1// Deque implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
4// Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library.  This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
9// Free Software Foundation; either version 2, or (at your option)
10// any later version.
11
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15// GNU General Public License for more details.
16
17// You should have received a copy of the GNU General Public License along
18// with this library; see the file COPYING.  If not, write to the Free
19// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20// USA.
21
22// As a special exception, you may use this file as part of a free software
23// library without restriction.  Specifically, if other files instantiate
24// templates or use macros or inline functions from this file, or you compile
25// this file and link it with other files to produce an executable, this
26// file does not by itself cause the resulting executable to be covered by
27// the GNU General Public License.  This exception does not however
28// invalidate any other reasons why the executable file might be covered by
29// the GNU General Public License.
30
31/*
32 *
33 * Copyright (c) 1994
34 * Hewlett-Packard Company
35 *
36 * Permission to use, copy, modify, distribute and sell this software
37 * and its documentation for any purpose is hereby granted without fee,
38 * provided that the above copyright notice appear in all copies and
39 * that both that copyright notice and this permission notice appear
40 * in supporting documentation.  Hewlett-Packard Company makes no
41 * representations about the suitability of this software for any
42 * purpose.  It is provided "as is" without express or implied warranty.
43 *
44 *
45 * Copyright (c) 1997
46 * Silicon Graphics Computer Systems, Inc.
47 *
48 * Permission to use, copy, modify, distribute and sell this software
49 * and its documentation for any purpose is hereby granted without fee,
50 * provided that the above copyright notice appear in all copies and
51 * that both that copyright notice and this permission notice appear
52 * in supporting documentation.  Silicon Graphics makes no
53 * representations about the suitability of this software for any
54 * purpose.  It is provided "as is" without express or implied warranty.
55 */
56
57/** @file stl_deque.h
58 *  This is an internal header file, included by other library headers.
59 *  You should not attempt to use it directly.
60 */
61
62#ifndef _DEQUE_H
63#define _DEQUE_H 1
64
65#include <bits/concept_check.h>
66#include <bits/stl_iterator_base_types.h>
67#include <bits/stl_iterator_base_funcs.h>
68
69_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
70
71  /**
72   *  @if maint
73   *  @brief This function controls the size of memory nodes.
74   *  @param  size  The size of an element.
75   *  @return   The number (not byte size) of elements per node.
76   *
77   *  This function started off as a compiler kludge from SGI, but seems to
78   *  be a useful wrapper around a repeated constant expression.  The '512' is
79   *  tuneable (and no other code needs to change), but no investigation has
80   *  been done since inheriting the SGI code.
81   *  @endif
82  */
83  inline size_t
84  __deque_buf_size(size_t __size)
85  { return __size < 512 ? size_t(512 / __size) : size_t(1); }
86
87
88  /**
89   *  @brief A deque::iterator.
90   *
91   *  Quite a bit of intelligence here.  Much of the functionality of
92   *  deque is actually passed off to this class.  A deque holds two
93   *  of these internally, marking its valid range.  Access to
94   *  elements is done as offsets of either of those two, relying on
95   *  operator overloading in this class.
96   *
97   *  @if maint
98   *  All the functions are op overloads except for _M_set_node.
99   *  @endif
100  */
101  template<typename _Tp, typename _Ref, typename _Ptr>
102    struct _Deque_iterator
103    {
104      typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
105      typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
106
107      static size_t _S_buffer_size()
108      { return __deque_buf_size(sizeof(_Tp)); }
109
110      typedef std::random_access_iterator_tag iterator_category;
111      typedef _Tp                             value_type;
112      typedef _Ptr                            pointer;
113      typedef _Ref                            reference;
114      typedef size_t                          size_type;
115      typedef ptrdiff_t                       difference_type;
116      typedef _Tp**                           _Map_pointer;
117      typedef _Deque_iterator                 _Self;
118
119      _Tp* _M_cur;
120      _Tp* _M_first;
121      _Tp* _M_last;
122      _Map_pointer _M_node;
123
124      _Deque_iterator(_Tp* __x, _Map_pointer __y)
125      : _M_cur(__x), _M_first(*__y),
126        _M_last(*__y + _S_buffer_size()), _M_node(__y) {}
127
128      _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
129
130      _Deque_iterator(const iterator& __x)
131      : _M_cur(__x._M_cur), _M_first(__x._M_first),
132        _M_last(__x._M_last), _M_node(__x._M_node) {}
133
134      reference
135      operator*() const
136      { return *_M_cur; }
137
138      pointer
139      operator->() const
140      { return _M_cur; }
141
142      _Self&
143      operator++()
144      {
145	++_M_cur;
146	if (_M_cur == _M_last)
147	  {
148	    _M_set_node(_M_node + 1);
149	    _M_cur = _M_first;
150	  }
151	return *this;
152      }
153
154      _Self
155      operator++(int)
156      {
157	_Self __tmp = *this;
158	++*this;
159	return __tmp;
160      }
161
162      _Self&
163      operator--()
164      {
165	if (_M_cur == _M_first)
166	  {
167	    _M_set_node(_M_node - 1);
168	    _M_cur = _M_last;
169	  }
170	--_M_cur;
171	return *this;
172      }
173
174      _Self
175      operator--(int)
176      {
177	_Self __tmp = *this;
178	--*this;
179	return __tmp;
180      }
181
182      _Self&
183      operator+=(difference_type __n)
184      {
185	const difference_type __offset = __n + (_M_cur - _M_first);
186	if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
187	  _M_cur += __n;
188	else
189	  {
190	    const difference_type __node_offset =
191	      __offset > 0 ? __offset / difference_type(_S_buffer_size())
192	                   : -difference_type((-__offset - 1)
193					      / _S_buffer_size()) - 1;
194	    _M_set_node(_M_node + __node_offset);
195	    _M_cur = _M_first + (__offset - __node_offset
196				 * difference_type(_S_buffer_size()));
197	  }
198	return *this;
199      }
200
201      _Self
202      operator+(difference_type __n) const
203      {
204	_Self __tmp = *this;
205	return __tmp += __n;
206      }
207
208      _Self&
209      operator-=(difference_type __n)
210      { return *this += -__n; }
211
212      _Self
213      operator-(difference_type __n) const
214      {
215	_Self __tmp = *this;
216	return __tmp -= __n;
217      }
218
219      reference
220      operator[](difference_type __n) const
221      { return *(*this + __n); }
222
223      /** @if maint
224       *  Prepares to traverse new_node.  Sets everything except
225       *  _M_cur, which should therefore be set by the caller
226       *  immediately afterwards, based on _M_first and _M_last.
227       *  @endif
228       */
229      void
230      _M_set_node(_Map_pointer __new_node)
231      {
232	_M_node = __new_node;
233	_M_first = *__new_node;
234	_M_last = _M_first + difference_type(_S_buffer_size());
235      }
236    };
237
238  // Note: we also provide overloads whose operands are of the same type in
239  // order to avoid ambiguous overload resolution when std::rel_ops operators
240  // are in scope (for additional details, see libstdc++/3628)
241  template<typename _Tp, typename _Ref, typename _Ptr>
242    inline bool
243    operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
244	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
245    { return __x._M_cur == __y._M_cur; }
246
247  template<typename _Tp, typename _RefL, typename _PtrL,
248	   typename _RefR, typename _PtrR>
249    inline bool
250    operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
251	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
252    { return __x._M_cur == __y._M_cur; }
253
254  template<typename _Tp, typename _Ref, typename _Ptr>
255    inline bool
256    operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
257	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
258    { return !(__x == __y); }
259
260  template<typename _Tp, typename _RefL, typename _PtrL,
261	   typename _RefR, typename _PtrR>
262    inline bool
263    operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
264	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
265    { return !(__x == __y); }
266
267  template<typename _Tp, typename _Ref, typename _Ptr>
268    inline bool
269    operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
270	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
271    { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
272                                          : (__x._M_node < __y._M_node); }
273
274  template<typename _Tp, typename _RefL, typename _PtrL,
275	   typename _RefR, typename _PtrR>
276    inline bool
277    operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
278	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
279    { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
280	                                  : (__x._M_node < __y._M_node); }
281
282  template<typename _Tp, typename _Ref, typename _Ptr>
283    inline bool
284    operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
285	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
286    { return __y < __x; }
287
288  template<typename _Tp, typename _RefL, typename _PtrL,
289	   typename _RefR, typename _PtrR>
290    inline bool
291    operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
292	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
293    { return __y < __x; }
294
295  template<typename _Tp, typename _Ref, typename _Ptr>
296    inline bool
297    operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
298	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
299    { return !(__y < __x); }
300
301  template<typename _Tp, typename _RefL, typename _PtrL,
302	   typename _RefR, typename _PtrR>
303    inline bool
304    operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
305	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
306    { return !(__y < __x); }
307
308  template<typename _Tp, typename _Ref, typename _Ptr>
309    inline bool
310    operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
311	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
312    { return !(__x < __y); }
313
314  template<typename _Tp, typename _RefL, typename _PtrL,
315	   typename _RefR, typename _PtrR>
316    inline bool
317    operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
318	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
319    { return !(__x < __y); }
320
321  // _GLIBCXX_RESOLVE_LIB_DEFECTS
322  // According to the resolution of DR179 not only the various comparison
323  // operators but also operator- must accept mixed iterator/const_iterator
324  // parameters.
325  template<typename _Tp, typename _Ref, typename _Ptr>
326    inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
327    operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
328	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
329    {
330      return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
331	(_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
332	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
333	+ (__y._M_last - __y._M_cur);
334    }
335
336  template<typename _Tp, typename _RefL, typename _PtrL,
337	   typename _RefR, typename _PtrR>
338    inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
339    operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
340	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
341    {
342      return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
343	(_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
344	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
345	+ (__y._M_last - __y._M_cur);
346    }
347
348  template<typename _Tp, typename _Ref, typename _Ptr>
349    inline _Deque_iterator<_Tp, _Ref, _Ptr>
350    operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
351    { return __x + __n; }
352
353  template<typename _Tp>
354    void
355    fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>& __first,
356	 const _Deque_iterator<_Tp, _Tp&, _Tp*>& __last, const _Tp& __value);
357
358  /**
359   *  @if maint
360   *  Deque base class.  This class provides the unified face for %deque's
361   *  allocation.  This class's constructor and destructor allocate and
362   *  deallocate (but do not initialize) storage.  This makes %exception
363   *  safety easier.
364   *
365   *  Nothing in this class ever constructs or destroys an actual Tp element.
366   *  (Deque handles that itself.)  Only/All memory management is performed
367   *  here.
368   *  @endif
369  */
370  template<typename _Tp, typename _Alloc>
371    class _Deque_base
372    {
373    public:
374      typedef _Alloc                  allocator_type;
375
376      allocator_type
377      get_allocator() const
378      { return allocator_type(_M_get_Tp_allocator()); }
379
380      typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
381      typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
382
383      _Deque_base()
384      : _M_impl()
385      { _M_initialize_map(0); }
386
387      _Deque_base(const allocator_type& __a, size_t __num_elements)
388      : _M_impl(__a)
389      { _M_initialize_map(__num_elements); }
390
391      _Deque_base(const allocator_type& __a)
392      : _M_impl(__a)
393      { }
394
395      ~_Deque_base();
396
397    protected:
398      //This struct encapsulates the implementation of the std::deque
399      //standard container and at the same time makes use of the EBO
400      //for empty allocators.
401      typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
402
403      typedef typename _Alloc::template rebind<_Tp>::other  _Tp_alloc_type;
404
405      struct _Deque_impl
406      : public _Tp_alloc_type
407      {
408	_Tp** _M_map;
409	size_t _M_map_size;
410	iterator _M_start;
411	iterator _M_finish;
412
413	_Deque_impl()
414	: _Tp_alloc_type(), _M_map(0), _M_map_size(0),
415	  _M_start(), _M_finish()
416	{ }
417
418	_Deque_impl(const _Tp_alloc_type& __a)
419	: _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
420	  _M_start(), _M_finish()
421	{ }
422      };
423
424      _Tp_alloc_type&
425      _M_get_Tp_allocator()
426      { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
427
428      const _Tp_alloc_type&
429      _M_get_Tp_allocator() const
430      { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
431
432      _Map_alloc_type
433      _M_get_map_allocator() const
434      { return _Map_alloc_type(_M_get_Tp_allocator()); }
435
436      _Tp*
437      _M_allocate_node()
438      {
439	return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
440      }
441
442      void
443      _M_deallocate_node(_Tp* __p)
444      {
445	_M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
446      }
447
448      _Tp**
449      _M_allocate_map(size_t __n)
450      { return _M_get_map_allocator().allocate(__n); }
451
452      void
453      _M_deallocate_map(_Tp** __p, size_t __n)
454      { _M_get_map_allocator().deallocate(__p, __n); }
455
456    protected:
457      void _M_initialize_map(size_t);
458      void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
459      void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
460      enum { _S_initial_map_size = 8 };
461
462      _Deque_impl _M_impl;
463    };
464
465  template<typename _Tp, typename _Alloc>
466    _Deque_base<_Tp, _Alloc>::
467    ~_Deque_base()
468    {
469      if (this->_M_impl._M_map)
470	{
471	  _M_destroy_nodes(this->_M_impl._M_start._M_node,
472			   this->_M_impl._M_finish._M_node + 1);
473	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
474	}
475    }
476
477  /**
478   *  @if maint
479   *  @brief Layout storage.
480   *  @param  num_elements  The count of T's for which to allocate space
481   *                        at first.
482   *  @return   Nothing.
483   *
484   *  The initial underlying memory layout is a bit complicated...
485   *  @endif
486  */
487  template<typename _Tp, typename _Alloc>
488    void
489    _Deque_base<_Tp, _Alloc>::
490    _M_initialize_map(size_t __num_elements)
491    {
492      const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
493				  + 1);
494
495      this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
496					   size_t(__num_nodes + 2));
497      this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
498
499      // For "small" maps (needing less than _M_map_size nodes), allocation
500      // starts in the middle elements and grows outwards.  So nstart may be
501      // the beginning of _M_map, but for small maps it may be as far in as
502      // _M_map+3.
503
504      _Tp** __nstart = (this->_M_impl._M_map
505			+ (this->_M_impl._M_map_size - __num_nodes) / 2);
506      _Tp** __nfinish = __nstart + __num_nodes;
507
508      try
509	{ _M_create_nodes(__nstart, __nfinish); }
510      catch(...)
511	{
512	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
513	  this->_M_impl._M_map = 0;
514	  this->_M_impl._M_map_size = 0;
515	  __throw_exception_again;
516	}
517
518      this->_M_impl._M_start._M_set_node(__nstart);
519      this->_M_impl._M_finish._M_set_node(__nfinish - 1);
520      this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
521      this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
522					+ __num_elements
523					% __deque_buf_size(sizeof(_Tp)));
524    }
525
526  template<typename _Tp, typename _Alloc>
527    void
528    _Deque_base<_Tp, _Alloc>::
529    _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
530    {
531      _Tp** __cur;
532      try
533	{
534	  for (__cur = __nstart; __cur < __nfinish; ++__cur)
535	    *__cur = this->_M_allocate_node();
536	}
537      catch(...)
538	{
539	  _M_destroy_nodes(__nstart, __cur);
540	  __throw_exception_again;
541	}
542    }
543
544  template<typename _Tp, typename _Alloc>
545    void
546    _Deque_base<_Tp, _Alloc>::
547    _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
548    {
549      for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
550	_M_deallocate_node(*__n);
551    }
552
553  /**
554   *  @brief  A standard container using fixed-size memory allocation and
555   *  constant-time manipulation of elements at either end.
556   *
557   *  @ingroup Containers
558   *  @ingroup Sequences
559   *
560   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
561   *  <a href="tables.html#66">reversible container</a>, and a
562   *  <a href="tables.html#67">sequence</a>, including the
563   *  <a href="tables.html#68">optional sequence requirements</a>.
564   *
565   *  In previous HP/SGI versions of deque, there was an extra template
566   *  parameter so users could control the node size.  This extension turned
567   *  out to violate the C++ standard (it can be detected using template
568   *  template parameters), and it was removed.
569   *
570   *  @if maint
571   *  Here's how a deque<Tp> manages memory.  Each deque has 4 members:
572   *
573   *  - Tp**        _M_map
574   *  - size_t      _M_map_size
575   *  - iterator    _M_start, _M_finish
576   *
577   *  map_size is at least 8.  %map is an array of map_size
578   *  pointers-to-"nodes".  (The name %map has nothing to do with the
579   *  std::map class, and "nodes" should not be confused with
580   *  std::list's usage of "node".)
581   *
582   *  A "node" has no specific type name as such, but it is referred
583   *  to as "node" in this file.  It is a simple array-of-Tp.  If Tp
584   *  is very large, there will be one Tp element per node (i.e., an
585   *  "array" of one).  For non-huge Tp's, node size is inversely
586   *  related to Tp size: the larger the Tp, the fewer Tp's will fit
587   *  in a node.  The goal here is to keep the total size of a node
588   *  relatively small and constant over different Tp's, to improve
589   *  allocator efficiency.
590   *
591   *  Not every pointer in the %map array will point to a node.  If
592   *  the initial number of elements in the deque is small, the
593   *  /middle/ %map pointers will be valid, and the ones at the edges
594   *  will be unused.  This same situation will arise as the %map
595   *  grows: available %map pointers, if any, will be on the ends.  As
596   *  new nodes are created, only a subset of the %map's pointers need
597   *  to be copied "outward".
598   *
599   *  Class invariants:
600   * - For any nonsingular iterator i:
601   *    - i.node points to a member of the %map array.  (Yes, you read that
602   *      correctly:  i.node does not actually point to a node.)  The member of
603   *      the %map array is what actually points to the node.
604   *    - i.first == *(i.node)    (This points to the node (first Tp element).)
605   *    - i.last  == i.first + node_size
606   *    - i.cur is a pointer in the range [i.first, i.last).  NOTE:
607   *      the implication of this is that i.cur is always a dereferenceable
608   *      pointer, even if i is a past-the-end iterator.
609   * - Start and Finish are always nonsingular iterators.  NOTE: this
610   * means that an empty deque must have one node, a deque with <N
611   * elements (where N is the node buffer size) must have one node, a
612   * deque with N through (2N-1) elements must have two nodes, etc.
613   * - For every node other than start.node and finish.node, every
614   * element in the node is an initialized object.  If start.node ==
615   * finish.node, then [start.cur, finish.cur) are initialized
616   * objects, and the elements outside that range are uninitialized
617   * storage.  Otherwise, [start.cur, start.last) and [finish.first,
618   * finish.cur) are initialized objects, and [start.first, start.cur)
619   * and [finish.cur, finish.last) are uninitialized storage.
620   * - [%map, %map + map_size) is a valid, non-empty range.
621   * - [start.node, finish.node] is a valid range contained within
622   *   [%map, %map + map_size).
623   * - A pointer in the range [%map, %map + map_size) points to an allocated
624   *   node if and only if the pointer is in the range
625   *   [start.node, finish.node].
626   *
627   *  Here's the magic:  nothing in deque is "aware" of the discontiguous
628   *  storage!
629   *
630   *  The memory setup and layout occurs in the parent, _Base, and the iterator
631   *  class is entirely responsible for "leaping" from one node to the next.
632   *  All the implementation routines for deque itself work only through the
633   *  start and finish iterators.  This keeps the routines simple and sane,
634   *  and we can use other standard algorithms as well.
635   *  @endif
636  */
637  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
638    class deque : protected _Deque_base<_Tp, _Alloc>
639    {
640      // concept requirements
641      typedef typename _Alloc::value_type        _Alloc_value_type;
642      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
643      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
644
645      typedef _Deque_base<_Tp, _Alloc>           _Base;
646      typedef typename _Base::_Tp_alloc_type	 _Tp_alloc_type;
647
648    public:
649      typedef _Tp                                        value_type;
650      typedef typename _Tp_alloc_type::pointer           pointer;
651      typedef typename _Tp_alloc_type::const_pointer     const_pointer;
652      typedef typename _Tp_alloc_type::reference         reference;
653      typedef typename _Tp_alloc_type::const_reference   const_reference;
654      typedef typename _Base::iterator                   iterator;
655      typedef typename _Base::const_iterator             const_iterator;
656      typedef std::reverse_iterator<const_iterator>      const_reverse_iterator;
657      typedef std::reverse_iterator<iterator>            reverse_iterator;
658      typedef size_t                             size_type;
659      typedef ptrdiff_t                          difference_type;
660      typedef _Alloc                             allocator_type;
661
662    protected:
663      typedef pointer*                           _Map_pointer;
664
665      static size_t _S_buffer_size()
666      { return __deque_buf_size(sizeof(_Tp)); }
667
668      // Functions controlling memory layout, and nothing else.
669      using _Base::_M_initialize_map;
670      using _Base::_M_create_nodes;
671      using _Base::_M_destroy_nodes;
672      using _Base::_M_allocate_node;
673      using _Base::_M_deallocate_node;
674      using _Base::_M_allocate_map;
675      using _Base::_M_deallocate_map;
676      using _Base::_M_get_Tp_allocator;
677
678      /** @if maint
679       *  A total of four data members accumulated down the heirarchy.
680       *  May be accessed via _M_impl.*
681       *  @endif
682       */
683      using _Base::_M_impl;
684
685    public:
686      // [23.2.1.1] construct/copy/destroy
687      // (assign() and get_allocator() are also listed in this section)
688      /**
689       *  @brief  Default constructor creates no elements.
690       */
691      deque()
692      : _Base() { }
693
694      explicit
695      deque(const allocator_type& __a)
696      : _Base(__a, 0) {}
697
698      /**
699       *  @brief  Create a %deque with copies of an exemplar element.
700       *  @param  n  The number of elements to initially create.
701       *  @param  value  An element to copy.
702       *
703       *  This constructor fills the %deque with @a n copies of @a value.
704       */
705      explicit
706      deque(size_type __n, const value_type& __value = value_type(),
707	    const allocator_type& __a = allocator_type())
708      : _Base(__a, __n)
709      { _M_fill_initialize(__value); }
710
711      /**
712       *  @brief  %Deque copy constructor.
713       *  @param  x  A %deque of identical element and allocator types.
714       *
715       *  The newly-created %deque uses a copy of the allocation object used
716       *  by @a x.
717       */
718      deque(const deque& __x)
719      : _Base(__x._M_get_Tp_allocator(), __x.size())
720      { std::__uninitialized_copy_a(__x.begin(), __x.end(),
721				    this->_M_impl._M_start,
722				    _M_get_Tp_allocator()); }
723
724      /**
725       *  @brief  Builds a %deque from a range.
726       *  @param  first  An input iterator.
727       *  @param  last  An input iterator.
728       *
729       *  Create a %deque consisting of copies of the elements from [first,
730       *  last).
731       *
732       *  If the iterators are forward, bidirectional, or random-access, then
733       *  this will call the elements' copy constructor N times (where N is
734       *  distance(first,last)) and do no memory reallocation.  But if only
735       *  input iterators are used, then this will do at most 2N calls to the
736       *  copy constructor, and logN memory reallocations.
737       */
738      template<typename _InputIterator>
739        deque(_InputIterator __first, _InputIterator __last,
740	      const allocator_type& __a = allocator_type())
741	: _Base(__a)
742        {
743	  // Check whether it's an integral type.  If so, it's not an iterator.
744	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
745	  _M_initialize_dispatch(__first, __last, _Integral());
746	}
747
748      /**
749       *  The dtor only erases the elements, and note that if the elements
750       *  themselves are pointers, the pointed-to memory is not touched in any
751       *  way.  Managing the pointer is the user's responsibilty.
752       */
753      ~deque()
754      { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
755
756      /**
757       *  @brief  %Deque assignment operator.
758       *  @param  x  A %deque of identical element and allocator types.
759       *
760       *  All the elements of @a x are copied, but unlike the copy constructor,
761       *  the allocator object is not copied.
762       */
763      deque&
764      operator=(const deque& __x);
765
766      /**
767       *  @brief  Assigns a given value to a %deque.
768       *  @param  n  Number of elements to be assigned.
769       *  @param  val  Value to be assigned.
770       *
771       *  This function fills a %deque with @a n copies of the given
772       *  value.  Note that the assignment completely changes the
773       *  %deque and that the resulting %deque's size is the same as
774       *  the number of elements assigned.  Old data may be lost.
775       */
776      void
777      assign(size_type __n, const value_type& __val)
778      { _M_fill_assign(__n, __val); }
779
780      /**
781       *  @brief  Assigns a range to a %deque.
782       *  @param  first  An input iterator.
783       *  @param  last   An input iterator.
784       *
785       *  This function fills a %deque with copies of the elements in the
786       *  range [first,last).
787       *
788       *  Note that the assignment completely changes the %deque and that the
789       *  resulting %deque's size is the same as the number of elements
790       *  assigned.  Old data may be lost.
791       */
792      template<typename _InputIterator>
793        void
794        assign(_InputIterator __first, _InputIterator __last)
795        {
796	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
797	  _M_assign_dispatch(__first, __last, _Integral());
798	}
799
800      /// Get a copy of the memory allocation object.
801      allocator_type
802      get_allocator() const
803      { return _Base::get_allocator(); }
804
805      // iterators
806      /**
807       *  Returns a read/write iterator that points to the first element in the
808       *  %deque.  Iteration is done in ordinary element order.
809       */
810      iterator
811      begin()
812      { return this->_M_impl._M_start; }
813
814      /**
815       *  Returns a read-only (constant) iterator that points to the first
816       *  element in the %deque.  Iteration is done in ordinary element order.
817       */
818      const_iterator
819      begin() const
820      { return this->_M_impl._M_start; }
821
822      /**
823       *  Returns a read/write iterator that points one past the last
824       *  element in the %deque.  Iteration is done in ordinary
825       *  element order.
826       */
827      iterator
828      end()
829      { return this->_M_impl._M_finish; }
830
831      /**
832       *  Returns a read-only (constant) iterator that points one past
833       *  the last element in the %deque.  Iteration is done in
834       *  ordinary element order.
835       */
836      const_iterator
837      end() const
838      { return this->_M_impl._M_finish; }
839
840      /**
841       *  Returns a read/write reverse iterator that points to the
842       *  last element in the %deque.  Iteration is done in reverse
843       *  element order.
844       */
845      reverse_iterator
846      rbegin()
847      { return reverse_iterator(this->_M_impl._M_finish); }
848
849      /**
850       *  Returns a read-only (constant) reverse iterator that points
851       *  to the last element in the %deque.  Iteration is done in
852       *  reverse element order.
853       */
854      const_reverse_iterator
855      rbegin() const
856      { return const_reverse_iterator(this->_M_impl._M_finish); }
857
858      /**
859       *  Returns a read/write reverse iterator that points to one
860       *  before the first element in the %deque.  Iteration is done
861       *  in reverse element order.
862       */
863      reverse_iterator
864      rend()
865      { return reverse_iterator(this->_M_impl._M_start); }
866
867      /**
868       *  Returns a read-only (constant) reverse iterator that points
869       *  to one before the first element in the %deque.  Iteration is
870       *  done in reverse element order.
871       */
872      const_reverse_iterator
873      rend() const
874      { return const_reverse_iterator(this->_M_impl._M_start); }
875
876      // [23.2.1.2] capacity
877      /**  Returns the number of elements in the %deque.  */
878      size_type
879      size() const
880      { return this->_M_impl._M_finish - this->_M_impl._M_start; }
881
882      /**  Returns the size() of the largest possible %deque.  */
883      size_type
884      max_size() const
885      { return _M_get_Tp_allocator().max_size(); }
886
887      /**
888       *  @brief  Resizes the %deque to the specified number of elements.
889       *  @param  new_size  Number of elements the %deque should contain.
890       *  @param  x  Data with which new elements should be populated.
891       *
892       *  This function will %resize the %deque to the specified
893       *  number of elements.  If the number is smaller than the
894       *  %deque's current size the %deque is truncated, otherwise the
895       *  %deque is extended and new elements are populated with given
896       *  data.
897       */
898      void
899      resize(size_type __new_size, value_type __x = value_type())
900      {
901	const size_type __len = size();
902	if (__new_size < __len)
903	  _M_erase_at_end(this->_M_impl._M_start + difference_type(__new_size));
904	else
905	  insert(this->_M_impl._M_finish, __new_size - __len, __x);
906      }
907
908      /**
909       *  Returns true if the %deque is empty.  (Thus begin() would
910       *  equal end().)
911       */
912      bool
913      empty() const
914      { return this->_M_impl._M_finish == this->_M_impl._M_start; }
915
916      // element access
917      /**
918       *  @brief Subscript access to the data contained in the %deque.
919       *  @param n The index of the element for which data should be
920       *  accessed.
921       *  @return  Read/write reference to data.
922       *
923       *  This operator allows for easy, array-style, data access.
924       *  Note that data access with this operator is unchecked and
925       *  out_of_range lookups are not defined. (For checked lookups
926       *  see at().)
927       */
928      reference
929      operator[](size_type __n)
930      { return this->_M_impl._M_start[difference_type(__n)]; }
931
932      /**
933       *  @brief Subscript access to the data contained in the %deque.
934       *  @param n The index of the element for which data should be
935       *  accessed.
936       *  @return  Read-only (constant) reference to data.
937       *
938       *  This operator allows for easy, array-style, data access.
939       *  Note that data access with this operator is unchecked and
940       *  out_of_range lookups are not defined. (For checked lookups
941       *  see at().)
942       */
943      const_reference
944      operator[](size_type __n) const
945      { return this->_M_impl._M_start[difference_type(__n)]; }
946
947    protected:
948      /// @if maint Safety check used only from at().  @endif
949      void
950      _M_range_check(size_type __n) const
951      {
952	if (__n >= this->size())
953	  __throw_out_of_range(__N("deque::_M_range_check"));
954      }
955
956    public:
957      /**
958       *  @brief  Provides access to the data contained in the %deque.
959       *  @param n The index of the element for which data should be
960       *  accessed.
961       *  @return  Read/write reference to data.
962       *  @throw  std::out_of_range  If @a n is an invalid index.
963       *
964       *  This function provides for safer data access.  The parameter
965       *  is first checked that it is in the range of the deque.  The
966       *  function throws out_of_range if the check fails.
967       */
968      reference
969      at(size_type __n)
970      {
971	_M_range_check(__n);
972	return (*this)[__n];
973      }
974
975      /**
976       *  @brief  Provides access to the data contained in the %deque.
977       *  @param n The index of the element for which data should be
978       *  accessed.
979       *  @return  Read-only (constant) reference to data.
980       *  @throw  std::out_of_range  If @a n is an invalid index.
981       *
982       *  This function provides for safer data access.  The parameter is first
983       *  checked that it is in the range of the deque.  The function throws
984       *  out_of_range if the check fails.
985       */
986      const_reference
987      at(size_type __n) const
988      {
989	_M_range_check(__n);
990	return (*this)[__n];
991      }
992
993      /**
994       *  Returns a read/write reference to the data at the first
995       *  element of the %deque.
996       */
997      reference
998      front()
999      { return *begin(); }
1000
1001      /**
1002       *  Returns a read-only (constant) reference to the data at the first
1003       *  element of the %deque.
1004       */
1005      const_reference
1006      front() const
1007      { return *begin(); }
1008
1009      /**
1010       *  Returns a read/write reference to the data at the last element of the
1011       *  %deque.
1012       */
1013      reference
1014      back()
1015      {
1016	iterator __tmp = end();
1017	--__tmp;
1018	return *__tmp;
1019      }
1020
1021      /**
1022       *  Returns a read-only (constant) reference to the data at the last
1023       *  element of the %deque.
1024       */
1025      const_reference
1026      back() const
1027      {
1028	const_iterator __tmp = end();
1029	--__tmp;
1030	return *__tmp;
1031      }
1032
1033      // [23.2.1.2] modifiers
1034      /**
1035       *  @brief  Add data to the front of the %deque.
1036       *  @param  x  Data to be added.
1037       *
1038       *  This is a typical stack operation.  The function creates an
1039       *  element at the front of the %deque and assigns the given
1040       *  data to it.  Due to the nature of a %deque this operation
1041       *  can be done in constant time.
1042       */
1043      void
1044      push_front(const value_type& __x)
1045      {
1046	if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1047	  {
1048	    this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1049	    --this->_M_impl._M_start._M_cur;
1050	  }
1051	else
1052	  _M_push_front_aux(__x);
1053      }
1054
1055      /**
1056       *  @brief  Add data to the end of the %deque.
1057       *  @param  x  Data to be added.
1058       *
1059       *  This is a typical stack operation.  The function creates an
1060       *  element at the end of the %deque and assigns the given data
1061       *  to it.  Due to the nature of a %deque this operation can be
1062       *  done in constant time.
1063       */
1064      void
1065      push_back(const value_type& __x)
1066      {
1067	if (this->_M_impl._M_finish._M_cur
1068	    != this->_M_impl._M_finish._M_last - 1)
1069	  {
1070	    this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1071	    ++this->_M_impl._M_finish._M_cur;
1072	  }
1073	else
1074	  _M_push_back_aux(__x);
1075      }
1076
1077      /**
1078       *  @brief  Removes first element.
1079       *
1080       *  This is a typical stack operation.  It shrinks the %deque by one.
1081       *
1082       *  Note that no data is returned, and if the first element's data is
1083       *  needed, it should be retrieved before pop_front() is called.
1084       */
1085      void
1086      pop_front()
1087      {
1088	if (this->_M_impl._M_start._M_cur
1089	    != this->_M_impl._M_start._M_last - 1)
1090	  {
1091	    this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1092	    ++this->_M_impl._M_start._M_cur;
1093	  }
1094	else
1095	  _M_pop_front_aux();
1096      }
1097
1098      /**
1099       *  @brief  Removes last element.
1100       *
1101       *  This is a typical stack operation.  It shrinks the %deque by one.
1102       *
1103       *  Note that no data is returned, and if the last element's data is
1104       *  needed, it should be retrieved before pop_back() is called.
1105       */
1106      void
1107      pop_back()
1108      {
1109	if (this->_M_impl._M_finish._M_cur
1110	    != this->_M_impl._M_finish._M_first)
1111	  {
1112	    --this->_M_impl._M_finish._M_cur;
1113	    this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1114	  }
1115	else
1116	  _M_pop_back_aux();
1117      }
1118
1119      /**
1120       *  @brief  Inserts given value into %deque before specified iterator.
1121       *  @param  position  An iterator into the %deque.
1122       *  @param  x  Data to be inserted.
1123       *  @return  An iterator that points to the inserted data.
1124       *
1125       *  This function will insert a copy of the given value before the
1126       *  specified location.
1127       */
1128      iterator
1129      insert(iterator __position, const value_type& __x);
1130
1131      /**
1132       *  @brief  Inserts a number of copies of given data into the %deque.
1133       *  @param  position  An iterator into the %deque.
1134       *  @param  n  Number of elements to be inserted.
1135       *  @param  x  Data to be inserted.
1136       *
1137       *  This function will insert a specified number of copies of the given
1138       *  data before the location specified by @a position.
1139       */
1140      void
1141      insert(iterator __position, size_type __n, const value_type& __x)
1142      { _M_fill_insert(__position, __n, __x); }
1143
1144      /**
1145       *  @brief  Inserts a range into the %deque.
1146       *  @param  position  An iterator into the %deque.
1147       *  @param  first  An input iterator.
1148       *  @param  last   An input iterator.
1149       *
1150       *  This function will insert copies of the data in the range
1151       *  [first,last) into the %deque before the location specified
1152       *  by @a pos.  This is known as "range insert."
1153       */
1154      template<typename _InputIterator>
1155        void
1156        insert(iterator __position, _InputIterator __first,
1157	       _InputIterator __last)
1158        {
1159	  // Check whether it's an integral type.  If so, it's not an iterator.
1160	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1161	  _M_insert_dispatch(__position, __first, __last, _Integral());
1162	}
1163
1164      /**
1165       *  @brief  Remove element at given position.
1166       *  @param  position  Iterator pointing to element to be erased.
1167       *  @return  An iterator pointing to the next element (or end()).
1168       *
1169       *  This function will erase the element at the given position and thus
1170       *  shorten the %deque by one.
1171       *
1172       *  The user is cautioned that
1173       *  this function only erases the element, and that if the element is
1174       *  itself a pointer, the pointed-to memory is not touched in any way.
1175       *  Managing the pointer is the user's responsibilty.
1176       */
1177      iterator
1178      erase(iterator __position);
1179
1180      /**
1181       *  @brief  Remove a range of elements.
1182       *  @param  first  Iterator pointing to the first element to be erased.
1183       *  @param  last  Iterator pointing to one past the last element to be
1184       *                erased.
1185       *  @return  An iterator pointing to the element pointed to by @a last
1186       *           prior to erasing (or end()).
1187       *
1188       *  This function will erase the elements in the range [first,last) and
1189       *  shorten the %deque accordingly.
1190       *
1191       *  The user is cautioned that
1192       *  this function only erases the elements, and that if the elements
1193       *  themselves are pointers, the pointed-to memory is not touched in any
1194       *  way.  Managing the pointer is the user's responsibilty.
1195       */
1196      iterator
1197      erase(iterator __first, iterator __last);
1198
1199      /**
1200       *  @brief  Swaps data with another %deque.
1201       *  @param  x  A %deque of the same element and allocator types.
1202       *
1203       *  This exchanges the elements between two deques in constant time.
1204       *  (Four pointers, so it should be quite fast.)
1205       *  Note that the global std::swap() function is specialized such that
1206       *  std::swap(d1,d2) will feed to this function.
1207       */
1208      void
1209      swap(deque& __x)
1210      {
1211	std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1212	std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1213	std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1214	std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1215
1216	// _GLIBCXX_RESOLVE_LIB_DEFECTS
1217	// 431. Swapping containers with unequal allocators.
1218	std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1219						    __x._M_get_Tp_allocator());
1220      }
1221
1222      /**
1223       *  Erases all the elements.  Note that this function only erases the
1224       *  elements, and that if the elements themselves are pointers, the
1225       *  pointed-to memory is not touched in any way.  Managing the pointer is
1226       *  the user's responsibilty.
1227       */
1228      void
1229      clear()
1230      { _M_erase_at_end(begin()); }
1231
1232    protected:
1233      // Internal constructor functions follow.
1234
1235      // called by the range constructor to implement [23.1.1]/9
1236      template<typename _Integer>
1237        void
1238        _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1239        {
1240	  _M_initialize_map(__n);
1241	  _M_fill_initialize(__x);
1242	}
1243
1244      // called by the range constructor to implement [23.1.1]/9
1245      template<typename _InputIterator>
1246        void
1247        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1248			       __false_type)
1249        {
1250	  typedef typename std::iterator_traits<_InputIterator>::
1251	    iterator_category _IterCategory;
1252	  _M_range_initialize(__first, __last, _IterCategory());
1253	}
1254
1255      // called by the second initialize_dispatch above
1256      //@{
1257      /**
1258       *  @if maint
1259       *  @brief Fills the deque with whatever is in [first,last).
1260       *  @param  first  An input iterator.
1261       *  @param  last  An input iterator.
1262       *  @return   Nothing.
1263       *
1264       *  If the iterators are actually forward iterators (or better), then the
1265       *  memory layout can be done all at once.  Else we move forward using
1266       *  push_back on each value from the iterator.
1267       *  @endif
1268       */
1269      template<typename _InputIterator>
1270        void
1271        _M_range_initialize(_InputIterator __first, _InputIterator __last,
1272			    std::input_iterator_tag);
1273
1274      // called by the second initialize_dispatch above
1275      template<typename _ForwardIterator>
1276        void
1277        _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1278			    std::forward_iterator_tag);
1279      //@}
1280
1281      /**
1282       *  @if maint
1283       *  @brief Fills the %deque with copies of value.
1284       *  @param  value  Initial value.
1285       *  @return   Nothing.
1286       *  @pre _M_start and _M_finish have already been initialized,
1287       *  but none of the %deque's elements have yet been constructed.
1288       *
1289       *  This function is called only when the user provides an explicit size
1290       *  (with or without an explicit exemplar value).
1291       *  @endif
1292       */
1293      void
1294      _M_fill_initialize(const value_type& __value);
1295
1296      // Internal assign functions follow.  The *_aux functions do the actual
1297      // assignment work for the range versions.
1298
1299      // called by the range assign to implement [23.1.1]/9
1300      template<typename _Integer>
1301        void
1302        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1303        {
1304	  _M_fill_assign(static_cast<size_type>(__n),
1305			 static_cast<value_type>(__val));
1306	}
1307
1308      // called by the range assign to implement [23.1.1]/9
1309      template<typename _InputIterator>
1310        void
1311        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1312			   __false_type)
1313        {
1314	  typedef typename std::iterator_traits<_InputIterator>::
1315	    iterator_category _IterCategory;
1316	  _M_assign_aux(__first, __last, _IterCategory());
1317	}
1318
1319      // called by the second assign_dispatch above
1320      template<typename _InputIterator>
1321        void
1322        _M_assign_aux(_InputIterator __first, _InputIterator __last,
1323		      std::input_iterator_tag);
1324
1325      // called by the second assign_dispatch above
1326      template<typename _ForwardIterator>
1327        void
1328        _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1329		      std::forward_iterator_tag)
1330        {
1331	  const size_type __len = std::distance(__first, __last);
1332	  if (__len > size())
1333	    {
1334	      _ForwardIterator __mid = __first;
1335	      std::advance(__mid, size());
1336	      std::copy(__first, __mid, begin());
1337	      insert(end(), __mid, __last);
1338	    }
1339	  else
1340	    _M_erase_at_end(std::copy(__first, __last, begin()));
1341	}
1342
1343      // Called by assign(n,t), and the range assign when it turns out
1344      // to be the same thing.
1345      void
1346      _M_fill_assign(size_type __n, const value_type& __val)
1347      {
1348	if (__n > size())
1349	  {
1350	    std::fill(begin(), end(), __val);
1351	    insert(end(), __n - size(), __val);
1352	  }
1353	else
1354	  {
1355	    _M_erase_at_end(begin() + difference_type(__n));
1356	    std::fill(begin(), end(), __val);
1357	  }
1358      }
1359
1360      //@{
1361      /**
1362       *  @if maint
1363       *  @brief Helper functions for push_* and pop_*.
1364       *  @endif
1365       */
1366      void _M_push_back_aux(const value_type&);
1367
1368      void _M_push_front_aux(const value_type&);
1369
1370      void _M_pop_back_aux();
1371
1372      void _M_pop_front_aux();
1373      //@}
1374
1375      // Internal insert functions follow.  The *_aux functions do the actual
1376      // insertion work when all shortcuts fail.
1377
1378      // called by the range insert to implement [23.1.1]/9
1379      template<typename _Integer>
1380        void
1381        _M_insert_dispatch(iterator __pos,
1382			   _Integer __n, _Integer __x, __true_type)
1383        {
1384	  _M_fill_insert(__pos, static_cast<size_type>(__n),
1385			 static_cast<value_type>(__x));
1386	}
1387
1388      // called by the range insert to implement [23.1.1]/9
1389      template<typename _InputIterator>
1390        void
1391        _M_insert_dispatch(iterator __pos,
1392			   _InputIterator __first, _InputIterator __last,
1393			   __false_type)
1394        {
1395	  typedef typename std::iterator_traits<_InputIterator>::
1396	    iterator_category _IterCategory;
1397          _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1398	}
1399
1400      // called by the second insert_dispatch above
1401      template<typename _InputIterator>
1402        void
1403        _M_range_insert_aux(iterator __pos, _InputIterator __first,
1404			    _InputIterator __last, std::input_iterator_tag);
1405
1406      // called by the second insert_dispatch above
1407      template<typename _ForwardIterator>
1408        void
1409        _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1410			    _ForwardIterator __last, std::forward_iterator_tag);
1411
1412      // Called by insert(p,n,x), and the range insert when it turns out to be
1413      // the same thing.  Can use fill functions in optimal situations,
1414      // otherwise passes off to insert_aux(p,n,x).
1415      void
1416      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1417
1418      // called by insert(p,x)
1419      iterator
1420      _M_insert_aux(iterator __pos, const value_type& __x);
1421
1422      // called by insert(p,n,x) via fill_insert
1423      void
1424      _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1425
1426      // called by range_insert_aux for forward iterators
1427      template<typename _ForwardIterator>
1428        void
1429        _M_insert_aux(iterator __pos,
1430		      _ForwardIterator __first, _ForwardIterator __last,
1431		      size_type __n);
1432
1433
1434      // Internal erase functions follow.
1435
1436      void
1437      _M_destroy_data_aux(iterator __first, iterator __last);
1438
1439      void
1440      _M_destroy_data_dispatch(iterator, iterator, __true_type) { }
1441
1442      void
1443      _M_destroy_data_dispatch(iterator __first, iterator __last, __false_type)
1444      { _M_destroy_data_aux(__first, __last); }
1445
1446      // Called by ~deque().
1447      // NB: Doesn't deallocate the nodes.
1448      template<typename _Alloc1>
1449        void
1450        _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
1451        { _M_destroy_data_aux(__first, __last); }
1452
1453      void
1454      _M_destroy_data(iterator __first, iterator __last,
1455		      const std::allocator<_Tp>&)
1456      {
1457	typedef typename std::__is_scalar<value_type>::__type
1458	  _Has_trivial_destructor;
1459	_M_destroy_data_dispatch(__first, __last, _Has_trivial_destructor());
1460      }
1461
1462      // Called by erase(q1, q2).
1463      void
1464      _M_erase_at_begin(iterator __pos)
1465      {
1466	_M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
1467	_M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
1468	this->_M_impl._M_start = __pos;
1469      }
1470
1471      // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
1472      // _M_fill_assign, operator=.
1473      void
1474      _M_erase_at_end(iterator __pos)
1475      {
1476	_M_destroy_data(__pos, end(), _M_get_Tp_allocator());
1477	_M_destroy_nodes(__pos._M_node + 1,
1478			 this->_M_impl._M_finish._M_node + 1);
1479	this->_M_impl._M_finish = __pos;
1480      }
1481
1482      //@{
1483      /**
1484       *  @if maint
1485       *  @brief Memory-handling helpers for the previous internal insert
1486       *         functions.
1487       *  @endif
1488       */
1489      iterator
1490      _M_reserve_elements_at_front(size_type __n)
1491      {
1492	const size_type __vacancies = this->_M_impl._M_start._M_cur
1493	                              - this->_M_impl._M_start._M_first;
1494	if (__n > __vacancies)
1495	  _M_new_elements_at_front(__n - __vacancies);
1496	return this->_M_impl._M_start - difference_type(__n);
1497      }
1498
1499      iterator
1500      _M_reserve_elements_at_back(size_type __n)
1501      {
1502	const size_type __vacancies = (this->_M_impl._M_finish._M_last
1503				       - this->_M_impl._M_finish._M_cur) - 1;
1504	if (__n > __vacancies)
1505	  _M_new_elements_at_back(__n - __vacancies);
1506	return this->_M_impl._M_finish + difference_type(__n);
1507      }
1508
1509      void
1510      _M_new_elements_at_front(size_type __new_elements);
1511
1512      void
1513      _M_new_elements_at_back(size_type __new_elements);
1514      //@}
1515
1516
1517      //@{
1518      /**
1519       *  @if maint
1520       *  @brief Memory-handling helpers for the major %map.
1521       *
1522       *  Makes sure the _M_map has space for new nodes.  Does not
1523       *  actually add the nodes.  Can invalidate _M_map pointers.
1524       *  (And consequently, %deque iterators.)
1525       *  @endif
1526       */
1527      void
1528      _M_reserve_map_at_back(size_type __nodes_to_add = 1)
1529      {
1530	if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1531	    - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1532	  _M_reallocate_map(__nodes_to_add, false);
1533      }
1534
1535      void
1536      _M_reserve_map_at_front(size_type __nodes_to_add = 1)
1537      {
1538	if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1539				       - this->_M_impl._M_map))
1540	  _M_reallocate_map(__nodes_to_add, true);
1541      }
1542
1543      void
1544      _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1545      //@}
1546    };
1547
1548
1549  /**
1550   *  @brief  Deque equality comparison.
1551   *  @param  x  A %deque.
1552   *  @param  y  A %deque of the same type as @a x.
1553   *  @return  True iff the size and elements of the deques are equal.
1554   *
1555   *  This is an equivalence relation.  It is linear in the size of the
1556   *  deques.  Deques are considered equivalent if their sizes are equal,
1557   *  and if corresponding elements compare equal.
1558  */
1559  template<typename _Tp, typename _Alloc>
1560    inline bool
1561    operator==(const deque<_Tp, _Alloc>& __x,
1562                         const deque<_Tp, _Alloc>& __y)
1563    { return __x.size() == __y.size()
1564             && std::equal(__x.begin(), __x.end(), __y.begin()); }
1565
1566  /**
1567   *  @brief  Deque ordering relation.
1568   *  @param  x  A %deque.
1569   *  @param  y  A %deque of the same type as @a x.
1570   *  @return  True iff @a x is lexicographically less than @a y.
1571   *
1572   *  This is a total ordering relation.  It is linear in the size of the
1573   *  deques.  The elements must be comparable with @c <.
1574   *
1575   *  See std::lexicographical_compare() for how the determination is made.
1576  */
1577  template<typename _Tp, typename _Alloc>
1578    inline bool
1579    operator<(const deque<_Tp, _Alloc>& __x,
1580	      const deque<_Tp, _Alloc>& __y)
1581    { return std::lexicographical_compare(__x.begin(), __x.end(),
1582					  __y.begin(), __y.end()); }
1583
1584  /// Based on operator==
1585  template<typename _Tp, typename _Alloc>
1586    inline bool
1587    operator!=(const deque<_Tp, _Alloc>& __x,
1588	       const deque<_Tp, _Alloc>& __y)
1589    { return !(__x == __y); }
1590
1591  /// Based on operator<
1592  template<typename _Tp, typename _Alloc>
1593    inline bool
1594    operator>(const deque<_Tp, _Alloc>& __x,
1595	      const deque<_Tp, _Alloc>& __y)
1596    { return __y < __x; }
1597
1598  /// Based on operator<
1599  template<typename _Tp, typename _Alloc>
1600    inline bool
1601    operator<=(const deque<_Tp, _Alloc>& __x,
1602	       const deque<_Tp, _Alloc>& __y)
1603    { return !(__y < __x); }
1604
1605  /// Based on operator<
1606  template<typename _Tp, typename _Alloc>
1607    inline bool
1608    operator>=(const deque<_Tp, _Alloc>& __x,
1609	       const deque<_Tp, _Alloc>& __y)
1610    { return !(__x < __y); }
1611
1612  /// See std::deque::swap().
1613  template<typename _Tp, typename _Alloc>
1614    inline void
1615    swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
1616    { __x.swap(__y); }
1617
1618_GLIBCXX_END_NESTED_NAMESPACE
1619
1620#endif /* _DEQUE_H */
1621