1// Map implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4// Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library.  This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
9// Free Software Foundation; either version 2, or (at your option)
10// any later version.
11
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15// GNU General Public License for more details.
16
17// You should have received a copy of the GNU General Public License along
18// with this library; see the file COPYING.  If not, write to the Free
19// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20// USA.
21
22// As a special exception, you may use this file as part of a free software
23// library without restriction.  Specifically, if other files instantiate
24// templates or use macros or inline functions from this file, or you compile
25// this file and link it with other files to produce an executable, this
26// file does not by itself cause the resulting executable to be covered by
27// the GNU General Public License.  This exception does not however
28// invalidate any other reasons why the executable file might be covered by
29// the GNU General Public License.
30
31/*
32 *
33 * Copyright (c) 1994
34 * Hewlett-Packard Company
35 *
36 * Permission to use, copy, modify, distribute and sell this software
37 * and its documentation for any purpose is hereby granted without fee,
38 * provided that the above copyright notice appear in all copies and
39 * that both that copyright notice and this permission notice appear
40 * in supporting documentation.  Hewlett-Packard Company makes no
41 * representations about the suitability of this software for any
42 * purpose.  It is provided "as is" without express or implied warranty.
43 *
44 *
45 * Copyright (c) 1996,1997
46 * Silicon Graphics Computer Systems, Inc.
47 *
48 * Permission to use, copy, modify, distribute and sell this software
49 * and its documentation for any purpose is hereby granted without fee,
50 * provided that the above copyright notice appear in all copies and
51 * that both that copyright notice and this permission notice appear
52 * in supporting documentation.  Silicon Graphics makes no
53 * representations about the suitability of this software for any
54 * purpose.  It is provided "as is" without express or implied warranty.
55 */
56
57/** @file stl_map.h
58 *  This is an internal header file, included by other library headers.
59 *  You should not attempt to use it directly.
60 */
61
62#ifndef _MAP_H
63#define _MAP_H 1
64
65#include <bits/functexcept.h>
66#include <bits/concept_check.h>
67
68_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
69
70  /**
71   *  @brief A standard container made up of (key,value) pairs, which can be
72   *  retrieved based on a key, in logarithmic time.
73   *
74   *  @ingroup Containers
75   *  @ingroup Assoc_containers
76   *
77   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
78   *  <a href="tables.html#66">reversible container</a>, and an
79   *  <a href="tables.html#69">associative container</a> (using unique keys).
80   *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
81   *  value_type is std::pair<const Key,T>.
82   *
83   *  Maps support bidirectional iterators.
84   *
85   *  @if maint
86   *  The private tree data is declared exactly the same way for map and
87   *  multimap; the distinction is made entirely in how the tree functions are
88   *  called (*_unique versus *_equal, same as the standard).
89   *  @endif
90  */
91  template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
92            typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
93    class map
94    {
95    public:
96      typedef _Key                                          key_type;
97      typedef _Tp                                           mapped_type;
98      typedef std::pair<const _Key, _Tp>                    value_type;
99      typedef _Compare                                      key_compare;
100      typedef _Alloc                                        allocator_type;
101
102    private:
103      // concept requirements
104      typedef typename _Alloc::value_type                   _Alloc_value_type;
105      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
106      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
107				_BinaryFunctionConcept)
108      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
109
110    public:
111      class value_compare
112      : public std::binary_function<value_type, value_type, bool>
113      {
114	friend class map<_Key, _Tp, _Compare, _Alloc>;
115      protected:
116	_Compare comp;
117
118	value_compare(_Compare __c)
119	: comp(__c) { }
120
121      public:
122	bool operator()(const value_type& __x, const value_type& __y) const
123	{ return comp(__x.first, __y.first); }
124      };
125
126    private:
127      /// @if maint  This turns a red-black tree into a [multi]map.  @endif
128      typedef typename _Alloc::template rebind<value_type>::other
129        _Pair_alloc_type;
130
131      typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
132		       key_compare, _Pair_alloc_type> _Rep_type;
133
134      /// @if maint  The actual tree structure.  @endif
135      _Rep_type _M_t;
136
137    public:
138      // many of these are specified differently in ISO, but the following are
139      // "functionally equivalent"
140      typedef typename _Pair_alloc_type::pointer         pointer;
141      typedef typename _Pair_alloc_type::const_pointer   const_pointer;
142      typedef typename _Pair_alloc_type::reference       reference;
143      typedef typename _Pair_alloc_type::const_reference const_reference;
144      typedef typename _Rep_type::iterator               iterator;
145      typedef typename _Rep_type::const_iterator         const_iterator;
146      typedef typename _Rep_type::size_type              size_type;
147      typedef typename _Rep_type::difference_type        difference_type;
148      typedef typename _Rep_type::reverse_iterator       reverse_iterator;
149      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
150
151      // [23.3.1.1] construct/copy/destroy
152      // (get_allocator() is normally listed in this section, but seems to have
153      // been accidentally omitted in the printed standard)
154      /**
155       *  @brief  Default constructor creates no elements.
156       */
157      map()
158      : _M_t() { }
159
160      // for some reason this was made a separate function
161      /**
162       *  @brief  Default constructor creates no elements.
163       */
164      explicit
165      map(const _Compare& __comp, const allocator_type& __a = allocator_type())
166      : _M_t(__comp, __a) { }
167
168      /**
169       *  @brief  Map copy constructor.
170       *  @param  x  A %map of identical element and allocator types.
171       *
172       *  The newly-created %map uses a copy of the allocation object used
173       *  by @a x.
174       */
175      map(const map& __x)
176      : _M_t(__x._M_t) { }
177
178      /**
179       *  @brief  Builds a %map from a range.
180       *  @param  first  An input iterator.
181       *  @param  last  An input iterator.
182       *
183       *  Create a %map consisting of copies of the elements from [first,last).
184       *  This is linear in N if the range is already sorted, and NlogN
185       *  otherwise (where N is distance(first,last)).
186       */
187      template <typename _InputIterator>
188        map(_InputIterator __first, _InputIterator __last)
189	: _M_t()
190        { _M_t._M_insert_unique(__first, __last); }
191
192      /**
193       *  @brief  Builds a %map from a range.
194       *  @param  first  An input iterator.
195       *  @param  last  An input iterator.
196       *  @param  comp  A comparison functor.
197       *  @param  a  An allocator object.
198       *
199       *  Create a %map consisting of copies of the elements from [first,last).
200       *  This is linear in N if the range is already sorted, and NlogN
201       *  otherwise (where N is distance(first,last)).
202       */
203      template <typename _InputIterator>
204        map(_InputIterator __first, _InputIterator __last,
205	    const _Compare& __comp, const allocator_type& __a = allocator_type())
206	: _M_t(__comp, __a)
207        { _M_t._M_insert_unique(__first, __last); }
208
209      // FIXME There is no dtor declared, but we should have something
210      // generated by Doxygen.  I don't know what tags to add to this
211      // paragraph to make that happen:
212      /**
213       *  The dtor only erases the elements, and note that if the elements
214       *  themselves are pointers, the pointed-to memory is not touched in any
215       *  way.  Managing the pointer is the user's responsibilty.
216       */
217
218      /**
219       *  @brief  Map assignment operator.
220       *  @param  x  A %map of identical element and allocator types.
221       *
222       *  All the elements of @a x are copied, but unlike the copy constructor,
223       *  the allocator object is not copied.
224       */
225      map&
226      operator=(const map& __x)
227      {
228	_M_t = __x._M_t;
229	return *this;
230      }
231
232      /// Get a copy of the memory allocation object.
233      allocator_type
234      get_allocator() const
235      { return _M_t.get_allocator(); }
236
237      // iterators
238      /**
239       *  Returns a read/write iterator that points to the first pair in the
240       *  %map.
241       *  Iteration is done in ascending order according to the keys.
242       */
243      iterator
244      begin()
245      { return _M_t.begin(); }
246
247      /**
248       *  Returns a read-only (constant) iterator that points to the first pair
249       *  in the %map.  Iteration is done in ascending order according to the
250       *  keys.
251       */
252      const_iterator
253      begin() const
254      { return _M_t.begin(); }
255
256      /**
257       *  Returns a read/write iterator that points one past the last
258       *  pair in the %map.  Iteration is done in ascending order
259       *  according to the keys.
260       */
261      iterator
262      end()
263      { return _M_t.end(); }
264
265      /**
266       *  Returns a read-only (constant) iterator that points one past the last
267       *  pair in the %map.  Iteration is done in ascending order according to
268       *  the keys.
269       */
270      const_iterator
271      end() const
272      { return _M_t.end(); }
273
274      /**
275       *  Returns a read/write reverse iterator that points to the last pair in
276       *  the %map.  Iteration is done in descending order according to the
277       *  keys.
278       */
279      reverse_iterator
280      rbegin()
281      { return _M_t.rbegin(); }
282
283      /**
284       *  Returns a read-only (constant) reverse iterator that points to the
285       *  last pair in the %map.  Iteration is done in descending order
286       *  according to the keys.
287       */
288      const_reverse_iterator
289      rbegin() const
290      { return _M_t.rbegin(); }
291
292      /**
293       *  Returns a read/write reverse iterator that points to one before the
294       *  first pair in the %map.  Iteration is done in descending order
295       *  according to the keys.
296       */
297      reverse_iterator
298      rend()
299      { return _M_t.rend(); }
300
301      /**
302       *  Returns a read-only (constant) reverse iterator that points to one
303       *  before the first pair in the %map.  Iteration is done in descending
304       *  order according to the keys.
305       */
306      const_reverse_iterator
307      rend() const
308      { return _M_t.rend(); }
309
310      // capacity
311      /** Returns true if the %map is empty.  (Thus begin() would equal
312       *  end().)
313      */
314      bool
315      empty() const
316      { return _M_t.empty(); }
317
318      /** Returns the size of the %map.  */
319      size_type
320      size() const
321      { return _M_t.size(); }
322
323      /** Returns the maximum size of the %map.  */
324      size_type
325      max_size() const
326      { return _M_t.max_size(); }
327
328      // [23.3.1.2] element access
329      /**
330       *  @brief  Subscript ( @c [] ) access to %map data.
331       *  @param  k  The key for which data should be retrieved.
332       *  @return  A reference to the data of the (key,data) %pair.
333       *
334       *  Allows for easy lookup with the subscript ( @c [] )
335       *  operator.  Returns data associated with the key specified in
336       *  subscript.  If the key does not exist, a pair with that key
337       *  is created using default values, which is then returned.
338       *
339       *  Lookup requires logarithmic time.
340       */
341      mapped_type&
342      operator[](const key_type& __k)
343      {
344	// concept requirements
345	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
346
347	iterator __i = lower_bound(__k);
348	// __i->first is greater than or equivalent to __k.
349	if (__i == end() || key_comp()(__k, (*__i).first))
350          __i = insert(__i, value_type(__k, mapped_type()));
351	return (*__i).second;
352      }
353
354      // _GLIBCXX_RESOLVE_LIB_DEFECTS
355      // DR 464. Suggestion for new member functions in standard containers.
356      /**
357       *  @brief  Access to %map data.
358       *  @param  k  The key for which data should be retrieved.
359       *  @return  A reference to the data whose key is equivalent to @a k, if
360       *           such a data is present in the %map.
361       *  @throw  std::out_of_range  If no such data is present.
362       */
363      mapped_type&
364      at(const key_type& __k)
365      {
366	iterator __i = lower_bound(__k);
367	if (__i == end() || key_comp()(__k, (*__i).first))
368	  __throw_out_of_range(__N("map::at"));
369	return (*__i).second;
370      }
371
372      const mapped_type&
373      at(const key_type& __k) const
374      {
375	const_iterator __i = lower_bound(__k);
376	if (__i == end() || key_comp()(__k, (*__i).first))
377	  __throw_out_of_range(__N("map::at"));
378	return (*__i).second;
379      }
380
381      // modifiers
382      /**
383       *  @brief Attempts to insert a std::pair into the %map.
384
385       *  @param  x  Pair to be inserted (see std::make_pair for easy creation
386       *	     of pairs).
387
388       *  @return  A pair, of which the first element is an iterator that
389       *           points to the possibly inserted pair, and the second is
390       *           a bool that is true if the pair was actually inserted.
391       *
392       *  This function attempts to insert a (key, value) %pair into the %map.
393       *  A %map relies on unique keys and thus a %pair is only inserted if its
394       *  first element (the key) is not already present in the %map.
395       *
396       *  Insertion requires logarithmic time.
397       */
398      std::pair<iterator, bool>
399      insert(const value_type& __x)
400      { return _M_t._M_insert_unique(__x); }
401
402      /**
403       *  @brief Attempts to insert a std::pair into the %map.
404       *  @param  position  An iterator that serves as a hint as to where the
405       *                    pair should be inserted.
406       *  @param  x  Pair to be inserted (see std::make_pair for easy creation
407       *             of pairs).
408       *  @return  An iterator that points to the element with key of @a x (may
409       *           or may not be the %pair passed in).
410       *
411
412       *  This function is not concerned about whether the insertion
413       *  took place, and thus does not return a boolean like the
414       *  single-argument insert() does.  Note that the first
415       *  parameter is only a hint and can potentially improve the
416       *  performance of the insertion process.  A bad hint would
417       *  cause no gains in efficiency.
418       *
419       *  See
420       *  http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
421       *  for more on "hinting".
422       *
423       *  Insertion requires logarithmic time (if the hint is not taken).
424       */
425      iterator
426      insert(iterator __position, const value_type& __x)
427      { return _M_t._M_insert_unique(__position, __x); }
428
429      /**
430       *  @brief Template function that attemps to insert a range of elements.
431       *  @param  first  Iterator pointing to the start of the range to be
432       *                 inserted.
433       *  @param  last  Iterator pointing to the end of the range.
434       *
435       *  Complexity similar to that of the range constructor.
436       */
437      template <typename _InputIterator>
438        void
439        insert(_InputIterator __first, _InputIterator __last)
440        { _M_t._M_insert_unique(__first, __last); }
441
442      /**
443       *  @brief Erases an element from a %map.
444       *  @param  position  An iterator pointing to the element to be erased.
445       *
446       *  This function erases an element, pointed to by the given
447       *  iterator, from a %map.  Note that this function only erases
448       *  the element, and that if the element is itself a pointer,
449       *  the pointed-to memory is not touched in any way.  Managing
450       *  the pointer is the user's responsibilty.
451       */
452      void
453      erase(iterator __position)
454      { _M_t.erase(__position); }
455
456      /**
457       *  @brief Erases elements according to the provided key.
458       *  @param  x  Key of element to be erased.
459       *  @return  The number of elements erased.
460       *
461       *  This function erases all the elements located by the given key from
462       *  a %map.
463       *  Note that this function only erases the element, and that if
464       *  the element is itself a pointer, the pointed-to memory is not touched
465       *  in any way.  Managing the pointer is the user's responsibilty.
466       */
467      size_type
468      erase(const key_type& __x)
469      { return _M_t.erase(__x); }
470
471      /**
472       *  @brief Erases a [first,last) range of elements from a %map.
473       *  @param  first  Iterator pointing to the start of the range to be
474       *                 erased.
475       *  @param  last  Iterator pointing to the end of the range to be erased.
476       *
477       *  This function erases a sequence of elements from a %map.
478       *  Note that this function only erases the element, and that if
479       *  the element is itself a pointer, the pointed-to memory is not touched
480       *  in any way.  Managing the pointer is the user's responsibilty.
481       */
482      void
483      erase(iterator __first, iterator __last)
484      { _M_t.erase(__first, __last); }
485
486      /**
487       *  @brief  Swaps data with another %map.
488       *  @param  x  A %map of the same element and allocator types.
489       *
490       *  This exchanges the elements between two maps in constant
491       *  time.  (It is only swapping a pointer, an integer, and an
492       *  instance of the @c Compare type (which itself is often
493       *  stateless and empty), so it should be quite fast.)  Note
494       *  that the global std::swap() function is specialized such
495       *  that std::swap(m1,m2) will feed to this function.
496       */
497      void
498      swap(map& __x)
499      { _M_t.swap(__x._M_t); }
500
501      /**
502       *  Erases all elements in a %map.  Note that this function only
503       *  erases the elements, and that if the elements themselves are
504       *  pointers, the pointed-to memory is not touched in any way.
505       *  Managing the pointer is the user's responsibilty.
506       */
507      void
508      clear()
509      { _M_t.clear(); }
510
511      // observers
512      /**
513       *  Returns the key comparison object out of which the %map was
514       *  constructed.
515       */
516      key_compare
517      key_comp() const
518      { return _M_t.key_comp(); }
519
520      /**
521       *  Returns a value comparison object, built from the key comparison
522       *  object out of which the %map was constructed.
523       */
524      value_compare
525      value_comp() const
526      { return value_compare(_M_t.key_comp()); }
527
528      // [23.3.1.3] map operations
529      /**
530       *  @brief Tries to locate an element in a %map.
531       *  @param  x  Key of (key, value) %pair to be located.
532       *  @return  Iterator pointing to sought-after element, or end() if not
533       *           found.
534       *
535       *  This function takes a key and tries to locate the element with which
536       *  the key matches.  If successful the function returns an iterator
537       *  pointing to the sought after %pair.  If unsuccessful it returns the
538       *  past-the-end ( @c end() ) iterator.
539       */
540      iterator
541      find(const key_type& __x)
542      { return _M_t.find(__x); }
543
544      /**
545       *  @brief Tries to locate an element in a %map.
546       *  @param  x  Key of (key, value) %pair to be located.
547       *  @return  Read-only (constant) iterator pointing to sought-after
548       *           element, or end() if not found.
549       *
550       *  This function takes a key and tries to locate the element with which
551       *  the key matches.  If successful the function returns a constant
552       *  iterator pointing to the sought after %pair. If unsuccessful it
553       *  returns the past-the-end ( @c end() ) iterator.
554       */
555      const_iterator
556      find(const key_type& __x) const
557      { return _M_t.find(__x); }
558
559      /**
560       *  @brief  Finds the number of elements with given key.
561       *  @param  x  Key of (key, value) pairs to be located.
562       *  @return  Number of elements with specified key.
563       *
564       *  This function only makes sense for multimaps; for map the result will
565       *  either be 0 (not present) or 1 (present).
566       */
567      size_type
568      count(const key_type& __x) const
569      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
570
571      /**
572       *  @brief Finds the beginning of a subsequence matching given key.
573       *  @param  x  Key of (key, value) pair to be located.
574       *  @return  Iterator pointing to first element equal to or greater
575       *           than key, or end().
576       *
577       *  This function returns the first element of a subsequence of elements
578       *  that matches the given key.  If unsuccessful it returns an iterator
579       *  pointing to the first element that has a greater value than given key
580       *  or end() if no such element exists.
581       */
582      iterator
583      lower_bound(const key_type& __x)
584      { return _M_t.lower_bound(__x); }
585
586      /**
587       *  @brief Finds the beginning of a subsequence matching given key.
588       *  @param  x  Key of (key, value) pair to be located.
589       *  @return  Read-only (constant) iterator pointing to first element
590       *           equal to or greater than key, or end().
591       *
592       *  This function returns the first element of a subsequence of elements
593       *  that matches the given key.  If unsuccessful it returns an iterator
594       *  pointing to the first element that has a greater value than given key
595       *  or end() if no such element exists.
596       */
597      const_iterator
598      lower_bound(const key_type& __x) const
599      { return _M_t.lower_bound(__x); }
600
601      /**
602       *  @brief Finds the end of a subsequence matching given key.
603       *  @param  x  Key of (key, value) pair to be located.
604       *  @return Iterator pointing to the first element
605       *          greater than key, or end().
606       */
607      iterator
608      upper_bound(const key_type& __x)
609      { return _M_t.upper_bound(__x); }
610
611      /**
612       *  @brief Finds the end of a subsequence matching given key.
613       *  @param  x  Key of (key, value) pair to be located.
614       *  @return  Read-only (constant) iterator pointing to first iterator
615       *           greater than key, or end().
616       */
617      const_iterator
618      upper_bound(const key_type& __x) const
619      { return _M_t.upper_bound(__x); }
620
621      /**
622       *  @brief Finds a subsequence matching given key.
623       *  @param  x  Key of (key, value) pairs to be located.
624       *  @return  Pair of iterators that possibly points to the subsequence
625       *           matching given key.
626       *
627       *  This function is equivalent to
628       *  @code
629       *    std::make_pair(c.lower_bound(val),
630       *                   c.upper_bound(val))
631       *  @endcode
632       *  (but is faster than making the calls separately).
633       *
634       *  This function probably only makes sense for multimaps.
635       */
636      std::pair<iterator, iterator>
637      equal_range(const key_type& __x)
638      { return _M_t.equal_range(__x); }
639
640      /**
641       *  @brief Finds a subsequence matching given key.
642       *  @param  x  Key of (key, value) pairs to be located.
643       *  @return  Pair of read-only (constant) iterators that possibly points
644       *           to the subsequence matching given key.
645       *
646       *  This function is equivalent to
647       *  @code
648       *    std::make_pair(c.lower_bound(val),
649       *                   c.upper_bound(val))
650       *  @endcode
651       *  (but is faster than making the calls separately).
652       *
653       *  This function probably only makes sense for multimaps.
654       */
655      std::pair<const_iterator, const_iterator>
656      equal_range(const key_type& __x) const
657      { return _M_t.equal_range(__x); }
658
659      template <typename _K1, typename _T1, typename _C1, typename _A1>
660        friend bool
661        operator== (const map<_K1, _T1, _C1, _A1>&,
662		    const map<_K1, _T1, _C1, _A1>&);
663
664      template <typename _K1, typename _T1, typename _C1, typename _A1>
665        friend bool
666        operator< (const map<_K1, _T1, _C1, _A1>&,
667		   const map<_K1, _T1, _C1, _A1>&);
668    };
669
670  /**
671   *  @brief  Map equality comparison.
672   *  @param  x  A %map.
673   *  @param  y  A %map of the same type as @a x.
674   *  @return  True iff the size and elements of the maps are equal.
675   *
676   *  This is an equivalence relation.  It is linear in the size of the
677   *  maps.  Maps are considered equivalent if their sizes are equal,
678   *  and if corresponding elements compare equal.
679  */
680  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
681    inline bool
682    operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
683               const map<_Key, _Tp, _Compare, _Alloc>& __y)
684    { return __x._M_t == __y._M_t; }
685
686  /**
687   *  @brief  Map ordering relation.
688   *  @param  x  A %map.
689   *  @param  y  A %map of the same type as @a x.
690   *  @return  True iff @a x is lexicographically less than @a y.
691   *
692   *  This is a total ordering relation.  It is linear in the size of the
693   *  maps.  The elements must be comparable with @c <.
694   *
695   *  See std::lexicographical_compare() for how the determination is made.
696  */
697  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
698    inline bool
699    operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
700              const map<_Key, _Tp, _Compare, _Alloc>& __y)
701    { return __x._M_t < __y._M_t; }
702
703  /// Based on operator==
704  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
705    inline bool
706    operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
707               const map<_Key, _Tp, _Compare, _Alloc>& __y)
708    { return !(__x == __y); }
709
710  /// Based on operator<
711  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
712    inline bool
713    operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
714              const map<_Key, _Tp, _Compare, _Alloc>& __y)
715    { return __y < __x; }
716
717  /// Based on operator<
718  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
719    inline bool
720    operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
721               const map<_Key, _Tp, _Compare, _Alloc>& __y)
722    { return !(__y < __x); }
723
724  /// Based on operator<
725  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
726    inline bool
727    operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
728               const map<_Key, _Tp, _Compare, _Alloc>& __y)
729    { return !(__x < __y); }
730
731  /// See std::map::swap().
732  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
733    inline void
734    swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
735	 map<_Key, _Tp, _Compare, _Alloc>& __y)
736    { __x.swap(__y); }
737
738_GLIBCXX_END_NESTED_NAMESPACE
739
740#endif /* _MAP_H */
741