1//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "clang/AST/RecordLayout.h"
10#include "clang/AST/ASTContext.h"
11#include "clang/AST/ASTDiagnostic.h"
12#include "clang/AST/Attr.h"
13#include "clang/AST/CXXInheritance.h"
14#include "clang/AST/Decl.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/Basic/TargetInfo.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Support/Format.h"
21#include "llvm/Support/MathExtras.h"
22
23using namespace clang;
24
25namespace {
26
27/// BaseSubobjectInfo - Represents a single base subobject in a complete class.
28/// For a class hierarchy like
29///
30/// class A { };
31/// class B : A { };
32/// class C : A, B { };
33///
34/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
35/// instances, one for B and two for A.
36///
37/// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
38struct BaseSubobjectInfo {
39  /// Class - The class for this base info.
40  const CXXRecordDecl *Class;
41
42  /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
43  bool IsVirtual;
44
45  /// Bases - Information about the base subobjects.
46  SmallVector<BaseSubobjectInfo*, 4> Bases;
47
48  /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
49  /// of this base info (if one exists).
50  BaseSubobjectInfo *PrimaryVirtualBaseInfo;
51
52  // FIXME: Document.
53  const BaseSubobjectInfo *Derived;
54};
55
56/// Externally provided layout. Typically used when the AST source, such
57/// as DWARF, lacks all the information that was available at compile time, such
58/// as alignment attributes on fields and pragmas in effect.
59struct ExternalLayout {
60  ExternalLayout() : Size(0), Align(0) {}
61
62  /// Overall record size in bits.
63  uint64_t Size;
64
65  /// Overall record alignment in bits.
66  uint64_t Align;
67
68  /// Record field offsets in bits.
69  llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
70
71  /// Direct, non-virtual base offsets.
72  llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
73
74  /// Virtual base offsets.
75  llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
76
77  /// Get the offset of the given field. The external source must provide
78  /// entries for all fields in the record.
79  uint64_t getExternalFieldOffset(const FieldDecl *FD) {
80    assert(FieldOffsets.count(FD) &&
81           "Field does not have an external offset");
82    return FieldOffsets[FD];
83  }
84
85  bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
86    auto Known = BaseOffsets.find(RD);
87    if (Known == BaseOffsets.end())
88      return false;
89    BaseOffset = Known->second;
90    return true;
91  }
92
93  bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
94    auto Known = VirtualBaseOffsets.find(RD);
95    if (Known == VirtualBaseOffsets.end())
96      return false;
97    BaseOffset = Known->second;
98    return true;
99  }
100};
101
102/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
103/// offsets while laying out a C++ class.
104class EmptySubobjectMap {
105  const ASTContext &Context;
106  uint64_t CharWidth;
107
108  /// Class - The class whose empty entries we're keeping track of.
109  const CXXRecordDecl *Class;
110
111  /// EmptyClassOffsets - A map from offsets to empty record decls.
112  typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
113  typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
114  EmptyClassOffsetsMapTy EmptyClassOffsets;
115
116  /// MaxEmptyClassOffset - The highest offset known to contain an empty
117  /// base subobject.
118  CharUnits MaxEmptyClassOffset;
119
120  /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
121  /// member subobject that is empty.
122  void ComputeEmptySubobjectSizes();
123
124  void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
125
126  void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
127                                 CharUnits Offset, bool PlacingEmptyBase);
128
129  void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
130                                  const CXXRecordDecl *Class, CharUnits Offset,
131                                  bool PlacingOverlappingField);
132  void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
133                                  bool PlacingOverlappingField);
134
135  /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
136  /// subobjects beyond the given offset.
137  bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
138    return Offset <= MaxEmptyClassOffset;
139  }
140
141  CharUnits
142  getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
143    uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
144    assert(FieldOffset % CharWidth == 0 &&
145           "Field offset not at char boundary!");
146
147    return Context.toCharUnitsFromBits(FieldOffset);
148  }
149
150protected:
151  bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
152                                 CharUnits Offset) const;
153
154  bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
155                                     CharUnits Offset);
156
157  bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
158                                      const CXXRecordDecl *Class,
159                                      CharUnits Offset) const;
160  bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
161                                      CharUnits Offset) const;
162
163public:
164  /// This holds the size of the largest empty subobject (either a base
165  /// or a member). Will be zero if the record being built doesn't contain
166  /// any empty classes.
167  CharUnits SizeOfLargestEmptySubobject;
168
169  EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
170  : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
171      ComputeEmptySubobjectSizes();
172  }
173
174  /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
175  /// at the given offset.
176  /// Returns false if placing the record will result in two components
177  /// (direct or indirect) of the same type having the same offset.
178  bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
179                            CharUnits Offset);
180
181  /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
182  /// offset.
183  bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
184};
185
186void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
187  // Check the bases.
188  for (const CXXBaseSpecifier &Base : Class->bases()) {
189    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
190
191    CharUnits EmptySize;
192    const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
193    if (BaseDecl->isEmpty()) {
194      // If the class decl is empty, get its size.
195      EmptySize = Layout.getSize();
196    } else {
197      // Otherwise, we get the largest empty subobject for the decl.
198      EmptySize = Layout.getSizeOfLargestEmptySubobject();
199    }
200
201    if (EmptySize > SizeOfLargestEmptySubobject)
202      SizeOfLargestEmptySubobject = EmptySize;
203  }
204
205  // Check the fields.
206  for (const FieldDecl *FD : Class->fields()) {
207    const RecordType *RT =
208        Context.getBaseElementType(FD->getType())->getAs<RecordType>();
209
210    // We only care about record types.
211    if (!RT)
212      continue;
213
214    CharUnits EmptySize;
215    const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
216    const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
217    if (MemberDecl->isEmpty()) {
218      // If the class decl is empty, get its size.
219      EmptySize = Layout.getSize();
220    } else {
221      // Otherwise, we get the largest empty subobject for the decl.
222      EmptySize = Layout.getSizeOfLargestEmptySubobject();
223    }
224
225    if (EmptySize > SizeOfLargestEmptySubobject)
226      SizeOfLargestEmptySubobject = EmptySize;
227  }
228}
229
230bool
231EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
232                                             CharUnits Offset) const {
233  // We only need to check empty bases.
234  if (!RD->isEmpty())
235    return true;
236
237  EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
238  if (I == EmptyClassOffsets.end())
239    return true;
240
241  const ClassVectorTy &Classes = I->second;
242  if (llvm::find(Classes, RD) == Classes.end())
243    return true;
244
245  // There is already an empty class of the same type at this offset.
246  return false;
247}
248
249void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
250                                             CharUnits Offset) {
251  // We only care about empty bases.
252  if (!RD->isEmpty())
253    return;
254
255  // If we have empty structures inside a union, we can assign both
256  // the same offset. Just avoid pushing them twice in the list.
257  ClassVectorTy &Classes = EmptyClassOffsets[Offset];
258  if (llvm::is_contained(Classes, RD))
259    return;
260
261  Classes.push_back(RD);
262
263  // Update the empty class offset.
264  if (Offset > MaxEmptyClassOffset)
265    MaxEmptyClassOffset = Offset;
266}
267
268bool
269EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
270                                                 CharUnits Offset) {
271  // We don't have to keep looking past the maximum offset that's known to
272  // contain an empty class.
273  if (!AnyEmptySubobjectsBeyondOffset(Offset))
274    return true;
275
276  if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
277    return false;
278
279  // Traverse all non-virtual bases.
280  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
281  for (const BaseSubobjectInfo *Base : Info->Bases) {
282    if (Base->IsVirtual)
283      continue;
284
285    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
286
287    if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
288      return false;
289  }
290
291  if (Info->PrimaryVirtualBaseInfo) {
292    BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
293
294    if (Info == PrimaryVirtualBaseInfo->Derived) {
295      if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
296        return false;
297    }
298  }
299
300  // Traverse all member variables.
301  unsigned FieldNo = 0;
302  for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
303       E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
304    if (I->isBitField())
305      continue;
306
307    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
308    if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
309      return false;
310  }
311
312  return true;
313}
314
315void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
316                                                  CharUnits Offset,
317                                                  bool PlacingEmptyBase) {
318  if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
319    // We know that the only empty subobjects that can conflict with empty
320    // subobject of non-empty bases, are empty bases that can be placed at
321    // offset zero. Because of this, we only need to keep track of empty base
322    // subobjects with offsets less than the size of the largest empty
323    // subobject for our class.
324    return;
325  }
326
327  AddSubobjectAtOffset(Info->Class, Offset);
328
329  // Traverse all non-virtual bases.
330  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
331  for (const BaseSubobjectInfo *Base : Info->Bases) {
332    if (Base->IsVirtual)
333      continue;
334
335    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
336    UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
337  }
338
339  if (Info->PrimaryVirtualBaseInfo) {
340    BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
341
342    if (Info == PrimaryVirtualBaseInfo->Derived)
343      UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
344                                PlacingEmptyBase);
345  }
346
347  // Traverse all member variables.
348  unsigned FieldNo = 0;
349  for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
350       E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
351    if (I->isBitField())
352      continue;
353
354    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
355    UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
356  }
357}
358
359bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
360                                             CharUnits Offset) {
361  // If we know this class doesn't have any empty subobjects we don't need to
362  // bother checking.
363  if (SizeOfLargestEmptySubobject.isZero())
364    return true;
365
366  if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
367    return false;
368
369  // We are able to place the base at this offset. Make sure to update the
370  // empty base subobject map.
371  UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
372  return true;
373}
374
375bool
376EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
377                                                  const CXXRecordDecl *Class,
378                                                  CharUnits Offset) const {
379  // We don't have to keep looking past the maximum offset that's known to
380  // contain an empty class.
381  if (!AnyEmptySubobjectsBeyondOffset(Offset))
382    return true;
383
384  if (!CanPlaceSubobjectAtOffset(RD, Offset))
385    return false;
386
387  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
388
389  // Traverse all non-virtual bases.
390  for (const CXXBaseSpecifier &Base : RD->bases()) {
391    if (Base.isVirtual())
392      continue;
393
394    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
395
396    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
397    if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
398      return false;
399  }
400
401  if (RD == Class) {
402    // This is the most derived class, traverse virtual bases as well.
403    for (const CXXBaseSpecifier &Base : RD->vbases()) {
404      const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
405
406      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
407      if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
408        return false;
409    }
410  }
411
412  // Traverse all member variables.
413  unsigned FieldNo = 0;
414  for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
415       I != E; ++I, ++FieldNo) {
416    if (I->isBitField())
417      continue;
418
419    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
420
421    if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
422      return false;
423  }
424
425  return true;
426}
427
428bool
429EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
430                                                  CharUnits Offset) const {
431  // We don't have to keep looking past the maximum offset that's known to
432  // contain an empty class.
433  if (!AnyEmptySubobjectsBeyondOffset(Offset))
434    return true;
435
436  QualType T = FD->getType();
437  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
438    return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
439
440  // If we have an array type we need to look at every element.
441  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
442    QualType ElemTy = Context.getBaseElementType(AT);
443    const RecordType *RT = ElemTy->getAs<RecordType>();
444    if (!RT)
445      return true;
446
447    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
448    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
449
450    uint64_t NumElements = Context.getConstantArrayElementCount(AT);
451    CharUnits ElementOffset = Offset;
452    for (uint64_t I = 0; I != NumElements; ++I) {
453      // We don't have to keep looking past the maximum offset that's known to
454      // contain an empty class.
455      if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
456        return true;
457
458      if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
459        return false;
460
461      ElementOffset += Layout.getSize();
462    }
463  }
464
465  return true;
466}
467
468bool
469EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
470                                         CharUnits Offset) {
471  if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
472    return false;
473
474  // We are able to place the member variable at this offset.
475  // Make sure to update the empty field subobject map.
476  UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
477  return true;
478}
479
480void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
481    const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
482    bool PlacingOverlappingField) {
483  // We know that the only empty subobjects that can conflict with empty
484  // field subobjects are subobjects of empty bases and potentially-overlapping
485  // fields that can be placed at offset zero. Because of this, we only need to
486  // keep track of empty field subobjects with offsets less than the size of
487  // the largest empty subobject for our class.
488  //
489  // (Proof: we will only consider placing a subobject at offset zero or at
490  // >= the current dsize. The only cases where the earlier subobject can be
491  // placed beyond the end of dsize is if it's an empty base or a
492  // potentially-overlapping field.)
493  if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
494    return;
495
496  AddSubobjectAtOffset(RD, Offset);
497
498  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
499
500  // Traverse all non-virtual bases.
501  for (const CXXBaseSpecifier &Base : RD->bases()) {
502    if (Base.isVirtual())
503      continue;
504
505    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
506
507    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
508    UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
509                               PlacingOverlappingField);
510  }
511
512  if (RD == Class) {
513    // This is the most derived class, traverse virtual bases as well.
514    for (const CXXBaseSpecifier &Base : RD->vbases()) {
515      const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
516
517      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
518      UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
519                                 PlacingOverlappingField);
520    }
521  }
522
523  // Traverse all member variables.
524  unsigned FieldNo = 0;
525  for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
526       I != E; ++I, ++FieldNo) {
527    if (I->isBitField())
528      continue;
529
530    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
531
532    UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
533  }
534}
535
536void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
537    const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
538  QualType T = FD->getType();
539  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
540    UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
541    return;
542  }
543
544  // If we have an array type we need to update every element.
545  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
546    QualType ElemTy = Context.getBaseElementType(AT);
547    const RecordType *RT = ElemTy->getAs<RecordType>();
548    if (!RT)
549      return;
550
551    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
552    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
553
554    uint64_t NumElements = Context.getConstantArrayElementCount(AT);
555    CharUnits ElementOffset = Offset;
556
557    for (uint64_t I = 0; I != NumElements; ++I) {
558      // We know that the only empty subobjects that can conflict with empty
559      // field subobjects are subobjects of empty bases that can be placed at
560      // offset zero. Because of this, we only need to keep track of empty field
561      // subobjects with offsets less than the size of the largest empty
562      // subobject for our class.
563      if (!PlacingOverlappingField &&
564          ElementOffset >= SizeOfLargestEmptySubobject)
565        return;
566
567      UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
568                                 PlacingOverlappingField);
569      ElementOffset += Layout.getSize();
570    }
571  }
572}
573
574typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
575
576class ItaniumRecordLayoutBuilder {
577protected:
578  // FIXME: Remove this and make the appropriate fields public.
579  friend class clang::ASTContext;
580
581  const ASTContext &Context;
582
583  EmptySubobjectMap *EmptySubobjects;
584
585  /// Size - The current size of the record layout.
586  uint64_t Size;
587
588  /// Alignment - The current alignment of the record layout.
589  CharUnits Alignment;
590
591  /// The alignment if attribute packed is not used.
592  CharUnits UnpackedAlignment;
593
594  /// \brief The maximum of the alignments of top-level members.
595  CharUnits UnadjustedAlignment;
596
597  SmallVector<uint64_t, 16> FieldOffsets;
598
599  /// Whether the external AST source has provided a layout for this
600  /// record.
601  unsigned UseExternalLayout : 1;
602
603  /// Whether we need to infer alignment, even when we have an
604  /// externally-provided layout.
605  unsigned InferAlignment : 1;
606
607  /// Packed - Whether the record is packed or not.
608  unsigned Packed : 1;
609
610  unsigned IsUnion : 1;
611
612  unsigned IsMac68kAlign : 1;
613
614  unsigned IsMsStruct : 1;
615
616  /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
617  /// this contains the number of bits in the last unit that can be used for
618  /// an adjacent bitfield if necessary.  The unit in question is usually
619  /// a byte, but larger units are used if IsMsStruct.
620  unsigned char UnfilledBitsInLastUnit;
621  /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
622  /// of the previous field if it was a bitfield.
623  unsigned char LastBitfieldTypeSize;
624
625  /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
626  /// #pragma pack.
627  CharUnits MaxFieldAlignment;
628
629  /// DataSize - The data size of the record being laid out.
630  uint64_t DataSize;
631
632  CharUnits NonVirtualSize;
633  CharUnits NonVirtualAlignment;
634
635  /// If we've laid out a field but not included its tail padding in Size yet,
636  /// this is the size up to the end of that field.
637  CharUnits PaddedFieldSize;
638
639  /// PrimaryBase - the primary base class (if one exists) of the class
640  /// we're laying out.
641  const CXXRecordDecl *PrimaryBase;
642
643  /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
644  /// out is virtual.
645  bool PrimaryBaseIsVirtual;
646
647  /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
648  /// pointer, as opposed to inheriting one from a primary base class.
649  bool HasOwnVFPtr;
650
651  /// the flag of field offset changing due to packed attribute.
652  bool HasPackedField;
653
654  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
655
656  /// Bases - base classes and their offsets in the record.
657  BaseOffsetsMapTy Bases;
658
659  // VBases - virtual base classes and their offsets in the record.
660  ASTRecordLayout::VBaseOffsetsMapTy VBases;
661
662  /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
663  /// primary base classes for some other direct or indirect base class.
664  CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
665
666  /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
667  /// inheritance graph order. Used for determining the primary base class.
668  const CXXRecordDecl *FirstNearlyEmptyVBase;
669
670  /// VisitedVirtualBases - A set of all the visited virtual bases, used to
671  /// avoid visiting virtual bases more than once.
672  llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
673
674  /// Valid if UseExternalLayout is true.
675  ExternalLayout External;
676
677  ItaniumRecordLayoutBuilder(const ASTContext &Context,
678                             EmptySubobjectMap *EmptySubobjects)
679      : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
680        Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
681        UnadjustedAlignment(CharUnits::One()),
682        UseExternalLayout(false), InferAlignment(false), Packed(false),
683        IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
684        UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
685        MaxFieldAlignment(CharUnits::Zero()), DataSize(0),
686        NonVirtualSize(CharUnits::Zero()),
687        NonVirtualAlignment(CharUnits::One()),
688        PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
689        PrimaryBaseIsVirtual(false), HasOwnVFPtr(false),
690        HasPackedField(false), FirstNearlyEmptyVBase(nullptr) {}
691
692  void Layout(const RecordDecl *D);
693  void Layout(const CXXRecordDecl *D);
694  void Layout(const ObjCInterfaceDecl *D);
695
696  void LayoutFields(const RecordDecl *D);
697  void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
698  void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
699                          bool FieldPacked, const FieldDecl *D);
700  void LayoutBitField(const FieldDecl *D);
701
702  TargetCXXABI getCXXABI() const {
703    return Context.getTargetInfo().getCXXABI();
704  }
705
706  /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
707  llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
708
709  typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
710    BaseSubobjectInfoMapTy;
711
712  /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
713  /// of the class we're laying out to their base subobject info.
714  BaseSubobjectInfoMapTy VirtualBaseInfo;
715
716  /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
717  /// class we're laying out to their base subobject info.
718  BaseSubobjectInfoMapTy NonVirtualBaseInfo;
719
720  /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
721  /// bases of the given class.
722  void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
723
724  /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
725  /// single class and all of its base classes.
726  BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
727                                              bool IsVirtual,
728                                              BaseSubobjectInfo *Derived);
729
730  /// DeterminePrimaryBase - Determine the primary base of the given class.
731  void DeterminePrimaryBase(const CXXRecordDecl *RD);
732
733  void SelectPrimaryVBase(const CXXRecordDecl *RD);
734
735  void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
736
737  /// LayoutNonVirtualBases - Determines the primary base class (if any) and
738  /// lays it out. Will then proceed to lay out all non-virtual base clasess.
739  void LayoutNonVirtualBases(const CXXRecordDecl *RD);
740
741  /// LayoutNonVirtualBase - Lays out a single non-virtual base.
742  void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
743
744  void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
745                                    CharUnits Offset);
746
747  /// LayoutVirtualBases - Lays out all the virtual bases.
748  void LayoutVirtualBases(const CXXRecordDecl *RD,
749                          const CXXRecordDecl *MostDerivedClass);
750
751  /// LayoutVirtualBase - Lays out a single virtual base.
752  void LayoutVirtualBase(const BaseSubobjectInfo *Base);
753
754  /// LayoutBase - Will lay out a base and return the offset where it was
755  /// placed, in chars.
756  CharUnits LayoutBase(const BaseSubobjectInfo *Base);
757
758  /// InitializeLayout - Initialize record layout for the given record decl.
759  void InitializeLayout(const Decl *D);
760
761  /// FinishLayout - Finalize record layout. Adjust record size based on the
762  /// alignment.
763  void FinishLayout(const NamedDecl *D);
764
765  void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
766  void UpdateAlignment(CharUnits NewAlignment) {
767    UpdateAlignment(NewAlignment, NewAlignment);
768  }
769
770  /// Retrieve the externally-supplied field offset for the given
771  /// field.
772  ///
773  /// \param Field The field whose offset is being queried.
774  /// \param ComputedOffset The offset that we've computed for this field.
775  uint64_t updateExternalFieldOffset(const FieldDecl *Field,
776                                     uint64_t ComputedOffset);
777
778  void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
779                          uint64_t UnpackedOffset, unsigned UnpackedAlign,
780                          bool isPacked, const FieldDecl *D);
781
782  DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
783
784  CharUnits getSize() const {
785    assert(Size % Context.getCharWidth() == 0);
786    return Context.toCharUnitsFromBits(Size);
787  }
788  uint64_t getSizeInBits() const { return Size; }
789
790  void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
791  void setSize(uint64_t NewSize) { Size = NewSize; }
792
793  CharUnits getAligment() const { return Alignment; }
794
795  CharUnits getDataSize() const {
796    assert(DataSize % Context.getCharWidth() == 0);
797    return Context.toCharUnitsFromBits(DataSize);
798  }
799  uint64_t getDataSizeInBits() const { return DataSize; }
800
801  void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
802  void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
803
804  ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
805  void operator=(const ItaniumRecordLayoutBuilder &) = delete;
806};
807} // end anonymous namespace
808
809void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
810  for (const auto &I : RD->bases()) {
811    assert(!I.getType()->isDependentType() &&
812           "Cannot layout class with dependent bases.");
813
814    const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
815
816    // Check if this is a nearly empty virtual base.
817    if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
818      // If it's not an indirect primary base, then we've found our primary
819      // base.
820      if (!IndirectPrimaryBases.count(Base)) {
821        PrimaryBase = Base;
822        PrimaryBaseIsVirtual = true;
823        return;
824      }
825
826      // Is this the first nearly empty virtual base?
827      if (!FirstNearlyEmptyVBase)
828        FirstNearlyEmptyVBase = Base;
829    }
830
831    SelectPrimaryVBase(Base);
832    if (PrimaryBase)
833      return;
834  }
835}
836
837/// DeterminePrimaryBase - Determine the primary base of the given class.
838void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
839  // If the class isn't dynamic, it won't have a primary base.
840  if (!RD->isDynamicClass())
841    return;
842
843  // Compute all the primary virtual bases for all of our direct and
844  // indirect bases, and record all their primary virtual base classes.
845  RD->getIndirectPrimaryBases(IndirectPrimaryBases);
846
847  // If the record has a dynamic base class, attempt to choose a primary base
848  // class. It is the first (in direct base class order) non-virtual dynamic
849  // base class, if one exists.
850  for (const auto &I : RD->bases()) {
851    // Ignore virtual bases.
852    if (I.isVirtual())
853      continue;
854
855    const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
856
857    if (Base->isDynamicClass()) {
858      // We found it.
859      PrimaryBase = Base;
860      PrimaryBaseIsVirtual = false;
861      return;
862    }
863  }
864
865  // Under the Itanium ABI, if there is no non-virtual primary base class,
866  // try to compute the primary virtual base.  The primary virtual base is
867  // the first nearly empty virtual base that is not an indirect primary
868  // virtual base class, if one exists.
869  if (RD->getNumVBases() != 0) {
870    SelectPrimaryVBase(RD);
871    if (PrimaryBase)
872      return;
873  }
874
875  // Otherwise, it is the first indirect primary base class, if one exists.
876  if (FirstNearlyEmptyVBase) {
877    PrimaryBase = FirstNearlyEmptyVBase;
878    PrimaryBaseIsVirtual = true;
879    return;
880  }
881
882  assert(!PrimaryBase && "Should not get here with a primary base!");
883}
884
885BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
886    const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
887  BaseSubobjectInfo *Info;
888
889  if (IsVirtual) {
890    // Check if we already have info about this virtual base.
891    BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
892    if (InfoSlot) {
893      assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
894      return InfoSlot;
895    }
896
897    // We don't, create it.
898    InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
899    Info = InfoSlot;
900  } else {
901    Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
902  }
903
904  Info->Class = RD;
905  Info->IsVirtual = IsVirtual;
906  Info->Derived = nullptr;
907  Info->PrimaryVirtualBaseInfo = nullptr;
908
909  const CXXRecordDecl *PrimaryVirtualBase = nullptr;
910  BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
911
912  // Check if this base has a primary virtual base.
913  if (RD->getNumVBases()) {
914    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
915    if (Layout.isPrimaryBaseVirtual()) {
916      // This base does have a primary virtual base.
917      PrimaryVirtualBase = Layout.getPrimaryBase();
918      assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
919
920      // Now check if we have base subobject info about this primary base.
921      PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
922
923      if (PrimaryVirtualBaseInfo) {
924        if (PrimaryVirtualBaseInfo->Derived) {
925          // We did have info about this primary base, and it turns out that it
926          // has already been claimed as a primary virtual base for another
927          // base.
928          PrimaryVirtualBase = nullptr;
929        } else {
930          // We can claim this base as our primary base.
931          Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
932          PrimaryVirtualBaseInfo->Derived = Info;
933        }
934      }
935    }
936  }
937
938  // Now go through all direct bases.
939  for (const auto &I : RD->bases()) {
940    bool IsVirtual = I.isVirtual();
941
942    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
943
944    Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
945  }
946
947  if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
948    // Traversing the bases must have created the base info for our primary
949    // virtual base.
950    PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
951    assert(PrimaryVirtualBaseInfo &&
952           "Did not create a primary virtual base!");
953
954    // Claim the primary virtual base as our primary virtual base.
955    Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
956    PrimaryVirtualBaseInfo->Derived = Info;
957  }
958
959  return Info;
960}
961
962void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
963    const CXXRecordDecl *RD) {
964  for (const auto &I : RD->bases()) {
965    bool IsVirtual = I.isVirtual();
966
967    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
968
969    // Compute the base subobject info for this base.
970    BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
971                                                       nullptr);
972
973    if (IsVirtual) {
974      // ComputeBaseInfo has already added this base for us.
975      assert(VirtualBaseInfo.count(BaseDecl) &&
976             "Did not add virtual base!");
977    } else {
978      // Add the base info to the map of non-virtual bases.
979      assert(!NonVirtualBaseInfo.count(BaseDecl) &&
980             "Non-virtual base already exists!");
981      NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
982    }
983  }
984}
985
986void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
987    CharUnits UnpackedBaseAlign) {
988  CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
989
990  // The maximum field alignment overrides base align.
991  if (!MaxFieldAlignment.isZero()) {
992    BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
993    UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
994  }
995
996  // Round up the current record size to pointer alignment.
997  setSize(getSize().alignTo(BaseAlign));
998
999  // Update the alignment.
1000  UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1001}
1002
1003void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1004    const CXXRecordDecl *RD) {
1005  // Then, determine the primary base class.
1006  DeterminePrimaryBase(RD);
1007
1008  // Compute base subobject info.
1009  ComputeBaseSubobjectInfo(RD);
1010
1011  // If we have a primary base class, lay it out.
1012  if (PrimaryBase) {
1013    if (PrimaryBaseIsVirtual) {
1014      // If the primary virtual base was a primary virtual base of some other
1015      // base class we'll have to steal it.
1016      BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1017      PrimaryBaseInfo->Derived = nullptr;
1018
1019      // We have a virtual primary base, insert it as an indirect primary base.
1020      IndirectPrimaryBases.insert(PrimaryBase);
1021
1022      assert(!VisitedVirtualBases.count(PrimaryBase) &&
1023             "vbase already visited!");
1024      VisitedVirtualBases.insert(PrimaryBase);
1025
1026      LayoutVirtualBase(PrimaryBaseInfo);
1027    } else {
1028      BaseSubobjectInfo *PrimaryBaseInfo =
1029        NonVirtualBaseInfo.lookup(PrimaryBase);
1030      assert(PrimaryBaseInfo &&
1031             "Did not find base info for non-virtual primary base!");
1032
1033      LayoutNonVirtualBase(PrimaryBaseInfo);
1034    }
1035
1036  // If this class needs a vtable/vf-table and didn't get one from a
1037  // primary base, add it in now.
1038  } else if (RD->isDynamicClass()) {
1039    assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1040    CharUnits PtrWidth =
1041      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1042    CharUnits PtrAlign =
1043      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1044    EnsureVTablePointerAlignment(PtrAlign);
1045    HasOwnVFPtr = true;
1046    setSize(getSize() + PtrWidth);
1047    setDataSize(getSize());
1048  }
1049
1050  // Now lay out the non-virtual bases.
1051  for (const auto &I : RD->bases()) {
1052
1053    // Ignore virtual bases.
1054    if (I.isVirtual())
1055      continue;
1056
1057    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1058
1059    // Skip the primary base, because we've already laid it out.  The
1060    // !PrimaryBaseIsVirtual check is required because we might have a
1061    // non-virtual base of the same type as a primary virtual base.
1062    if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1063      continue;
1064
1065    // Lay out the base.
1066    BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1067    assert(BaseInfo && "Did not find base info for non-virtual base!");
1068
1069    LayoutNonVirtualBase(BaseInfo);
1070  }
1071}
1072
1073void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1074    const BaseSubobjectInfo *Base) {
1075  // Layout the base.
1076  CharUnits Offset = LayoutBase(Base);
1077
1078  // Add its base class offset.
1079  assert(!Bases.count(Base->Class) && "base offset already exists!");
1080  Bases.insert(std::make_pair(Base->Class, Offset));
1081
1082  AddPrimaryVirtualBaseOffsets(Base, Offset);
1083}
1084
1085void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1086    const BaseSubobjectInfo *Info, CharUnits Offset) {
1087  // This base isn't interesting, it has no virtual bases.
1088  if (!Info->Class->getNumVBases())
1089    return;
1090
1091  // First, check if we have a virtual primary base to add offsets for.
1092  if (Info->PrimaryVirtualBaseInfo) {
1093    assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1094           "Primary virtual base is not virtual!");
1095    if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1096      // Add the offset.
1097      assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1098             "primary vbase offset already exists!");
1099      VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1100                                   ASTRecordLayout::VBaseInfo(Offset, false)));
1101
1102      // Traverse the primary virtual base.
1103      AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1104    }
1105  }
1106
1107  // Now go through all direct non-virtual bases.
1108  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1109  for (const BaseSubobjectInfo *Base : Info->Bases) {
1110    if (Base->IsVirtual)
1111      continue;
1112
1113    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1114    AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1115  }
1116}
1117
1118void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1119    const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1120  const CXXRecordDecl *PrimaryBase;
1121  bool PrimaryBaseIsVirtual;
1122
1123  if (MostDerivedClass == RD) {
1124    PrimaryBase = this->PrimaryBase;
1125    PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1126  } else {
1127    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1128    PrimaryBase = Layout.getPrimaryBase();
1129    PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1130  }
1131
1132  for (const CXXBaseSpecifier &Base : RD->bases()) {
1133    assert(!Base.getType()->isDependentType() &&
1134           "Cannot layout class with dependent bases.");
1135
1136    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1137
1138    if (Base.isVirtual()) {
1139      if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1140        bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1141
1142        // Only lay out the virtual base if it's not an indirect primary base.
1143        if (!IndirectPrimaryBase) {
1144          // Only visit virtual bases once.
1145          if (!VisitedVirtualBases.insert(BaseDecl).second)
1146            continue;
1147
1148          const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1149          assert(BaseInfo && "Did not find virtual base info!");
1150          LayoutVirtualBase(BaseInfo);
1151        }
1152      }
1153    }
1154
1155    if (!BaseDecl->getNumVBases()) {
1156      // This base isn't interesting since it doesn't have any virtual bases.
1157      continue;
1158    }
1159
1160    LayoutVirtualBases(BaseDecl, MostDerivedClass);
1161  }
1162}
1163
1164void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1165    const BaseSubobjectInfo *Base) {
1166  assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1167
1168  // Layout the base.
1169  CharUnits Offset = LayoutBase(Base);
1170
1171  // Add its base class offset.
1172  assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1173  VBases.insert(std::make_pair(Base->Class,
1174                       ASTRecordLayout::VBaseInfo(Offset, false)));
1175
1176  AddPrimaryVirtualBaseOffsets(Base, Offset);
1177}
1178
1179CharUnits
1180ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1181  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1182
1183
1184  CharUnits Offset;
1185
1186  // Query the external layout to see if it provides an offset.
1187  bool HasExternalLayout = false;
1188  if (UseExternalLayout) {
1189    // FIXME: This appears to be reversed.
1190    if (Base->IsVirtual)
1191      HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1192    else
1193      HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1194  }
1195
1196  // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1197  // Per GCC's documentation, it only applies to non-static data members.
1198  CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1199  CharUnits BaseAlign =
1200      (Packed && ((Context.getLangOpts().getClangABICompat() <=
1201                   LangOptions::ClangABI::Ver6) ||
1202                  Context.getTargetInfo().getTriple().isPS4()))
1203          ? CharUnits::One()
1204          : UnpackedBaseAlign;
1205
1206  // If we have an empty base class, try to place it at offset 0.
1207  if (Base->Class->isEmpty() &&
1208      (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1209      EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1210    setSize(std::max(getSize(), Layout.getSize()));
1211    UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1212
1213    return CharUnits::Zero();
1214  }
1215
1216  // The maximum field alignment overrides base align.
1217  if (!MaxFieldAlignment.isZero()) {
1218    BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1219    UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1220  }
1221
1222  if (!HasExternalLayout) {
1223    // Round up the current record size to the base's alignment boundary.
1224    Offset = getDataSize().alignTo(BaseAlign);
1225
1226    // Try to place the base.
1227    while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1228      Offset += BaseAlign;
1229  } else {
1230    bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1231    (void)Allowed;
1232    assert(Allowed && "Base subobject externally placed at overlapping offset");
1233
1234    if (InferAlignment && Offset < getDataSize().alignTo(BaseAlign)) {
1235      // The externally-supplied base offset is before the base offset we
1236      // computed. Assume that the structure is packed.
1237      Alignment = CharUnits::One();
1238      InferAlignment = false;
1239    }
1240  }
1241
1242  if (!Base->Class->isEmpty()) {
1243    // Update the data size.
1244    setDataSize(Offset + Layout.getNonVirtualSize());
1245
1246    setSize(std::max(getSize(), getDataSize()));
1247  } else
1248    setSize(std::max(getSize(), Offset + Layout.getSize()));
1249
1250  // Remember max struct/class alignment.
1251  UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1252
1253  return Offset;
1254}
1255
1256void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1257  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1258    IsUnion = RD->isUnion();
1259    IsMsStruct = RD->isMsStruct(Context);
1260  }
1261
1262  Packed = D->hasAttr<PackedAttr>();
1263
1264  // Honor the default struct packing maximum alignment flag.
1265  if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1266    MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1267  }
1268
1269  // mac68k alignment supersedes maximum field alignment and attribute aligned,
1270  // and forces all structures to have 2-byte alignment. The IBM docs on it
1271  // allude to additional (more complicated) semantics, especially with regard
1272  // to bit-fields, but gcc appears not to follow that.
1273  if (D->hasAttr<AlignMac68kAttr>()) {
1274    IsMac68kAlign = true;
1275    MaxFieldAlignment = CharUnits::fromQuantity(2);
1276    Alignment = CharUnits::fromQuantity(2);
1277  } else {
1278    if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1279      MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1280
1281    if (unsigned MaxAlign = D->getMaxAlignment())
1282      UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1283  }
1284
1285  // If there is an external AST source, ask it for the various offsets.
1286  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1287    if (ExternalASTSource *Source = Context.getExternalSource()) {
1288      UseExternalLayout = Source->layoutRecordType(
1289          RD, External.Size, External.Align, External.FieldOffsets,
1290          External.BaseOffsets, External.VirtualBaseOffsets);
1291
1292      // Update based on external alignment.
1293      if (UseExternalLayout) {
1294        if (External.Align > 0) {
1295          Alignment = Context.toCharUnitsFromBits(External.Align);
1296        } else {
1297          // The external source didn't have alignment information; infer it.
1298          InferAlignment = true;
1299        }
1300      }
1301    }
1302}
1303
1304void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1305  InitializeLayout(D);
1306  LayoutFields(D);
1307
1308  // Finally, round the size of the total struct up to the alignment of the
1309  // struct itself.
1310  FinishLayout(D);
1311}
1312
1313void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1314  InitializeLayout(RD);
1315
1316  // Lay out the vtable and the non-virtual bases.
1317  LayoutNonVirtualBases(RD);
1318
1319  LayoutFields(RD);
1320
1321  NonVirtualSize = Context.toCharUnitsFromBits(
1322      llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1323  NonVirtualAlignment = Alignment;
1324
1325  // Lay out the virtual bases and add the primary virtual base offsets.
1326  LayoutVirtualBases(RD, RD);
1327
1328  // Finally, round the size of the total struct up to the alignment
1329  // of the struct itself.
1330  FinishLayout(RD);
1331
1332#ifndef NDEBUG
1333  // Check that we have base offsets for all bases.
1334  for (const CXXBaseSpecifier &Base : RD->bases()) {
1335    if (Base.isVirtual())
1336      continue;
1337
1338    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1339
1340    assert(Bases.count(BaseDecl) && "Did not find base offset!");
1341  }
1342
1343  // And all virtual bases.
1344  for (const CXXBaseSpecifier &Base : RD->vbases()) {
1345    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1346
1347    assert(VBases.count(BaseDecl) && "Did not find base offset!");
1348  }
1349#endif
1350}
1351
1352void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1353  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1354    const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1355
1356    UpdateAlignment(SL.getAlignment());
1357
1358    // We start laying out ivars not at the end of the superclass
1359    // structure, but at the next byte following the last field.
1360    setDataSize(SL.getDataSize());
1361    setSize(getDataSize());
1362  }
1363
1364  InitializeLayout(D);
1365  // Layout each ivar sequentially.
1366  for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1367       IVD = IVD->getNextIvar())
1368    LayoutField(IVD, false);
1369
1370  // Finally, round the size of the total struct up to the alignment of the
1371  // struct itself.
1372  FinishLayout(D);
1373}
1374
1375void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1376  // Layout each field, for now, just sequentially, respecting alignment.  In
1377  // the future, this will need to be tweakable by targets.
1378  bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1379  bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1380  for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1381    auto Next(I);
1382    ++Next;
1383    LayoutField(*I,
1384                InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1385  }
1386}
1387
1388// Rounds the specified size to have it a multiple of the char size.
1389static uint64_t
1390roundUpSizeToCharAlignment(uint64_t Size,
1391                           const ASTContext &Context) {
1392  uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1393  return llvm::alignTo(Size, CharAlignment);
1394}
1395
1396void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1397                                                    uint64_t TypeSize,
1398                                                    bool FieldPacked,
1399                                                    const FieldDecl *D) {
1400  assert(Context.getLangOpts().CPlusPlus &&
1401         "Can only have wide bit-fields in C++!");
1402
1403  // Itanium C++ ABI 2.4:
1404  //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
1405  //   sizeof(T')*8 <= n.
1406
1407  QualType IntegralPODTypes[] = {
1408    Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1409    Context.UnsignedLongTy, Context.UnsignedLongLongTy
1410  };
1411
1412  QualType Type;
1413  for (const QualType &QT : IntegralPODTypes) {
1414    uint64_t Size = Context.getTypeSize(QT);
1415
1416    if (Size > FieldSize)
1417      break;
1418
1419    Type = QT;
1420  }
1421  assert(!Type.isNull() && "Did not find a type!");
1422
1423  CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1424
1425  // We're not going to use any of the unfilled bits in the last byte.
1426  UnfilledBitsInLastUnit = 0;
1427  LastBitfieldTypeSize = 0;
1428
1429  uint64_t FieldOffset;
1430  uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1431
1432  if (IsUnion) {
1433    uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1434                                                           Context);
1435    setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1436    FieldOffset = 0;
1437  } else {
1438    // The bitfield is allocated starting at the next offset aligned
1439    // appropriately for T', with length n bits.
1440    FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1441
1442    uint64_t NewSizeInBits = FieldOffset + FieldSize;
1443
1444    setDataSize(
1445        llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1446    UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1447  }
1448
1449  // Place this field at the current location.
1450  FieldOffsets.push_back(FieldOffset);
1451
1452  CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1453                    Context.toBits(TypeAlign), FieldPacked, D);
1454
1455  // Update the size.
1456  setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1457
1458  // Remember max struct/class alignment.
1459  UpdateAlignment(TypeAlign);
1460}
1461
1462void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1463  bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1464  uint64_t FieldSize = D->getBitWidthValue(Context);
1465  TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1466  uint64_t TypeSize = FieldInfo.Width;
1467  unsigned FieldAlign = FieldInfo.Align;
1468
1469  // UnfilledBitsInLastUnit is the difference between the end of the
1470  // last allocated bitfield (i.e. the first bit offset available for
1471  // bitfields) and the end of the current data size in bits (i.e. the
1472  // first bit offset available for non-bitfields).  The current data
1473  // size in bits is always a multiple of the char size; additionally,
1474  // for ms_struct records it's also a multiple of the
1475  // LastBitfieldTypeSize (if set).
1476
1477  // The struct-layout algorithm is dictated by the platform ABI,
1478  // which in principle could use almost any rules it likes.  In
1479  // practice, UNIXy targets tend to inherit the algorithm described
1480  // in the System V generic ABI.  The basic bitfield layout rule in
1481  // System V is to place bitfields at the next available bit offset
1482  // where the entire bitfield would fit in an aligned storage unit of
1483  // the declared type; it's okay if an earlier or later non-bitfield
1484  // is allocated in the same storage unit.  However, some targets
1485  // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1486  // require this storage unit to be aligned, and therefore always put
1487  // the bitfield at the next available bit offset.
1488
1489  // ms_struct basically requests a complete replacement of the
1490  // platform ABI's struct-layout algorithm, with the high-level goal
1491  // of duplicating MSVC's layout.  For non-bitfields, this follows
1492  // the standard algorithm.  The basic bitfield layout rule is to
1493  // allocate an entire unit of the bitfield's declared type
1494  // (e.g. 'unsigned long'), then parcel it up among successive
1495  // bitfields whose declared types have the same size, making a new
1496  // unit as soon as the last can no longer store the whole value.
1497  // Since it completely replaces the platform ABI's algorithm,
1498  // settings like !useBitFieldTypeAlignment() do not apply.
1499
1500  // A zero-width bitfield forces the use of a new storage unit for
1501  // later bitfields.  In general, this occurs by rounding up the
1502  // current size of the struct as if the algorithm were about to
1503  // place a non-bitfield of the field's formal type.  Usually this
1504  // does not change the alignment of the struct itself, but it does
1505  // on some targets (those that useZeroLengthBitfieldAlignment(),
1506  // e.g. ARM).  In ms_struct layout, zero-width bitfields are
1507  // ignored unless they follow a non-zero-width bitfield.
1508
1509  // A field alignment restriction (e.g. from #pragma pack) or
1510  // specification (e.g. from __attribute__((aligned))) changes the
1511  // formal alignment of the field.  For System V, this alters the
1512  // required alignment of the notional storage unit that must contain
1513  // the bitfield.  For ms_struct, this only affects the placement of
1514  // new storage units.  In both cases, the effect of #pragma pack is
1515  // ignored on zero-width bitfields.
1516
1517  // On System V, a packed field (e.g. from #pragma pack or
1518  // __attribute__((packed))) always uses the next available bit
1519  // offset.
1520
1521  // In an ms_struct struct, the alignment of a fundamental type is
1522  // always equal to its size.  This is necessary in order to mimic
1523  // the i386 alignment rules on targets which might not fully align
1524  // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1525
1526  // First, some simple bookkeeping to perform for ms_struct structs.
1527  if (IsMsStruct) {
1528    // The field alignment for integer types is always the size.
1529    FieldAlign = TypeSize;
1530
1531    // If the previous field was not a bitfield, or was a bitfield
1532    // with a different storage unit size, or if this field doesn't fit into
1533    // the current storage unit, we're done with that storage unit.
1534    if (LastBitfieldTypeSize != TypeSize ||
1535        UnfilledBitsInLastUnit < FieldSize) {
1536      // Also, ignore zero-length bitfields after non-bitfields.
1537      if (!LastBitfieldTypeSize && !FieldSize)
1538        FieldAlign = 1;
1539
1540      UnfilledBitsInLastUnit = 0;
1541      LastBitfieldTypeSize = 0;
1542    }
1543  }
1544
1545  // If the field is wider than its declared type, it follows
1546  // different rules in all cases.
1547  if (FieldSize > TypeSize) {
1548    LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
1549    return;
1550  }
1551
1552  // Compute the next available bit offset.
1553  uint64_t FieldOffset =
1554    IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1555
1556  // Handle targets that don't honor bitfield type alignment.
1557  if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1558    // Some such targets do honor it on zero-width bitfields.
1559    if (FieldSize == 0 &&
1560        Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1561      // The alignment to round up to is the max of the field's natural
1562      // alignment and a target-specific fixed value (sometimes zero).
1563      unsigned ZeroLengthBitfieldBoundary =
1564        Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1565      FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1566
1567    // If that doesn't apply, just ignore the field alignment.
1568    } else {
1569      FieldAlign = 1;
1570    }
1571  }
1572
1573  // Remember the alignment we would have used if the field were not packed.
1574  unsigned UnpackedFieldAlign = FieldAlign;
1575
1576  // Ignore the field alignment if the field is packed unless it has zero-size.
1577  if (!IsMsStruct && FieldPacked && FieldSize != 0)
1578    FieldAlign = 1;
1579
1580  // But, if there's an 'aligned' attribute on the field, honor that.
1581  unsigned ExplicitFieldAlign = D->getMaxAlignment();
1582  if (ExplicitFieldAlign) {
1583    FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1584    UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1585  }
1586
1587  // But, if there's a #pragma pack in play, that takes precedent over
1588  // even the 'aligned' attribute, for non-zero-width bitfields.
1589  unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1590  if (!MaxFieldAlignment.isZero() && FieldSize) {
1591    UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1592    if (FieldPacked)
1593      FieldAlign = UnpackedFieldAlign;
1594    else
1595      FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1596  }
1597
1598  // But, ms_struct just ignores all of that in unions, even explicit
1599  // alignment attributes.
1600  if (IsMsStruct && IsUnion) {
1601    FieldAlign = UnpackedFieldAlign = 1;
1602  }
1603
1604  // For purposes of diagnostics, we're going to simultaneously
1605  // compute the field offsets that we would have used if we weren't
1606  // adding any alignment padding or if the field weren't packed.
1607  uint64_t UnpaddedFieldOffset = FieldOffset;
1608  uint64_t UnpackedFieldOffset = FieldOffset;
1609
1610  // Check if we need to add padding to fit the bitfield within an
1611  // allocation unit with the right size and alignment.  The rules are
1612  // somewhat different here for ms_struct structs.
1613  if (IsMsStruct) {
1614    // If it's not a zero-width bitfield, and we can fit the bitfield
1615    // into the active storage unit (and we haven't already decided to
1616    // start a new storage unit), just do so, regardless of any other
1617    // other consideration.  Otherwise, round up to the right alignment.
1618    if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1619      FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1620      UnpackedFieldOffset =
1621          llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1622      UnfilledBitsInLastUnit = 0;
1623    }
1624
1625  } else {
1626    // #pragma pack, with any value, suppresses the insertion of padding.
1627    bool AllowPadding = MaxFieldAlignment.isZero();
1628
1629    // Compute the real offset.
1630    if (FieldSize == 0 ||
1631        (AllowPadding &&
1632         (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
1633      FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1634    } else if (ExplicitFieldAlign &&
1635               (MaxFieldAlignmentInBits == 0 ||
1636                ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1637               Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1638      // TODO: figure it out what needs to be done on targets that don't honor
1639      // bit-field type alignment like ARM APCS ABI.
1640      FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1641    }
1642
1643    // Repeat the computation for diagnostic purposes.
1644    if (FieldSize == 0 ||
1645        (AllowPadding &&
1646         (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
1647      UnpackedFieldOffset =
1648          llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1649    else if (ExplicitFieldAlign &&
1650             (MaxFieldAlignmentInBits == 0 ||
1651              ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1652             Context.getTargetInfo().useExplicitBitFieldAlignment())
1653      UnpackedFieldOffset =
1654          llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1655  }
1656
1657  // If we're using external layout, give the external layout a chance
1658  // to override this information.
1659  if (UseExternalLayout)
1660    FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1661
1662  // Okay, place the bitfield at the calculated offset.
1663  FieldOffsets.push_back(FieldOffset);
1664
1665  // Bookkeeping:
1666
1667  // Anonymous members don't affect the overall record alignment,
1668  // except on targets where they do.
1669  if (!IsMsStruct &&
1670      !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1671      !D->getIdentifier())
1672    FieldAlign = UnpackedFieldAlign = 1;
1673
1674  // Diagnose differences in layout due to padding or packing.
1675  if (!UseExternalLayout)
1676    CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1677                      UnpackedFieldAlign, FieldPacked, D);
1678
1679  // Update DataSize to include the last byte containing (part of) the bitfield.
1680
1681  // For unions, this is just a max operation, as usual.
1682  if (IsUnion) {
1683    // For ms_struct, allocate the entire storage unit --- unless this
1684    // is a zero-width bitfield, in which case just use a size of 1.
1685    uint64_t RoundedFieldSize;
1686    if (IsMsStruct) {
1687      RoundedFieldSize =
1688        (FieldSize ? TypeSize : Context.getTargetInfo().getCharWidth());
1689
1690    // Otherwise, allocate just the number of bytes required to store
1691    // the bitfield.
1692    } else {
1693      RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1694    }
1695    setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1696
1697  // For non-zero-width bitfields in ms_struct structs, allocate a new
1698  // storage unit if necessary.
1699  } else if (IsMsStruct && FieldSize) {
1700    // We should have cleared UnfilledBitsInLastUnit in every case
1701    // where we changed storage units.
1702    if (!UnfilledBitsInLastUnit) {
1703      setDataSize(FieldOffset + TypeSize);
1704      UnfilledBitsInLastUnit = TypeSize;
1705    }
1706    UnfilledBitsInLastUnit -= FieldSize;
1707    LastBitfieldTypeSize = TypeSize;
1708
1709  // Otherwise, bump the data size up to include the bitfield,
1710  // including padding up to char alignment, and then remember how
1711  // bits we didn't use.
1712  } else {
1713    uint64_t NewSizeInBits = FieldOffset + FieldSize;
1714    uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1715    setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1716    UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1717
1718    // The only time we can get here for an ms_struct is if this is a
1719    // zero-width bitfield, which doesn't count as anything for the
1720    // purposes of unfilled bits.
1721    LastBitfieldTypeSize = 0;
1722  }
1723
1724  // Update the size.
1725  setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1726
1727  // Remember max struct/class alignment.
1728  UnadjustedAlignment =
1729      std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1730  UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1731                  Context.toCharUnitsFromBits(UnpackedFieldAlign));
1732}
1733
1734void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1735                                             bool InsertExtraPadding) {
1736  if (D->isBitField()) {
1737    LayoutBitField(D);
1738    return;
1739  }
1740
1741  uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1742
1743  // Reset the unfilled bits.
1744  UnfilledBitsInLastUnit = 0;
1745  LastBitfieldTypeSize = 0;
1746
1747  auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1748  bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
1749  bool IsOverlappingEmptyField = PotentiallyOverlapping && FieldClass->isEmpty();
1750  bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1751
1752  CharUnits FieldOffset = (IsUnion || IsOverlappingEmptyField)
1753                              ? CharUnits::Zero()
1754                              : getDataSize();
1755  CharUnits FieldSize;
1756  CharUnits FieldAlign;
1757  // The amount of this class's dsize occupied by the field.
1758  // This is equal to FieldSize unless we're permitted to pack
1759  // into the field's tail padding.
1760  CharUnits EffectiveFieldSize;
1761
1762  if (D->getType()->isIncompleteArrayType()) {
1763    // This is a flexible array member; we can't directly
1764    // query getTypeInfo about these, so we figure it out here.
1765    // Flexible array members don't have any size, but they
1766    // have to be aligned appropriately for their element type.
1767    EffectiveFieldSize = FieldSize = CharUnits::Zero();
1768    const ArrayType* ATy = Context.getAsArrayType(D->getType());
1769    FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
1770  } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1771    unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType());
1772    EffectiveFieldSize = FieldSize =
1773      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
1774    FieldAlign =
1775      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
1776  } else {
1777    std::pair<CharUnits, CharUnits> FieldInfo =
1778      Context.getTypeInfoInChars(D->getType());
1779    EffectiveFieldSize = FieldSize = FieldInfo.first;
1780    FieldAlign = FieldInfo.second;
1781
1782    // A potentially-overlapping field occupies its dsize or nvsize, whichever
1783    // is larger.
1784    if (PotentiallyOverlapping) {
1785      const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1786      EffectiveFieldSize =
1787          std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1788    }
1789
1790    if (IsMsStruct) {
1791      // If MS bitfield layout is required, figure out what type is being
1792      // laid out and align the field to the width of that type.
1793
1794      // Resolve all typedefs down to their base type and round up the field
1795      // alignment if necessary.
1796      QualType T = Context.getBaseElementType(D->getType());
1797      if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1798        CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1799
1800        if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1801          assert(
1802              !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1803              "Non PowerOf2 size in MSVC mode");
1804          // Base types with sizes that aren't a power of two don't work
1805          // with the layout rules for MS structs. This isn't an issue in
1806          // MSVC itself since there are no such base data types there.
1807          // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1808          // Any structs involving that data type obviously can't be ABI
1809          // compatible with MSVC regardless of how it is laid out.
1810
1811          // Since ms_struct can be mass enabled (via a pragma or via the
1812          // -mms-bitfields command line parameter), this can trigger for
1813          // structs that don't actually need MSVC compatibility, so we
1814          // need to be able to sidestep the ms_struct layout for these types.
1815
1816          // Since the combination of -mms-bitfields together with structs
1817          // like max_align_t (which contains a long double) for mingw is
1818          // quite comon (and GCC handles it silently), just handle it
1819          // silently there. For other targets that have ms_struct enabled
1820          // (most probably via a pragma or attribute), trigger a diagnostic
1821          // that defaults to an error.
1822          if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1823            Diag(D->getLocation(), diag::warn_npot_ms_struct);
1824        }
1825        if (TypeSize > FieldAlign &&
1826            llvm::isPowerOf2_64(TypeSize.getQuantity()))
1827          FieldAlign = TypeSize;
1828      }
1829    }
1830  }
1831
1832  // The align if the field is not packed. This is to check if the attribute
1833  // was unnecessary (-Wpacked).
1834  CharUnits UnpackedFieldAlign = FieldAlign;
1835  CharUnits UnpackedFieldOffset = FieldOffset;
1836
1837  if (FieldPacked)
1838    FieldAlign = CharUnits::One();
1839  CharUnits MaxAlignmentInChars =
1840    Context.toCharUnitsFromBits(D->getMaxAlignment());
1841  FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1842  UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1843
1844  // The maximum field alignment overrides the aligned attribute.
1845  if (!MaxFieldAlignment.isZero()) {
1846    FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1847    UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1848  }
1849
1850  // Round up the current record size to the field's alignment boundary.
1851  FieldOffset = FieldOffset.alignTo(FieldAlign);
1852  UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
1853
1854  if (UseExternalLayout) {
1855    FieldOffset = Context.toCharUnitsFromBits(
1856                    updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1857
1858    if (!IsUnion && EmptySubobjects) {
1859      // Record the fact that we're placing a field at this offset.
1860      bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1861      (void)Allowed;
1862      assert(Allowed && "Externally-placed field cannot be placed here");
1863    }
1864  } else {
1865    if (!IsUnion && EmptySubobjects) {
1866      // Check if we can place the field at this offset.
1867      while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
1868        // We couldn't place the field at the offset. Try again at a new offset.
1869        // We try offset 0 (for an empty field) and then dsize(C) onwards.
1870        if (FieldOffset == CharUnits::Zero() &&
1871            getDataSize() != CharUnits::Zero())
1872          FieldOffset = getDataSize().alignTo(FieldAlign);
1873        else
1874          FieldOffset += FieldAlign;
1875      }
1876    }
1877  }
1878
1879  // Place this field at the current location.
1880  FieldOffsets.push_back(Context.toBits(FieldOffset));
1881
1882  if (!UseExternalLayout)
1883    CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
1884                      Context.toBits(UnpackedFieldOffset),
1885                      Context.toBits(UnpackedFieldAlign), FieldPacked, D);
1886
1887  if (InsertExtraPadding) {
1888    CharUnits ASanAlignment = CharUnits::fromQuantity(8);
1889    CharUnits ExtraSizeForAsan = ASanAlignment;
1890    if (FieldSize % ASanAlignment)
1891      ExtraSizeForAsan +=
1892          ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
1893    EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
1894  }
1895
1896  // Reserve space for this field.
1897  if (!IsOverlappingEmptyField) {
1898    uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
1899    if (IsUnion)
1900      setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
1901    else
1902      setDataSize(FieldOffset + EffectiveFieldSize);
1903
1904    PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
1905    setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1906  } else {
1907    setSize(std::max(getSizeInBits(),
1908                     (uint64_t)Context.toBits(FieldOffset + FieldSize)));
1909  }
1910
1911  // Remember max struct/class alignment.
1912  UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
1913  UpdateAlignment(FieldAlign, UnpackedFieldAlign);
1914}
1915
1916void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
1917  // In C++, records cannot be of size 0.
1918  if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
1919    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
1920      // Compatibility with gcc requires a class (pod or non-pod)
1921      // which is not empty but of size 0; such as having fields of
1922      // array of zero-length, remains of Size 0
1923      if (RD->isEmpty())
1924        setSize(CharUnits::One());
1925    }
1926    else
1927      setSize(CharUnits::One());
1928  }
1929
1930  // If we have any remaining field tail padding, include that in the overall
1931  // size.
1932  setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
1933
1934  // Finally, round the size of the record up to the alignment of the
1935  // record itself.
1936  uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
1937  uint64_t UnpackedSizeInBits =
1938      llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
1939  uint64_t RoundedSize =
1940      llvm::alignTo(getSizeInBits(), Context.toBits(Alignment));
1941
1942  if (UseExternalLayout) {
1943    // If we're inferring alignment, and the external size is smaller than
1944    // our size after we've rounded up to alignment, conservatively set the
1945    // alignment to 1.
1946    if (InferAlignment && External.Size < RoundedSize) {
1947      Alignment = CharUnits::One();
1948      InferAlignment = false;
1949    }
1950    setSize(External.Size);
1951    return;
1952  }
1953
1954  // Set the size to the final size.
1955  setSize(RoundedSize);
1956
1957  unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1958  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1959    // Warn if padding was introduced to the struct/class/union.
1960    if (getSizeInBits() > UnpaddedSize) {
1961      unsigned PadSize = getSizeInBits() - UnpaddedSize;
1962      bool InBits = true;
1963      if (PadSize % CharBitNum == 0) {
1964        PadSize = PadSize / CharBitNum;
1965        InBits = false;
1966      }
1967      Diag(RD->getLocation(), diag::warn_padded_struct_size)
1968          << Context.getTypeDeclType(RD)
1969          << PadSize
1970          << (InBits ? 1 : 0); // (byte|bit)
1971    }
1972
1973    // Warn if we packed it unnecessarily, when the unpacked alignment is not
1974    // greater than the one after packing, the size in bits doesn't change and
1975    // the offset of each field is identical.
1976    if (Packed && UnpackedAlignment <= Alignment &&
1977        UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
1978      Diag(D->getLocation(), diag::warn_unnecessary_packed)
1979          << Context.getTypeDeclType(RD);
1980  }
1981}
1982
1983void ItaniumRecordLayoutBuilder::UpdateAlignment(
1984    CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
1985  // The alignment is not modified when using 'mac68k' alignment or when
1986  // we have an externally-supplied layout that also provides overall alignment.
1987  if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
1988    return;
1989
1990  if (NewAlignment > Alignment) {
1991    assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
1992           "Alignment not a power of 2");
1993    Alignment = NewAlignment;
1994  }
1995
1996  if (UnpackedNewAlignment > UnpackedAlignment) {
1997    assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
1998           "Alignment not a power of 2");
1999    UnpackedAlignment = UnpackedNewAlignment;
2000  }
2001}
2002
2003uint64_t
2004ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2005                                                      uint64_t ComputedOffset) {
2006  uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2007
2008  if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2009    // The externally-supplied field offset is before the field offset we
2010    // computed. Assume that the structure is packed.
2011    Alignment = CharUnits::One();
2012    InferAlignment = false;
2013  }
2014
2015  // Use the externally-supplied field offset.
2016  return ExternalFieldOffset;
2017}
2018
2019/// Get diagnostic %select index for tag kind for
2020/// field padding diagnostic message.
2021/// WARNING: Indexes apply to particular diagnostics only!
2022///
2023/// \returns diagnostic %select index.
2024static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2025  switch (Tag) {
2026  case TTK_Struct: return 0;
2027  case TTK_Interface: return 1;
2028  case TTK_Class: return 2;
2029  default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2030  }
2031}
2032
2033void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2034    uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2035    unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2036  // We let objc ivars without warning, objc interfaces generally are not used
2037  // for padding tricks.
2038  if (isa<ObjCIvarDecl>(D))
2039    return;
2040
2041  // Don't warn about structs created without a SourceLocation.  This can
2042  // be done by clients of the AST, such as codegen.
2043  if (D->getLocation().isInvalid())
2044    return;
2045
2046  unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2047
2048  // Warn if padding was introduced to the struct/class.
2049  if (!IsUnion && Offset > UnpaddedOffset) {
2050    unsigned PadSize = Offset - UnpaddedOffset;
2051    bool InBits = true;
2052    if (PadSize % CharBitNum == 0) {
2053      PadSize = PadSize / CharBitNum;
2054      InBits = false;
2055    }
2056    if (D->getIdentifier())
2057      Diag(D->getLocation(), diag::warn_padded_struct_field)
2058          << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2059          << Context.getTypeDeclType(D->getParent())
2060          << PadSize
2061          << (InBits ? 1 : 0) // (byte|bit)
2062          << D->getIdentifier();
2063    else
2064      Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2065          << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2066          << Context.getTypeDeclType(D->getParent())
2067          << PadSize
2068          << (InBits ? 1 : 0); // (byte|bit)
2069 }
2070 if (isPacked && Offset != UnpackedOffset) {
2071   HasPackedField = true;
2072 }
2073}
2074
2075static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2076                                               const CXXRecordDecl *RD) {
2077  // If a class isn't polymorphic it doesn't have a key function.
2078  if (!RD->isPolymorphic())
2079    return nullptr;
2080
2081  // A class that is not externally visible doesn't have a key function. (Or
2082  // at least, there's no point to assigning a key function to such a class;
2083  // this doesn't affect the ABI.)
2084  if (!RD->isExternallyVisible())
2085    return nullptr;
2086
2087  // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2088  // Same behavior as GCC.
2089  TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2090  if (TSK == TSK_ImplicitInstantiation ||
2091      TSK == TSK_ExplicitInstantiationDeclaration ||
2092      TSK == TSK_ExplicitInstantiationDefinition)
2093    return nullptr;
2094
2095  bool allowInlineFunctions =
2096    Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2097
2098  for (const CXXMethodDecl *MD : RD->methods()) {
2099    if (!MD->isVirtual())
2100      continue;
2101
2102    if (MD->isPure())
2103      continue;
2104
2105    // Ignore implicit member functions, they are always marked as inline, but
2106    // they don't have a body until they're defined.
2107    if (MD->isImplicit())
2108      continue;
2109
2110    if (MD->isInlineSpecified())
2111      continue;
2112
2113    if (MD->hasInlineBody())
2114      continue;
2115
2116    // Ignore inline deleted or defaulted functions.
2117    if (!MD->isUserProvided())
2118      continue;
2119
2120    // In certain ABIs, ignore functions with out-of-line inline definitions.
2121    if (!allowInlineFunctions) {
2122      const FunctionDecl *Def;
2123      if (MD->hasBody(Def) && Def->isInlineSpecified())
2124        continue;
2125    }
2126
2127    if (Context.getLangOpts().CUDA) {
2128      // While compiler may see key method in this TU, during CUDA
2129      // compilation we should ignore methods that are not accessible
2130      // on this side of compilation.
2131      if (Context.getLangOpts().CUDAIsDevice) {
2132        // In device mode ignore methods without __device__ attribute.
2133        if (!MD->hasAttr<CUDADeviceAttr>())
2134          continue;
2135      } else {
2136        // In host mode ignore __device__-only methods.
2137        if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2138          continue;
2139      }
2140    }
2141
2142    // If the key function is dllimport but the class isn't, then the class has
2143    // no key function. The DLL that exports the key function won't export the
2144    // vtable in this case.
2145    if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>())
2146      return nullptr;
2147
2148    // We found it.
2149    return MD;
2150  }
2151
2152  return nullptr;
2153}
2154
2155DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2156                                                   unsigned DiagID) {
2157  return Context.getDiagnostics().Report(Loc, DiagID);
2158}
2159
2160/// Does the target C++ ABI require us to skip over the tail-padding
2161/// of the given class (considering it as a base class) when allocating
2162/// objects?
2163static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2164  switch (ABI.getTailPaddingUseRules()) {
2165  case TargetCXXABI::AlwaysUseTailPadding:
2166    return false;
2167
2168  case TargetCXXABI::UseTailPaddingUnlessPOD03:
2169    // FIXME: To the extent that this is meant to cover the Itanium ABI
2170    // rules, we should implement the restrictions about over-sized
2171    // bitfields:
2172    //
2173    // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2174    //   In general, a type is considered a POD for the purposes of
2175    //   layout if it is a POD type (in the sense of ISO C++
2176    //   [basic.types]). However, a POD-struct or POD-union (in the
2177    //   sense of ISO C++ [class]) with a bitfield member whose
2178    //   declared width is wider than the declared type of the
2179    //   bitfield is not a POD for the purpose of layout.  Similarly,
2180    //   an array type is not a POD for the purpose of layout if the
2181    //   element type of the array is not a POD for the purpose of
2182    //   layout.
2183    //
2184    //   Where references to the ISO C++ are made in this paragraph,
2185    //   the Technical Corrigendum 1 version of the standard is
2186    //   intended.
2187    return RD->isPOD();
2188
2189  case TargetCXXABI::UseTailPaddingUnlessPOD11:
2190    // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2191    // but with a lot of abstraction penalty stripped off.  This does
2192    // assume that these properties are set correctly even in C++98
2193    // mode; fortunately, that is true because we want to assign
2194    // consistently semantics to the type-traits intrinsics (or at
2195    // least as many of them as possible).
2196    return RD->isTrivial() && RD->isCXX11StandardLayout();
2197  }
2198
2199  llvm_unreachable("bad tail-padding use kind");
2200}
2201
2202static bool isMsLayout(const ASTContext &Context) {
2203  return Context.getTargetInfo().getCXXABI().isMicrosoft();
2204}
2205
2206// This section contains an implementation of struct layout that is, up to the
2207// included tests, compatible with cl.exe (2013).  The layout produced is
2208// significantly different than those produced by the Itanium ABI.  Here we note
2209// the most important differences.
2210//
2211// * The alignment of bitfields in unions is ignored when computing the
2212//   alignment of the union.
2213// * The existence of zero-width bitfield that occurs after anything other than
2214//   a non-zero length bitfield is ignored.
2215// * There is no explicit primary base for the purposes of layout.  All bases
2216//   with vfptrs are laid out first, followed by all bases without vfptrs.
2217// * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2218//   function pointer) and a vbptr (virtual base pointer).  They can each be
2219//   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
2220//   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
2221//   placed after the lexicographically last non-virtual base.  This placement
2222//   is always before fields but can be in the middle of the non-virtual bases
2223//   due to the two-pass layout scheme for non-virtual-bases.
2224// * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2225//   the virtual base and is used in conjunction with virtual overrides during
2226//   construction and destruction.  This is always a 4 byte value and is used as
2227//   an alternative to constructor vtables.
2228// * vtordisps are allocated in a block of memory with size and alignment equal
2229//   to the alignment of the completed structure (before applying __declspec(
2230//   align())).  The vtordisp always occur at the end of the allocation block,
2231//   immediately prior to the virtual base.
2232// * vfptrs are injected after all bases and fields have been laid out.  In
2233//   order to guarantee proper alignment of all fields, the vfptr injection
2234//   pushes all bases and fields back by the alignment imposed by those bases
2235//   and fields.  This can potentially add a significant amount of padding.
2236//   vfptrs are always injected at offset 0.
2237// * vbptrs are injected after all bases and fields have been laid out.  In
2238//   order to guarantee proper alignment of all fields, the vfptr injection
2239//   pushes all bases and fields back by the alignment imposed by those bases
2240//   and fields.  This can potentially add a significant amount of padding.
2241//   vbptrs are injected immediately after the last non-virtual base as
2242//   lexicographically ordered in the code.  If this site isn't pointer aligned
2243//   the vbptr is placed at the next properly aligned location.  Enough padding
2244//   is added to guarantee a fit.
2245// * The last zero sized non-virtual base can be placed at the end of the
2246//   struct (potentially aliasing another object), or may alias with the first
2247//   field, even if they are of the same type.
2248// * The last zero size virtual base may be placed at the end of the struct
2249//   potentially aliasing another object.
2250// * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2251//   between bases or vbases with specific properties.  The criteria for
2252//   additional padding between two bases is that the first base is zero sized
2253//   or ends with a zero sized subobject and the second base is zero sized or
2254//   trails with a zero sized base or field (sharing of vfptrs can reorder the
2255//   layout of the so the leading base is not always the first one declared).
2256//   This rule does take into account fields that are not records, so padding
2257//   will occur even if the last field is, e.g. an int. The padding added for
2258//   bases is 1 byte.  The padding added between vbases depends on the alignment
2259//   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2260// * There is no concept of non-virtual alignment, non-virtual alignment and
2261//   alignment are always identical.
2262// * There is a distinction between alignment and required alignment.
2263//   __declspec(align) changes the required alignment of a struct.  This
2264//   alignment is _always_ obeyed, even in the presence of #pragma pack. A
2265//   record inherits required alignment from all of its fields and bases.
2266// * __declspec(align) on bitfields has the effect of changing the bitfield's
2267//   alignment instead of its required alignment.  This is the only known way
2268//   to make the alignment of a struct bigger than 8.  Interestingly enough
2269//   this alignment is also immune to the effects of #pragma pack and can be
2270//   used to create structures with large alignment under #pragma pack.
2271//   However, because it does not impact required alignment, such a structure,
2272//   when used as a field or base, will not be aligned if #pragma pack is
2273//   still active at the time of use.
2274//
2275// Known incompatibilities:
2276// * all: #pragma pack between fields in a record
2277// * 2010 and back: If the last field in a record is a bitfield, every object
2278//   laid out after the record will have extra padding inserted before it.  The
2279//   extra padding will have size equal to the size of the storage class of the
2280//   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
2281//   padding can be avoided by adding a 0 sized bitfield after the non-zero-
2282//   sized bitfield.
2283// * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2284//   greater due to __declspec(align()) then a second layout phase occurs after
2285//   The locations of the vf and vb pointers are known.  This layout phase
2286//   suffers from the "last field is a bitfield" bug in 2010 and results in
2287//   _every_ field getting padding put in front of it, potentially including the
2288//   vfptr, leaving the vfprt at a non-zero location which results in a fault if
2289//   anything tries to read the vftbl.  The second layout phase also treats
2290//   bitfields as separate entities and gives them each storage rather than
2291//   packing them.  Additionally, because this phase appears to perform a
2292//   (an unstable) sort on the members before laying them out and because merged
2293//   bitfields have the same address, the bitfields end up in whatever order
2294//   the sort left them in, a behavior we could never hope to replicate.
2295
2296namespace {
2297struct MicrosoftRecordLayoutBuilder {
2298  struct ElementInfo {
2299    CharUnits Size;
2300    CharUnits Alignment;
2301  };
2302  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2303  MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2304private:
2305  MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2306  void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2307public:
2308  void layout(const RecordDecl *RD);
2309  void cxxLayout(const CXXRecordDecl *RD);
2310  /// Initializes size and alignment and honors some flags.
2311  void initializeLayout(const RecordDecl *RD);
2312  /// Initialized C++ layout, compute alignment and virtual alignment and
2313  /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
2314  /// laid out.
2315  void initializeCXXLayout(const CXXRecordDecl *RD);
2316  void layoutNonVirtualBases(const CXXRecordDecl *RD);
2317  void layoutNonVirtualBase(const CXXRecordDecl *RD,
2318                            const CXXRecordDecl *BaseDecl,
2319                            const ASTRecordLayout &BaseLayout,
2320                            const ASTRecordLayout *&PreviousBaseLayout);
2321  void injectVFPtr(const CXXRecordDecl *RD);
2322  void injectVBPtr(const CXXRecordDecl *RD);
2323  /// Lays out the fields of the record.  Also rounds size up to
2324  /// alignment.
2325  void layoutFields(const RecordDecl *RD);
2326  void layoutField(const FieldDecl *FD);
2327  void layoutBitField(const FieldDecl *FD);
2328  /// Lays out a single zero-width bit-field in the record and handles
2329  /// special cases associated with zero-width bit-fields.
2330  void layoutZeroWidthBitField(const FieldDecl *FD);
2331  void layoutVirtualBases(const CXXRecordDecl *RD);
2332  void finalizeLayout(const RecordDecl *RD);
2333  /// Gets the size and alignment of a base taking pragma pack and
2334  /// __declspec(align) into account.
2335  ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2336  /// Gets the size and alignment of a field taking pragma  pack and
2337  /// __declspec(align) into account.  It also updates RequiredAlignment as a
2338  /// side effect because it is most convenient to do so here.
2339  ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2340  /// Places a field at an offset in CharUnits.
2341  void placeFieldAtOffset(CharUnits FieldOffset) {
2342    FieldOffsets.push_back(Context.toBits(FieldOffset));
2343  }
2344  /// Places a bitfield at a bit offset.
2345  void placeFieldAtBitOffset(uint64_t FieldOffset) {
2346    FieldOffsets.push_back(FieldOffset);
2347  }
2348  /// Compute the set of virtual bases for which vtordisps are required.
2349  void computeVtorDispSet(
2350      llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2351      const CXXRecordDecl *RD) const;
2352  const ASTContext &Context;
2353  /// The size of the record being laid out.
2354  CharUnits Size;
2355  /// The non-virtual size of the record layout.
2356  CharUnits NonVirtualSize;
2357  /// The data size of the record layout.
2358  CharUnits DataSize;
2359  /// The current alignment of the record layout.
2360  CharUnits Alignment;
2361  /// The maximum allowed field alignment. This is set by #pragma pack.
2362  CharUnits MaxFieldAlignment;
2363  /// The alignment that this record must obey.  This is imposed by
2364  /// __declspec(align()) on the record itself or one of its fields or bases.
2365  CharUnits RequiredAlignment;
2366  /// The size of the allocation of the currently active bitfield.
2367  /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2368  /// is true.
2369  CharUnits CurrentBitfieldSize;
2370  /// Offset to the virtual base table pointer (if one exists).
2371  CharUnits VBPtrOffset;
2372  /// Minimum record size possible.
2373  CharUnits MinEmptyStructSize;
2374  /// The size and alignment info of a pointer.
2375  ElementInfo PointerInfo;
2376  /// The primary base class (if one exists).
2377  const CXXRecordDecl *PrimaryBase;
2378  /// The class we share our vb-pointer with.
2379  const CXXRecordDecl *SharedVBPtrBase;
2380  /// The collection of field offsets.
2381  SmallVector<uint64_t, 16> FieldOffsets;
2382  /// Base classes and their offsets in the record.
2383  BaseOffsetsMapTy Bases;
2384  /// virtual base classes and their offsets in the record.
2385  ASTRecordLayout::VBaseOffsetsMapTy VBases;
2386  /// The number of remaining bits in our last bitfield allocation.
2387  /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2388  /// true.
2389  unsigned RemainingBitsInField;
2390  bool IsUnion : 1;
2391  /// True if the last field laid out was a bitfield and was not 0
2392  /// width.
2393  bool LastFieldIsNonZeroWidthBitfield : 1;
2394  /// True if the class has its own vftable pointer.
2395  bool HasOwnVFPtr : 1;
2396  /// True if the class has a vbtable pointer.
2397  bool HasVBPtr : 1;
2398  /// True if the last sub-object within the type is zero sized or the
2399  /// object itself is zero sized.  This *does not* count members that are not
2400  /// records.  Only used for MS-ABI.
2401  bool EndsWithZeroSizedObject : 1;
2402  /// True if this class is zero sized or first base is zero sized or
2403  /// has this property.  Only used for MS-ABI.
2404  bool LeadsWithZeroSizedBase : 1;
2405
2406  /// True if the external AST source provided a layout for this record.
2407  bool UseExternalLayout : 1;
2408
2409  /// The layout provided by the external AST source. Only active if
2410  /// UseExternalLayout is true.
2411  ExternalLayout External;
2412};
2413} // namespace
2414
2415MicrosoftRecordLayoutBuilder::ElementInfo
2416MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2417    const ASTRecordLayout &Layout) {
2418  ElementInfo Info;
2419  Info.Alignment = Layout.getAlignment();
2420  // Respect pragma pack.
2421  if (!MaxFieldAlignment.isZero())
2422    Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2423  // Track zero-sized subobjects here where it's already available.
2424  EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2425  // Respect required alignment, this is necessary because we may have adjusted
2426  // the alignment in the case of pragam pack.  Note that the required alignment
2427  // doesn't actually apply to the struct alignment at this point.
2428  Alignment = std::max(Alignment, Info.Alignment);
2429  RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2430  Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2431  Info.Size = Layout.getNonVirtualSize();
2432  return Info;
2433}
2434
2435MicrosoftRecordLayoutBuilder::ElementInfo
2436MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2437    const FieldDecl *FD) {
2438  // Get the alignment of the field type's natural alignment, ignore any
2439  // alignment attributes.
2440  ElementInfo Info;
2441  std::tie(Info.Size, Info.Alignment) =
2442      Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2443  // Respect align attributes on the field.
2444  CharUnits FieldRequiredAlignment =
2445      Context.toCharUnitsFromBits(FD->getMaxAlignment());
2446  // Respect align attributes on the type.
2447  if (Context.isAlignmentRequired(FD->getType()))
2448    FieldRequiredAlignment = std::max(
2449        Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2450  // Respect attributes applied to subobjects of the field.
2451  if (FD->isBitField())
2452    // For some reason __declspec align impacts alignment rather than required
2453    // alignment when it is applied to bitfields.
2454    Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2455  else {
2456    if (auto RT =
2457            FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2458      auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2459      EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2460      FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2461                                        Layout.getRequiredAlignment());
2462    }
2463    // Capture required alignment as a side-effect.
2464    RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2465  }
2466  // Respect pragma pack, attribute pack and declspec align
2467  if (!MaxFieldAlignment.isZero())
2468    Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2469  if (FD->hasAttr<PackedAttr>())
2470    Info.Alignment = CharUnits::One();
2471  Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2472  return Info;
2473}
2474
2475void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2476  // For C record layout, zero-sized records always have size 4.
2477  MinEmptyStructSize = CharUnits::fromQuantity(4);
2478  initializeLayout(RD);
2479  layoutFields(RD);
2480  DataSize = Size = Size.alignTo(Alignment);
2481  RequiredAlignment = std::max(
2482      RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2483  finalizeLayout(RD);
2484}
2485
2486void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2487  // The C++ standard says that empty structs have size 1.
2488  MinEmptyStructSize = CharUnits::One();
2489  initializeLayout(RD);
2490  initializeCXXLayout(RD);
2491  layoutNonVirtualBases(RD);
2492  layoutFields(RD);
2493  injectVBPtr(RD);
2494  injectVFPtr(RD);
2495  if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2496    Alignment = std::max(Alignment, PointerInfo.Alignment);
2497  auto RoundingAlignment = Alignment;
2498  if (!MaxFieldAlignment.isZero())
2499    RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2500  if (!UseExternalLayout)
2501    Size = Size.alignTo(RoundingAlignment);
2502  NonVirtualSize = Size;
2503  RequiredAlignment = std::max(
2504      RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2505  layoutVirtualBases(RD);
2506  finalizeLayout(RD);
2507}
2508
2509void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2510  IsUnion = RD->isUnion();
2511  Size = CharUnits::Zero();
2512  Alignment = CharUnits::One();
2513  // In 64-bit mode we always perform an alignment step after laying out vbases.
2514  // In 32-bit mode we do not.  The check to see if we need to perform alignment
2515  // checks the RequiredAlignment field and performs alignment if it isn't 0.
2516  RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2517                          ? CharUnits::One()
2518                          : CharUnits::Zero();
2519  // Compute the maximum field alignment.
2520  MaxFieldAlignment = CharUnits::Zero();
2521  // Honor the default struct packing maximum alignment flag.
2522  if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2523      MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2524  // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
2525  // than the pointer size.
2526  if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2527    unsigned PackedAlignment = MFAA->getAlignment();
2528    if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2529      MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2530  }
2531  // Packed attribute forces max field alignment to be 1.
2532  if (RD->hasAttr<PackedAttr>())
2533    MaxFieldAlignment = CharUnits::One();
2534
2535  // Try to respect the external layout if present.
2536  UseExternalLayout = false;
2537  if (ExternalASTSource *Source = Context.getExternalSource())
2538    UseExternalLayout = Source->layoutRecordType(
2539        RD, External.Size, External.Align, External.FieldOffsets,
2540        External.BaseOffsets, External.VirtualBaseOffsets);
2541}
2542
2543void
2544MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2545  EndsWithZeroSizedObject = false;
2546  LeadsWithZeroSizedBase = false;
2547  HasOwnVFPtr = false;
2548  HasVBPtr = false;
2549  PrimaryBase = nullptr;
2550  SharedVBPtrBase = nullptr;
2551  // Calculate pointer size and alignment.  These are used for vfptr and vbprt
2552  // injection.
2553  PointerInfo.Size =
2554      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2555  PointerInfo.Alignment =
2556      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2557  // Respect pragma pack.
2558  if (!MaxFieldAlignment.isZero())
2559    PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2560}
2561
2562void
2563MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2564  // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2565  // out any bases that do not contain vfptrs.  We implement this as two passes
2566  // over the bases.  This approach guarantees that the primary base is laid out
2567  // first.  We use these passes to calculate some additional aggregated
2568  // information about the bases, such as required alignment and the presence of
2569  // zero sized members.
2570  const ASTRecordLayout *PreviousBaseLayout = nullptr;
2571  // Iterate through the bases and lay out the non-virtual ones.
2572  for (const CXXBaseSpecifier &Base : RD->bases()) {
2573    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2574    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2575    // Mark and skip virtual bases.
2576    if (Base.isVirtual()) {
2577      HasVBPtr = true;
2578      continue;
2579    }
2580    // Check for a base to share a VBPtr with.
2581    if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2582      SharedVBPtrBase = BaseDecl;
2583      HasVBPtr = true;
2584    }
2585    // Only lay out bases with extendable VFPtrs on the first pass.
2586    if (!BaseLayout.hasExtendableVFPtr())
2587      continue;
2588    // If we don't have a primary base, this one qualifies.
2589    if (!PrimaryBase) {
2590      PrimaryBase = BaseDecl;
2591      LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2592    }
2593    // Lay out the base.
2594    layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2595  }
2596  // Figure out if we need a fresh VFPtr for this class.
2597  if (!PrimaryBase && RD->isDynamicClass())
2598    for (CXXRecordDecl::method_iterator i = RD->method_begin(),
2599                                        e = RD->method_end();
2600         !HasOwnVFPtr && i != e; ++i)
2601      HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
2602  // If we don't have a primary base then we have a leading object that could
2603  // itself lead with a zero-sized object, something we track.
2604  bool CheckLeadingLayout = !PrimaryBase;
2605  // Iterate through the bases and lay out the non-virtual ones.
2606  for (const CXXBaseSpecifier &Base : RD->bases()) {
2607    if (Base.isVirtual())
2608      continue;
2609    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2610    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2611    // Only lay out bases without extendable VFPtrs on the second pass.
2612    if (BaseLayout.hasExtendableVFPtr()) {
2613      VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2614      continue;
2615    }
2616    // If this is the first layout, check to see if it leads with a zero sized
2617    // object.  If it does, so do we.
2618    if (CheckLeadingLayout) {
2619      CheckLeadingLayout = false;
2620      LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2621    }
2622    // Lay out the base.
2623    layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2624    VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2625  }
2626  // Set our VBPtroffset if we know it at this point.
2627  if (!HasVBPtr)
2628    VBPtrOffset = CharUnits::fromQuantity(-1);
2629  else if (SharedVBPtrBase) {
2630    const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2631    VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2632  }
2633}
2634
2635static bool recordUsesEBO(const RecordDecl *RD) {
2636  if (!isa<CXXRecordDecl>(RD))
2637    return false;
2638  if (RD->hasAttr<EmptyBasesAttr>())
2639    return true;
2640  if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2641    // TODO: Double check with the next version of MSVC.
2642    if (LVA->getVersion() <= LangOptions::MSVC2015)
2643      return false;
2644  // TODO: Some later version of MSVC will change the default behavior of the
2645  // compiler to enable EBO by default.  When this happens, we will need an
2646  // additional isCompatibleWithMSVC check.
2647  return false;
2648}
2649
2650void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2651    const CXXRecordDecl *RD,
2652    const CXXRecordDecl *BaseDecl,
2653    const ASTRecordLayout &BaseLayout,
2654    const ASTRecordLayout *&PreviousBaseLayout) {
2655  // Insert padding between two bases if the left first one is zero sized or
2656  // contains a zero sized subobject and the right is zero sized or one leads
2657  // with a zero sized base.
2658  bool MDCUsesEBO = recordUsesEBO(RD);
2659  if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2660      BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2661    Size++;
2662  ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2663  CharUnits BaseOffset;
2664
2665  // Respect the external AST source base offset, if present.
2666  bool FoundBase = false;
2667  if (UseExternalLayout) {
2668    FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2669    if (FoundBase) {
2670      assert(BaseOffset >= Size && "base offset already allocated");
2671      Size = BaseOffset;
2672    }
2673  }
2674
2675  if (!FoundBase) {
2676    if (MDCUsesEBO && BaseDecl->isEmpty()) {
2677      assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2678      BaseOffset = CharUnits::Zero();
2679    } else {
2680      // Otherwise, lay the base out at the end of the MDC.
2681      BaseOffset = Size = Size.alignTo(Info.Alignment);
2682    }
2683  }
2684  Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2685  Size += BaseLayout.getNonVirtualSize();
2686  PreviousBaseLayout = &BaseLayout;
2687}
2688
2689void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2690  LastFieldIsNonZeroWidthBitfield = false;
2691  for (const FieldDecl *Field : RD->fields())
2692    layoutField(Field);
2693}
2694
2695void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2696  if (FD->isBitField()) {
2697    layoutBitField(FD);
2698    return;
2699  }
2700  LastFieldIsNonZeroWidthBitfield = false;
2701  ElementInfo Info = getAdjustedElementInfo(FD);
2702  Alignment = std::max(Alignment, Info.Alignment);
2703  CharUnits FieldOffset;
2704  if (UseExternalLayout)
2705    FieldOffset =
2706        Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2707  else if (IsUnion)
2708    FieldOffset = CharUnits::Zero();
2709  else
2710    FieldOffset = Size.alignTo(Info.Alignment);
2711  placeFieldAtOffset(FieldOffset);
2712  Size = std::max(Size, FieldOffset + Info.Size);
2713}
2714
2715void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2716  unsigned Width = FD->getBitWidthValue(Context);
2717  if (Width == 0) {
2718    layoutZeroWidthBitField(FD);
2719    return;
2720  }
2721  ElementInfo Info = getAdjustedElementInfo(FD);
2722  // Clamp the bitfield to a containable size for the sake of being able
2723  // to lay them out.  Sema will throw an error.
2724  if (Width > Context.toBits(Info.Size))
2725    Width = Context.toBits(Info.Size);
2726  // Check to see if this bitfield fits into an existing allocation.  Note:
2727  // MSVC refuses to pack bitfields of formal types with different sizes
2728  // into the same allocation.
2729  if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2730      CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2731    placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2732    RemainingBitsInField -= Width;
2733    return;
2734  }
2735  LastFieldIsNonZeroWidthBitfield = true;
2736  CurrentBitfieldSize = Info.Size;
2737  if (UseExternalLayout) {
2738    auto FieldBitOffset = External.getExternalFieldOffset(FD);
2739    placeFieldAtBitOffset(FieldBitOffset);
2740    auto NewSize = Context.toCharUnitsFromBits(
2741        llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
2742        Context.toBits(Info.Size));
2743    Size = std::max(Size, NewSize);
2744    Alignment = std::max(Alignment, Info.Alignment);
2745  } else if (IsUnion) {
2746    placeFieldAtOffset(CharUnits::Zero());
2747    Size = std::max(Size, Info.Size);
2748    // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2749  } else {
2750    // Allocate a new block of memory and place the bitfield in it.
2751    CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2752    placeFieldAtOffset(FieldOffset);
2753    Size = FieldOffset + Info.Size;
2754    Alignment = std::max(Alignment, Info.Alignment);
2755    RemainingBitsInField = Context.toBits(Info.Size) - Width;
2756  }
2757}
2758
2759void
2760MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2761  // Zero-width bitfields are ignored unless they follow a non-zero-width
2762  // bitfield.
2763  if (!LastFieldIsNonZeroWidthBitfield) {
2764    placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2765    // TODO: Add a Sema warning that MS ignores alignment for zero
2766    // sized bitfields that occur after zero-size bitfields or non-bitfields.
2767    return;
2768  }
2769  LastFieldIsNonZeroWidthBitfield = false;
2770  ElementInfo Info = getAdjustedElementInfo(FD);
2771  if (IsUnion) {
2772    placeFieldAtOffset(CharUnits::Zero());
2773    Size = std::max(Size, Info.Size);
2774    // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2775  } else {
2776    // Round up the current record size to the field's alignment boundary.
2777    CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2778    placeFieldAtOffset(FieldOffset);
2779    Size = FieldOffset;
2780    Alignment = std::max(Alignment, Info.Alignment);
2781  }
2782}
2783
2784void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2785  if (!HasVBPtr || SharedVBPtrBase)
2786    return;
2787  // Inject the VBPointer at the injection site.
2788  CharUnits InjectionSite = VBPtrOffset;
2789  // But before we do, make sure it's properly aligned.
2790  VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
2791  // Determine where the first field should be laid out after the vbptr.
2792  CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2793  // Shift everything after the vbptr down, unless we're using an external
2794  // layout.
2795  if (UseExternalLayout) {
2796    // It is possible that there were no fields or bases located after vbptr,
2797    // so the size was not adjusted before.
2798    if (Size < FieldStart)
2799      Size = FieldStart;
2800    return;
2801  }
2802  // Make sure that the amount we push the fields back by is a multiple of the
2803  // alignment.
2804  CharUnits Offset = (FieldStart - InjectionSite)
2805                         .alignTo(std::max(RequiredAlignment, Alignment));
2806  Size += Offset;
2807  for (uint64_t &FieldOffset : FieldOffsets)
2808    FieldOffset += Context.toBits(Offset);
2809  for (BaseOffsetsMapTy::value_type &Base : Bases)
2810    if (Base.second >= InjectionSite)
2811      Base.second += Offset;
2812}
2813
2814void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
2815  if (!HasOwnVFPtr)
2816    return;
2817  // Make sure that the amount we push the struct back by is a multiple of the
2818  // alignment.
2819  CharUnits Offset =
2820      PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
2821  // Push back the vbptr, but increase the size of the object and push back
2822  // regular fields by the offset only if not using external record layout.
2823  if (HasVBPtr)
2824    VBPtrOffset += Offset;
2825
2826  if (UseExternalLayout) {
2827    // The class may have no bases or fields, but still have a vfptr
2828    // (e.g. it's an interface class). The size was not correctly set before
2829    // in this case.
2830    if (FieldOffsets.empty() && Bases.empty())
2831      Size += Offset;
2832    return;
2833  }
2834
2835  Size += Offset;
2836
2837  // If we're using an external layout, the fields offsets have already
2838  // accounted for this adjustment.
2839  for (uint64_t &FieldOffset : FieldOffsets)
2840    FieldOffset += Context.toBits(Offset);
2841  for (BaseOffsetsMapTy::value_type &Base : Bases)
2842    Base.second += Offset;
2843}
2844
2845void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
2846  if (!HasVBPtr)
2847    return;
2848  // Vtordisps are always 4 bytes (even in 64-bit mode)
2849  CharUnits VtorDispSize = CharUnits::fromQuantity(4);
2850  CharUnits VtorDispAlignment = VtorDispSize;
2851  // vtordisps respect pragma pack.
2852  if (!MaxFieldAlignment.isZero())
2853    VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
2854  // The alignment of the vtordisp is at least the required alignment of the
2855  // entire record.  This requirement may be present to support vtordisp
2856  // injection.
2857  for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2858    const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2859    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2860    RequiredAlignment =
2861        std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
2862  }
2863  VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
2864  // Compute the vtordisp set.
2865  llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
2866  computeVtorDispSet(HasVtorDispSet, RD);
2867  // Iterate through the virtual bases and lay them out.
2868  const ASTRecordLayout *PreviousBaseLayout = nullptr;
2869  for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2870    const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2871    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2872    bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
2873    // Insert padding between two bases if the left first one is zero sized or
2874    // contains a zero sized subobject and the right is zero sized or one leads
2875    // with a zero sized base.  The padding between virtual bases is 4
2876    // bytes (in both 32 and 64 bits modes) and always involves rounding up to
2877    // the required alignment, we don't know why.
2878    if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2879         BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
2880        HasVtordisp) {
2881      Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
2882      Alignment = std::max(VtorDispAlignment, Alignment);
2883    }
2884    // Insert the virtual base.
2885    ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2886    CharUnits BaseOffset;
2887
2888    // Respect the external AST source base offset, if present.
2889    if (UseExternalLayout) {
2890      if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
2891        BaseOffset = Size;
2892    } else
2893      BaseOffset = Size.alignTo(Info.Alignment);
2894
2895    assert(BaseOffset >= Size && "base offset already allocated");
2896
2897    VBases.insert(std::make_pair(BaseDecl,
2898        ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
2899    Size = BaseOffset + BaseLayout.getNonVirtualSize();
2900    PreviousBaseLayout = &BaseLayout;
2901  }
2902}
2903
2904void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
2905  // Respect required alignment.  Note that in 32-bit mode Required alignment
2906  // may be 0 and cause size not to be updated.
2907  DataSize = Size;
2908  if (!RequiredAlignment.isZero()) {
2909    Alignment = std::max(Alignment, RequiredAlignment);
2910    auto RoundingAlignment = Alignment;
2911    if (!MaxFieldAlignment.isZero())
2912      RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2913    RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
2914    Size = Size.alignTo(RoundingAlignment);
2915  }
2916  if (Size.isZero()) {
2917    if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
2918      EndsWithZeroSizedObject = true;
2919      LeadsWithZeroSizedBase = true;
2920    }
2921    // Zero-sized structures have size equal to their alignment if a
2922    // __declspec(align) came into play.
2923    if (RequiredAlignment >= MinEmptyStructSize)
2924      Size = Alignment;
2925    else
2926      Size = MinEmptyStructSize;
2927  }
2928
2929  if (UseExternalLayout) {
2930    Size = Context.toCharUnitsFromBits(External.Size);
2931    if (External.Align)
2932      Alignment = Context.toCharUnitsFromBits(External.Align);
2933  }
2934}
2935
2936// Recursively walks the non-virtual bases of a class and determines if any of
2937// them are in the bases with overridden methods set.
2938static bool
2939RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
2940                     BasesWithOverriddenMethods,
2941                 const CXXRecordDecl *RD) {
2942  if (BasesWithOverriddenMethods.count(RD))
2943    return true;
2944  // If any of a virtual bases non-virtual bases (recursively) requires a
2945  // vtordisp than so does this virtual base.
2946  for (const CXXBaseSpecifier &Base : RD->bases())
2947    if (!Base.isVirtual() &&
2948        RequiresVtordisp(BasesWithOverriddenMethods,
2949                         Base.getType()->getAsCXXRecordDecl()))
2950      return true;
2951  return false;
2952}
2953
2954void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
2955    llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
2956    const CXXRecordDecl *RD) const {
2957  // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
2958  // vftables.
2959  if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
2960    for (const CXXBaseSpecifier &Base : RD->vbases()) {
2961      const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2962      const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2963      if (Layout.hasExtendableVFPtr())
2964        HasVtordispSet.insert(BaseDecl);
2965    }
2966    return;
2967  }
2968
2969  // If any of our bases need a vtordisp for this type, so do we.  Check our
2970  // direct bases for vtordisp requirements.
2971  for (const CXXBaseSpecifier &Base : RD->bases()) {
2972    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2973    const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2974    for (const auto &bi : Layout.getVBaseOffsetsMap())
2975      if (bi.second.hasVtorDisp())
2976        HasVtordispSet.insert(bi.first);
2977  }
2978  // We don't introduce any additional vtordisps if either:
2979  // * A user declared constructor or destructor aren't declared.
2980  // * #pragma vtordisp(0) or the /vd0 flag are in use.
2981  if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
2982      RD->getMSVtorDispMode() == MSVtorDispMode::Never)
2983    return;
2984  // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
2985  // possible for a partially constructed object with virtual base overrides to
2986  // escape a non-trivial constructor.
2987  assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
2988  // Compute a set of base classes which define methods we override.  A virtual
2989  // base in this set will require a vtordisp.  A virtual base that transitively
2990  // contains one of these bases as a non-virtual base will also require a
2991  // vtordisp.
2992  llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
2993  llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
2994  // Seed the working set with our non-destructor, non-pure virtual methods.
2995  for (const CXXMethodDecl *MD : RD->methods())
2996    if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure())
2997      Work.insert(MD);
2998  while (!Work.empty()) {
2999    const CXXMethodDecl *MD = *Work.begin();
3000    auto MethodRange = MD->overridden_methods();
3001    // If a virtual method has no-overrides it lives in its parent's vtable.
3002    if (MethodRange.begin() == MethodRange.end())
3003      BasesWithOverriddenMethods.insert(MD->getParent());
3004    else
3005      Work.insert(MethodRange.begin(), MethodRange.end());
3006    // We've finished processing this element, remove it from the working set.
3007    Work.erase(MD);
3008  }
3009  // For each of our virtual bases, check if it is in the set of overridden
3010  // bases or if it transitively contains a non-virtual base that is.
3011  for (const CXXBaseSpecifier &Base : RD->vbases()) {
3012    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3013    if (!HasVtordispSet.count(BaseDecl) &&
3014        RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3015      HasVtordispSet.insert(BaseDecl);
3016  }
3017}
3018
3019/// getASTRecordLayout - Get or compute information about the layout of the
3020/// specified record (struct/union/class), which indicates its size and field
3021/// position information.
3022const ASTRecordLayout &
3023ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3024  // These asserts test different things.  A record has a definition
3025  // as soon as we begin to parse the definition.  That definition is
3026  // not a complete definition (which is what isDefinition() tests)
3027  // until we *finish* parsing the definition.
3028
3029  if (D->hasExternalLexicalStorage() && !D->getDefinition())
3030    getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3031
3032  D = D->getDefinition();
3033  assert(D && "Cannot get layout of forward declarations!");
3034  assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3035  assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3036
3037  // Look up this layout, if already laid out, return what we have.
3038  // Note that we can't save a reference to the entry because this function
3039  // is recursive.
3040  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3041  if (Entry) return *Entry;
3042
3043  const ASTRecordLayout *NewEntry = nullptr;
3044
3045  if (isMsLayout(*this)) {
3046    MicrosoftRecordLayoutBuilder Builder(*this);
3047    if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3048      Builder.cxxLayout(RD);
3049      NewEntry = new (*this) ASTRecordLayout(
3050          *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3051          Builder.RequiredAlignment,
3052          Builder.HasOwnVFPtr, Builder.HasOwnVFPtr || Builder.PrimaryBase,
3053          Builder.VBPtrOffset, Builder.DataSize, Builder.FieldOffsets,
3054          Builder.NonVirtualSize, Builder.Alignment, CharUnits::Zero(),
3055          Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3056          Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3057          Builder.Bases, Builder.VBases);
3058    } else {
3059      Builder.layout(D);
3060      NewEntry = new (*this) ASTRecordLayout(
3061          *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3062          Builder.RequiredAlignment,
3063          Builder.Size, Builder.FieldOffsets);
3064    }
3065  } else {
3066    if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3067      EmptySubobjectMap EmptySubobjects(*this, RD);
3068      ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3069      Builder.Layout(RD);
3070
3071      // In certain situations, we are allowed to lay out objects in the
3072      // tail-padding of base classes.  This is ABI-dependent.
3073      // FIXME: this should be stored in the record layout.
3074      bool skipTailPadding =
3075          mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3076
3077      // FIXME: This should be done in FinalizeLayout.
3078      CharUnits DataSize =
3079          skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3080      CharUnits NonVirtualSize =
3081          skipTailPadding ? DataSize : Builder.NonVirtualSize;
3082      NewEntry = new (*this) ASTRecordLayout(
3083          *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment,
3084          /*RequiredAlignment : used by MS-ABI)*/
3085          Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3086          CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3087          NonVirtualSize, Builder.NonVirtualAlignment,
3088          EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3089          Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3090          Builder.VBases);
3091    } else {
3092      ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3093      Builder.Layout(D);
3094
3095      NewEntry = new (*this) ASTRecordLayout(
3096          *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment,
3097          /*RequiredAlignment : used by MS-ABI)*/
3098          Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3099    }
3100  }
3101
3102  ASTRecordLayouts[D] = NewEntry;
3103
3104  if (getLangOpts().DumpRecordLayouts) {
3105    llvm::outs() << "\n*** Dumping AST Record Layout\n";
3106    DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3107  }
3108
3109  return *NewEntry;
3110}
3111
3112const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3113  if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3114    return nullptr;
3115
3116  assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3117  RD = RD->getDefinition();
3118
3119  // Beware:
3120  //  1) computing the key function might trigger deserialization, which might
3121  //     invalidate iterators into KeyFunctions
3122  //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
3123  //     invalidate the LazyDeclPtr within the map itself
3124  LazyDeclPtr Entry = KeyFunctions[RD];
3125  const Decl *Result =
3126      Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3127
3128  // Store it back if it changed.
3129  if (Entry.isOffset() || Entry.isValid() != bool(Result))
3130    KeyFunctions[RD] = const_cast<Decl*>(Result);
3131
3132  return cast_or_null<CXXMethodDecl>(Result);
3133}
3134
3135void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3136  assert(Method == Method->getFirstDecl() &&
3137         "not working with method declaration from class definition");
3138
3139  // Look up the cache entry.  Since we're working with the first
3140  // declaration, its parent must be the class definition, which is
3141  // the correct key for the KeyFunctions hash.
3142  const auto &Map = KeyFunctions;
3143  auto I = Map.find(Method->getParent());
3144
3145  // If it's not cached, there's nothing to do.
3146  if (I == Map.end()) return;
3147
3148  // If it is cached, check whether it's the target method, and if so,
3149  // remove it from the cache. Note, the call to 'get' might invalidate
3150  // the iterator and the LazyDeclPtr object within the map.
3151  LazyDeclPtr Ptr = I->second;
3152  if (Ptr.get(getExternalSource()) == Method) {
3153    // FIXME: remember that we did this for module / chained PCH state?
3154    KeyFunctions.erase(Method->getParent());
3155  }
3156}
3157
3158static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3159  const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3160  return Layout.getFieldOffset(FD->getFieldIndex());
3161}
3162
3163uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3164  uint64_t OffsetInBits;
3165  if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3166    OffsetInBits = ::getFieldOffset(*this, FD);
3167  } else {
3168    const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3169
3170    OffsetInBits = 0;
3171    for (const NamedDecl *ND : IFD->chain())
3172      OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3173  }
3174
3175  return OffsetInBits;
3176}
3177
3178uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3179                                          const ObjCImplementationDecl *ID,
3180                                          const ObjCIvarDecl *Ivar) const {
3181  const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3182
3183  // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3184  // in here; it should never be necessary because that should be the lexical
3185  // decl context for the ivar.
3186
3187  // If we know have an implementation (and the ivar is in it) then
3188  // look up in the implementation layout.
3189  const ASTRecordLayout *RL;
3190  if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3191    RL = &getASTObjCImplementationLayout(ID);
3192  else
3193    RL = &getASTObjCInterfaceLayout(Container);
3194
3195  // Compute field index.
3196  //
3197  // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3198  // implemented. This should be fixed to get the information from the layout
3199  // directly.
3200  unsigned Index = 0;
3201
3202  for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3203       IVD; IVD = IVD->getNextIvar()) {
3204    if (Ivar == IVD)
3205      break;
3206    ++Index;
3207  }
3208  assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3209
3210  return RL->getFieldOffset(Index);
3211}
3212
3213/// getObjCLayout - Get or compute information about the layout of the
3214/// given interface.
3215///
3216/// \param Impl - If given, also include the layout of the interface's
3217/// implementation. This may differ by including synthesized ivars.
3218const ASTRecordLayout &
3219ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3220                          const ObjCImplementationDecl *Impl) const {
3221  // Retrieve the definition
3222  if (D->hasExternalLexicalStorage() && !D->getDefinition())
3223    getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3224  D = D->getDefinition();
3225  assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
3226
3227  // Look up this layout, if already laid out, return what we have.
3228  const ObjCContainerDecl *Key =
3229    Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3230  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3231    return *Entry;
3232
3233  // Add in synthesized ivar count if laying out an implementation.
3234  if (Impl) {
3235    unsigned SynthCount = CountNonClassIvars(D);
3236    // If there aren't any synthesized ivars then reuse the interface
3237    // entry. Note we can't cache this because we simply free all
3238    // entries later; however we shouldn't look up implementations
3239    // frequently.
3240    if (SynthCount == 0)
3241      return getObjCLayout(D, nullptr);
3242  }
3243
3244  ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3245  Builder.Layout(D);
3246
3247  const ASTRecordLayout *NewEntry =
3248    new (*this) ASTRecordLayout(*this, Builder.getSize(),
3249                                Builder.Alignment,
3250                                Builder.UnadjustedAlignment,
3251                                /*RequiredAlignment : used by MS-ABI)*/
3252                                Builder.Alignment,
3253                                Builder.getDataSize(),
3254                                Builder.FieldOffsets);
3255
3256  ObjCLayouts[Key] = NewEntry;
3257
3258  return *NewEntry;
3259}
3260
3261static void PrintOffset(raw_ostream &OS,
3262                        CharUnits Offset, unsigned IndentLevel) {
3263  OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3264  OS.indent(IndentLevel * 2);
3265}
3266
3267static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3268                                unsigned Begin, unsigned Width,
3269                                unsigned IndentLevel) {
3270  llvm::SmallString<10> Buffer;
3271  {
3272    llvm::raw_svector_ostream BufferOS(Buffer);
3273    BufferOS << Offset.getQuantity() << ':';
3274    if (Width == 0) {
3275      BufferOS << '-';
3276    } else {
3277      BufferOS << Begin << '-' << (Begin + Width - 1);
3278    }
3279  }
3280
3281  OS << llvm::right_justify(Buffer, 10) << " | ";
3282  OS.indent(IndentLevel * 2);
3283}
3284
3285static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3286  OS << "           | ";
3287  OS.indent(IndentLevel * 2);
3288}
3289
3290static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3291                             const ASTContext &C,
3292                             CharUnits Offset,
3293                             unsigned IndentLevel,
3294                             const char* Description,
3295                             bool PrintSizeInfo,
3296                             bool IncludeVirtualBases) {
3297  const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3298  auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3299
3300  PrintOffset(OS, Offset, IndentLevel);
3301  OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
3302  if (Description)
3303    OS << ' ' << Description;
3304  if (CXXRD && CXXRD->isEmpty())
3305    OS << " (empty)";
3306  OS << '\n';
3307
3308  IndentLevel++;
3309
3310  // Dump bases.
3311  if (CXXRD) {
3312    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3313    bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3314    bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3315
3316    // Vtable pointer.
3317    if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3318      PrintOffset(OS, Offset, IndentLevel);
3319      OS << '(' << *RD << " vtable pointer)\n";
3320    } else if (HasOwnVFPtr) {
3321      PrintOffset(OS, Offset, IndentLevel);
3322      // vfptr (for Microsoft C++ ABI)
3323      OS << '(' << *RD << " vftable pointer)\n";
3324    }
3325
3326    // Collect nvbases.
3327    SmallVector<const CXXRecordDecl *, 4> Bases;
3328    for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3329      assert(!Base.getType()->isDependentType() &&
3330             "Cannot layout class with dependent bases.");
3331      if (!Base.isVirtual())
3332        Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3333    }
3334
3335    // Sort nvbases by offset.
3336    llvm::stable_sort(
3337        Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3338          return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3339        });
3340
3341    // Dump (non-virtual) bases
3342    for (const CXXRecordDecl *Base : Bases) {
3343      CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3344      DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3345                       Base == PrimaryBase ? "(primary base)" : "(base)",
3346                       /*PrintSizeInfo=*/false,
3347                       /*IncludeVirtualBases=*/false);
3348    }
3349
3350    // vbptr (for Microsoft C++ ABI)
3351    if (HasOwnVBPtr) {
3352      PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3353      OS << '(' << *RD << " vbtable pointer)\n";
3354    }
3355  }
3356
3357  // Dump fields.
3358  uint64_t FieldNo = 0;
3359  for (RecordDecl::field_iterator I = RD->field_begin(),
3360         E = RD->field_end(); I != E; ++I, ++FieldNo) {
3361    const FieldDecl &Field = **I;
3362    uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3363    CharUnits FieldOffset =
3364      Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3365
3366    // Recursively dump fields of record type.
3367    if (auto RT = Field.getType()->getAs<RecordType>()) {
3368      DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3369                       Field.getName().data(),
3370                       /*PrintSizeInfo=*/false,
3371                       /*IncludeVirtualBases=*/true);
3372      continue;
3373    }
3374
3375    if (Field.isBitField()) {
3376      uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3377      unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3378      unsigned Width = Field.getBitWidthValue(C);
3379      PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3380    } else {
3381      PrintOffset(OS, FieldOffset, IndentLevel);
3382    }
3383    OS << Field.getType().getAsString() << ' ' << Field << '\n';
3384  }
3385
3386  // Dump virtual bases.
3387  if (CXXRD && IncludeVirtualBases) {
3388    const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3389      Layout.getVBaseOffsetsMap();
3390
3391    for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3392      assert(Base.isVirtual() && "Found non-virtual class!");
3393      const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3394
3395      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3396
3397      if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3398        PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3399        OS << "(vtordisp for vbase " << *VBase << ")\n";
3400      }
3401
3402      DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3403                       VBase == Layout.getPrimaryBase() ?
3404                         "(primary virtual base)" : "(virtual base)",
3405                       /*PrintSizeInfo=*/false,
3406                       /*IncludeVirtualBases=*/false);
3407    }
3408  }
3409
3410  if (!PrintSizeInfo) return;
3411
3412  PrintIndentNoOffset(OS, IndentLevel - 1);
3413  OS << "[sizeof=" << Layout.getSize().getQuantity();
3414  if (CXXRD && !isMsLayout(C))
3415    OS << ", dsize=" << Layout.getDataSize().getQuantity();
3416  OS << ", align=" << Layout.getAlignment().getQuantity();
3417
3418  if (CXXRD) {
3419    OS << ",\n";
3420    PrintIndentNoOffset(OS, IndentLevel - 1);
3421    OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3422    OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3423  }
3424  OS << "]\n";
3425}
3426
3427void ASTContext::DumpRecordLayout(const RecordDecl *RD,
3428                                  raw_ostream &OS,
3429                                  bool Simple) const {
3430  if (!Simple) {
3431    ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3432                       /*PrintSizeInfo*/true,
3433                       /*IncludeVirtualBases=*/true);
3434    return;
3435  }
3436
3437  // The "simple" format is designed to be parsed by the
3438  // layout-override testing code.  There shouldn't be any external
3439  // uses of this format --- when LLDB overrides a layout, it sets up
3440  // the data structures directly --- so feel free to adjust this as
3441  // you like as long as you also update the rudimentary parser for it
3442  // in libFrontend.
3443
3444  const ASTRecordLayout &Info = getASTRecordLayout(RD);
3445  OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3446  OS << "\nLayout: ";
3447  OS << "<ASTRecordLayout\n";
3448  OS << "  Size:" << toBits(Info.getSize()) << "\n";
3449  if (!isMsLayout(*this))
3450    OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
3451  OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
3452  OS << "  FieldOffsets: [";
3453  for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3454    if (i) OS << ", ";
3455    OS << Info.getFieldOffset(i);
3456  }
3457  OS << "]>\n";
3458}
3459