1//===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides C++ code generation targeting the Microsoft Visual C++ ABI.
10// The class in this file generates structures that follow the Microsoft
11// Visual C++ ABI, which is actually not very well documented at all outside
12// of Microsoft.
13//
14//===----------------------------------------------------------------------===//
15
16#include "CGCXXABI.h"
17#include "CGCleanup.h"
18#include "CGVTables.h"
19#include "CodeGenModule.h"
20#include "CodeGenTypes.h"
21#include "TargetInfo.h"
22#include "clang/AST/Attr.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/Decl.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/VTableBuilder.h"
28#include "clang/CodeGen/ConstantInitBuilder.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/ADT/StringSet.h"
31#include "llvm/IR/Intrinsics.h"
32
33using namespace clang;
34using namespace CodeGen;
35
36namespace {
37
38/// Holds all the vbtable globals for a given class.
39struct VBTableGlobals {
40  const VPtrInfoVector *VBTables;
41  SmallVector<llvm::GlobalVariable *, 2> Globals;
42};
43
44class MicrosoftCXXABI : public CGCXXABI {
45public:
46  MicrosoftCXXABI(CodeGenModule &CGM)
47      : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
48        ClassHierarchyDescriptorType(nullptr),
49        CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
50        ThrowInfoType(nullptr) {}
51
52  bool HasThisReturn(GlobalDecl GD) const override;
53  bool hasMostDerivedReturn(GlobalDecl GD) const override;
54
55  bool classifyReturnType(CGFunctionInfo &FI) const override;
56
57  RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
58
59  bool isSRetParameterAfterThis() const override { return true; }
60
61  bool isThisCompleteObject(GlobalDecl GD) const override {
62    // The Microsoft ABI doesn't use separate complete-object vs.
63    // base-object variants of constructors, but it does of destructors.
64    if (isa<CXXDestructorDecl>(GD.getDecl())) {
65      switch (GD.getDtorType()) {
66      case Dtor_Complete:
67      case Dtor_Deleting:
68        return true;
69
70      case Dtor_Base:
71        return false;
72
73      case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?");
74      }
75      llvm_unreachable("bad dtor kind");
76    }
77
78    // No other kinds.
79    return false;
80  }
81
82  size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
83                              FunctionArgList &Args) const override {
84    assert(Args.size() >= 2 &&
85           "expected the arglist to have at least two args!");
86    // The 'most_derived' parameter goes second if the ctor is variadic and
87    // has v-bases.
88    if (CD->getParent()->getNumVBases() > 0 &&
89        CD->getType()->castAs<FunctionProtoType>()->isVariadic())
90      return 2;
91    return 1;
92  }
93
94  std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override {
95    std::vector<CharUnits> VBPtrOffsets;
96    const ASTContext &Context = getContext();
97    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
98
99    const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
100    for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) {
101      const ASTRecordLayout &SubobjectLayout =
102          Context.getASTRecordLayout(VBT->IntroducingObject);
103      CharUnits Offs = VBT->NonVirtualOffset;
104      Offs += SubobjectLayout.getVBPtrOffset();
105      if (VBT->getVBaseWithVPtr())
106        Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
107      VBPtrOffsets.push_back(Offs);
108    }
109    llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end());
110    return VBPtrOffsets;
111  }
112
113  StringRef GetPureVirtualCallName() override { return "_purecall"; }
114  StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
115
116  void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
117                               Address Ptr, QualType ElementType,
118                               const CXXDestructorDecl *Dtor) override;
119
120  void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
121  void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
122
123  void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
124
125  llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
126                                                   const VPtrInfo &Info);
127
128  llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
129  CatchTypeInfo
130  getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
131
132  /// MSVC needs an extra flag to indicate a catchall.
133  CatchTypeInfo getCatchAllTypeInfo() override {
134    return CatchTypeInfo{nullptr, 0x40};
135  }
136
137  bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
138  void EmitBadTypeidCall(CodeGenFunction &CGF) override;
139  llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
140                          Address ThisPtr,
141                          llvm::Type *StdTypeInfoPtrTy) override;
142
143  bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
144                                          QualType SrcRecordTy) override;
145
146  llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value,
147                                   QualType SrcRecordTy, QualType DestTy,
148                                   QualType DestRecordTy,
149                                   llvm::BasicBlock *CastEnd) override;
150
151  llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
152                                     QualType SrcRecordTy,
153                                     QualType DestTy) override;
154
155  bool EmitBadCastCall(CodeGenFunction &CGF) override;
156  bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override {
157    return false;
158  }
159
160  llvm::Value *
161  GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
162                            const CXXRecordDecl *ClassDecl,
163                            const CXXRecordDecl *BaseClassDecl) override;
164
165  llvm::BasicBlock *
166  EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
167                                const CXXRecordDecl *RD) override;
168
169  llvm::BasicBlock *
170  EmitDtorCompleteObjectHandler(CodeGenFunction &CGF);
171
172  void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
173                                              const CXXRecordDecl *RD) override;
174
175  void EmitCXXConstructors(const CXXConstructorDecl *D) override;
176
177  // Background on MSVC destructors
178  // ==============================
179  //
180  // Both Itanium and MSVC ABIs have destructor variants.  The variant names
181  // roughly correspond in the following way:
182  //   Itanium       Microsoft
183  //   Base       -> no name, just ~Class
184  //   Complete   -> vbase destructor
185  //   Deleting   -> scalar deleting destructor
186  //                 vector deleting destructor
187  //
188  // The base and complete destructors are the same as in Itanium, although the
189  // complete destructor does not accept a VTT parameter when there are virtual
190  // bases.  A separate mechanism involving vtordisps is used to ensure that
191  // virtual methods of destroyed subobjects are not called.
192  //
193  // The deleting destructors accept an i32 bitfield as a second parameter.  Bit
194  // 1 indicates if the memory should be deleted.  Bit 2 indicates if the this
195  // pointer points to an array.  The scalar deleting destructor assumes that
196  // bit 2 is zero, and therefore does not contain a loop.
197  //
198  // For virtual destructors, only one entry is reserved in the vftable, and it
199  // always points to the vector deleting destructor.  The vector deleting
200  // destructor is the most general, so it can be used to destroy objects in
201  // place, delete single heap objects, or delete arrays.
202  //
203  // A TU defining a non-inline destructor is only guaranteed to emit a base
204  // destructor, and all of the other variants are emitted on an as-needed basis
205  // in COMDATs.  Because a non-base destructor can be emitted in a TU that
206  // lacks a definition for the destructor, non-base destructors must always
207  // delegate to or alias the base destructor.
208
209  AddedStructorArgs
210  buildStructorSignature(GlobalDecl GD,
211                         SmallVectorImpl<CanQualType> &ArgTys) override;
212
213  /// Non-base dtors should be emitted as delegating thunks in this ABI.
214  bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
215                              CXXDtorType DT) const override {
216    return DT != Dtor_Base;
217  }
218
219  void setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
220                                  const CXXDestructorDecl *Dtor,
221                                  CXXDtorType DT) const override;
222
223  llvm::GlobalValue::LinkageTypes
224  getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor,
225                          CXXDtorType DT) const override;
226
227  void EmitCXXDestructors(const CXXDestructorDecl *D) override;
228
229  const CXXRecordDecl *
230  getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
231    if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
232      MethodVFTableLocation ML =
233          CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
234      // The vbases might be ordered differently in the final overrider object
235      // and the complete object, so the "this" argument may sometimes point to
236      // memory that has no particular type (e.g. past the complete object).
237      // In this case, we just use a generic pointer type.
238      // FIXME: might want to have a more precise type in the non-virtual
239      // multiple inheritance case.
240      if (ML.VBase || !ML.VFPtrOffset.isZero())
241        return nullptr;
242    }
243    return MD->getParent();
244  }
245
246  Address
247  adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
248                                           Address This,
249                                           bool VirtualCall) override;
250
251  void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
252                                 FunctionArgList &Params) override;
253
254  void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
255
256  AddedStructorArgs
257  addImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D,
258                             CXXCtorType Type, bool ForVirtualBase,
259                             bool Delegating, CallArgList &Args) override;
260
261  void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
262                          CXXDtorType Type, bool ForVirtualBase,
263                          bool Delegating, Address This,
264                          QualType ThisTy) override;
265
266  void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD,
267                              llvm::GlobalVariable *VTable);
268
269  void emitVTableDefinitions(CodeGenVTables &CGVT,
270                             const CXXRecordDecl *RD) override;
271
272  bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
273                                           CodeGenFunction::VPtr Vptr) override;
274
275  /// Don't initialize vptrs if dynamic class
276  /// is marked with with the 'novtable' attribute.
277  bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
278    return !VTableClass->hasAttr<MSNoVTableAttr>();
279  }
280
281  llvm::Constant *
282  getVTableAddressPoint(BaseSubobject Base,
283                        const CXXRecordDecl *VTableClass) override;
284
285  llvm::Value *getVTableAddressPointInStructor(
286      CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
287      BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;
288
289  llvm::Constant *
290  getVTableAddressPointForConstExpr(BaseSubobject Base,
291                                    const CXXRecordDecl *VTableClass) override;
292
293  llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
294                                        CharUnits VPtrOffset) override;
295
296  CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
297                                     Address This, llvm::Type *Ty,
298                                     SourceLocation Loc) override;
299
300  llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
301                                         const CXXDestructorDecl *Dtor,
302                                         CXXDtorType DtorType, Address This,
303                                         DeleteOrMemberCallExpr E) override;
304
305  void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
306                                        CallArgList &CallArgs) override {
307    assert(GD.getDtorType() == Dtor_Deleting &&
308           "Only deleting destructor thunks are available in this ABI");
309    CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
310                 getContext().IntTy);
311  }
312
313  void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
314
315  llvm::GlobalVariable *
316  getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
317                   llvm::GlobalVariable::LinkageTypes Linkage);
318
319  llvm::GlobalVariable *
320  getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
321                                  const CXXRecordDecl *DstRD) {
322    SmallString<256> OutName;
323    llvm::raw_svector_ostream Out(OutName);
324    getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out);
325    StringRef MangledName = OutName.str();
326
327    if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName))
328      return VDispMap;
329
330    MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
331    unsigned NumEntries = 1 + SrcRD->getNumVBases();
332    SmallVector<llvm::Constant *, 4> Map(NumEntries,
333                                         llvm::UndefValue::get(CGM.IntTy));
334    Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0);
335    bool AnyDifferent = false;
336    for (const auto &I : SrcRD->vbases()) {
337      const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
338      if (!DstRD->isVirtuallyDerivedFrom(VBase))
339        continue;
340
341      unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase);
342      unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase);
343      Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4);
344      AnyDifferent |= SrcVBIndex != DstVBIndex;
345    }
346    // This map would be useless, don't use it.
347    if (!AnyDifferent)
348      return nullptr;
349
350    llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size());
351    llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map);
352    llvm::GlobalValue::LinkageTypes Linkage =
353        SrcRD->isExternallyVisible() && DstRD->isExternallyVisible()
354            ? llvm::GlobalValue::LinkOnceODRLinkage
355            : llvm::GlobalValue::InternalLinkage;
356    auto *VDispMap = new llvm::GlobalVariable(
357        CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage,
358        /*Initializer=*/Init, MangledName);
359    return VDispMap;
360  }
361
362  void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
363                             llvm::GlobalVariable *GV) const;
364
365  void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
366                       GlobalDecl GD, bool ReturnAdjustment) override {
367    GVALinkage Linkage =
368        getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
369
370    if (Linkage == GVA_Internal)
371      Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
372    else if (ReturnAdjustment)
373      Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
374    else
375      Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
376  }
377
378  bool exportThunk() override { return false; }
379
380  llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
381                                     const ThisAdjustment &TA) override;
382
383  llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
384                                       const ReturnAdjustment &RA) override;
385
386  void EmitThreadLocalInitFuncs(
387      CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
388      ArrayRef<llvm::Function *> CXXThreadLocalInits,
389      ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;
390
391  bool usesThreadWrapperFunction(const VarDecl *VD) const override {
392    return false;
393  }
394  LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
395                                      QualType LValType) override;
396
397  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
398                       llvm::GlobalVariable *DeclPtr,
399                       bool PerformInit) override;
400  void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
401                          llvm::FunctionCallee Dtor,
402                          llvm::Constant *Addr) override;
403
404  // ==== Notes on array cookies =========
405  //
406  // MSVC seems to only use cookies when the class has a destructor; a
407  // two-argument usual array deallocation function isn't sufficient.
408  //
409  // For example, this code prints "100" and "1":
410  //   struct A {
411  //     char x;
412  //     void *operator new[](size_t sz) {
413  //       printf("%u\n", sz);
414  //       return malloc(sz);
415  //     }
416  //     void operator delete[](void *p, size_t sz) {
417  //       printf("%u\n", sz);
418  //       free(p);
419  //     }
420  //   };
421  //   int main() {
422  //     A *p = new A[100];
423  //     delete[] p;
424  //   }
425  // Whereas it prints "104" and "104" if you give A a destructor.
426
427  bool requiresArrayCookie(const CXXDeleteExpr *expr,
428                           QualType elementType) override;
429  bool requiresArrayCookie(const CXXNewExpr *expr) override;
430  CharUnits getArrayCookieSizeImpl(QualType type) override;
431  Address InitializeArrayCookie(CodeGenFunction &CGF,
432                                Address NewPtr,
433                                llvm::Value *NumElements,
434                                const CXXNewExpr *expr,
435                                QualType ElementType) override;
436  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
437                                   Address allocPtr,
438                                   CharUnits cookieSize) override;
439
440  friend struct MSRTTIBuilder;
441
442  bool isImageRelative() const {
443    return CGM.getTarget().getPointerWidth(/*AddrSpace=*/0) == 64;
444  }
445
446  // 5 routines for constructing the llvm types for MS RTTI structs.
447  llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
448    llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
449    TDTypeName += llvm::utostr(TypeInfoString.size());
450    llvm::StructType *&TypeDescriptorType =
451        TypeDescriptorTypeMap[TypeInfoString.size()];
452    if (TypeDescriptorType)
453      return TypeDescriptorType;
454    llvm::Type *FieldTypes[] = {
455        CGM.Int8PtrPtrTy,
456        CGM.Int8PtrTy,
457        llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
458    TypeDescriptorType =
459        llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
460    return TypeDescriptorType;
461  }
462
463  llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
464    if (!isImageRelative())
465      return PtrType;
466    return CGM.IntTy;
467  }
468
469  llvm::StructType *getBaseClassDescriptorType() {
470    if (BaseClassDescriptorType)
471      return BaseClassDescriptorType;
472    llvm::Type *FieldTypes[] = {
473        getImageRelativeType(CGM.Int8PtrTy),
474        CGM.IntTy,
475        CGM.IntTy,
476        CGM.IntTy,
477        CGM.IntTy,
478        CGM.IntTy,
479        getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
480    };
481    BaseClassDescriptorType = llvm::StructType::create(
482        CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
483    return BaseClassDescriptorType;
484  }
485
486  llvm::StructType *getClassHierarchyDescriptorType() {
487    if (ClassHierarchyDescriptorType)
488      return ClassHierarchyDescriptorType;
489    // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
490    ClassHierarchyDescriptorType = llvm::StructType::create(
491        CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
492    llvm::Type *FieldTypes[] = {
493        CGM.IntTy,
494        CGM.IntTy,
495        CGM.IntTy,
496        getImageRelativeType(
497            getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
498    };
499    ClassHierarchyDescriptorType->setBody(FieldTypes);
500    return ClassHierarchyDescriptorType;
501  }
502
503  llvm::StructType *getCompleteObjectLocatorType() {
504    if (CompleteObjectLocatorType)
505      return CompleteObjectLocatorType;
506    CompleteObjectLocatorType = llvm::StructType::create(
507        CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
508    llvm::Type *FieldTypes[] = {
509        CGM.IntTy,
510        CGM.IntTy,
511        CGM.IntTy,
512        getImageRelativeType(CGM.Int8PtrTy),
513        getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
514        getImageRelativeType(CompleteObjectLocatorType),
515    };
516    llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
517    if (!isImageRelative())
518      FieldTypesRef = FieldTypesRef.drop_back();
519    CompleteObjectLocatorType->setBody(FieldTypesRef);
520    return CompleteObjectLocatorType;
521  }
522
523  llvm::GlobalVariable *getImageBase() {
524    StringRef Name = "__ImageBase";
525    if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
526      return GV;
527
528    auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
529                                        /*isConstant=*/true,
530                                        llvm::GlobalValue::ExternalLinkage,
531                                        /*Initializer=*/nullptr, Name);
532    CGM.setDSOLocal(GV);
533    return GV;
534  }
535
536  llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
537    if (!isImageRelative())
538      return PtrVal;
539
540    if (PtrVal->isNullValue())
541      return llvm::Constant::getNullValue(CGM.IntTy);
542
543    llvm::Constant *ImageBaseAsInt =
544        llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
545    llvm::Constant *PtrValAsInt =
546        llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
547    llvm::Constant *Diff =
548        llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
549                                   /*HasNUW=*/true, /*HasNSW=*/true);
550    return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
551  }
552
553private:
554  MicrosoftMangleContext &getMangleContext() {
555    return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
556  }
557
558  llvm::Constant *getZeroInt() {
559    return llvm::ConstantInt::get(CGM.IntTy, 0);
560  }
561
562  llvm::Constant *getAllOnesInt() {
563    return  llvm::Constant::getAllOnesValue(CGM.IntTy);
564  }
565
566  CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override;
567
568  void
569  GetNullMemberPointerFields(const MemberPointerType *MPT,
570                             llvm::SmallVectorImpl<llvm::Constant *> &fields);
571
572  /// Shared code for virtual base adjustment.  Returns the offset from
573  /// the vbptr to the virtual base.  Optionally returns the address of the
574  /// vbptr itself.
575  llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
576                                       Address Base,
577                                       llvm::Value *VBPtrOffset,
578                                       llvm::Value *VBTableOffset,
579                                       llvm::Value **VBPtr = nullptr);
580
581  llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
582                                       Address Base,
583                                       int32_t VBPtrOffset,
584                                       int32_t VBTableOffset,
585                                       llvm::Value **VBPtr = nullptr) {
586    assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
587    llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
588                *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
589    return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
590  }
591
592  std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
593  performBaseAdjustment(CodeGenFunction &CGF, Address Value,
594                        QualType SrcRecordTy);
595
596  /// Performs a full virtual base adjustment.  Used to dereference
597  /// pointers to members of virtual bases.
598  llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
599                                 const CXXRecordDecl *RD, Address Base,
600                                 llvm::Value *VirtualBaseAdjustmentOffset,
601                                 llvm::Value *VBPtrOffset /* optional */);
602
603  /// Emits a full member pointer with the fields common to data and
604  /// function member pointers.
605  llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
606                                        bool IsMemberFunction,
607                                        const CXXRecordDecl *RD,
608                                        CharUnits NonVirtualBaseAdjustment,
609                                        unsigned VBTableIndex);
610
611  bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
612                                   llvm::Constant *MP);
613
614  /// - Initialize all vbptrs of 'this' with RD as the complete type.
615  void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
616
617  /// Caching wrapper around VBTableBuilder::enumerateVBTables().
618  const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
619
620  /// Generate a thunk for calling a virtual member function MD.
621  llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
622                                         const MethodVFTableLocation &ML);
623
624  llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD,
625                                        CharUnits offset);
626
627public:
628  llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
629
630  bool isZeroInitializable(const MemberPointerType *MPT) override;
631
632  bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
633    const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
634    return RD->hasAttr<MSInheritanceAttr>();
635  }
636
637  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
638
639  llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
640                                        CharUnits offset) override;
641  llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
642  llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
643
644  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
645                                           llvm::Value *L,
646                                           llvm::Value *R,
647                                           const MemberPointerType *MPT,
648                                           bool Inequality) override;
649
650  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
651                                          llvm::Value *MemPtr,
652                                          const MemberPointerType *MPT) override;
653
654  llvm::Value *
655  EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
656                               Address Base, llvm::Value *MemPtr,
657                               const MemberPointerType *MPT) override;
658
659  llvm::Value *EmitNonNullMemberPointerConversion(
660      const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
661      CastKind CK, CastExpr::path_const_iterator PathBegin,
662      CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
663      CGBuilderTy &Builder);
664
665  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
666                                           const CastExpr *E,
667                                           llvm::Value *Src) override;
668
669  llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
670                                              llvm::Constant *Src) override;
671
672  llvm::Constant *EmitMemberPointerConversion(
673      const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
674      CastKind CK, CastExpr::path_const_iterator PathBegin,
675      CastExpr::path_const_iterator PathEnd, llvm::Constant *Src);
676
677  CGCallee
678  EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
679                                  Address This, llvm::Value *&ThisPtrForCall,
680                                  llvm::Value *MemPtr,
681                                  const MemberPointerType *MPT) override;
682
683  void emitCXXStructor(GlobalDecl GD) override;
684
685  llvm::StructType *getCatchableTypeType() {
686    if (CatchableTypeType)
687      return CatchableTypeType;
688    llvm::Type *FieldTypes[] = {
689        CGM.IntTy,                           // Flags
690        getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
691        CGM.IntTy,                           // NonVirtualAdjustment
692        CGM.IntTy,                           // OffsetToVBPtr
693        CGM.IntTy,                           // VBTableIndex
694        CGM.IntTy,                           // Size
695        getImageRelativeType(CGM.Int8PtrTy)  // CopyCtor
696    };
697    CatchableTypeType = llvm::StructType::create(
698        CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
699    return CatchableTypeType;
700  }
701
702  llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
703    llvm::StructType *&CatchableTypeArrayType =
704        CatchableTypeArrayTypeMap[NumEntries];
705    if (CatchableTypeArrayType)
706      return CatchableTypeArrayType;
707
708    llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
709    CTATypeName += llvm::utostr(NumEntries);
710    llvm::Type *CTType =
711        getImageRelativeType(getCatchableTypeType()->getPointerTo());
712    llvm::Type *FieldTypes[] = {
713        CGM.IntTy,                               // NumEntries
714        llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
715    };
716    CatchableTypeArrayType =
717        llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
718    return CatchableTypeArrayType;
719  }
720
721  llvm::StructType *getThrowInfoType() {
722    if (ThrowInfoType)
723      return ThrowInfoType;
724    llvm::Type *FieldTypes[] = {
725        CGM.IntTy,                           // Flags
726        getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
727        getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
728        getImageRelativeType(CGM.Int8PtrTy)  // CatchableTypeArray
729    };
730    ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
731                                             "eh.ThrowInfo");
732    return ThrowInfoType;
733  }
734
735  llvm::FunctionCallee getThrowFn() {
736    // _CxxThrowException is passed an exception object and a ThrowInfo object
737    // which describes the exception.
738    llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
739    llvm::FunctionType *FTy =
740        llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false);
741    llvm::FunctionCallee Throw =
742        CGM.CreateRuntimeFunction(FTy, "_CxxThrowException");
743    // _CxxThrowException is stdcall on 32-bit x86 platforms.
744    if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) {
745      if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee()))
746        Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
747    }
748    return Throw;
749  }
750
751  llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
752                                          CXXCtorType CT);
753
754  llvm::Constant *getCatchableType(QualType T,
755                                   uint32_t NVOffset = 0,
756                                   int32_t VBPtrOffset = -1,
757                                   uint32_t VBIndex = 0);
758
759  llvm::GlobalVariable *getCatchableTypeArray(QualType T);
760
761  llvm::GlobalVariable *getThrowInfo(QualType T) override;
762
763  std::pair<llvm::Value *, const CXXRecordDecl *>
764  LoadVTablePtr(CodeGenFunction &CGF, Address This,
765                const CXXRecordDecl *RD) override;
766
767private:
768  typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
769  typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
770  typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
771  /// All the vftables that have been referenced.
772  VFTablesMapTy VFTablesMap;
773  VTablesMapTy VTablesMap;
774
775  /// This set holds the record decls we've deferred vtable emission for.
776  llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
777
778
779  /// All the vbtables which have been referenced.
780  llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
781
782  /// Info on the global variable used to guard initialization of static locals.
783  /// The BitIndex field is only used for externally invisible declarations.
784  struct GuardInfo {
785    GuardInfo() : Guard(nullptr), BitIndex(0) {}
786    llvm::GlobalVariable *Guard;
787    unsigned BitIndex;
788  };
789
790  /// Map from DeclContext to the current guard variable.  We assume that the
791  /// AST is visited in source code order.
792  llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
793  llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
794  llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;
795
796  llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
797  llvm::StructType *BaseClassDescriptorType;
798  llvm::StructType *ClassHierarchyDescriptorType;
799  llvm::StructType *CompleteObjectLocatorType;
800
801  llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
802
803  llvm::StructType *CatchableTypeType;
804  llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
805  llvm::StructType *ThrowInfoType;
806};
807
808}
809
810CGCXXABI::RecordArgABI
811MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
812  switch (CGM.getTarget().getTriple().getArch()) {
813  default:
814    // FIXME: Implement for other architectures.
815    return RAA_Default;
816
817  case llvm::Triple::thumb:
818    // Use the simple Itanium rules for now.
819    // FIXME: This is incompatible with MSVC for arguments with a dtor and no
820    // copy ctor.
821    return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default;
822
823  case llvm::Triple::x86:
824    // All record arguments are passed in memory on x86.  Decide whether to
825    // construct the object directly in argument memory, or to construct the
826    // argument elsewhere and copy the bytes during the call.
827
828    // If C++ prohibits us from making a copy, construct the arguments directly
829    // into argument memory.
830    if (!RD->canPassInRegisters())
831      return RAA_DirectInMemory;
832
833    // Otherwise, construct the argument into a temporary and copy the bytes
834    // into the outgoing argument memory.
835    return RAA_Default;
836
837  case llvm::Triple::x86_64:
838  case llvm::Triple::aarch64:
839    return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default;
840  }
841
842  llvm_unreachable("invalid enum");
843}
844
845void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
846                                              const CXXDeleteExpr *DE,
847                                              Address Ptr,
848                                              QualType ElementType,
849                                              const CXXDestructorDecl *Dtor) {
850  // FIXME: Provide a source location here even though there's no
851  // CXXMemberCallExpr for dtor call.
852  bool UseGlobalDelete = DE->isGlobalDelete();
853  CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
854  llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE);
855  if (UseGlobalDelete)
856    CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
857}
858
859void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
860  llvm::Value *Args[] = {
861      llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
862      llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
863  llvm::FunctionCallee Fn = getThrowFn();
864  if (isNoReturn)
865    CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
866  else
867    CGF.EmitRuntimeCallOrInvoke(Fn, Args);
868}
869
870void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
871                                     const CXXCatchStmt *S) {
872  // In the MS ABI, the runtime handles the copy, and the catch handler is
873  // responsible for destruction.
874  VarDecl *CatchParam = S->getExceptionDecl();
875  llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock();
876  llvm::CatchPadInst *CPI =
877      cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI());
878  CGF.CurrentFuncletPad = CPI;
879
880  // If this is a catch-all or the catch parameter is unnamed, we don't need to
881  // emit an alloca to the object.
882  if (!CatchParam || !CatchParam->getDeclName()) {
883    CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
884    return;
885  }
886
887  CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
888  CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer());
889  CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
890  CGF.EmitAutoVarCleanups(var);
891}
892
893/// We need to perform a generic polymorphic operation (like a typeid
894/// or a cast), which requires an object with a vfptr.  Adjust the
895/// address to point to an object with a vfptr.
896std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
897MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value,
898                                       QualType SrcRecordTy) {
899  Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
900  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
901  const ASTContext &Context = getContext();
902
903  // If the class itself has a vfptr, great.  This check implicitly
904  // covers non-virtual base subobjects: a class with its own virtual
905  // functions would be a candidate to be a primary base.
906  if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
907    return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0),
908                           SrcDecl);
909
910  // Okay, one of the vbases must have a vfptr, or else this isn't
911  // actually a polymorphic class.
912  const CXXRecordDecl *PolymorphicBase = nullptr;
913  for (auto &Base : SrcDecl->vbases()) {
914    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
915    if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) {
916      PolymorphicBase = BaseDecl;
917      break;
918    }
919  }
920  assert(PolymorphicBase && "polymorphic class has no apparent vfptr?");
921
922  llvm::Value *Offset =
923    GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase);
924  llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset);
925  CharUnits VBaseAlign =
926    CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase);
927  return std::make_tuple(Address(Ptr, VBaseAlign), Offset, PolymorphicBase);
928}
929
930bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
931                                                QualType SrcRecordTy) {
932  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
933  return IsDeref &&
934         !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
935}
936
937static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF,
938                                        llvm::Value *Argument) {
939  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
940  llvm::FunctionType *FTy =
941      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
942  llvm::Value *Args[] = {Argument};
943  llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
944  return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
945}
946
947void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
948  llvm::CallBase *Call =
949      emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
950  Call->setDoesNotReturn();
951  CGF.Builder.CreateUnreachable();
952}
953
954llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
955                                         QualType SrcRecordTy,
956                                         Address ThisPtr,
957                                         llvm::Type *StdTypeInfoPtrTy) {
958  std::tie(ThisPtr, std::ignore, std::ignore) =
959      performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
960  llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer());
961  return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy);
962}
963
964bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
965                                                         QualType SrcRecordTy) {
966  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
967  return SrcIsPtr &&
968         !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
969}
970
971llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
972    CodeGenFunction &CGF, Address This, QualType SrcRecordTy,
973    QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
974  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
975
976  llvm::Value *SrcRTTI =
977      CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
978  llvm::Value *DestRTTI =
979      CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
980
981  llvm::Value *Offset;
982  std::tie(This, Offset, std::ignore) =
983      performBaseAdjustment(CGF, This, SrcRecordTy);
984  llvm::Value *ThisPtr = This.getPointer();
985  Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
986
987  // PVOID __RTDynamicCast(
988  //   PVOID inptr,
989  //   LONG VfDelta,
990  //   PVOID SrcType,
991  //   PVOID TargetType,
992  //   BOOL isReference)
993  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
994                            CGF.Int8PtrTy, CGF.Int32Ty};
995  llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
996      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
997      "__RTDynamicCast");
998  llvm::Value *Args[] = {
999      ThisPtr, Offset, SrcRTTI, DestRTTI,
1000      llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
1001  ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args);
1002  return CGF.Builder.CreateBitCast(ThisPtr, DestLTy);
1003}
1004
1005llvm::Value *
1006MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
1007                                       QualType SrcRecordTy,
1008                                       QualType DestTy) {
1009  std::tie(Value, std::ignore, std::ignore) =
1010      performBaseAdjustment(CGF, Value, SrcRecordTy);
1011
1012  // PVOID __RTCastToVoid(
1013  //   PVOID inptr)
1014  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
1015  llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
1016      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1017      "__RTCastToVoid");
1018  llvm::Value *Args[] = {Value.getPointer()};
1019  return CGF.EmitRuntimeCall(Function, Args);
1020}
1021
1022bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
1023  return false;
1024}
1025
1026llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
1027    CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl,
1028    const CXXRecordDecl *BaseClassDecl) {
1029  const ASTContext &Context = getContext();
1030  int64_t VBPtrChars =
1031      Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
1032  llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
1033  CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
1034  CharUnits VBTableChars =
1035      IntSize *
1036      CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
1037  llvm::Value *VBTableOffset =
1038      llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
1039
1040  llvm::Value *VBPtrToNewBase =
1041      GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
1042  VBPtrToNewBase =
1043      CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
1044  return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
1045}
1046
1047bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
1048  return isa<CXXConstructorDecl>(GD.getDecl());
1049}
1050
1051static bool isDeletingDtor(GlobalDecl GD) {
1052  return isa<CXXDestructorDecl>(GD.getDecl()) &&
1053         GD.getDtorType() == Dtor_Deleting;
1054}
1055
1056bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
1057  return isDeletingDtor(GD);
1058}
1059
1060static bool IsSizeGreaterThan128(const CXXRecordDecl *RD) {
1061  return RD->getASTContext().getTypeSize(RD->getTypeForDecl()) > 128;
1062}
1063
1064static bool hasMicrosoftABIRestrictions(const CXXRecordDecl *RD) {
1065  // For AArch64, we use the C++14 definition of an aggregate, so we also
1066  // check for:
1067  //   No private or protected non static data members.
1068  //   No base classes
1069  //   No virtual functions
1070  // Additionally, we need to ensure that there is a trivial copy assignment
1071  // operator, a trivial destructor and no user-provided constructors.
1072  if (RD->hasProtectedFields() || RD->hasPrivateFields())
1073    return true;
1074  if (RD->getNumBases() > 0)
1075    return true;
1076  if (RD->isPolymorphic())
1077    return true;
1078  if (RD->hasNonTrivialCopyAssignment())
1079    return true;
1080  for (const CXXConstructorDecl *Ctor : RD->ctors())
1081    if (Ctor->isUserProvided())
1082      return true;
1083  if (RD->hasNonTrivialDestructor())
1084    return true;
1085  return false;
1086}
1087
1088bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
1089  const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
1090  if (!RD)
1091    return false;
1092
1093  bool isAArch64 = CGM.getTarget().getTriple().isAArch64();
1094  bool isSimple = !isAArch64 || !hasMicrosoftABIRestrictions(RD);
1095  bool isIndirectReturn =
1096      isAArch64 ? (!RD->canPassInRegisters() ||
1097                   IsSizeGreaterThan128(RD))
1098                : !RD->isPOD();
1099  bool isInstanceMethod = FI.isInstanceMethod();
1100
1101  if (isIndirectReturn || !isSimple || isInstanceMethod) {
1102    CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
1103    FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
1104    FI.getReturnInfo().setSRetAfterThis(isInstanceMethod);
1105
1106    FI.getReturnInfo().setInReg(isAArch64 &&
1107                                !(isSimple && IsSizeGreaterThan128(RD)));
1108
1109    return true;
1110  }
1111
1112  // Otherwise, use the C ABI rules.
1113  return false;
1114}
1115
1116llvm::BasicBlock *
1117MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
1118                                               const CXXRecordDecl *RD) {
1119  llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1120  assert(IsMostDerivedClass &&
1121         "ctor for a class with virtual bases must have an implicit parameter");
1122  llvm::Value *IsCompleteObject =
1123    CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1124
1125  llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
1126  llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
1127  CGF.Builder.CreateCondBr(IsCompleteObject,
1128                           CallVbaseCtorsBB, SkipVbaseCtorsBB);
1129
1130  CGF.EmitBlock(CallVbaseCtorsBB);
1131
1132  // Fill in the vbtable pointers here.
1133  EmitVBPtrStores(CGF, RD);
1134
1135  // CGF will put the base ctor calls in this basic block for us later.
1136
1137  return SkipVbaseCtorsBB;
1138}
1139
1140llvm::BasicBlock *
1141MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) {
1142  llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1143  assert(IsMostDerivedClass &&
1144         "ctor for a class with virtual bases must have an implicit parameter");
1145  llvm::Value *IsCompleteObject =
1146      CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1147
1148  llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases");
1149  llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases");
1150  CGF.Builder.CreateCondBr(IsCompleteObject,
1151                           CallVbaseDtorsBB, SkipVbaseDtorsBB);
1152
1153  CGF.EmitBlock(CallVbaseDtorsBB);
1154  // CGF will put the base dtor calls in this basic block for us later.
1155
1156  return SkipVbaseDtorsBB;
1157}
1158
1159void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
1160    CodeGenFunction &CGF, const CXXRecordDecl *RD) {
1161  // In most cases, an override for a vbase virtual method can adjust
1162  // the "this" parameter by applying a constant offset.
1163  // However, this is not enough while a constructor or a destructor of some
1164  // class X is being executed if all the following conditions are met:
1165  //  - X has virtual bases, (1)
1166  //  - X overrides a virtual method M of a vbase Y, (2)
1167  //  - X itself is a vbase of the most derived class.
1168  //
1169  // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
1170  // which holds the extra amount of "this" adjustment we must do when we use
1171  // the X vftables (i.e. during X ctor or dtor).
1172  // Outside the ctors and dtors, the values of vtorDisps are zero.
1173
1174  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1175  typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
1176  const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
1177  CGBuilderTy &Builder = CGF.Builder;
1178
1179  unsigned AS = getThisAddress(CGF).getAddressSpace();
1180  llvm::Value *Int8This = nullptr;  // Initialize lazily.
1181
1182  for (const CXXBaseSpecifier &S : RD->vbases()) {
1183    const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl();
1184    auto I = VBaseMap.find(VBase);
1185    assert(I != VBaseMap.end());
1186    if (!I->second.hasVtorDisp())
1187      continue;
1188
1189    llvm::Value *VBaseOffset =
1190        GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase);
1191    uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity();
1192
1193    // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
1194    llvm::Value *VtorDispValue = Builder.CreateSub(
1195        VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset),
1196        "vtordisp.value");
1197    VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty);
1198
1199    if (!Int8This)
1200      Int8This = Builder.CreateBitCast(getThisValue(CGF),
1201                                       CGF.Int8Ty->getPointerTo(AS));
1202    llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
1203    // vtorDisp is always the 32-bits before the vbase in the class layout.
1204    VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
1205    VtorDispPtr = Builder.CreateBitCast(
1206        VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
1207
1208    Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr,
1209                               CharUnits::fromQuantity(4));
1210  }
1211}
1212
1213static bool hasDefaultCXXMethodCC(ASTContext &Context,
1214                                  const CXXMethodDecl *MD) {
1215  CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
1216      /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1217  CallingConv ActualCallingConv =
1218      MD->getType()->castAs<FunctionProtoType>()->getCallConv();
1219  return ExpectedCallingConv == ActualCallingConv;
1220}
1221
1222void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
1223  // There's only one constructor type in this ABI.
1224  CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
1225
1226  // Exported default constructors either have a simple call-site where they use
1227  // the typical calling convention and have a single 'this' pointer for an
1228  // argument -or- they get a wrapper function which appropriately thunks to the
1229  // real default constructor.  This thunk is the default constructor closure.
1230  if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor())
1231    if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
1232      llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
1233      Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
1234      CGM.setGVProperties(Fn, D);
1235    }
1236}
1237
1238void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
1239                                      const CXXRecordDecl *RD) {
1240  Address This = getThisAddress(CGF);
1241  This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8");
1242  const ASTContext &Context = getContext();
1243  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1244
1245  const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1246  for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1247    const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I];
1248    llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1249    const ASTRecordLayout &SubobjectLayout =
1250        Context.getASTRecordLayout(VBT->IntroducingObject);
1251    CharUnits Offs = VBT->NonVirtualOffset;
1252    Offs += SubobjectLayout.getVBPtrOffset();
1253    if (VBT->getVBaseWithVPtr())
1254      Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
1255    Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs);
1256    llvm::Value *GVPtr =
1257        CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
1258    VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(),
1259                                      "vbptr." + VBT->ObjectWithVPtr->getName());
1260    CGF.Builder.CreateStore(GVPtr, VBPtr);
1261  }
1262}
1263
1264CGCXXABI::AddedStructorArgs
1265MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD,
1266                                        SmallVectorImpl<CanQualType> &ArgTys) {
1267  AddedStructorArgs Added;
1268  // TODO: 'for base' flag
1269  if (isa<CXXDestructorDecl>(GD.getDecl()) &&
1270      GD.getDtorType() == Dtor_Deleting) {
1271    // The scalar deleting destructor takes an implicit int parameter.
1272    ArgTys.push_back(getContext().IntTy);
1273    ++Added.Suffix;
1274  }
1275  auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl());
1276  if (!CD)
1277    return Added;
1278
1279  // All parameters are already in place except is_most_derived, which goes
1280  // after 'this' if it's variadic and last if it's not.
1281
1282  const CXXRecordDecl *Class = CD->getParent();
1283  const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
1284  if (Class->getNumVBases()) {
1285    if (FPT->isVariadic()) {
1286      ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
1287      ++Added.Prefix;
1288    } else {
1289      ArgTys.push_back(getContext().IntTy);
1290      ++Added.Suffix;
1291    }
1292  }
1293
1294  return Added;
1295}
1296
1297void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
1298                                                 const CXXDestructorDecl *Dtor,
1299                                                 CXXDtorType DT) const {
1300  // Deleting destructor variants are never imported or exported. Give them the
1301  // default storage class.
1302  if (DT == Dtor_Deleting) {
1303    GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1304  } else {
1305    const NamedDecl *ND = Dtor;
1306    CGM.setDLLImportDLLExport(GV, ND);
1307  }
1308}
1309
1310llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage(
1311    GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const {
1312  // Internal things are always internal, regardless of attributes. After this,
1313  // we know the thunk is externally visible.
1314  if (Linkage == GVA_Internal)
1315    return llvm::GlobalValue::InternalLinkage;
1316
1317  switch (DT) {
1318  case Dtor_Base:
1319    // The base destructor most closely tracks the user-declared constructor, so
1320    // we delegate back to the normal declarator case.
1321    return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage,
1322                                           /*IsConstantVariable=*/false);
1323  case Dtor_Complete:
1324    // The complete destructor is like an inline function, but it may be
1325    // imported and therefore must be exported as well. This requires changing
1326    // the linkage if a DLL attribute is present.
1327    if (Dtor->hasAttr<DLLExportAttr>())
1328      return llvm::GlobalValue::WeakODRLinkage;
1329    if (Dtor->hasAttr<DLLImportAttr>())
1330      return llvm::GlobalValue::AvailableExternallyLinkage;
1331    return llvm::GlobalValue::LinkOnceODRLinkage;
1332  case Dtor_Deleting:
1333    // Deleting destructors are like inline functions. They have vague linkage
1334    // and are emitted everywhere they are used. They are internal if the class
1335    // is internal.
1336    return llvm::GlobalValue::LinkOnceODRLinkage;
1337  case Dtor_Comdat:
1338    llvm_unreachable("MS C++ ABI does not support comdat dtors");
1339  }
1340  llvm_unreachable("invalid dtor type");
1341}
1342
1343void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1344  // The TU defining a dtor is only guaranteed to emit a base destructor.  All
1345  // other destructor variants are delegating thunks.
1346  CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1347
1348  // If the class is dllexported, emit the complete (vbase) destructor wherever
1349  // the base dtor is emitted.
1350  // FIXME: To match MSVC, this should only be done when the class is exported
1351  // with -fdllexport-inlines enabled.
1352  if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>())
1353    CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
1354}
1355
1356CharUnits
1357MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1358  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1359
1360  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1361    // Complete destructors take a pointer to the complete object as a
1362    // parameter, thus don't need this adjustment.
1363    if (GD.getDtorType() == Dtor_Complete)
1364      return CharUnits();
1365
1366    // There's no Dtor_Base in vftable but it shares the this adjustment with
1367    // the deleting one, so look it up instead.
1368    GD = GlobalDecl(DD, Dtor_Deleting);
1369  }
1370
1371  MethodVFTableLocation ML =
1372      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1373  CharUnits Adjustment = ML.VFPtrOffset;
1374
1375  // Normal virtual instance methods need to adjust from the vfptr that first
1376  // defined the virtual method to the virtual base subobject, but destructors
1377  // do not.  The vector deleting destructor thunk applies this adjustment for
1378  // us if necessary.
1379  if (isa<CXXDestructorDecl>(MD))
1380    Adjustment = CharUnits::Zero();
1381
1382  if (ML.VBase) {
1383    const ASTRecordLayout &DerivedLayout =
1384        getContext().getASTRecordLayout(MD->getParent());
1385    Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1386  }
1387
1388  return Adjustment;
1389}
1390
1391Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1392    CodeGenFunction &CGF, GlobalDecl GD, Address This,
1393    bool VirtualCall) {
1394  if (!VirtualCall) {
1395    // If the call of a virtual function is not virtual, we just have to
1396    // compensate for the adjustment the virtual function does in its prologue.
1397    CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1398    if (Adjustment.isZero())
1399      return This;
1400
1401    This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
1402    assert(Adjustment.isPositive());
1403    return CGF.Builder.CreateConstByteGEP(This, Adjustment);
1404  }
1405
1406  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1407
1408  GlobalDecl LookupGD = GD;
1409  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1410    // Complete dtors take a pointer to the complete object,
1411    // thus don't need adjustment.
1412    if (GD.getDtorType() == Dtor_Complete)
1413      return This;
1414
1415    // There's only Dtor_Deleting in vftable but it shares the this adjustment
1416    // with the base one, so look up the deleting one instead.
1417    LookupGD = GlobalDecl(DD, Dtor_Deleting);
1418  }
1419  MethodVFTableLocation ML =
1420      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1421
1422  CharUnits StaticOffset = ML.VFPtrOffset;
1423
1424  // Base destructors expect 'this' to point to the beginning of the base
1425  // subobject, not the first vfptr that happens to contain the virtual dtor.
1426  // However, we still need to apply the virtual base adjustment.
1427  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1428    StaticOffset = CharUnits::Zero();
1429
1430  Address Result = This;
1431  if (ML.VBase) {
1432    Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1433
1434    const CXXRecordDecl *Derived = MD->getParent();
1435    const CXXRecordDecl *VBase = ML.VBase;
1436    llvm::Value *VBaseOffset =
1437      GetVirtualBaseClassOffset(CGF, Result, Derived, VBase);
1438    llvm::Value *VBasePtr =
1439      CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset);
1440    CharUnits VBaseAlign =
1441      CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase);
1442    Result = Address(VBasePtr, VBaseAlign);
1443  }
1444  if (!StaticOffset.isZero()) {
1445    assert(StaticOffset.isPositive());
1446    Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1447    if (ML.VBase) {
1448      // Non-virtual adjustment might result in a pointer outside the allocated
1449      // object, e.g. if the final overrider class is laid out after the virtual
1450      // base that declares a method in the most derived class.
1451      // FIXME: Update the code that emits this adjustment in thunks prologues.
1452      Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset);
1453    } else {
1454      Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset);
1455    }
1456  }
1457  return Result;
1458}
1459
1460void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1461                                                QualType &ResTy,
1462                                                FunctionArgList &Params) {
1463  ASTContext &Context = getContext();
1464  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1465  assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1466  if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1467    auto *IsMostDerived = ImplicitParamDecl::Create(
1468        Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1469        &Context.Idents.get("is_most_derived"), Context.IntTy,
1470        ImplicitParamDecl::Other);
1471    // The 'most_derived' parameter goes second if the ctor is variadic and last
1472    // if it's not.  Dtors can't be variadic.
1473    const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1474    if (FPT->isVariadic())
1475      Params.insert(Params.begin() + 1, IsMostDerived);
1476    else
1477      Params.push_back(IsMostDerived);
1478    getStructorImplicitParamDecl(CGF) = IsMostDerived;
1479  } else if (isDeletingDtor(CGF.CurGD)) {
1480    auto *ShouldDelete = ImplicitParamDecl::Create(
1481        Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1482        &Context.Idents.get("should_call_delete"), Context.IntTy,
1483        ImplicitParamDecl::Other);
1484    Params.push_back(ShouldDelete);
1485    getStructorImplicitParamDecl(CGF) = ShouldDelete;
1486  }
1487}
1488
1489void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1490  // Naked functions have no prolog.
1491  if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>())
1492    return;
1493
1494  // Overridden virtual methods of non-primary bases need to adjust the incoming
1495  // 'this' pointer in the prologue. In this hierarchy, C::b will subtract
1496  // sizeof(void*) to adjust from B* to C*:
1497  //   struct A { virtual void a(); };
1498  //   struct B { virtual void b(); };
1499  //   struct C : A, B { virtual void b(); };
1500  //
1501  // Leave the value stored in the 'this' alloca unadjusted, so that the
1502  // debugger sees the unadjusted value. Microsoft debuggers require this, and
1503  // will apply the ThisAdjustment in the method type information.
1504  // FIXME: Do something better for DWARF debuggers, which won't expect this,
1505  // without making our codegen depend on debug info settings.
1506  llvm::Value *This = loadIncomingCXXThis(CGF);
1507  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1508  if (!CGF.CurFuncIsThunk && MD->isVirtual()) {
1509    CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD);
1510    if (!Adjustment.isZero()) {
1511      unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1512      llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
1513                 *thisTy = This->getType();
1514      This = CGF.Builder.CreateBitCast(This, charPtrTy);
1515      assert(Adjustment.isPositive());
1516      This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
1517                                                    -Adjustment.getQuantity());
1518      This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted");
1519    }
1520  }
1521  setCXXABIThisValue(CGF, This);
1522
1523  // If this is a function that the ABI specifies returns 'this', initialize
1524  // the return slot to 'this' at the start of the function.
1525  //
1526  // Unlike the setting of return types, this is done within the ABI
1527  // implementation instead of by clients of CGCXXABI because:
1528  // 1) getThisValue is currently protected
1529  // 2) in theory, an ABI could implement 'this' returns some other way;
1530  //    HasThisReturn only specifies a contract, not the implementation
1531  if (HasThisReturn(CGF.CurGD))
1532    CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1533  else if (hasMostDerivedReturn(CGF.CurGD))
1534    CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
1535                            CGF.ReturnValue);
1536
1537  if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1538    assert(getStructorImplicitParamDecl(CGF) &&
1539           "no implicit parameter for a constructor with virtual bases?");
1540    getStructorImplicitParamValue(CGF)
1541      = CGF.Builder.CreateLoad(
1542          CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1543          "is_most_derived");
1544  }
1545
1546  if (isDeletingDtor(CGF.CurGD)) {
1547    assert(getStructorImplicitParamDecl(CGF) &&
1548           "no implicit parameter for a deleting destructor?");
1549    getStructorImplicitParamValue(CGF)
1550      = CGF.Builder.CreateLoad(
1551          CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1552          "should_call_delete");
1553  }
1554}
1555
1556CGCXXABI::AddedStructorArgs MicrosoftCXXABI::addImplicitConstructorArgs(
1557    CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1558    bool ForVirtualBase, bool Delegating, CallArgList &Args) {
1559  assert(Type == Ctor_Complete || Type == Ctor_Base);
1560
1561  // Check if we need a 'most_derived' parameter.
1562  if (!D->getParent()->getNumVBases())
1563    return AddedStructorArgs{};
1564
1565  // Add the 'most_derived' argument second if we are variadic or last if not.
1566  const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1567  llvm::Value *MostDerivedArg;
1568  if (Delegating) {
1569    MostDerivedArg = getStructorImplicitParamValue(CGF);
1570  } else {
1571    MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1572  }
1573  RValue RV = RValue::get(MostDerivedArg);
1574  if (FPT->isVariadic()) {
1575    Args.insert(Args.begin() + 1, CallArg(RV, getContext().IntTy));
1576    return AddedStructorArgs::prefix(1);
1577  }
1578  Args.add(RV, getContext().IntTy);
1579  return AddedStructorArgs::suffix(1);
1580}
1581
1582void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1583                                         const CXXDestructorDecl *DD,
1584                                         CXXDtorType Type, bool ForVirtualBase,
1585                                         bool Delegating, Address This,
1586                                         QualType ThisTy) {
1587  // Use the base destructor variant in place of the complete destructor variant
1588  // if the class has no virtual bases. This effectively implements some of the
1589  // -mconstructor-aliases optimization, but as part of the MS C++ ABI.
1590  if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0)
1591    Type = Dtor_Base;
1592
1593  GlobalDecl GD(DD, Type);
1594  CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD);
1595
1596  if (DD->isVirtual()) {
1597    assert(Type != CXXDtorType::Dtor_Deleting &&
1598           "The deleting destructor should only be called via a virtual call");
1599    This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1600                                                    This, false);
1601  }
1602
1603  llvm::BasicBlock *BaseDtorEndBB = nullptr;
1604  if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) {
1605    BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF);
1606  }
1607
1608  CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
1609                            /*ImplicitParam=*/nullptr,
1610                            /*ImplicitParamTy=*/QualType(), nullptr);
1611  if (BaseDtorEndBB) {
1612    // Complete object handler should continue to be the remaining
1613    CGF.Builder.CreateBr(BaseDtorEndBB);
1614    CGF.EmitBlock(BaseDtorEndBB);
1615  }
1616}
1617
1618void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info,
1619                                             const CXXRecordDecl *RD,
1620                                             llvm::GlobalVariable *VTable) {
1621  if (!CGM.getCodeGenOpts().LTOUnit)
1622    return;
1623
1624  // The location of the first virtual function pointer in the virtual table,
1625  // aka the "address point" on Itanium. This is at offset 0 if RTTI is
1626  // disabled, or sizeof(void*) if RTTI is enabled.
1627  CharUnits AddressPoint =
1628      getContext().getLangOpts().RTTIData
1629          ? getContext().toCharUnitsFromBits(
1630                getContext().getTargetInfo().getPointerWidth(0))
1631          : CharUnits::Zero();
1632
1633  if (Info.PathToIntroducingObject.empty()) {
1634    CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1635    return;
1636  }
1637
1638  // Add a bitset entry for the least derived base belonging to this vftable.
1639  CGM.AddVTableTypeMetadata(VTable, AddressPoint,
1640                            Info.PathToIntroducingObject.back());
1641
1642  // Add a bitset entry for each derived class that is laid out at the same
1643  // offset as the least derived base.
1644  for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) {
1645    const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1];
1646    const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I];
1647
1648    const ASTRecordLayout &Layout =
1649        getContext().getASTRecordLayout(DerivedRD);
1650    CharUnits Offset;
1651    auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD);
1652    if (VBI == Layout.getVBaseOffsetsMap().end())
1653      Offset = Layout.getBaseClassOffset(BaseRD);
1654    else
1655      Offset = VBI->second.VBaseOffset;
1656    if (!Offset.isZero())
1657      return;
1658    CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD);
1659  }
1660
1661  // Finally do the same for the most derived class.
1662  if (Info.FullOffsetInMDC.isZero())
1663    CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1664}
1665
1666void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1667                                            const CXXRecordDecl *RD) {
1668  MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1669  const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1670
1671  for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) {
1672    llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1673    if (VTable->hasInitializer())
1674      continue;
1675
1676    const VTableLayout &VTLayout =
1677      VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1678
1679    llvm::Constant *RTTI = nullptr;
1680    if (any_of(VTLayout.vtable_components(),
1681               [](const VTableComponent &VTC) { return VTC.isRTTIKind(); }))
1682      RTTI = getMSCompleteObjectLocator(RD, *Info);
1683
1684    ConstantInitBuilder Builder(CGM);
1685    auto Components = Builder.beginStruct();
1686    CGVT.createVTableInitializer(Components, VTLayout, RTTI);
1687    Components.finishAndSetAsInitializer(VTable);
1688
1689    emitVTableTypeMetadata(*Info, RD, VTable);
1690  }
1691}
1692
1693bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField(
1694    CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
1695  return Vptr.NearestVBase != nullptr;
1696}
1697
1698llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1699    CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1700    const CXXRecordDecl *NearestVBase) {
1701  llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass);
1702  if (!VTableAddressPoint) {
1703    assert(Base.getBase()->getNumVBases() &&
1704           !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1705  }
1706  return VTableAddressPoint;
1707}
1708
1709static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1710                              const CXXRecordDecl *RD, const VPtrInfo &VFPtr,
1711                              SmallString<256> &Name) {
1712  llvm::raw_svector_ostream Out(Name);
1713  MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out);
1714}
1715
1716llvm::Constant *
1717MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base,
1718                                       const CXXRecordDecl *VTableClass) {
1719  (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1720  VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1721  return VFTablesMap[ID];
1722}
1723
1724llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
1725    BaseSubobject Base, const CXXRecordDecl *VTableClass) {
1726  llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass);
1727  assert(VFTable && "Couldn't find a vftable for the given base?");
1728  return VFTable;
1729}
1730
1731llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1732                                                       CharUnits VPtrOffset) {
1733  // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1734  // shouldn't be used in the given record type. We want to cache this result in
1735  // VFTablesMap, thus a simple zero check is not sufficient.
1736
1737  VFTableIdTy ID(RD, VPtrOffset);
1738  VTablesMapTy::iterator I;
1739  bool Inserted;
1740  std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1741  if (!Inserted)
1742    return I->second;
1743
1744  llvm::GlobalVariable *&VTable = I->second;
1745
1746  MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1747  const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1748
1749  if (DeferredVFTables.insert(RD).second) {
1750    // We haven't processed this record type before.
1751    // Queue up this vtable for possible deferred emission.
1752    CGM.addDeferredVTable(RD);
1753
1754#ifndef NDEBUG
1755    // Create all the vftables at once in order to make sure each vftable has
1756    // a unique mangled name.
1757    llvm::StringSet<> ObservedMangledNames;
1758    for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1759      SmallString<256> Name;
1760      mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name);
1761      if (!ObservedMangledNames.insert(Name.str()).second)
1762        llvm_unreachable("Already saw this mangling before?");
1763    }
1764#endif
1765  }
1766
1767  const std::unique_ptr<VPtrInfo> *VFPtrI = std::find_if(
1768      VFPtrs.begin(), VFPtrs.end(), [&](const std::unique_ptr<VPtrInfo>& VPI) {
1769        return VPI->FullOffsetInMDC == VPtrOffset;
1770      });
1771  if (VFPtrI == VFPtrs.end()) {
1772    VFTablesMap[ID] = nullptr;
1773    return nullptr;
1774  }
1775  const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI;
1776
1777  SmallString<256> VFTableName;
1778  mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName);
1779
1780  // Classes marked __declspec(dllimport) need vftables generated on the
1781  // import-side in order to support features like constexpr.  No other
1782  // translation unit relies on the emission of the local vftable, translation
1783  // units are expected to generate them as needed.
1784  //
1785  // Because of this unique behavior, we maintain this logic here instead of
1786  // getVTableLinkage.
1787  llvm::GlobalValue::LinkageTypes VFTableLinkage =
1788      RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage
1789                                   : CGM.getVTableLinkage(RD);
1790  bool VFTableComesFromAnotherTU =
1791      llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
1792      llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
1793  bool VTableAliasIsRequred =
1794      !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
1795
1796  if (llvm::GlobalValue *VFTable =
1797          CGM.getModule().getNamedGlobal(VFTableName)) {
1798    VFTablesMap[ID] = VFTable;
1799    VTable = VTableAliasIsRequred
1800                 ? cast<llvm::GlobalVariable>(
1801                       cast<llvm::GlobalAlias>(VFTable)->getBaseObject())
1802                 : cast<llvm::GlobalVariable>(VFTable);
1803    return VTable;
1804  }
1805
1806  const VTableLayout &VTLayout =
1807      VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC);
1808  llvm::GlobalValue::LinkageTypes VTableLinkage =
1809      VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
1810
1811  StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
1812
1813  llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout);
1814
1815  // Create a backing variable for the contents of VTable.  The VTable may
1816  // or may not include space for a pointer to RTTI data.
1817  llvm::GlobalValue *VFTable;
1818  VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
1819                                    /*isConstant=*/true, VTableLinkage,
1820                                    /*Initializer=*/nullptr, VTableName);
1821  VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1822
1823  llvm::Comdat *C = nullptr;
1824  if (!VFTableComesFromAnotherTU &&
1825      (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) ||
1826       (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) &&
1827        VTableAliasIsRequred)))
1828    C = CGM.getModule().getOrInsertComdat(VFTableName.str());
1829
1830  // Only insert a pointer into the VFTable for RTTI data if we are not
1831  // importing it.  We never reference the RTTI data directly so there is no
1832  // need to make room for it.
1833  if (VTableAliasIsRequred) {
1834    llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0),
1835                                 llvm::ConstantInt::get(CGM.Int32Ty, 0),
1836                                 llvm::ConstantInt::get(CGM.Int32Ty, 1)};
1837    // Create a GEP which points just after the first entry in the VFTable,
1838    // this should be the location of the first virtual method.
1839    llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
1840        VTable->getValueType(), VTable, GEPIndices);
1841    if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
1842      VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1843      if (C)
1844        C->setSelectionKind(llvm::Comdat::Largest);
1845    }
1846    VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy,
1847                                        /*AddressSpace=*/0, VFTableLinkage,
1848                                        VFTableName.str(), VTableGEP,
1849                                        &CGM.getModule());
1850    VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1851  } else {
1852    // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1853    // be referencing any RTTI data.
1854    // The GlobalVariable will end up being an appropriate definition of the
1855    // VFTable.
1856    VFTable = VTable;
1857  }
1858  if (C)
1859    VTable->setComdat(C);
1860
1861  if (RD->hasAttr<DLLExportAttr>())
1862    VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1863
1864  VFTablesMap[ID] = VFTable;
1865  return VTable;
1866}
1867
1868CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1869                                                    GlobalDecl GD,
1870                                                    Address This,
1871                                                    llvm::Type *Ty,
1872                                                    SourceLocation Loc) {
1873  CGBuilderTy &Builder = CGF.Builder;
1874
1875  Ty = Ty->getPointerTo()->getPointerTo();
1876  Address VPtr =
1877      adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1878
1879  auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
1880  llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent());
1881
1882  MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1883  MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD);
1884
1885  // Compute the identity of the most derived class whose virtual table is
1886  // located at the MethodVFTableLocation ML.
1887  auto getObjectWithVPtr = [&] {
1888    return llvm::find_if(VFTContext.getVFPtrOffsets(
1889                             ML.VBase ? ML.VBase : MethodDecl->getParent()),
1890                         [&](const std::unique_ptr<VPtrInfo> &Info) {
1891                           return Info->FullOffsetInMDC == ML.VFPtrOffset;
1892                         })
1893        ->get()
1894        ->ObjectWithVPtr;
1895  };
1896
1897  llvm::Value *VFunc;
1898  if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) {
1899    VFunc = CGF.EmitVTableTypeCheckedLoad(
1900        getObjectWithVPtr(), VTable,
1901        ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8);
1902  } else {
1903    if (CGM.getCodeGenOpts().PrepareForLTO)
1904      CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc);
1905
1906    llvm::Value *VFuncPtr =
1907        Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1908    VFunc = Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
1909  }
1910
1911  CGCallee Callee(GD, VFunc);
1912  return Callee;
1913}
1914
1915llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1916    CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1917    Address This, DeleteOrMemberCallExpr E) {
1918  auto *CE = E.dyn_cast<const CXXMemberCallExpr *>();
1919  auto *D = E.dyn_cast<const CXXDeleteExpr *>();
1920  assert((CE != nullptr) ^ (D != nullptr));
1921  assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
1922  assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1923
1924  // We have only one destructor in the vftable but can get both behaviors
1925  // by passing an implicit int parameter.
1926  GlobalDecl GD(Dtor, Dtor_Deleting);
1927  const CGFunctionInfo *FInfo =
1928      &CGM.getTypes().arrangeCXXStructorDeclaration(GD);
1929  llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
1930  CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty);
1931
1932  ASTContext &Context = getContext();
1933  llvm::Value *ImplicitParam = llvm::ConstantInt::get(
1934      llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
1935      DtorType == Dtor_Deleting);
1936
1937  QualType ThisTy;
1938  if (CE) {
1939    ThisTy = CE->getObjectType();
1940  } else {
1941    ThisTy = D->getDestroyedType();
1942  }
1943
1944  This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1945  RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
1946                                        ImplicitParam, Context.IntTy, CE);
1947  return RV.getScalarVal();
1948}
1949
1950const VBTableGlobals &
1951MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
1952  // At this layer, we can key the cache off of a single class, which is much
1953  // easier than caching each vbtable individually.
1954  llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
1955  bool Added;
1956  std::tie(Entry, Added) =
1957      VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
1958  VBTableGlobals &VBGlobals = Entry->second;
1959  if (!Added)
1960    return VBGlobals;
1961
1962  MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
1963  VBGlobals.VBTables = &Context.enumerateVBTables(RD);
1964
1965  // Cache the globals for all vbtables so we don't have to recompute the
1966  // mangled names.
1967  llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
1968  for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
1969                                      E = VBGlobals.VBTables->end();
1970       I != E; ++I) {
1971    VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
1972  }
1973
1974  return VBGlobals;
1975}
1976
1977llvm::Function *
1978MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
1979                                        const MethodVFTableLocation &ML) {
1980  assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
1981         "can't form pointers to ctors or virtual dtors");
1982
1983  // Calculate the mangled name.
1984  SmallString<256> ThunkName;
1985  llvm::raw_svector_ostream Out(ThunkName);
1986  getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out);
1987
1988  // If the thunk has been generated previously, just return it.
1989  if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
1990    return cast<llvm::Function>(GV);
1991
1992  // Create the llvm::Function.
1993  const CGFunctionInfo &FnInfo =
1994      CGM.getTypes().arrangeUnprototypedMustTailThunk(MD);
1995  llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
1996  llvm::Function *ThunkFn =
1997      llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
1998                             ThunkName.str(), &CGM.getModule());
1999  assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
2000
2001  ThunkFn->setLinkage(MD->isExternallyVisible()
2002                          ? llvm::GlobalValue::LinkOnceODRLinkage
2003                          : llvm::GlobalValue::InternalLinkage);
2004  if (MD->isExternallyVisible())
2005    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
2006
2007  CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
2008  CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
2009
2010  // Add the "thunk" attribute so that LLVM knows that the return type is
2011  // meaningless. These thunks can be used to call functions with differing
2012  // return types, and the caller is required to cast the prototype
2013  // appropriately to extract the correct value.
2014  ThunkFn->addFnAttr("thunk");
2015
2016  // These thunks can be compared, so they are not unnamed.
2017  ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
2018
2019  // Start codegen.
2020  CodeGenFunction CGF(CGM);
2021  CGF.CurGD = GlobalDecl(MD);
2022  CGF.CurFuncIsThunk = true;
2023
2024  // Build FunctionArgs, but only include the implicit 'this' parameter
2025  // declaration.
2026  FunctionArgList FunctionArgs;
2027  buildThisParam(CGF, FunctionArgs);
2028
2029  // Start defining the function.
2030  CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
2031                    FunctionArgs, MD->getLocation(), SourceLocation());
2032  setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
2033
2034  // Load the vfptr and then callee from the vftable.  The callee should have
2035  // adjusted 'this' so that the vfptr is at offset zero.
2036  llvm::Value *VTable = CGF.GetVTablePtr(
2037      getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent());
2038
2039  llvm::Value *VFuncPtr =
2040      CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
2041  llvm::Value *Callee =
2042    CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
2043
2044  CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee});
2045
2046  return ThunkFn;
2047}
2048
2049void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
2050  const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
2051  for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
2052    const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I];
2053    llvm::GlobalVariable *GV = VBGlobals.Globals[I];
2054    if (GV->isDeclaration())
2055      emitVBTableDefinition(*VBT, RD, GV);
2056  }
2057}
2058
2059llvm::GlobalVariable *
2060MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
2061                                  llvm::GlobalVariable::LinkageTypes Linkage) {
2062  SmallString<256> OutName;
2063  llvm::raw_svector_ostream Out(OutName);
2064  getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
2065  StringRef Name = OutName.str();
2066
2067  llvm::ArrayType *VBTableType =
2068      llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases());
2069
2070  assert(!CGM.getModule().getNamedGlobal(Name) &&
2071         "vbtable with this name already exists: mangling bug?");
2072  CharUnits Alignment =
2073      CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy);
2074  llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable(
2075      Name, VBTableType, Linkage, Alignment.getQuantity());
2076  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2077
2078  if (RD->hasAttr<DLLImportAttr>())
2079    GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2080  else if (RD->hasAttr<DLLExportAttr>())
2081    GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2082
2083  if (!GV->hasExternalLinkage())
2084    emitVBTableDefinition(VBT, RD, GV);
2085
2086  return GV;
2087}
2088
2089void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
2090                                            const CXXRecordDecl *RD,
2091                                            llvm::GlobalVariable *GV) const {
2092  const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr;
2093
2094  assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() &&
2095         "should only emit vbtables for classes with vbtables");
2096
2097  const ASTRecordLayout &BaseLayout =
2098      getContext().getASTRecordLayout(VBT.IntroducingObject);
2099  const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
2100
2101  SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(),
2102                                           nullptr);
2103
2104  // The offset from ObjectWithVPtr's vbptr to itself always leads.
2105  CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
2106  Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
2107
2108  MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2109  for (const auto &I : ObjectWithVPtr->vbases()) {
2110    const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
2111    CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
2112    assert(!Offset.isNegative());
2113
2114    // Make it relative to the subobject vbptr.
2115    CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
2116    if (VBT.getVBaseWithVPtr())
2117      CompleteVBPtrOffset +=
2118          DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
2119    Offset -= CompleteVBPtrOffset;
2120
2121    unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase);
2122    assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
2123    Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
2124  }
2125
2126  assert(Offsets.size() ==
2127         cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
2128                               ->getElementType())->getNumElements());
2129  llvm::ArrayType *VBTableType =
2130    llvm::ArrayType::get(CGM.IntTy, Offsets.size());
2131  llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
2132  GV->setInitializer(Init);
2133
2134  if (RD->hasAttr<DLLImportAttr>())
2135    GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage);
2136}
2137
2138llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
2139                                                    Address This,
2140                                                    const ThisAdjustment &TA) {
2141  if (TA.isEmpty())
2142    return This.getPointer();
2143
2144  This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
2145
2146  llvm::Value *V;
2147  if (TA.Virtual.isEmpty()) {
2148    V = This.getPointer();
2149  } else {
2150    assert(TA.Virtual.Microsoft.VtordispOffset < 0);
2151    // Adjust the this argument based on the vtordisp value.
2152    Address VtorDispPtr =
2153        CGF.Builder.CreateConstInBoundsByteGEP(This,
2154                 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset));
2155    VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty);
2156    llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
2157    V = CGF.Builder.CreateGEP(This.getPointer(),
2158                              CGF.Builder.CreateNeg(VtorDisp));
2159
2160    // Unfortunately, having applied the vtordisp means that we no
2161    // longer really have a known alignment for the vbptr step.
2162    // We'll assume the vbptr is pointer-aligned.
2163
2164    if (TA.Virtual.Microsoft.VBPtrOffset) {
2165      // If the final overrider is defined in a virtual base other than the one
2166      // that holds the vfptr, we have to use a vtordispex thunk which looks up
2167      // the vbtable of the derived class.
2168      assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
2169      assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
2170      llvm::Value *VBPtr;
2171      llvm::Value *VBaseOffset =
2172          GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()),
2173                                  -TA.Virtual.Microsoft.VBPtrOffset,
2174                                  TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
2175      V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
2176    }
2177  }
2178
2179  if (TA.NonVirtual) {
2180    // Non-virtual adjustment might result in a pointer outside the allocated
2181    // object, e.g. if the final overrider class is laid out after the virtual
2182    // base that declares a method in the most derived class.
2183    V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
2184  }
2185
2186  // Don't need to bitcast back, the call CodeGen will handle this.
2187  return V;
2188}
2189
2190llvm::Value *
2191MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
2192                                         const ReturnAdjustment &RA) {
2193  if (RA.isEmpty())
2194    return Ret.getPointer();
2195
2196  auto OrigTy = Ret.getType();
2197  Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty);
2198
2199  llvm::Value *V = Ret.getPointer();
2200  if (RA.Virtual.Microsoft.VBIndex) {
2201    assert(RA.Virtual.Microsoft.VBIndex > 0);
2202    int32_t IntSize = CGF.getIntSize().getQuantity();
2203    llvm::Value *VBPtr;
2204    llvm::Value *VBaseOffset =
2205        GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset,
2206                                IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
2207    V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
2208  }
2209
2210  if (RA.NonVirtual)
2211    V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
2212
2213  // Cast back to the original type.
2214  return CGF.Builder.CreateBitCast(V, OrigTy);
2215}
2216
2217bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
2218                                   QualType elementType) {
2219  // Microsoft seems to completely ignore the possibility of a
2220  // two-argument usual deallocation function.
2221  return elementType.isDestructedType();
2222}
2223
2224bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
2225  // Microsoft seems to completely ignore the possibility of a
2226  // two-argument usual deallocation function.
2227  return expr->getAllocatedType().isDestructedType();
2228}
2229
2230CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
2231  // The array cookie is always a size_t; we then pad that out to the
2232  // alignment of the element type.
2233  ASTContext &Ctx = getContext();
2234  return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
2235                  Ctx.getTypeAlignInChars(type));
2236}
2237
2238llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
2239                                                  Address allocPtr,
2240                                                  CharUnits cookieSize) {
2241  Address numElementsPtr =
2242    CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy);
2243  return CGF.Builder.CreateLoad(numElementsPtr);
2244}
2245
2246Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
2247                                               Address newPtr,
2248                                               llvm::Value *numElements,
2249                                               const CXXNewExpr *expr,
2250                                               QualType elementType) {
2251  assert(requiresArrayCookie(expr));
2252
2253  // The size of the cookie.
2254  CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
2255
2256  // Compute an offset to the cookie.
2257  Address cookiePtr = newPtr;
2258
2259  // Write the number of elements into the appropriate slot.
2260  Address numElementsPtr
2261    = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy);
2262  CGF.Builder.CreateStore(numElements, numElementsPtr);
2263
2264  // Finally, compute a pointer to the actual data buffer by skipping
2265  // over the cookie completely.
2266  return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
2267}
2268
2269static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
2270                                        llvm::FunctionCallee Dtor,
2271                                        llvm::Constant *Addr) {
2272  // Create a function which calls the destructor.
2273  llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
2274
2275  // extern "C" int __tlregdtor(void (*f)(void));
2276  llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
2277      CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false);
2278
2279  llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction(
2280      TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true);
2281  if (llvm::Function *TLRegDtorFn =
2282          dyn_cast<llvm::Function>(TLRegDtor.getCallee()))
2283    TLRegDtorFn->setDoesNotThrow();
2284
2285  CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
2286}
2287
2288void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
2289                                         llvm::FunctionCallee Dtor,
2290                                         llvm::Constant *Addr) {
2291  if (D.isNoDestroy(CGM.getContext()))
2292    return;
2293
2294  if (D.getTLSKind())
2295    return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
2296
2297  // The default behavior is to use atexit.
2298  CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
2299}
2300
2301void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
2302    CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
2303    ArrayRef<llvm::Function *> CXXThreadLocalInits,
2304    ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
2305  if (CXXThreadLocalInits.empty())
2306    return;
2307
2308  CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() ==
2309                                  llvm::Triple::x86
2310                              ? "/include:___dyn_tls_init@12"
2311                              : "/include:__dyn_tls_init");
2312
2313  // This will create a GV in the .CRT$XDU section.  It will point to our
2314  // initialization function.  The CRT will call all of these function
2315  // pointers at start-up time and, eventually, at thread-creation time.
2316  auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
2317    llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
2318        CGM.getModule(), InitFunc->getType(), /*isConstant=*/true,
2319        llvm::GlobalVariable::InternalLinkage, InitFunc,
2320        Twine(InitFunc->getName(), "$initializer$"));
2321    InitFuncPtr->setSection(".CRT$XDU");
2322    // This variable has discardable linkage, we have to add it to @llvm.used to
2323    // ensure it won't get discarded.
2324    CGM.addUsedGlobal(InitFuncPtr);
2325    return InitFuncPtr;
2326  };
2327
2328  std::vector<llvm::Function *> NonComdatInits;
2329  for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
2330    llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(
2331        CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I])));
2332    llvm::Function *F = CXXThreadLocalInits[I];
2333
2334    // If the GV is already in a comdat group, then we have to join it.
2335    if (llvm::Comdat *C = GV->getComdat())
2336      AddToXDU(F)->setComdat(C);
2337    else
2338      NonComdatInits.push_back(F);
2339  }
2340
2341  if (!NonComdatInits.empty()) {
2342    llvm::FunctionType *FTy =
2343        llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
2344    llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction(
2345        FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(),
2346        SourceLocation(), /*TLS=*/true);
2347    CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
2348
2349    AddToXDU(InitFunc);
2350  }
2351}
2352
2353LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
2354                                                     const VarDecl *VD,
2355                                                     QualType LValType) {
2356  CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
2357  return LValue();
2358}
2359
2360static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) {
2361  StringRef VarName("_Init_thread_epoch");
2362  CharUnits Align = CGM.getIntAlign();
2363  if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
2364    return ConstantAddress(GV, Align);
2365  auto *GV = new llvm::GlobalVariable(
2366      CGM.getModule(), CGM.IntTy,
2367      /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage,
2368      /*Initializer=*/nullptr, VarName,
2369      /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
2370  GV->setAlignment(Align.getAsAlign());
2371  return ConstantAddress(GV, Align);
2372}
2373
2374static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) {
2375  llvm::FunctionType *FTy =
2376      llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2377                              CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2378  return CGM.CreateRuntimeFunction(
2379      FTy, "_Init_thread_header",
2380      llvm::AttributeList::get(CGM.getLLVMContext(),
2381                               llvm::AttributeList::FunctionIndex,
2382                               llvm::Attribute::NoUnwind),
2383      /*Local=*/true);
2384}
2385
2386static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) {
2387  llvm::FunctionType *FTy =
2388      llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2389                              CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2390  return CGM.CreateRuntimeFunction(
2391      FTy, "_Init_thread_footer",
2392      llvm::AttributeList::get(CGM.getLLVMContext(),
2393                               llvm::AttributeList::FunctionIndex,
2394                               llvm::Attribute::NoUnwind),
2395      /*Local=*/true);
2396}
2397
2398static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) {
2399  llvm::FunctionType *FTy =
2400      llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2401                              CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2402  return CGM.CreateRuntimeFunction(
2403      FTy, "_Init_thread_abort",
2404      llvm::AttributeList::get(CGM.getLLVMContext(),
2405                               llvm::AttributeList::FunctionIndex,
2406                               llvm::Attribute::NoUnwind),
2407      /*Local=*/true);
2408}
2409
2410namespace {
2411struct ResetGuardBit final : EHScopeStack::Cleanup {
2412  Address Guard;
2413  unsigned GuardNum;
2414  ResetGuardBit(Address Guard, unsigned GuardNum)
2415      : Guard(Guard), GuardNum(GuardNum) {}
2416
2417  void Emit(CodeGenFunction &CGF, Flags flags) override {
2418    // Reset the bit in the mask so that the static variable may be
2419    // reinitialized.
2420    CGBuilderTy &Builder = CGF.Builder;
2421    llvm::LoadInst *LI = Builder.CreateLoad(Guard);
2422    llvm::ConstantInt *Mask =
2423        llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum));
2424    Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
2425  }
2426};
2427
2428struct CallInitThreadAbort final : EHScopeStack::Cleanup {
2429  llvm::Value *Guard;
2430  CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {}
2431
2432  void Emit(CodeGenFunction &CGF, Flags flags) override {
2433    // Calling _Init_thread_abort will reset the guard's state.
2434    CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
2435  }
2436};
2437}
2438
2439void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
2440                                      llvm::GlobalVariable *GV,
2441                                      bool PerformInit) {
2442  // MSVC only uses guards for static locals.
2443  if (!D.isStaticLocal()) {
2444    assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
2445    // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
2446    llvm::Function *F = CGF.CurFn;
2447    F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
2448    F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
2449    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2450    return;
2451  }
2452
2453  bool ThreadlocalStatic = D.getTLSKind();
2454  bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;
2455
2456  // Thread-safe static variables which aren't thread-specific have a
2457  // per-variable guard.
2458  bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;
2459
2460  CGBuilderTy &Builder = CGF.Builder;
2461  llvm::IntegerType *GuardTy = CGF.Int32Ty;
2462  llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
2463  CharUnits GuardAlign = CharUnits::fromQuantity(4);
2464
2465  // Get the guard variable for this function if we have one already.
2466  GuardInfo *GI = nullptr;
2467  if (ThreadlocalStatic)
2468    GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
2469  else if (!ThreadsafeStatic)
2470    GI = &GuardVariableMap[D.getDeclContext()];
2471
2472  llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
2473  unsigned GuardNum;
2474  if (D.isExternallyVisible()) {
2475    // Externally visible variables have to be numbered in Sema to properly
2476    // handle unreachable VarDecls.
2477    GuardNum = getContext().getStaticLocalNumber(&D);
2478    assert(GuardNum > 0);
2479    GuardNum--;
2480  } else if (HasPerVariableGuard) {
2481    GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
2482  } else {
2483    // Non-externally visible variables are numbered here in CodeGen.
2484    GuardNum = GI->BitIndex++;
2485  }
2486
2487  if (!HasPerVariableGuard && GuardNum >= 32) {
2488    if (D.isExternallyVisible())
2489      ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
2490    GuardNum %= 32;
2491    GuardVar = nullptr;
2492  }
2493
2494  if (!GuardVar) {
2495    // Mangle the name for the guard.
2496    SmallString<256> GuardName;
2497    {
2498      llvm::raw_svector_ostream Out(GuardName);
2499      if (HasPerVariableGuard)
2500        getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
2501                                                               Out);
2502      else
2503        getMangleContext().mangleStaticGuardVariable(&D, Out);
2504    }
2505
2506    // Create the guard variable with a zero-initializer. Just absorb linkage,
2507    // visibility and dll storage class from the guarded variable.
2508    GuardVar =
2509        new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
2510                                 GV->getLinkage(), Zero, GuardName.str());
2511    GuardVar->setVisibility(GV->getVisibility());
2512    GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
2513    GuardVar->setAlignment(GuardAlign.getAsAlign());
2514    if (GuardVar->isWeakForLinker())
2515      GuardVar->setComdat(
2516          CGM.getModule().getOrInsertComdat(GuardVar->getName()));
2517    if (D.getTLSKind())
2518      GuardVar->setThreadLocal(true);
2519    if (GI && !HasPerVariableGuard)
2520      GI->Guard = GuardVar;
2521  }
2522
2523  ConstantAddress GuardAddr(GuardVar, GuardAlign);
2524
2525  assert(GuardVar->getLinkage() == GV->getLinkage() &&
2526         "static local from the same function had different linkage");
2527
2528  if (!HasPerVariableGuard) {
2529    // Pseudo code for the test:
2530    // if (!(GuardVar & MyGuardBit)) {
2531    //   GuardVar |= MyGuardBit;
2532    //   ... initialize the object ...;
2533    // }
2534
2535    // Test our bit from the guard variable.
2536    llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum);
2537    llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr);
2538    llvm::Value *NeedsInit =
2539        Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero);
2540    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2541    llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2542    CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock,
2543                                 CodeGenFunction::GuardKind::VariableGuard, &D);
2544
2545    // Set our bit in the guard variable and emit the initializer and add a global
2546    // destructor if appropriate.
2547    CGF.EmitBlock(InitBlock);
2548    Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr);
2549    CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum);
2550    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2551    CGF.PopCleanupBlock();
2552    Builder.CreateBr(EndBlock);
2553
2554    // Continue.
2555    CGF.EmitBlock(EndBlock);
2556  } else {
2557    // Pseudo code for the test:
2558    // if (TSS > _Init_thread_epoch) {
2559    //   _Init_thread_header(&TSS);
2560    //   if (TSS == -1) {
2561    //     ... initialize the object ...;
2562    //     _Init_thread_footer(&TSS);
2563    //   }
2564    // }
2565    //
2566    // The algorithm is almost identical to what can be found in the appendix
2567    // found in N2325.
2568
2569    // This BasicBLock determines whether or not we have any work to do.
2570    llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr);
2571    FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2572    llvm::LoadInst *InitThreadEpoch =
2573        Builder.CreateLoad(getInitThreadEpochPtr(CGM));
2574    llvm::Value *IsUninitialized =
2575        Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
2576    llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
2577    llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2578    CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock,
2579                                 CodeGenFunction::GuardKind::VariableGuard, &D);
2580
2581    // This BasicBlock attempts to determine whether or not this thread is
2582    // responsible for doing the initialization.
2583    CGF.EmitBlock(AttemptInitBlock);
2584    CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM),
2585                                GuardAddr.getPointer());
2586    llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr);
2587    SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2588    llvm::Value *ShouldDoInit =
2589        Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
2590    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2591    Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);
2592
2593    // Ok, we ended up getting selected as the initializing thread.
2594    CGF.EmitBlock(InitBlock);
2595    CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr);
2596    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2597    CGF.PopCleanupBlock();
2598    CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM),
2599                                GuardAddr.getPointer());
2600    Builder.CreateBr(EndBlock);
2601
2602    CGF.EmitBlock(EndBlock);
2603  }
2604}
2605
2606bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
2607  // Null-ness for function memptrs only depends on the first field, which is
2608  // the function pointer.  The rest don't matter, so we can zero initialize.
2609  if (MPT->isMemberFunctionPointer())
2610    return true;
2611
2612  // The virtual base adjustment field is always -1 for null, so if we have one
2613  // we can't zero initialize.  The field offset is sometimes also -1 if 0 is a
2614  // valid field offset.
2615  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2616  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2617  return (!inheritanceModelHasVBTableOffsetField(Inheritance) &&
2618          RD->nullFieldOffsetIsZero());
2619}
2620
2621llvm::Type *
2622MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
2623  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2624  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2625  llvm::SmallVector<llvm::Type *, 4> fields;
2626  if (MPT->isMemberFunctionPointer())
2627    fields.push_back(CGM.VoidPtrTy);  // FunctionPointerOrVirtualThunk
2628  else
2629    fields.push_back(CGM.IntTy);  // FieldOffset
2630
2631  if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
2632                                       Inheritance))
2633    fields.push_back(CGM.IntTy);
2634  if (inheritanceModelHasVBPtrOffsetField(Inheritance))
2635    fields.push_back(CGM.IntTy);
2636  if (inheritanceModelHasVBTableOffsetField(Inheritance))
2637    fields.push_back(CGM.IntTy);  // VirtualBaseAdjustmentOffset
2638
2639  if (fields.size() == 1)
2640    return fields[0];
2641  return llvm::StructType::get(CGM.getLLVMContext(), fields);
2642}
2643
2644void MicrosoftCXXABI::
2645GetNullMemberPointerFields(const MemberPointerType *MPT,
2646                           llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2647  assert(fields.empty());
2648  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2649  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2650  if (MPT->isMemberFunctionPointer()) {
2651    // FunctionPointerOrVirtualThunk
2652    fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2653  } else {
2654    if (RD->nullFieldOffsetIsZero())
2655      fields.push_back(getZeroInt());  // FieldOffset
2656    else
2657      fields.push_back(getAllOnesInt());  // FieldOffset
2658  }
2659
2660  if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
2661                                       Inheritance))
2662    fields.push_back(getZeroInt());
2663  if (inheritanceModelHasVBPtrOffsetField(Inheritance))
2664    fields.push_back(getZeroInt());
2665  if (inheritanceModelHasVBTableOffsetField(Inheritance))
2666    fields.push_back(getAllOnesInt());
2667}
2668
2669llvm::Constant *
2670MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2671  llvm::SmallVector<llvm::Constant *, 4> fields;
2672  GetNullMemberPointerFields(MPT, fields);
2673  if (fields.size() == 1)
2674    return fields[0];
2675  llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2676  assert(Res->getType() == ConvertMemberPointerType(MPT));
2677  return Res;
2678}
2679
2680llvm::Constant *
2681MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2682                                       bool IsMemberFunction,
2683                                       const CXXRecordDecl *RD,
2684                                       CharUnits NonVirtualBaseAdjustment,
2685                                       unsigned VBTableIndex) {
2686  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2687
2688  // Single inheritance class member pointer are represented as scalars instead
2689  // of aggregates.
2690  if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance))
2691    return FirstField;
2692
2693  llvm::SmallVector<llvm::Constant *, 4> fields;
2694  fields.push_back(FirstField);
2695
2696  if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance))
2697    fields.push_back(llvm::ConstantInt::get(
2698      CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2699
2700  if (inheritanceModelHasVBPtrOffsetField(Inheritance)) {
2701    CharUnits Offs = CharUnits::Zero();
2702    if (VBTableIndex)
2703      Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2704    fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2705  }
2706
2707  // The rest of the fields are adjusted by conversions to a more derived class.
2708  if (inheritanceModelHasVBTableOffsetField(Inheritance))
2709    fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));
2710
2711  return llvm::ConstantStruct::getAnon(fields);
2712}
2713
2714llvm::Constant *
2715MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2716                                       CharUnits offset) {
2717  return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset);
2718}
2719
2720llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD,
2721                                                       CharUnits offset) {
2722  if (RD->getMSInheritanceModel() ==
2723      MSInheritanceModel::Virtual)
2724    offset -= getContext().getOffsetOfBaseWithVBPtr(RD);
2725  llvm::Constant *FirstField =
2726    llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2727  return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2728                               CharUnits::Zero(), /*VBTableIndex=*/0);
2729}
2730
2731llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2732                                                   QualType MPType) {
2733  const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>();
2734  const ValueDecl *MPD = MP.getMemberPointerDecl();
2735  if (!MPD)
2736    return EmitNullMemberPointer(DstTy);
2737
2738  ASTContext &Ctx = getContext();
2739  ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath();
2740
2741  llvm::Constant *C;
2742  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) {
2743    C = EmitMemberFunctionPointer(MD);
2744  } else {
2745    // For a pointer to data member, start off with the offset of the field in
2746    // the class in which it was declared, and convert from there if necessary.
2747    // For indirect field decls, get the outermost anonymous field and use the
2748    // parent class.
2749    CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD));
2750    const FieldDecl *FD = dyn_cast<FieldDecl>(MPD);
2751    if (!FD)
2752      FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin());
2753    const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent());
2754    RD = RD->getMostRecentNonInjectedDecl();
2755    C = EmitMemberDataPointer(RD, FieldOffset);
2756  }
2757
2758  if (!MemberPointerPath.empty()) {
2759    const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext());
2760    const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr();
2761    const MemberPointerType *SrcTy =
2762        Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy)
2763            ->castAs<MemberPointerType>();
2764
2765    bool DerivedMember = MP.isMemberPointerToDerivedMember();
2766    SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath;
2767    const CXXRecordDecl *PrevRD = SrcRD;
2768    for (const CXXRecordDecl *PathElem : MemberPointerPath) {
2769      const CXXRecordDecl *Base = nullptr;
2770      const CXXRecordDecl *Derived = nullptr;
2771      if (DerivedMember) {
2772        Base = PathElem;
2773        Derived = PrevRD;
2774      } else {
2775        Base = PrevRD;
2776        Derived = PathElem;
2777      }
2778      for (const CXXBaseSpecifier &BS : Derived->bases())
2779        if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() ==
2780            Base->getCanonicalDecl())
2781          DerivedToBasePath.push_back(&BS);
2782      PrevRD = PathElem;
2783    }
2784    assert(DerivedToBasePath.size() == MemberPointerPath.size());
2785
2786    CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer
2787                                : CK_BaseToDerivedMemberPointer;
2788    C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(),
2789                                    DerivedToBasePath.end(), C);
2790  }
2791  return C;
2792}
2793
2794llvm::Constant *
2795MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
2796  assert(MD->isInstance() && "Member function must not be static!");
2797
2798  CharUnits NonVirtualBaseAdjustment = CharUnits::Zero();
2799  const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl();
2800  CodeGenTypes &Types = CGM.getTypes();
2801
2802  unsigned VBTableIndex = 0;
2803  llvm::Constant *FirstField;
2804  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2805  if (!MD->isVirtual()) {
2806    llvm::Type *Ty;
2807    // Check whether the function has a computable LLVM signature.
2808    if (Types.isFuncTypeConvertible(FPT)) {
2809      // The function has a computable LLVM signature; use the correct type.
2810      Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2811    } else {
2812      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2813      // function type is incomplete.
2814      Ty = CGM.PtrDiffTy;
2815    }
2816    FirstField = CGM.GetAddrOfFunction(MD, Ty);
2817  } else {
2818    auto &VTableContext = CGM.getMicrosoftVTableContext();
2819    MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD);
2820    FirstField = EmitVirtualMemPtrThunk(MD, ML);
2821    // Include the vfptr adjustment if the method is in a non-primary vftable.
2822    NonVirtualBaseAdjustment += ML.VFPtrOffset;
2823    if (ML.VBase)
2824      VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
2825  }
2826
2827  if (VBTableIndex == 0 &&
2828      RD->getMSInheritanceModel() ==
2829          MSInheritanceModel::Virtual)
2830    NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD);
2831
2832  // The rest of the fields are common with data member pointers.
2833  FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
2834  return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
2835                               NonVirtualBaseAdjustment, VBTableIndex);
2836}
2837
2838/// Member pointers are the same if they're either bitwise identical *or* both
2839/// null.  Null-ness for function members is determined by the first field,
2840/// while for data member pointers we must compare all fields.
2841llvm::Value *
2842MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
2843                                             llvm::Value *L,
2844                                             llvm::Value *R,
2845                                             const MemberPointerType *MPT,
2846                                             bool Inequality) {
2847  CGBuilderTy &Builder = CGF.Builder;
2848
2849  // Handle != comparisons by switching the sense of all boolean operations.
2850  llvm::ICmpInst::Predicate Eq;
2851  llvm::Instruction::BinaryOps And, Or;
2852  if (Inequality) {
2853    Eq = llvm::ICmpInst::ICMP_NE;
2854    And = llvm::Instruction::Or;
2855    Or = llvm::Instruction::And;
2856  } else {
2857    Eq = llvm::ICmpInst::ICMP_EQ;
2858    And = llvm::Instruction::And;
2859    Or = llvm::Instruction::Or;
2860  }
2861
2862  // If this is a single field member pointer (single inheritance), this is a
2863  // single icmp.
2864  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2865  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2866  if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(),
2867                                      Inheritance))
2868    return Builder.CreateICmp(Eq, L, R);
2869
2870  // Compare the first field.
2871  llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
2872  llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
2873  llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
2874
2875  // Compare everything other than the first field.
2876  llvm::Value *Res = nullptr;
2877  llvm::StructType *LType = cast<llvm::StructType>(L->getType());
2878  for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
2879    llvm::Value *LF = Builder.CreateExtractValue(L, I);
2880    llvm::Value *RF = Builder.CreateExtractValue(R, I);
2881    llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
2882    if (Res)
2883      Res = Builder.CreateBinOp(And, Res, Cmp);
2884    else
2885      Res = Cmp;
2886  }
2887
2888  // Check if the first field is 0 if this is a function pointer.
2889  if (MPT->isMemberFunctionPointer()) {
2890    // (l1 == r1 && ...) || l0 == 0
2891    llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
2892    llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
2893    Res = Builder.CreateBinOp(Or, Res, IsZero);
2894  }
2895
2896  // Combine the comparison of the first field, which must always be true for
2897  // this comparison to succeeed.
2898  return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
2899}
2900
2901llvm::Value *
2902MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
2903                                            llvm::Value *MemPtr,
2904                                            const MemberPointerType *MPT) {
2905  CGBuilderTy &Builder = CGF.Builder;
2906  llvm::SmallVector<llvm::Constant *, 4> fields;
2907  // We only need one field for member functions.
2908  if (MPT->isMemberFunctionPointer())
2909    fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2910  else
2911    GetNullMemberPointerFields(MPT, fields);
2912  assert(!fields.empty());
2913  llvm::Value *FirstField = MemPtr;
2914  if (MemPtr->getType()->isStructTy())
2915    FirstField = Builder.CreateExtractValue(MemPtr, 0);
2916  llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
2917
2918  // For function member pointers, we only need to test the function pointer
2919  // field.  The other fields if any can be garbage.
2920  if (MPT->isMemberFunctionPointer())
2921    return Res;
2922
2923  // Otherwise, emit a series of compares and combine the results.
2924  for (int I = 1, E = fields.size(); I < E; ++I) {
2925    llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
2926    llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
2927    Res = Builder.CreateOr(Res, Next, "memptr.tobool");
2928  }
2929  return Res;
2930}
2931
2932bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
2933                                                  llvm::Constant *Val) {
2934  // Function pointers are null if the pointer in the first field is null.
2935  if (MPT->isMemberFunctionPointer()) {
2936    llvm::Constant *FirstField = Val->getType()->isStructTy() ?
2937      Val->getAggregateElement(0U) : Val;
2938    return FirstField->isNullValue();
2939  }
2940
2941  // If it's not a function pointer and it's zero initializable, we can easily
2942  // check zero.
2943  if (isZeroInitializable(MPT) && Val->isNullValue())
2944    return true;
2945
2946  // Otherwise, break down all the fields for comparison.  Hopefully these
2947  // little Constants are reused, while a big null struct might not be.
2948  llvm::SmallVector<llvm::Constant *, 4> Fields;
2949  GetNullMemberPointerFields(MPT, Fields);
2950  if (Fields.size() == 1) {
2951    assert(Val->getType()->isIntegerTy());
2952    return Val == Fields[0];
2953  }
2954
2955  unsigned I, E;
2956  for (I = 0, E = Fields.size(); I != E; ++I) {
2957    if (Val->getAggregateElement(I) != Fields[I])
2958      break;
2959  }
2960  return I == E;
2961}
2962
2963llvm::Value *
2964MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
2965                                         Address This,
2966                                         llvm::Value *VBPtrOffset,
2967                                         llvm::Value *VBTableOffset,
2968                                         llvm::Value **VBPtrOut) {
2969  CGBuilderTy &Builder = CGF.Builder;
2970  // Load the vbtable pointer from the vbptr in the instance.
2971  This = Builder.CreateElementBitCast(This, CGM.Int8Ty);
2972  llvm::Value *VBPtr =
2973    Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr");
2974  if (VBPtrOut) *VBPtrOut = VBPtr;
2975  VBPtr = Builder.CreateBitCast(VBPtr,
2976            CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace()));
2977
2978  CharUnits VBPtrAlign;
2979  if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) {
2980    VBPtrAlign = This.getAlignment().alignmentAtOffset(
2981                                   CharUnits::fromQuantity(CI->getSExtValue()));
2982  } else {
2983    VBPtrAlign = CGF.getPointerAlign();
2984  }
2985
2986  llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable");
2987
2988  // Translate from byte offset to table index. It improves analyzability.
2989  llvm::Value *VBTableIndex = Builder.CreateAShr(
2990      VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
2991      "vbtindex", /*isExact=*/true);
2992
2993  // Load an i32 offset from the vb-table.
2994  llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
2995  VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
2996  return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4),
2997                                   "vbase_offs");
2998}
2999
3000// Returns an adjusted base cast to i8*, since we do more address arithmetic on
3001// it.
3002llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
3003    CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
3004    Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
3005  CGBuilderTy &Builder = CGF.Builder;
3006  Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty);
3007  llvm::BasicBlock *OriginalBB = nullptr;
3008  llvm::BasicBlock *SkipAdjustBB = nullptr;
3009  llvm::BasicBlock *VBaseAdjustBB = nullptr;
3010
3011  // In the unspecified inheritance model, there might not be a vbtable at all,
3012  // in which case we need to skip the virtual base lookup.  If there is a
3013  // vbtable, the first entry is a no-op entry that gives back the original
3014  // base, so look for a virtual base adjustment offset of zero.
3015  if (VBPtrOffset) {
3016    OriginalBB = Builder.GetInsertBlock();
3017    VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
3018    SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
3019    llvm::Value *IsVirtual =
3020      Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
3021                           "memptr.is_vbase");
3022    Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
3023    CGF.EmitBlock(VBaseAdjustBB);
3024  }
3025
3026  // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
3027  // know the vbptr offset.
3028  if (!VBPtrOffset) {
3029    CharUnits offs = CharUnits::Zero();
3030    if (!RD->hasDefinition()) {
3031      DiagnosticsEngine &Diags = CGF.CGM.getDiags();
3032      unsigned DiagID = Diags.getCustomDiagID(
3033          DiagnosticsEngine::Error,
3034          "member pointer representation requires a "
3035          "complete class type for %0 to perform this expression");
3036      Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
3037    } else if (RD->getNumVBases())
3038      offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
3039    VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
3040  }
3041  llvm::Value *VBPtr = nullptr;
3042  llvm::Value *VBaseOffs =
3043    GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
3044  llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
3045
3046  // Merge control flow with the case where we didn't have to adjust.
3047  if (VBaseAdjustBB) {
3048    Builder.CreateBr(SkipAdjustBB);
3049    CGF.EmitBlock(SkipAdjustBB);
3050    llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
3051    Phi->addIncoming(Base.getPointer(), OriginalBB);
3052    Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
3053    return Phi;
3054  }
3055  return AdjustedBase;
3056}
3057
3058llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
3059    CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
3060    const MemberPointerType *MPT) {
3061  assert(MPT->isMemberDataPointer());
3062  unsigned AS = Base.getAddressSpace();
3063  llvm::Type *PType =
3064      CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
3065  CGBuilderTy &Builder = CGF.Builder;
3066  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3067  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3068
3069  // Extract the fields we need, regardless of model.  We'll apply them if we
3070  // have them.
3071  llvm::Value *FieldOffset = MemPtr;
3072  llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3073  llvm::Value *VBPtrOffset = nullptr;
3074  if (MemPtr->getType()->isStructTy()) {
3075    // We need to extract values.
3076    unsigned I = 0;
3077    FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
3078    if (inheritanceModelHasVBPtrOffsetField(Inheritance))
3079      VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3080    if (inheritanceModelHasVBTableOffsetField(Inheritance))
3081      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3082  }
3083
3084  llvm::Value *Addr;
3085  if (VirtualBaseAdjustmentOffset) {
3086    Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
3087                             VBPtrOffset);
3088  } else {
3089    Addr = Base.getPointer();
3090  }
3091
3092  // Cast to char*.
3093  Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS));
3094
3095  // Apply the offset, which we assume is non-null.
3096  Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset");
3097
3098  // Cast the address to the appropriate pointer type, adopting the address
3099  // space of the base pointer.
3100  return Builder.CreateBitCast(Addr, PType);
3101}
3102
3103llvm::Value *
3104MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
3105                                             const CastExpr *E,
3106                                             llvm::Value *Src) {
3107  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
3108         E->getCastKind() == CK_BaseToDerivedMemberPointer ||
3109         E->getCastKind() == CK_ReinterpretMemberPointer);
3110
3111  // Use constant emission if we can.
3112  if (isa<llvm::Constant>(Src))
3113    return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
3114
3115  // We may be adding or dropping fields from the member pointer, so we need
3116  // both types and the inheritance models of both records.
3117  const MemberPointerType *SrcTy =
3118    E->getSubExpr()->getType()->castAs<MemberPointerType>();
3119  const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3120  bool IsFunc = SrcTy->isMemberFunctionPointer();
3121
3122  // If the classes use the same null representation, reinterpret_cast is a nop.
3123  bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
3124  if (IsReinterpret && IsFunc)
3125    return Src;
3126
3127  CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3128  CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3129  if (IsReinterpret &&
3130      SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
3131    return Src;
3132
3133  CGBuilderTy &Builder = CGF.Builder;
3134
3135  // Branch past the conversion if Src is null.
3136  llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
3137  llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
3138
3139  // C++ 5.2.10p9: The null member pointer value is converted to the null member
3140  //   pointer value of the destination type.
3141  if (IsReinterpret) {
3142    // For reinterpret casts, sema ensures that src and dst are both functions
3143    // or data and have the same size, which means the LLVM types should match.
3144    assert(Src->getType() == DstNull->getType());
3145    return Builder.CreateSelect(IsNotNull, Src, DstNull);
3146  }
3147
3148  llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
3149  llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
3150  llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
3151  Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
3152  CGF.EmitBlock(ConvertBB);
3153
3154  llvm::Value *Dst = EmitNonNullMemberPointerConversion(
3155      SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src,
3156      Builder);
3157
3158  Builder.CreateBr(ContinueBB);
3159
3160  // In the continuation, choose between DstNull and Dst.
3161  CGF.EmitBlock(ContinueBB);
3162  llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
3163  Phi->addIncoming(DstNull, OriginalBB);
3164  Phi->addIncoming(Dst, ConvertBB);
3165  return Phi;
3166}
3167
3168llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion(
3169    const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3170    CastExpr::path_const_iterator PathBegin,
3171    CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
3172    CGBuilderTy &Builder) {
3173  const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3174  const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3175  MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel();
3176  MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel();
3177  bool IsFunc = SrcTy->isMemberFunctionPointer();
3178  bool IsConstant = isa<llvm::Constant>(Src);
3179
3180  // Decompose src.
3181  llvm::Value *FirstField = Src;
3182  llvm::Value *NonVirtualBaseAdjustment = getZeroInt();
3183  llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt();
3184  llvm::Value *VBPtrOffset = getZeroInt();
3185  if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) {
3186    // We need to extract values.
3187    unsigned I = 0;
3188    FirstField = Builder.CreateExtractValue(Src, I++);
3189    if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance))
3190      NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
3191    if (inheritanceModelHasVBPtrOffsetField(SrcInheritance))
3192      VBPtrOffset = Builder.CreateExtractValue(Src, I++);
3193    if (inheritanceModelHasVBTableOffsetField(SrcInheritance))
3194      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
3195  }
3196
3197  bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer);
3198  const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy;
3199  const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl();
3200
3201  // For data pointers, we adjust the field offset directly.  For functions, we
3202  // have a separate field.
3203  llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
3204
3205  // The virtual inheritance model has a quirk: the virtual base table is always
3206  // referenced when dereferencing a member pointer even if the member pointer
3207  // is non-virtual.  This is accounted for by adjusting the non-virtual offset
3208  // to point backwards to the top of the MDC from the first VBase.  Undo this
3209  // adjustment to normalize the member pointer.
3210  llvm::Value *SrcVBIndexEqZero =
3211      Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3212  if (SrcInheritance == MSInheritanceModel::Virtual) {
3213    if (int64_t SrcOffsetToFirstVBase =
3214            getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) {
3215      llvm::Value *UndoSrcAdjustment = Builder.CreateSelect(
3216          SrcVBIndexEqZero,
3217          llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase),
3218          getZeroInt());
3219      NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment);
3220    }
3221  }
3222
3223  // A non-zero vbindex implies that we are dealing with a source member in a
3224  // floating virtual base in addition to some non-virtual offset.  If the
3225  // vbindex is zero, we are dealing with a source that exists in a non-virtual,
3226  // fixed, base.  The difference between these two cases is that the vbindex +
3227  // nvoffset *always* point to the member regardless of what context they are
3228  // evaluated in so long as the vbindex is adjusted.  A member inside a fixed
3229  // base requires explicit nv adjustment.
3230  llvm::Constant *BaseClassOffset = llvm::ConstantInt::get(
3231      CGM.IntTy,
3232      CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd)
3233          .getQuantity());
3234
3235  llvm::Value *NVDisp;
3236  if (IsDerivedToBase)
3237    NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj");
3238  else
3239    NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj");
3240
3241  NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt());
3242
3243  // Update the vbindex to an appropriate value in the destination because
3244  // SrcRD's vbtable might not be a strict prefix of the one in DstRD.
3245  llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero;
3246  if (inheritanceModelHasVBTableOffsetField(DstInheritance) &&
3247      inheritanceModelHasVBTableOffsetField(SrcInheritance)) {
3248    if (llvm::GlobalVariable *VDispMap =
3249            getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) {
3250      llvm::Value *VBIndex = Builder.CreateExactUDiv(
3251          VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4));
3252      if (IsConstant) {
3253        llvm::Constant *Mapping = VDispMap->getInitializer();
3254        VirtualBaseAdjustmentOffset =
3255            Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex));
3256      } else {
3257        llvm::Value *Idxs[] = {getZeroInt(), VBIndex};
3258        VirtualBaseAdjustmentOffset =
3259            Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs),
3260                                      CharUnits::fromQuantity(4));
3261      }
3262
3263      DstVBIndexEqZero =
3264          Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3265    }
3266  }
3267
3268  // Set the VBPtrOffset to zero if the vbindex is zero.  Otherwise, initialize
3269  // it to the offset of the vbptr.
3270  if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) {
3271    llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get(
3272        CGM.IntTy,
3273        getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity());
3274    VBPtrOffset =
3275        Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset);
3276  }
3277
3278  // Likewise, apply a similar adjustment so that dereferencing the member
3279  // pointer correctly accounts for the distance between the start of the first
3280  // virtual base and the top of the MDC.
3281  if (DstInheritance == MSInheritanceModel::Virtual) {
3282    if (int64_t DstOffsetToFirstVBase =
3283            getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) {
3284      llvm::Value *DoDstAdjustment = Builder.CreateSelect(
3285          DstVBIndexEqZero,
3286          llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase),
3287          getZeroInt());
3288      NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment);
3289    }
3290  }
3291
3292  // Recompose dst from the null struct and the adjusted fields from src.
3293  llvm::Value *Dst;
3294  if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) {
3295    Dst = FirstField;
3296  } else {
3297    Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy));
3298    unsigned Idx = 0;
3299    Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
3300    if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance))
3301      Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++);
3302    if (inheritanceModelHasVBPtrOffsetField(DstInheritance))
3303      Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++);
3304    if (inheritanceModelHasVBTableOffsetField(DstInheritance))
3305      Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++);
3306  }
3307  return Dst;
3308}
3309
3310llvm::Constant *
3311MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
3312                                             llvm::Constant *Src) {
3313  const MemberPointerType *SrcTy =
3314      E->getSubExpr()->getType()->castAs<MemberPointerType>();
3315  const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3316
3317  CastKind CK = E->getCastKind();
3318
3319  return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(),
3320                                     E->path_end(), Src);
3321}
3322
3323llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion(
3324    const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3325    CastExpr::path_const_iterator PathBegin,
3326    CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) {
3327  assert(CK == CK_DerivedToBaseMemberPointer ||
3328         CK == CK_BaseToDerivedMemberPointer ||
3329         CK == CK_ReinterpretMemberPointer);
3330  // If src is null, emit a new null for dst.  We can't return src because dst
3331  // might have a new representation.
3332  if (MemberPointerConstantIsNull(SrcTy, Src))
3333    return EmitNullMemberPointer(DstTy);
3334
3335  // We don't need to do anything for reinterpret_casts of non-null member
3336  // pointers.  We should only get here when the two type representations have
3337  // the same size.
3338  if (CK == CK_ReinterpretMemberPointer)
3339    return Src;
3340
3341  CGBuilderTy Builder(CGM, CGM.getLLVMContext());
3342  auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion(
3343      SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder));
3344
3345  return Dst;
3346}
3347
3348CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
3349    CodeGenFunction &CGF, const Expr *E, Address This,
3350    llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr,
3351    const MemberPointerType *MPT) {
3352  assert(MPT->isMemberFunctionPointer());
3353  const FunctionProtoType *FPT =
3354    MPT->getPointeeType()->castAs<FunctionProtoType>();
3355  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3356  llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(
3357      CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr));
3358  CGBuilderTy &Builder = CGF.Builder;
3359
3360  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3361
3362  // Extract the fields we need, regardless of model.  We'll apply them if we
3363  // have them.
3364  llvm::Value *FunctionPointer = MemPtr;
3365  llvm::Value *NonVirtualBaseAdjustment = nullptr;
3366  llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3367  llvm::Value *VBPtrOffset = nullptr;
3368  if (MemPtr->getType()->isStructTy()) {
3369    // We need to extract values.
3370    unsigned I = 0;
3371    FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
3372    if (inheritanceModelHasNVOffsetField(MPT, Inheritance))
3373      NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
3374    if (inheritanceModelHasVBPtrOffsetField(Inheritance))
3375      VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3376    if (inheritanceModelHasVBTableOffsetField(Inheritance))
3377      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3378  }
3379
3380  if (VirtualBaseAdjustmentOffset) {
3381    ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This,
3382                                   VirtualBaseAdjustmentOffset, VBPtrOffset);
3383  } else {
3384    ThisPtrForCall = This.getPointer();
3385  }
3386
3387  if (NonVirtualBaseAdjustment) {
3388    // Apply the adjustment and cast back to the original struct type.
3389    llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy);
3390    Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
3391    ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(),
3392                                           "this.adjusted");
3393  }
3394
3395  FunctionPointer =
3396    Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
3397  CGCallee Callee(FPT, FunctionPointer);
3398  return Callee;
3399}
3400
3401CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
3402  return new MicrosoftCXXABI(CGM);
3403}
3404
3405// MS RTTI Overview:
3406// The run time type information emitted by cl.exe contains 5 distinct types of
3407// structures.  Many of them reference each other.
3408//
3409// TypeInfo:  Static classes that are returned by typeid.
3410//
3411// CompleteObjectLocator:  Referenced by vftables.  They contain information
3412//   required for dynamic casting, including OffsetFromTop.  They also contain
3413//   a reference to the TypeInfo for the type and a reference to the
3414//   CompleteHierarchyDescriptor for the type.
3415//
3416// ClassHierarchyDescriptor: Contains information about a class hierarchy.
3417//   Used during dynamic_cast to walk a class hierarchy.  References a base
3418//   class array and the size of said array.
3419//
3420// BaseClassArray: Contains a list of classes in a hierarchy.  BaseClassArray is
3421//   somewhat of a misnomer because the most derived class is also in the list
3422//   as well as multiple copies of virtual bases (if they occur multiple times
3423//   in the hierarchy.)  The BaseClassArray contains one BaseClassDescriptor for
3424//   every path in the hierarchy, in pre-order depth first order.  Note, we do
3425//   not declare a specific llvm type for BaseClassArray, it's merely an array
3426//   of BaseClassDescriptor pointers.
3427//
3428// BaseClassDescriptor: Contains information about a class in a class hierarchy.
3429//   BaseClassDescriptor is also somewhat of a misnomer for the same reason that
3430//   BaseClassArray is.  It contains information about a class within a
3431//   hierarchy such as: is this base is ambiguous and what is its offset in the
3432//   vbtable.  The names of the BaseClassDescriptors have all of their fields
3433//   mangled into them so they can be aggressively deduplicated by the linker.
3434
3435static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
3436  StringRef MangledName("??_7type_info@@6B@");
3437  if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
3438    return VTable;
3439  return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
3440                                  /*isConstant=*/true,
3441                                  llvm::GlobalVariable::ExternalLinkage,
3442                                  /*Initializer=*/nullptr, MangledName);
3443}
3444
3445namespace {
3446
3447/// A Helper struct that stores information about a class in a class
3448/// hierarchy.  The information stored in these structs struct is used during
3449/// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
3450// During RTTI creation, MSRTTIClasses are stored in a contiguous array with
3451// implicit depth first pre-order tree connectivity.  getFirstChild and
3452// getNextSibling allow us to walk the tree efficiently.
3453struct MSRTTIClass {
3454  enum {
3455    IsPrivateOnPath = 1 | 8,
3456    IsAmbiguous = 2,
3457    IsPrivate = 4,
3458    IsVirtual = 16,
3459    HasHierarchyDescriptor = 64
3460  };
3461  MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
3462  uint32_t initialize(const MSRTTIClass *Parent,
3463                      const CXXBaseSpecifier *Specifier);
3464
3465  MSRTTIClass *getFirstChild() { return this + 1; }
3466  static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
3467    return Child + 1 + Child->NumBases;
3468  }
3469
3470  const CXXRecordDecl *RD, *VirtualRoot;
3471  uint32_t Flags, NumBases, OffsetInVBase;
3472};
3473
3474/// Recursively initialize the base class array.
3475uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
3476                                 const CXXBaseSpecifier *Specifier) {
3477  Flags = HasHierarchyDescriptor;
3478  if (!Parent) {
3479    VirtualRoot = nullptr;
3480    OffsetInVBase = 0;
3481  } else {
3482    if (Specifier->getAccessSpecifier() != AS_public)
3483      Flags |= IsPrivate | IsPrivateOnPath;
3484    if (Specifier->isVirtual()) {
3485      Flags |= IsVirtual;
3486      VirtualRoot = RD;
3487      OffsetInVBase = 0;
3488    } else {
3489      if (Parent->Flags & IsPrivateOnPath)
3490        Flags |= IsPrivateOnPath;
3491      VirtualRoot = Parent->VirtualRoot;
3492      OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
3493          .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
3494    }
3495  }
3496  NumBases = 0;
3497  MSRTTIClass *Child = getFirstChild();
3498  for (const CXXBaseSpecifier &Base : RD->bases()) {
3499    NumBases += Child->initialize(this, &Base) + 1;
3500    Child = getNextChild(Child);
3501  }
3502  return NumBases;
3503}
3504
3505static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
3506  switch (Ty->getLinkage()) {
3507  case NoLinkage:
3508  case InternalLinkage:
3509  case UniqueExternalLinkage:
3510    return llvm::GlobalValue::InternalLinkage;
3511
3512  case VisibleNoLinkage:
3513  case ModuleInternalLinkage:
3514  case ModuleLinkage:
3515  case ExternalLinkage:
3516    return llvm::GlobalValue::LinkOnceODRLinkage;
3517  }
3518  llvm_unreachable("Invalid linkage!");
3519}
3520
3521/// An ephemeral helper class for building MS RTTI types.  It caches some
3522/// calls to the module and information about the most derived class in a
3523/// hierarchy.
3524struct MSRTTIBuilder {
3525  enum {
3526    HasBranchingHierarchy = 1,
3527    HasVirtualBranchingHierarchy = 2,
3528    HasAmbiguousBases = 4
3529  };
3530
3531  MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
3532      : CGM(ABI.CGM), Context(CGM.getContext()),
3533        VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
3534        Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
3535        ABI(ABI) {}
3536
3537  llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
3538  llvm::GlobalVariable *
3539  getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
3540  llvm::GlobalVariable *getClassHierarchyDescriptor();
3541  llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info);
3542
3543  CodeGenModule &CGM;
3544  ASTContext &Context;
3545  llvm::LLVMContext &VMContext;
3546  llvm::Module &Module;
3547  const CXXRecordDecl *RD;
3548  llvm::GlobalVariable::LinkageTypes Linkage;
3549  MicrosoftCXXABI &ABI;
3550};
3551
3552} // namespace
3553
3554/// Recursively serializes a class hierarchy in pre-order depth first
3555/// order.
3556static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
3557                                    const CXXRecordDecl *RD) {
3558  Classes.push_back(MSRTTIClass(RD));
3559  for (const CXXBaseSpecifier &Base : RD->bases())
3560    serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
3561}
3562
3563/// Find ambiguity among base classes.
3564static void
3565detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
3566  llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
3567  llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
3568  llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
3569  for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
3570    if ((Class->Flags & MSRTTIClass::IsVirtual) &&
3571        !VirtualBases.insert(Class->RD).second) {
3572      Class = MSRTTIClass::getNextChild(Class);
3573      continue;
3574    }
3575    if (!UniqueBases.insert(Class->RD).second)
3576      AmbiguousBases.insert(Class->RD);
3577    Class++;
3578  }
3579  if (AmbiguousBases.empty())
3580    return;
3581  for (MSRTTIClass &Class : Classes)
3582    if (AmbiguousBases.count(Class.RD))
3583      Class.Flags |= MSRTTIClass::IsAmbiguous;
3584}
3585
3586llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
3587  SmallString<256> MangledName;
3588  {
3589    llvm::raw_svector_ostream Out(MangledName);
3590    ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
3591  }
3592
3593  // Check to see if we've already declared this ClassHierarchyDescriptor.
3594  if (auto CHD = Module.getNamedGlobal(MangledName))
3595    return CHD;
3596
3597  // Serialize the class hierarchy and initialize the CHD Fields.
3598  SmallVector<MSRTTIClass, 8> Classes;
3599  serializeClassHierarchy(Classes, RD);
3600  Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
3601  detectAmbiguousBases(Classes);
3602  int Flags = 0;
3603  for (auto Class : Classes) {
3604    if (Class.RD->getNumBases() > 1)
3605      Flags |= HasBranchingHierarchy;
3606    // Note: cl.exe does not calculate "HasAmbiguousBases" correctly.  We
3607    // believe the field isn't actually used.
3608    if (Class.Flags & MSRTTIClass::IsAmbiguous)
3609      Flags |= HasAmbiguousBases;
3610  }
3611  if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
3612    Flags |= HasVirtualBranchingHierarchy;
3613  // These gep indices are used to get the address of the first element of the
3614  // base class array.
3615  llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
3616                               llvm::ConstantInt::get(CGM.IntTy, 0)};
3617
3618  // Forward-declare the class hierarchy descriptor
3619  auto Type = ABI.getClassHierarchyDescriptorType();
3620  auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3621                                      /*Initializer=*/nullptr,
3622                                      MangledName);
3623  if (CHD->isWeakForLinker())
3624    CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
3625
3626  auto *Bases = getBaseClassArray(Classes);
3627
3628  // Initialize the base class ClassHierarchyDescriptor.
3629  llvm::Constant *Fields[] = {
3630      llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime
3631      llvm::ConstantInt::get(CGM.IntTy, Flags),
3632      llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
3633      ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
3634          Bases->getValueType(), Bases,
3635          llvm::ArrayRef<llvm::Value *>(GEPIndices))),
3636  };
3637  CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3638  return CHD;
3639}
3640
3641llvm::GlobalVariable *
3642MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
3643  SmallString<256> MangledName;
3644  {
3645    llvm::raw_svector_ostream Out(MangledName);
3646    ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
3647  }
3648
3649  // Forward-declare the base class array.
3650  // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
3651  // mode) bytes of padding.  We provide a pointer sized amount of padding by
3652  // adding +1 to Classes.size().  The sections have pointer alignment and are
3653  // marked pick-any so it shouldn't matter.
3654  llvm::Type *PtrType = ABI.getImageRelativeType(
3655      ABI.getBaseClassDescriptorType()->getPointerTo());
3656  auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
3657  auto *BCA =
3658      new llvm::GlobalVariable(Module, ArrType,
3659                               /*isConstant=*/true, Linkage,
3660                               /*Initializer=*/nullptr, MangledName);
3661  if (BCA->isWeakForLinker())
3662    BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
3663
3664  // Initialize the BaseClassArray.
3665  SmallVector<llvm::Constant *, 8> BaseClassArrayData;
3666  for (MSRTTIClass &Class : Classes)
3667    BaseClassArrayData.push_back(
3668        ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
3669  BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
3670  BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
3671  return BCA;
3672}
3673
3674llvm::GlobalVariable *
3675MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
3676  // Compute the fields for the BaseClassDescriptor.  They are computed up front
3677  // because they are mangled into the name of the object.
3678  uint32_t OffsetInVBTable = 0;
3679  int32_t VBPtrOffset = -1;
3680  if (Class.VirtualRoot) {
3681    auto &VTableContext = CGM.getMicrosoftVTableContext();
3682    OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
3683    VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
3684  }
3685
3686  SmallString<256> MangledName;
3687  {
3688    llvm::raw_svector_ostream Out(MangledName);
3689    ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
3690        Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
3691        Class.Flags, Out);
3692  }
3693
3694  // Check to see if we've already declared this object.
3695  if (auto BCD = Module.getNamedGlobal(MangledName))
3696    return BCD;
3697
3698  // Forward-declare the base class descriptor.
3699  auto Type = ABI.getBaseClassDescriptorType();
3700  auto BCD =
3701      new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3702                               /*Initializer=*/nullptr, MangledName);
3703  if (BCD->isWeakForLinker())
3704    BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
3705
3706  // Initialize the BaseClassDescriptor.
3707  llvm::Constant *Fields[] = {
3708      ABI.getImageRelativeConstant(
3709          ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
3710      llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
3711      llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
3712      llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
3713      llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
3714      llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
3715      ABI.getImageRelativeConstant(
3716          MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
3717  };
3718  BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3719  return BCD;
3720}
3721
3722llvm::GlobalVariable *
3723MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) {
3724  SmallString<256> MangledName;
3725  {
3726    llvm::raw_svector_ostream Out(MangledName);
3727    ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out);
3728  }
3729
3730  // Check to see if we've already computed this complete object locator.
3731  if (auto COL = Module.getNamedGlobal(MangledName))
3732    return COL;
3733
3734  // Compute the fields of the complete object locator.
3735  int OffsetToTop = Info.FullOffsetInMDC.getQuantity();
3736  int VFPtrOffset = 0;
3737  // The offset includes the vtordisp if one exists.
3738  if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr())
3739    if (Context.getASTRecordLayout(RD)
3740      .getVBaseOffsetsMap()
3741      .find(VBase)
3742      ->second.hasVtorDisp())
3743      VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4;
3744
3745  // Forward-declare the complete object locator.
3746  llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
3747  auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3748    /*Initializer=*/nullptr, MangledName);
3749
3750  // Initialize the CompleteObjectLocator.
3751  llvm::Constant *Fields[] = {
3752      llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
3753      llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
3754      llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
3755      ABI.getImageRelativeConstant(
3756          CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
3757      ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
3758      ABI.getImageRelativeConstant(COL),
3759  };
3760  llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3761  if (!ABI.isImageRelative())
3762    FieldsRef = FieldsRef.drop_back();
3763  COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3764  if (COL->isWeakForLinker())
3765    COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
3766  return COL;
3767}
3768
3769static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
3770                                   bool &IsConst, bool &IsVolatile,
3771                                   bool &IsUnaligned) {
3772  T = Context.getExceptionObjectType(T);
3773
3774  // C++14 [except.handle]p3:
3775  //   A handler is a match for an exception object of type E if [...]
3776  //     - the handler is of type cv T or const T& where T is a pointer type and
3777  //       E is a pointer type that can be converted to T by [...]
3778  //         - a qualification conversion
3779  IsConst = false;
3780  IsVolatile = false;
3781  IsUnaligned = false;
3782  QualType PointeeType = T->getPointeeType();
3783  if (!PointeeType.isNull()) {
3784    IsConst = PointeeType.isConstQualified();
3785    IsVolatile = PointeeType.isVolatileQualified();
3786    IsUnaligned = PointeeType.getQualifiers().hasUnaligned();
3787  }
3788
3789  // Member pointer types like "const int A::*" are represented by having RTTI
3790  // for "int A::*" and separately storing the const qualifier.
3791  if (const auto *MPTy = T->getAs<MemberPointerType>())
3792    T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
3793                                     MPTy->getClass());
3794
3795  // Pointer types like "const int * const *" are represented by having RTTI
3796  // for "const int **" and separately storing the const qualifier.
3797  if (T->isPointerType())
3798    T = Context.getPointerType(PointeeType.getUnqualifiedType());
3799
3800  return T;
3801}
3802
3803CatchTypeInfo
3804MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
3805                                              QualType CatchHandlerType) {
3806  // TypeDescriptors for exceptions never have qualified pointer types,
3807  // qualifiers are stored separately in order to support qualification
3808  // conversions.
3809  bool IsConst, IsVolatile, IsUnaligned;
3810  Type =
3811      decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned);
3812
3813  bool IsReference = CatchHandlerType->isReferenceType();
3814
3815  uint32_t Flags = 0;
3816  if (IsConst)
3817    Flags |= 1;
3818  if (IsVolatile)
3819    Flags |= 2;
3820  if (IsUnaligned)
3821    Flags |= 4;
3822  if (IsReference)
3823    Flags |= 8;
3824
3825  return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(),
3826                       Flags};
3827}
3828
3829/// Gets a TypeDescriptor.  Returns a llvm::Constant * rather than a
3830/// llvm::GlobalVariable * because different type descriptors have different
3831/// types, and need to be abstracted.  They are abstracting by casting the
3832/// address to an Int8PtrTy.
3833llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3834  SmallString<256> MangledName;
3835  {
3836    llvm::raw_svector_ostream Out(MangledName);
3837    getMangleContext().mangleCXXRTTI(Type, Out);
3838  }
3839
3840  // Check to see if we've already declared this TypeDescriptor.
3841  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3842    return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
3843
3844  // Note for the future: If we would ever like to do deferred emission of
3845  // RTTI, check if emitting vtables opportunistically need any adjustment.
3846
3847  // Compute the fields for the TypeDescriptor.
3848  SmallString<256> TypeInfoString;
3849  {
3850    llvm::raw_svector_ostream Out(TypeInfoString);
3851    getMangleContext().mangleCXXRTTIName(Type, Out);
3852  }
3853
3854  // Declare and initialize the TypeDescriptor.
3855  llvm::Constant *Fields[] = {
3856    getTypeInfoVTable(CGM),                        // VFPtr
3857    llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
3858    llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
3859  llvm::StructType *TypeDescriptorType =
3860      getTypeDescriptorType(TypeInfoString);
3861  auto *Var = new llvm::GlobalVariable(
3862      CGM.getModule(), TypeDescriptorType, /*isConstant=*/false,
3863      getLinkageForRTTI(Type),
3864      llvm::ConstantStruct::get(TypeDescriptorType, Fields),
3865      MangledName);
3866  if (Var->isWeakForLinker())
3867    Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
3868  return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy);
3869}
3870
3871/// Gets or a creates a Microsoft CompleteObjectLocator.
3872llvm::GlobalVariable *
3873MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
3874                                            const VPtrInfo &Info) {
3875  return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
3876}
3877
3878void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) {
3879  if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) {
3880    // There are no constructor variants, always emit the complete destructor.
3881    llvm::Function *Fn =
3882        CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete));
3883    CGM.maybeSetTrivialComdat(*ctor, *Fn);
3884    return;
3885  }
3886
3887  auto *dtor = cast<CXXDestructorDecl>(GD.getDecl());
3888
3889  // Emit the base destructor if the base and complete (vbase) destructors are
3890  // equivalent. This effectively implements -mconstructor-aliases as part of
3891  // the ABI.
3892  if (GD.getDtorType() == Dtor_Complete &&
3893      dtor->getParent()->getNumVBases() == 0)
3894    GD = GD.getWithDtorType(Dtor_Base);
3895
3896  // The base destructor is equivalent to the base destructor of its
3897  // base class if there is exactly one non-virtual base class with a
3898  // non-trivial destructor, there are no fields with a non-trivial
3899  // destructor, and the body of the destructor is trivial.
3900  if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
3901    return;
3902
3903  llvm::Function *Fn = CGM.codegenCXXStructor(GD);
3904  if (Fn->isWeakForLinker())
3905    Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
3906}
3907
3908llvm::Function *
3909MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
3910                                         CXXCtorType CT) {
3911  assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
3912
3913  // Calculate the mangled name.
3914  SmallString<256> ThunkName;
3915  llvm::raw_svector_ostream Out(ThunkName);
3916  getMangleContext().mangleCXXCtor(CD, CT, Out);
3917
3918  // If the thunk has been generated previously, just return it.
3919  if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
3920    return cast<llvm::Function>(GV);
3921
3922  // Create the llvm::Function.
3923  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
3924  llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
3925  const CXXRecordDecl *RD = CD->getParent();
3926  QualType RecordTy = getContext().getRecordType(RD);
3927  llvm::Function *ThunkFn = llvm::Function::Create(
3928      ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
3929  ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
3930      FnInfo.getEffectiveCallingConvention()));
3931  if (ThunkFn->isWeakForLinker())
3932    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
3933  bool IsCopy = CT == Ctor_CopyingClosure;
3934
3935  // Start codegen.
3936  CodeGenFunction CGF(CGM);
3937  CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
3938
3939  // Build FunctionArgs.
3940  FunctionArgList FunctionArgs;
3941
3942  // A constructor always starts with a 'this' pointer as its first argument.
3943  buildThisParam(CGF, FunctionArgs);
3944
3945  // Following the 'this' pointer is a reference to the source object that we
3946  // are copying from.
3947  ImplicitParamDecl SrcParam(
3948      getContext(), /*DC=*/nullptr, SourceLocation(),
3949      &getContext().Idents.get("src"),
3950      getContext().getLValueReferenceType(RecordTy,
3951                                          /*SpelledAsLValue=*/true),
3952      ImplicitParamDecl::Other);
3953  if (IsCopy)
3954    FunctionArgs.push_back(&SrcParam);
3955
3956  // Constructors for classes which utilize virtual bases have an additional
3957  // parameter which indicates whether or not it is being delegated to by a more
3958  // derived constructor.
3959  ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr,
3960                                  SourceLocation(),
3961                                  &getContext().Idents.get("is_most_derived"),
3962                                  getContext().IntTy, ImplicitParamDecl::Other);
3963  // Only add the parameter to the list if the class has virtual bases.
3964  if (RD->getNumVBases() > 0)
3965    FunctionArgs.push_back(&IsMostDerived);
3966
3967  // Start defining the function.
3968  auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3969  CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
3970                    FunctionArgs, CD->getLocation(), SourceLocation());
3971  // Create a scope with an artificial location for the body of this function.
3972  auto AL = ApplyDebugLocation::CreateArtificial(CGF);
3973  setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
3974  llvm::Value *This = getThisValue(CGF);
3975
3976  llvm::Value *SrcVal =
3977      IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
3978             : nullptr;
3979
3980  CallArgList Args;
3981
3982  // Push the this ptr.
3983  Args.add(RValue::get(This), CD->getThisType());
3984
3985  // Push the src ptr.
3986  if (SrcVal)
3987    Args.add(RValue::get(SrcVal), SrcParam.getType());
3988
3989  // Add the rest of the default arguments.
3990  SmallVector<const Stmt *, 4> ArgVec;
3991  ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0);
3992  for (const ParmVarDecl *PD : params) {
3993    assert(PD->hasDefaultArg() && "ctor closure lacks default args");
3994    ArgVec.push_back(PD->getDefaultArg());
3995  }
3996
3997  CodeGenFunction::RunCleanupsScope Cleanups(CGF);
3998
3999  const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
4000  CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0);
4001
4002  // Insert any ABI-specific implicit constructor arguments.
4003  AddedStructorArgs ExtraArgs =
4004      addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
4005                                 /*ForVirtualBase=*/false,
4006                                 /*Delegating=*/false, Args);
4007  // Call the destructor with our arguments.
4008  llvm::Constant *CalleePtr =
4009      CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4010  CGCallee Callee =
4011      CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete));
4012  const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
4013      Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix);
4014  CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args);
4015
4016  Cleanups.ForceCleanup();
4017
4018  // Emit the ret instruction, remove any temporary instructions created for the
4019  // aid of CodeGen.
4020  CGF.FinishFunction(SourceLocation());
4021
4022  return ThunkFn;
4023}
4024
4025llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
4026                                                  uint32_t NVOffset,
4027                                                  int32_t VBPtrOffset,
4028                                                  uint32_t VBIndex) {
4029  assert(!T->isReferenceType());
4030
4031  CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4032  const CXXConstructorDecl *CD =
4033      RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
4034  CXXCtorType CT = Ctor_Complete;
4035  if (CD)
4036    if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
4037      CT = Ctor_CopyingClosure;
4038
4039  uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
4040  SmallString<256> MangledName;
4041  {
4042    llvm::raw_svector_ostream Out(MangledName);
4043    getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
4044                                              VBPtrOffset, VBIndex, Out);
4045  }
4046  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4047    return getImageRelativeConstant(GV);
4048
4049  // The TypeDescriptor is used by the runtime to determine if a catch handler
4050  // is appropriate for the exception object.
4051  llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
4052
4053  // The runtime is responsible for calling the copy constructor if the
4054  // exception is caught by value.
4055  llvm::Constant *CopyCtor;
4056  if (CD) {
4057    if (CT == Ctor_CopyingClosure)
4058      CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
4059    else
4060      CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4061
4062    CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy);
4063  } else {
4064    CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4065  }
4066  CopyCtor = getImageRelativeConstant(CopyCtor);
4067
4068  bool IsScalar = !RD;
4069  bool HasVirtualBases = false;
4070  bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
4071  QualType PointeeType = T;
4072  if (T->isPointerType())
4073    PointeeType = T->getPointeeType();
4074  if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
4075    HasVirtualBases = RD->getNumVBases() > 0;
4076    if (IdentifierInfo *II = RD->getIdentifier())
4077      IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
4078  }
4079
4080  // Encode the relevant CatchableType properties into the Flags bitfield.
4081  // FIXME: Figure out how bits 2 or 8 can get set.
4082  uint32_t Flags = 0;
4083  if (IsScalar)
4084    Flags |= 1;
4085  if (HasVirtualBases)
4086    Flags |= 4;
4087  if (IsStdBadAlloc)
4088    Flags |= 16;
4089
4090  llvm::Constant *Fields[] = {
4091      llvm::ConstantInt::get(CGM.IntTy, Flags),       // Flags
4092      TD,                                             // TypeDescriptor
4093      llvm::ConstantInt::get(CGM.IntTy, NVOffset),    // NonVirtualAdjustment
4094      llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
4095      llvm::ConstantInt::get(CGM.IntTy, VBIndex),     // VBTableIndex
4096      llvm::ConstantInt::get(CGM.IntTy, Size),        // Size
4097      CopyCtor                                        // CopyCtor
4098  };
4099  llvm::StructType *CTType = getCatchableTypeType();
4100  auto *GV = new llvm::GlobalVariable(
4101      CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T),
4102      llvm::ConstantStruct::get(CTType, Fields), MangledName);
4103  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4104  GV->setSection(".xdata");
4105  if (GV->isWeakForLinker())
4106    GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4107  return getImageRelativeConstant(GV);
4108}
4109
4110llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
4111  assert(!T->isReferenceType());
4112
4113  // See if we've already generated a CatchableTypeArray for this type before.
4114  llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
4115  if (CTA)
4116    return CTA;
4117
4118  // Ensure that we don't have duplicate entries in our CatchableTypeArray by
4119  // using a SmallSetVector.  Duplicates may arise due to virtual bases
4120  // occurring more than once in the hierarchy.
4121  llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
4122
4123  // C++14 [except.handle]p3:
4124  //   A handler is a match for an exception object of type E if [...]
4125  //     - the handler is of type cv T or cv T& and T is an unambiguous public
4126  //       base class of E, or
4127  //     - the handler is of type cv T or const T& where T is a pointer type and
4128  //       E is a pointer type that can be converted to T by [...]
4129  //         - a standard pointer conversion (4.10) not involving conversions to
4130  //           pointers to private or protected or ambiguous classes
4131  const CXXRecordDecl *MostDerivedClass = nullptr;
4132  bool IsPointer = T->isPointerType();
4133  if (IsPointer)
4134    MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
4135  else
4136    MostDerivedClass = T->getAsCXXRecordDecl();
4137
4138  // Collect all the unambiguous public bases of the MostDerivedClass.
4139  if (MostDerivedClass) {
4140    const ASTContext &Context = getContext();
4141    const ASTRecordLayout &MostDerivedLayout =
4142        Context.getASTRecordLayout(MostDerivedClass);
4143    MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
4144    SmallVector<MSRTTIClass, 8> Classes;
4145    serializeClassHierarchy(Classes, MostDerivedClass);
4146    Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
4147    detectAmbiguousBases(Classes);
4148    for (const MSRTTIClass &Class : Classes) {
4149      // Skip any ambiguous or private bases.
4150      if (Class.Flags &
4151          (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
4152        continue;
4153      // Write down how to convert from a derived pointer to a base pointer.
4154      uint32_t OffsetInVBTable = 0;
4155      int32_t VBPtrOffset = -1;
4156      if (Class.VirtualRoot) {
4157        OffsetInVBTable =
4158          VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
4159        VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
4160      }
4161
4162      // Turn our record back into a pointer if the exception object is a
4163      // pointer.
4164      QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
4165      if (IsPointer)
4166        RTTITy = Context.getPointerType(RTTITy);
4167      CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
4168                                             VBPtrOffset, OffsetInVBTable));
4169    }
4170  }
4171
4172  // C++14 [except.handle]p3:
4173  //   A handler is a match for an exception object of type E if
4174  //     - The handler is of type cv T or cv T& and E and T are the same type
4175  //       (ignoring the top-level cv-qualifiers)
4176  CatchableTypes.insert(getCatchableType(T));
4177
4178  // C++14 [except.handle]p3:
4179  //   A handler is a match for an exception object of type E if
4180  //     - the handler is of type cv T or const T& where T is a pointer type and
4181  //       E is a pointer type that can be converted to T by [...]
4182  //         - a standard pointer conversion (4.10) not involving conversions to
4183  //           pointers to private or protected or ambiguous classes
4184  //
4185  // C++14 [conv.ptr]p2:
4186  //   A prvalue of type "pointer to cv T," where T is an object type, can be
4187  //   converted to a prvalue of type "pointer to cv void".
4188  if (IsPointer && T->getPointeeType()->isObjectType())
4189    CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4190
4191  // C++14 [except.handle]p3:
4192  //   A handler is a match for an exception object of type E if [...]
4193  //     - the handler is of type cv T or const T& where T is a pointer or
4194  //       pointer to member type and E is std::nullptr_t.
4195  //
4196  // We cannot possibly list all possible pointer types here, making this
4197  // implementation incompatible with the standard.  However, MSVC includes an
4198  // entry for pointer-to-void in this case.  Let's do the same.
4199  if (T->isNullPtrType())
4200    CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4201
4202  uint32_t NumEntries = CatchableTypes.size();
4203  llvm::Type *CTType =
4204      getImageRelativeType(getCatchableTypeType()->getPointerTo());
4205  llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
4206  llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
4207  llvm::Constant *Fields[] = {
4208      llvm::ConstantInt::get(CGM.IntTy, NumEntries),    // NumEntries
4209      llvm::ConstantArray::get(
4210          AT, llvm::makeArrayRef(CatchableTypes.begin(),
4211                                 CatchableTypes.end())) // CatchableTypes
4212  };
4213  SmallString<256> MangledName;
4214  {
4215    llvm::raw_svector_ostream Out(MangledName);
4216    getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
4217  }
4218  CTA = new llvm::GlobalVariable(
4219      CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T),
4220      llvm::ConstantStruct::get(CTAType, Fields), MangledName);
4221  CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4222  CTA->setSection(".xdata");
4223  if (CTA->isWeakForLinker())
4224    CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
4225  return CTA;
4226}
4227
4228llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
4229  bool IsConst, IsVolatile, IsUnaligned;
4230  T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned);
4231
4232  // The CatchableTypeArray enumerates the various (CV-unqualified) types that
4233  // the exception object may be caught as.
4234  llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
4235  // The first field in a CatchableTypeArray is the number of CatchableTypes.
4236  // This is used as a component of the mangled name which means that we need to
4237  // know what it is in order to see if we have previously generated the
4238  // ThrowInfo.
4239  uint32_t NumEntries =
4240      cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
4241          ->getLimitedValue();
4242
4243  SmallString<256> MangledName;
4244  {
4245    llvm::raw_svector_ostream Out(MangledName);
4246    getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned,
4247                                          NumEntries, Out);
4248  }
4249
4250  // Reuse a previously generated ThrowInfo if we have generated an appropriate
4251  // one before.
4252  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4253    return GV;
4254
4255  // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
4256  // be at least as CV qualified.  Encode this requirement into the Flags
4257  // bitfield.
4258  uint32_t Flags = 0;
4259  if (IsConst)
4260    Flags |= 1;
4261  if (IsVolatile)
4262    Flags |= 2;
4263  if (IsUnaligned)
4264    Flags |= 4;
4265
4266  // The cleanup-function (a destructor) must be called when the exception
4267  // object's lifetime ends.
4268  llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4269  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4270    if (CXXDestructorDecl *DtorD = RD->getDestructor())
4271      if (!DtorD->isTrivial())
4272        CleanupFn = llvm::ConstantExpr::getBitCast(
4273            CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)),
4274            CGM.Int8PtrTy);
4275  // This is unused as far as we can tell, initialize it to null.
4276  llvm::Constant *ForwardCompat =
4277      getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
4278  llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(
4279      llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy));
4280  llvm::StructType *TIType = getThrowInfoType();
4281  llvm::Constant *Fields[] = {
4282      llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
4283      getImageRelativeConstant(CleanupFn),      // CleanupFn
4284      ForwardCompat,                            // ForwardCompat
4285      PointerToCatchableTypes                   // CatchableTypeArray
4286  };
4287  auto *GV = new llvm::GlobalVariable(
4288      CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T),
4289      llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName));
4290  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4291  GV->setSection(".xdata");
4292  if (GV->isWeakForLinker())
4293    GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4294  return GV;
4295}
4296
4297void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
4298  const Expr *SubExpr = E->getSubExpr();
4299  QualType ThrowType = SubExpr->getType();
4300  // The exception object lives on the stack and it's address is passed to the
4301  // runtime function.
4302  Address AI = CGF.CreateMemTemp(ThrowType);
4303  CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
4304                       /*IsInit=*/true);
4305
4306  // The so-called ThrowInfo is used to describe how the exception object may be
4307  // caught.
4308  llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
4309
4310  // Call into the runtime to throw the exception.
4311  llvm::Value *Args[] = {
4312    CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy),
4313    TI
4314  };
4315  CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
4316}
4317
4318std::pair<llvm::Value *, const CXXRecordDecl *>
4319MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This,
4320                               const CXXRecordDecl *RD) {
4321  std::tie(This, std::ignore, RD) =
4322      performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0));
4323  return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD};
4324}
4325