the original value type. This
5490  // is arbitrary, but the codegen for these builtins ins design to handle it
5491  // gracefully.
5492  TheCall->setType(ResultType);
5493
5494  return TheCallResult;
5495}
5496
5497/// SemaBuiltinNontemporalOverloaded - We have a call to
5498/// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
5499/// overloaded function based on the pointer type of its last argument.
5500///
5501/// This function goes through and does final semantic checking for these
5502/// builtins.
5503ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
5504  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
5505  DeclRefExpr *DRE =
5506      cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5507  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5508  unsigned BuiltinID = FDecl->getBuiltinID();
5509  assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
5510          BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
5511         "Unexpected nontemporal load/store builtin!");
5512  bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
5513  unsigned numArgs = isStore ? 2 : 1;
5514
5515  // Ensure that we have the proper number of arguments.
5516  if (checkArgCount(*this, TheCall, numArgs))
5517    return ExprError();
5518
5519  // Inspect the last argument of the nontemporal builtin.  This should always
5520  // be a pointer type, from which we imply the type of the memory access.
5521  // Because it is a pointer type, we don't have to worry about any implicit
5522  // casts here.
5523  Expr *PointerArg = TheCall->getArg(numArgs - 1);
5524  ExprResult PointerArgResult =
5525      DefaultFunctionArrayLvalueConversion(PointerArg);
5526
5527  if (PointerArgResult.isInvalid())
5528    return ExprError();
5529  PointerArg = PointerArgResult.get();
5530  TheCall->setArg(numArgs - 1, PointerArg);
5531
5532  const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
5533  if (!pointerType) {
5534    Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
5535        << PointerArg->getType() << PointerArg->getSourceRange();
5536    return ExprError();
5537  }
5538
5539  QualType ValType = pointerType->getPointeeType();
5540
5541  // Strip any qualifiers off ValType.
5542  ValType = ValType.getUnqualifiedType();
5543  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5544      !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
5545      !ValType->isVectorType()) {
5546    Diag(DRE->getBeginLoc(),
5547         diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
5548        << PointerArg->getType() << PointerArg->getSourceRange();
5549    return ExprError();
5550  }
5551
5552  if (!isStore) {
5553    TheCall->setType(ValType);
5554    return TheCallResult;
5555  }
5556
5557  ExprResult ValArg = TheCall->getArg(0);
5558  InitializedEntity Entity = InitializedEntity::InitializeParameter(
5559      Context, ValType, /*consume*/ false);
5560  ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
5561  if (ValArg.isInvalid())
5562    return ExprError();
5563
5564  TheCall->setArg(0, ValArg.get());
5565  TheCall->setType(Context.VoidTy);
5566  return TheCallResult;
5567}
5568
5569/// CheckObjCString - Checks that the argument to the builtin
5570/// CFString constructor is correct
5571/// Note: It might also make sense to do the UTF-16 conversion here (would
5572/// simplify the backend).
5573bool Sema::CheckObjCString(Expr *Arg) {
5574  Arg = Arg->IgnoreParenCasts();
5575  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
5576
5577  if (!Literal || !Literal->isAscii()) {
5578    Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
5579        << Arg->getSourceRange();
5580    return true;
5581  }
5582
5583  if (Literal->containsNonAsciiOrNull()) {
5584    StringRef String = Literal->getString();
5585    unsigned NumBytes = String.size();
5586    SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
5587    const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5588    llvm::UTF16 *ToPtr = &ToBuf[0];
5589
5590    llvm::ConversionResult Result =
5591        llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5592                                 ToPtr + NumBytes, llvm::strictConversion);
5593    // Check for conversion failure.
5594    if (Result != llvm::conversionOK)
5595      Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
5596          << Arg->getSourceRange();
5597  }
5598  return false;
5599}
5600
5601/// CheckObjCString - Checks that the format string argument to the os_log()
5602/// and os_trace() functions is correct, and converts it to const char *.
5603ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
5604  Arg = Arg->IgnoreParenCasts();
5605  auto *Literal = dyn_cast<StringLiteral>(Arg);
5606  if (!Literal) {
5607    if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
5608      Literal = ObjcLiteral->getString();
5609    }
5610  }
5611
5612  if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
5613    return ExprError(
5614        Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
5615        << Arg->getSourceRange());
5616  }
5617
5618  ExprResult Result(Literal);
5619  QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
5620  InitializedEntity Entity =
5621      InitializedEntity::InitializeParameter(Context, ResultTy, false);
5622  Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
5623  return Result;
5624}
5625
5626/// Check that the user is calling the appropriate va_start builtin for the
5627/// target and calling convention.
5628static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
5629  const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
5630  bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
5631  bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
5632                    TT.getArch() == llvm::Triple::aarch64_32);
5633  bool IsWindows = TT.isOSWindows();
5634  bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
5635  if (IsX64 || IsAArch64) {
5636    CallingConv CC = CC_C;
5637    if (const FunctionDecl *FD = S.getCurFunctionDecl())
5638      CC = FD->getType()->castAs<FunctionType>()->getCallConv();
5639    if (IsMSVAStart) {
5640      // Don't allow this in System V ABI functions.
5641      if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
5642        return S.Diag(Fn->getBeginLoc(),
5643                      diag::err_ms_va_start_used_in_sysv_function);
5644    } else {
5645      // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
5646      // On x64 Windows, don't allow this in System V ABI functions.
5647      // (Yes, that means there's no corresponding way to support variadic
5648      // System V ABI functions on Windows.)
5649      if ((IsWindows && CC == CC_X86_64SysV) ||
5650          (!IsWindows && CC == CC_Win64))
5651        return S.Diag(Fn->getBeginLoc(),
5652                      diag::err_va_start_used_in_wrong_abi_function)
5653               << !IsWindows;
5654    }
5655    return false;
5656  }
5657
5658  if (IsMSVAStart)
5659    return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
5660  return false;
5661}
5662
5663static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
5664                                             ParmVarDecl **LastParam = nullptr) {
5665  // Determine whether the current function, block, or obj-c method is variadic
5666  // and get its parameter list.
5667  bool IsVariadic = false;
5668  ArrayRef<ParmVarDecl *> Params;
5669  DeclContext *Caller = S.CurContext;
5670  if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
5671    IsVariadic = Block->isVariadic();
5672    Params = Block->parameters();
5673  } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
5674    IsVariadic = FD->isVariadic();
5675    Params = FD->parameters();
5676  } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
5677    IsVariadic = MD->isVariadic();
5678    // FIXME: This isn't correct for methods (results in bogus warning).
5679    Params = MD->parameters();
5680  } else if (isa<CapturedDecl>(Caller)) {
5681    // We don't support va_start in a CapturedDecl.
5682    S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
5683    return true;
5684  } else {
5685    // This must be some other declcontext that parses exprs.
5686    S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
5687    return true;
5688  }
5689
5690  if (!IsVariadic) {
5691    S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
5692    return true;
5693  }
5694
5695  if (LastParam)
5696    *LastParam = Params.empty() ? nullptr : Params.back();
5697
5698  return false;
5699}
5700
5701/// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
5702/// for validity.  Emit an error and return true on failure; return false
5703/// on success.
5704bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
5705  Expr *Fn = TheCall->getCallee();
5706
5707  if (checkVAStartABI(*this, BuiltinID, Fn))
5708    return true;
5709
5710  if (TheCall->getNumArgs() > 2) {
5711    Diag(TheCall->getArg(2)->getBeginLoc(),
5712         diag::err_typecheck_call_too_many_args)
5713        << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5714        << Fn->getSourceRange()
5715        << SourceRange(TheCall->getArg(2)->getBeginLoc(),
5716                       (*(TheCall->arg_end() - 1))->getEndLoc());
5717    return true;
5718  }
5719
5720  if (TheCall->getNumArgs() < 2) {
5721    return Diag(TheCall->getEndLoc(),
5722                diag::err_typecheck_call_too_few_args_at_least)
5723           << 0 /*function call*/ << 2 << TheCall->getNumArgs();
5724  }
5725
5726  // Type-check the first argument normally.
5727  if (checkBuiltinArgument(*this, TheCall, 0))
5728    return true;
5729
5730  // Check that the current function is variadic, and get its last parameter.
5731  ParmVarDecl *LastParam;
5732  if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
5733    return true;
5734
5735  // Verify that the second argument to the builtin is the last argument of the
5736  // current function or method.
5737  bool SecondArgIsLastNamedArgument = false;
5738  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
5739
5740  // These are valid if SecondArgIsLastNamedArgument is false after the next
5741  // block.
5742  QualType Type;
5743  SourceLocation ParamLoc;
5744  bool IsCRegister = false;
5745
5746  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
5747    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
5748      SecondArgIsLastNamedArgument = PV == LastParam;
5749
5750      Type = PV->getType();
5751      ParamLoc = PV->getLocation();
5752      IsCRegister =
5753          PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
5754    }
5755  }
5756
5757  if (!SecondArgIsLastNamedArgument)
5758    Diag(TheCall->getArg(1)->getBeginLoc(),
5759         diag::warn_second_arg_of_va_start_not_last_named_param);
5760  else if (IsCRegister || Type->isReferenceType() ||
5761           Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
5762             // Promotable integers are UB, but enumerations need a bit of
5763             // extra checking to see what their promotable type actually is.
5764             if (!Type->isPromotableIntegerType())
5765               return false;
5766             if (!Type->isEnumeralType())
5767               return true;
5768             const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
5769             return !(ED &&
5770                      Context.typesAreCompatible(ED->getPromotionType(), Type));
5771           }()) {
5772    unsigned Reason = 0;
5773    if (Type->isReferenceType())  Reason = 1;
5774    else if (IsCRegister)         Reason = 2;
5775    Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
5776    Diag(ParamLoc, diag::note_parameter_type) << Type;
5777  }
5778
5779  TheCall->setType(Context.VoidTy);
5780  return false;
5781}
5782
5783bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
5784  // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
5785  //                 const char *named_addr);
5786
5787  Expr *Func = Call->getCallee();
5788
5789  if (Call->getNumArgs() < 3)
5790    return Diag(Call->getEndLoc(),
5791                diag::err_typecheck_call_too_few_args_at_least)
5792           << 0 /*function call*/ << 3 << Call->getNumArgs();
5793
5794  // Type-check the first argument normally.
5795  if (checkBuiltinArgument(*this, Call, 0))
5796    return true;
5797
5798  // Check that the current function is variadic.
5799  if (checkVAStartIsInVariadicFunction(*this, Func))
5800    return true;
5801
5802  // __va_start on Windows does not validate the parameter qualifiers
5803
5804  const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
5805  const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
5806
5807  const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
5808  const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
5809
5810  const QualType &ConstCharPtrTy =
5811      Context.getPointerType(Context.CharTy.withConst());
5812  if (!Arg1Ty->isPointerType() ||
5813      Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
5814    Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5815        << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
5816        << 0                                      /* qualifier difference */
5817        << 3                                      /* parameter mismatch */
5818        << 2 << Arg1->getType() << ConstCharPtrTy;
5819
5820  const QualType SizeTy = Context.getSizeType();
5821  if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
5822    Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5823        << Arg2->getType() << SizeTy << 1 /* different class */
5824        << 0                              /* qualifier difference */
5825        << 3                              /* parameter mismatch */
5826        << 3 << Arg2->getType() << SizeTy;
5827
5828  return false;
5829}
5830
5831/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
5832/// friends.  This is declared to take (...), so we have to check everything.
5833bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
5834  if (TheCall->getNumArgs() < 2)
5835    return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
5836           << 0 << 2 << TheCall->getNumArgs() /*function call*/;
5837  if (TheCall->getNumArgs() > 2)
5838    return Diag(TheCall->getArg(2)->getBeginLoc(),
5839                diag::err_typecheck_call_too_many_args)
5840           << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5841           << SourceRange(TheCall->getArg(2)->getBeginLoc(),
5842                          (*(TheCall->arg_end() - 1))->getEndLoc());
5843
5844  ExprResult OrigArg0 = TheCall->getArg(0);
5845  ExprResult OrigArg1 = TheCall->getArg(1);
5846
5847  // Do standard promotions between the two arguments, returning their common
5848  // type.
5849  QualType Res = UsualArithmeticConversions(
5850      OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
5851  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
5852    return true;
5853
5854  // Make sure any conversions are pushed back into the call; this is
5855  // type safe since unordered compare builtins are declared as "_Bool
5856  // foo(...)".
5857  TheCall->setArg(0, OrigArg0.get());
5858  TheCall->setArg(1, OrigArg1.get());
5859
5860  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
5861    return false;
5862
5863  // If the common type isn't a real floating type, then the arguments were
5864  // invalid for this operation.
5865  if (Res.isNull() || !Res->isRealFloatingType())
5866    return Diag(OrigArg0.get()->getBeginLoc(),
5867                diag::err_typecheck_call_invalid_ordered_compare)
5868           << OrigArg0.get()->getType() << OrigArg1.get()->getType()
5869           << SourceRange(OrigArg0.get()->getBeginLoc(),
5870                          OrigArg1.get()->getEndLoc());
5871
5872  return false;
5873}
5874
5875/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
5876/// __builtin_isnan and friends.  This is declared to take (...), so we have
5877/// to check everything. We expect the last argument to be a floating point
5878/// value.
5879bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
5880  if (TheCall->getNumArgs() < NumArgs)
5881    return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
5882           << 0 << NumArgs << TheCall->getNumArgs() /*function call*/;
5883  if (TheCall->getNumArgs() > NumArgs)
5884    return Diag(TheCall->getArg(NumArgs)->getBeginLoc(),
5885                diag::err_typecheck_call_too_many_args)
5886           << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
5887           << SourceRange(TheCall->getArg(NumArgs)->getBeginLoc(),
5888                          (*(TheCall->arg_end() - 1))->getEndLoc());
5889
5890  // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
5891  // on all preceding parameters just being int.  Try all of those.
5892  for (unsigned i = 0; i < NumArgs - 1; ++i) {
5893    Expr *Arg = TheCall->getArg(i);
5894
5895    if (Arg->isTypeDependent())
5896      return false;
5897
5898    ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
5899
5900    if (Res.isInvalid())
5901      return true;
5902    TheCall->setArg(i, Res.get());
5903  }
5904
5905  Expr *OrigArg = TheCall->getArg(NumArgs-1);
5906
5907  if (OrigArg->isTypeDependent())
5908    return false;
5909
5910  // Usual Unary Conversions will convert half to float, which we want for
5911  // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
5912  // type how it is, but do normal L->Rvalue conversions.
5913  if (Context.getTargetInfo().useFP16ConversionIntrinsics())
5914    OrigArg = UsualUnaryConversions(OrigArg).get();
5915  else
5916    OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
5917  TheCall->setArg(NumArgs - 1, OrigArg);
5918
5919  // This operation requires a non-_Complex floating-point number.
5920  if (!OrigArg->getType()->isRealFloatingType())
5921    return Diag(OrigArg->getBeginLoc(),
5922                diag::err_typecheck_call_invalid_unary_fp)
5923           << OrigArg->getType() << OrigArg->getSourceRange();
5924
5925  return false;
5926}
5927
5928// Customized Sema Checking for VSX builtins that have the following signature:
5929// vector [...] builtinName(vector [...], vector [...], const int);
5930// Which takes the same type of vectors (any legal vector type) for the first
5931// two arguments and takes compile time constant for the third argument.
5932// Example builtins are :
5933// vector double vec_xxpermdi(vector double, vector double, int);
5934// vector short vec_xxsldwi(vector short, vector short, int);
5935bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
5936  unsigned ExpectedNumArgs = 3;
5937  if (TheCall->getNumArgs() < ExpectedNumArgs)
5938    return Diag(TheCall->getEndLoc(),
5939                diag::err_typecheck_call_too_few_args_at_least)
5940           << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs()
5941           << TheCall->getSourceRange();
5942
5943  if (TheCall->getNumArgs() > ExpectedNumArgs)
5944    return Diag(TheCall->getEndLoc(),
5945                diag::err_typecheck_call_too_many_args_at_most)
5946           << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs()
5947           << TheCall->getSourceRange();
5948
5949  // Check the third argument is a compile time constant
5950  llvm::APSInt Value;
5951  if(!TheCall->getArg(2)->isIntegerConstantExpr(Value, Context))
5952    return Diag(TheCall->getBeginLoc(),
5953                diag::err_vsx_builtin_nonconstant_argument)
5954           << 3 /* argument index */ << TheCall->getDirectCallee()
5955           << SourceRange(TheCall->getArg(2)->getBeginLoc(),
5956                          TheCall->getArg(2)->getEndLoc());
5957
5958  QualType Arg1Ty = TheCall->getArg(0)->getType();
5959  QualType Arg2Ty = TheCall->getArg(1)->getType();
5960
5961  // Check the type of argument 1 and argument 2 are vectors.
5962  SourceLocation BuiltinLoc = TheCall->getBeginLoc();
5963  if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
5964      (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
5965    return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
5966           << TheCall->getDirectCallee()
5967           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5968                          TheCall->getArg(1)->getEndLoc());
5969  }
5970
5971  // Check the first two arguments are the same type.
5972  if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
5973    return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
5974           << TheCall->getDirectCallee()
5975           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5976                          TheCall->getArg(1)->getEndLoc());
5977  }
5978
5979  // When default clang type checking is turned off and the customized type
5980  // checking is used, the returning type of the function must be explicitly
5981  // set. Otherwise it is _Bool by default.
5982  TheCall->setType(Arg1Ty);
5983
5984  return false;
5985}
5986
5987/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
5988// This is declared to take (...), so we have to check everything.
5989ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
5990  if (TheCall->getNumArgs() < 2)
5991    return ExprError(Diag(TheCall->getEndLoc(),
5992                          diag::err_typecheck_call_too_few_args_at_least)
5993                     << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5994                     << TheCall->getSourceRange());
5995
5996  // Determine which of the following types of shufflevector we're checking:
5997  // 1) unary, vector mask: (lhs, mask)
5998  // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
5999  QualType resType = TheCall->getArg(0)->getType();
6000  unsigned numElements = 0;
6001
6002  if (!TheCall->getArg(0)->isTypeDependent() &&
6003      !TheCall->getArg(1)->isTypeDependent()) {
6004    QualType LHSType = TheCall->getArg(0)->getType();
6005    QualType RHSType = TheCall->getArg(1)->getType();
6006
6007    if (!LHSType->isVectorType() || !RHSType->isVectorType())
6008      return ExprError(
6009          Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
6010          << TheCall->getDirectCallee()
6011          << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6012                         TheCall->getArg(1)->getEndLoc()));
6013
6014    numElements = LHSType->castAs<VectorType>()->getNumElements();
6015    unsigned numResElements = TheCall->getNumArgs() - 2;
6016
6017    // Check to see if we have a call with 2 vector arguments, the unary shuffle
6018    // with mask.  If so, verify that RHS is an integer vector type with the
6019    // same number of elts as lhs.
6020    if (TheCall->getNumArgs() == 2) {
6021      if (!RHSType->hasIntegerRepresentation() ||
6022          RHSType->castAs<VectorType>()->getNumElements() != numElements)
6023        return ExprError(Diag(TheCall->getBeginLoc(),
6024                              diag::err_vec_builtin_incompatible_vector)
6025                         << TheCall->getDirectCallee()
6026                         << SourceRange(TheCall->getArg(1)->getBeginLoc(),
6027                                        TheCall->getArg(1)->getEndLoc()));
6028    } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
6029      return ExprError(Diag(TheCall->getBeginLoc(),
6030                            diag::err_vec_builtin_incompatible_vector)
6031                       << TheCall->getDirectCallee()
6032                       << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6033                                      TheCall->getArg(1)->getEndLoc()));
6034    } else if (numElements != numResElements) {
6035      QualType eltType = LHSType->castAs<VectorType>()->getElementType();
6036      resType = Context.getVectorType(eltType, numResElements,
6037                                      VectorType::GenericVector);
6038    }
6039  }
6040
6041  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
6042    if (TheCall->getArg(i)->isTypeDependent() ||
6043        TheCall->getArg(i)->isValueDependent())
6044      continue;
6045
6046    llvm::APSInt Result(32);
6047    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
6048      return ExprError(Diag(TheCall->getBeginLoc(),
6049                            diag::err_shufflevector_nonconstant_argument)
6050                       << TheCall->getArg(i)->getSourceRange());
6051
6052    // Allow -1 which will be translated to undef in the IR.
6053    if (Result.isSigned() && Result.isAllOnesValue())
6054      continue;
6055
6056    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
6057      return ExprError(Diag(TheCall->getBeginLoc(),
6058                            diag::err_shufflevector_argument_too_large)
6059                       << TheCall->getArg(i)->getSourceRange());
6060  }
6061
6062  SmallVector<Expr*, 32> exprs;
6063
6064  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
6065    exprs.push_back(TheCall->getArg(i));
6066    TheCall->setArg(i, nullptr);
6067  }
6068
6069  return new (Context) ShuffleVectorExpr(Context, exprs, resType,
6070                                         TheCall->getCallee()->getBeginLoc(),
6071                                         TheCall->getRParenLoc());
6072}
6073
6074/// SemaConvertVectorExpr - Handle __builtin_convertvector
6075ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
6076                                       SourceLocation BuiltinLoc,
6077                                       SourceLocation RParenLoc) {
6078  ExprValueKind VK = VK_RValue;
6079  ExprObjectKind OK = OK_Ordinary;
6080  QualType DstTy = TInfo->getType();
6081  QualType SrcTy = E->getType();
6082
6083  if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
6084    return ExprError(Diag(BuiltinLoc,
6085                          diag::err_convertvector_non_vector)
6086                     << E->getSourceRange());
6087  if (!DstTy->isVectorType() && !DstTy->isDependentType())
6088    return ExprError(Diag(BuiltinLoc,
6089                          diag::err_convertvector_non_vector_type));
6090
6091  if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
6092    unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
6093    unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
6094    if (SrcElts != DstElts)
6095      return ExprError(Diag(BuiltinLoc,
6096                            diag::err_convertvector_incompatible_vector)
6097                       << E->getSourceRange());
6098  }
6099
6100  return new (Context)
6101      ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6102}
6103
6104/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
6105// This is declared to take (const void*, ...) and can take two
6106// optional constant int args.
6107bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
6108  unsigned NumArgs = TheCall->getNumArgs();
6109
6110  if (NumArgs > 3)
6111    return Diag(TheCall->getEndLoc(),
6112                diag::err_typecheck_call_too_many_args_at_most)
6113           << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6114
6115  // Argument 0 is checked for us and the remaining arguments must be
6116  // constant integers.
6117  for (unsigned i = 1; i != NumArgs; ++i)
6118    if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
6119      return true;
6120
6121  return false;
6122}
6123
6124/// SemaBuiltinAssume - Handle __assume (MS Extension).
6125// __assume does not evaluate its arguments, and should warn if its argument
6126// has side effects.
6127bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
6128  Expr *Arg = TheCall->getArg(0);
6129  if (Arg->isInstantiationDependent()) return false;
6130
6131  if (Arg->HasSideEffects(Context))
6132    Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
6133        << Arg->getSourceRange()
6134        << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
6135
6136  return false;
6137}
6138
6139/// Handle __builtin_alloca_with_align. This is declared
6140/// as (size_t, size_t) where the second size_t must be a power of 2 greater
6141/// than 8.
6142bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
6143  // The alignment must be a constant integer.
6144  Expr *Arg = TheCall->getArg(1);
6145
6146  // We can't check the value of a dependent argument.
6147  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6148    if (const auto *UE =
6149            dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
6150      if (UE->getKind() == UETT_AlignOf ||
6151          UE->getKind() == UETT_PreferredAlignOf)
6152        Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
6153            << Arg->getSourceRange();
6154
6155    llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
6156
6157    if (!Result.isPowerOf2())
6158      return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6159             << Arg->getSourceRange();
6160
6161    if (Result < Context.getCharWidth())
6162      return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
6163             << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
6164
6165    if (Result > std::numeric_limits<int32_t>::max())
6166      return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
6167             << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
6168  }
6169
6170  return false;
6171}
6172
6173/// Handle __builtin_assume_aligned. This is declared
6174/// as (const void*, size_t, ...) and can take one optional constant int arg.
6175bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
6176  unsigned NumArgs = TheCall->getNumArgs();
6177
6178  if (NumArgs > 3)
6179    return Diag(TheCall->getEndLoc(),
6180                diag::err_typecheck_call_too_many_args_at_most)
6181           << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6182
6183  // The alignment must be a constant integer.
6184  Expr *Arg = TheCall->getArg(1);
6185
6186  // We can't check the value of a dependent argument.
6187  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6188    llvm::APSInt Result;
6189    if (SemaBuiltinConstantArg(TheCall, 1, Result))
6190      return true;
6191
6192    if (!Result.isPowerOf2())
6193      return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6194             << Arg->getSourceRange();
6195
6196    // Alignment calculations can wrap around if it's greater than 2**29.
6197    unsigned MaximumAlignment = 536870912;
6198    if (Result > MaximumAlignment)
6199      Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
6200          << Arg->getSourceRange() << MaximumAlignment;
6201  }
6202
6203  if (NumArgs > 2) {
6204    ExprResult Arg(TheCall->getArg(2));
6205    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6206      Context.getSizeType(), false);
6207    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6208    if (Arg.isInvalid()) return true;
6209    TheCall->setArg(2, Arg.get());
6210  }
6211
6212  return false;
6213}
6214
6215bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
6216  unsigned BuiltinID =
6217      cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
6218  bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
6219
6220  unsigned NumArgs = TheCall->getNumArgs();
6221  unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
6222  if (NumArgs < NumRequiredArgs) {
6223    return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
6224           << 0 /* function call */ << NumRequiredArgs << NumArgs
6225           << TheCall->getSourceRange();
6226  }
6227  if (NumArgs >= NumRequiredArgs + 0x100) {
6228    return Diag(TheCall->getEndLoc(),
6229                diag::err_typecheck_call_too_many_args_at_most)
6230           << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
6231           << TheCall->getSourceRange();
6232  }
6233  unsigned i = 0;
6234
6235  // For formatting call, check buffer arg.
6236  if (!IsSizeCall) {
6237    ExprResult Arg(TheCall->getArg(i));
6238    InitializedEntity Entity = InitializedEntity::InitializeParameter(
6239        Context, Context.VoidPtrTy, false);
6240    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6241    if (Arg.isInvalid())
6242      return true;
6243    TheCall->setArg(i, Arg.get());
6244    i++;
6245  }
6246
6247  // Check string literal arg.
6248  unsigned FormatIdx = i;
6249  {
6250    ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
6251    if (Arg.isInvalid())
6252      return true;
6253    TheCall->setArg(i, Arg.get());
6254    i++;
6255  }
6256
6257  // Make sure variadic args are scalar.
6258  unsigned FirstDataArg = i;
6259  while (i < NumArgs) {
6260    ExprResult Arg = DefaultVariadicArgumentPromotion(
6261        TheCall->getArg(i), VariadicFunction, nullptr);
6262    if (Arg.isInvalid())
6263      return true;
6264    CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
6265    if (ArgSize.getQuantity() >= 0x100) {
6266      return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
6267             << i << (int)ArgSize.getQuantity() << 0xff
6268             << TheCall->getSourceRange();
6269    }
6270    TheCall->setArg(i, Arg.get());
6271    i++;
6272  }
6273
6274  // Check formatting specifiers. NOTE: We're only doing this for the non-size
6275  // call to avoid duplicate diagnostics.
6276  if (!IsSizeCall) {
6277    llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
6278    ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
6279    bool Success = CheckFormatArguments(
6280        Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
6281        VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
6282        CheckedVarArgs);
6283    if (!Success)
6284      return true;
6285  }
6286
6287  if (IsSizeCall) {
6288    TheCall->setType(Context.getSizeType());
6289  } else {
6290    TheCall->setType(Context.VoidPtrTy);
6291  }
6292  return false;
6293}
6294
6295/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
6296/// TheCall is a constant expression.
6297bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
6298                                  llvm::APSInt &Result) {
6299  Expr *Arg = TheCall->getArg(ArgNum);
6300  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6301  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6302
6303  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
6304
6305  if (!Arg->isIntegerConstantExpr(Result, Context))
6306    return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
6307           << FDecl->getDeclName() << Arg->getSourceRange();
6308
6309  return false;
6310}
6311
6312/// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
6313/// TheCall is a constant expression in the range [Low, High].
6314bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
6315                                       int Low, int High, bool RangeIsError) {
6316  if (isConstantEvaluated())
6317    return false;
6318  llvm::APSInt Result;
6319
6320  // We can't check the value of a dependent argument.
6321  Expr *Arg = TheCall->getArg(ArgNum);
6322  if (Arg->isTypeDependent() || Arg->isValueDependent())
6323    return false;
6324
6325  // Check constant-ness first.
6326  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6327    return true;
6328
6329  if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
6330    if (RangeIsError)
6331      return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
6332             << Result.toString(10) << Low << High << Arg->getSourceRange();
6333    else
6334      // Defer the warning until we know if the code will be emitted so that
6335      // dead code can ignore this.
6336      DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
6337                          PDiag(diag::warn_argument_invalid_range)
6338                              << Result.toString(10) << Low << High
6339                              << Arg->getSourceRange());
6340  }
6341
6342  return false;
6343}
6344
6345/// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
6346/// TheCall is a constant expression is a multiple of Num..
6347bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
6348                                          unsigned Num) {
6349  llvm::APSInt Result;
6350
6351  // We can't check the value of a dependent argument.
6352  Expr *Arg = TheCall->getArg(ArgNum);
6353  if (Arg->isTypeDependent() || Arg->isValueDependent())
6354    return false;
6355
6356  // Check constant-ness first.
6357  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6358    return true;
6359
6360  if (Result.getSExtValue() % Num != 0)
6361    return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
6362           << Num << Arg->getSourceRange();
6363
6364  return false;
6365}
6366
6367/// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
6368/// constant expression representing a power of 2.
6369bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
6370  llvm::APSInt Result;
6371
6372  // We can't check the value of a dependent argument.
6373  Expr *Arg = TheCall->getArg(ArgNum);
6374  if (Arg->isTypeDependent() || Arg->isValueDependent())
6375    return false;
6376
6377  // Check constant-ness first.
6378  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6379    return true;
6380
6381  // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
6382  // and only if x is a power of 2.
6383  if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
6384    return false;
6385
6386  return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
6387         << Arg->getSourceRange();
6388}
6389
6390static bool IsShiftedByte(llvm::APSInt Value) {
6391  if (Value.isNegative())
6392    return false;
6393
6394  // Check if it's a shifted byte, by shifting it down
6395  while (true) {
6396    // If the value fits in the bottom byte, the check passes.
6397    if (Value < 0x100)
6398      return true;
6399
6400    // Otherwise, if the value has _any_ bits in the bottom byte, the check
6401    // fails.
6402    if ((Value & 0xFF) != 0)
6403      return false;
6404
6405    // If the bottom 8 bits are all 0, but something above that is nonzero,
6406    // then shifting the value right by 8 bits won't affect whether it's a
6407    // shifted byte or not. So do that, and go round again.
6408    Value >>= 8;
6409  }
6410}
6411
6412/// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
6413/// a constant expression representing an arbitrary byte value shifted left by
6414/// a multiple of 8 bits.
6415bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum) {
6416  llvm::APSInt Result;
6417
6418  // We can't check the value of a dependent argument.
6419  Expr *Arg = TheCall->getArg(ArgNum);
6420  if (Arg->isTypeDependent() || Arg->isValueDependent())
6421    return false;
6422
6423  // Check constant-ness first.
6424  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6425    return true;
6426
6427  if (IsShiftedByte(Result))
6428    return false;
6429
6430  return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
6431         << Arg->getSourceRange();
6432}
6433
6434/// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
6435/// TheCall is a constant expression representing either a shifted byte value,
6436/// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
6437/// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
6438/// Arm MVE intrinsics.
6439bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
6440                                                   int ArgNum) {
6441  llvm::APSInt Result;
6442
6443  // We can't check the value of a dependent argument.
6444  Expr *Arg = TheCall->getArg(ArgNum);
6445  if (Arg->isTypeDependent() || Arg->isValueDependent())
6446    return false;
6447
6448  // Check constant-ness first.
6449  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6450    return true;
6451
6452  // Check to see if it's in either of the required forms.
6453  if (IsShiftedByte(Result) ||
6454      (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
6455    return false;
6456
6457  return Diag(TheCall->getBeginLoc(),
6458              diag::err_argument_not_shifted_byte_or_xxff)
6459         << Arg->getSourceRange();
6460}
6461
6462/// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
6463bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
6464  if (BuiltinID == AArch64::BI__builtin_arm_irg) {
6465    if (checkArgCount(*this, TheCall, 2))
6466      return true;
6467    Expr *Arg0 = TheCall->getArg(0);
6468    Expr *Arg1 = TheCall->getArg(1);
6469
6470    ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6471    if (FirstArg.isInvalid())
6472      return true;
6473    QualType FirstArgType = FirstArg.get()->getType();
6474    if (!FirstArgType->isAnyPointerType())
6475      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6476               << "first" << FirstArgType << Arg0->getSourceRange();
6477    TheCall->setArg(0, FirstArg.get());
6478
6479    ExprResult SecArg = DefaultLvalueConversion(Arg1);
6480    if (SecArg.isInvalid())
6481      return true;
6482    QualType SecArgType = SecArg.get()->getType();
6483    if (!SecArgType->isIntegerType())
6484      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6485               << "second" << SecArgType << Arg1->getSourceRange();
6486
6487    // Derive the return type from the pointer argument.
6488    TheCall->setType(FirstArgType);
6489    return false;
6490  }
6491
6492  if (BuiltinID == AArch64::BI__builtin_arm_addg) {
6493    if (checkArgCount(*this, TheCall, 2))
6494      return true;
6495
6496    Expr *Arg0 = TheCall->getArg(0);
6497    ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6498    if (FirstArg.isInvalid())
6499      return true;
6500    QualType FirstArgType = FirstArg.get()->getType();
6501    if (!FirstArgType->isAnyPointerType())
6502      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6503               << "first" << FirstArgType << Arg0->getSourceRange();
6504    TheCall->setArg(0, FirstArg.get());
6505
6506    // Derive the return type from the pointer argument.
6507    TheCall->setType(FirstArgType);
6508
6509    // Second arg must be an constant in range [0,15]
6510    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6511  }
6512
6513  if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
6514    if (checkArgCount(*this, TheCall, 2))
6515      return true;
6516    Expr *Arg0 = TheCall->getArg(0);
6517    Expr *Arg1 = TheCall->getArg(1);
6518
6519    ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6520    if (FirstArg.isInvalid())
6521      return true;
6522    QualType FirstArgType = FirstArg.get()->getType();
6523    if (!FirstArgType->isAnyPointerType())
6524      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6525               << "first" << FirstArgType << Arg0->getSourceRange();
6526
6527    QualType SecArgType = Arg1->getType();
6528    if (!SecArgType->isIntegerType())
6529      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6530               << "second" << SecArgType << Arg1->getSourceRange();
6531    TheCall->setType(Context.IntTy);
6532    return false;
6533  }
6534
6535  if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
6536      BuiltinID == AArch64::BI__builtin_arm_stg) {
6537    if (checkArgCount(*this, TheCall, 1))
6538      return true;
6539    Expr *Arg0 = TheCall->getArg(0);
6540    ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6541    if (FirstArg.isInvalid())
6542      return true;
6543
6544    QualType FirstArgType = FirstArg.get()->getType();
6545    if (!FirstArgType->isAnyPointerType())
6546      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6547               << "first" << FirstArgType << Arg0->getSourceRange();
6548    TheCall->setArg(0, FirstArg.get());
6549
6550    // Derive the return type from the pointer argument.
6551    if (BuiltinID == AArch64::BI__builtin_arm_ldg)
6552      TheCall->setType(FirstArgType);
6553    return false;
6554  }
6555
6556  if (BuiltinID == AArch64::BI__builtin_arm_subp) {
6557    Expr *ArgA = TheCall->getArg(0);
6558    Expr *ArgB = TheCall->getArg(1);
6559
6560    ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
6561    ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
6562
6563    if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
6564      return true;
6565
6566    QualType ArgTypeA = ArgExprA.get()->getType();
6567    QualType ArgTypeB = ArgExprB.get()->getType();
6568
6569    auto isNull = [&] (Expr *E) -> bool {
6570      return E->isNullPointerConstant(
6571                        Context, Expr::NPC_ValueDependentIsNotNull); };
6572
6573    // argument should be either a pointer or null
6574    if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
6575      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6576        << "first" << ArgTypeA << ArgA->getSourceRange();
6577
6578    if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
6579      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6580        << "second" << ArgTypeB << ArgB->getSourceRange();
6581
6582    // Ensure Pointee types are compatible
6583    if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
6584        ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
6585      QualType pointeeA = ArgTypeA->getPointeeType();
6586      QualType pointeeB = ArgTypeB->getPointeeType();
6587      if (!Context.typesAreCompatible(
6588             Context.getCanonicalType(pointeeA).getUnqualifiedType(),
6589             Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
6590        return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
6591          << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
6592          << ArgB->getSourceRange();
6593      }
6594    }
6595
6596    // at least one argument should be pointer type
6597    if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
6598      return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
6599        <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
6600
6601    if (isNull(ArgA)) // adopt type of the other pointer
6602      ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
6603
6604    if (isNull(ArgB))
6605      ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
6606
6607    TheCall->setArg(0, ArgExprA.get());
6608    TheCall->setArg(1, ArgExprB.get());
6609    TheCall->setType(Context.LongLongTy);
6610    return false;
6611  }
6612  assert(false && "Unhandled ARM MTE intrinsic");
6613  return true;
6614}
6615
6616/// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
6617/// TheCall is an ARM/AArch64 special register string literal.
6618bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
6619                                    int ArgNum, unsigned ExpectedFieldNum,
6620                                    bool AllowName) {
6621  bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6622                      BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6623                      BuiltinID == ARM::BI__builtin_arm_rsr ||
6624                      BuiltinID == ARM::BI__builtin_arm_rsrp ||
6625                      BuiltinID == ARM::BI__builtin_arm_wsr ||
6626                      BuiltinID == ARM::BI__builtin_arm_wsrp;
6627  bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6628                          BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
6629                          BuiltinID == AArch64::BI__builtin_arm_rsr ||
6630                          BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6631                          BuiltinID == AArch64::BI__builtin_arm_wsr ||
6632                          BuiltinID == AArch64::BI__builtin_arm_wsrp;
6633  assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
6634
6635  // We can't check the value of a dependent argument.
6636  Expr *Arg = TheCall->getArg(ArgNum);
6637  if (Arg->isTypeDependent() || Arg->isValueDependent())
6638    return false;
6639
6640  // Check if the argument is a string literal.
6641  if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
6642    return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
6643           << Arg->getSourceRange();
6644
6645  // Check the type of special register given.
6646  StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
6647  SmallVector<StringRef, 6> Fields;
6648  Reg.split(Fields, ":");
6649
6650  if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
6651    return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6652           << Arg->getSourceRange();
6653
6654  // If the string is the name of a register then we cannot check that it is
6655  // valid here but if the string is of one the forms described in ACLE then we
6656  // can check that the supplied fields are integers and within the valid
6657  // ranges.
6658  if (Fields.size() > 1) {
6659    bool FiveFields = Fields.size() == 5;
6660
6661    bool ValidString = true;
6662    if (IsARMBuiltin) {
6663      ValidString &= Fields[0].startswith_lower("cp") ||
6664                     Fields[0].startswith_lower("p");
6665      if (ValidString)
6666        Fields[0] =
6667          Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
6668
6669      ValidString &= Fields[2].startswith_lower("c");
6670      if (ValidString)
6671        Fields[2] = Fields[2].drop_front(1);
6672
6673      if (FiveFields) {
6674        ValidString &= Fields[3].startswith_lower("c");
6675        if (ValidString)
6676          Fields[3] = Fields[3].drop_front(1);
6677      }
6678    }
6679
6680    SmallVector<int, 5> Ranges;
6681    if (FiveFields)
6682      Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
6683    else
6684      Ranges.append({15, 7, 15});
6685
6686    for (unsigned i=0; i<Fields.size(); ++i) {
6687      int IntField;
6688      ValidString &= !Fields[i].getAsInteger(10, IntField);
6689      ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
6690    }
6691
6692    if (!ValidString)
6693      return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6694             << Arg->getSourceRange();
6695  } else if (IsAArch64Builtin && Fields.size() == 1) {
6696    // If the register name is one of those that appear in the condition below
6697    // and the special register builtin being used is one of the write builtins,
6698    // then we require that the argument provided for writing to the register
6699    // is an integer constant expression. This is because it will be lowered to
6700    // an MSR (immediate) instruction, so we need to know the immediate at
6701    // compile time.
6702    if (TheCall->getNumArgs() != 2)
6703      return false;
6704
6705    std::string RegLower = Reg.lower();
6706    if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
6707        RegLower != "pan" && RegLower != "uao")
6708      return false;
6709
6710    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6711  }
6712
6713  return false;
6714}
6715
6716/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
6717/// This checks that the target supports __builtin_longjmp and
6718/// that val is a constant 1.
6719bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
6720  if (!Context.getTargetInfo().hasSjLjLowering())
6721    return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
6722           << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6723
6724  Expr *Arg = TheCall->getArg(1);
6725  llvm::APSInt Result;
6726
6727  // TODO: This is less than ideal. Overload this to take a value.
6728  if (SemaBuiltinConstantArg(TheCall, 1, Result))
6729    return true;
6730
6731  if (Result != 1)
6732    return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
6733           << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
6734
6735  return false;
6736}
6737
6738/// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
6739/// This checks that the target supports __builtin_setjmp.
6740bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
6741  if (!Context.getTargetInfo().hasSjLjLowering())
6742    return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
6743           << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6744  return false;
6745}
6746
6747namespace {
6748
6749class UncoveredArgHandler {
6750  enum { Unknown = -1, AllCovered = -2 };
6751
6752  signed FirstUncoveredArg = Unknown;
6753  SmallVector<const Expr *, 4> DiagnosticExprs;
6754
6755public:
6756  UncoveredArgHandler() = default;
6757
6758  bool hasUncoveredArg() const {
6759    return (FirstUncoveredArg >= 0);
6760  }
6761
6762  unsigned getUncoveredArg() const {
6763    assert(hasUncoveredArg() && "no uncovered argument");
6764    return FirstUncoveredArg;
6765  }
6766
6767  void setAllCovered() {
6768    // A string has been found with all arguments covered, so clear out
6769    // the diagnostics.
6770    DiagnosticExprs.clear();
6771    FirstUncoveredArg = AllCovered;
6772  }
6773
6774  void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
6775    assert(NewFirstUncoveredArg >= 0 && "Outside range");
6776
6777    // Don't update if a previous string covers all arguments.
6778    if (FirstUncoveredArg == AllCovered)
6779      return;
6780
6781    // UncoveredArgHandler tracks the highest uncovered argument index
6782    // and with it all the strings that match this index.
6783    if (NewFirstUncoveredArg == FirstUncoveredArg)
6784      DiagnosticExprs.push_back(StrExpr);
6785    else if (NewFirstUncoveredArg > FirstUncoveredArg) {
6786      DiagnosticExprs.clear();
6787      DiagnosticExprs.push_back(StrExpr);
6788      FirstUncoveredArg = NewFirstUncoveredArg;
6789    }
6790  }
6791
6792  void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
6793};
6794
6795enum StringLiteralCheckType {
6796  SLCT_NotALiteral,
6797  SLCT_UncheckedLiteral,
6798  SLCT_CheckedLiteral
6799};
6800
6801} // namespace
6802
6803static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
6804                                     BinaryOperatorKind BinOpKind,
6805                                     bool AddendIsRight) {
6806  unsigned BitWidth = Offset.getBitWidth();
6807  unsigned AddendBitWidth = Addend.getBitWidth();
6808  // There might be negative interim results.
6809  if (Addend.isUnsigned()) {
6810    Addend = Addend.zext(++AddendBitWidth);
6811    Addend.setIsSigned(true);
6812  }
6813  // Adjust the bit width of the APSInts.
6814  if (AddendBitWidth > BitWidth) {
6815    Offset = Offset.sext(AddendBitWidth);
6816    BitWidth = AddendBitWidth;
6817  } else if (BitWidth > AddendBitWidth) {
6818    Addend = Addend.sext(BitWidth);
6819  }
6820
6821  bool Ov = false;
6822  llvm::APSInt ResOffset = Offset;
6823  if (BinOpKind == BO_Add)
6824    ResOffset = Offset.sadd_ov(Addend, Ov);
6825  else {
6826    assert(AddendIsRight && BinOpKind == BO_Sub &&
6827           "operator must be add or sub with addend on the right");
6828    ResOffset = Offset.ssub_ov(Addend, Ov);
6829  }
6830
6831  // We add an offset to a pointer here so we should support an offset as big as
6832  // possible.
6833  if (Ov) {
6834    assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
6835           "index (intermediate) result too big");
6836    Offset = Offset.sext(2 * BitWidth);
6837    sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
6838    return;
6839  }
6840
6841  Offset = ResOffset;
6842}
6843
6844namespace {
6845
6846// This is a wrapper class around StringLiteral to support offsetted string
6847// literals as format strings. It takes the offset into account when returning
6848// the string and its length or the source locations to display notes correctly.
6849class FormatStringLiteral {
6850  const StringLiteral *FExpr;
6851  int64_t Offset;
6852
6853 public:
6854  FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
6855      : FExpr(fexpr), Offset(Offset) {}
6856
6857  StringRef getString() const {
6858    return FExpr->getString().drop_front(Offset);
6859  }
6860
6861  unsigned getByteLength() const {
6862    return FExpr->getByteLength() - getCharByteWidth() * Offset;
6863  }
6864
6865  unsigned getLength() const { return FExpr->getLength() - Offset; }
6866  unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
6867
6868  StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
6869
6870  QualType getType() const { return FExpr->getType(); }
6871
6872  bool isAscii() const { return FExpr->isAscii(); }
6873  bool isWide() const { return FExpr->isWide(); }
6874  bool isUTF8() const { return FExpr->isUTF8(); }
6875  bool isUTF16() const { return FExpr->isUTF16(); }
6876  bool isUTF32() const { return FExpr->isUTF32(); }
6877  bool isPascal() const { return FExpr->isPascal(); }
6878
6879  SourceLocation getLocationOfByte(
6880      unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
6881      const TargetInfo &Target, unsigned *StartToken = nullptr,
6882      unsigned *StartTokenByteOffset = nullptr) const {
6883    return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
6884                                    StartToken, StartTokenByteOffset);
6885  }
6886
6887  SourceLocation getBeginLoc() const LLVM_READONLY {
6888    return FExpr->getBeginLoc().getLocWithOffset(Offset);
6889  }
6890
6891  SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
6892};
6893
6894}  // namespace
6895
6896static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
6897                              const Expr *OrigFormatExpr,
6898                              ArrayRef<const Expr *> Args,
6899                              bool HasVAListArg, unsigned format_idx,
6900                              unsigned firstDataArg,
6901                              Sema::FormatStringType Type,
6902                              bool inFunctionCall,
6903                              Sema::VariadicCallType CallType,
6904                              llvm::SmallBitVector &CheckedVarArgs,
6905                              UncoveredArgHandler &UncoveredArg,
6906                              bool IgnoreStringsWithoutSpecifiers);
6907
6908// Determine if an expression is a string literal or constant string.
6909// If this function returns false on the arguments to a function expecting a
6910// format string, we will usually need to emit a warning.
6911// True string literals are then checked by CheckFormatString.
6912static StringLiteralCheckType
6913checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
6914                      bool HasVAListArg, unsigned format_idx,
6915                      unsigned firstDataArg, Sema::FormatStringType Type,
6916                      Sema::VariadicCallType CallType, bool InFunctionCall,
6917                      llvm::SmallBitVector &CheckedVarArgs,
6918                      UncoveredArgHandler &UncoveredArg,
6919                      llvm::APSInt Offset,
6920                      bool IgnoreStringsWithoutSpecifiers = false) {
6921  if (S.isConstantEvaluated())
6922    return SLCT_NotALiteral;
6923 tryAgain:
6924  assert(Offset.isSigned() && "invalid offset");
6925
6926  if (E->isTypeDependent() || E->isValueDependent())
6927    return SLCT_NotALiteral;
6928
6929  E = E->IgnoreParenCasts();
6930
6931  if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
6932    // Technically -Wformat-nonliteral does not warn about this case.
6933    // The behavior of printf and friends in this case is implementation
6934    // dependent.  Ideally if the format string cannot be null then
6935    // it should have a 'nonnull' attribute in the function prototype.
6936    return SLCT_UncheckedLiteral;
6937
6938  switch (E->getStmtClass()) {
6939  case Stmt::BinaryConditionalOperatorClass:
6940  case Stmt::ConditionalOperatorClass: {
6941    // The expression is a literal if both sub-expressions were, and it was
6942    // completely checked only if both sub-expressions were checked.
6943    const AbstractConditionalOperator *C =
6944        cast<AbstractConditionalOperator>(E);
6945
6946    // Determine whether it is necessary to check both sub-expressions, for
6947    // example, because the condition expression is a constant that can be
6948    // evaluated at compile time.
6949    bool CheckLeft = true, CheckRight = true;
6950
6951    bool Cond;
6952    if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
6953                                                 S.isConstantEvaluated())) {
6954      if (Cond)
6955        CheckRight = false;
6956      else
6957        CheckLeft = false;
6958    }
6959
6960    // We need to maintain the offsets for the right and the left hand side
6961    // separately to check if every possible indexed expression is a valid
6962    // string literal. They might have different offsets for different string
6963    // literals in the end.
6964    StringLiteralCheckType Left;
6965    if (!CheckLeft)
6966      Left = SLCT_UncheckedLiteral;
6967    else {
6968      Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
6969                                   HasVAListArg, format_idx, firstDataArg,
6970                                   Type, CallType, InFunctionCall,
6971                                   CheckedVarArgs, UncoveredArg, Offset,
6972                                   IgnoreStringsWithoutSpecifiers);
6973      if (Left == SLCT_NotALiteral || !CheckRight) {
6974        return Left;
6975      }
6976    }
6977
6978    StringLiteralCheckType Right = checkFormatStringExpr(
6979        S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
6980        Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
6981        IgnoreStringsWithoutSpecifiers);
6982
6983    return (CheckLeft && Left < Right) ? Left : Right;
6984  }
6985
6986  case Stmt::ImplicitCastExprClass:
6987    E = cast<ImplicitCastExpr>(E)->getSubExpr();
6988    goto tryAgain;
6989
6990  case Stmt::OpaqueValueExprClass:
6991    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
6992      E = src;
6993      goto tryAgain;
6994    }
6995    return SLCT_NotALiteral;
6996
6997  case Stmt::PredefinedExprClass:
6998    // While __func__, etc., are technically not string literals, they
6999    // cannot contain format specifiers and thus are not a security
7000    // liability.
7001    return SLCT_UncheckedLiteral;
7002
7003  case Stmt::DeclRefExprClass: {
7004    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7005
7006    // As an exception, do not flag errors for variables binding to
7007    // const string literals.
7008    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
7009      bool isConstant = false;
7010      QualType T = DR->getType();
7011
7012      if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
7013        isConstant = AT->getElementType().isConstant(S.Context);
7014      } else if (const PointerType *PT = T->getAs<PointerType>()) {
7015        isConstant = T.isConstant(S.Context) &&
7016                     PT->getPointeeType().isConstant(S.Context);
7017      } else if (T->isObjCObjectPointerType()) {
7018        // In ObjC, there is usually no "const ObjectPointer" type,
7019        // so don't check if the pointee type is constant.
7020        isConstant = T.isConstant(S.Context);
7021      }
7022
7023      if (isConstant) {
7024        if (const Expr *Init = VD->getAnyInitializer()) {
7025          // Look through initializers like const char c[] = { "foo" }
7026          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
7027            if (InitList->isStringLiteralInit())
7028              Init = InitList->getInit(0)->IgnoreParenImpCasts();
7029          }
7030          return checkFormatStringExpr(S, Init, Args,
7031                                       HasVAListArg, format_idx,
7032                                       firstDataArg, Type, CallType,
7033                                       /*InFunctionCall*/ false, CheckedVarArgs,
7034                                       UncoveredArg, Offset);
7035        }
7036      }
7037
7038      // For vprintf* functions (i.e., HasVAListArg==true), we add a
7039      // special check to see if the format string is a function parameter
7040      // of the function calling the printf function.  If the function
7041      // has an attribute indicating it is a printf-like function, then we
7042      // should suppress warnings concerning non-literals being used in a call
7043      // to a vprintf function.  For example:
7044      //
7045      // void
7046      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
7047      //      va_list ap;
7048      //      va_start(ap, fmt);
7049      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
7050      //      ...
7051      // }
7052      if (HasVAListArg) {
7053        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
7054          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
7055            int PVIndex = PV->getFunctionScopeIndex() + 1;
7056            for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
7057              // adjust for implicit parameter
7058              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7059                if (MD->isInstance())
7060                  ++PVIndex;
7061              // We also check if the formats are compatible.
7062              // We can't pass a 'scanf' string to a 'printf' function.
7063              if (PVIndex == PVFormat->getFormatIdx() &&
7064                  Type == S.GetFormatStringType(PVFormat))
7065                return SLCT_UncheckedLiteral;
7066            }
7067          }
7068        }
7069      }
7070    }
7071
7072    return SLCT_NotALiteral;
7073  }
7074
7075  case Stmt::CallExprClass:
7076  case Stmt::CXXMemberCallExprClass: {
7077    const CallExpr *CE = cast<CallExpr>(E);
7078    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
7079      bool IsFirst = true;
7080      StringLiteralCheckType CommonResult;
7081      for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
7082        const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
7083        StringLiteralCheckType Result = checkFormatStringExpr(
7084            S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7085            CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7086            IgnoreStringsWithoutSpecifiers);
7087        if (IsFirst) {
7088          CommonResult = Result;
7089          IsFirst = false;
7090        }
7091      }
7092      if (!IsFirst)
7093        return CommonResult;
7094
7095      if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
7096        unsigned BuiltinID = FD->getBuiltinID();
7097        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
7098            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
7099          const Expr *Arg = CE->getArg(0);
7100          return checkFormatStringExpr(S, Arg, Args,
7101                                       HasVAListArg, format_idx,
7102                                       firstDataArg, Type, CallType,
7103                                       InFunctionCall, CheckedVarArgs,
7104                                       UncoveredArg, Offset,
7105                                       IgnoreStringsWithoutSpecifiers);
7106        }
7107      }
7108    }
7109
7110    return SLCT_NotALiteral;
7111  }
7112  case Stmt::ObjCMessageExprClass: {
7113    const auto *ME = cast<ObjCMessageExpr>(E);
7114    if (const auto *MD = ME->getMethodDecl()) {
7115      if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
7116        // As a special case heuristic, if we're using the method -[NSBundle
7117        // localizedStringForKey:value:table:], ignore any key strings that lack
7118        // format specifiers. The idea is that if the key doesn't have any
7119        // format specifiers then its probably just a key to map to the
7120        // localized strings. If it does have format specifiers though, then its
7121        // likely that the text of the key is the format string in the
7122        // programmer's language, and should be checked.
7123        const ObjCInterfaceDecl *IFace;
7124        if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
7125            IFace->getIdentifier()->isStr("NSBundle") &&
7126            MD->getSelector().isKeywordSelector(
7127                {"localizedStringForKey", "value", "table"})) {
7128          IgnoreStringsWithoutSpecifiers = true;
7129        }
7130
7131        const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
7132        return checkFormatStringExpr(
7133            S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7134            CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7135            IgnoreStringsWithoutSpecifiers);
7136      }
7137    }
7138
7139    return SLCT_NotALiteral;
7140  }
7141  case Stmt::ObjCStringLiteralClass:
7142  case Stmt::StringLiteralClass: {
7143    const StringLiteral *StrE = nullptr;
7144
7145    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
7146      StrE = ObjCFExpr->getString();
7147    else
7148      StrE = cast<StringLiteral>(E);
7149
7150    if (StrE) {
7151      if (Offset.isNegative() || Offset > StrE->getLength()) {
7152        // TODO: It would be better to have an explicit warning for out of
7153        // bounds literals.
7154        return SLCT_NotALiteral;
7155      }
7156      FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
7157      CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
7158                        firstDataArg, Type, InFunctionCall, CallType,
7159                        CheckedVarArgs, UncoveredArg,
7160                        IgnoreStringsWithoutSpecifiers);
7161      return SLCT_CheckedLiteral;
7162    }
7163
7164    return SLCT_NotALiteral;
7165  }
7166  case Stmt::BinaryOperatorClass: {
7167    const BinaryOperator *BinOp = cast<BinaryOperator>(E);
7168
7169    // A string literal + an int offset is still a string literal.
7170    if (BinOp->isAdditiveOp()) {
7171      Expr::EvalResult LResult, RResult;
7172
7173      bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
7174          LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7175      bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
7176          RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7177
7178      if (LIsInt != RIsInt) {
7179        BinaryOperatorKind BinOpKind = BinOp->getOpcode();
7180
7181        if (LIsInt) {
7182          if (BinOpKind == BO_Add) {
7183            sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
7184            E = BinOp->getRHS();
7185            goto tryAgain;
7186          }
7187        } else {
7188          sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
7189          E = BinOp->getLHS();
7190          goto tryAgain;
7191        }
7192      }
7193    }
7194
7195    return SLCT_NotALiteral;
7196  }
7197  case Stmt::UnaryOperatorClass: {
7198    const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
7199    auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
7200    if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
7201      Expr::EvalResult IndexResult;
7202      if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
7203                                       Expr::SE_NoSideEffects,
7204                                       S.isConstantEvaluated())) {
7205        sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
7206                   /*RHS is int*/ true);
7207        E = ASE->getBase();
7208        goto tryAgain;
7209      }
7210    }
7211
7212    return SLCT_NotALiteral;
7213  }
7214
7215  default:
7216    return SLCT_NotALiteral;
7217  }
7218}
7219
7220Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
7221  return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
7222      .Case("scanf", FST_Scanf)
7223      .Cases("printf", "printf0", FST_Printf)
7224      .Cases("NSString", "CFString", FST_NSString)
7225      .Case("strftime", FST_Strftime)
7226      .Case("strfmon", FST_Strfmon)
7227      .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
7228      .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
7229      .Case("os_trace", FST_OSLog)
7230      .Case("os_log", FST_OSLog)
7231      .Default(FST_Unknown);
7232}
7233
7234/// CheckFormatArguments - Check calls to printf and scanf (and similar
7235/// functions) for correct use of format strings.
7236/// Returns true if a format string has been fully checked.
7237bool Sema::CheckFormatArguments(const FormatAttr *Format,
7238                                ArrayRef<const Expr *> Args,
7239                                bool IsCXXMember,
7240                                VariadicCallType CallType,
7241                                SourceLocation Loc, SourceRange Range,
7242                                llvm::SmallBitVector &CheckedVarArgs) {
7243  FormatStringInfo FSI;
7244  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
7245    return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
7246                                FSI.FirstDataArg, GetFormatStringType(Format),
7247                                CallType, Loc, Range, CheckedVarArgs);
7248  return false;
7249}
7250
7251bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
7252                                bool HasVAListArg, unsigned format_idx,
7253                                unsigned firstDataArg, FormatStringType Type,
7254                                VariadicCallType CallType,
7255                                SourceLocation Loc, SourceRange Range,
7256                                llvm::SmallBitVector &CheckedVarArgs) {
7257  // CHECK: printf/scanf-like function is called with no format string.
7258  if (format_idx >= Args.size()) {
7259    Diag(Loc, diag::warn_missing_format_string) << Range;
7260    return false;
7261  }
7262
7263  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
7264
7265  // CHECK: format string is not a string literal.
7266  //
7267  // Dynamically generated format strings are difficult to
7268  // automatically vet at compile time.  Requiring that format strings
7269  // are string literals: (1) permits the checking of format strings by
7270  // the compiler and thereby (2) can practically remove the source of
7271  // many format string exploits.
7272
7273  // Format string can be either ObjC string (e.g. @"%d") or
7274  // C string (e.g. "%d")
7275  // ObjC string uses the same format specifiers as C string, so we can use
7276  // the same format string checking logic for both ObjC and C strings.
7277  UncoveredArgHandler UncoveredArg;
7278  StringLiteralCheckType CT =
7279      checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
7280                            format_idx, firstDataArg, Type, CallType,
7281                            /*IsFunctionCall*/ true, CheckedVarArgs,
7282                            UncoveredArg,
7283                            /*no string offset*/ llvm::APSInt(64, false) = 0);
7284
7285  // Generate a diagnostic where an uncovered argument is detected.
7286  if (UncoveredArg.hasUncoveredArg()) {
7287    unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
7288    assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
7289    UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
7290  }
7291
7292  if (CT != SLCT_NotALiteral)
7293    // Literal format string found, check done!
7294    return CT == SLCT_CheckedLiteral;
7295
7296  // Strftime is particular as it always uses a single 'time' argument,
7297  // so it is safe to pass a non-literal string.
7298  if (Type == FST_Strftime)
7299    return false;
7300
7301  // Do not emit diag when the string param is a macro expansion and the
7302  // format is either NSString or CFString. This is a hack to prevent
7303  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
7304  // which are usually used in place of NS and CF string literals.
7305  SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
7306  if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
7307    return false;
7308
7309  // If there are no arguments specified, warn with -Wformat-security, otherwise
7310  // warn only with -Wformat-nonliteral.
7311  if (Args.size() == firstDataArg) {
7312    Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
7313      << OrigFormatExpr->getSourceRange();
7314    switch (Type) {
7315    default:
7316      break;
7317    case FST_Kprintf:
7318    case FST_FreeBSDKPrintf:
7319    case FST_Printf:
7320      Diag(FormatLoc, diag::note_format_security_fixit)
7321        << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
7322      break;
7323    case FST_NSString:
7324      Diag(FormatLoc, diag::note_format_security_fixit)
7325        << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
7326      break;
7327    }
7328  } else {
7329    Diag(FormatLoc, diag::warn_format_nonliteral)
7330      << OrigFormatExpr->getSourceRange();
7331  }
7332  return false;
7333}
7334
7335namespace {
7336
7337class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
7338protected:
7339  Sema &S;
7340  const FormatStringLiteral *FExpr;
7341  const Expr *OrigFormatExpr;
7342  const Sema::FormatStringType FSType;
7343  const unsigned FirstDataArg;
7344  const unsigned NumDataArgs;
7345  const char *Beg; // Start of format string.
7346  const bool HasVAListArg;
7347  ArrayRef<const Expr *> Args;
7348  unsigned FormatIdx;
7349  llvm::SmallBitVector CoveredArgs;
7350  bool usesPositionalArgs = false;
7351  bool atFirstArg = true;
7352  bool inFunctionCall;
7353  Sema::VariadicCallType CallType;
7354  llvm::SmallBitVector &CheckedVarArgs;
7355  UncoveredArgHandler &UncoveredArg;
7356
7357public:
7358  CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
7359                     const Expr *origFormatExpr,
7360                     const Sema::FormatStringType type, unsigned firstDataArg,
7361                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
7362                     ArrayRef<const Expr *> Args, unsigned formatIdx,
7363                     bool inFunctionCall, Sema::VariadicCallType callType,
7364                     llvm::SmallBitVector &CheckedVarArgs,
7365                     UncoveredArgHandler &UncoveredArg)
7366      : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
7367        FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
7368        HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
7369        inFunctionCall(inFunctionCall), CallType(callType),
7370        CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
7371    CoveredArgs.resize(numDataArgs);
7372    CoveredArgs.reset();
7373  }
7374
7375  void DoneProcessing();
7376
7377  void HandleIncompleteSpecifier(const char *startSpecifier,
7378                                 unsigned specifierLen) override;
7379
7380  void HandleInvalidLengthModifier(
7381                           const analyze_format_string::FormatSpecifier &FS,
7382                           const analyze_format_string::ConversionSpecifier &CS,
7383                           const char *startSpecifier, unsigned specifierLen,
7384                           unsigned DiagID);
7385
7386  void HandleNonStandardLengthModifier(
7387                    const analyze_format_string::FormatSpecifier &FS,
7388                    const char *startSpecifier, unsigned specifierLen);
7389
7390  void HandleNonStandardConversionSpecifier(
7391                    const analyze_format_string::ConversionSpecifier &CS,
7392                    const char *startSpecifier, unsigned specifierLen);
7393
7394  void HandlePosition(const char *startPos, unsigned posLen) override;
7395
7396  void HandleInvalidPosition(const char *startSpecifier,
7397                             unsigned specifierLen,
7398                             analyze_format_string::PositionContext p) override;
7399
7400  void HandleZeroPosition(const char *startPos, unsigned posLen) override;
7401
7402  void HandleNullChar(const char *nullCharacter) override;
7403
7404  template <typename Range>
7405  static void
7406  EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
7407                       const PartialDiagnostic &PDiag, SourceLocation StringLoc,
7408                       bool IsStringLocation, Range StringRange,
7409                       ArrayRef<FixItHint> Fixit = None);
7410
7411protected:
7412  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
7413                                        const char *startSpec,
7414                                        unsigned specifierLen,
7415                                        const char *csStart, unsigned csLen);
7416
7417  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
7418                                         const char *startSpec,
7419                                         unsigned specifierLen);
7420
7421  SourceRange getFormatStringRange();
7422  CharSourceRange getSpecifierRange(const char *startSpecifier,
7423                                    unsigned specifierLen);
7424  SourceLocation getLocationOfByte(const char *x);
7425
7426  const Expr *getDataArg(unsigned i) const;
7427
7428  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
7429                    const analyze_format_string::ConversionSpecifier &CS,
7430                    const char *startSpecifier, unsigned specifierLen,
7431                    unsigned argIndex);
7432
7433  template <typename Range>
7434  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
7435                            bool IsStringLocation, Range StringRange,
7436                            ArrayRef<FixItHint> Fixit = None);
7437};
7438
7439} // namespace
7440
7441SourceRange CheckFormatHandler::getFormatStringRange() {
7442  return OrigFormatExpr->getSourceRange();
7443}
7444
7445CharSourceRange CheckFormatHandler::
7446getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
7447  SourceLocation Start = getLocationOfByte(startSpecifier);
7448  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
7449
7450  // Advance the end SourceLocation by one due to half-open ranges.
7451  End = End.getLocWithOffset(1);
7452
7453  return CharSourceRange::getCharRange(Start, End);
7454}
7455
7456SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
7457  return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
7458                                  S.getLangOpts(), S.Context.getTargetInfo());
7459}
7460
7461void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
7462                                                   unsigned specifierLen){
7463  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
7464                       getLocationOfByte(startSpecifier),
7465                       /*IsStringLocation*/true,
7466                       getSpecifierRange(startSpecifier, specifierLen));
7467}
7468
7469void CheckFormatHandler::HandleInvalidLengthModifier(
7470    const analyze_format_string::FormatSpecifier &FS,
7471    const analyze_format_string::ConversionSpecifier &CS,
7472    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
7473  using namespace analyze_format_string;
7474
7475  const LengthModifier &LM = FS.getLengthModifier();
7476  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7477
7478  // See if we know how to fix this length modifier.
7479  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7480  if (FixedLM) {
7481    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7482                         getLocationOfByte(LM.getStart()),
7483                         /*IsStringLocation*/true,
7484                         getSpecifierRange(startSpecifier, specifierLen));
7485
7486    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7487      << FixedLM->toString()
7488      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7489
7490  } else {
7491    FixItHint Hint;
7492    if (DiagID == diag::warn_format_nonsensical_length)
7493      Hint = FixItHint::CreateRemoval(LMRange);
7494
7495    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7496                         getLocationOfByte(LM.getStart()),
7497                         /*IsStringLocation*/true,
7498                         getSpecifierRange(startSpecifier, specifierLen),
7499                         Hint);
7500  }
7501}
7502
7503void CheckFormatHandler::HandleNonStandardLengthModifier(
7504    const analyze_format_string::FormatSpecifier &FS,
7505    const char *startSpecifier, unsigned specifierLen) {
7506  using namespace analyze_format_string;
7507
7508  const LengthModifier &LM = FS.getLengthModifier();
7509  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7510
7511  // See if we know how to fix this length modifier.
7512  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7513  if (FixedLM) {
7514    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7515                           << LM.toString() << 0,
7516                         getLocationOfByte(LM.getStart()),
7517                         /*IsStringLocation*/true,
7518                         getSpecifierRange(startSpecifier, specifierLen));
7519
7520    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7521      << FixedLM->toString()
7522      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7523
7524  } else {
7525    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7526                           << LM.toString() << 0,
7527                         getLocationOfByte(LM.getStart()),
7528                         /*IsStringLocation*/true,
7529                         getSpecifierRange(startSpecifier, specifierLen));
7530  }
7531}
7532
7533void CheckFormatHandler::HandleNonStandardConversionSpecifier(
7534    const analyze_format_string::ConversionSpecifier &CS,
7535    const char *startSpecifier, unsigned specifierLen) {
7536  using namespace analyze_format_string;
7537
7538  // See if we know how to fix this conversion specifier.
7539  Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
7540  if (FixedCS) {
7541    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7542                          << CS.toString() << /*conversion specifier*/1,
7543                         getLocationOfByte(CS.getStart()),
7544                         /*IsStringLocation*/true,
7545                         getSpecifierRange(startSpecifier, specifierLen));
7546
7547    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
7548    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
7549      << FixedCS->toString()
7550      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
7551  } else {
7552    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7553                          << CS.toString() << /*conversion specifier*/1,
7554                         getLocationOfByte(CS.getStart()),
7555                         /*IsStringLocation*/true,
7556                         getSpecifierRange(startSpecifier, specifierLen));
7557  }
7558}
7559
7560void CheckFormatHandler::HandlePosition(const char *startPos,
7561                                        unsigned posLen) {
7562  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
7563                               getLocationOfByte(startPos),
7564                               /*IsStringLocation*/true,
7565                               getSpecifierRange(startPos, posLen));
7566}
7567
7568void
7569CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
7570                                     analyze_format_string::PositionContext p) {
7571  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
7572                         << (unsigned) p,
7573                       getLocationOfByte(startPos), /*IsStringLocation*/true,
7574                       getSpecifierRange(startPos, posLen));
7575}
7576
7577void CheckFormatHandler::HandleZeroPosition(const char *startPos,
7578                                            unsigned posLen) {
7579  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
7580                               getLocationOfByte(startPos),
7581                               /*IsStringLocation*/true,
7582                               getSpecifierRange(startPos, posLen));
7583}
7584
7585void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
7586  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
7587    // The presence of a null character is likely an error.
7588    EmitFormatDiagnostic(
7589      S.PDiag(diag::warn_printf_format_string_contains_null_char),
7590      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
7591      getFormatStringRange());
7592  }
7593}
7594
7595// Note that this may return NULL if there was an error parsing or building
7596// one of the argument expressions.
7597const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
7598  return Args[FirstDataArg + i];
7599}
7600
7601void CheckFormatHandler::DoneProcessing() {
7602  // Does the number of data arguments exceed the number of
7603  // format conversions in the format string?
7604  if (!HasVAListArg) {
7605      // Find any arguments that weren't covered.
7606    CoveredArgs.flip();
7607    signed notCoveredArg = CoveredArgs.find_first();
7608    if (notCoveredArg >= 0) {
7609      assert((unsigned)notCoveredArg < NumDataArgs);
7610      UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
7611    } else {
7612      UncoveredArg.setAllCovered();
7613    }
7614  }
7615}
7616
7617void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
7618                                   const Expr *ArgExpr) {
7619  assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
7620         "Invalid state");
7621
7622  if (!ArgExpr)
7623    return;
7624
7625  SourceLocation Loc = ArgExpr->getBeginLoc();
7626
7627  if (S.getSourceManager().isInSystemMacro(Loc))
7628    return;
7629
7630  PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
7631  for (auto E : DiagnosticExprs)
7632    PDiag << E->getSourceRange();
7633
7634  CheckFormatHandler::EmitFormatDiagnostic(
7635                                  S, IsFunctionCall, DiagnosticExprs[0],
7636                                  PDiag, Loc, /*IsStringLocation*/false,
7637                                  DiagnosticExprs[0]->getSourceRange());
7638}
7639
7640bool
7641CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
7642                                                     SourceLocation Loc,
7643                                                     const char *startSpec,
7644                                                     unsigned specifierLen,
7645                                                     const char *csStart,
7646                                                     unsigned csLen) {
7647  bool keepGoing = true;
7648  if (argIndex < NumDataArgs) {
7649    // Consider the argument coverered, even though the specifier doesn't
7650    // make sense.
7651    CoveredArgs.set(argIndex);
7652  }
7653  else {
7654    // If argIndex exceeds the number of data arguments we
7655    // don't issue a warning because that is just a cascade of warnings (and
7656    // they may have intended '%%' anyway). We don't want to continue processing
7657    // the format string after this point, however, as we will like just get
7658    // gibberish when trying to match arguments.
7659    keepGoing = false;
7660  }
7661
7662  StringRef Specifier(csStart, csLen);
7663
7664  // If the specifier in non-printable, it could be the first byte of a UTF-8
7665  // sequence. In that case, print the UTF-8 code point. If not, print the byte
7666  // hex value.
7667  std::string CodePointStr;
7668  if (!llvm::sys::locale::isPrint(*csStart)) {
7669    llvm::UTF32 CodePoint;
7670    const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
7671    const llvm::UTF8 *E =
7672        reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
7673    llvm::ConversionResult Result =
7674        llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
7675
7676    if (Result != llvm::conversionOK) {
7677      unsigned char FirstChar = *csStart;
7678      CodePoint = (llvm::UTF32)FirstChar;
7679    }
7680
7681    llvm::raw_string_ostream OS(CodePointStr);
7682    if (CodePoint < 256)
7683      OS << "\\x" << llvm::format("%02x", CodePoint);
7684    else if (CodePoint <= 0xFFFF)
7685      OS << "\\u" << llvm::format("%04x", CodePoint);
7686    else
7687      OS << "\\U" << llvm::format("%08x", CodePoint);
7688    OS.flush();
7689    Specifier = CodePointStr;
7690  }
7691
7692  EmitFormatDiagnostic(
7693      S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
7694      /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
7695
7696  return keepGoing;
7697}
7698
7699void
7700CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
7701                                                      const char *startSpec,
7702                                                      unsigned specifierLen) {
7703  EmitFormatDiagnostic(
7704    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
7705    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
7706}
7707
7708bool
7709CheckFormatHandler::CheckNumArgs(
7710  const analyze_format_string::FormatSpecifier &FS,
7711  const analyze_format_string::ConversionSpecifier &CS,
7712  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
7713
7714  if (argIndex >= NumDataArgs) {
7715    PartialDiagnostic PDiag = FS.usesPositionalArg()
7716      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
7717           << (argIndex+1) << NumDataArgs)
7718      : S.PDiag(diag::warn_printf_insufficient_data_args);
7719    EmitFormatDiagnostic(
7720      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
7721      getSpecifierRange(startSpecifier, specifierLen));
7722
7723    // Since more arguments than conversion tokens are given, by extension
7724    // all arguments are covered, so mark this as so.
7725    UncoveredArg.setAllCovered();
7726    return false;
7727  }
7728  return true;
7729}
7730
7731template<typename Range>
7732void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
7733                                              SourceLocation Loc,
7734                                              bool IsStringLocation,
7735                                              Range StringRange,
7736                                              ArrayRef<FixItHint> FixIt) {
7737  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
7738                       Loc, IsStringLocation, StringRange, FixIt);
7739}
7740
7741/// If the format string is not within the function call, emit a note
7742/// so that the function call and string are in diagnostic messages.
7743///
7744/// \param InFunctionCall if true, the format string is within the function
7745/// call and only one diagnostic message will be produced.  Otherwise, an
7746/// extra note will be emitted pointing to location of the format string.
7747///
7748/// \param ArgumentExpr the expression that is passed as the format string
7749/// argument in the function call.  Used for getting locations when two
7750/// diagnostics are emitted.
7751///
7752/// \param PDiag the callee should already have provided any strings for the
7753/// diagnostic message.  This function only adds locations and fixits
7754/// to diagnostics.
7755///
7756/// \param Loc primary location for diagnostic.  If two diagnostics are
7757/// required, one will be at Loc and a new SourceLocation will be created for
7758/// the other one.
7759///
7760/// \param IsStringLocation if true, Loc points to the format string should be
7761/// used for the note.  Otherwise, Loc points to the argument list and will
7762/// be used with PDiag.
7763///
7764/// \param StringRange some or all of the string to highlight.  This is
7765/// templated so it can accept either a CharSourceRange or a SourceRange.
7766///
7767/// \param FixIt optional fix it hint for the format string.
7768template <typename Range>
7769void CheckFormatHandler::EmitFormatDiagnostic(
7770    Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
7771    const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
7772    Range StringRange, ArrayRef<FixItHint> FixIt) {
7773  if (InFunctionCall) {
7774    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
7775    D << StringRange;
7776    D << FixIt;
7777  } else {
7778    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
7779      << ArgumentExpr->getSourceRange();
7780
7781    const Sema::SemaDiagnosticBuilder &Note =
7782      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
7783             diag::note_format_string_defined);
7784
7785    Note << StringRange;
7786    Note << FixIt;
7787  }
7788}
7789
7790//===--- CHECK: Printf format string checking ------------------------------===//
7791
7792namespace {
7793
7794class CheckPrintfHandler : public CheckFormatHandler {
7795public:
7796  CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
7797                     const Expr *origFormatExpr,
7798                     const Sema::FormatStringType type, unsigned firstDataArg,
7799                     unsigned numDataArgs, bool isObjC, const char *beg,
7800                     bool hasVAListArg, ArrayRef<const Expr *> Args,
7801                     unsigned formatIdx, bool inFunctionCall,
7802                     Sema::VariadicCallType CallType,
7803                     llvm::SmallBitVector &CheckedVarArgs,
7804                     UncoveredArgHandler &UncoveredArg)
7805      : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
7806                           numDataArgs, beg, hasVAListArg, Args, formatIdx,
7807                           inFunctionCall, CallType, CheckedVarArgs,
7808                           UncoveredArg) {}
7809
7810  bool isObjCContext() const { return FSType == Sema::FST_NSString; }
7811
7812  /// Returns true if '%@' specifiers are allowed in the format string.
7813  bool allowsObjCArg() const {
7814    return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
7815           FSType == Sema::FST_OSTrace;
7816  }
7817
7818  bool HandleInvalidPrintfConversionSpecifier(
7819                                      const analyze_printf::PrintfSpecifier &FS,
7820                                      const char *startSpecifier,
7821                                      unsigned specifierLen) override;
7822
7823  void handleInvalidMaskType(StringRef MaskType) override;
7824
7825  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
7826                             const char *startSpecifier,
7827                             unsigned specifierLen) override;
7828  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7829                       const char *StartSpecifier,
7830                       unsigned SpecifierLen,
7831                       const Expr *E);
7832
7833  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
7834                    const char *startSpecifier, unsigned specifierLen);
7835  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
7836                           const analyze_printf::OptionalAmount &Amt,
7837                           unsigned type,
7838                           const char *startSpecifier, unsigned specifierLen);
7839  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
7840                  const analyze_printf::OptionalFlag &flag,
7841                  const char *startSpecifier, unsigned specifierLen);
7842  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
7843                         const analyze_printf::OptionalFlag &ignoredFlag,
7844                         const analyze_printf::OptionalFlag &flag,
7845                         const char *startSpecifier, unsigned specifierLen);
7846  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
7847                           const Expr *E);
7848
7849  void HandleEmptyObjCModifierFlag(const char *startFlag,
7850                                   unsigned flagLen) override;
7851
7852  void HandleInvalidObjCModifierFlag(const char *startFlag,
7853                                            unsigned flagLen) override;
7854
7855  void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
7856                                           const char *flagsEnd,
7857                                           const char *conversionPosition)
7858                                             override;
7859};
7860
7861} // namespace
7862
7863bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
7864                                      const analyze_printf::PrintfSpecifier &FS,
7865                                      const char *startSpecifier,
7866                                      unsigned specifierLen) {
7867  const analyze_printf::PrintfConversionSpecifier &CS =
7868    FS.getConversionSpecifier();
7869
7870  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
7871                                          getLocationOfByte(CS.getStart()),
7872                                          startSpecifier, specifierLen,
7873                                          CS.getStart(), CS.getLength());
7874}
7875
7876void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
7877  S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
7878}
7879
7880bool CheckPrintfHandler::HandleAmount(
7881                               const analyze_format_string::OptionalAmount &Amt,
7882                               unsigned k, const char *startSpecifier,
7883                               unsigned specifierLen) {
7884  if (Amt.hasDataArgument()) {
7885    if (!HasVAListArg) {
7886      unsigned argIndex = Amt.getArgIndex();
7887      if (argIndex >= NumDataArgs) {
7888        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
7889                               << k,
7890                             getLocationOfByte(Amt.getStart()),
7891                             /*IsStringLocation*/true,
7892                             getSpecifierRange(startSpecifier, specifierLen));
7893        // Don't do any more checking.  We will just emit
7894        // spurious errors.
7895        return false;
7896      }
7897
7898      // Type check the data argument.  It should be an 'int'.
7899      // Although not in conformance with C99, we also allow the argument to be
7900      // an 'unsigned int' as that is a reasonably safe case.  GCC also
7901      // doesn't emit a warning for that case.
7902      CoveredArgs.set(argIndex);
7903      const Expr *Arg = getDataArg(argIndex);
7904      if (!Arg)
7905        return false;
7906
7907      QualType T = Arg->getType();
7908
7909      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
7910      assert(AT.isValid());
7911
7912      if (!AT.matchesType(S.Context, T)) {
7913        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
7914                               << k << AT.getRepresentativeTypeName(S.Context)
7915                               << T << Arg->getSourceRange(),
7916                             getLocationOfByte(Amt.getStart()),
7917                             /*IsStringLocation*/true,
7918                             getSpecifierRange(startSpecifier, specifierLen));
7919        // Don't do any more checking.  We will just emit
7920        // spurious errors.
7921        return false;
7922      }
7923    }
7924  }
7925  return true;
7926}
7927
7928void CheckPrintfHandler::HandleInvalidAmount(
7929                                      const analyze_printf::PrintfSpecifier &FS,
7930                                      const analyze_printf::OptionalAmount &Amt,
7931                                      unsigned type,
7932                                      const char *startSpecifier,
7933                                      unsigned specifierLen) {
7934  const analyze_printf::PrintfConversionSpecifier &CS =
7935    FS.getConversionSpecifier();
7936
7937  FixItHint fixit =
7938    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
7939      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
7940                                 Amt.getConstantLength()))
7941      : FixItHint();
7942
7943  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
7944                         << type << CS.toString(),
7945                       getLocationOfByte(Amt.getStart()),
7946                       /*IsStringLocation*/true,
7947                       getSpecifierRange(startSpecifier, specifierLen),
7948                       fixit);
7949}
7950
7951void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
7952                                    const analyze_printf::OptionalFlag &flag,
7953                                    const char *startSpecifier,
7954                                    unsigned specifierLen) {
7955  // Warn about pointless flag with a fixit removal.
7956  const analyze_printf::PrintfConversionSpecifier &CS =
7957    FS.getConversionSpecifier();
7958  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
7959                         << flag.toString() << CS.toString(),
7960                       getLocationOfByte(flag.getPosition()),
7961                       /*IsStringLocation*/true,
7962                       getSpecifierRange(startSpecifier, specifierLen),
7963                       FixItHint::CreateRemoval(
7964                         getSpecifierRange(flag.getPosition(), 1)));
7965}
7966
7967void CheckPrintfHandler::HandleIgnoredFlag(
7968                                const analyze_printf::PrintfSpecifier &FS,
7969                                const analyze_printf::OptionalFlag &ignoredFlag,
7970                                const analyze_printf::OptionalFlag &flag,
7971                                const char *startSpecifier,
7972                                unsigned specifierLen) {
7973  // Warn about ignored flag with a fixit removal.
7974  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
7975                         << ignoredFlag.toString() << flag.toString(),
7976                       getLocationOfByte(ignoredFlag.getPosition()),
7977                       /*IsStringLocation*/true,
7978                       getSpecifierRange(startSpecifier, specifierLen),
7979                       FixItHint::CreateRemoval(
7980                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
7981}
7982
7983void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
7984                                                     unsigned flagLen) {
7985  // Warn about an empty flag.
7986  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
7987                       getLocationOfByte(startFlag),
7988                       /*IsStringLocation*/true,
7989                       getSpecifierRange(startFlag, flagLen));
7990}
7991
7992void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
7993                                                       unsigned flagLen) {
7994  // Warn about an invalid flag.
7995  auto Range = getSpecifierRange(startFlag, flagLen);
7996  StringRef flag(startFlag, flagLen);
7997  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
7998                      getLocationOfByte(startFlag),
7999                      /*IsStringLocation*/true,
8000                      Range, FixItHint::CreateRemoval(Range));
8001}
8002
8003void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
8004    const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
8005    // Warn about using '[...]' without a '@' conversion.
8006    auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
8007    auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
8008    EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
8009                         getLocationOfByte(conversionPosition),
8010                         /*IsStringLocation*/true,
8011                         Range, FixItHint::CreateRemoval(Range));
8012}
8013
8014// Determines if the specified is a C++ class or struct containing
8015// a member with the specified name and kind (e.g. a CXXMethodDecl named
8016// "c_str()").
8017template<typename MemberKind>
8018static llvm::SmallPtrSet<MemberKind*, 1>
8019CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
8020  const RecordType *RT = Ty->getAs<RecordType>();
8021  llvm::SmallPtrSet<MemberKind*, 1> Results;
8022
8023  if (!RT)
8024    return Results;
8025  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
8026  if (!RD || !RD->getDefinition())
8027    return Results;
8028
8029  LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
8030                 Sema::LookupMemberName);
8031  R.suppressDiagnostics();
8032
8033  // We just need to include all members of the right kind turned up by the
8034  // filter, at this point.
8035  if (S.LookupQualifiedName(R, RT->getDecl()))
8036    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8037      NamedDecl *decl = (*I)->getUnderlyingDecl();
8038      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
8039        Results.insert(FK);
8040    }
8041  return Results;
8042}
8043
8044/// Check if we could call '.c_str()' on an object.
8045///
8046/// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
8047/// allow the call, or if it would be ambiguous).
8048bool Sema::hasCStrMethod(const Expr *E) {
8049  using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8050
8051  MethodSet Results =
8052      CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
8053  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8054       MI != ME; ++MI)
8055    if ((*MI)->getMinRequiredArguments() == 0)
8056      return true;
8057  return false;
8058}
8059
8060// Check if a (w)string was passed when a (w)char* was needed, and offer a
8061// better diagnostic if so. AT is assumed to be valid.
8062// Returns true when a c_str() conversion method is found.
8063bool CheckPrintfHandler::checkForCStrMembers(
8064    const analyze_printf::ArgType &AT, const Expr *E) {
8065  using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8066
8067  MethodSet Results =
8068      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
8069
8070  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8071       MI != ME; ++MI) {
8072    const CXXMethodDecl *Method = *MI;
8073    if (Method->getMinRequiredArguments() == 0 &&
8074        AT.matchesType(S.Context, Method->getReturnType())) {
8075      // FIXME: Suggest parens if the expression needs them.
8076      SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
8077      S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
8078          << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
8079      return true;
8080    }
8081  }
8082
8083  return false;
8084}
8085
8086bool
8087CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
8088                                            &FS,
8089                                          const char *startSpecifier,
8090                                          unsigned specifierLen) {
8091  using namespace analyze_format_string;
8092  using namespace analyze_printf;
8093
8094  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
8095
8096  if (FS.consumesDataArgument()) {
8097    if (atFirstArg) {
8098        atFirstArg = false;
8099        usesPositionalArgs = FS.usesPositionalArg();
8100    }
8101    else if (usesPositionalArgs != FS.usesPositionalArg()) {
8102      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8103                                        startSpecifier, specifierLen);
8104      return false;
8105    }
8106  }
8107
8108  // First check if the field width, precision, and conversion specifier
8109  // have matching data arguments.
8110  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
8111                    startSpecifier, specifierLen)) {
8112    return false;
8113  }
8114
8115  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
8116                    startSpecifier, specifierLen)) {
8117    return false;
8118  }
8119
8120  if (!CS.consumesDataArgument()) {
8121    // FIXME: Technically specifying a precision or field width here
8122    // makes no sense.  Worth issuing a warning at some point.
8123    return true;
8124  }
8125
8126  // Consume the argument.
8127  unsigned argIndex = FS.getArgIndex();
8128  if (argIndex < NumDataArgs) {
8129    // The check to see if the argIndex is valid will come later.
8130    // We set the bit here because we may exit early from this
8131    // function if we encounter some other error.
8132    CoveredArgs.set(argIndex);
8133  }
8134
8135  // FreeBSD kernel extensions.
8136  if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
8137      CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
8138    // We need at least two arguments.
8139    if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
8140      return false;
8141
8142    // Claim the second argument.
8143    CoveredArgs.set(argIndex + 1);
8144
8145    // Type check the first argument (int for %b, pointer for %D)
8146    const Expr *Ex = getDataArg(argIndex);
8147    const analyze_printf::ArgType &AT =
8148      (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
8149        ArgType(S.Context.IntTy) : ArgType::CPointerTy;
8150    if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
8151      EmitFormatDiagnostic(
8152          S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8153              << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
8154              << false << Ex->getSourceRange(),
8155          Ex->getBeginLoc(), /*IsStringLocation*/ false,
8156          getSpecifierRange(startSpecifier, specifierLen));
8157
8158    // Type check the second argument (char * for both %b and %D)
8159    Ex = getDataArg(argIndex + 1);
8160    const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
8161    if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
8162      EmitFormatDiagnostic(
8163          S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8164              << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
8165              << false << Ex->getSourceRange(),
8166          Ex->getBeginLoc(), /*IsStringLocation*/ false,
8167          getSpecifierRange(startSpecifier, specifierLen));
8168
8169     return true;
8170  }
8171
8172  // Check for using an Objective-C specific conversion specifier
8173  // in a non-ObjC literal.
8174  if (!allowsObjCArg() && CS.isObjCArg()) {
8175    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8176                                                  specifierLen);
8177  }
8178
8179  // %P can only be used with os_log.
8180  if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
8181    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8182                                                  specifierLen);
8183  }
8184
8185  // %n is not allowed with os_log.
8186  if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
8187    EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
8188                         getLocationOfByte(CS.getStart()),
8189                         /*IsStringLocation*/ false,
8190                         getSpecifierRange(startSpecifier, specifierLen));
8191
8192    return true;
8193  }
8194
8195  // Only scalars are allowed for os_trace.
8196  if (FSType == Sema::FST_OSTrace &&
8197      (CS.getKind() == ConversionSpecifier::PArg ||
8198       CS.getKind() == ConversionSpecifier::sArg ||
8199       CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
8200    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8201                                                  specifierLen);
8202  }
8203
8204  // Check for use of public/private annotation outside of os_log().
8205  if (FSType != Sema::FST_OSLog) {
8206    if (FS.isPublic().isSet()) {
8207      EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8208                               << "public",
8209                           getLocationOfByte(FS.isPublic().getPosition()),
8210                           /*IsStringLocation*/ false,
8211                           getSpecifierRange(startSpecifier, specifierLen));
8212    }
8213    if (FS.isPrivate().isSet()) {
8214      EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8215                               << "private",
8216                           getLocationOfByte(FS.isPrivate().getPosition()),
8217                           /*IsStringLocation*/ false,
8218                           getSpecifierRange(startSpecifier, specifierLen));
8219    }
8220  }
8221
8222  // Check for invalid use of field width
8223  if (!FS.hasValidFieldWidth()) {
8224    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
8225        startSpecifier, specifierLen);
8226  }
8227
8228  // Check for invalid use of precision
8229  if (!FS.hasValidPrecision()) {
8230    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
8231        startSpecifier, specifierLen);
8232  }
8233
8234  // Precision is mandatory for %P specifier.
8235  if (CS.getKind() == ConversionSpecifier::PArg &&
8236      FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
8237    EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
8238                         getLocationOfByte(startSpecifier),
8239                         /*IsStringLocation*/ false,
8240                         getSpecifierRange(startSpecifier, specifierLen));
8241  }
8242
8243  // Check each flag does not conflict with any other component.
8244  if (!FS.hasValidThousandsGroupingPrefix())
8245    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
8246  if (!FS.hasValidLeadingZeros())
8247    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
8248  if (!FS.hasValidPlusPrefix())
8249    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
8250  if (!FS.hasValidSpacePrefix())
8251    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
8252  if (!FS.hasValidAlternativeForm())
8253    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
8254  if (!FS.hasValidLeftJustified())
8255    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
8256
8257  // Check that flags are not ignored by another flag
8258  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
8259    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
8260        startSpecifier, specifierLen);
8261  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
8262    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
8263            startSpecifier, specifierLen);
8264
8265  // Check the length modifier is valid with the given conversion specifier.
8266  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8267                                 S.getLangOpts()))
8268    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8269                                diag::warn_format_nonsensical_length);
8270  else if (!FS.hasStandardLengthModifier())
8271    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8272  else if (!FS.hasStandardLengthConversionCombination())
8273    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8274                                diag::warn_format_non_standard_conversion_spec);
8275
8276  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8277    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8278
8279  // The remaining checks depend on the data arguments.
8280  if (HasVAListArg)
8281    return true;
8282
8283  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8284    return false;
8285
8286  const Expr *Arg = getDataArg(argIndex);
8287  if (!Arg)
8288    return true;
8289
8290  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
8291}
8292
8293static bool requiresParensToAddCast(const Expr *E) {
8294  // FIXME: We should have a general way to reason about operator
8295  // precedence and whether parens are actually needed here.
8296  // Take care of a few common cases where they aren't.
8297  const Expr *Inside = E->IgnoreImpCasts();
8298  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
8299    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
8300
8301  switch (Inside->getStmtClass()) {
8302  case Stmt::ArraySubscriptExprClass:
8303  case Stmt::CallExprClass:
8304  case Stmt::CharacterLiteralClass:
8305  case Stmt::CXXBoolLiteralExprClass:
8306  case Stmt::DeclRefExprClass:
8307  case Stmt::FloatingLiteralClass:
8308  case Stmt::IntegerLiteralClass:
8309  case Stmt::MemberExprClass:
8310  case Stmt::ObjCArrayLiteralClass:
8311  case Stmt::ObjCBoolLiteralExprClass:
8312  case Stmt::ObjCBoxedExprClass:
8313  case Stmt::ObjCDictionaryLiteralClass:
8314  case Stmt::ObjCEncodeExprClass:
8315  case Stmt::ObjCIvarRefExprClass:
8316  case Stmt::ObjCMessageExprClass:
8317  case Stmt::ObjCPropertyRefExprClass:
8318  case Stmt::ObjCStringLiteralClass:
8319  case Stmt::ObjCSubscriptRefExprClass:
8320  case Stmt::ParenExprClass:
8321  case Stmt::StringLiteralClass:
8322  case Stmt::UnaryOperatorClass:
8323    return false;
8324  default:
8325    return true;
8326  }
8327}
8328
8329static std::pair<QualType, StringRef>
8330shouldNotPrintDirectly(const ASTContext &Context,
8331                       QualType IntendedTy,
8332                       const Expr *E) {
8333  // Use a 'while' to peel off layers of typedefs.
8334  QualType TyTy = IntendedTy;
8335  while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
8336    StringRef Name = UserTy->getDecl()->getName();
8337    QualType CastTy = llvm::StringSwitch<QualType>(Name)
8338      .Case("CFIndex", Context.getNSIntegerType())
8339      .Case("NSInteger", Context.getNSIntegerType())
8340      .Case("NSUInteger", Context.getNSUIntegerType())
8341      .Case("SInt32", Context.IntTy)
8342      .Case("UInt32", Context.UnsignedIntTy)
8343      .Default(QualType());
8344
8345    if (!CastTy.isNull())
8346      return std::make_pair(CastTy, Name);
8347
8348    TyTy = UserTy->desugar();
8349  }
8350
8351  // Strip parens if necessary.
8352  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
8353    return shouldNotPrintDirectly(Context,
8354                                  PE->getSubExpr()->getType(),
8355                                  PE->getSubExpr());
8356
8357  // If this is a conditional expression, then its result type is constructed
8358  // via usual arithmetic conversions and thus there might be no necessary
8359  // typedef sugar there.  Recurse to operands to check for NSInteger &
8360  // Co. usage condition.
8361  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8362    QualType TrueTy, FalseTy;
8363    StringRef TrueName, FalseName;
8364
8365    std::tie(TrueTy, TrueName) =
8366      shouldNotPrintDirectly(Context,
8367                             CO->getTrueExpr()->getType(),
8368                             CO->getTrueExpr());
8369    std::tie(FalseTy, FalseName) =
8370      shouldNotPrintDirectly(Context,
8371                             CO->getFalseExpr()->getType(),
8372                             CO->getFalseExpr());
8373
8374    if (TrueTy == FalseTy)
8375      return std::make_pair(TrueTy, TrueName);
8376    else if (TrueTy.isNull())
8377      return std::make_pair(FalseTy, FalseName);
8378    else if (FalseTy.isNull())
8379      return std::make_pair(TrueTy, TrueName);
8380  }
8381
8382  return std::make_pair(QualType(), StringRef());
8383}
8384
8385/// Return true if \p ICE is an implicit argument promotion of an arithmetic
8386/// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
8387/// type do not count.
8388static bool
8389isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
8390  QualType From = ICE->getSubExpr()->getType();
8391  QualType To = ICE->getType();
8392  // It's an integer promotion if the destination type is the promoted
8393  // source type.
8394  if (ICE->getCastKind() == CK_IntegralCast &&
8395      From->isPromotableIntegerType() &&
8396      S.Context.getPromotedIntegerType(From) == To)
8397    return true;
8398  // Look through vector types, since we do default argument promotion for
8399  // those in OpenCL.
8400  if (const auto *VecTy = From->getAs<ExtVectorType>())
8401    From = VecTy->getElementType();
8402  if (const auto *VecTy = To->getAs<ExtVectorType>())
8403    To = VecTy->getElementType();
8404  // It's a floating promotion if the source type is a lower rank.
8405  return ICE->getCastKind() == CK_FloatingCast &&
8406         S.Context.getFloatingTypeOrder(From, To) < 0;
8407}
8408
8409bool
8410CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8411                                    const char *StartSpecifier,
8412                                    unsigned SpecifierLen,
8413                                    const Expr *E) {
8414  using namespace analyze_format_string;
8415  using namespace analyze_printf;
8416
8417  // Now type check the data expression that matches the
8418  // format specifier.
8419  const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
8420  if (!AT.isValid())
8421    return true;
8422
8423  QualType ExprTy = E->getType();
8424  while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
8425    ExprTy = TET->getUnderlyingExpr()->getType();
8426  }
8427
8428  // Diagnose attempts to print a boolean value as a character. Unlike other
8429  // -Wformat diagnostics, this is fine from a type perspective, but it still
8430  // doesn't make sense.
8431  if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
8432      E->isKnownToHaveBooleanValue()) {
8433    const CharSourceRange &CSR =
8434        getSpecifierRange(StartSpecifier, SpecifierLen);
8435    SmallString<4> FSString;
8436    llvm::raw_svector_ostream os(FSString);
8437    FS.toString(os);
8438    EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
8439                             << FSString,
8440                         E->getExprLoc(), false, CSR);
8441    return true;
8442  }
8443
8444  analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
8445  if (Match == analyze_printf::ArgType::Match)
8446    return true;
8447
8448  // Look through argument promotions for our error message's reported type.
8449  // This includes the integral and floating promotions, but excludes array
8450  // and function pointer decay (seeing that an argument intended to be a
8451  // string has type 'char [6]' is probably more confusing than 'char *') and
8452  // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
8453  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
8454    if (isArithmeticArgumentPromotion(S, ICE)) {
8455      E = ICE->getSubExpr();
8456      ExprTy = E->getType();
8457
8458      // Check if we didn't match because of an implicit cast from a 'char'
8459      // or 'short' to an 'int'.  This is done because printf is a varargs
8460      // function.
8461      if (ICE->getType() == S.Context.IntTy ||
8462          ICE->getType() == S.Context.UnsignedIntTy) {
8463        // All further checking is done on the subexpression
8464        const analyze_printf::ArgType::MatchKind ImplicitMatch =
8465            AT.matchesType(S.Context, ExprTy);
8466        if (ImplicitMatch == analyze_printf::ArgType::Match)
8467          return true;
8468        if (ImplicitMatch == ArgType::NoMatchPedantic ||
8469            ImplicitMatch == ArgType::NoMatchTypeConfusion)
8470          Match = ImplicitMatch;
8471      }
8472    }
8473  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
8474    // Special case for 'a', which has type 'int' in C.
8475    // Note, however, that we do /not/ want to treat multibyte constants like
8476    // 'MooV' as characters! This form is deprecated but still exists.
8477    if (ExprTy == S.Context.IntTy)
8478      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
8479        ExprTy = S.Context.CharTy;
8480  }
8481
8482  // Look through enums to their underlying type.
8483  bool IsEnum = false;
8484  if (auto EnumTy = ExprTy->getAs<EnumType>()) {
8485    ExprTy = EnumTy->getDecl()->getIntegerType();
8486    IsEnum = true;
8487  }
8488
8489  // %C in an Objective-C context prints a unichar, not a wchar_t.
8490  // If the argument is an integer of some kind, believe the %C and suggest
8491  // a cast instead of changing the conversion specifier.
8492  QualType IntendedTy = ExprTy;
8493  if (isObjCContext() &&
8494      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
8495    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
8496        !ExprTy->isCharType()) {
8497      // 'unichar' is defined as a typedef of unsigned short, but we should
8498      // prefer using the typedef if it is visible.
8499      IntendedTy = S.Context.UnsignedShortTy;
8500
8501      // While we are here, check if the value is an IntegerLiteral that happens
8502      // to be within the valid range.
8503      if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
8504        const llvm::APInt &V = IL->getValue();
8505        if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
8506          return true;
8507      }
8508
8509      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
8510                          Sema::LookupOrdinaryName);
8511      if (S.LookupName(Result, S.getCurScope())) {
8512        NamedDecl *ND = Result.getFoundDecl();
8513        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
8514          if (TD->getUnderlyingType() == IntendedTy)
8515            IntendedTy = S.Context.getTypedefType(TD);
8516      }
8517    }
8518  }
8519
8520  // Special-case some of Darwin's platform-independence types by suggesting
8521  // casts to primitive types that are known to be large enough.
8522  bool ShouldNotPrintDirectly = false; StringRef CastTyName;
8523  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
8524    QualType CastTy;
8525    std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
8526    if (!CastTy.isNull()) {
8527      // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
8528      // (long in ASTContext). Only complain to pedants.
8529      if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
8530          (AT.isSizeT() || AT.isPtrdiffT()) &&
8531          AT.matchesType(S.Context, CastTy))
8532        Match = ArgType::NoMatchPedantic;
8533      IntendedTy = CastTy;
8534      ShouldNotPrintDirectly = true;
8535    }
8536  }
8537
8538  // We may be able to offer a FixItHint if it is a supported type.
8539  PrintfSpecifier fixedFS = FS;
8540  bool Success =
8541      fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
8542
8543  if (Success) {
8544    // Get the fix string from the fixed format specifier
8545    SmallString<16> buf;
8546    llvm::raw_svector_ostream os(buf);
8547    fixedFS.toString(os);
8548
8549    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
8550
8551    if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
8552      unsigned Diag;
8553      switch (Match) {
8554      case ArgType::Match: llvm_unreachable("expected non-matching");
8555      case ArgType::NoMatchPedantic:
8556        Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8557        break;
8558      case ArgType::NoMatchTypeConfusion:
8559        Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8560        break;
8561      case ArgType::NoMatch:
8562        Diag = diag::warn_format_conversion_argument_type_mismatch;
8563        break;
8564      }
8565
8566      // In this case, the specifier is wrong and should be changed to match
8567      // the argument.
8568      EmitFormatDiagnostic(S.PDiag(Diag)
8569                               << AT.getRepresentativeTypeName(S.Context)
8570                               << IntendedTy << IsEnum << E->getSourceRange(),
8571                           E->getBeginLoc(),
8572                           /*IsStringLocation*/ false, SpecRange,
8573                           FixItHint::CreateReplacement(SpecRange, os.str()));
8574    } else {
8575      // The canonical type for formatting this value is different from the
8576      // actual type of the expression. (This occurs, for example, with Darwin's
8577      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
8578      // should be printed as 'long' for 64-bit compatibility.)
8579      // Rather than emitting a normal format/argument mismatch, we want to
8580      // add a cast to the recommended type (and correct the format string
8581      // if necessary).
8582      SmallString<16> CastBuf;
8583      llvm::raw_svector_ostream CastFix(CastBuf);
8584      CastFix << "(";
8585      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
8586      CastFix << ")";
8587
8588      SmallVector<FixItHint,4> Hints;
8589      if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
8590        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
8591
8592      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
8593        // If there's already a cast present, just replace it.
8594        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
8595        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
8596
8597      } else if (!requiresParensToAddCast(E)) {
8598        // If the expression has high enough precedence,
8599        // just write the C-style cast.
8600        Hints.push_back(
8601            FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8602      } else {
8603        // Otherwise, add parens around the expression as well as the cast.
8604        CastFix << "(";
8605        Hints.push_back(
8606            FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8607
8608        SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
8609        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
8610      }
8611
8612      if (ShouldNotPrintDirectly) {
8613        // The expression has a type that should not be printed directly.
8614        // We extract the name from the typedef because we don't want to show
8615        // the underlying type in the diagnostic.
8616        StringRef Name;
8617        if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
8618          Name = TypedefTy->getDecl()->getName();
8619        else
8620          Name = CastTyName;
8621        unsigned Diag = Match == ArgType::NoMatchPedantic
8622                            ? diag::warn_format_argument_needs_cast_pedantic
8623                            : diag::warn_format_argument_needs_cast;
8624        EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
8625                                           << E->getSourceRange(),
8626                             E->getBeginLoc(), /*IsStringLocation=*/false,
8627                             SpecRange, Hints);
8628      } else {
8629        // In this case, the expression could be printed using a different
8630        // specifier, but we've decided that the specifier is probably correct
8631        // and we should cast instead. Just use the normal warning message.
8632        EmitFormatDiagnostic(
8633            S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8634                << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
8635                << E->getSourceRange(),
8636            E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
8637      }
8638    }
8639  } else {
8640    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
8641                                                   SpecifierLen);
8642    // Since the warning for passing non-POD types to variadic functions
8643    // was deferred until now, we emit a warning for non-POD
8644    // arguments here.
8645    switch (S.isValidVarArgType(ExprTy)) {
8646    case Sema::VAK_Valid:
8647    case Sema::VAK_ValidInCXX11: {
8648      unsigned Diag;
8649      switch (Match) {
8650      case ArgType::Match: llvm_unreachable("expected non-matching");
8651      case ArgType::NoMatchPedantic:
8652        Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8653        break;
8654      case ArgType::NoMatchTypeConfusion:
8655        Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8656        break;
8657      case ArgType::NoMatch:
8658        Diag = diag::warn_format_conversion_argument_type_mismatch;
8659        break;
8660      }
8661
8662      EmitFormatDiagnostic(
8663          S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
8664                        << IsEnum << CSR << E->getSourceRange(),
8665          E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8666      break;
8667    }
8668    case Sema::VAK_Undefined:
8669    case Sema::VAK_MSVCUndefined:
8670      EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
8671                               << S.getLangOpts().CPlusPlus11 << ExprTy
8672                               << CallType
8673                               << AT.getRepresentativeTypeName(S.Context) << CSR
8674                               << E->getSourceRange(),
8675                           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8676      checkForCStrMembers(AT, E);
8677      break;
8678
8679    case Sema::VAK_Invalid:
8680      if (ExprTy->isObjCObjectType())
8681        EmitFormatDiagnostic(
8682            S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
8683                << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
8684                << AT.getRepresentativeTypeName(S.Context) << CSR
8685                << E->getSourceRange(),
8686            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8687      else
8688        // FIXME: If this is an initializer list, suggest removing the braces
8689        // or inserting a cast to the target type.
8690        S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
8691            << isa<InitListExpr>(E) << ExprTy << CallType
8692            << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
8693      break;
8694    }
8695
8696    assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
8697           "format string specifier index out of range");
8698    CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
8699  }
8700
8701  return true;
8702}
8703
8704//===--- CHECK: Scanf format string checking ------------------------------===//
8705
8706namespace {
8707
8708class CheckScanfHandler : public CheckFormatHandler {
8709public:
8710  CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
8711                    const Expr *origFormatExpr, Sema::FormatStringType type,
8712                    unsigned firstDataArg, unsigned numDataArgs,
8713                    const char *beg, bool hasVAListArg,
8714                    ArrayRef<const Expr *> Args, unsigned formatIdx,
8715                    bool inFunctionCall, Sema::VariadicCallType CallType,
8716                    llvm::SmallBitVector &CheckedVarArgs,
8717                    UncoveredArgHandler &UncoveredArg)
8718      : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8719                           numDataArgs, beg, hasVAListArg, Args, formatIdx,
8720                           inFunctionCall, CallType, CheckedVarArgs,
8721                           UncoveredArg) {}
8722
8723  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
8724                            const char *startSpecifier,
8725                            unsigned specifierLen) override;
8726
8727  bool HandleInvalidScanfConversionSpecifier(
8728          const analyze_scanf::ScanfSpecifier &FS,
8729          const char *startSpecifier,
8730          unsigned specifierLen) override;
8731
8732  void HandleIncompleteScanList(const char *start, const char *end) override;
8733};
8734
8735} // namespace
8736
8737void CheckScanfHandler::HandleIncompleteScanList(const char *start,
8738                                                 const char *end) {
8739  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
8740                       getLocationOfByte(end), /*IsStringLocation*/true,
8741                       getSpecifierRange(start, end - start));
8742}
8743
8744bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
8745                                        const analyze_scanf::ScanfSpecifier &FS,
8746                                        const char *startSpecifier,
8747                                        unsigned specifierLen) {
8748  const analyze_scanf::ScanfConversionSpecifier &CS =
8749    FS.getConversionSpecifier();
8750
8751  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8752                                          getLocationOfByte(CS.getStart()),
8753                                          startSpecifier, specifierLen,
8754                                          CS.getStart(), CS.getLength());
8755}
8756
8757bool CheckScanfHandler::HandleScanfSpecifier(
8758                                       const analyze_scanf::ScanfSpecifier &FS,
8759                                       const char *startSpecifier,
8760                                       unsigned specifierLen) {
8761  using namespace analyze_scanf;
8762  using namespace analyze_format_string;
8763
8764  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
8765
8766  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
8767  // be used to decide if we are using positional arguments consistently.
8768  if (FS.consumesDataArgument()) {
8769    if (atFirstArg) {
8770      atFirstArg = false;
8771      usesPositionalArgs = FS.usesPositionalArg();
8772    }
8773    else if (usesPositionalArgs != FS.usesPositionalArg()) {
8774      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8775                                        startSpecifier, specifierLen);
8776      return false;
8777    }
8778  }
8779
8780  // Check if the field with is non-zero.
8781  const OptionalAmount &Amt = FS.getFieldWidth();
8782  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
8783    if (Amt.getConstantAmount() == 0) {
8784      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
8785                                                   Amt.getConstantLength());
8786      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
8787                           getLocationOfByte(Amt.getStart()),
8788                           /*IsStringLocation*/true, R,
8789                           FixItHint::CreateRemoval(R));
8790    }
8791  }
8792
8793  if (!FS.consumesDataArgument()) {
8794    // FIXME: Technically specifying a precision or field width here
8795    // makes no sense.  Worth issuing a warning at some point.
8796    return true;
8797  }
8798
8799  // Consume the argument.
8800  unsigned argIndex = FS.getArgIndex();
8801  if (argIndex < NumDataArgs) {
8802      // The check to see if the argIndex is valid will come later.
8803      // We set the bit here because we may exit early from this
8804      // function if we encounter some other error.
8805    CoveredArgs.set(argIndex);
8806  }
8807
8808  // Check the length modifier is valid with the given conversion specifier.
8809  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8810                                 S.getLangOpts()))
8811    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8812                                diag::warn_format_nonsensical_length);
8813  else if (!FS.hasStandardLengthModifier())
8814    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8815  else if (!FS.hasStandardLengthConversionCombination())
8816    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8817                                diag::warn_format_non_standard_conversion_spec);
8818
8819  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8820    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8821
8822  // The remaining checks depend on the data arguments.
8823  if (HasVAListArg)
8824    return true;
8825
8826  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8827    return false;
8828
8829  // Check that the argument type matches the format specifier.
8830  const Expr *Ex = getDataArg(argIndex);
8831  if (!Ex)
8832    return true;
8833
8834  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
8835
8836  if (!AT.isValid()) {
8837    return true;
8838  }
8839
8840  analyze_format_string::ArgType::MatchKind Match =
8841      AT.matchesType(S.Context, Ex->getType());
8842  bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
8843  if (Match == analyze_format_string::ArgType::Match)
8844    return true;
8845
8846  ScanfSpecifier fixedFS = FS;
8847  bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
8848                                 S.getLangOpts(), S.Context);
8849
8850  unsigned Diag =
8851      Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
8852               : diag::warn_format_conversion_argument_type_mismatch;
8853
8854  if (Success) {
8855    // Get the fix string from the fixed format specifier.
8856    SmallString<128> buf;
8857    llvm::raw_svector_ostream os(buf);
8858    fixedFS.toString(os);
8859
8860    EmitFormatDiagnostic(
8861        S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
8862                      << Ex->getType() << false << Ex->getSourceRange(),
8863        Ex->getBeginLoc(),
8864        /*IsStringLocation*/ false,
8865        getSpecifierRange(startSpecifier, specifierLen),
8866        FixItHint::CreateReplacement(
8867            getSpecifierRange(startSpecifier, specifierLen), os.str()));
8868  } else {
8869    EmitFormatDiagnostic(S.PDiag(Diag)
8870                             << AT.getRepresentativeTypeName(S.Context)
8871                             << Ex->getType() << false << Ex->getSourceRange(),
8872                         Ex->getBeginLoc(),
8873                         /*IsStringLocation*/ false,
8874                         getSpecifierRange(startSpecifier, specifierLen));
8875  }
8876
8877  return true;
8878}
8879
8880static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
8881                              const Expr *OrigFormatExpr,
8882                              ArrayRef<const Expr *> Args,
8883                              bool HasVAListArg, unsigned format_idx,
8884                              unsigned firstDataArg,
8885                              Sema::FormatStringType Type,
8886                              bool inFunctionCall,
8887                              Sema::VariadicCallType CallType,
8888                              llvm::SmallBitVector &CheckedVarArgs,
8889                              UncoveredArgHandler &UncoveredArg,
8890                              bool IgnoreStringsWithoutSpecifiers) {
8891  // CHECK: is the format string a wide literal?
8892  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
8893    CheckFormatHandler::EmitFormatDiagnostic(
8894        S, inFunctionCall, Args[format_idx],
8895        S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
8896        /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
8897    return;
8898  }
8899
8900  // Str - The format string.  NOTE: this is NOT null-terminated!
8901  StringRef StrRef = FExpr->getString();
8902  const char *Str = StrRef.data();
8903  // Account for cases where the string literal is truncated in a declaration.
8904  const ConstantArrayType *T =
8905    S.Context.getAsConstantArrayType(FExpr->getType());
8906  assert(T && "String literal not of constant array type!");
8907  size_t TypeSize = T->getSize().getZExtValue();
8908  size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8909  const unsigned numDataArgs = Args.size() - firstDataArg;
8910
8911  if (IgnoreStringsWithoutSpecifiers &&
8912      !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
8913          Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
8914    return;
8915
8916  // Emit a warning if the string literal is truncated and does not contain an
8917  // embedded null character.
8918  if (TypeSize <= StrRef.size() &&
8919      StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
8920    CheckFormatHandler::EmitFormatDiagnostic(
8921        S, inFunctionCall, Args[format_idx],
8922        S.PDiag(diag::warn_printf_format_string_not_null_terminated),
8923        FExpr->getBeginLoc(),
8924        /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
8925    return;
8926  }
8927
8928  // CHECK: empty format string?
8929  if (StrLen == 0 && numDataArgs > 0) {
8930    CheckFormatHandler::EmitFormatDiagnostic(
8931        S, inFunctionCall, Args[format_idx],
8932        S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
8933        /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
8934    return;
8935  }
8936
8937  if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
8938      Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
8939      Type == Sema::FST_OSTrace) {
8940    CheckPrintfHandler H(
8941        S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
8942        (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
8943        HasVAListArg, Args, format_idx, inFunctionCall, CallType,
8944        CheckedVarArgs, UncoveredArg);
8945
8946    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
8947                                                  S.getLangOpts(),
8948                                                  S.Context.getTargetInfo(),
8949                                            Type == Sema::FST_FreeBSDKPrintf))
8950      H.DoneProcessing();
8951  } else if (Type == Sema::FST_Scanf) {
8952    CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
8953                        numDataArgs, Str, HasVAListArg, Args, format_idx,
8954                        inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
8955
8956    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
8957                                                 S.getLangOpts(),
8958                                                 S.Context.getTargetInfo()))
8959      H.DoneProcessing();
8960  } // TODO: handle other formats
8961}
8962
8963bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
8964  // Str - The format string.  NOTE: this is NOT null-terminated!
8965  StringRef StrRef = FExpr->getString();
8966  const char *Str = StrRef.data();
8967  // Account for cases where the string literal is truncated in a declaration.
8968  const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
8969  assert(T && "String literal not of constant array type!");
8970  size_t TypeSize = T->getSize().getZExtValue();
8971  size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8972  return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
8973                                                         getLangOpts(),
8974                                                         Context.getTargetInfo());
8975}
8976
8977//===--- CHECK: Warn on use of wrong absolute value function. -------------===//
8978
8979// Returns the related absolute value function that is larger, of 0 if one
8980// does not exist.
8981static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
8982  switch (AbsFunction) {
8983  default:
8984    return 0;
8985
8986  case Builtin::BI__builtin_abs:
8987    return Builtin::BI__builtin_labs;
8988  case Builtin::BI__builtin_labs:
8989    return Builtin::BI__builtin_llabs;
8990  case Builtin::BI__builtin_llabs:
8991    return 0;
8992
8993  case Builtin::BI__builtin_fabsf:
8994    return Builtin::BI__builtin_fabs;
8995  case Builtin::BI__builtin_fabs:
8996    return Builtin::BI__builtin_fabsl;
8997  case Builtin::BI__builtin_fabsl:
8998    return 0;
8999
9000  case Builtin::BI__builtin_cabsf:
9001    return Builtin::BI__builtin_cabs;
9002  case Builtin::BI__builtin_cabs:
9003    return Builtin::BI__builtin_cabsl;
9004  case Builtin::BI__builtin_cabsl:
9005    return 0;
9006
9007  case Builtin::BIabs:
9008    return Builtin::BIlabs;
9009  case Builtin::BIlabs:
9010    return Builtin::BIllabs;
9011  case Builtin::BIllabs:
9012    return 0;
9013
9014  case Builtin::BIfabsf:
9015    return Builtin::BIfabs;
9016  case Builtin::BIfabs:
9017    return Builtin::BIfabsl;
9018  case Builtin::BIfabsl:
9019    return 0;
9020
9021  case Builtin::BIcabsf:
9022   return Builtin::BIcabs;
9023  case Builtin::BIcabs:
9024    return Builtin::BIcabsl;
9025  case Builtin::BIcabsl:
9026    return 0;
9027  }
9028}
9029
9030// Returns the argument type of the absolute value function.
9031static QualType getAbsoluteValueArgumentType(ASTContext &Context,
9032                                             unsigned AbsType) {
9033  if (AbsType == 0)
9034    return QualType();
9035
9036  ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
9037  QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
9038  if (Error != ASTContext::GE_None)
9039    return QualType();
9040
9041  const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
9042  if (!FT)
9043    return QualType();
9044
9045  if (FT->getNumParams() != 1)
9046    return QualType();
9047
9048  return FT->getParamType(0);
9049}
9050
9051// Returns the best absolute value function, or zero, based on type and
9052// current absolute value function.
9053static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
9054                                   unsigned AbsFunctionKind) {
9055  unsigned BestKind = 0;
9056  uint64_t ArgSize = Context.getTypeSize(ArgType);
9057  for (unsigned Kind = AbsFunctionKind; Kind != 0;
9058       Kind = getLargerAbsoluteValueFunction(Kind)) {
9059    QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
9060    if (Context.getTypeSize(ParamType) >= ArgSize) {
9061      if (BestKind == 0)
9062        BestKind = Kind;
9063      else if (Context.hasSameType(ParamType, ArgType)) {
9064        BestKind = Kind;
9065        break;
9066      }
9067    }
9068  }
9069  return BestKind;
9070}
9071
9072enum AbsoluteValueKind {
9073  AVK_Integer,
9074  AVK_Floating,
9075  AVK_Complex
9076};
9077
9078static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
9079  if (T->isIntegralOrEnumerationType())
9080    return AVK_Integer;
9081  if (T->isRealFloatingType())
9082    return AVK_Floating;
9083  if (T->isAnyComplexType())
9084    return AVK_Complex;
9085
9086  llvm_unreachable("Type not integer, floating, or complex");
9087}
9088
9089// Changes the absolute value function to a different type.  Preserves whether
9090// the function is a builtin.
9091static unsigned changeAbsFunction(unsigned AbsKind,
9092                                  AbsoluteValueKind ValueKind) {
9093  switch (ValueKind) {
9094  case AVK_Integer:
9095    switch (AbsKind) {
9096    default:
9097      return 0;
9098    case Builtin::BI__builtin_fabsf:
9099    case Builtin::BI__builtin_fabs:
9100    case Builtin::BI__builtin_fabsl:
9101    case Builtin::BI__builtin_cabsf:
9102    case Builtin::BI__builtin_cabs:
9103    case Builtin::BI__builtin_cabsl:
9104      return Builtin::BI__builtin_abs;
9105    case Builtin::BIfabsf:
9106    case Builtin::BIfabs:
9107    case Builtin::BIfabsl:
9108    case Builtin::BIcabsf:
9109    case Builtin::BIcabs:
9110    case Builtin::BIcabsl:
9111      return Builtin::BIabs;
9112    }
9113  case AVK_Floating:
9114    switch (AbsKind) {
9115    default:
9116      return 0;
9117    case Builtin::BI__builtin_abs:
9118    case Builtin::BI__builtin_labs:
9119    case Builtin::BI__builtin_llabs:
9120    case Builtin::BI__builtin_cabsf:
9121    case Builtin::BI__builtin_cabs:
9122    case Builtin::BI__builtin_cabsl:
9123      return Builtin::BI__builtin_fabsf;
9124    case Builtin::BIabs:
9125    case Builtin::BIlabs:
9126    case Builtin::BIllabs:
9127    case Builtin::BIcabsf:
9128    case Builtin::BIcabs:
9129    case Builtin::BIcabsl:
9130      return Builtin::BIfabsf;
9131    }
9132  case AVK_Complex:
9133    switch (AbsKind) {
9134    default:
9135      return 0;
9136    case Builtin::BI__builtin_abs:
9137    case Builtin::BI__builtin_labs:
9138    case Builtin::BI__builtin_llabs:
9139    case Builtin::BI__builtin_fabsf:
9140    case Builtin::BI__builtin_fabs:
9141    case Builtin::BI__builtin_fabsl:
9142      return Builtin::BI__builtin_cabsf;
9143    case Builtin::BIabs:
9144    case Builtin::BIlabs:
9145    case Builtin::BIllabs:
9146    case Builtin::BIfabsf:
9147    case Builtin::BIfabs:
9148    case Builtin::BIfabsl:
9149      return Builtin::BIcabsf;
9150    }
9151  }
9152  llvm_unreachable("Unable to convert function");
9153}
9154
9155static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
9156  const IdentifierInfo *FnInfo = FDecl->getIdentifier();
9157  if (!FnInfo)
9158    return 0;
9159
9160  switch (FDecl->getBuiltinID()) {
9161  default:
9162    return 0;
9163  case Builtin::BI__builtin_abs:
9164  case Builtin::BI__builtin_fabs:
9165  case Builtin::BI__builtin_fabsf:
9166  case Builtin::BI__builtin_fabsl:
9167  case Builtin::BI__builtin_labs:
9168  case Builtin::BI__builtin_llabs:
9169  case Builtin::BI__builtin_cabs:
9170  case Builtin::BI__builtin_cabsf:
9171  case Builtin::BI__builtin_cabsl:
9172  case Builtin::BIabs:
9173  case Builtin::BIlabs:
9174  case Builtin::BIllabs:
9175  case Builtin::BIfabs:
9176  case Builtin::BIfabsf:
9177  case Builtin::BIfabsl:
9178  case Builtin::BIcabs:
9179  case Builtin::BIcabsf:
9180  case Builtin::BIcabsl:
9181    return FDecl->getBuiltinID();
9182  }
9183  llvm_unreachable("Unknown Builtin type");
9184}
9185
9186// If the replacement is valid, emit a note with replacement function.
9187// Additionally, suggest including the proper header if not already included.
9188static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
9189                            unsigned AbsKind, QualType ArgType) {
9190  bool EmitHeaderHint = true;
9191  const char *HeaderName = nullptr;
9192  const char *FunctionName = nullptr;
9193  if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
9194    FunctionName = "std::abs";
9195    if (ArgType->isIntegralOrEnumerationType()) {
9196      HeaderName = "cstdlib";
9197    } else if (ArgType->isRealFloatingType()) {
9198      HeaderName = "cmath";
9199    } else {
9200      llvm_unreachable("Invalid Type");
9201    }
9202
9203    // Lookup all std::abs
9204    if (NamespaceDecl *Std = S.getStdNamespace()) {
9205      LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
9206      R.suppressDiagnostics();
9207      S.LookupQualifiedName(R, Std);
9208
9209      for (const auto *I : R) {
9210        const FunctionDecl *FDecl = nullptr;
9211        if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
9212          FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
9213        } else {
9214          FDecl = dyn_cast<FunctionDecl>(I);
9215        }
9216        if (!FDecl)
9217          continue;
9218
9219        // Found std::abs(), check that they are the right ones.
9220        if (FDecl->getNumParams() != 1)
9221          continue;
9222
9223        // Check that the parameter type can handle the argument.
9224        QualType ParamType = FDecl->getParamDecl(0)->getType();
9225        if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
9226            S.Context.getTypeSize(ArgType) <=
9227                S.Context.getTypeSize(ParamType)) {
9228          // Found a function, don't need the header hint.
9229          EmitHeaderHint = false;
9230          break;
9231        }
9232      }
9233    }
9234  } else {
9235    FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
9236    HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
9237
9238    if (HeaderName) {
9239      DeclarationName DN(&S.Context.Idents.get(FunctionName));
9240      LookupResult R(S, DN, Loc, Sema::LookupAnyName);
9241      R.suppressDiagnostics();
9242      S.LookupName(R, S.getCurScope());
9243
9244      if (R.isSingleResult()) {
9245        FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
9246        if (FD && FD->getBuiltinID() == AbsKind) {
9247          EmitHeaderHint = false;
9248        } else {
9249          return;
9250        }
9251      } else if (!R.empty()) {
9252        return;
9253      }
9254    }
9255  }
9256
9257  S.Diag(Loc, diag::note_replace_abs_function)
9258      << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
9259
9260  if (!HeaderName)
9261    return;
9262
9263  if (!EmitHeaderHint)
9264    return;
9265
9266  S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
9267                                                    << FunctionName;
9268}
9269
9270template <std::size_t StrLen>
9271static bool IsStdFunction(const FunctionDecl *FDecl,
9272                          const char (&Str)[StrLen]) {
9273  if (!FDecl)
9274    return false;
9275  if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
9276    return false;
9277  if (!FDecl->isInStdNamespace())
9278    return false;
9279
9280  return true;
9281}
9282
9283// Warn when using the wrong abs() function.
9284void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
9285                                      const FunctionDecl *FDecl) {
9286  if (Call->getNumArgs() != 1)
9287    return;
9288
9289  unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
9290  bool IsStdAbs = IsStdFunction(FDecl, "abs");
9291  if (AbsKind == 0 && !IsStdAbs)
9292    return;
9293
9294  QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9295  QualType ParamType = Call->getArg(0)->getType();
9296
9297  // Unsigned types cannot be negative.  Suggest removing the absolute value
9298  // function call.
9299  if (ArgType->isUnsignedIntegerType()) {
9300    const char *FunctionName =
9301        IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
9302    Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
9303    Diag(Call->getExprLoc(), diag::note_remove_abs)
9304        << FunctionName
9305        << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
9306    return;
9307  }
9308
9309  // Taking the absolute value of a pointer is very suspicious, they probably
9310  // wanted to index into an array, dereference a pointer, call a function, etc.
9311  if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
9312    unsigned DiagType = 0;
9313    if (ArgType->isFunctionType())
9314      DiagType = 1;
9315    else if (ArgType->isArrayType())
9316      DiagType = 2;
9317
9318    Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
9319    return;
9320  }
9321
9322  // std::abs has overloads which prevent most of the absolute value problems
9323  // from occurring.
9324  if (IsStdAbs)
9325    return;
9326
9327  AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
9328  AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
9329
9330  // The argument and parameter are the same kind.  Check if they are the right
9331  // size.
9332  if (ArgValueKind == ParamValueKind) {
9333    if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
9334      return;
9335
9336    unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
9337    Diag(Call->getExprLoc(), diag::warn_abs_too_small)
9338        << FDecl << ArgType << ParamType;
9339
9340    if (NewAbsKind == 0)
9341      return;
9342
9343    emitReplacement(*this, Call->getExprLoc(),
9344                    Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9345    return;
9346  }
9347
9348  // ArgValueKind != ParamValueKind
9349  // The wrong type of absolute value function was used.  Attempt to find the
9350  // proper one.
9351  unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
9352  NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
9353  if (NewAbsKind == 0)
9354    return;
9355
9356  Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
9357      << FDecl << ParamValueKind << ArgValueKind;
9358
9359  emitReplacement(*this, Call->getExprLoc(),
9360                  Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9361}
9362
9363//===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
9364void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
9365                                const FunctionDecl *FDecl) {
9366  if (!Call || !FDecl) return;
9367
9368  // Ignore template specializations and macros.
9369  if (inTemplateInstantiation()) return;
9370  if (Call->getExprLoc().isMacroID()) return;
9371
9372  // Only care about the one template argument, two function parameter std::max
9373  if (Call->getNumArgs() != 2) return;
9374  if (!IsStdFunction(FDecl, "max")) return;
9375  const auto * ArgList = FDecl->getTemplateSpecializationArgs();
9376  if (!ArgList) return;
9377  if (ArgList->size() != 1) return;
9378
9379  // Check that template type argument is unsigned integer.
9380  const auto& TA = ArgList->get(0);
9381  if (TA.getKind() != TemplateArgument::Type) return;
9382  QualType ArgType = TA.getAsType();
9383  if (!ArgType->isUnsignedIntegerType()) return;
9384
9385  // See if either argument is a literal zero.
9386  auto IsLiteralZeroArg = [](const Expr* E) -> bool {
9387    const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
9388    if (!MTE) return false;
9389    const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
9390    if (!Num) return false;
9391    if (Num->getValue() != 0) return false;
9392    return true;
9393  };
9394
9395  const Expr *FirstArg = Call->getArg(0);
9396  const Expr *SecondArg = Call->getArg(1);
9397  const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
9398  const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
9399
9400  // Only warn when exactly one argument is zero.
9401  if (IsFirstArgZero == IsSecondArgZero) return;
9402
9403  SourceRange FirstRange = FirstArg->getSourceRange();
9404  SourceRange SecondRange = SecondArg->getSourceRange();
9405
9406  SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
9407
9408  Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
9409      << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
9410
9411  // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
9412  SourceRange RemovalRange;
9413  if (IsFirstArgZero) {
9414    RemovalRange = SourceRange(FirstRange.getBegin(),
9415                               SecondRange.getBegin().getLocWithOffset(-1));
9416  } else {
9417    RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
9418                               SecondRange.getEnd());
9419  }
9420
9421  Diag(Call->getExprLoc(), diag::note_remove_max_call)
9422        << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
9423        << FixItHint::CreateRemoval(RemovalRange);
9424}
9425
9426//===--- CHECK: Standard memory functions ---------------------------------===//
9427
9428/// Takes the expression passed to the size_t parameter of functions
9429/// such as memcmp, strncat, etc and warns if it's a comparison.
9430///
9431/// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
9432static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
9433                                           IdentifierInfo *FnName,
9434                                           SourceLocation FnLoc,
9435                                           SourceLocation RParenLoc) {
9436  const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
9437  if (!Size)
9438    return false;
9439
9440  // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
9441  if (!Size->isComparisonOp() && !Size->isLogicalOp())
9442    return false;
9443
9444  SourceRange SizeRange = Size->getSourceRange();
9445  S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
9446      << SizeRange << FnName;
9447  S.Diag(FnLoc, diag::note_memsize_comparison_paren)
9448      << FnName
9449      << FixItHint::CreateInsertion(
9450             S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
9451      << FixItHint::CreateRemoval(RParenLoc);
9452  S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
9453      << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
9454      << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
9455                                    ")");
9456
9457  return true;
9458}
9459
9460/// Determine whether the given type is or contains a dynamic class type
9461/// (e.g., whether it has a vtable).
9462static const CXXRecordDecl *getContainedDynamicClass(QualType T,
9463                                                     bool &IsContained) {
9464  // Look through array types while ignoring qualifiers.
9465  const Type *Ty = T->getBaseElementTypeUnsafe();
9466  IsContained = false;
9467
9468  const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
9469  RD = RD ? RD->getDefinition() : nullptr;
9470  if (!RD || RD->isInvalidDecl())
9471    return nullptr;
9472
9473  if (RD->isDynamicClass())
9474    return RD;
9475
9476  // Check all the fields.  If any bases were dynamic, the class is dynamic.
9477  // It's impossible for a class to transitively contain itself by value, so
9478  // infinite recursion is impossible.
9479  for (auto *FD : RD->fields()) {
9480    bool SubContained;
9481    if (const CXXRecordDecl *ContainedRD =
9482            getContainedDynamicClass(FD->getType(), SubContained)) {
9483      IsContained = true;
9484      return ContainedRD;
9485    }
9486  }
9487
9488  return nullptr;
9489}
9490
9491static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
9492  if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
9493    if (Unary->getKind() == UETT_SizeOf)
9494      return Unary;
9495  return nullptr;
9496}
9497
9498/// If E is a sizeof expression, returns its argument expression,
9499/// otherwise returns NULL.
9500static const Expr *getSizeOfExprArg(const Expr *E) {
9501  if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9502    if (!SizeOf->isArgumentType())
9503      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
9504  return nullptr;
9505}
9506
9507/// If E is a sizeof expression, returns its argument type.
9508static QualType getSizeOfArgType(const Expr *E) {
9509  if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9510    return SizeOf->getTypeOfArgument();
9511  return QualType();
9512}
9513
9514namespace {
9515
9516struct SearchNonTrivialToInitializeField
9517    : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
9518  using Super =
9519      DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
9520
9521  SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
9522
9523  void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
9524                     SourceLocation SL) {
9525    if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9526      asDerived().visitArray(PDIK, AT, SL);
9527      return;
9528    }
9529
9530    Super::visitWithKind(PDIK, FT, SL);
9531  }
9532
9533  void visitARCStrong(QualType FT, SourceLocation SL) {
9534    S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9535  }
9536  void visitARCWeak(QualType FT, SourceLocation SL) {
9537    S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9538  }
9539  void visitStruct(QualType FT, SourceLocation SL) {
9540    for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9541      visit(FD->getType(), FD->getLocation());
9542  }
9543  void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
9544                  const ArrayType *AT, SourceLocation SL) {
9545    visit(getContext().getBaseElementType(AT), SL);
9546  }
9547  void visitTrivial(QualType FT, SourceLocation SL) {}
9548
9549  static void diag(QualType RT, const Expr *E, Sema &S) {
9550    SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
9551  }
9552
9553  ASTContext &getContext() { return S.getASTContext(); }
9554
9555  const Expr *E;
9556  Sema &S;
9557};
9558
9559struct SearchNonTrivialToCopyField
9560    : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
9561  using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
9562
9563  SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
9564
9565  void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
9566                     SourceLocation SL) {
9567    if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9568      asDerived().visitArray(PCK, AT, SL);
9569      return;
9570    }
9571
9572    Super::visitWithKind(PCK, FT, SL);
9573  }
9574
9575  void visitARCStrong(QualType FT, SourceLocation SL) {
9576    S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9577  }
9578  void visitARCWeak(QualType FT, SourceLocation SL) {
9579    S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9580  }
9581  void visitStruct(QualType FT, SourceLocation SL) {
9582    for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9583      visit(FD->getType(), FD->getLocation());
9584  }
9585  void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
9586                  SourceLocation SL) {
9587    visit(getContext().getBaseElementType(AT), SL);
9588  }
9589  void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
9590                SourceLocation SL) {}
9591  void visitTrivial(QualType FT, SourceLocation SL) {}
9592  void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
9593
9594  static void diag(QualType RT, const Expr *E, Sema &S) {
9595    SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
9596  }
9597
9598  ASTContext &getContext() { return S.getASTContext(); }
9599
9600  const Expr *E;
9601  Sema &S;
9602};
9603
9604}
9605
9606/// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
9607static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
9608  SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
9609
9610  if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
9611    if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
9612      return false;
9613
9614    return doesExprLikelyComputeSize(BO->getLHS()) ||
9615           doesExprLikelyComputeSize(BO->getRHS());
9616  }
9617
9618  return getAsSizeOfExpr(SizeofExpr) != nullptr;
9619}
9620
9621/// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
9622///
9623/// \code
9624///   #define MACRO 0
9625///   foo(MACRO);
9626///   foo(0);
9627/// \endcode
9628///
9629/// This should return true for the first call to foo, but not for the second
9630/// (regardless of whether foo is a macro or function).
9631static bool isArgumentExpandedFromMacro(SourceManager &SM,
9632                                        SourceLocation CallLoc,
9633                                        SourceLocation ArgLoc) {
9634  if (!CallLoc.isMacroID())
9635    return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
9636
9637  return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
9638         SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
9639}
9640
9641/// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
9642/// last two arguments transposed.
9643static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
9644  if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
9645    return;
9646
9647  const Expr *SizeArg =
9648    Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
9649
9650  auto isLiteralZero = [](const Expr *E) {
9651    return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
9652  };
9653
9654  // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
9655  SourceLocation CallLoc = Call->getRParenLoc();
9656  SourceManager &SM = S.getSourceManager();
9657  if (isLiteralZero(SizeArg) &&
9658      !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
9659
9660    SourceLocation DiagLoc = SizeArg->getExprLoc();
9661
9662    // Some platforms #define bzero to __builtin_memset. See if this is the
9663    // case, and if so, emit a better diagnostic.
9664    if (BId == Builtin::BIbzero ||
9665        (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
9666                                    CallLoc, SM, S.getLangOpts()) == "bzero")) {
9667      S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
9668      S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
9669    } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
9670      S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
9671      S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
9672    }
9673    return;
9674  }
9675
9676  // If the second argument to a memset is a sizeof expression and the third
9677  // isn't, this is also likely an error. This should catch
9678  // 'memset(buf, sizeof(buf), 0xff)'.
9679  if (BId == Builtin::BImemset &&
9680      doesExprLikelyComputeSize(Call->getArg(1)) &&
9681      !doesExprLikelyComputeSize(Call->getArg(2))) {
9682    SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
9683    S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
9684    S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
9685    return;
9686  }
9687}
9688
9689/// Check for dangerous or invalid arguments to memset().
9690///
9691/// This issues warnings on known problematic, dangerous or unspecified
9692/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
9693/// function calls.
9694///
9695/// \param Call The call expression to diagnose.
9696void Sema::CheckMemaccessArguments(const CallExpr *Call,
9697                                   unsigned BId,
9698                                   IdentifierInfo *FnName) {
9699  assert(BId != 0);
9700
9701  // It is possible to have a non-standard definition of memset.  Validate
9702  // we have enough arguments, and if not, abort further checking.
9703  unsigned ExpectedNumArgs =
9704      (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
9705  if (Call->getNumArgs() < ExpectedNumArgs)
9706    return;
9707
9708  unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
9709                      BId == Builtin::BIstrndup ? 1 : 2);
9710  unsigned LenArg =
9711      (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
9712  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
9713
9714  if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
9715                                     Call->getBeginLoc(), Call->getRParenLoc()))
9716    return;
9717
9718  // Catch cases like 'memset(buf, sizeof(buf), 0)'.
9719  CheckMemaccessSize(*this, BId, Call);
9720
9721  // We have special checking when the length is a sizeof expression.
9722  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
9723  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
9724  llvm::FoldingSetNodeID SizeOfArgID;
9725
9726  // Although widely used, 'bzero' is not a standard function. Be more strict
9727  // with the argument types before allowing diagnostics and only allow the
9728  // form bzero(ptr, sizeof(...)).
9729  QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9730  if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
9731    return;
9732
9733  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
9734    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
9735    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
9736
9737    QualType DestTy = Dest->getType();
9738    QualType PointeeTy;
9739    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
9740      PointeeTy = DestPtrTy->getPointeeType();
9741
9742      // Never warn about void type pointers. This can be used to suppress
9743      // false positives.
9744      if (PointeeTy->isVoidType())
9745        continue;
9746
9747      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
9748      // actually comparing the expressions for equality. Because computing the
9749      // expression IDs can be expensive, we only do this if the diagnostic is
9750      // enabled.
9751      if (SizeOfArg &&
9752          !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
9753                           SizeOfArg->getExprLoc())) {
9754        // We only compute IDs for expressions if the warning is enabled, and
9755        // cache the sizeof arg's ID.
9756        if (SizeOfArgID == llvm::FoldingSetNodeID())
9757          SizeOfArg->Profile(SizeOfArgID, Context, true);
9758        llvm::FoldingSetNodeID DestID;
9759        Dest->Profile(DestID, Context, true);
9760        if (DestID == SizeOfArgID) {
9761          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
9762          //       over sizeof(src) as well.
9763          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
9764          StringRef ReadableName = FnName->getName();
9765
9766          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
9767            if (UnaryOp->getOpcode() == UO_AddrOf)
9768              ActionIdx = 1; // If its an address-of operator, just remove it.
9769          if (!PointeeTy->isIncompleteType() &&
9770              (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
9771            ActionIdx = 2; // If the pointee's size is sizeof(char),
9772                           // suggest an explicit length.
9773
9774          // If the function is defined as a builtin macro, do not show macro
9775          // expansion.
9776          SourceLocation SL = SizeOfArg->getExprLoc();
9777          SourceRange DSR = Dest->getSourceRange();
9778          SourceRange SSR = SizeOfArg->getSourceRange();
9779          SourceManager &SM = getSourceManager();
9780
9781          if (SM.isMacroArgExpansion(SL)) {
9782            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
9783            SL = SM.getSpellingLoc(SL);
9784            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
9785                             SM.getSpellingLoc(DSR.getEnd()));
9786            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
9787                             SM.getSpellingLoc(SSR.getEnd()));
9788          }
9789
9790          DiagRuntimeBehavior(SL, SizeOfArg,
9791                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
9792                                << ReadableName
9793                                << PointeeTy
9794                                << DestTy
9795                                << DSR
9796                                << SSR);
9797          DiagRuntimeBehavior(SL, SizeOfArg,
9798                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
9799                                << ActionIdx
9800                                << SSR);
9801
9802          break;
9803        }
9804      }
9805
9806      // Also check for cases where the sizeof argument is the exact same
9807      // type as the memory argument, and where it points to a user-defined
9808      // record type.
9809      if (SizeOfArgTy != QualType()) {
9810        if (PointeeTy->isRecordType() &&
9811            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
9812          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
9813                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
9814                                << FnName << SizeOfArgTy << ArgIdx
9815                                << PointeeTy << Dest->getSourceRange()
9816                                << LenExpr->getSourceRange());
9817          break;
9818        }
9819      }
9820    } else if (DestTy->isArrayType()) {
9821      PointeeTy = DestTy;
9822    }
9823
9824    if (PointeeTy == QualType())
9825      continue;
9826
9827    // Always complain about dynamic classes.
9828    bool IsContained;
9829    if (const CXXRecordDecl *ContainedRD =
9830            getContainedDynamicClass(PointeeTy, IsContained)) {
9831
9832      unsigned OperationType = 0;
9833      const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
9834      // "overwritten" if we're warning about the destination for any call
9835      // but memcmp; otherwise a verb appropriate to the call.
9836      if (ArgIdx != 0 || IsCmp) {
9837        if (BId == Builtin::BImemcpy)
9838          OperationType = 1;
9839        else if(BId == Builtin::BImemmove)
9840          OperationType = 2;
9841        else if (IsCmp)
9842          OperationType = 3;
9843      }
9844
9845      DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9846                          PDiag(diag::warn_dyn_class_memaccess)
9847                              << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
9848                              << IsContained << ContainedRD << OperationType
9849                              << Call->getCallee()->getSourceRange());
9850    } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
9851             BId != Builtin::BImemset)
9852      DiagRuntimeBehavior(
9853        Dest->getExprLoc(), Dest,
9854        PDiag(diag::warn_arc_object_memaccess)
9855          << ArgIdx << FnName << PointeeTy
9856          << Call->getCallee()->getSourceRange());
9857    else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
9858      if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
9859          RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
9860        DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9861                            PDiag(diag::warn_cstruct_memaccess)
9862                                << ArgIdx << FnName << PointeeTy << 0);
9863        SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
9864      } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
9865                 RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
9866        DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9867                            PDiag(diag::warn_cstruct_memaccess)
9868                                << ArgIdx << FnName << PointeeTy << 1);
9869        SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
9870      } else {
9871        continue;
9872      }
9873    } else
9874      continue;
9875
9876    DiagRuntimeBehavior(
9877      Dest->getExprLoc(), Dest,
9878      PDiag(diag::note_bad_memaccess_silence)
9879        << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
9880    break;
9881  }
9882}
9883
9884// A little helper routine: ignore addition and subtraction of integer literals.
9885// This intentionally does not ignore all integer constant expressions because
9886// we don't want to remove sizeof().
9887static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
9888  Ex = Ex->IgnoreParenCasts();
9889
9890  while (true) {
9891    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
9892    if (!BO || !BO->isAdditiveOp())
9893      break;
9894
9895    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
9896    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
9897
9898    if (isa<IntegerLiteral>(RHS))
9899      Ex = LHS;
9900    else if (isa<IntegerLiteral>(LHS))
9901      Ex = RHS;
9902    else
9903      break;
9904  }
9905
9906  return Ex;
9907}
9908
9909static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
9910                                                      ASTContext &Context) {
9911  // Only handle constant-sized or VLAs, but not flexible members.
9912  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
9913    // Only issue the FIXIT for arrays of size > 1.
9914    if (CAT->getSize().getSExtValue() <= 1)
9915      return false;
9916  } else if (!Ty->isVariableArrayType()) {
9917    return false;
9918  }
9919  return true;
9920}
9921
9922// Warn if the user has made the 'size' argument to strlcpy or strlcat
9923// be the size of the source, instead of the destination.
9924void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
9925                                    IdentifierInfo *FnName) {
9926
9927  // Don't crash if the user has the wrong number of arguments
9928  unsigned NumArgs = Call->getNumArgs();
9929  if ((NumArgs != 3) && (NumArgs != 4))
9930    return;
9931
9932  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
9933  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
9934  const Expr *CompareWithSrc = nullptr;
9935
9936  if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
9937                                     Call->getBeginLoc(), Call->getRParenLoc()))
9938    return;
9939
9940  // Look for 'strlcpy(dst, x, sizeof(x))'
9941  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
9942    CompareWithSrc = Ex;
9943  else {
9944    // Look for 'strlcpy(dst, x, strlen(x))'
9945    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
9946      if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
9947          SizeCall->getNumArgs() == 1)
9948        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
9949    }
9950  }
9951
9952  if (!CompareWithSrc)
9953    return;
9954
9955  // Determine if the argument to sizeof/strlen is equal to the source
9956  // argument.  In principle there's all kinds of things you could do
9957  // here, for instance creating an == expression and evaluating it with
9958  // EvaluateAsBooleanCondition, but this uses a more direct technique:
9959  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
9960  if (!SrcArgDRE)
9961    return;
9962
9963  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
9964  if (!CompareWithSrcDRE ||
9965      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
9966    return;
9967
9968  const Expr *OriginalSizeArg = Call->getArg(2);
9969  Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
9970      << OriginalSizeArg->getSourceRange() << FnName;
9971
9972  // Output a FIXIT hint if the destination is an array (rather than a
9973  // pointer to an array).  This could be enhanced to handle some
9974  // pointers if we know the actual size, like if DstArg is 'array+2'
9975  // we could say 'sizeof(array)-2'.
9976  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
9977  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
9978    return;
9979
9980  SmallString<128> sizeString;
9981  llvm::raw_svector_ostream OS(sizeString);
9982  OS << "sizeof(";
9983  DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9984  OS << ")";
9985
9986  Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
9987      << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
9988                                      OS.str());
9989}
9990
9991/// Check if two expressions refer to the same declaration.
9992static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
9993  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
9994    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
9995      return D1->getDecl() == D2->getDecl();
9996  return false;
9997}
9998
9999static const Expr *getStrlenExprArg(const Expr *E) {
10000  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
10001    const FunctionDecl *FD = CE->getDirectCallee();
10002    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
10003      return nullptr;
10004    return CE->getArg(0)->IgnoreParenCasts();
10005  }
10006  return nullptr;
10007}
10008
10009// Warn on anti-patterns as the 'size' argument to strncat.
10010// The correct size argument should look like following:
10011//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
10012void Sema::CheckStrncatArguments(const CallExpr *CE,
10013                                 IdentifierInfo *FnName) {
10014  // Don't crash if the user has the wrong number of arguments.
10015  if (CE->getNumArgs() < 3)
10016    return;
10017  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
10018  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
10019  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
10020
10021  if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
10022                                     CE->getRParenLoc()))
10023    return;
10024
10025  // Identify common expressions, which are wrongly used as the size argument
10026  // to strncat and may lead to buffer overflows.
10027  unsigned PatternType = 0;
10028  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
10029    // - sizeof(dst)
10030    if (referToTheSameDecl(SizeOfArg, DstArg))
10031      PatternType = 1;
10032    // - sizeof(src)
10033    else if (referToTheSameDecl(SizeOfArg, SrcArg))
10034      PatternType = 2;
10035  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
10036    if (BE->getOpcode() == BO_Sub) {
10037      const Expr *L = BE->getLHS()->IgnoreParenCasts();
10038      const Expr *R = BE->getRHS()->IgnoreParenCasts();
10039      // - sizeof(dst) - strlen(dst)
10040      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
10041          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
10042        PatternType = 1;
10043      // - sizeof(src) - (anything)
10044      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
10045        PatternType = 2;
10046    }
10047  }
10048
10049  if (PatternType == 0)
10050    return;
10051
10052  // Generate the diagnostic.
10053  SourceLocation SL = LenArg->getBeginLoc();
10054  SourceRange SR = LenArg->getSourceRange();
10055  SourceManager &SM = getSourceManager();
10056
10057  // If the function is defined as a builtin macro, do not show macro expansion.
10058  if (SM.isMacroArgExpansion(SL)) {
10059    SL = SM.getSpellingLoc(SL);
10060    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
10061                     SM.getSpellingLoc(SR.getEnd()));
10062  }
10063
10064  // Check if the destination is an array (rather than a pointer to an array).
10065  QualType DstTy = DstArg->getType();
10066  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
10067                                                                    Context);
10068  if (!isKnownSizeArray) {
10069    if (PatternType == 1)
10070      Diag(SL, diag::warn_strncat_wrong_size) << SR;
10071    else
10072      Diag(SL, diag::warn_strncat_src_size) << SR;
10073    return;
10074  }
10075
10076  if (PatternType == 1)
10077    Diag(SL, diag::warn_strncat_large_size) << SR;
10078  else
10079    Diag(SL, diag::warn_strncat_src_size) << SR;
10080
10081  SmallString<128> sizeString;
10082  llvm::raw_svector_ostream OS(sizeString);
10083  OS << "sizeof(";
10084  DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10085  OS << ") - ";
10086  OS << "strlen(";
10087  DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10088  OS << ") - 1";
10089
10090  Diag(SL, diag::note_strncat_wrong_size)
10091    << FixItHint::CreateReplacement(SR, OS.str());
10092}
10093
10094void
10095Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
10096                         SourceLocation ReturnLoc,
10097                         bool isObjCMethod,
10098                         const AttrVec *Attrs,
10099                         const FunctionDecl *FD) {
10100  // Check if the return value is null but should not be.
10101  if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
10102       (!isObjCMethod && isNonNullType(Context, lhsType))) &&
10103      CheckNonNullExpr(*this, RetValExp))
10104    Diag(ReturnLoc, diag::warn_null_ret)
10105      << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
10106
10107  // C++11 [basic.stc.dynamic.allocation]p4:
10108  //   If an allocation function declared with a non-throwing
10109  //   exception-specification fails to allocate storage, it shall return
10110  //   a null pointer. Any other allocation function that fails to allocate
10111  //   storage shall indicate failure only by throwing an exception [...]
10112  if (FD) {
10113    OverloadedOperatorKind Op = FD->getOverloadedOperator();
10114    if (Op == OO_New || Op == OO_Array_New) {
10115      const FunctionProtoType *Proto
10116        = FD->getType()->castAs<FunctionProtoType>();
10117      if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
10118          CheckNonNullExpr(*this, RetValExp))
10119        Diag(ReturnLoc, diag::warn_operator_new_returns_null)
10120          << FD << getLangOpts().CPlusPlus11;
10121    }
10122  }
10123}
10124
10125//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
10126
10127/// Check for comparisons of floating point operands using != and ==.
10128/// Issue a warning if these are no self-comparisons, as they are not likely
10129/// to do what the programmer intended.
10130void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
10131  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
10132  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
10133
10134  // Special case: check for x == x (which is OK).
10135  // Do not emit warnings for such cases.
10136  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
10137    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
10138      if (DRL->getDecl() == DRR->getDecl())
10139        return;
10140
10141  // Special case: check for comparisons against literals that can be exactly
10142  //  represented by APFloat.  In such cases, do not emit a warning.  This
10143  //  is a heuristic: often comparison against such literals are used to
10144  //  detect if a value in a variable has not changed.  This clearly can
10145  //  lead to false negatives.
10146  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
10147    if (FLL->isExact())
10148      return;
10149  } else
10150    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
10151      if (FLR->isExact())
10152        return;
10153
10154  // Check for comparisons with builtin types.
10155  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
10156    if (CL->getBuiltinCallee())
10157      return;
10158
10159  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
10160    if (CR->getBuiltinCallee())
10161      return;
10162
10163  // Emit the diagnostic.
10164  Diag(Loc, diag::warn_floatingpoint_eq)
10165    << LHS->getSourceRange() << RHS->getSourceRange();
10166}
10167
10168//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
10169//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
10170
10171namespace {
10172
10173/// Structure recording the 'active' range of an integer-valued
10174/// expression.
10175struct IntRange {
10176  /// The number of bits active in the int.
10177  unsigned Width;
10178
10179  /// True if the int is known not to have negative values.
10180  bool NonNegative;
10181
10182  IntRange(unsigned Width, bool NonNegative)
10183      : Width(Width), NonNegative(NonNegative) {}
10184
10185  /// Returns the range of the bool type.
10186  static IntRange forBoolType() {
10187    return IntRange(1, true);
10188  }
10189
10190  /// Returns the range of an opaque value of the given integral type.
10191  static IntRange forValueOfType(ASTContext &C, QualType T) {
10192    return forValueOfCanonicalType(C,
10193                          T->getCanonicalTypeInternal().getTypePtr());
10194  }
10195
10196  /// Returns the range of an opaque value of a canonical integral type.
10197  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
10198    assert(T->isCanonicalUnqualified());
10199
10200    if (const VectorType *VT = dyn_cast<VectorType>(T))
10201      T = VT->getElementType().getTypePtr();
10202    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10203      T = CT->getElementType().getTypePtr();
10204    if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10205      T = AT->getValueType().getTypePtr();
10206
10207    if (!C.getLangOpts().CPlusPlus) {
10208      // For enum types in C code, use the underlying datatype.
10209      if (const EnumType *ET = dyn_cast<EnumType>(T))
10210        T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
10211    } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
10212      // For enum types in C++, use the known bit width of the enumerators.
10213      EnumDecl *Enum = ET->getDecl();
10214      // In C++11, enums can have a fixed underlying type. Use this type to
10215      // compute the range.
10216      if (Enum->isFixed()) {
10217        return IntRange(C.getIntWidth(QualType(T, 0)),
10218                        !ET->isSignedIntegerOrEnumerationType());
10219      }
10220
10221      unsigned NumPositive = Enum->getNumPositiveBits();
10222      unsigned NumNegative = Enum->getNumNegativeBits();
10223
10224      if (NumNegative == 0)
10225        return IntRange(NumPositive, true/*NonNegative*/);
10226      else
10227        return IntRange(std::max(NumPositive + 1, NumNegative),
10228                        false/*NonNegative*/);
10229    }
10230
10231    const BuiltinType *BT = cast<BuiltinType>(T);
10232    assert(BT->isInteger());
10233
10234    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10235  }
10236
10237  /// Returns the "target" range of a canonical integral type, i.e.
10238  /// the range of values expressible in the type.
10239  ///
10240  /// This matches forValueOfCanonicalType except that enums have the
10241  /// full range of their type, not the range of their enumerators.
10242  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
10243    assert(T->isCanonicalUnqualified());
10244
10245    if (const VectorType *VT = dyn_cast<VectorType>(T))
10246      T = VT->getElementType().getTypePtr();
10247    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10248      T = CT->getElementType().getTypePtr();
10249    if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10250      T = AT->getValueType().getTypePtr();
10251    if (const EnumType *ET = dyn_cast<EnumType>(T))
10252      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
10253
10254    const BuiltinType *BT = cast<BuiltinType>(T);
10255    assert(BT->isInteger());
10256
10257    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10258  }
10259
10260  /// Returns the supremum of two ranges: i.e. their conservative merge.
10261  static IntRange join(IntRange L, IntRange R) {
10262    return IntRange(std::max(L.Width, R.Width),
10263                    L.NonNegative && R.NonNegative);
10264  }
10265
10266  /// Returns the infinum of two ranges: i.e. their aggressive merge.
10267  static IntRange meet(IntRange L, IntRange R) {
10268    return IntRange(std::min(L.Width, R.Width),
10269                    L.NonNegative || R.NonNegative);
10270  }
10271};
10272
10273} // namespace
10274
10275static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
10276                              unsigned MaxWidth) {
10277  if (value.isSigned() && value.isNegative())
10278    return IntRange(value.getMinSignedBits(), false);
10279
10280  if (value.getBitWidth() > MaxWidth)
10281    value = value.trunc(MaxWidth);
10282
10283  // isNonNegative() just checks the sign bit without considering
10284  // signedness.
10285  return IntRange(value.getActiveBits(), true);
10286}
10287
10288static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
10289                              unsigned MaxWidth) {
10290  if (result.isInt())
10291    return GetValueRange(C, result.getInt(), MaxWidth);
10292
10293  if (result.isVector()) {
10294    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
10295    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
10296      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
10297      R = IntRange::join(R, El);
10298    }
10299    return R;
10300  }
10301
10302  if (result.isComplexInt()) {
10303    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
10304    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
10305    return IntRange::join(R, I);
10306  }
10307
10308  // This can happen with lossless casts to intptr_t of "based" lvalues.
10309  // Assume it might use arbitrary bits.
10310  // FIXME: The only reason we need to pass the type in here is to get
10311  // the sign right on this one case.  It would be nice if APValue
10312  // preserved this.
10313  assert(result.isLValue() || result.isAddrLabelDiff());
10314  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
10315}
10316
10317static QualType GetExprType(const Expr *E) {
10318  QualType Ty = E->getType();
10319  if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
10320    Ty = AtomicRHS->getValueType();
10321  return Ty;
10322}
10323
10324/// Pseudo-evaluate the given integer expression, estimating the
10325/// range of values it might take.
10326///
10327/// \param MaxWidth - the width to which the value will be truncated
10328static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
10329                             bool InConstantContext) {
10330  E = E->IgnoreParens();
10331
10332  // Try a full evaluation first.
10333  Expr::EvalResult result;
10334  if (E->EvaluateAsRValue(result, C, InConstantContext))
10335    return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
10336
10337  // I think we only want to look through implicit casts here; if the
10338  // user has an explicit widening cast, we should treat the value as
10339  // being of the new, wider type.
10340  if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
10341    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
10342      return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext);
10343
10344    IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
10345
10346    bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
10347                         CE->getCastKind() == CK_BooleanToSignedIntegral;
10348
10349    // Assume that non-integer casts can span the full range of the type.
10350    if (!isIntegerCast)
10351      return OutputTypeRange;
10352
10353    IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
10354                                     std::min(MaxWidth, OutputTypeRange.Width),
10355                                     InConstantContext);
10356
10357    // Bail out if the subexpr's range is as wide as the cast type.
10358    if (SubRange.Width >= OutputTypeRange.Width)
10359      return OutputTypeRange;
10360
10361    // Otherwise, we take the smaller width, and we're non-negative if
10362    // either the output type or the subexpr is.
10363    return IntRange(SubRange.Width,
10364                    SubRange.NonNegative || OutputTypeRange.NonNegative);
10365  }
10366
10367  if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
10368    // If we can fold the condition, just take that operand.
10369    bool CondResult;
10370    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
10371      return GetExprRange(C,
10372                          CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
10373                          MaxWidth, InConstantContext);
10374
10375    // Otherwise, conservatively merge.
10376    IntRange L =
10377        GetExprRange(C, CO->getTrueExpr(), MaxWidth, InConstantContext);
10378    IntRange R =
10379        GetExprRange(C, CO->getFalseExpr(), MaxWidth, InConstantContext);
10380    return IntRange::join(L, R);
10381  }
10382
10383  if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
10384    switch (BO->getOpcode()) {
10385    case BO_Cmp:
10386      llvm_unreachable("builtin <=> should have class type");
10387
10388    // Boolean-valued operations are single-bit and positive.
10389    case BO_LAnd:
10390    case BO_LOr:
10391    case BO_LT:
10392    case BO_GT:
10393    case BO_LE:
10394    case BO_GE:
10395    case BO_EQ:
10396    case BO_NE:
10397      return IntRange::forBoolType();
10398
10399    // The type of the assignments is the type of the LHS, so the RHS
10400    // is not necessarily the same type.
10401    case BO_MulAssign:
10402    case BO_DivAssign:
10403    case BO_RemAssign:
10404    case BO_AddAssign:
10405    case BO_SubAssign:
10406    case BO_XorAssign:
10407    case BO_OrAssign:
10408      // TODO: bitfields?
10409      return IntRange::forValueOfType(C, GetExprType(E));
10410
10411    // Simple assignments just pass through the RHS, which will have
10412    // been coerced to the LHS type.
10413    case BO_Assign:
10414      // TODO: bitfields?
10415      return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext);
10416
10417    // Operations with opaque sources are black-listed.
10418    case BO_PtrMemD:
10419    case BO_PtrMemI:
10420      return IntRange::forValueOfType(C, GetExprType(E));
10421
10422    // Bitwise-and uses the *infinum* of the two source ranges.
10423    case BO_And:
10424    case BO_AndAssign:
10425      return IntRange::meet(
10426          GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext),
10427          GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext));
10428
10429    // Left shift gets black-listed based on a judgement call.
10430    case BO_Shl:
10431      // ...except that we want to treat '1 << (blah)' as logically
10432      // positive.  It's an important idiom.
10433      if (IntegerLiteral *I
10434            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
10435        if (I->getValue() == 1) {
10436          IntRange R = IntRange::forValueOfType(C, GetExprType(E));
10437          return IntRange(R.Width, /*NonNegative*/ true);
10438        }
10439      }
10440      LLVM_FALLTHROUGH;
10441
10442    case BO_ShlAssign:
10443      return IntRange::forValueOfType(C, GetExprType(E));
10444
10445    // Right shift by a constant can narrow its left argument.
10446    case BO_Shr:
10447    case BO_ShrAssign: {
10448      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext);
10449
10450      // If the shift amount is a positive constant, drop the width by
10451      // that much.
10452      llvm::APSInt shift;
10453      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
10454          shift.isNonNegative()) {
10455        unsigned zext = shift.getZExtValue();
10456        if (zext >= L.Width)
10457          L.Width = (L.NonNegative ? 0 : 1);
10458        else
10459          L.Width -= zext;
10460      }
10461
10462      return L;
10463    }
10464
10465    // Comma acts as its right operand.
10466    case BO_Comma:
10467      return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext);
10468
10469    // Black-list pointer subtractions.
10470    case BO_Sub:
10471      if (BO->getLHS()->getType()->isPointerType())
10472        return IntRange::forValueOfType(C, GetExprType(E));
10473      break;
10474
10475    // The width of a division result is mostly determined by the size
10476    // of the LHS.
10477    case BO_Div: {
10478      // Don't 'pre-truncate' the operands.
10479      unsigned opWidth = C.getIntWidth(GetExprType(E));
10480      IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext);
10481
10482      // If the divisor is constant, use that.
10483      llvm::APSInt divisor;
10484      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
10485        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
10486        if (log2 >= L.Width)
10487          L.Width = (L.NonNegative ? 0 : 1);
10488        else
10489          L.Width = std::min(L.Width - log2, MaxWidth);
10490        return L;
10491      }
10492
10493      // Otherwise, just use the LHS's width.
10494      IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext);
10495      return IntRange(L.Width, L.NonNegative && R.NonNegative);
10496    }
10497
10498    // The result of a remainder can't be larger than the result of
10499    // either side.
10500    case BO_Rem: {
10501      // Don't 'pre-truncate' the operands.
10502      unsigned opWidth = C.getIntWidth(GetExprType(E));
10503      IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext);
10504      IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext);
10505
10506      IntRange meet = IntRange::meet(L, R);
10507      meet.Width = std::min(meet.Width, MaxWidth);
10508      return meet;
10509    }
10510
10511    // The default behavior is okay for these.
10512    case BO_Mul:
10513    case BO_Add:
10514    case BO_Xor:
10515    case BO_Or:
10516      break;
10517    }
10518
10519    // The default case is to treat the operation as if it were closed
10520    // on the narrowest type that encompasses both operands.
10521    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext);
10522    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext);
10523    return IntRange::join(L, R);
10524  }
10525
10526  if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
10527    switch (UO->getOpcode()) {
10528    // Boolean-valued operations are white-listed.
10529    case UO_LNot:
10530      return IntRange::forBoolType();
10531
10532    // Operations with opaque sources are black-listed.
10533    case UO_Deref:
10534    case UO_AddrOf: // should be impossible
10535      return IntRange::forValueOfType(C, GetExprType(E));
10536
10537    default:
10538      return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext);
10539    }
10540  }
10541
10542  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
10543    return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext);
10544
10545  if (const auto *BitField = E->getSourceBitField())
10546    return IntRange(BitField->getBitWidthValue(C),
10547                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
10548
10549  return IntRange::forValueOfType(C, GetExprType(E));
10550}
10551
10552static IntRange GetExprRange(ASTContext &C, const Expr *E,
10553                             bool InConstantContext) {
10554  return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext);
10555}
10556
10557/// Checks whether the given value, which currently has the given
10558/// source semantics, has the same value when coerced through the
10559/// target semantics.
10560static bool IsSameFloatAfterCast(const llvm::APFloat &value,
10561                                 const llvm::fltSemantics &Src,
10562                                 const llvm::fltSemantics &Tgt) {
10563  llvm::APFloat truncated = value;
10564
10565  bool ignored;
10566  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
10567  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
10568
10569  return truncated.bitwiseIsEqual(value);
10570}
10571
10572/// Checks whether the given value, which currently has the given
10573/// source semantics, has the same value when coerced through the
10574/// target semantics.
10575///
10576/// The value might be a vector of floats (or a complex number).
10577static bool IsSameFloatAfterCast(const APValue &value,
10578                                 const llvm::fltSemantics &Src,
10579                                 const llvm::fltSemantics &Tgt) {
10580  if (value.isFloat())
10581    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
10582
10583  if (value.isVector()) {
10584    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
10585      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
10586        return false;
10587    return true;
10588  }
10589
10590  assert(value.isComplexFloat());
10591  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
10592          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
10593}
10594
10595static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
10596                                       bool IsListInit = false);
10597
10598static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
10599  // Suppress cases where we are comparing against an enum constant.
10600  if (const DeclRefExpr *DR =
10601      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
10602    if (isa<EnumConstantDecl>(DR->getDecl()))
10603      return true;
10604
10605  // Suppress cases where the value is expanded from a macro, unless that macro
10606  // is how a language represents a boolean literal. This is the case in both C
10607  // and Objective-C.
10608  SourceLocation BeginLoc = E->getBeginLoc();
10609  if (BeginLoc.isMacroID()) {
10610    StringRef MacroName = Lexer::getImmediateMacroName(
10611        BeginLoc, S.getSourceManager(), S.getLangOpts());
10612    return MacroName != "YES" && MacroName != "NO" &&
10613           MacroName != "true" && MacroName != "false";
10614  }
10615
10616  return false;
10617}
10618
10619static bool isKnownToHaveUnsignedValue(Expr *E) {
10620  return E->getType()->isIntegerType() &&
10621         (!E->getType()->isSignedIntegerType() ||
10622          !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
10623}
10624
10625namespace {
10626/// The promoted range of values of a type. In general this has the
10627/// following structure:
10628///
10629///     |-----------| . . . |-----------|
10630///     ^           ^       ^           ^
10631///    Min       HoleMin  HoleMax      Max
10632///
10633/// ... where there is only a hole if a signed type is promoted to unsigned
10634/// (in which case Min and Max are the smallest and largest representable
10635/// values).
10636struct PromotedRange {
10637  // Min, or HoleMax if there is a hole.
10638  llvm::APSInt PromotedMin;
10639  // Max, or HoleMin if there is a hole.
10640  llvm::APSInt PromotedMax;
10641
10642  PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
10643    if (R.Width == 0)
10644      PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
10645    else if (R.Width >= BitWidth && !Unsigned) {
10646      // Promotion made the type *narrower*. This happens when promoting
10647      // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
10648      // Treat all values of 'signed int' as being in range for now.
10649      PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
10650      PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
10651    } else {
10652      PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
10653                        .extOrTrunc(BitWidth);
10654      PromotedMin.setIsUnsigned(Unsigned);
10655
10656      PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
10657                        .extOrTrunc(BitWidth);
10658      PromotedMax.setIsUnsigned(Unsigned);
10659    }
10660  }
10661
10662  // Determine whether this range is contiguous (has no hole).
10663  bool isContiguous() const { return PromotedMin <= PromotedMax; }
10664
10665  // Where a constant value is within the range.
10666  enum ComparisonResult {
10667    LT = 0x1,
10668    LE = 0x2,
10669    GT = 0x4,
10670    GE = 0x8,
10671    EQ = 0x10,
10672    NE = 0x20,
10673    InRangeFlag = 0x40,
10674
10675    Less = LE | LT | NE,
10676    Min = LE | InRangeFlag,
10677    InRange = InRangeFlag,
10678    Max = GE | InRangeFlag,
10679    Greater = GE | GT | NE,
10680
10681    OnlyValue = LE | GE | EQ | InRangeFlag,
10682    InHole = NE
10683  };
10684
10685  ComparisonResult compare(const llvm::APSInt &Value) const {
10686    assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
10687           Value.isUnsigned() == PromotedMin.isUnsigned());
10688    if (!isContiguous()) {
10689      assert(Value.isUnsigned() && "discontiguous range for signed compare");
10690      if (Value.isMinValue()) return Min;
10691      if (Value.isMaxValue()) return Max;
10692      if (Value >= PromotedMin) return InRange;
10693      if (Value <= PromotedMax) return InRange;
10694      return InHole;
10695    }
10696
10697    switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
10698    case -1: return Less;
10699    case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
10700    case 1:
10701      switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
10702      case -1: return InRange;
10703      case 0: return Max;
10704      case 1: return Greater;
10705      }
10706    }
10707
10708    llvm_unreachable("impossible compare result");
10709  }
10710
10711  static llvm::Optional<StringRef>
10712  constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
10713    if (Op == BO_Cmp) {
10714      ComparisonResult LTFlag = LT, GTFlag = GT;
10715      if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
10716
10717      if (R & EQ) return StringRef("'std::strong_ordering::equal'");
10718      if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
10719      if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
10720      return llvm::None;
10721    }
10722
10723    ComparisonResult TrueFlag, FalseFlag;
10724    if (Op == BO_EQ) {
10725      TrueFlag = EQ;
10726      FalseFlag = NE;
10727    } else if (Op == BO_NE) {
10728      TrueFlag = NE;
10729      FalseFlag = EQ;
10730    } else {
10731      if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
10732        TrueFlag = LT;
10733        FalseFlag = GE;
10734      } else {
10735        TrueFlag = GT;
10736        FalseFlag = LE;
10737      }
10738      if (Op == BO_GE || Op == BO_LE)
10739        std::swap(TrueFlag, FalseFlag);
10740    }
10741    if (R & TrueFlag)
10742      return StringRef("true");
10743    if (R & FalseFlag)
10744      return StringRef("false");
10745    return llvm::None;
10746  }
10747};
10748}
10749
10750static bool HasEnumType(Expr *E) {
10751  // Strip off implicit integral promotions.
10752  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
10753    if (ICE->getCastKind() != CK_IntegralCast &&
10754        ICE->getCastKind() != CK_NoOp)
10755      break;
10756    E = ICE->getSubExpr();
10757  }
10758
10759  return E->getType()->isEnumeralType();
10760}
10761
10762static int classifyConstantValue(Expr *Constant) {
10763  // The values of this enumeration are used in the diagnostics
10764  // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
10765  enum ConstantValueKind {
10766    Miscellaneous = 0,
10767    LiteralTrue,
10768    LiteralFalse
10769  };
10770  if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
10771    return BL->getValue() ? ConstantValueKind::LiteralTrue
10772                          : ConstantValueKind::LiteralFalse;
10773  return ConstantValueKind::Miscellaneous;
10774}
10775
10776static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
10777                                        Expr *Constant, Expr *Other,
10778                                        const llvm::APSInt &Value,
10779                                        bool RhsConstant) {
10780  if (S.inTemplateInstantiation())
10781    return false;
10782
10783  Expr *OriginalOther = Other;
10784
10785  Constant = Constant->IgnoreParenImpCasts();
10786  Other = Other->IgnoreParenImpCasts();
10787
10788  // Suppress warnings on tautological comparisons between values of the same
10789  // enumeration type. There are only two ways we could warn on this:
10790  //  - If the constant is outside the range of representable values of
10791  //    the enumeration. In such a case, we should warn about the cast
10792  //    to enumeration type, not about the comparison.
10793  //  - If the constant is the maximum / minimum in-range value. For an
10794  //    enumeratin type, such comparisons can be meaningful and useful.
10795  if (Constant->getType()->isEnumeralType() &&
10796      S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
10797    return false;
10798
10799  // TODO: Investigate using GetExprRange() to get tighter bounds
10800  // on the bit ranges.
10801  QualType OtherT = Other->getType();
10802  if (const auto *AT = OtherT->getAs<AtomicType>())
10803    OtherT = AT->getValueType();
10804  IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
10805
10806  // Special case for ObjC BOOL on targets where its a typedef for a signed char
10807  // (Namely, macOS).
10808  bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
10809                              S.NSAPIObj->isObjCBOOLType(OtherT) &&
10810                              OtherT->isSpecificBuiltinType(BuiltinType::SChar);
10811
10812  // Whether we're treating Other as being a bool because of the form of
10813  // expression despite it having another type (typically 'int' in C).
10814  bool OtherIsBooleanDespiteType =
10815      !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
10816  if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
10817    OtherRange = IntRange::forBoolType();
10818
10819  // Determine the promoted range of the other type and see if a comparison of
10820  // the constant against that range is tautological.
10821  PromotedRange OtherPromotedRange(OtherRange, Value.getBitWidth(),
10822                                   Value.isUnsigned());
10823  auto Cmp = OtherPromotedRange.compare(Value);
10824  auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
10825  if (!Result)
10826    return false;
10827
10828  // Suppress the diagnostic for an in-range comparison if the constant comes
10829  // from a macro or enumerator. We don't want to diagnose
10830  //
10831  //   some_long_value <= INT_MAX
10832  //
10833  // when sizeof(int) == sizeof(long).
10834  bool InRange = Cmp & PromotedRange::InRangeFlag;
10835  if (InRange && IsEnumConstOrFromMacro(S, Constant))
10836    return false;
10837
10838  // If this is a comparison to an enum constant, include that
10839  // constant in the diagnostic.
10840  const EnumConstantDecl *ED = nullptr;
10841  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
10842    ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
10843
10844  // Should be enough for uint128 (39 decimal digits)
10845  SmallString<64> PrettySourceValue;
10846  llvm::raw_svector_ostream OS(PrettySourceValue);
10847  if (ED) {
10848    OS << '\'' << *ED << "' (" << Value << ")";
10849  } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
10850               Constant->IgnoreParenImpCasts())) {
10851    OS << (BL->getValue() ? "YES" : "NO");
10852  } else {
10853    OS << Value;
10854  }
10855
10856  if (IsObjCSignedCharBool) {
10857    S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
10858                          S.PDiag(diag::warn_tautological_compare_objc_bool)
10859                              << OS.str() << *Result);
10860    return true;
10861  }
10862
10863  // FIXME: We use a somewhat different formatting for the in-range cases and
10864  // cases involving boolean values for historical reasons. We should pick a
10865  // consistent way of presenting these diagnostics.
10866  if (!InRange || Other->isKnownToHaveBooleanValue()) {
10867
10868    S.DiagRuntimeBehavior(
10869        E->getOperatorLoc(), E,
10870        S.PDiag(!InRange ? diag::warn_out_of_range_compare
10871                         : diag::warn_tautological_bool_compare)
10872            << OS.str() << classifyConstantValue(Constant) << OtherT
10873            << OtherIsBooleanDespiteType << *Result
10874            << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
10875  } else {
10876    unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
10877                        ? (HasEnumType(OriginalOther)
10878                               ? diag::warn_unsigned_enum_always_true_comparison
10879                               : diag::warn_unsigned_always_true_comparison)
10880                        : diag::warn_tautological_constant_compare;
10881
10882    S.Diag(E->getOperatorLoc(), Diag)
10883        << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
10884        << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
10885  }
10886
10887  return true;
10888}
10889
10890/// Analyze the operands of the given comparison.  Implements the
10891/// fallback case from AnalyzeComparison.
10892static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
10893  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10894  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10895}
10896
10897/// Implements -Wsign-compare.
10898///
10899/// \param E the binary operator to check for warnings
10900static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
10901  // The type the comparison is being performed in.
10902  QualType T = E->getLHS()->getType();
10903
10904  // Only analyze comparison operators where both sides have been converted to
10905  // the same type.
10906  if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
10907    return AnalyzeImpConvsInComparison(S, E);
10908
10909  // Don't analyze value-dependent comparisons directly.
10910  if (E->isValueDependent())
10911    return AnalyzeImpConvsInComparison(S, E);
10912
10913  Expr *LHS = E->getLHS();
10914  Expr *RHS = E->getRHS();
10915
10916  if (T->isIntegralType(S.Context)) {
10917    llvm::APSInt RHSValue;
10918    llvm::APSInt LHSValue;
10919
10920    bool IsRHSIntegralLiteral = RHS->isIntegerConstantExpr(RHSValue, S.Context);
10921    bool IsLHSIntegralLiteral = LHS->isIntegerConstantExpr(LHSValue, S.Context);
10922
10923    // We don't care about expressions whose result is a constant.
10924    if (IsRHSIntegralLiteral && IsLHSIntegralLiteral)
10925      return AnalyzeImpConvsInComparison(S, E);
10926
10927    // We only care about expressions where just one side is literal
10928    if (IsRHSIntegralLiteral ^ IsLHSIntegralLiteral) {
10929      // Is the constant on the RHS or LHS?
10930      const bool RhsConstant = IsRHSIntegralLiteral;
10931      Expr *Const = RhsConstant ? RHS : LHS;
10932      Expr *Other = RhsConstant ? LHS : RHS;
10933      const llvm::APSInt &Value = RhsConstant ? RHSValue : LHSValue;
10934
10935      // Check whether an integer constant comparison results in a value
10936      // of 'true' or 'false'.
10937      if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
10938        return AnalyzeImpConvsInComparison(S, E);
10939    }
10940  }
10941
10942  if (!T->hasUnsignedIntegerRepresentation()) {
10943    // We don't do anything special if this isn't an unsigned integral
10944    // comparison:  we're only interested in integral comparisons, and
10945    // signed comparisons only happen in cases we don't care to warn about.
10946    return AnalyzeImpConvsInComparison(S, E);
10947  }
10948
10949  LHS = LHS->IgnoreParenImpCasts();
10950  RHS = RHS->IgnoreParenImpCasts();
10951
10952  if (!S.getLangOpts().CPlusPlus) {
10953    // Avoid warning about comparison of integers with different signs when
10954    // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
10955    // the type of `E`.
10956    if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
10957      LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10958    if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
10959      RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10960  }
10961
10962  // Check to see if one of the (unmodified) operands is of different
10963  // signedness.
10964  Expr *signedOperand, *unsignedOperand;
10965  if (LHS->getType()->hasSignedIntegerRepresentation()) {
10966    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
10967           "unsigned comparison between two signed integer expressions?");
10968    signedOperand = LHS;
10969    unsignedOperand = RHS;
10970  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
10971    signedOperand = RHS;
10972    unsignedOperand = LHS;
10973  } else {
10974    return AnalyzeImpConvsInComparison(S, E);
10975  }
10976
10977  // Otherwise, calculate the effective range of the signed operand.
10978  IntRange signedRange =
10979      GetExprRange(S.Context, signedOperand, S.isConstantEvaluated());
10980
10981  // Go ahead and analyze implicit conversions in the operands.  Note
10982  // that we skip the implicit conversions on both sides.
10983  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
10984  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
10985
10986  // If the signed range is non-negative, -Wsign-compare won't fire.
10987  if (signedRange.NonNegative)
10988    return;
10989
10990  // For (in)equality comparisons, if the unsigned operand is a
10991  // constant which cannot collide with a overflowed signed operand,
10992  // then reinterpreting the signed operand as unsigned will not
10993  // change the result of the comparison.
10994  if (E->isEqualityOp()) {
10995    unsigned comparisonWidth = S.Context.getIntWidth(T);
10996    IntRange unsignedRange =
10997        GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated());
10998
10999    // We should never be unable to prove that the unsigned operand is
11000    // non-negative.
11001    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
11002
11003    if (unsignedRange.Width < comparisonWidth)
11004      return;
11005  }
11006
11007  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11008                        S.PDiag(diag::warn_mixed_sign_comparison)
11009                            << LHS->getType() << RHS->getType()
11010                            << LHS->getSourceRange() << RHS->getSourceRange());
11011}
11012
11013/// Analyzes an attempt to assign the given value to a bitfield.
11014///
11015/// Returns true if there was something fishy about the attempt.
11016static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
11017                                      SourceLocation InitLoc) {
11018  assert(Bitfield->isBitField());
11019  if (Bitfield->isInvalidDecl())
11020    return false;
11021
11022  // White-list bool bitfields.
11023  QualType BitfieldType = Bitfield->getType();
11024  if (BitfieldType->isBooleanType())
11025     return false;
11026
11027  if (BitfieldType->isEnumeralType()) {
11028    EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
11029    // If the underlying enum type was not explicitly specified as an unsigned
11030    // type and the enum contain only positive values, MSVC++ will cause an
11031    // inconsistency by storing this as a signed type.
11032    if (S.getLangOpts().CPlusPlus11 &&
11033        !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
11034        BitfieldEnumDecl->getNumPositiveBits() > 0 &&
11035        BitfieldEnumDecl->getNumNegativeBits() == 0) {
11036      S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
11037        << BitfieldEnumDecl->getNameAsString();
11038    }
11039  }
11040
11041  if (Bitfield->getType()->isBooleanType())
11042    return false;
11043
11044  // Ignore value- or type-dependent expressions.
11045  if (Bitfield->getBitWidth()->isValueDependent() ||
11046      Bitfield->getBitWidth()->isTypeDependent() ||
11047      Init->isValueDependent() ||
11048      Init->isTypeDependent())
11049    return false;
11050
11051  Expr *OriginalInit = Init->IgnoreParenImpCasts();
11052  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
11053
11054  Expr::EvalResult Result;
11055  if (!OriginalInit->EvaluateAsInt(Result, S.Context,
11056                                   Expr::SE_AllowSideEffects)) {
11057    // The RHS is not constant.  If the RHS has an enum type, make sure the
11058    // bitfield is wide enough to hold all the values of the enum without
11059    // truncation.
11060    if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
11061      EnumDecl *ED = EnumTy->getDecl();
11062      bool SignedBitfield = BitfieldType->isSignedIntegerType();
11063
11064      // Enum types are implicitly signed on Windows, so check if there are any
11065      // negative enumerators to see if the enum was intended to be signed or
11066      // not.
11067      bool SignedEnum = ED->getNumNegativeBits() > 0;
11068
11069      // Check for surprising sign changes when assigning enum values to a
11070      // bitfield of different signedness.  If the bitfield is signed and we
11071      // have exactly the right number of bits to store this unsigned enum,
11072      // suggest changing the enum to an unsigned type. This typically happens
11073      // on Windows where unfixed enums always use an underlying type of 'int'.
11074      unsigned DiagID = 0;
11075      if (SignedEnum && !SignedBitfield) {
11076        DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
11077      } else if (SignedBitfield && !SignedEnum &&
11078                 ED->getNumPositiveBits() == FieldWidth) {
11079        DiagID = diag::warn_signed_bitfield_enum_conversion;
11080      }
11081
11082      if (DiagID) {
11083        S.Diag(InitLoc, DiagID) << Bitfield << ED;
11084        TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
11085        SourceRange TypeRange =
11086            TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
11087        S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
11088            << SignedEnum << TypeRange;
11089      }
11090
11091      // Compute the required bitwidth. If the enum has negative values, we need
11092      // one more bit than the normal number of positive bits to represent the
11093      // sign bit.
11094      unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
11095                                                  ED->getNumNegativeBits())
11096                                       : ED->getNumPositiveBits();
11097
11098      // Check the bitwidth.
11099      if (BitsNeeded > FieldWidth) {
11100        Expr *WidthExpr = Bitfield->getBitWidth();
11101        S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
11102            << Bitfield << ED;
11103        S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
11104            << BitsNeeded << ED << WidthExpr->getSourceRange();
11105      }
11106    }
11107
11108    return false;
11109  }
11110
11111  llvm::APSInt Value = Result.Val.getInt();
11112
11113  unsigned OriginalWidth = Value.getBitWidth();
11114
11115  if (!Value.isSigned() || Value.isNegative())
11116    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
11117      if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
11118        OriginalWidth = Value.getMinSignedBits();
11119
11120  if (OriginalWidth <= FieldWidth)
11121    return false;
11122
11123  // Compute the value which the bitfield will contain.
11124  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
11125  TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
11126
11127  // Check whether the stored value is equal to the original value.
11128  TruncatedValue = TruncatedValue.extend(OriginalWidth);
11129  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
11130    return false;
11131
11132  // Special-case bitfields of width 1: booleans are naturally 0/1, and
11133  // therefore don't strictly fit into a signed bitfield of width 1.
11134  if (FieldWidth == 1 && Value == 1)
11135    return false;
11136
11137  std::string PrettyValue = Value.toString(10);
11138  std::string PrettyTrunc = TruncatedValue.toString(10);
11139
11140  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
11141    << PrettyValue << PrettyTrunc << OriginalInit->getType()
11142    << Init->getSourceRange();
11143
11144  return true;
11145}
11146
11147/// Analyze the given simple or compound assignment for warning-worthy
11148/// operations.
11149static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
11150  // Just recurse on the LHS.
11151  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11152
11153  // We want to recurse on the RHS as normal unless we're assigning to
11154  // a bitfield.
11155  if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
11156    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
11157                                  E->getOperatorLoc())) {
11158      // Recurse, ignoring any implicit conversions on the RHS.
11159      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
11160                                        E->getOperatorLoc());
11161    }
11162  }
11163
11164  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11165
11166  // Diagnose implicitly sequentially-consistent atomic assignment.
11167  if (E->getLHS()->getType()->isAtomicType())
11168    S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
11169}
11170
11171/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
11172static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
11173                            SourceLocation CContext, unsigned diag,
11174                            bool pruneControlFlow = false) {
11175  if (pruneControlFlow) {
11176    S.DiagRuntimeBehavior(E->getExprLoc(), E,
11177                          S.PDiag(diag)
11178                              << SourceType << T << E->getSourceRange()
11179                              << SourceRange(CContext));
11180    return;
11181  }
11182  S.Diag(E->getExprLoc(), diag)
11183    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
11184}
11185
11186/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
11187static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
11188                            SourceLocation CContext,
11189                            unsigned diag, bool pruneControlFlow = false) {
11190  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
11191}
11192
11193static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
11194  return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
11195      S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
11196}
11197
11198static void adornObjCBoolConversionDiagWithTernaryFixit(
11199    Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
11200  Expr *Ignored = SourceExpr->IgnoreImplicit();
11201  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
11202    Ignored = OVE->getSourceExpr();
11203  bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
11204                     isa<BinaryOperator>(Ignored) ||
11205                     isa<CXXOperatorCallExpr>(Ignored);
11206  SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
11207  if (NeedsParens)
11208    Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
11209            << FixItHint::CreateInsertion(EndLoc, ")");
11210  Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
11211}
11212
11213/// Diagnose an implicit cast from a floating point value to an integer value.
11214static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
11215                                    SourceLocation CContext) {
11216  const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
11217  const bool PruneWarnings = S.inTemplateInstantiation();
11218
11219  Expr *InnerE = E->IgnoreParenImpCasts();
11220  // We also want to warn on, e.g., "int i = -1.234"
11221  if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
11222    if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
11223      InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
11224
11225  const bool IsLiteral =
11226      isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
11227
11228  llvm::APFloat Value(0.0);
11229  bool IsConstant =
11230    E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
11231  if (!IsConstant) {
11232    if (isObjCSignedCharBool(S, T)) {
11233      return adornObjCBoolConversionDiagWithTernaryFixit(
11234          S, E,
11235          S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
11236              << E->getType());
11237    }
11238
11239    return DiagnoseImpCast(S, E, T, CContext,
11240                           diag::warn_impcast_float_integer, PruneWarnings);
11241  }
11242
11243  bool isExact = false;
11244
11245  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
11246                            T->hasUnsignedIntegerRepresentation());
11247  llvm::APFloat::opStatus Result = Value.convertToInteger(
11248      IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
11249
11250  // FIXME: Force the precision of the source value down so we don't print
11251  // digits which are usually useless (we don't really care here if we
11252  // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
11253  // would automatically print the shortest representation, but it's a bit
11254  // tricky to implement.
11255  SmallString<16> PrettySourceValue;
11256  unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
11257  precision = (precision * 59 + 195) / 196;
11258  Value.toString(PrettySourceValue, precision);
11259
11260  if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
11261    return adornObjCBoolConversionDiagWithTernaryFixit(
11262        S, E,
11263        S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
11264            << PrettySourceValue);
11265  }
11266
11267  if (Result == llvm::APFloat::opOK && isExact) {
11268    if (IsLiteral) return;
11269    return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
11270                           PruneWarnings);
11271  }
11272
11273  // Conversion of a floating-point value to a non-bool integer where the
11274  // integral part cannot be represented by the integer type is undefined.
11275  if (!IsBool && Result == llvm::APFloat::opInvalidOp)
11276    return DiagnoseImpCast(
11277        S, E, T, CContext,
11278        IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
11279                  : diag::warn_impcast_float_to_integer_out_of_range,
11280        PruneWarnings);
11281
11282  unsigned DiagID = 0;
11283  if (IsLiteral) {
11284    // Warn on floating point literal to integer.
11285    DiagID = diag::warn_impcast_literal_float_to_integer;
11286  } else if (IntegerValue == 0) {
11287    if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
11288      return DiagnoseImpCast(S, E, T, CContext,
11289                             diag::warn_impcast_float_integer, PruneWarnings);
11290    }
11291    // Warn on non-zero to zero conversion.
11292    DiagID = diag::warn_impcast_float_to_integer_zero;
11293  } else {
11294    if (IntegerValue.isUnsigned()) {
11295      if (!IntegerValue.isMaxValue()) {
11296        return DiagnoseImpCast(S, E, T, CContext,
11297                               diag::warn_impcast_float_integer, PruneWarnings);
11298      }
11299    } else {  // IntegerValue.isSigned()
11300      if (!IntegerValue.isMaxSignedValue() &&
11301          !IntegerValue.isMinSignedValue()) {
11302        return DiagnoseImpCast(S, E, T, CContext,
11303                               diag::warn_impcast_float_integer, PruneWarnings);
11304      }
11305    }
11306    // Warn on evaluatable floating point expression to integer conversion.
11307    DiagID = diag::warn_impcast_float_to_integer;
11308  }
11309
11310  SmallString<16> PrettyTargetValue;
11311  if (IsBool)
11312    PrettyTargetValue = Value.isZero() ? "false" : "true";
11313  else
11314    IntegerValue.toString(PrettyTargetValue);
11315
11316  if (PruneWarnings) {
11317    S.DiagRuntimeBehavior(E->getExprLoc(), E,
11318                          S.PDiag(DiagID)
11319                              << E->getType() << T.getUnqualifiedType()
11320                              << PrettySourceValue << PrettyTargetValue
11321                              << E->getSourceRange() << SourceRange(CContext));
11322  } else {
11323    S.Diag(E->getExprLoc(), DiagID)
11324        << E->getType() << T.getUnqualifiedType() << PrettySourceValue
11325        << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
11326  }
11327}
11328
11329/// Analyze the given compound assignment for the possible losing of
11330/// floating-point precision.
11331static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
11332  assert(isa<CompoundAssignOperator>(E) &&
11333         "Must be compound assignment operation");
11334  // Recurse on the LHS and RHS in here
11335  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11336  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11337
11338  if (E->getLHS()->getType()->isAtomicType())
11339    S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
11340
11341  // Now check the outermost expression
11342  const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
11343  const auto *RBT = cast<CompoundAssignOperator>(E)
11344                        ->getComputationResultType()
11345                        ->getAs<BuiltinType>();
11346
11347  // The below checks assume source is floating point.
11348  if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
11349
11350  // If source is floating point but target is an integer.
11351  if (ResultBT->isInteger())
11352    return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
11353                           E->getExprLoc(), diag::warn_impcast_float_integer);
11354
11355  if (!ResultBT->isFloatingPoint())
11356    return;
11357
11358  // If both source and target are floating points, warn about losing precision.
11359  int Order = S.getASTContext().getFloatingTypeSemanticOrder(
11360      QualType(ResultBT, 0), QualType(RBT, 0));
11361  if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
11362    // warn about dropping FP rank.
11363    DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
11364                    diag::warn_impcast_float_result_precision);
11365}
11366
11367static std::string PrettyPrintInRange(const llvm::APSInt &Value,
11368                                      IntRange Range) {
11369  if (!Range.Width) return "0";
11370
11371  llvm::APSInt ValueInRange = Value;
11372  ValueInRange.setIsSigned(!Range.NonNegative);
11373  ValueInRange = ValueInRange.trunc(Range.Width);
11374  return ValueInRange.toString(10);
11375}
11376
11377static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
11378  if (!isa<ImplicitCastExpr>(Ex))
11379    return false;
11380
11381  Expr *InnerE = Ex->IgnoreParenImpCasts();
11382  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
11383  const Type *Source =
11384    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
11385  if (Target->isDependentType())
11386    return false;
11387
11388  const BuiltinType *FloatCandidateBT =
11389    dyn_cast<BuiltinType>(ToBool ? Source : Target);
11390  const Type *BoolCandidateType = ToBool ? Target : Source;
11391
11392  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
11393          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
11394}
11395
11396static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
11397                                             SourceLocation CC) {
11398  unsigned NumArgs = TheCall->getNumArgs();
11399  for (unsigned i = 0; i < NumArgs; ++i) {
11400    Expr *CurrA = TheCall->getArg(i);
11401    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
11402      continue;
11403
11404    bool IsSwapped = ((i > 0) &&
11405        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
11406    IsSwapped |= ((i < (NumArgs - 1)) &&
11407        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
11408    if (IsSwapped) {
11409      // Warn on this floating-point to bool conversion.
11410      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
11411                      CurrA->getType(), CC,
11412                      diag::warn_impcast_floating_point_to_bool);
11413    }
11414  }
11415}
11416
11417static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
11418                                   SourceLocation CC) {
11419  if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
11420                        E->getExprLoc()))
11421    return;
11422
11423  // Don't warn on functions which have return type nullptr_t.
11424  if (isa<CallExpr>(E))
11425    return;
11426
11427  // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
11428  const Expr::NullPointerConstantKind NullKind =
11429      E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
11430  if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
11431    return;
11432
11433  // Return if target type is a safe conversion.
11434  if (T->isAnyPointerType() || T->isBlockPointerType() ||
11435      T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
11436    return;
11437
11438  SourceLocation Loc = E->getSourceRange().getBegin();
11439
11440  // Venture through the macro stacks to get to the source of macro arguments.
11441  // The new location is a better location than the complete location that was
11442  // passed in.
11443  Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
11444  CC = S.SourceMgr.getTopMacroCallerLoc(CC);
11445
11446  // __null is usually wrapped in a macro.  Go up a macro if that is the case.
11447  if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
11448    StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
11449        Loc, S.SourceMgr, S.getLangOpts());
11450    if (MacroName == "NULL")
11451      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
11452  }
11453
11454  // Only warn if the null and context location are in the same macro expansion.
11455  if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
11456    return;
11457
11458  S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
11459      << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
11460      << FixItHint::CreateReplacement(Loc,
11461                                      S.getFixItZeroLiteralForType(T, Loc));
11462}
11463
11464static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11465                                  ObjCArrayLiteral *ArrayLiteral);
11466
11467static void
11468checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11469                           ObjCDictionaryLiteral *DictionaryLiteral);
11470
11471/// Check a single element within a collection literal against the
11472/// target element type.
11473static void checkObjCCollectionLiteralElement(Sema &S,
11474                                              QualType TargetElementType,
11475                                              Expr *Element,
11476                                              unsigned ElementKind) {
11477  // Skip a bitcast to 'id' or qualified 'id'.
11478  if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
11479    if (ICE->getCastKind() == CK_BitCast &&
11480        ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
11481      Element = ICE->getSubExpr();
11482  }
11483
11484  QualType ElementType = Element->getType();
11485  ExprResult ElementResult(Element);
11486  if (ElementType->getAs<ObjCObjectPointerType>() &&
11487      S.CheckSingleAssignmentConstraints(TargetElementType,
11488                                         ElementResult,
11489                                         false, false)
11490        != Sema::Compatible) {
11491    S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
11492        << ElementType << ElementKind << TargetElementType
11493        << Element->getSourceRange();
11494  }
11495
11496  if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
11497    checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
11498  else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
11499    checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
11500}
11501
11502/// Check an Objective-C array literal being converted to the given
11503/// target type.
11504static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11505                                  ObjCArrayLiteral *ArrayLiteral) {
11506  if (!S.NSArrayDecl)
11507    return;
11508
11509  const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11510  if (!TargetObjCPtr)
11511    return;
11512
11513  if (TargetObjCPtr->isUnspecialized() ||
11514      TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11515        != S.NSArrayDecl->getCanonicalDecl())
11516    return;
11517
11518  auto TypeArgs = TargetObjCPtr->getTypeArgs();
11519  if (TypeArgs.size() != 1)
11520    return;
11521
11522  QualType TargetElementType = TypeArgs[0];
11523  for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
11524    checkObjCCollectionLiteralElement(S, TargetElementType,
11525                                      ArrayLiteral->getElement(I),
11526                                      0);
11527  }
11528}
11529
11530/// Check an Objective-C dictionary literal being converted to the given
11531/// target type.
11532static void
11533checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11534                           ObjCDictionaryLiteral *DictionaryLiteral) {
11535  if (!S.NSDictionaryDecl)
11536    return;
11537
11538  const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11539  if (!TargetObjCPtr)
11540    return;
11541
11542  if (TargetObjCPtr->isUnspecialized() ||
11543      TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11544        != S.NSDictionaryDecl->getCanonicalDecl())
11545    return;
11546
11547  auto TypeArgs = TargetObjCPtr->getTypeArgs();
11548  if (TypeArgs.size() != 2)
11549    return;
11550
11551  QualType TargetKeyType = TypeArgs[0];
11552  QualType TargetObjectType = TypeArgs[1];
11553  for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
11554    auto Element = DictionaryLiteral->getKeyValueElement(I);
11555    checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
11556    checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
11557  }
11558}
11559
11560// Helper function to filter out cases for constant width constant conversion.
11561// Don't warn on char array initialization or for non-decimal values.
11562static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
11563                                          SourceLocation CC) {
11564  // If initializing from a constant, and the constant starts with '0',
11565  // then it is a binary, octal, or hexadecimal.  Allow these constants
11566  // to fill all the bits, even if there is a sign change.
11567  if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
11568    const char FirstLiteralCharacter =
11569        S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
11570    if (FirstLiteralCharacter == '0')
11571      return false;
11572  }
11573
11574  // If the CC location points to a '{', and the type is char, then assume
11575  // assume it is an array initialization.
11576  if (CC.isValid() && T->isCharType()) {
11577    const char FirstContextCharacter =
11578        S.getSourceManager().getCharacterData(CC)[0];
11579    if (FirstContextCharacter == '{')
11580      return false;
11581  }
11582
11583  return true;
11584}
11585
11586static const IntegerLiteral *getIntegerLiteral(Expr *E) {
11587  const auto *IL = dyn_cast<IntegerLiteral>(E);
11588  if (!IL) {
11589    if (auto *UO = dyn_cast<UnaryOperator>(E)) {
11590      if (UO->getOpcode() == UO_Minus)
11591        return dyn_cast<IntegerLiteral>(UO->getSubExpr());
11592    }
11593  }
11594
11595  return IL;
11596}
11597
11598static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
11599  E = E->IgnoreParenImpCasts();
11600  SourceLocation ExprLoc = E->getExprLoc();
11601
11602  if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11603    BinaryOperator::Opcode Opc = BO->getOpcode();
11604    Expr::EvalResult Result;
11605    // Do not diagnose unsigned shifts.
11606    if (Opc == BO_Shl) {
11607      const auto *LHS = getIntegerLiteral(BO->getLHS());
11608      const auto *RHS = getIntegerLiteral(BO->getRHS());
11609      if (LHS && LHS->getValue() == 0)
11610        S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
11611      else if (!E->isValueDependent() && LHS && RHS &&
11612               RHS->getValue().isNonNegative() &&
11613               E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
11614        S.Diag(ExprLoc, diag::warn_left_shift_always)
11615            << (Result.Val.getInt() != 0);
11616      else if (E->getType()->isSignedIntegerType())
11617        S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
11618    }
11619  }
11620
11621  if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11622    const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
11623    const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
11624    if (!LHS || !RHS)
11625      return;
11626    if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
11627        (RHS->getValue() == 0 || RHS->getValue() == 1))
11628      // Do not diagnose common idioms.
11629      return;
11630    if (LHS->getValue() != 0 && RHS->getValue() != 0)
11631      S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
11632  }
11633}
11634
11635static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
11636                                    SourceLocation CC,
11637                                    bool *ICContext = nullptr,
11638                                    bool IsListInit = false) {
11639  if (E->isTypeDependent() || E->isValueDependent()) return;
11640
11641  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
11642  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
11643  if (Source == Target) return;
11644  if (Target->isDependentType()) return;
11645
11646  // If the conversion context location is invalid don't complain. We also
11647  // don't want to emit a warning if the issue occurs from the expansion of
11648  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
11649  // delay this check as long as possible. Once we detect we are in that
11650  // scenario, we just return.
11651  if (CC.isInvalid())
11652    return;
11653
11654  if (Source->isAtomicType())
11655    S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
11656
11657  // Diagnose implicit casts to bool.
11658  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
11659    if (isa<StringLiteral>(E))
11660      // Warn on string literal to bool.  Checks for string literals in logical
11661      // and expressions, for instance, assert(0 && "error here"), are
11662      // prevented by a check in AnalyzeImplicitConversions().
11663      return DiagnoseImpCast(S, E, T, CC,
11664                             diag::warn_impcast_string_literal_to_bool);
11665    if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
11666        isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
11667      // This covers the literal expressions that evaluate to Objective-C
11668      // objects.
11669      return DiagnoseImpCast(S, E, T, CC,
11670                             diag::warn_impcast_objective_c_literal_to_bool);
11671    }
11672    if (Source->isPointerType() || Source->canDecayToPointerType()) {
11673      // Warn on pointer to bool conversion that is always true.
11674      S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
11675                                     SourceRange(CC));
11676    }
11677  }
11678
11679  // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
11680  // is a typedef for signed char (macOS), then that constant value has to be 1
11681  // or 0.
11682  if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
11683    Expr::EvalResult Result;
11684    if (E->EvaluateAsInt(Result, S.getASTContext(),
11685                         Expr::SE_AllowSideEffects)) {
11686      if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
11687        adornObjCBoolConversionDiagWithTernaryFixit(
11688            S, E,
11689            S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
11690                << Result.Val.getInt().toString(10));
11691      }
11692      return;
11693    }
11694  }
11695
11696  // Check implicit casts from Objective-C collection literals to specialized
11697  // collection types, e.g., NSArray<NSString *> *.
11698  if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
11699    checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
11700  else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
11701    checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
11702
11703  // Strip vector types.
11704  if (isa<VectorType>(Source)) {
11705    if (!isa<VectorType>(Target)) {
11706      if (S.SourceMgr.isInSystemMacro(CC))
11707        return;
11708      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
11709    }
11710
11711    // If the vector cast is cast between two vectors of the same size, it is
11712    // a bitcast, not a conversion.
11713    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
11714      return;
11715
11716    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
11717    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
11718  }
11719  if (auto VecTy = dyn_cast<VectorType>(Target))
11720    Target = VecTy->getElementType().getTypePtr();
11721
11722  // Strip complex types.
11723  if (isa<ComplexType>(Source)) {
11724    if (!isa<ComplexType>(Target)) {
11725      if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
11726        return;
11727
11728      return DiagnoseImpCast(S, E, T, CC,
11729                             S.getLangOpts().CPlusPlus
11730                                 ? diag::err_impcast_complex_scalar
11731                                 : diag::warn_impcast_complex_scalar);
11732    }
11733
11734    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
11735    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
11736  }
11737
11738  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
11739  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
11740
11741  // If the source is floating point...
11742  if (SourceBT && SourceBT->isFloatingPoint()) {
11743    // ...and the target is floating point...
11744    if (TargetBT && TargetBT->isFloatingPoint()) {
11745      // ...then warn if we're dropping FP rank.
11746
11747      int Order = S.getASTContext().getFloatingTypeSemanticOrder(
11748          QualType(SourceBT, 0), QualType(TargetBT, 0));
11749      if (Order > 0) {
11750        // Don't warn about float constants that are precisely
11751        // representable in the target type.
11752        Expr::EvalResult result;
11753        if (E->EvaluateAsRValue(result, S.Context)) {
11754          // Value might be a float, a float vector, or a float complex.
11755          if (IsSameFloatAfterCast(result.Val,
11756                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
11757                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
11758            return;
11759        }
11760
11761        if (S.SourceMgr.isInSystemMacro(CC))
11762          return;
11763
11764        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
11765      }
11766      // ... or possibly if we're increasing rank, too
11767      else if (Order < 0) {
11768        if (S.SourceMgr.isInSystemMacro(CC))
11769          return;
11770
11771        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
11772      }
11773      return;
11774    }
11775
11776    // If the target is integral, always warn.
11777    if (TargetBT && TargetBT->isInteger()) {
11778      if (S.SourceMgr.isInSystemMacro(CC))
11779        return;
11780
11781      DiagnoseFloatingImpCast(S, E, T, CC);
11782    }
11783
11784    // Detect the case where a call result is converted from floating-point to
11785    // to bool, and the final argument to the call is converted from bool, to
11786    // discover this typo:
11787    //
11788    //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
11789    //
11790    // FIXME: This is an incredibly special case; is there some more general
11791    // way to detect this class of misplaced-parentheses bug?
11792    if (Target->isBooleanType() && isa<CallExpr>(E)) {
11793      // Check last argument of function call to see if it is an
11794      // implicit cast from a type matching the type the result
11795      // is being cast to.
11796      CallExpr *CEx = cast<CallExpr>(E);
11797      if (unsigned NumArgs = CEx->getNumArgs()) {
11798        Expr *LastA = CEx->getArg(NumArgs - 1);
11799        Expr *InnerE = LastA->IgnoreParenImpCasts();
11800        if (isa<ImplicitCastExpr>(LastA) &&
11801            InnerE->getType()->isBooleanType()) {
11802          // Warn on this floating-point to bool conversion
11803          DiagnoseImpCast(S, E, T, CC,
11804                          diag::warn_impcast_floating_point_to_bool);
11805        }
11806      }
11807    }
11808    return;
11809  }
11810
11811  // Valid casts involving fixed point types should be accounted for here.
11812  if (Source->isFixedPointType()) {
11813    if (Target->isUnsaturatedFixedPointType()) {
11814      Expr::EvalResult Result;
11815      if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
11816                                  S.isConstantEvaluated())) {
11817        APFixedPoint Value = Result.Val.getFixedPoint();
11818        APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
11819        APFixedPoint MinVal = S.Context.getFixedPointMin(T);
11820        if (Value > MaxVal || Value < MinVal) {
11821          S.DiagRuntimeBehavior(E->getExprLoc(), E,
11822                                S.PDiag(diag::warn_impcast_fixed_point_range)
11823                                    << Value.toString() << T
11824                                    << E->getSourceRange()
11825                                    << clang::SourceRange(CC));
11826          return;
11827        }
11828      }
11829    } else if (Target->isIntegerType()) {
11830      Expr::EvalResult Result;
11831      if (!S.isConstantEvaluated() &&
11832          E->EvaluateAsFixedPoint(Result, S.Context,
11833                                  Expr::SE_AllowSideEffects)) {
11834        APFixedPoint FXResult = Result.Val.getFixedPoint();
11835
11836        bool Overflowed;
11837        llvm::APSInt IntResult = FXResult.convertToInt(
11838            S.Context.getIntWidth(T),
11839            Target->isSignedIntegerOrEnumerationType(), &Overflowed);
11840
11841        if (Overflowed) {
11842          S.DiagRuntimeBehavior(E->getExprLoc(), E,
11843                                S.PDiag(diag::warn_impcast_fixed_point_range)
11844                                    << FXResult.toString() << T
11845                                    << E->getSourceRange()
11846                                    << clang::SourceRange(CC));
11847          return;
11848        }
11849      }
11850    }
11851  } else if (Target->isUnsaturatedFixedPointType()) {
11852    if (Source->isIntegerType()) {
11853      Expr::EvalResult Result;
11854      if (!S.isConstantEvaluated() &&
11855          E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
11856        llvm::APSInt Value = Result.Val.getInt();
11857
11858        bool Overflowed;
11859        APFixedPoint IntResult = APFixedPoint::getFromIntValue(
11860            Value, S.Context.getFixedPointSemantics(T), &Overflowed);
11861
11862        if (Overflowed) {
11863          S.DiagRuntimeBehavior(E->getExprLoc(), E,
11864                                S.PDiag(diag::warn_impcast_fixed_point_range)
11865                                    << Value.toString(/*Radix=*/10) << T
11866                                    << E->getSourceRange()
11867                                    << clang::SourceRange(CC));
11868          return;
11869        }
11870      }
11871    }
11872  }
11873
11874  // If we are casting an integer type to a floating point type without
11875  // initialization-list syntax, we might lose accuracy if the floating
11876  // point type has a narrower significand than the integer type.
11877  if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
11878      TargetBT->isFloatingType() && !IsListInit) {
11879    // Determine the number of precision bits in the source integer type.
11880    IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated());
11881    unsigned int SourcePrecision = SourceRange.Width;
11882
11883    // Determine the number of precision bits in the
11884    // target floating point type.
11885    unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
11886        S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
11887
11888    if (SourcePrecision > 0 && TargetPrecision > 0 &&
11889        SourcePrecision > TargetPrecision) {
11890
11891      llvm::APSInt SourceInt;
11892      if (E->isIntegerConstantExpr(SourceInt, S.Context)) {
11893        // If the source integer is a constant, convert it to the target
11894        // floating point type. Issue a warning if the value changes
11895        // during the whole conversion.
11896        llvm::APFloat TargetFloatValue(
11897            S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
11898        llvm::APFloat::opStatus ConversionStatus =
11899            TargetFloatValue.convertFromAPInt(
11900                SourceInt, SourceBT->isSignedInteger(),
11901                llvm::APFloat::rmNearestTiesToEven);
11902
11903        if (ConversionStatus != llvm::APFloat::opOK) {
11904          std::string PrettySourceValue = SourceInt.toString(10);
11905          SmallString<32> PrettyTargetValue;
11906          TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
11907
11908          S.DiagRuntimeBehavior(
11909              E->getExprLoc(), E,
11910              S.PDiag(diag::warn_impcast_integer_float_precision_constant)
11911                  << PrettySourceValue << PrettyTargetValue << E->getType() << T
11912                  << E->getSourceRange() << clang::SourceRange(CC));
11913        }
11914      } else {
11915        // Otherwise, the implicit conversion may lose precision.
11916        DiagnoseImpCast(S, E, T, CC,
11917                        diag::warn_impcast_integer_float_precision);
11918      }
11919    }
11920  }
11921
11922  DiagnoseNullConversion(S, E, T, CC);
11923
11924  S.DiscardMisalignedMemberAddress(Target, E);
11925
11926  if (Target->isBooleanType())
11927    DiagnoseIntInBoolContext(S, E);
11928
11929  if (!Source->isIntegerType() || !Target->isIntegerType())
11930    return;
11931
11932  // TODO: remove this early return once the false positives for constant->bool
11933  // in templates, macros, etc, are reduced or removed.
11934  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
11935    return;
11936
11937  if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
11938      !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
11939    return adornObjCBoolConversionDiagWithTernaryFixit(
11940        S, E,
11941        S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
11942            << E->getType());
11943  }
11944
11945  IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated());
11946  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
11947
11948  if (SourceRange.Width > TargetRange.Width) {
11949    // If the source is a constant, use a default-on diagnostic.
11950    // TODO: this should happen for bitfield stores, too.
11951    Expr::EvalResult Result;
11952    if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
11953                         S.isConstantEvaluated())) {
11954      llvm::APSInt Value(32);
11955      Value = Result.Val.getInt();
11956
11957      if (S.SourceMgr.isInSystemMacro(CC))
11958        return;
11959
11960      std::string PrettySourceValue = Value.toString(10);
11961      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
11962
11963      S.DiagRuntimeBehavior(
11964          E->getExprLoc(), E,
11965          S.PDiag(diag::warn_impcast_integer_precision_constant)
11966              << PrettySourceValue << PrettyTargetValue << E->getType() << T
11967              << E->getSourceRange() << clang::SourceRange(CC));
11968      return;
11969    }
11970
11971    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
11972    if (S.SourceMgr.isInSystemMacro(CC))
11973      return;
11974
11975    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
11976      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
11977                             /* pruneControlFlow */ true);
11978    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
11979  }
11980
11981  if (TargetRange.Width > SourceRange.Width) {
11982    if (auto *UO = dyn_cast<UnaryOperator>(E))
11983      if (UO->getOpcode() == UO_Minus)
11984        if (Source->isUnsignedIntegerType()) {
11985          if (Target->isUnsignedIntegerType())
11986            return DiagnoseImpCast(S, E, T, CC,
11987                                   diag::warn_impcast_high_order_zero_bits);
11988          if (Target->isSignedIntegerType())
11989            return DiagnoseImpCast(S, E, T, CC,
11990                                   diag::warn_impcast_nonnegative_result);
11991        }
11992  }
11993
11994  if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative &&
11995      SourceRange.NonNegative && Source->isSignedIntegerType()) {
11996    // Warn when doing a signed to signed conversion, warn if the positive
11997    // source value is exactly the width of the target type, which will
11998    // cause a negative value to be stored.
11999
12000    Expr::EvalResult Result;
12001    if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
12002        !S.SourceMgr.isInSystemMacro(CC)) {
12003      llvm::APSInt Value = Result.Val.getInt();
12004      if (isSameWidthConstantConversion(S, E, T, CC)) {
12005        std::string PrettySourceValue = Value.toString(10);
12006        std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12007
12008        S.DiagRuntimeBehavior(
12009            E->getExprLoc(), E,
12010            S.PDiag(diag::warn_impcast_integer_precision_constant)
12011                << PrettySourceValue << PrettyTargetValue << E->getType() << T
12012                << E->getSourceRange() << clang::SourceRange(CC));
12013        return;
12014      }
12015    }
12016
12017    // Fall through for non-constants to give a sign conversion warning.
12018  }
12019
12020  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
12021      (!TargetRange.NonNegative && SourceRange.NonNegative &&
12022       SourceRange.Width == TargetRange.Width)) {
12023    if (S.SourceMgr.isInSystemMacro(CC))
12024      return;
12025
12026    unsigned DiagID = diag::warn_impcast_integer_sign;
12027
12028    // Traditionally, gcc has warned about this under -Wsign-compare.
12029    // We also want to warn about it in -Wconversion.
12030    // So if -Wconversion is off, use a completely identical diagnostic
12031    // in the sign-compare group.
12032    // The conditional-checking code will
12033    if (ICContext) {
12034      DiagID = diag::warn_impcast_integer_sign_conditional;
12035      *ICContext = true;
12036    }
12037
12038    return DiagnoseImpCast(S, E, T, CC, DiagID);
12039  }
12040
12041  // Diagnose conversions between different enumeration types.
12042  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
12043  // type, to give us better diagnostics.
12044  QualType SourceType = E->getType();
12045  if (!S.getLangOpts().CPlusPlus) {
12046    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12047      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
12048        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
12049        SourceType = S.Context.getTypeDeclType(Enum);
12050        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
12051      }
12052  }
12053
12054  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
12055    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
12056      if (SourceEnum->getDecl()->hasNameForLinkage() &&
12057          TargetEnum->getDecl()->hasNameForLinkage() &&
12058          SourceEnum != TargetEnum) {
12059        if (S.SourceMgr.isInSystemMacro(CC))
12060          return;
12061
12062        return DiagnoseImpCast(S, E, SourceType, T, CC,
12063                               diag::warn_impcast_different_enum_types);
12064      }
12065}
12066
12067static void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
12068                                     SourceLocation CC, QualType T);
12069
12070static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
12071                                    SourceLocation CC, bool &ICContext) {
12072  E = E->IgnoreParenImpCasts();
12073
12074  if (isa<ConditionalOperator>(E))
12075    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
12076
12077  AnalyzeImplicitConversions(S, E, CC);
12078  if (E->getType() != T)
12079    return CheckImplicitConversion(S, E, T, CC, &ICContext);
12080}
12081
12082static void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
12083                                     SourceLocation CC, QualType T) {
12084  AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
12085
12086  bool Suspicious = false;
12087  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
12088  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
12089
12090  if (T->isBooleanType())
12091    DiagnoseIntInBoolContext(S, E);
12092
12093  // If -Wconversion would have warned about either of the candidates
12094  // for a signedness conversion to the context type...
12095  if (!Suspicious) return;
12096
12097  // ...but it's currently ignored...
12098  if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
12099    return;
12100
12101  // ...then check whether it would have warned about either of the
12102  // candidates for a signedness conversion to the condition type.
12103  if (E->getType() == T) return;
12104
12105  Suspicious = false;
12106  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
12107                          E->getType(), CC, &Suspicious);
12108  if (!Suspicious)
12109    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
12110                            E->getType(), CC, &Suspicious);
12111}
12112
12113/// Check conversion of given expression to boolean.
12114/// Input argument E is a logical expression.
12115static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
12116  if (S.getLangOpts().Bool)
12117    return;
12118  if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
12119    return;
12120  CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
12121}
12122
12123/// AnalyzeImplicitConversions - Find and report any interesting
12124/// implicit conversions in the given expression.  There are a couple
12125/// of competing diagnostics here, -Wconversion and -Wsign-compare.
12126static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
12127                                       bool IsListInit/*= false*/) {
12128  QualType T = OrigE->getType();
12129  Expr *E = OrigE->IgnoreParenImpCasts();
12130
12131  // Propagate whether we are in a C++ list initialization expression.
12132  // If so, we do not issue warnings for implicit int-float conversion
12133  // precision loss, because C++11 narrowing already handles it.
12134  IsListInit =
12135      IsListInit || (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
12136
12137  if (E->isTypeDependent() || E->isValueDependent())
12138    return;
12139
12140  if (const auto *UO = dyn_cast<UnaryOperator>(E))
12141    if (UO->getOpcode() == UO_Not &&
12142        UO->getSubExpr()->isKnownToHaveBooleanValue())
12143      S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
12144          << OrigE->getSourceRange() << T->isBooleanType()
12145          << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
12146
12147  // For conditional operators, we analyze the arguments as if they
12148  // were being fed directly into the output.
12149  if (isa<ConditionalOperator>(E)) {
12150    ConditionalOperator *CO = cast<ConditionalOperator>(E);
12151    CheckConditionalOperator(S, CO, CC, T);
12152    return;
12153  }
12154
12155  // Check implicit argument conversions for function calls.
12156  if (CallExpr *Call = dyn_cast<CallExpr>(E))
12157    CheckImplicitArgumentConversions(S, Call, CC);
12158
12159  // Go ahead and check any implicit conversions we might have skipped.
12160  // The non-canonical typecheck is just an optimization;
12161  // CheckImplicitConversion will filter out dead implicit conversions.
12162  if (E->getType() != T)
12163    CheckImplicitConversion(S, E, T, CC, nullptr, IsListInit);
12164
12165  // Now continue drilling into this expression.
12166
12167  if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
12168    // The bound subexpressions in a PseudoObjectExpr are not reachable
12169    // as transitive children.
12170    // FIXME: Use a more uniform representation for this.
12171    for (auto *SE : POE->semantics())
12172      if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
12173        AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC, IsListInit);
12174  }
12175
12176  // Skip past explicit casts.
12177  if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
12178    E = CE->getSubExpr()->IgnoreParenImpCasts();
12179    if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
12180      S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12181    return AnalyzeImplicitConversions(S, E, CC, IsListInit);
12182  }
12183
12184  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12185    // Do a somewhat different check with comparison operators.
12186    if (BO->isComparisonOp())
12187      return AnalyzeComparison(S, BO);
12188
12189    // And with simple assignments.
12190    if (BO->getOpcode() == BO_Assign)
12191      return AnalyzeAssignment(S, BO);
12192    // And with compound assignments.
12193    if (BO->isAssignmentOp())
12194      return AnalyzeCompoundAssignment(S, BO);
12195  }
12196
12197  // These break the otherwise-useful invariant below.  Fortunately,
12198  // we don't really need to recurse into them, because any internal
12199  // expressions should have been analyzed already when they were
12200  // built into statements.
12201  if (isa<StmtExpr>(E)) return;
12202
12203  // Don't descend into unevaluated contexts.
12204  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
12205
12206  // Now just recurse over the expression's children.
12207  CC = E->getExprLoc();
12208  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
12209  bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
12210  for (Stmt *SubStmt : E->children()) {
12211    Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
12212    if (!ChildExpr)
12213      continue;
12214
12215    if (IsLogicalAndOperator &&
12216        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
12217      // Ignore checking string literals that are in logical and operators.
12218      // This is a common pattern for asserts.
12219      continue;
12220    AnalyzeImplicitConversions(S, ChildExpr, CC, IsListInit);
12221  }
12222
12223  if (BO && BO->isLogicalOp()) {
12224    Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
12225    if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12226      ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12227
12228    SubExpr = BO->getRHS()->IgnoreParenImpCasts();
12229    if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12230      ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12231  }
12232
12233  if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
12234    if (U->getOpcode() == UO_LNot) {
12235      ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
12236    } else if (U->getOpcode() != UO_AddrOf) {
12237      if (U->getSubExpr()->getType()->isAtomicType())
12238        S.Diag(U->getSubExpr()->getBeginLoc(),
12239               diag::warn_atomic_implicit_seq_cst);
12240    }
12241  }
12242}
12243
12244/// Diagnose integer type and any valid implicit conversion to it.
12245static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
12246  // Taking into account implicit conversions,
12247  // allow any integer.
12248  if (!E->getType()->isIntegerType()) {
12249    S.Diag(E->getBeginLoc(),
12250           diag::err_opencl_enqueue_kernel_invalid_local_size_type);
12251    return true;
12252  }
12253  // Potentially emit standard warnings for implicit conversions if enabled
12254  // using -Wconversion.
12255  CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
12256  return false;
12257}
12258
12259// Helper function for Sema::DiagnoseAlwaysNonNullPointer.
12260// Returns true when emitting a warning about taking the address of a reference.
12261static bool CheckForReference(Sema &SemaRef, const Expr *E,
12262                              const PartialDiagnostic &PD) {
12263  E = E->IgnoreParenImpCasts();
12264
12265  const FunctionDecl *FD = nullptr;
12266
12267  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12268    if (!DRE->getDecl()->getType()->isReferenceType())
12269      return false;
12270  } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12271    if (!M->getMemberDecl()->getType()->isReferenceType())
12272      return false;
12273  } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
12274    if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
12275      return false;
12276    FD = Call->getDirectCallee();
12277  } else {
12278    return false;
12279  }
12280
12281  SemaRef.Diag(E->getExprLoc(), PD);
12282
12283  // If possible, point to location of function.
12284  if (FD) {
12285    SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
12286  }
12287
12288  return true;
12289}
12290
12291// Returns true if the SourceLocation is expanded from any macro body.
12292// Returns false if the SourceLocation is invalid, is from not in a macro
12293// expansion, or is from expanded from a top-level macro argument.
12294static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
12295  if (Loc.isInvalid())
12296    return false;
12297
12298  while (Loc.isMacroID()) {
12299    if (SM.isMacroBodyExpansion(Loc))
12300      return true;
12301    Loc = SM.getImmediateMacroCallerLoc(Loc);
12302  }
12303
12304  return false;
12305}
12306
12307/// Diagnose pointers that are always non-null.
12308/// \param E the expression containing the pointer
12309/// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
12310/// compared to a null pointer
12311/// \param IsEqual True when the comparison is equal to a null pointer
12312/// \param Range Extra SourceRange to highlight in the diagnostic
12313void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
12314                                        Expr::NullPointerConstantKind NullKind,
12315                                        bool IsEqual, SourceRange Range) {
12316  if (!E)
12317    return;
12318
12319  // Don't warn inside macros.
12320  if (E->getExprLoc().isMacroID()) {
12321    const SourceManager &SM = getSourceManager();
12322    if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
12323        IsInAnyMacroBody(SM, Range.getBegin()))
12324      return;
12325  }
12326  E = E->IgnoreImpCasts();
12327
12328  const bool IsCompare = NullKind != Expr::NPCK_NotNull;
12329
12330  if (isa<CXXThisExpr>(E)) {
12331    unsigned DiagID = IsCompare ? diag::warn_this_null_compare
12332                                : diag::warn_this_bool_conversion;
12333    Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
12334    return;
12335  }
12336
12337  bool IsAddressOf = false;
12338
12339  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12340    if (UO->getOpcode() != UO_AddrOf)
12341      return;
12342    IsAddressOf = true;
12343    E = UO->getSubExpr();
12344  }
12345
12346  if (IsAddressOf) {
12347    unsigned DiagID = IsCompare
12348                          ? diag::warn_address_of_reference_null_compare
12349                          : diag::warn_address_of_reference_bool_conversion;
12350    PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
12351                                         << IsEqual;
12352    if (CheckForReference(*this, E, PD)) {
12353      return;
12354    }
12355  }
12356
12357  auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
12358    bool IsParam = isa<NonNullAttr>(NonnullAttr);
12359    std::string Str;
12360    llvm::raw_string_ostream S(Str);
12361    E->printPretty(S, nullptr, getPrintingPolicy());
12362    unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
12363                                : diag::warn_cast_nonnull_to_bool;
12364    Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
12365      << E->getSourceRange() << Range << IsEqual;
12366    Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
12367  };
12368
12369  // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
12370  if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
12371    if (auto *Callee = Call->getDirectCallee()) {
12372      if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
12373        ComplainAboutNonnullParamOrCall(A);
12374        return;
12375      }
12376    }
12377  }
12378
12379  // Expect to find a single Decl.  Skip anything more complicated.
12380  ValueDecl *D = nullptr;
12381  if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
12382    D = R->getDecl();
12383  } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12384    D = M->getMemberDecl();
12385  }
12386
12387  // Weak Decls can be null.
12388  if (!D || D->isWeak())
12389    return;
12390
12391  // Check for parameter decl with nonnull attribute
12392  if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
12393    if (getCurFunction() &&
12394        !getCurFunction()->ModifiedNonNullParams.count(PV)) {
12395      if (const Attr *A = PV->getAttr<NonNullAttr>()) {
12396        ComplainAboutNonnullParamOrCall(A);
12397        return;
12398      }
12399
12400      if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
12401        // Skip function template not specialized yet.
12402        if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
12403          return;
12404        auto ParamIter = llvm::find(FD->parameters(), PV);
12405        assert(ParamIter != FD->param_end());
12406        unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
12407
12408        for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
12409          if (!NonNull->args_size()) {
12410              ComplainAboutNonnullParamOrCall(NonNull);
12411              return;
12412          }
12413
12414          for (const ParamIdx &ArgNo : NonNull->args()) {
12415            if (ArgNo.getASTIndex() == ParamNo) {
12416              ComplainAboutNonnullParamOrCall(NonNull);
12417              return;
12418            }
12419          }
12420        }
12421      }
12422    }
12423  }
12424
12425  QualType T = D->getType();
12426  const bool IsArray = T->isArrayType();
12427  const bool IsFunction = T->isFunctionType();
12428
12429  // Address of function is used to silence the function warning.
12430  if (IsAddressOf && IsFunction) {
12431    return;
12432  }
12433
12434  // Found nothing.
12435  if (!IsAddressOf && !IsFunction && !IsArray)
12436    return;
12437
12438  // Pretty print the expression for the diagnostic.
12439  std::string Str;
12440  llvm::raw_string_ostream S(Str);
12441  E->printPretty(S, nullptr, getPrintingPolicy());
12442
12443  unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
12444                              : diag::warn_impcast_pointer_to_bool;
12445  enum {
12446    AddressOf,
12447    FunctionPointer,
12448    ArrayPointer
12449  } DiagType;
12450  if (IsAddressOf)
12451    DiagType = AddressOf;
12452  else if (IsFunction)
12453    DiagType = FunctionPointer;
12454  else if (IsArray)
12455    DiagType = ArrayPointer;
12456  else
12457    llvm_unreachable("Could not determine diagnostic.");
12458  Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
12459                                << Range << IsEqual;
12460
12461  if (!IsFunction)
12462    return;
12463
12464  // Suggest '&' to silence the function warning.
12465  Diag(E->getExprLoc(), diag::note_function_warning_silence)
12466      << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
12467
12468  // Check to see if '()' fixit should be emitted.
12469  QualType ReturnType;
12470  UnresolvedSet<4> NonTemplateOverloads;
12471  tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
12472  if (ReturnType.isNull())
12473    return;
12474
12475  if (IsCompare) {
12476    // There are two cases here.  If there is null constant, the only suggest
12477    // for a pointer return type.  If the null is 0, then suggest if the return
12478    // type is a pointer or an integer type.
12479    if (!ReturnType->isPointerType()) {
12480      if (NullKind == Expr::NPCK_ZeroExpression ||
12481          NullKind == Expr::NPCK_ZeroLiteral) {
12482        if (!ReturnType->isIntegerType())
12483          return;
12484      } else {
12485        return;
12486      }
12487    }
12488  } else { // !IsCompare
12489    // For function to bool, only suggest if the function pointer has bool
12490    // return type.
12491    if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
12492      return;
12493  }
12494  Diag(E->getExprLoc(), diag::note_function_to_function_call)
12495      << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
12496}
12497
12498/// Diagnoses "dangerous" implicit conversions within the given
12499/// expression (which is a full expression).  Implements -Wconversion
12500/// and -Wsign-compare.
12501///
12502/// \param CC the "context" location of the implicit conversion, i.e.
12503///   the most location of the syntactic entity requiring the implicit
12504///   conversion
12505void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
12506  // Don't diagnose in unevaluated contexts.
12507  if (isUnevaluatedContext())
12508    return;
12509
12510  // Don't diagnose for value- or type-dependent expressions.
12511  if (E->isTypeDependent() || E->isValueDependent())
12512    return;
12513
12514  // Check for array bounds violations in cases where the check isn't triggered
12515  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
12516  // ArraySubscriptExpr is on the RHS of a variable initialization.
12517  CheckArrayAccess(E);
12518
12519  // This is not the right CC for (e.g.) a variable initialization.
12520  AnalyzeImplicitConversions(*this, E, CC);
12521}
12522
12523/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
12524/// Input argument E is a logical expression.
12525void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
12526  ::CheckBoolLikeConversion(*this, E, CC);
12527}
12528
12529/// Diagnose when expression is an integer constant expression and its evaluation
12530/// results in integer overflow
12531void Sema::CheckForIntOverflow (Expr *E) {
12532  // Use a work list to deal with nested struct initializers.
12533  SmallVector<Expr *, 2> Exprs(1, E);
12534
12535  do {
12536    Expr *OriginalE = Exprs.pop_back_val();
12537    Expr *E = OriginalE->IgnoreParenCasts();
12538
12539    if (isa<BinaryOperator>(E)) {
12540      E->EvaluateForOverflow(Context);
12541      continue;
12542    }
12543
12544    if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
12545      Exprs.append(InitList->inits().begin(), InitList->inits().end());
12546    else if (isa<ObjCBoxedExpr>(OriginalE))
12547      E->EvaluateForOverflow(Context);
12548    else if (auto Call = dyn_cast<CallExpr>(E))
12549      Exprs.append(Call->arg_begin(), Call->arg_end());
12550    else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
12551      Exprs.append(Message->arg_begin(), Message->arg_end());
12552  } while (!Exprs.empty());
12553}
12554
12555namespace {
12556
12557/// Visitor for expressions which looks for unsequenced operations on the
12558/// same object.
12559class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
12560  using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
12561
12562  /// A tree of sequenced regions within an expression. Two regions are
12563  /// unsequenced if one is an ancestor or a descendent of the other. When we
12564  /// finish processing an expression with sequencing, such as a comma
12565  /// expression, we fold its tree nodes into its parent, since they are
12566  /// unsequenced with respect to nodes we will visit later.
12567  class SequenceTree {
12568    struct Value {
12569      explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
12570      unsigned Parent : 31;
12571      unsigned Merged : 1;
12572    };
12573    SmallVector<Value, 8> Values;
12574
12575  public:
12576    /// A region within an expression which may be sequenced with respect
12577    /// to some other region.
12578    class Seq {
12579      friend class SequenceTree;
12580
12581      unsigned Index;
12582
12583      explicit Seq(unsigned N) : Index(N) {}
12584
12585    public:
12586      Seq() : Index(0) {}
12587    };
12588
12589    SequenceTree() { Values.push_back(Value(0)); }
12590    Seq root() const { return Seq(0); }
12591
12592    /// Create a new sequence of operations, which is an unsequenced
12593    /// subset of \p Parent. This sequence of operations is sequenced with
12594    /// respect to other children of \p Parent.
12595    Seq allocate(Seq Parent) {
12596      Values.push_back(Value(Parent.Index));
12597      return Seq(Values.size() - 1);
12598    }
12599
12600    /// Merge a sequence of operations into its parent.
12601    void merge(Seq S) {
12602      Values[S.Index].Merged = true;
12603    }
12604
12605    /// Determine whether two operations are unsequenced. This operation
12606    /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
12607    /// should have been merged into its parent as appropriate.
12608    bool isUnsequenced(Seq Cur, Seq Old) {
12609      unsigned C = representative(Cur.Index);
12610      unsigned Target = representative(Old.Index);
12611      while (C >= Target) {
12612        if (C == Target)
12613          return true;
12614        C = Values[C].Parent;
12615      }
12616      return false;
12617    }
12618
12619  private:
12620    /// Pick a representative for a sequence.
12621    unsigned representative(unsigned K) {
12622      if (Values[K].Merged)
12623        // Perform path compression as we go.
12624        return Values[K].Parent = representative(Values[K].Parent);
12625      return K;
12626    }
12627  };
12628
12629  /// An object for which we can track unsequenced uses.
12630  using Object = const NamedDecl *;
12631
12632  /// Different flavors of object usage which we track. We only track the
12633  /// least-sequenced usage of each kind.
12634  enum UsageKind {
12635    /// A read of an object. Multiple unsequenced reads are OK.
12636    UK_Use,
12637
12638    /// A modification of an object which is sequenced before the value
12639    /// computation of the expression, such as ++n in C++.
12640    UK_ModAsValue,
12641
12642    /// A modification of an object which is not sequenced before the value
12643    /// computation of the expression, such as n++.
12644    UK_ModAsSideEffect,
12645
12646    UK_Count = UK_ModAsSideEffect + 1
12647  };
12648
12649  /// Bundle together a sequencing region and the expression corresponding
12650  /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
12651  struct Usage {
12652    const Expr *UsageExpr;
12653    SequenceTree::Seq Seq;
12654
12655    Usage() : UsageExpr(nullptr), Seq() {}
12656  };
12657
12658  struct UsageInfo {
12659    Usage Uses[UK_Count];
12660
12661    /// Have we issued a diagnostic for this object already?
12662    bool Diagnosed;
12663
12664    UsageInfo() : Uses(), Diagnosed(false) {}
12665  };
12666  using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
12667
12668  Sema &SemaRef;
12669
12670  /// Sequenced regions within the expression.
12671  SequenceTree Tree;
12672
12673  /// Declaration modifications and references which we have seen.
12674  UsageInfoMap UsageMap;
12675
12676  /// The region we are currently within.
12677  SequenceTree::Seq Region;
12678
12679  /// Filled in with declarations which were modified as a side-effect
12680  /// (that is, post-increment operations).
12681  SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
12682
12683  /// Expressions to check later. We defer checking these to reduce
12684  /// stack usage.
12685  SmallVectorImpl<const Expr *> &WorkList;
12686
12687  /// RAII object wrapping the visitation of a sequenced subexpression of an
12688  /// expression. At the end of this process, the side-effects of the evaluation
12689  /// become sequenced with respect to the value computation of the result, so
12690  /// we downgrade any UK_ModAsSideEffect within the evaluation to
12691  /// UK_ModAsValue.
12692  struct SequencedSubexpression {
12693    SequencedSubexpression(SequenceChecker &Self)
12694      : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
12695      Self.ModAsSideEffect = &ModAsSideEffect;
12696    }
12697
12698    ~SequencedSubexpression() {
12699      for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
12700        // Add a new usage with usage kind UK_ModAsValue, and then restore
12701        // the previous usage with UK_ModAsSideEffect (thus clearing it if
12702        // the previous one was empty).
12703        UsageInfo &UI = Self.UsageMap[M.first];
12704        auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
12705        Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
12706        SideEffectUsage = M.second;
12707      }
12708      Self.ModAsSideEffect = OldModAsSideEffect;
12709    }
12710
12711    SequenceChecker &Self;
12712    SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
12713    SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
12714  };
12715
12716  /// RAII object wrapping the visitation of a subexpression which we might
12717  /// choose to evaluate as a constant. If any subexpression is evaluated and
12718  /// found to be non-constant, this allows us to suppress the evaluation of
12719  /// the outer expression.
12720  class EvaluationTracker {
12721  public:
12722    EvaluationTracker(SequenceChecker &Self)
12723        : Self(Self), Prev(Self.EvalTracker) {
12724      Self.EvalTracker = this;
12725    }
12726
12727    ~EvaluationTracker() {
12728      Self.EvalTracker = Prev;
12729      if (Prev)
12730        Prev->EvalOK &= EvalOK;
12731    }
12732
12733    bool evaluate(const Expr *E, bool &Result) {
12734      if (!EvalOK || E->isValueDependent())
12735        return false;
12736      EvalOK = E->EvaluateAsBooleanCondition(
12737          Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
12738      return EvalOK;
12739    }
12740
12741  private:
12742    SequenceChecker &Self;
12743    EvaluationTracker *Prev;
12744    bool EvalOK = true;
12745  } *EvalTracker = nullptr;
12746
12747  /// Find the object which is produced by the specified expression,
12748  /// if any.
12749  Object getObject(const Expr *E, bool Mod) const {
12750    E = E->IgnoreParenCasts();
12751    if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12752      if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
12753        return getObject(UO->getSubExpr(), Mod);
12754    } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12755      if (BO->getOpcode() == BO_Comma)
12756        return getObject(BO->getRHS(), Mod);
12757      if (Mod && BO->isAssignmentOp())
12758        return getObject(BO->getLHS(), Mod);
12759    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
12760      // FIXME: Check for more interesting cases, like "x.n = ++x.n".
12761      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
12762        return ME->getMemberDecl();
12763    } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12764      // FIXME: If this is a reference, map through to its value.
12765      return DRE->getDecl();
12766    return nullptr;
12767  }
12768
12769  /// Note that an object \p O was modified or used by an expression
12770  /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
12771  /// the object \p O as obtained via the \p UsageMap.
12772  void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
12773    // Get the old usage for the given object and usage kind.
12774    Usage &U = UI.Uses[UK];
12775    if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
12776      // If we have a modification as side effect and are in a sequenced
12777      // subexpression, save the old Usage so that we can restore it later
12778      // in SequencedSubexpression::~SequencedSubexpression.
12779      if (UK == UK_ModAsSideEffect && ModAsSideEffect)
12780        ModAsSideEffect->push_back(std::make_pair(O, U));
12781      // Then record the new usage with the current sequencing region.
12782      U.UsageExpr = UsageExpr;
12783      U.Seq = Region;
12784    }
12785  }
12786
12787  /// Check whether a modification or use of an object \p O in an expression
12788  /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
12789  /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
12790  /// \p IsModMod is true when we are checking for a mod-mod unsequenced
12791  /// usage and false we are checking for a mod-use unsequenced usage.
12792  void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
12793                  UsageKind OtherKind, bool IsModMod) {
12794    if (UI.Diagnosed)
12795      return;
12796
12797    const Usage &U = UI.Uses[OtherKind];
12798    if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
12799      return;
12800
12801    const Expr *Mod = U.UsageExpr;
12802    const Expr *ModOrUse = UsageExpr;
12803    if (OtherKind == UK_Use)
12804      std::swap(Mod, ModOrUse);
12805
12806    SemaRef.DiagRuntimeBehavior(
12807        Mod->getExprLoc(), {Mod, ModOrUse},
12808        SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
12809                               : diag::warn_unsequenced_mod_use)
12810            << O << SourceRange(ModOrUse->getExprLoc()));
12811    UI.Diagnosed = true;
12812  }
12813
12814  // A note on note{Pre, Post}{Use, Mod}:
12815  //
12816  // (It helps to follow the algorithm with an expression such as
12817  //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
12818  //  operations before C++17 and both are well-defined in C++17).
12819  //
12820  // When visiting a node which uses/modify an object we first call notePreUse
12821  // or notePreMod before visiting its sub-expression(s). At this point the
12822  // children of the current node have not yet been visited and so the eventual
12823  // uses/modifications resulting from the children of the current node have not
12824  // been recorded yet.
12825  //
12826  // We then visit the children of the current node. After that notePostUse or
12827  // notePostMod is called. These will 1) detect an unsequenced modification
12828  // as side effect (as in "k++ + k") and 2) add a new usage with the
12829  // appropriate usage kind.
12830  //
12831  // We also have to be careful that some operation sequences modification as
12832  // side effect as well (for example: || or ,). To account for this we wrap
12833  // the visitation of such a sub-expression (for example: the LHS of || or ,)
12834  // with SequencedSubexpression. SequencedSubexpression is an RAII object
12835  // which record usages which are modifications as side effect, and then
12836  // downgrade them (or more accurately restore the previous usage which was a
12837  // modification as side effect) when exiting the scope of the sequenced
12838  // subexpression.
12839
12840  void notePreUse(Object O, const Expr *UseExpr) {
12841    UsageInfo &UI = UsageMap[O];
12842    // Uses conflict with other modifications.
12843    checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
12844  }
12845
12846  void notePostUse(Object O, const Expr *UseExpr) {
12847    UsageInfo &UI = UsageMap[O];
12848    checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
12849               /*IsModMod=*/false);
12850    addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
12851  }
12852
12853  void notePreMod(Object O, const Expr *ModExpr) {
12854    UsageInfo &UI = UsageMap[O];
12855    // Modifications conflict with other modifications and with uses.
12856    checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
12857    checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
12858  }
12859
12860  void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
12861    UsageInfo &UI = UsageMap[O];
12862    checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
12863               /*IsModMod=*/true);
12864    addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
12865  }
12866
12867public:
12868  SequenceChecker(Sema &S, const Expr *E,
12869                  SmallVectorImpl<const Expr *> &WorkList)
12870      : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
12871    Visit(E);
12872    // Silence a -Wunused-private-field since WorkList is now unused.
12873    // TODO: Evaluate if it can be used, and if not remove it.
12874    (void)this->WorkList;
12875  }
12876
12877  void VisitStmt(const Stmt *S) {
12878    // Skip all statements which aren't expressions for now.
12879  }
12880
12881  void VisitExpr(const Expr *E) {
12882    // By default, just recurse to evaluated subexpressions.
12883    Base::VisitStmt(E);
12884  }
12885
12886  void VisitCastExpr(const CastExpr *E) {
12887    Object O = Object();
12888    if (E->getCastKind() == CK_LValueToRValue)
12889      O = getObject(E->getSubExpr(), false);
12890
12891    if (O)
12892      notePreUse(O, E);
12893    VisitExpr(E);
12894    if (O)
12895      notePostUse(O, E);
12896  }
12897
12898  void VisitSequencedExpressions(const Expr *SequencedBefore,
12899                                 const Expr *SequencedAfter) {
12900    SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
12901    SequenceTree::Seq AfterRegion = Tree.allocate(Region);
12902    SequenceTree::Seq OldRegion = Region;
12903
12904    {
12905      SequencedSubexpression SeqBefore(*this);
12906      Region = BeforeRegion;
12907      Visit(SequencedBefore);
12908    }
12909
12910    Region = AfterRegion;
12911    Visit(SequencedAfter);
12912
12913    Region = OldRegion;
12914
12915    Tree.merge(BeforeRegion);
12916    Tree.merge(AfterRegion);
12917  }
12918
12919  void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
12920    // C++17 [expr.sub]p1:
12921    //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
12922    //   expression E1 is sequenced before the expression E2.
12923    if (SemaRef.getLangOpts().CPlusPlus17)
12924      VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
12925    else {
12926      Visit(ASE->getLHS());
12927      Visit(ASE->getRHS());
12928    }
12929  }
12930
12931  void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
12932  void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
12933  void VisitBinPtrMem(const BinaryOperator *BO) {
12934    // C++17 [expr.mptr.oper]p4:
12935    //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
12936    //  the expression E1 is sequenced before the expression E2.
12937    if (SemaRef.getLangOpts().CPlusPlus17)
12938      VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12939    else {
12940      Visit(BO->getLHS());
12941      Visit(BO->getRHS());
12942    }
12943  }
12944
12945  void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
12946  void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
12947  void VisitBinShlShr(const BinaryOperator *BO) {
12948    // C++17 [expr.shift]p4:
12949    //  The expression E1 is sequenced before the expression E2.
12950    if (SemaRef.getLangOpts().CPlusPlus17)
12951      VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12952    else {
12953      Visit(BO->getLHS());
12954      Visit(BO->getRHS());
12955    }
12956  }
12957
12958  void VisitBinComma(const BinaryOperator *BO) {
12959    // C++11 [expr.comma]p1:
12960    //   Every value computation and side effect associated with the left
12961    //   expression is sequenced before every value computation and side
12962    //   effect associated with the right expression.
12963    VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12964  }
12965
12966  void VisitBinAssign(const BinaryOperator *BO) {
12967    SequenceTree::Seq RHSRegion;
12968    SequenceTree::Seq LHSRegion;
12969    if (SemaRef.getLangOpts().CPlusPlus17) {
12970      RHSRegion = Tree.allocate(Region);
12971      LHSRegion = Tree.allocate(Region);
12972    } else {
12973      RHSRegion = Region;
12974      LHSRegion = Region;
12975    }
12976    SequenceTree::Seq OldRegion = Region;
12977
12978    // C++11 [expr.ass]p1:
12979    //  [...] the assignment is sequenced after the value computation
12980    //  of the right and left operands, [...]
12981    //
12982    // so check it before inspecting the operands and update the
12983    // map afterwards.
12984    Object O = getObject(BO->getLHS(), /*Mod=*/true);
12985    if (O)
12986      notePreMod(O, BO);
12987
12988    if (SemaRef.getLangOpts().CPlusPlus17) {
12989      // C++17 [expr.ass]p1:
12990      //  [...] The right operand is sequenced before the left operand. [...]
12991      {
12992        SequencedSubexpression SeqBefore(*this);
12993        Region = RHSRegion;
12994        Visit(BO->getRHS());
12995      }
12996
12997      Region = LHSRegion;
12998      Visit(BO->getLHS());
12999
13000      if (O && isa<CompoundAssignOperator>(BO))
13001        notePostUse(O, BO);
13002
13003    } else {
13004      // C++11 does not specify any sequencing between the LHS and RHS.
13005      Region = LHSRegion;
13006      Visit(BO->getLHS());
13007
13008      if (O && isa<CompoundAssignOperator>(BO))
13009        notePostUse(O, BO);
13010
13011      Region = RHSRegion;
13012      Visit(BO->getRHS());
13013    }
13014
13015    // C++11 [expr.ass]p1:
13016    //  the assignment is sequenced [...] before the value computation of the
13017    //  assignment expression.
13018    // C11 6.5.16/3 has no such rule.
13019    Region = OldRegion;
13020    if (O)
13021      notePostMod(O, BO,
13022                  SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13023                                                  : UK_ModAsSideEffect);
13024    if (SemaRef.getLangOpts().CPlusPlus17) {
13025      Tree.merge(RHSRegion);
13026      Tree.merge(LHSRegion);
13027    }
13028  }
13029
13030  void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
13031    VisitBinAssign(CAO);
13032  }
13033
13034  void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
13035  void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
13036  void VisitUnaryPreIncDec(const UnaryOperator *UO) {
13037    Object O = getObject(UO->getSubExpr(), true);
13038    if (!O)
13039      return VisitExpr(UO);
13040
13041    notePreMod(O, UO);
13042    Visit(UO->getSubExpr());
13043    // C++11 [expr.pre.incr]p1:
13044    //   the expression ++x is equivalent to x+=1
13045    notePostMod(O, UO,
13046                SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13047                                                : UK_ModAsSideEffect);
13048  }
13049
13050  void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
13051  void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
13052  void VisitUnaryPostIncDec(const UnaryOperator *UO) {
13053    Object O = getObject(UO->getSubExpr(), true);
13054    if (!O)
13055      return VisitExpr(UO);
13056
13057    notePreMod(O, UO);
13058    Visit(UO->getSubExpr());
13059    notePostMod(O, UO, UK_ModAsSideEffect);
13060  }
13061
13062  void VisitBinLOr(const BinaryOperator *BO) {
13063    // C++11 [expr.log.or]p2:
13064    //  If the second expression is evaluated, every value computation and
13065    //  side effect associated with the first expression is sequenced before
13066    //  every value computation and side effect associated with the
13067    //  second expression.
13068    SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13069    SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13070    SequenceTree::Seq OldRegion = Region;
13071
13072    EvaluationTracker Eval(*this);
13073    {
13074      SequencedSubexpression Sequenced(*this);
13075      Region = LHSRegion;
13076      Visit(BO->getLHS());
13077    }
13078
13079    // C++11 [expr.log.or]p1:
13080    //  [...] the second operand is not evaluated if the first operand
13081    //  evaluates to true.
13082    bool EvalResult = false;
13083    bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13084    bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
13085    if (ShouldVisitRHS) {
13086      Region = RHSRegion;
13087      Visit(BO->getRHS());
13088    }
13089
13090    Region = OldRegion;
13091    Tree.merge(LHSRegion);
13092    Tree.merge(RHSRegion);
13093  }
13094
13095  void VisitBinLAnd(const BinaryOperator *BO) {
13096    // C++11 [expr.log.and]p2:
13097    //  If the second expression is evaluated, every value computation and
13098    //  side effect associated with the first expression is sequenced before
13099    //  every value computation and side effect associated with the
13100    //  second expression.
13101    SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13102    SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13103    SequenceTree::Seq OldRegion = Region;
13104
13105    EvaluationTracker Eval(*this);
13106    {
13107      SequencedSubexpression Sequenced(*this);
13108      Region = LHSRegion;
13109      Visit(BO->getLHS());
13110    }
13111
13112    // C++11 [expr.log.and]p1:
13113    //  [...] the second operand is not evaluated if the first operand is false.
13114    bool EvalResult = false;
13115    bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13116    bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
13117    if (ShouldVisitRHS) {
13118      Region = RHSRegion;
13119      Visit(BO->getRHS());
13120    }
13121
13122    Region = OldRegion;
13123    Tree.merge(LHSRegion);
13124    Tree.merge(RHSRegion);
13125  }
13126
13127  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
13128    // C++11 [expr.cond]p1:
13129    //  [...] Every value computation and side effect associated with the first
13130    //  expression is sequenced before every value computation and side effect
13131    //  associated with the second or third expression.
13132    SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
13133
13134    // No sequencing is specified between the true and false expression.
13135    // However since exactly one of both is going to be evaluated we can
13136    // consider them to be sequenced. This is needed to avoid warning on
13137    // something like "x ? y+= 1 : y += 2;" in the case where we will visit
13138    // both the true and false expressions because we can't evaluate x.
13139    // This will still allow us to detect an expression like (pre C++17)
13140    // "(x ? y += 1 : y += 2) = y".
13141    //
13142    // We don't wrap the visitation of the true and false expression with
13143    // SequencedSubexpression because we don't want to downgrade modifications
13144    // as side effect in the true and false expressions after the visition
13145    // is done. (for example in the expression "(x ? y++ : y++) + y" we should
13146    // not warn between the two "y++", but we should warn between the "y++"
13147    // and the "y".
13148    SequenceTree::Seq TrueRegion = Tree.allocate(Region);
13149    SequenceTree::Seq FalseRegion = Tree.allocate(Region);
13150    SequenceTree::Seq OldRegion = Region;
13151
13152    EvaluationTracker Eval(*this);
13153    {
13154      SequencedSubexpression Sequenced(*this);
13155      Region = ConditionRegion;
13156      Visit(CO->getCond());
13157    }
13158
13159    // C++11 [expr.cond]p1:
13160    // [...] The first expression is contextually converted to bool (Clause 4).
13161    // It is evaluated and if it is true, the result of the conditional
13162    // expression is the value of the second expression, otherwise that of the
13163    // third expression. Only one of the second and third expressions is
13164    // evaluated. [...]
13165    bool EvalResult = false;
13166    bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
13167    bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
13168    bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
13169    if (ShouldVisitTrueExpr) {
13170      Region = TrueRegion;
13171      Visit(CO->getTrueExpr());
13172    }
13173    if (ShouldVisitFalseExpr) {
13174      Region = FalseRegion;
13175      Visit(CO->getFalseExpr());
13176    }
13177
13178    Region = OldRegion;
13179    Tree.merge(ConditionRegion);
13180    Tree.merge(TrueRegion);
13181    Tree.merge(FalseRegion);
13182  }
13183
13184  void VisitCallExpr(const CallExpr *CE) {
13185    // C++11 [intro.execution]p15:
13186    //   When calling a function [...], every value computation and side effect
13187    //   associated with any argument expression, or with the postfix expression
13188    //   designating the called function, is sequenced before execution of every
13189    //   expression or statement in the body of the function [and thus before
13190    //   the value computation of its result].
13191    SequencedSubexpression Sequenced(*this);
13192    SemaRef.runWithSufficientStackSpace(CE->getExprLoc(),
13193                                        [&] { Base::VisitCallExpr(CE); });
13194
13195    // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
13196  }
13197
13198  void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
13199    // This is a call, so all subexpressions are sequenced before the result.
13200    SequencedSubexpression Sequenced(*this);
13201
13202    if (!CCE->isListInitialization())
13203      return VisitExpr(CCE);
13204
13205    // In C++11, list initializations are sequenced.
13206    SmallVector<SequenceTree::Seq, 32> Elts;
13207    SequenceTree::Seq Parent = Region;
13208    for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
13209                                              E = CCE->arg_end();
13210         I != E; ++I) {
13211      Region = Tree.allocate(Parent);
13212      Elts.push_back(Region);
13213      Visit(*I);
13214    }
13215
13216    // Forget that the initializers are sequenced.
13217    Region = Parent;
13218    for (unsigned I = 0; I < Elts.size(); ++I)
13219      Tree.merge(Elts[I]);
13220  }
13221
13222  void VisitInitListExpr(const InitListExpr *ILE) {
13223    if (!SemaRef.getLangOpts().CPlusPlus11)
13224      return VisitExpr(ILE);
13225
13226    // In C++11, list initializations are sequenced.
13227    SmallVector<SequenceTree::Seq, 32> Elts;
13228    SequenceTree::Seq Parent = Region;
13229    for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
13230      const Expr *E = ILE->getInit(I);
13231      if (!E)
13232        continue;
13233      Region = Tree.allocate(Parent);
13234      Elts.push_back(Region);
13235      Visit(E);
13236    }
13237
13238    // Forget that the initializers are sequenced.
13239    Region = Parent;
13240    for (unsigned I = 0; I < Elts.size(); ++I)
13241      Tree.merge(Elts[I]);
13242  }
13243};
13244
13245} // namespace
13246
13247void Sema::CheckUnsequencedOperations(const Expr *E) {
13248  SmallVector<const Expr *, 8> WorkList;
13249  WorkList.push_back(E);
13250  while (!WorkList.empty()) {
13251    const Expr *Item = WorkList.pop_back_val();
13252    SequenceChecker(*this, Item, WorkList);
13253  }
13254}
13255
13256void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
13257                              bool IsConstexpr) {
13258  llvm::SaveAndRestore<bool> ConstantContext(
13259      isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
13260  CheckImplicitConversions(E, CheckLoc);
13261  if (!E->isInstantiationDependent())
13262    CheckUnsequencedOperations(E);
13263  if (!IsConstexpr && !E->isValueDependent())
13264    CheckForIntOverflow(E);
13265  DiagnoseMisalignedMembers();
13266}
13267
13268void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
13269                                       FieldDecl *BitField,
13270                                       Expr *Init) {
13271  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
13272}
13273
13274static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
13275                                         SourceLocation Loc) {
13276  if (!PType->isVariablyModifiedType())
13277    return;
13278  if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
13279    diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
13280    return;
13281  }
13282  if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
13283    diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
13284    return;
13285  }
13286  if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
13287    diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
13288    return;
13289  }
13290
13291  const ArrayType *AT = S.Context.getAsArrayType(PType);
13292  if (!AT)
13293    return;
13294
13295  if (AT->getSizeModifier() != ArrayType::Star) {
13296    diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
13297    return;
13298  }
13299
13300  S.Diag(Loc, diag::err_array_star_in_function_definition);
13301}
13302
13303/// CheckParmsForFunctionDef - Check that the parameters of the given
13304/// function are appropriate for the definition of a function. This
13305/// takes care of any checks that cannot be performed on the
13306/// declaration itself, e.g., that the types of each of the function
13307/// parameters are complete.
13308bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
13309                                    bool CheckParameterNames) {
13310  bool HasInvalidParm = false;
13311  for (ParmVarDecl *Param : Parameters) {
13312    // C99 6.7.5.3p4: the parameters in a parameter type list in a
13313    // function declarator that is part of a function definition of
13314    // that function shall not have incomplete type.
13315    //
13316    // This is also C++ [dcl.fct]p6.
13317    if (!Param->isInvalidDecl() &&
13318        RequireCompleteType(Param->getLocation(), Param->getType(),
13319                            diag::err_typecheck_decl_incomplete_type)) {
13320      Param->setInvalidDecl();
13321      HasInvalidParm = true;
13322    }
13323
13324    // C99 6.9.1p5: If the declarator includes a parameter type list, the
13325    // declaration of each parameter shall include an identifier.
13326    if (CheckParameterNames &&
13327        Param->getIdentifier() == nullptr &&
13328        !Param->isImplicit() &&
13329        !getLangOpts().CPlusPlus)
13330      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
13331
13332    // C99 6.7.5.3p12:
13333    //   If the function declarator is not part of a definition of that
13334    //   function, parameters may have incomplete type and may use the [*]
13335    //   notation in their sequences of declarator specifiers to specify
13336    //   variable length array types.
13337    QualType PType = Param->getOriginalType();
13338    // FIXME: This diagnostic should point the '[*]' if source-location
13339    // information is added for it.
13340    diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
13341
13342    // If the parameter is a c++ class type and it has to be destructed in the
13343    // callee function, declare the destructor so that it can be called by the
13344    // callee function. Do not perform any direct access check on the dtor here.
13345    if (!Param->isInvalidDecl()) {
13346      if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
13347        if (!ClassDecl->isInvalidDecl() &&
13348            !ClassDecl->hasIrrelevantDestructor() &&
13349            !ClassDecl->isDependentContext() &&
13350            ClassDecl->isParamDestroyedInCallee()) {
13351          CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
13352          MarkFunctionReferenced(Param->getLocation(), Destructor);
13353          DiagnoseUseOfDecl(Destructor, Param->getLocation());
13354        }
13355      }
13356    }
13357
13358    // Parameters with the pass_object_size attribute only need to be marked
13359    // constant at function definitions. Because we lack information about
13360    // whether we're on a declaration or definition when we're instantiating the
13361    // attribute, we need to check for constness here.
13362    if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
13363      if (!Param->getType().isConstQualified())
13364        Diag(Param->getLocation(), diag::err_attribute_pointers_only)
13365            << Attr->getSpelling() << 1;
13366
13367    // Check for parameter names shadowing fields from the class.
13368    if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
13369      // The owning context for the parameter should be the function, but we
13370      // want to see if this function's declaration context is a record.
13371      DeclContext *DC = Param->getDeclContext();
13372      if (DC && DC->isFunctionOrMethod()) {
13373        if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
13374          CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
13375                                     RD, /*DeclIsField*/ false);
13376      }
13377    }
13378  }
13379
13380  return HasInvalidParm;
13381}
13382
13383/// A helper function to get the alignment of a Decl referred to by DeclRefExpr
13384/// or MemberExpr.
13385static CharUnits getDeclAlign(Expr *E, CharUnits TypeAlign,
13386                              ASTContext &Context) {
13387  if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
13388    return Context.getDeclAlign(DRE->getDecl());
13389
13390  if (const auto *ME = dyn_cast<MemberExpr>(E))
13391    return Context.getDeclAlign(ME->getMemberDecl());
13392
13393  return TypeAlign;
13394}
13395
13396/// CheckCastAlign - Implements -Wcast-align, which warns when a
13397/// pointer cast increases the alignment requirements.
13398void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
13399  // This is actually a lot of work to potentially be doing on every
13400  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
13401  if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
13402    return;
13403
13404  // Ignore dependent types.
13405  if (T->isDependentType() || Op->getType()->isDependentType())
13406    return;
13407
13408  // Require that the destination be a pointer type.
13409  const PointerType *DestPtr = T->getAs<PointerType>();
13410  if (!DestPtr) return;
13411
13412  // If the destination has alignment 1, we're done.
13413  QualType DestPointee = DestPtr->getPointeeType();
13414  if (DestPointee->isIncompleteType()) return;
13415  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
13416  if (DestAlign.isOne()) return;
13417
13418  // Require that the source be a pointer type.
13419  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
13420  if (!SrcPtr) return;
13421  QualType SrcPointee = SrcPtr->getPointeeType();
13422
13423  // Whitelist casts from cv void*.  We already implicitly
13424  // whitelisted casts to cv void*, since they have alignment 1.
13425  // Also whitelist casts involving incomplete types, which implicitly
13426  // includes 'void'.
13427  if (SrcPointee->isIncompleteType()) return;
13428
13429  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
13430
13431  if (auto *CE = dyn_cast<CastExpr>(Op)) {
13432    if (CE->getCastKind() == CK_ArrayToPointerDecay)
13433      SrcAlign = getDeclAlign(CE->getSubExpr(), SrcAlign, Context);
13434  } else if (auto *UO = dyn_cast<UnaryOperator>(Op)) {
13435    if (UO->getOpcode() == UO_AddrOf)
13436      SrcAlign = getDeclAlign(UO->getSubExpr(), SrcAlign, Context);
13437  }
13438
13439  if (SrcAlign >= DestAlign) return;
13440
13441  Diag(TRange.getBegin(), diag::warn_cast_align)
13442    << Op->getType() << T
13443    << static_cast<unsigned>(SrcAlign.getQuantity())
13444    << static_cast<unsigned>(DestAlign.getQuantity())
13445    << TRange << Op->getSourceRange();
13446}
13447
13448/// Check whether this array fits the idiom of a size-one tail padded
13449/// array member of a struct.
13450///
13451/// We avoid emitting out-of-bounds access warnings for such arrays as they are
13452/// commonly used to emulate flexible arrays in C89 code.
13453static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
13454                                    const NamedDecl *ND) {
13455  if (Size != 1 || !ND) return false;
13456
13457  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
13458  if (!FD) return false;
13459
13460  // Don't consider sizes resulting from macro expansions or template argument
13461  // substitution to form C89 tail-padded arrays.
13462
13463  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
13464  while (TInfo) {
13465    TypeLoc TL = TInfo->getTypeLoc();
13466    // Look through typedefs.
13467    if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
13468      const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
13469      TInfo = TDL->getTypeSourceInfo();
13470      continue;
13471    }
13472    if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
13473      const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
13474      if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
13475        return false;
13476    }
13477    break;
13478  }
13479
13480  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
13481  if (!RD) return false;
13482  if (RD->isUnion()) return false;
13483  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
13484    if (!CRD->isStandardLayout()) return false;
13485  }
13486
13487  // See if this is the last field decl in the record.
13488  const Decl *D = FD;
13489  while ((D = D->getNextDeclInContext()))
13490    if (isa<FieldDecl>(D))
13491      return false;
13492  return true;
13493}
13494
13495void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
13496                            const ArraySubscriptExpr *ASE,
13497                            bool AllowOnePastEnd, bool IndexNegated) {
13498  // Already diagnosed by the constant evaluator.
13499  if (isConstantEvaluated())
13500    return;
13501
13502  IndexExpr = IndexExpr->IgnoreParenImpCasts();
13503  if (IndexExpr->isValueDependent())
13504    return;
13505
13506  const Type *EffectiveType =
13507      BaseExpr->getType()->getPointeeOrArrayElementType();
13508  BaseExpr = BaseExpr->IgnoreParenCasts();
13509  const ConstantArrayType *ArrayTy =
13510      Context.getAsConstantArrayType(BaseExpr->getType());
13511
13512  if (!ArrayTy)
13513    return;
13514
13515  const Type *BaseType = ArrayTy->getElementType().getTypePtr();
13516  if (EffectiveType->isDependentType() || BaseType->isDependentType())
13517    return;
13518
13519  Expr::EvalResult Result;
13520  if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
13521    return;
13522
13523  llvm::APSInt index = Result.Val.getInt();
13524  if (IndexNegated)
13525    index = -index;
13526
13527  const NamedDecl *ND = nullptr;
13528  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
13529    ND = DRE->getDecl();
13530  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
13531    ND = ME->getMemberDecl();
13532
13533  if (index.isUnsigned() || !index.isNegative()) {
13534    // It is possible that the type of the base expression after
13535    // IgnoreParenCasts is incomplete, even though the type of the base
13536    // expression before IgnoreParenCasts is complete (see PR39746 for an
13537    // example). In this case we have no information about whether the array
13538    // access exceeds the array bounds. However we can still diagnose an array
13539    // access which precedes the array bounds.
13540    if (BaseType->isIncompleteType())
13541      return;
13542
13543    llvm::APInt size = ArrayTy->getSize();
13544    if (!size.isStrictlyPositive())
13545      return;
13546
13547    if (BaseType != EffectiveType) {
13548      // Make sure we're comparing apples to apples when comparing index to size
13549      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
13550      uint64_t array_typesize = Context.getTypeSize(BaseType);
13551      // Handle ptrarith_typesize being zero, such as when casting to void*
13552      if (!ptrarith_typesize) ptrarith_typesize = 1;
13553      if (ptrarith_typesize != array_typesize) {
13554        // There's a cast to a different size type involved
13555        uint64_t ratio = array_typesize / ptrarith_typesize;
13556        // TODO: Be smarter about handling cases where array_typesize is not a
13557        // multiple of ptrarith_typesize
13558        if (ptrarith_typesize * ratio == array_typesize)
13559          size *= llvm::APInt(size.getBitWidth(), ratio);
13560      }
13561    }
13562
13563    if (size.getBitWidth() > index.getBitWidth())
13564      index = index.zext(size.getBitWidth());
13565    else if (size.getBitWidth() < index.getBitWidth())
13566      size = size.zext(index.getBitWidth());
13567
13568    // For array subscripting the index must be less than size, but for pointer
13569    // arithmetic also allow the index (offset) to be equal to size since
13570    // computing the next address after the end of the array is legal and
13571    // commonly done e.g. in C++ iterators and range-based for loops.
13572    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
13573      return;
13574
13575    // Also don't warn for arrays of size 1 which are members of some
13576    // structure. These are often used to approximate flexible arrays in C89
13577    // code.
13578    if (IsTailPaddedMemberArray(*this, size, ND))
13579      return;
13580
13581    // Suppress the warning if the subscript expression (as identified by the
13582    // ']' location) and the index expression are both from macro expansions
13583    // within a system header.
13584    if (ASE) {
13585      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
13586          ASE->getRBracketLoc());
13587      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
13588        SourceLocation IndexLoc =
13589            SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
13590        if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
13591          return;
13592      }
13593    }
13594
13595    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
13596    if (ASE)
13597      DiagID = diag::warn_array_index_exceeds_bounds;
13598
13599    DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
13600                        PDiag(DiagID) << index.toString(10, true)
13601                                      << size.toString(10, true)
13602                                      << (unsigned)size.getLimitedValue(~0U)
13603                                      << IndexExpr->getSourceRange());
13604  } else {
13605    unsigned DiagID = diag::warn_array_index_precedes_bounds;
13606    if (!ASE) {
13607      DiagID = diag::warn_ptr_arith_precedes_bounds;
13608      if (index.isNegative()) index = -index;
13609    }
13610
13611    DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
13612                        PDiag(DiagID) << index.toString(10, true)
13613                                      << IndexExpr->getSourceRange());
13614  }
13615
13616  if (!ND) {
13617    // Try harder to find a NamedDecl to point at in the note.
13618    while (const ArraySubscriptExpr *ASE =
13619           dyn_cast<ArraySubscriptExpr>(BaseExpr))
13620      BaseExpr = ASE->getBase()->IgnoreParenCasts();
13621    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
13622      ND = DRE->getDecl();
13623    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
13624      ND = ME->getMemberDecl();
13625  }
13626
13627  if (ND)
13628    DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
13629                        PDiag(diag::note_array_declared_here)
13630                            << ND->getDeclName());
13631}
13632
13633void Sema::CheckArrayAccess(const Expr *expr) {
13634  int AllowOnePastEnd = 0;
13635  while (expr) {
13636    expr = expr->IgnoreParenImpCasts();
13637    switch (expr->getStmtClass()) {
13638      case Stmt::ArraySubscriptExprClass: {
13639        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
13640        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
13641                         AllowOnePastEnd > 0);
13642        expr = ASE->getBase();
13643        break;
13644      }
13645      case Stmt::MemberExprClass: {
13646        expr = cast<MemberExpr>(expr)->getBase();
13647        break;
13648      }
13649      case Stmt::OMPArraySectionExprClass: {
13650        const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
13651        if (ASE->getLowerBound())
13652          CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
13653                           /*ASE=*/nullptr, AllowOnePastEnd > 0);
13654        return;
13655      }
13656      case Stmt::UnaryOperatorClass: {
13657        // Only unwrap the * and & unary operators
13658        const UnaryOperator *UO = cast<UnaryOperator>(expr);
13659        expr = UO->getSubExpr();
13660        switch (UO->getOpcode()) {
13661          case UO_AddrOf:
13662            AllowOnePastEnd++;
13663            break;
13664          case UO_Deref:
13665            AllowOnePastEnd--;
13666            break;
13667          default:
13668            return;
13669        }
13670        break;
13671      }
13672      case Stmt::ConditionalOperatorClass: {
13673        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
13674        if (const Expr *lhs = cond->getLHS())
13675          CheckArrayAccess(lhs);
13676        if (const Expr *rhs = cond->getRHS())
13677          CheckArrayAccess(rhs);
13678        return;
13679      }
13680      case Stmt::CXXOperatorCallExprClass: {
13681        const auto *OCE = cast<CXXOperatorCallExpr>(expr);
13682        for (const auto *Arg : OCE->arguments())
13683          CheckArrayAccess(Arg);
13684        return;
13685      }
13686      default:
13687        return;
13688    }
13689  }
13690}
13691
13692//===--- CHECK: Objective-C retain cycles ----------------------------------//
13693
13694namespace {
13695
13696struct RetainCycleOwner {
13697  VarDecl *Variable = nullptr;
13698  SourceRange Range;
13699  SourceLocation Loc;
13700  bool Indirect = false;
13701
13702  RetainCycleOwner() = default;
13703
13704  void setLocsFrom(Expr *e) {
13705    Loc = e->getExprLoc();
13706    Range = e->getSourceRange();
13707  }
13708};
13709
13710} // namespace
13711
13712/// Consider whether capturing the given variable can possibly lead to
13713/// a retain cycle.
13714static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
13715  // In ARC, it's captured strongly iff the variable has __strong
13716  // lifetime.  In MRR, it's captured strongly if the variable is
13717  // __block and has an appropriate type.
13718  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
13719    return false;
13720
13721  owner.Variable = var;
13722  if (ref)
13723    owner.setLocsFrom(ref);
13724  return true;
13725}
13726
13727static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
13728  while (true) {
13729    e = e->IgnoreParens();
13730    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
13731      switch (cast->getCastKind()) {
13732      case CK_BitCast:
13733      case CK_LValueBitCast:
13734      case CK_LValueToRValue:
13735      case CK_ARCReclaimReturnedObject:
13736        e = cast->getSubExpr();
13737        continue;
13738
13739      default:
13740        return false;
13741      }
13742    }
13743
13744    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
13745      ObjCIvarDecl *ivar = ref->getDecl();
13746      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
13747        return false;
13748
13749      // Try to find a retain cycle in the base.
13750      if (!findRetainCycleOwner(S, ref->getBase(), owner))
13751        return false;
13752
13753      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
13754      owner.Indirect = true;
13755      return true;
13756    }
13757
13758    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
13759      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
13760      if (!var) return false;
13761      return considerVariable(var, ref, owner);
13762    }
13763
13764    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
13765      if (member->isArrow()) return false;
13766
13767      // Don't count this as an indirect ownership.
13768      e = member->getBase();
13769      continue;
13770    }
13771
13772    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
13773      // Only pay attention to pseudo-objects on property references.
13774      ObjCPropertyRefExpr *pre
13775        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
13776                                              ->IgnoreParens());
13777      if (!pre) return false;
13778      if (pre->isImplicitProperty()) return false;
13779      ObjCPropertyDecl *property = pre->getExplicitProperty();
13780      if (!property->isRetaining() &&
13781          !(property->getPropertyIvarDecl() &&
13782            property->getPropertyIvarDecl()->getType()
13783              .getObjCLifetime() == Qualifiers::OCL_Strong))
13784          return false;
13785
13786      owner.Indirect = true;
13787      if (pre->isSuperReceiver()) {
13788        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
13789        if (!owner.Variable)
13790          return false;
13791        owner.Loc = pre->getLocation();
13792        owner.Range = pre->getSourceRange();
13793        return true;
13794      }
13795      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
13796                              ->getSourceExpr());
13797      continue;
13798    }
13799
13800    // Array ivars?
13801
13802    return false;
13803  }
13804}
13805
13806namespace {
13807
13808  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
13809    ASTContext &Context;
13810    VarDecl *Variable;
13811    Expr *Capturer = nullptr;
13812    bool VarWillBeReased = false;
13813
13814    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
13815        : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
13816          Context(Context), Variable(variable) {}
13817
13818    void VisitDeclRefExpr(DeclRefExpr *ref) {
13819      if (ref->getDecl() == Variable && !Capturer)
13820        Capturer = ref;
13821    }
13822
13823    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
13824      if (Capturer) return;
13825      Visit(ref->getBase());
13826      if (Capturer && ref->isFreeIvar())
13827        Capturer = ref;
13828    }
13829
13830    void VisitBlockExpr(BlockExpr *block) {
13831      // Look inside nested blocks
13832      if (block->getBlockDecl()->capturesVariable(Variable))
13833        Visit(block->getBlockDecl()->getBody());
13834    }
13835
13836    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
13837      if (Capturer) return;
13838      if (OVE->getSourceExpr())
13839        Visit(OVE->getSourceExpr());
13840    }
13841
13842    void VisitBinaryOperator(BinaryOperator *BinOp) {
13843      if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
13844        return;
13845      Expr *LHS = BinOp->getLHS();
13846      if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
13847        if (DRE->getDecl() != Variable)
13848          return;
13849        if (Expr *RHS = BinOp->getRHS()) {
13850          RHS = RHS->IgnoreParenCasts();
13851          llvm::APSInt Value;
13852          VarWillBeReased =
13853            (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
13854        }
13855      }
13856    }
13857  };
13858
13859} // namespace
13860
13861/// Check whether the given argument is a block which captures a
13862/// variable.
13863static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
13864  assert(owner.Variable && owner.Loc.isValid());
13865
13866  e = e->IgnoreParenCasts();
13867
13868  // Look through [^{...} copy] and Block_copy(^{...}).
13869  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
13870    Selector Cmd = ME->getSelector();
13871    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
13872      e = ME->getInstanceReceiver();
13873      if (!e)
13874        return nullptr;
13875      e = e->IgnoreParenCasts();
13876    }
13877  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
13878    if (CE->getNumArgs() == 1) {
13879      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
13880      if (Fn) {
13881        const IdentifierInfo *FnI = Fn->getIdentifier();
13882        if (FnI && FnI->isStr("_Block_copy")) {
13883          e = CE->getArg(0)->IgnoreParenCasts();
13884        }
13885      }
13886    }
13887  }
13888
13889  BlockExpr *block = dyn_cast<BlockExpr>(e);
13890  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
13891    return nullptr;
13892
13893  FindCaptureVisitor visitor(S.Context, owner.Variable);
13894  visitor.Visit(block->getBlockDecl()->getBody());
13895  return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
13896}
13897
13898static void diagnoseRetainCycle(Sema &S, Expr *capturer,
13899                                RetainCycleOwner &owner) {
13900  assert(capturer);
13901  assert(owner.Variable && owner.Loc.isValid());
13902
13903  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
13904    << owner.Variable << capturer->getSourceRange();
13905  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
13906    << owner.Indirect << owner.Range;
13907}
13908
13909/// Check for a keyword selector that starts with the word 'add' or
13910/// 'set'.
13911static bool isSetterLikeSelector(Selector sel) {
13912  if (sel.isUnarySelector()) return false;
13913
13914  StringRef str = sel.getNameForSlot(0);
13915  while (!str.empty() && str.front() == '_') str = str.substr(1);
13916  if (str.startswith("set"))
13917    str = str.substr(3);
13918  else if (str.startswith("add")) {
13919    // Specially whitelist 'addOperationWithBlock:'.
13920    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
13921      return false;
13922    str = str.substr(3);
13923  }
13924  else
13925    return false;
13926
13927  if (str.empty()) return true;
13928  return !isLowercase(str.front());
13929}
13930
13931static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
13932                                                    ObjCMessageExpr *Message) {
13933  bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
13934                                                Message->getReceiverInterface(),
13935                                                NSAPI::ClassId_NSMutableArray);
13936  if (!IsMutableArray) {
13937    return None;
13938  }
13939
13940  Selector Sel = Message->getSelector();
13941
13942  Optional<NSAPI::NSArrayMethodKind> MKOpt =
13943    S.NSAPIObj->getNSArrayMethodKind(Sel);
13944  if (!MKOpt) {
13945    return None;
13946  }
13947
13948  NSAPI::NSArrayMethodKind MK = *MKOpt;
13949
13950  switch (MK) {
13951    case NSAPI::NSMutableArr_addObject:
13952    case NSAPI::NSMutableArr_insertObjectAtIndex:
13953    case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
13954      return 0;
13955    case NSAPI::NSMutableArr_replaceObjectAtIndex:
13956      return 1;
13957
13958    default:
13959      return None;
13960  }
13961
13962  return None;
13963}
13964
13965static
13966Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
13967                                                  ObjCMessageExpr *Message) {
13968  bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
13969                                            Message->getReceiverInterface(),
13970                                            NSAPI::ClassId_NSMutableDictionary);
13971  if (!IsMutableDictionary) {
13972    return None;
13973  }
13974
13975  Selector Sel = Message->getSelector();
13976
13977  Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
13978    S.NSAPIObj->getNSDictionaryMethodKind(Sel);
13979  if (!MKOpt) {
13980    return None;
13981  }
13982
13983  NSAPI::NSDictionaryMethodKind MK = *MKOpt;
13984
13985  switch (MK) {
13986    case NSAPI::NSMutableDict_setObjectForKey:
13987    case NSAPI::NSMutableDict_setValueForKey:
13988    case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
13989      return 0;
13990
13991    default:
13992      return None;
13993  }
13994
13995  return None;
13996}
13997
13998static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
13999  bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
14000                                                Message->getReceiverInterface(),
14001                                                NSAPI::ClassId_NSMutableSet);
14002
14003  bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
14004                                            Message->getReceiverInterface(),
14005                                            NSAPI::ClassId_NSMutableOrderedSet);
14006  if (!IsMutableSet && !IsMutableOrderedSet) {
14007    return None;
14008  }
14009
14010  Selector Sel = Message->getSelector();
14011
14012  Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
14013  if (!MKOpt) {
14014    return None;
14015  }
14016
14017  NSAPI::NSSetMethodKind MK = *MKOpt;
14018
14019  switch (MK) {
14020    case NSAPI::NSMutableSet_addObject:
14021    case NSAPI::NSOrderedSet_setObjectAtIndex:
14022    case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
14023    case NSAPI::NSOrderedSet_insertObjectAtIndex:
14024      return 0;
14025    case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
14026      return 1;
14027  }
14028
14029  return None;
14030}
14031
14032void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
14033  if (!Message->isInstanceMessage()) {
14034    return;
14035  }
14036
14037  Optional<int> ArgOpt;
14038
14039  if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
14040      !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
14041      !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
14042    return;
14043  }
14044
14045  int ArgIndex = *ArgOpt;
14046
14047  Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
14048  if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
14049    Arg = OE->getSourceExpr()->IgnoreImpCasts();
14050  }
14051
14052  if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
14053    if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14054      if (ArgRE->isObjCSelfExpr()) {
14055        Diag(Message->getSourceRange().getBegin(),
14056             diag::warn_objc_circular_container)
14057          << ArgRE->getDecl() << StringRef("'super'");
14058      }
14059    }
14060  } else {
14061    Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
14062
14063    if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
14064      Receiver = OE->getSourceExpr()->IgnoreImpCasts();
14065    }
14066
14067    if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
14068      if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14069        if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
14070          ValueDecl *Decl = ReceiverRE->getDecl();
14071          Diag(Message->getSourceRange().getBegin(),
14072               diag::warn_objc_circular_container)
14073            << Decl << Decl;
14074          if (!ArgRE->isObjCSelfExpr()) {
14075            Diag(Decl->getLocation(),
14076                 diag::note_objc_circular_container_declared_here)
14077              << Decl;
14078          }
14079        }
14080      }
14081    } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
14082      if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
14083        if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
14084          ObjCIvarDecl *Decl = IvarRE->getDecl();
14085          Diag(Message->getSourceRange().getBegin(),
14086               diag::warn_objc_circular_container)
14087            << Decl << Decl;
14088          Diag(Decl->getLocation(),
14089               diag::note_objc_circular_container_declared_here)
14090            << Decl;
14091        }
14092      }
14093    }
14094  }
14095}
14096
14097/// Check a message send to see if it's likely to cause a retain cycle.
14098void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
14099  // Only check instance methods whose selector looks like a setter.
14100  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
14101    return;
14102
14103  // Try to find a variable that the receiver is strongly owned by.
14104  RetainCycleOwner owner;
14105  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
14106    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
14107      return;
14108  } else {
14109    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
14110    owner.Variable = getCurMethodDecl()->getSelfDecl();
14111    owner.Loc = msg->getSuperLoc();
14112    owner.Range = msg->getSuperLoc();
14113  }
14114
14115  // Check whether the receiver is captured by any of the arguments.
14116  const ObjCMethodDecl *MD = msg->getMethodDecl();
14117  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
14118    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
14119      // noescape blocks should not be retained by the method.
14120      if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
14121        continue;
14122      return diagnoseRetainCycle(*this, capturer, owner);
14123    }
14124  }
14125}
14126
14127/// Check a property assign to see if it's likely to cause a retain cycle.
14128void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
14129  RetainCycleOwner owner;
14130  if (!findRetainCycleOwner(*this, receiver, owner))
14131    return;
14132
14133  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
14134    diagnoseRetainCycle(*this, capturer, owner);
14135}
14136
14137void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
14138  RetainCycleOwner Owner;
14139  if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
14140    return;
14141
14142  // Because we don't have an expression for the variable, we have to set the
14143  // location explicitly here.
14144  Owner.Loc = Var->getLocation();
14145  Owner.Range = Var->getSourceRange();
14146
14147  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
14148    diagnoseRetainCycle(*this, Capturer, Owner);
14149}
14150
14151static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
14152                                     Expr *RHS, bool isProperty) {
14153  // Check if RHS is an Objective-C object literal, which also can get
14154  // immediately zapped in a weak reference.  Note that we explicitly
14155  // allow ObjCStringLiterals, since those are designed to never really die.
14156  RHS = RHS->IgnoreParenImpCasts();
14157
14158  // This enum needs to match with the 'select' in
14159  // warn_objc_arc_literal_assign (off-by-1).
14160  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
14161  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
14162    return false;
14163
14164  S.Diag(Loc, diag::warn_arc_literal_assign)
14165    << (unsigned) Kind
14166    << (isProperty ? 0 : 1)
14167    << RHS->getSourceRange();
14168
14169  return true;
14170}
14171
14172static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
14173                                    Qualifiers::ObjCLifetime LT,
14174                                    Expr *RHS, bool isProperty) {
14175  // Strip off any implicit cast added to get to the one ARC-specific.
14176  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
14177    if (cast->getCastKind() == CK_ARCConsumeObject) {
14178      S.Diag(Loc, diag::warn_arc_retained_assign)
14179        << (LT == Qualifiers::OCL_ExplicitNone)
14180        << (isProperty ? 0 : 1)
14181        << RHS->getSourceRange();
14182      return true;
14183    }
14184    RHS = cast->getSubExpr();
14185  }
14186
14187  if (LT == Qualifiers::OCL_Weak &&
14188      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
14189    return true;
14190
14191  return false;
14192}
14193
14194bool Sema::checkUnsafeAssigns(SourceLocation Loc,
14195                              QualType LHS, Expr *RHS) {
14196  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
14197
14198  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
14199    return false;
14200
14201  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
14202    return true;
14203
14204  return false;
14205}
14206
14207void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
14208                              Expr *LHS, Expr *RHS) {
14209  QualType LHSType;
14210  // PropertyRef on LHS type need be directly obtained from
14211  // its declaration as it has a PseudoType.
14212  ObjCPropertyRefExpr *PRE
14213    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
14214  if (PRE && !PRE->isImplicitProperty()) {
14215    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14216    if (PD)
14217      LHSType = PD->getType();
14218  }
14219
14220  if (LHSType.isNull())
14221    LHSType = LHS->getType();
14222
14223  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
14224
14225  if (LT == Qualifiers::OCL_Weak) {
14226    if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
14227      getCurFunction()->markSafeWeakUse(LHS);
14228  }
14229
14230  if (checkUnsafeAssigns(Loc, LHSType, RHS))
14231    return;
14232
14233  // FIXME. Check for other life times.
14234  if (LT != Qualifiers::OCL_None)
14235    return;
14236
14237  if (PRE) {
14238    if (PRE->isImplicitProperty())
14239      return;
14240    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14241    if (!PD)
14242      return;
14243
14244    unsigned Attributes = PD->getPropertyAttributes();
14245    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
14246      // when 'assign' attribute was not explicitly specified
14247      // by user, ignore it and rely on property type itself
14248      // for lifetime info.
14249      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
14250      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
14251          LHSType->isObjCRetainableType())
14252        return;
14253
14254      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
14255        if (cast->getCastKind() == CK_ARCConsumeObject) {
14256          Diag(Loc, diag::warn_arc_retained_property_assign)
14257          << RHS->getSourceRange();
14258          return;
14259        }
14260        RHS = cast->getSubExpr();
14261      }
14262    }
14263    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
14264      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
14265        return;
14266    }
14267  }
14268}
14269
14270//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
14271
14272static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
14273                                        SourceLocation StmtLoc,
14274                                        const NullStmt *Body) {
14275  // Do not warn if the body is a macro that expands to nothing, e.g:
14276  //
14277  // #define CALL(x)
14278  // if (condition)
14279  //   CALL(0);
14280  if (Body->hasLeadingEmptyMacro())
14281    return false;
14282
14283  // Get line numbers of statement and body.
14284  bool StmtLineInvalid;
14285  unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
14286                                                      &StmtLineInvalid);
14287  if (StmtLineInvalid)
14288    return false;
14289
14290  bool BodyLineInvalid;
14291  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
14292                                                      &BodyLineInvalid);
14293  if (BodyLineInvalid)
14294    return false;
14295
14296  // Warn if null statement and body are on the same line.
14297  if (StmtLine != BodyLine)
14298    return false;
14299
14300  return true;
14301}
14302
14303void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
14304                                 const Stmt *Body,
14305                                 unsigned DiagID) {
14306  // Since this is a syntactic check, don't emit diagnostic for template
14307  // instantiations, this just adds noise.
14308  if (CurrentInstantiationScope)
14309    return;
14310
14311  // The body should be a null statement.
14312  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
14313  if (!NBody)
14314    return;
14315
14316  // Do the usual checks.
14317  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
14318    return;
14319
14320  Diag(NBody->getSemiLoc(), DiagID);
14321  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
14322}
14323
14324void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
14325                                 const Stmt *PossibleBody) {
14326  assert(!CurrentInstantiationScope); // Ensured by caller
14327
14328  SourceLocation StmtLoc;
14329  const Stmt *Body;
14330  unsigned DiagID;
14331  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
14332    StmtLoc = FS->getRParenLoc();
14333    Body = FS->getBody();
14334    DiagID = diag::warn_empty_for_body;
14335  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
14336    StmtLoc = WS->getCond()->getSourceRange().getEnd();
14337    Body = WS->getBody();
14338    DiagID = diag::warn_empty_while_body;
14339  } else
14340    return; // Neither `for' nor `while'.
14341
14342  // The body should be a null statement.
14343  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
14344  if (!NBody)
14345    return;
14346
14347  // Skip expensive checks if diagnostic is disabled.
14348  if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
14349    return;
14350
14351  // Do the usual checks.
14352  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
14353    return;
14354
14355  // `for(...);' and `while(...);' are popular idioms, so in order to keep
14356  // noise level low, emit diagnostics only if for/while is followed by a
14357  // CompoundStmt, e.g.:
14358  //    for (int i = 0; i < n; i++);
14359  //    {
14360  //      a(i);
14361  //    }
14362  // or if for/while is followed by a statement with more indentation
14363  // than for/while itself:
14364  //    for (int i = 0; i < n; i++);
14365  //      a(i);
14366  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
14367  if (!ProbableTypo) {
14368    bool BodyColInvalid;
14369    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
14370        PossibleBody->getBeginLoc(), &BodyColInvalid);
14371    if (BodyColInvalid)
14372      return;
14373
14374    bool StmtColInvalid;
14375    unsigned StmtCol =
14376        SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
14377    if (StmtColInvalid)
14378      return;
14379
14380    if (BodyCol > StmtCol)
14381      ProbableTypo = true;
14382  }
14383
14384  if (ProbableTypo) {
14385    Diag(NBody->getSemiLoc(), DiagID);
14386    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
14387  }
14388}
14389
14390//===--- CHECK: Warn on self move with std::move. -------------------------===//
14391
14392/// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
14393void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
14394                             SourceLocation OpLoc) {
14395  if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
14396    return;
14397
14398  if (inTemplateInstantiation())
14399    return;
14400
14401  // Strip parens and casts away.
14402  LHSExpr = LHSExpr->IgnoreParenImpCasts();
14403  RHSExpr = RHSExpr->IgnoreParenImpCasts();
14404
14405  // Check for a call expression
14406  const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
14407  if (!CE || CE->getNumArgs() != 1)
14408    return;
14409
14410  // Check for a call to std::move
14411  if (!CE->isCallToStdMove())
14412    return;
14413
14414  // Get argument from std::move
14415  RHSExpr = CE->getArg(0);
14416
14417  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
14418  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
14419
14420  // Two DeclRefExpr's, check that the decls are the same.
14421  if (LHSDeclRef && RHSDeclRef) {
14422    if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
14423      return;
14424    if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
14425        RHSDeclRef->getDecl()->getCanonicalDecl())
14426      return;
14427
14428    Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
14429                                        << LHSExpr->getSourceRange()
14430                                        << RHSExpr->getSourceRange();
14431    return;
14432  }
14433
14434  // Member variables require a different approach to check for self moves.
14435  // MemberExpr's are the same if every nested MemberExpr refers to the same
14436  // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
14437  // the base Expr's are CXXThisExpr's.
14438  const Expr *LHSBase = LHSExpr;
14439  const Expr *RHSBase = RHSExpr;
14440  const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
14441  const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
14442  if (!LHSME || !RHSME)
14443    return;
14444
14445  while (LHSME && RHSME) {
14446    if (LHSME->getMemberDecl()->getCanonicalDecl() !=
14447        RHSME->getMemberDecl()->getCanonicalDecl())
14448      return;
14449
14450    LHSBase = LHSME->getBase();
14451    RHSBase = RHSME->getBase();
14452    LHSME = dyn_cast<MemberExpr>(LHSBase);
14453    RHSME = dyn_cast<MemberExpr>(RHSBase);
14454  }
14455
14456  LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
14457  RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
14458  if (LHSDeclRef && RHSDeclRef) {
14459    if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
14460      return;
14461    if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
14462        RHSDeclRef->getDecl()->getCanonicalDecl())
14463      return;
14464
14465    Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
14466                                        << LHSExpr->getSourceRange()
14467                                        << RHSExpr->getSourceRange();
14468    return;
14469  }
14470
14471  if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
14472    Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
14473                                        << LHSExpr->getSourceRange()
14474                                        << RHSExpr->getSourceRange();
14475}
14476
14477//===--- Layout compatibility ----------------------------------------------//
14478
14479static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
14480
14481/// Check if two enumeration types are layout-compatible.
14482static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
14483  // C++11 [dcl.enum] p8:
14484  // Two enumeration types are layout-compatible if they have the same
14485  // underlying type.
14486  return ED1->isComplete() && ED2->isComplete() &&
14487         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
14488}
14489
14490/// Check if two fields are layout-compatible.
14491static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
14492                               FieldDecl *Field2) {
14493  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
14494    return false;
14495
14496  if (Field1->isBitField() != Field2->isBitField())
14497    return false;
14498
14499  if (Field1->isBitField()) {
14500    // Make sure that the bit-fields are the same length.
14501    unsigned Bits1 = Field1->getBitWidthValue(C);
14502    unsigned Bits2 = Field2->getBitWidthValue(C);
14503
14504    if (Bits1 != Bits2)
14505      return false;
14506  }
14507
14508  return true;
14509}
14510
14511/// Check if two standard-layout structs are layout-compatible.
14512/// (C++11 [class.mem] p17)
14513static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
14514                                     RecordDecl *RD2) {
14515  // If both records are C++ classes, check that base classes match.
14516  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
14517    // If one of records is a CXXRecordDecl we are in C++ mode,
14518    // thus the other one is a CXXRecordDecl, too.
14519    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
14520    // Check number of base classes.
14521    if (D1CXX->getNumBases() != D2CXX->getNumBases())
14522      return false;
14523
14524    // Check the base classes.
14525    for (CXXRecordDecl::base_class_const_iterator
14526               Base1 = D1CXX->bases_begin(),
14527           BaseEnd1 = D1CXX->bases_end(),
14528              Base2 = D2CXX->bases_begin();
14529         Base1 != BaseEnd1;
14530         ++Base1, ++Base2) {
14531      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
14532        return false;
14533    }
14534  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
14535    // If only RD2 is a C++ class, it should have zero base classes.
14536    if (D2CXX->getNumBases() > 0)
14537      return false;
14538  }
14539
14540  // Check the fields.
14541  RecordDecl::field_iterator Field2 = RD2->field_begin(),
14542                             Field2End = RD2->field_end(),
14543                             Field1 = RD1->field_begin(),
14544                             Field1End = RD1->field_end();
14545  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
14546    if (!isLayoutCompatible(C, *Field1, *Field2))
14547      return false;
14548  }
14549  if (Field1 != Field1End || Field2 != Field2End)
14550    return false;
14551
14552  return true;
14553}
14554
14555/// Check if two standard-layout unions are layout-compatible.
14556/// (C++11 [class.mem] p18)
14557static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
14558                                    RecordDecl *RD2) {
14559  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
14560  for (auto *Field2 : RD2->fields())
14561    UnmatchedFields.insert(Field2);
14562
14563  for (auto *Field1 : RD1->fields()) {
14564    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
14565        I = UnmatchedFields.begin(),
14566        E = UnmatchedFields.end();
14567
14568    for ( ; I != E; ++I) {
14569      if (isLayoutCompatible(C, Field1, *I)) {
14570        bool Result = UnmatchedFields.erase(*I);
14571        (void) Result;
14572        assert(Result);
14573        break;
14574      }
14575    }
14576    if (I == E)
14577      return false;
14578  }
14579
14580  return UnmatchedFields.empty();
14581}
14582
14583static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
14584                               RecordDecl *RD2) {
14585  if (RD1->isUnion() != RD2->isUnion())
14586    return false;
14587
14588  if (RD1->isUnion())
14589    return isLayoutCompatibleUnion(C, RD1, RD2);
14590  else
14591    return isLayoutCompatibleStruct(C, RD1, RD2);
14592}
14593
14594/// Check if two types are layout-compatible in C++11 sense.
14595static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
14596  if (T1.isNull() || T2.isNull())
14597    return false;
14598
14599  // C++11 [basic.types] p11:
14600  // If two types T1 and T2 are the same type, then T1 and T2 are
14601  // layout-compatible types.
14602  if (C.hasSameType(T1, T2))
14603    return true;
14604
14605  T1 = T1.getCanonicalType().getUnqualifiedType();
14606  T2 = T2.getCanonicalType().getUnqualifiedType();
14607
14608  const Type::TypeClass TC1 = T1->getTypeClass();
14609  const Type::TypeClass TC2 = T2->getTypeClass();
14610
14611  if (TC1 != TC2)
14612    return false;
14613
14614  if (TC1 == Type::Enum) {
14615    return isLayoutCompatible(C,
14616                              cast<EnumType>(T1)->getDecl(),
14617                              cast<EnumType>(T2)->getDecl());
14618  } else if (TC1 == Type::Record) {
14619    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
14620      return false;
14621
14622    return isLayoutCompatible(C,
14623                              cast<RecordType>(T1)->getDecl(),
14624                              cast<RecordType>(T2)->getDecl());
14625  }
14626
14627  return false;
14628}
14629
14630//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
14631
14632/// Given a type tag expression find the type tag itself.
14633///
14634/// \param TypeExpr Type tag expression, as it appears in user's code.
14635///
14636/// \param VD Declaration of an identifier that appears in a type tag.
14637///
14638/// \param MagicValue Type tag magic value.
14639///
14640/// \param isConstantEvaluated wether the evalaution should be performed in
14641
14642/// constant context.
14643static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
14644                            const ValueDecl **VD, uint64_t *MagicValue,
14645                            bool isConstantEvaluated) {
14646  while(true) {
14647    if (!TypeExpr)
14648      return false;
14649
14650    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
14651
14652    switch (TypeExpr->getStmtClass()) {
14653    case Stmt::UnaryOperatorClass: {
14654      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
14655      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
14656        TypeExpr = UO->getSubExpr();
14657        continue;
14658      }
14659      return false;
14660    }
14661
14662    case Stmt::DeclRefExprClass: {
14663      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
14664      *VD = DRE->getDecl();
14665      return true;
14666    }
14667
14668    case Stmt::IntegerLiteralClass: {
14669      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
14670      llvm::APInt MagicValueAPInt = IL->getValue();
14671      if (MagicValueAPInt.getActiveBits() <= 64) {
14672        *MagicValue = MagicValueAPInt.getZExtValue();
14673        return true;
14674      } else
14675        return false;
14676    }
14677
14678    case Stmt::BinaryConditionalOperatorClass:
14679    case Stmt::ConditionalOperatorClass: {
14680      const AbstractConditionalOperator *ACO =
14681          cast<AbstractConditionalOperator>(TypeExpr);
14682      bool Result;
14683      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
14684                                                     isConstantEvaluated)) {
14685        if (Result)
14686          TypeExpr = ACO->getTrueExpr();
14687        else
14688          TypeExpr = ACO->getFalseExpr();
14689        continue;
14690      }
14691      return false;
14692    }
14693
14694    case Stmt::BinaryOperatorClass: {
14695      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
14696      if (BO->getOpcode() == BO_Comma) {
14697        TypeExpr = BO->getRHS();
14698        continue;
14699      }
14700      return false;
14701    }
14702
14703    default:
14704      return false;
14705    }
14706  }
14707}
14708
14709/// Retrieve the C type corresponding to type tag TypeExpr.
14710///
14711/// \param TypeExpr Expression that specifies a type tag.
14712///
14713/// \param MagicValues Registered magic values.
14714///
14715/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
14716///        kind.
14717///
14718/// \param TypeInfo Information about the corresponding C type.
14719///
14720/// \param isConstantEvaluated wether the evalaution should be performed in
14721/// constant context.
14722///
14723/// \returns true if the corresponding C type was found.
14724static bool GetMatchingCType(
14725    const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
14726    const ASTContext &Ctx,
14727    const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
14728        *MagicValues,
14729    bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
14730    bool isConstantEvaluated) {
14731  FoundWrongKind = false;
14732
14733  // Variable declaration that has type_tag_for_datatype attribute.
14734  const ValueDecl *VD = nullptr;
14735
14736  uint64_t MagicValue;
14737
14738  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
14739    return false;
14740
14741  if (VD) {
14742    if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
14743      if (I->getArgumentKind() != ArgumentKind) {
14744        FoundWrongKind = true;
14745        return false;
14746      }
14747      TypeInfo.Type = I->getMatchingCType();
14748      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
14749      TypeInfo.MustBeNull = I->getMustBeNull();
14750      return true;
14751    }
14752    return false;
14753  }
14754
14755  if (!MagicValues)
14756    return false;
14757
14758  llvm::DenseMap<Sema::TypeTagMagicValue,
14759                 Sema::TypeTagData>::const_iterator I =
14760      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
14761  if (I == MagicValues->end())
14762    return false;
14763
14764  TypeInfo = I->second;
14765  return true;
14766}
14767
14768void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
14769                                      uint64_t MagicValue, QualType Type,
14770                                      bool LayoutCompatible,
14771                                      bool MustBeNull) {
14772  if (!TypeTagForDatatypeMagicValues)
14773    TypeTagForDatatypeMagicValues.reset(
14774        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
14775
14776  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
14777  (*TypeTagForDatatypeMagicValues)[Magic] =
14778      TypeTagData(Type, LayoutCompatible, MustBeNull);
14779}
14780
14781static bool IsSameCharType(QualType T1, QualType T2) {
14782  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
14783  if (!BT1)
14784    return false;
14785
14786  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
14787  if (!BT2)
14788    return false;
14789
14790  BuiltinType::Kind T1Kind = BT1->getKind();
14791  BuiltinType::Kind T2Kind = BT2->getKind();
14792
14793  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
14794         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
14795         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
14796         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
14797}
14798
14799void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
14800                                    const ArrayRef<const Expr *> ExprArgs,
14801                                    SourceLocation CallSiteLoc) {
14802  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
14803  bool IsPointerAttr = Attr->getIsPointer();
14804
14805  // Retrieve the argument representing the 'type_tag'.
14806  unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
14807  if (TypeTagIdxAST >= ExprArgs.size()) {
14808    Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
14809        << 0 << Attr->getTypeTagIdx().getSourceIndex();
14810    return;
14811  }
14812  const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
14813  bool FoundWrongKind;
14814  TypeTagData TypeInfo;
14815  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
14816                        TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
14817                        TypeInfo, isConstantEvaluated())) {
14818    if (FoundWrongKind)
14819      Diag(TypeTagExpr->getExprLoc(),
14820           diag::warn_type_tag_for_datatype_wrong_kind)
14821        << TypeTagExpr->getSourceRange();
14822    return;
14823  }
14824
14825  // Retrieve the argument representing the 'arg_idx'.
14826  unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
14827  if (ArgumentIdxAST >= ExprArgs.size()) {
14828    Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
14829        << 1 << Attr->getArgumentIdx().getSourceIndex();
14830    return;
14831  }
14832  const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
14833  if (IsPointerAttr) {
14834    // Skip implicit cast of pointer to `void *' (as a function argument).
14835    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
14836      if (ICE->getType()->isVoidPointerType() &&
14837          ICE->getCastKind() == CK_BitCast)
14838        ArgumentExpr = ICE->getSubExpr();
14839  }
14840  QualType ArgumentType = ArgumentExpr->getType();
14841
14842  // Passing a `void*' pointer shouldn't trigger a warning.
14843  if (IsPointerAttr && ArgumentType->isVoidPointerType())
14844    return;
14845
14846  if (TypeInfo.MustBeNull) {
14847    // Type tag with matching void type requires a null pointer.
14848    if (!ArgumentExpr->isNullPointerConstant(Context,
14849                                             Expr::NPC_ValueDependentIsNotNull)) {
14850      Diag(ArgumentExpr->getExprLoc(),
14851           diag::warn_type_safety_null_pointer_required)
14852          << ArgumentKind->getName()
14853          << ArgumentExpr->getSourceRange()
14854          << TypeTagExpr->getSourceRange();
14855    }
14856    return;
14857  }
14858
14859  QualType RequiredType = TypeInfo.Type;
14860  if (IsPointerAttr)
14861    RequiredType = Context.getPointerType(RequiredType);
14862
14863  bool mismatch = false;
14864  if (!TypeInfo.LayoutCompatible) {
14865    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
14866
14867    // C++11 [basic.fundamental] p1:
14868    // Plain char, signed char, and unsigned char are three distinct types.
14869    //
14870    // But we treat plain `char' as equivalent to `signed char' or `unsigned
14871    // char' depending on the current char signedness mode.
14872    if (mismatch)
14873      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
14874                                           RequiredType->getPointeeType())) ||
14875          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
14876        mismatch = false;
14877  } else
14878    if (IsPointerAttr)
14879      mismatch = !isLayoutCompatible(Context,
14880                                     ArgumentType->getPointeeType(),
14881                                     RequiredType->getPointeeType());
14882    else
14883      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
14884
14885  if (mismatch)
14886    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
14887        << ArgumentType << ArgumentKind
14888        << TypeInfo.LayoutCompatible << RequiredType
14889        << ArgumentExpr->getSourceRange()
14890        << TypeTagExpr->getSourceRange();
14891}
14892
14893void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
14894                                         CharUnits Alignment) {
14895  MisalignedMembers.emplace_back(E, RD, MD, Alignment);
14896}
14897
14898void Sema::DiagnoseMisalignedMembers() {
14899  for (MisalignedMember &m : MisalignedMembers) {
14900    const NamedDecl *ND = m.RD;
14901    if (ND->getName().empty()) {
14902      if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
14903        ND = TD;
14904    }
14905    Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
14906        << m.MD << ND << m.E->getSourceRange();
14907  }
14908  MisalignedMembers.clear();
14909}
14910
14911void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
14912  E = E->IgnoreParens();
14913  if (!T->isPointerType() && !T->isIntegerType())
14914    return;
14915  if (isa<UnaryOperator>(E) &&
14916      cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
14917    auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
14918    if (isa<MemberExpr>(Op)) {
14919      auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
14920      if (MA != MisalignedMembers.end() &&
14921          (T->isIntegerType() ||
14922           (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
14923                                   Context.getTypeAlignInChars(
14924                                       T->getPointeeType()) <= MA->Alignment))))
14925        MisalignedMembers.erase(MA);
14926    }
14927  }
14928}
14929
14930void Sema::RefersToMemberWithReducedAlignment(
14931    Expr *E,
14932    llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
14933        Action) {
14934  const auto *ME = dyn_cast<MemberExpr>(E);
14935  if (!ME)
14936    return;
14937
14938  // No need to check expressions with an __unaligned-qualified type.
14939  if (E->getType().getQualifiers().hasUnaligned())
14940    return;
14941
14942  // For a chain of MemberExpr like "a.b.c.d" this list
14943  // will keep FieldDecl's like [d, c, b].
14944  SmallVector<FieldDecl *, 4> ReverseMemberChain;
14945  const MemberExpr *TopME = nullptr;
14946  bool AnyIsPacked = false;
14947  do {
14948    QualType BaseType = ME->getBase()->getType();
14949    if (BaseType->isDependentType())
14950      return;
14951    if (ME->isArrow())
14952      BaseType = BaseType->getPointeeType();
14953    RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
14954    if (RD->isInvalidDecl())
14955      return;
14956
14957    ValueDecl *MD = ME->getMemberDecl();
14958    auto *FD = dyn_cast<FieldDecl>(MD);
14959    // We do not care about non-data members.
14960    if (!FD || FD->isInvalidDecl())
14961      return;
14962
14963    AnyIsPacked =
14964        AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
14965    ReverseMemberChain.push_back(FD);
14966
14967    TopME = ME;
14968    ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
14969  } while (ME);
14970  assert(TopME && "We did not compute a topmost MemberExpr!");
14971
14972  // Not the scope of this diagnostic.
14973  if (!AnyIsPacked)
14974    return;
14975
14976  const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
14977  const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
14978  // TODO: The innermost base of the member expression may be too complicated.
14979  // For now, just disregard these cases. This is left for future
14980  // improvement.
14981  if (!DRE && !isa<CXXThisExpr>(TopBase))
14982      return;
14983
14984  // Alignment expected by the whole expression.
14985  CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
14986
14987  // No need to do anything else with this case.
14988  if (ExpectedAlignment.isOne())
14989    return;
14990
14991  // Synthesize offset of the whole access.
14992  CharUnits Offset;
14993  for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
14994       I++) {
14995    Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
14996  }
14997
14998  // Compute the CompleteObjectAlignment as the alignment of the whole chain.
14999  CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
15000      ReverseMemberChain.back()->getParent()->getTypeForDecl());
15001
15002  // The base expression of the innermost MemberExpr may give
15003  // stronger guarantees than the class containing the member.
15004  if (DRE && !TopME->isArrow()) {
15005    const ValueDecl *VD = DRE->getDecl();
15006    if (!VD->getType()->isReferenceType())
15007      CompleteObjectAlignment =
15008          std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
15009  }
15010
15011  // Check if the synthesized offset fulfills the alignment.
15012  if (Offset % ExpectedAlignment != 0 ||
15013      // It may fulfill the offset it but the effective alignment may still be
15014      // lower than the expected expression alignment.
15015      CompleteObjectAlignment < ExpectedAlignment) {
15016    // If this happens, we want to determine a sensible culprit of this.
15017    // Intuitively, watching the chain of member expressions from right to
15018    // left, we start with the required alignment (as required by the field
15019    // type) but some packed attribute in that chain has reduced the alignment.
15020    // It may happen that another packed structure increases it again. But if
15021    // we are here such increase has not been enough. So pointing the first
15022    // FieldDecl that either is packed or else its RecordDecl is,
15023    // seems reasonable.
15024    FieldDecl *FD = nullptr;
15025    CharUnits Alignment;
15026    for (FieldDecl *FDI : ReverseMemberChain) {
15027      if (FDI->hasAttr<PackedAttr>() ||
15028          FDI->getParent()->hasAttr<PackedAttr>()) {
15029        FD = FDI;
15030        Alignment = std::min(
15031            Context.getTypeAlignInChars(FD->getType()),
15032            Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
15033        break;
15034      }
15035    }
15036    assert(FD && "We did not find a packed FieldDecl!");
15037    Action(E, FD->getParent(), FD, Alignment);
15038  }
15039}
15040
15041void Sema::CheckAddressOfPackedMember(Expr *rhs) {
15042  using namespace std::placeholders;
15043
15044  RefersToMemberWithReducedAlignment(
15045      rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
15046                     _2, _3, _4));
15047}
15048