1/* Interface between GDB and target environments, including files and processes
2
3   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4   1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6   Contributed by Cygnus Support.  Written by John Gilmore.
7
8   This file is part of GDB.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 2 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program; if not, write to the Free Software
22   Foundation, Inc., 59 Temple Place - Suite 330,
23   Boston, MA 02111-1307, USA.  */
24
25#if !defined (TARGET_H)
26#define TARGET_H
27
28struct objfile;
29struct ui_file;
30struct mem_attrib;
31struct target_ops;
32
33/* This include file defines the interface between the main part
34   of the debugger, and the part which is target-specific, or
35   specific to the communications interface between us and the
36   target.
37
38   A TARGET is an interface between the debugger and a particular
39   kind of file or process.  Targets can be STACKED in STRATA,
40   so that more than one target can potentially respond to a request.
41   In particular, memory accesses will walk down the stack of targets
42   until they find a target that is interested in handling that particular
43   address.  STRATA are artificial boundaries on the stack, within
44   which particular kinds of targets live.  Strata exist so that
45   people don't get confused by pushing e.g. a process target and then
46   a file target, and wondering why they can't see the current values
47   of variables any more (the file target is handling them and they
48   never get to the process target).  So when you push a file target,
49   it goes into the file stratum, which is always below the process
50   stratum.  */
51
52#include "bfd.h"
53#include "symtab.h"
54#include "dcache.h"
55#include "memattr.h"
56
57enum strata
58  {
59    dummy_stratum,		/* The lowest of the low */
60    file_stratum,		/* Executable files, etc */
61    core_stratum,		/* Core dump files */
62    download_stratum,		/* Downloading of remote targets */
63    process_stratum,		/* Executing processes */
64    thread_stratum		/* Executing threads */
65  };
66
67enum thread_control_capabilities
68  {
69    tc_none = 0,		/* Default: can't control thread execution.  */
70    tc_schedlock = 1,		/* Can lock the thread scheduler.  */
71    tc_switch = 2		/* Can switch the running thread on demand.  */
72  };
73
74/* Stuff for target_wait.  */
75
76/* Generally, what has the program done?  */
77enum target_waitkind
78  {
79    /* The program has exited.  The exit status is in value.integer.  */
80    TARGET_WAITKIND_EXITED,
81
82    /* The program has stopped with a signal.  Which signal is in
83       value.sig.  */
84    TARGET_WAITKIND_STOPPED,
85
86    /* The program has terminated with a signal.  Which signal is in
87       value.sig.  */
88    TARGET_WAITKIND_SIGNALLED,
89
90    /* The program is letting us know that it dynamically loaded something
91       (e.g. it called load(2) on AIX).  */
92    TARGET_WAITKIND_LOADED,
93
94    /* The program has forked.  A "related" process' ID is in
95       value.related_pid.  I.e., if the child forks, value.related_pid
96       is the parent's ID.  */
97
98    TARGET_WAITKIND_FORKED,
99
100    /* The program has vforked.  A "related" process's ID is in
101       value.related_pid.  */
102
103    TARGET_WAITKIND_VFORKED,
104
105    /* The program has exec'ed a new executable file.  The new file's
106       pathname is pointed to by value.execd_pathname.  */
107
108    TARGET_WAITKIND_EXECD,
109
110    /* The program has entered or returned from a system call.  On
111       HP-UX, this is used in the hardware watchpoint implementation.
112       The syscall's unique integer ID number is in value.syscall_id */
113
114    TARGET_WAITKIND_SYSCALL_ENTRY,
115    TARGET_WAITKIND_SYSCALL_RETURN,
116
117    /* Nothing happened, but we stopped anyway.  This perhaps should be handled
118       within target_wait, but I'm not sure target_wait should be resuming the
119       inferior.  */
120    TARGET_WAITKIND_SPURIOUS,
121
122    /* An event has occured, but we should wait again.
123       Remote_async_wait() returns this when there is an event
124       on the inferior, but the rest of the world is not interested in
125       it. The inferior has not stopped, but has just sent some output
126       to the console, for instance. In this case, we want to go back
127       to the event loop and wait there for another event from the
128       inferior, rather than being stuck in the remote_async_wait()
129       function. This way the event loop is responsive to other events,
130       like for instance the user typing.  */
131    TARGET_WAITKIND_IGNORE
132  };
133
134struct target_waitstatus
135  {
136    enum target_waitkind kind;
137
138    /* Forked child pid, execd pathname, exit status or signal number.  */
139    union
140      {
141	int integer;
142	enum target_signal sig;
143	int related_pid;
144	char *execd_pathname;
145	int syscall_id;
146      }
147    value;
148  };
149
150/* Possible types of events that the inferior handler will have to
151   deal with.  */
152enum inferior_event_type
153  {
154    /* There is a request to quit the inferior, abandon it.  */
155    INF_QUIT_REQ,
156    /* Process a normal inferior event which will result in target_wait
157       being called.  */
158    INF_REG_EVENT,
159    /* Deal with an error on the inferior.  */
160    INF_ERROR,
161    /* We are called because a timer went off.  */
162    INF_TIMER,
163    /* We are called to do stuff after the inferior stops.  */
164    INF_EXEC_COMPLETE,
165    /* We are called to do some stuff after the inferior stops, but we
166       are expected to reenter the proceed() and
167       handle_inferior_event() functions. This is used only in case of
168       'step n' like commands.  */
169    INF_EXEC_CONTINUE
170  };
171
172/* Return the string for a signal.  */
173extern char *target_signal_to_string (enum target_signal);
174
175/* Return the name (SIGHUP, etc.) for a signal.  */
176extern char *target_signal_to_name (enum target_signal);
177
178/* Given a name (SIGHUP, etc.), return its signal.  */
179enum target_signal target_signal_from_name (char *);
180
181/* Request the transfer of up to LEN 8-bit bytes of the target's
182   OBJECT.  The OFFSET, for a seekable object, specifies the starting
183   point.  The ANNEX can be used to provide additional data-specific
184   information to the target.
185
186   Return the number of bytes actually transfered, zero when no
187   further transfer is possible, and -1 when the transfer is not
188   supported.
189
190   NOTE: cagney/2003-10-17: The current interface does not support a
191   "retry" mechanism.  Instead it assumes that at least one byte will
192   be transfered on each call.
193
194   NOTE: cagney/2003-10-17: The current interface can lead to
195   fragmented transfers.  Lower target levels should not implement
196   hacks, such as enlarging the transfer, in an attempt to compensate
197   for this.  Instead, the target stack should be extended so that it
198   implements supply/collect methods and a look-aside object cache.
199   With that available, the lowest target can safely and freely "push"
200   data up the stack.
201
202   NOTE: cagney/2003-10-17: Unlike the old query and the memory
203   transfer mechanisms, these methods are explicitly parameterized by
204   the target that it should be applied to.
205
206   NOTE: cagney/2003-10-17: Just like the old query and memory xfer
207   methods, these new methods perform partial transfers.  The only
208   difference is that these new methods thought to include "partial"
209   in the name.  The old code's failure to do this lead to much
210   confusion and duplication of effort as each target object attempted
211   to locally take responsibility for something it didn't have to
212   worry about.
213
214   NOTE: cagney/2003-10-17: With a TARGET_OBJECT_KOD object, for
215   backward compatibility with the "target_query" method that this
216   replaced, when OFFSET and LEN are both zero, return the "minimum"
217   buffer size.  See "remote.c" for further information.  */
218
219enum target_object
220{
221  /* Kernel Object Display transfer.  See "kod.c" and "remote.c".  */
222  TARGET_OBJECT_KOD,
223  /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
224  TARGET_OBJECT_AVR,
225  /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
226  TARGET_OBJECT_MEMORY,
227  /* Kernel Unwind Table.  See "ia64-tdep.c".  */
228  TARGET_OBJECT_UNWIND_TABLE,
229  /* Transfer auxilliary vector.  */
230  TARGET_OBJECT_AUXV,
231  /* StackGhost cookie.  See "sparc-tdep.c".  */
232  TARGET_OBJECT_WCOOKIE,
233  /* Dirty registers. See "ia64-tdep.c".  */
234  TARGET_OBJECT_DIRTY
235
236  /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
237};
238
239extern LONGEST target_read_partial (struct target_ops *ops,
240				    enum target_object object,
241				    const char *annex, void *buf,
242				    ULONGEST offset, LONGEST len);
243
244extern LONGEST target_write_partial (struct target_ops *ops,
245				     enum target_object object,
246				     const char *annex, const void *buf,
247				     ULONGEST offset, LONGEST len);
248
249/* Wrappers to perform the full transfer.  */
250extern LONGEST target_read (struct target_ops *ops,
251			    enum target_object object,
252			    const char *annex, void *buf,
253			    ULONGEST offset, LONGEST len);
254
255extern LONGEST target_write (struct target_ops *ops,
256			     enum target_object object,
257			     const char *annex, const void *buf,
258			     ULONGEST offset, LONGEST len);
259
260/* Wrappers to target read/write that perform memory transfers.  They
261   throw an error if the memory transfer fails.
262
263   NOTE: cagney/2003-10-23: The naming schema is lifted from
264   "frame.h".  The parameter order is lifted from get_frame_memory,
265   which in turn lifted it from read_memory.  */
266
267extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
268			       void *buf, LONGEST len);
269extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
270					    CORE_ADDR addr, int len);
271
272
273/* If certain kinds of activity happen, target_wait should perform
274   callbacks.  */
275/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
276   on TARGET_ACTIVITY_FD.  */
277extern int target_activity_fd;
278/* Returns zero to leave the inferior alone, one to interrupt it.  */
279extern int (*target_activity_function) (void);
280
281struct thread_info;		/* fwd decl for parameter list below: */
282
283struct target_ops
284  {
285    struct target_ops *beneath;	/* To the target under this one.  */
286    char *to_shortname;		/* Name this target type */
287    char *to_longname;		/* Name for printing */
288    char *to_doc;		/* Documentation.  Does not include trailing
289				   newline, and starts with a one-line descrip-
290				   tion (probably similar to to_longname).  */
291    /* Per-target scratch pad.  */
292    void *to_data;
293    /* The open routine takes the rest of the parameters from the
294       command, and (if successful) pushes a new target onto the
295       stack.  Targets should supply this routine, if only to provide
296       an error message.  */
297    void (*to_open) (char *, int);
298    /* Old targets with a static target vector provide "to_close".
299       New re-entrant targets provide "to_xclose" and that is expected
300       to xfree everything (including the "struct target_ops").  */
301    void (*to_xclose) (struct target_ops *targ, int quitting);
302    void (*to_close) (int);
303    void (*to_attach) (char *, int);
304    void (*to_post_attach) (int);
305    void (*to_detach) (char *, int);
306    void (*to_disconnect) (char *, int);
307    void (*to_resume) (ptid_t, int, enum target_signal);
308    ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
309    void (*to_post_wait) (ptid_t, int);
310    void (*to_fetch_registers) (int);
311    void (*to_store_registers) (int);
312    void (*to_prepare_to_store) (void);
313
314    /* Transfer LEN bytes of memory between GDB address MYADDR and
315       target address MEMADDR.  If WRITE, transfer them to the target, else
316       transfer them from the target.  TARGET is the target from which we
317       get this function.
318
319       Return value, N, is one of the following:
320
321       0 means that we can't handle this.  If errno has been set, it is the
322       error which prevented us from doing it (FIXME: What about bfd_error?).
323
324       positive (call it N) means that we have transferred N bytes
325       starting at MEMADDR.  We might be able to handle more bytes
326       beyond this length, but no promises.
327
328       negative (call its absolute value N) means that we cannot
329       transfer right at MEMADDR, but we could transfer at least
330       something at MEMADDR + N.  */
331
332    int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
333			   int len, int write,
334			   struct mem_attrib *attrib,
335			   struct target_ops *target);
336
337    void (*to_files_info) (struct target_ops *);
338    int (*to_insert_breakpoint) (CORE_ADDR, char *);
339    int (*to_remove_breakpoint) (CORE_ADDR, char *);
340    int (*to_can_use_hw_breakpoint) (int, int, int);
341    int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
342    int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
343    int (*to_remove_watchpoint) (CORE_ADDR, int, int);
344    int (*to_insert_watchpoint) (CORE_ADDR, int, int);
345    int (*to_stopped_by_watchpoint) (void);
346    int to_have_continuable_watchpoint;
347    CORE_ADDR (*to_stopped_data_address) (void);
348    int (*to_region_size_ok_for_hw_watchpoint) (int);
349    void (*to_terminal_init) (void);
350    void (*to_terminal_inferior) (void);
351    void (*to_terminal_ours_for_output) (void);
352    void (*to_terminal_ours) (void);
353    void (*to_terminal_save_ours) (void);
354    void (*to_terminal_info) (char *, int);
355    void (*to_kill) (void);
356    void (*to_load) (char *, int);
357    int (*to_lookup_symbol) (char *, CORE_ADDR *);
358    void (*to_create_inferior) (char *, char *, char **);
359    void (*to_post_startup_inferior) (ptid_t);
360    void (*to_acknowledge_created_inferior) (int);
361    int (*to_insert_fork_catchpoint) (int);
362    int (*to_remove_fork_catchpoint) (int);
363    int (*to_insert_vfork_catchpoint) (int);
364    int (*to_remove_vfork_catchpoint) (int);
365    int (*to_follow_fork) (int);
366    int (*to_insert_exec_catchpoint) (int);
367    int (*to_remove_exec_catchpoint) (int);
368    int (*to_reported_exec_events_per_exec_call) (void);
369    int (*to_has_exited) (int, int, int *);
370    void (*to_mourn_inferior) (void);
371    int (*to_can_run) (void);
372    void (*to_notice_signals) (ptid_t ptid);
373    int (*to_thread_alive) (ptid_t ptid);
374    void (*to_find_new_threads) (void);
375    char *(*to_pid_to_str) (ptid_t);
376    char *(*to_extra_thread_info) (struct thread_info *);
377    void (*to_stop) (void);
378    void (*to_rcmd) (char *command, struct ui_file *output);
379    struct symtab_and_line *(*to_enable_exception_callback) (enum
380							     exception_event_kind,
381							     int);
382    struct exception_event_record *(*to_get_current_exception_event) (void);
383    char *(*to_pid_to_exec_file) (int pid);
384    enum strata to_stratum;
385    int to_has_all_memory;
386    int to_has_memory;
387    int to_has_stack;
388    int to_has_registers;
389    int to_has_execution;
390    int to_has_thread_control;	/* control thread execution */
391    struct section_table
392     *to_sections;
393    struct section_table
394     *to_sections_end;
395    /* ASYNC target controls */
396    int (*to_can_async_p) (void);
397    int (*to_is_async_p) (void);
398    void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
399		      void *context);
400    int to_async_mask_value;
401    int (*to_find_memory_regions) (int (*) (CORE_ADDR,
402					    unsigned long,
403					    int, int, int,
404					    void *),
405				   void *);
406    char * (*to_make_corefile_notes) (bfd *, int *);
407
408    /* Return the thread-local address at OFFSET in the
409       thread-local storage for the thread PTID and the shared library
410       or executable file given by OBJFILE.  If that block of
411       thread-local storage hasn't been allocated yet, this function
412       may return an error.  */
413    CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
414					      struct objfile *objfile,
415					      CORE_ADDR offset);
416
417    /* Perform partial transfers on OBJECT.  See target_read_partial
418       and target_write_partial for details of each variant.  One, and
419       only one, of readbuf or writebuf must be non-NULL.  */
420    LONGEST (*to_xfer_partial) (struct target_ops *ops,
421				enum target_object object, const char *annex,
422				void *readbuf, const void *writebuf,
423				ULONGEST offset, LONGEST len);
424
425    int to_magic;
426    /* Need sub-structure for target machine related rather than comm related?
427     */
428  };
429
430/* Magic number for checking ops size.  If a struct doesn't end with this
431   number, somebody changed the declaration but didn't change all the
432   places that initialize one.  */
433
434#define	OPS_MAGIC	3840
435
436/* The ops structure for our "current" target process.  This should
437   never be NULL.  If there is no target, it points to the dummy_target.  */
438
439extern struct target_ops current_target;
440
441/* Define easy words for doing these operations on our current target.  */
442
443#define	target_shortname	(current_target.to_shortname)
444#define	target_longname		(current_target.to_longname)
445
446/* Does whatever cleanup is required for a target that we are no
447   longer going to be calling.  QUITTING indicates that GDB is exiting
448   and should not get hung on an error (otherwise it is important to
449   perform clean termination, even if it takes a while).  This routine
450   is automatically always called when popping the target off the
451   target stack (to_beneath is undefined).  Closing file descriptors
452   and freeing all memory allocated memory are typical things it
453   should do.  */
454
455void target_close (struct target_ops *targ, int quitting);
456
457/* Attaches to a process on the target side.  Arguments are as passed
458   to the `attach' command by the user.  This routine can be called
459   when the target is not on the target-stack, if the target_can_run
460   routine returns 1; in that case, it must push itself onto the stack.
461   Upon exit, the target should be ready for normal operations, and
462   should be ready to deliver the status of the process immediately
463   (without waiting) to an upcoming target_wait call.  */
464
465#define	target_attach(args, from_tty)	\
466     (*current_target.to_attach) (args, from_tty)
467
468/* The target_attach operation places a process under debugger control,
469   and stops the process.
470
471   This operation provides a target-specific hook that allows the
472   necessary bookkeeping to be performed after an attach completes.  */
473#define target_post_attach(pid) \
474     (*current_target.to_post_attach) (pid)
475
476/* Takes a program previously attached to and detaches it.
477   The program may resume execution (some targets do, some don't) and will
478   no longer stop on signals, etc.  We better not have left any breakpoints
479   in the program or it'll die when it hits one.  ARGS is arguments
480   typed by the user (e.g. a signal to send the process).  FROM_TTY
481   says whether to be verbose or not.  */
482
483extern void target_detach (char *, int);
484
485/* Disconnect from the current target without resuming it (leaving it
486   waiting for a debugger).  */
487
488extern void target_disconnect (char *, int);
489
490/* Resume execution of the target process PTID.  STEP says whether to
491   single-step or to run free; SIGGNAL is the signal to be given to
492   the target, or TARGET_SIGNAL_0 for no signal.  The caller may not
493   pass TARGET_SIGNAL_DEFAULT.  */
494
495#define	target_resume(ptid, step, siggnal)				\
496  do {									\
497    dcache_invalidate(target_dcache);					\
498    (*current_target.to_resume) (ptid, step, siggnal);			\
499  } while (0)
500
501/* Wait for process pid to do something.  PTID = -1 to wait for any
502   pid to do something.  Return pid of child, or -1 in case of error;
503   store status through argument pointer STATUS.  Note that it is
504   _NOT_ OK to throw_exception() out of target_wait() without popping
505   the debugging target from the stack; GDB isn't prepared to get back
506   to the prompt with a debugging target but without the frame cache,
507   stop_pc, etc., set up.  */
508
509#define	target_wait(ptid, status)		\
510     (*current_target.to_wait) (ptid, status)
511
512/* The target_wait operation waits for a process event to occur, and
513   thereby stop the process.
514
515   On some targets, certain events may happen in sequences.  gdb's
516   correct response to any single event of such a sequence may require
517   knowledge of what earlier events in the sequence have been seen.
518
519   This operation provides a target-specific hook that allows the
520   necessary bookkeeping to be performed to track such sequences.  */
521
522#define target_post_wait(ptid, status) \
523     (*current_target.to_post_wait) (ptid, status)
524
525/* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
526
527#define	target_fetch_registers(regno)	\
528     (*current_target.to_fetch_registers) (regno)
529
530/* Store at least register REGNO, or all regs if REGNO == -1.
531   It can store as many registers as it wants to, so target_prepare_to_store
532   must have been previously called.  Calls error() if there are problems.  */
533
534#define	target_store_registers(regs)	\
535     (*current_target.to_store_registers) (regs)
536
537/* Get ready to modify the registers array.  On machines which store
538   individual registers, this doesn't need to do anything.  On machines
539   which store all the registers in one fell swoop, this makes sure
540   that REGISTERS contains all the registers from the program being
541   debugged.  */
542
543#define	target_prepare_to_store()	\
544     (*current_target.to_prepare_to_store) ()
545
546extern DCACHE *target_dcache;
547
548extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
549			   struct mem_attrib *attrib);
550
551extern int target_read_string (CORE_ADDR, char **, int, int *);
552
553extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
554
555extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
556
557extern int xfer_memory (CORE_ADDR, char *, int, int,
558			struct mem_attrib *, struct target_ops *);
559
560extern int child_xfer_memory (CORE_ADDR, char *, int, int,
561			      struct mem_attrib *, struct target_ops *);
562
563/* Make a single attempt at transfering LEN bytes.  On a successful
564   transfer, the number of bytes actually transfered is returned and
565   ERR is set to 0.  When a transfer fails, -1 is returned (the number
566   of bytes actually transfered is not defined) and ERR is set to a
567   non-zero error indication.  */
568
569extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
570				       int *err);
571
572extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
573					int *err);
574
575extern char *child_pid_to_exec_file (int);
576
577extern char *child_core_file_to_sym_file (char *);
578
579#if defined(CHILD_POST_ATTACH)
580extern void child_post_attach (int);
581#endif
582
583extern void child_post_wait (ptid_t, int);
584
585extern void child_post_startup_inferior (ptid_t);
586
587extern void child_acknowledge_created_inferior (int);
588
589extern int child_insert_fork_catchpoint (int);
590
591extern int child_remove_fork_catchpoint (int);
592
593extern int child_insert_vfork_catchpoint (int);
594
595extern int child_remove_vfork_catchpoint (int);
596
597extern void child_acknowledge_created_inferior (int);
598
599extern int child_follow_fork (int);
600
601extern int child_insert_exec_catchpoint (int);
602
603extern int child_remove_exec_catchpoint (int);
604
605extern int child_reported_exec_events_per_exec_call (void);
606
607extern int child_has_exited (int, int, int *);
608
609extern int child_thread_alive (ptid_t);
610
611/* From infrun.c.  */
612
613extern int inferior_has_forked (int pid, int *child_pid);
614
615extern int inferior_has_vforked (int pid, int *child_pid);
616
617extern int inferior_has_execd (int pid, char **execd_pathname);
618
619/* From exec.c */
620
621extern void print_section_info (struct target_ops *, bfd *);
622
623/* Print a line about the current target.  */
624
625#define	target_files_info()	\
626     (*current_target.to_files_info) (&current_target)
627
628/* Insert a breakpoint at address ADDR in the target machine.  SAVE is
629   a pointer to memory allocated for saving the target contents.  It
630   is guaranteed by the caller to be long enough to save the number of
631   breakpoint bytes indicated by BREAKPOINT_FROM_PC.  Result is 0 for
632   success, or an errno value.  */
633
634#define	target_insert_breakpoint(addr, save)	\
635     (*current_target.to_insert_breakpoint) (addr, save)
636
637/* Remove a breakpoint at address ADDR in the target machine.
638   SAVE is a pointer to the same save area
639   that was previously passed to target_insert_breakpoint.
640   Result is 0 for success, or an errno value.  */
641
642#define	target_remove_breakpoint(addr, save)	\
643     (*current_target.to_remove_breakpoint) (addr, save)
644
645/* Initialize the terminal settings we record for the inferior,
646   before we actually run the inferior.  */
647
648#define target_terminal_init() \
649     (*current_target.to_terminal_init) ()
650
651/* Put the inferior's terminal settings into effect.
652   This is preparation for starting or resuming the inferior.  */
653
654#define target_terminal_inferior() \
655     (*current_target.to_terminal_inferior) ()
656
657/* Put some of our terminal settings into effect,
658   enough to get proper results from our output,
659   but do not change into or out of RAW mode
660   so that no input is discarded.
661
662   After doing this, either terminal_ours or terminal_inferior
663   should be called to get back to a normal state of affairs.  */
664
665#define target_terminal_ours_for_output() \
666     (*current_target.to_terminal_ours_for_output) ()
667
668/* Put our terminal settings into effect.
669   First record the inferior's terminal settings
670   so they can be restored properly later.  */
671
672#define target_terminal_ours() \
673     (*current_target.to_terminal_ours) ()
674
675/* Save our terminal settings.
676   This is called from TUI after entering or leaving the curses
677   mode.  Since curses modifies our terminal this call is here
678   to take this change into account.  */
679
680#define target_terminal_save_ours() \
681     (*current_target.to_terminal_save_ours) ()
682
683/* Print useful information about our terminal status, if such a thing
684   exists.  */
685
686#define target_terminal_info(arg, from_tty) \
687     (*current_target.to_terminal_info) (arg, from_tty)
688
689/* Kill the inferior process.   Make it go away.  */
690
691#define target_kill() \
692     (*current_target.to_kill) ()
693
694/* Load an executable file into the target process.  This is expected
695   to not only bring new code into the target process, but also to
696   update GDB's symbol tables to match.  */
697
698extern void target_load (char *arg, int from_tty);
699
700/* Look up a symbol in the target's symbol table.  NAME is the symbol
701   name.  ADDRP is a CORE_ADDR * pointing to where the value of the
702   symbol should be returned.  The result is 0 if successful, nonzero
703   if the symbol does not exist in the target environment.  This
704   function should not call error() if communication with the target
705   is interrupted, since it is called from symbol reading, but should
706   return nonzero, possibly doing a complain().  */
707
708#define target_lookup_symbol(name, addrp) \
709     (*current_target.to_lookup_symbol) (name, addrp)
710
711/* Start an inferior process and set inferior_ptid to its pid.
712   EXEC_FILE is the file to run.
713   ALLARGS is a string containing the arguments to the program.
714   ENV is the environment vector to pass.  Errors reported with error().
715   On VxWorks and various standalone systems, we ignore exec_file.  */
716
717#define	target_create_inferior(exec_file, args, env)	\
718     (*current_target.to_create_inferior) (exec_file, args, env)
719
720
721/* Some targets (such as ttrace-based HPUX) don't allow us to request
722   notification of inferior events such as fork and vork immediately
723   after the inferior is created.  (This because of how gdb gets an
724   inferior created via invoking a shell to do it.  In such a scenario,
725   if the shell init file has commands in it, the shell will fork and
726   exec for each of those commands, and we will see each such fork
727   event.  Very bad.)
728
729   Such targets will supply an appropriate definition for this function.  */
730
731#define target_post_startup_inferior(ptid) \
732     (*current_target.to_post_startup_inferior) (ptid)
733
734/* On some targets, the sequence of starting up an inferior requires
735   some synchronization between gdb and the new inferior process, PID.  */
736
737#define target_acknowledge_created_inferior(pid) \
738     (*current_target.to_acknowledge_created_inferior) (pid)
739
740/* On some targets, we can catch an inferior fork or vfork event when
741   it occurs.  These functions insert/remove an already-created
742   catchpoint for such events.  */
743
744#define target_insert_fork_catchpoint(pid) \
745     (*current_target.to_insert_fork_catchpoint) (pid)
746
747#define target_remove_fork_catchpoint(pid) \
748     (*current_target.to_remove_fork_catchpoint) (pid)
749
750#define target_insert_vfork_catchpoint(pid) \
751     (*current_target.to_insert_vfork_catchpoint) (pid)
752
753#define target_remove_vfork_catchpoint(pid) \
754     (*current_target.to_remove_vfork_catchpoint) (pid)
755
756/* If the inferior forks or vforks, this function will be called at
757   the next resume in order to perform any bookkeeping and fiddling
758   necessary to continue debugging either the parent or child, as
759   requested, and releasing the other.  Information about the fork
760   or vfork event is available via get_last_target_status ().
761   This function returns 1 if the inferior should not be resumed
762   (i.e. there is another event pending).  */
763
764#define target_follow_fork(follow_child) \
765     (*current_target.to_follow_fork) (follow_child)
766
767/* On some targets, we can catch an inferior exec event when it
768   occurs.  These functions insert/remove an already-created
769   catchpoint for such events.  */
770
771#define target_insert_exec_catchpoint(pid) \
772     (*current_target.to_insert_exec_catchpoint) (pid)
773
774#define target_remove_exec_catchpoint(pid) \
775     (*current_target.to_remove_exec_catchpoint) (pid)
776
777/* Returns the number of exec events that are reported when a process
778   invokes a flavor of the exec() system call on this target, if exec
779   events are being reported.  */
780
781#define target_reported_exec_events_per_exec_call() \
782     (*current_target.to_reported_exec_events_per_exec_call) ()
783
784/* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
785   exit code of PID, if any.  */
786
787#define target_has_exited(pid,wait_status,exit_status) \
788     (*current_target.to_has_exited) (pid,wait_status,exit_status)
789
790/* The debugger has completed a blocking wait() call.  There is now
791   some process event that must be processed.  This function should
792   be defined by those targets that require the debugger to perform
793   cleanup or internal state changes in response to the process event.  */
794
795/* The inferior process has died.  Do what is right.  */
796
797#define	target_mourn_inferior()	\
798     (*current_target.to_mourn_inferior) ()
799
800/* Does target have enough data to do a run or attach command? */
801
802#define target_can_run(t) \
803     ((t)->to_can_run) ()
804
805/* post process changes to signal handling in the inferior.  */
806
807#define target_notice_signals(ptid) \
808     (*current_target.to_notice_signals) (ptid)
809
810/* Check to see if a thread is still alive.  */
811
812#define target_thread_alive(ptid) \
813     (*current_target.to_thread_alive) (ptid)
814
815/* Query for new threads and add them to the thread list.  */
816
817#define target_find_new_threads() \
818     (*current_target.to_find_new_threads) (); \
819
820/* Make target stop in a continuable fashion.  (For instance, under
821   Unix, this should act like SIGSTOP).  This function is normally
822   used by GUIs to implement a stop button.  */
823
824#define target_stop current_target.to_stop
825
826/* Send the specified COMMAND to the target's monitor
827   (shell,interpreter) for execution.  The result of the query is
828   placed in OUTBUF.  */
829
830#define target_rcmd(command, outbuf) \
831     (*current_target.to_rcmd) (command, outbuf)
832
833
834/* Get the symbol information for a breakpointable routine called when
835   an exception event occurs.
836   Intended mainly for C++, and for those
837   platforms/implementations where such a callback mechanism is available,
838   e.g. HP-UX with ANSI C++ (aCC).  Some compilers (e.g. g++) support
839   different mechanisms for debugging exceptions.  */
840
841#define target_enable_exception_callback(kind, enable) \
842     (*current_target.to_enable_exception_callback) (kind, enable)
843
844/* Get the current exception event kind -- throw or catch, etc.  */
845
846#define target_get_current_exception_event() \
847     (*current_target.to_get_current_exception_event) ()
848
849/* Does the target include all of memory, or only part of it?  This
850   determines whether we look up the target chain for other parts of
851   memory if this target can't satisfy a request.  */
852
853#define	target_has_all_memory	\
854     (current_target.to_has_all_memory)
855
856/* Does the target include memory?  (Dummy targets don't.)  */
857
858#define	target_has_memory	\
859     (current_target.to_has_memory)
860
861/* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
862   we start a process.)  */
863
864#define	target_has_stack	\
865     (current_target.to_has_stack)
866
867/* Does the target have registers?  (Exec files don't.)  */
868
869#define	target_has_registers	\
870     (current_target.to_has_registers)
871
872/* Does the target have execution?  Can we make it jump (through
873   hoops), or pop its stack a few times?  FIXME: If this is to work that
874   way, it needs to check whether an inferior actually exists.
875   remote-udi.c and probably other targets can be the current target
876   when the inferior doesn't actually exist at the moment.  Right now
877   this just tells us whether this target is *capable* of execution.  */
878
879#define	target_has_execution	\
880     (current_target.to_has_execution)
881
882/* Can the target support the debugger control of thread execution?
883   a) Can it lock the thread scheduler?
884   b) Can it switch the currently running thread?  */
885
886#define target_can_lock_scheduler \
887     (current_target.to_has_thread_control & tc_schedlock)
888
889#define target_can_switch_threads \
890     (current_target.to_has_thread_control & tc_switch)
891
892/* Can the target support asynchronous execution? */
893#define target_can_async_p() (current_target.to_can_async_p ())
894
895/* Is the target in asynchronous execution mode? */
896#define target_is_async_p() (current_target.to_is_async_p())
897
898/* Put the target in async mode with the specified callback function. */
899#define target_async(CALLBACK,CONTEXT) \
900     (current_target.to_async((CALLBACK), (CONTEXT)))
901
902/* This is to be used ONLY within call_function_by_hand(). It provides
903   a workaround, to have inferior function calls done in sychronous
904   mode, even though the target is asynchronous. After
905   target_async_mask(0) is called, calls to target_can_async_p() will
906   return FALSE , so that target_resume() will not try to start the
907   target asynchronously. After the inferior stops, we IMMEDIATELY
908   restore the previous nature of the target, by calling
909   target_async_mask(1). After that, target_can_async_p() will return
910   TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
911
912   FIXME ezannoni 1999-12-13: we won't need this once we move
913   the turning async on and off to the single execution commands,
914   from where it is done currently, in remote_resume().  */
915
916#define	target_async_mask_value	\
917     (current_target.to_async_mask_value)
918
919extern int target_async_mask (int mask);
920
921extern void target_link (char *, CORE_ADDR *);
922
923/* Converts a process id to a string.  Usually, the string just contains
924   `process xyz', but on some systems it may contain
925   `process xyz thread abc'.  */
926
927#undef target_pid_to_str
928#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
929
930#ifndef target_tid_to_str
931#define target_tid_to_str(PID) \
932     target_pid_to_str (PID)
933extern char *normal_pid_to_str (ptid_t ptid);
934#endif
935
936/* Return a short string describing extra information about PID,
937   e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
938   is okay.  */
939
940#define target_extra_thread_info(TP) \
941     (current_target.to_extra_thread_info (TP))
942
943/*
944 * New Objfile Event Hook:
945 *
946 * Sometimes a GDB component wants to get notified whenever a new
947 * objfile is loaded.  Mainly this is used by thread-debugging
948 * implementations that need to know when symbols for the target
949 * thread implemenation are available.
950 *
951 * The old way of doing this is to define a macro 'target_new_objfile'
952 * that points to the function that you want to be called on every
953 * objfile/shlib load.
954 *
955 * The new way is to grab the function pointer, 'target_new_objfile_hook',
956 * and point it to the function that you want to be called on every
957 * objfile/shlib load.
958 *
959 * If multiple clients are willing to be cooperative, they can each
960 * save a pointer to the previous value of target_new_objfile_hook
961 * before modifying it, and arrange for their function to call the
962 * previous function in the chain.  In that way, multiple clients
963 * can receive this notification (something like with signal handlers).
964 */
965
966extern void (*target_new_objfile_hook) (struct objfile *);
967
968#ifndef target_pid_or_tid_to_str
969#define target_pid_or_tid_to_str(ID) \
970     target_pid_to_str (ID)
971#endif
972
973/* Attempts to find the pathname of the executable file
974   that was run to create a specified process.
975
976   The process PID must be stopped when this operation is used.
977
978   If the executable file cannot be determined, NULL is returned.
979
980   Else, a pointer to a character string containing the pathname
981   is returned.  This string should be copied into a buffer by
982   the client if the string will not be immediately used, or if
983   it must persist.  */
984
985#define target_pid_to_exec_file(pid) \
986     (current_target.to_pid_to_exec_file) (pid)
987
988/*
989 * Iterator function for target memory regions.
990 * Calls a callback function once for each memory region 'mapped'
991 * in the child process.  Defined as a simple macro rather than
992 * as a function macro so that it can be tested for nullity.
993 */
994
995#define target_find_memory_regions(FUNC, DATA) \
996     (current_target.to_find_memory_regions) (FUNC, DATA)
997
998/*
999 * Compose corefile .note section.
1000 */
1001
1002#define target_make_corefile_notes(BFD, SIZE_P) \
1003     (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1004
1005/* Thread-local values.  */
1006#define target_get_thread_local_address \
1007    (current_target.to_get_thread_local_address)
1008#define target_get_thread_local_address_p() \
1009    (target_get_thread_local_address != NULL)
1010
1011/* Hook to call target dependent code just after inferior target process has
1012   started.  */
1013
1014#ifndef TARGET_CREATE_INFERIOR_HOOK
1015#define TARGET_CREATE_INFERIOR_HOOK(PID)
1016#endif
1017
1018/* Hardware watchpoint interfaces.  */
1019
1020/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1021   write).  */
1022
1023#ifndef STOPPED_BY_WATCHPOINT
1024#define STOPPED_BY_WATCHPOINT(w) \
1025   (*current_target.to_stopped_by_watchpoint) ()
1026#endif
1027
1028/* Non-zero if we have continuable watchpoints  */
1029
1030#ifndef HAVE_CONTINUABLE_WATCHPOINT
1031#define HAVE_CONTINUABLE_WATCHPOINT \
1032   (current_target.to_have_continuable_watchpoint)
1033#endif
1034
1035/* HP-UX supplies these operations, which respectively disable and enable
1036   the memory page-protections that are used to implement hardware watchpoints
1037   on that platform.  See wait_for_inferior's use of these.  */
1038
1039#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1040#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1041#endif
1042
1043#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1044#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1045#endif
1046
1047/* Provide defaults for hardware watchpoint functions.  */
1048
1049/* If the *_hw_beakpoint functions have not been defined
1050   elsewhere use the definitions in the target vector.  */
1051
1052/* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1053   one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1054   bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1055   (including this one?).  OTHERTYPE is who knows what...  */
1056
1057#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1058#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1059 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1060#endif
1061
1062#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1063#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1064    (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1065#endif
1066
1067
1068/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.  TYPE is 0
1069   for write, 1 for read, and 2 for read/write accesses.  Returns 0 for
1070   success, non-zero for failure.  */
1071
1072#ifndef target_insert_watchpoint
1073#define	target_insert_watchpoint(addr, len, type)	\
1074     (*current_target.to_insert_watchpoint) (addr, len, type)
1075
1076#define	target_remove_watchpoint(addr, len, type)	\
1077     (*current_target.to_remove_watchpoint) (addr, len, type)
1078#endif
1079
1080#ifndef target_insert_hw_breakpoint
1081#define target_insert_hw_breakpoint(addr, save) \
1082     (*current_target.to_insert_hw_breakpoint) (addr, save)
1083
1084#define target_remove_hw_breakpoint(addr, save) \
1085     (*current_target.to_remove_hw_breakpoint) (addr, save)
1086#endif
1087
1088#ifndef target_stopped_data_address
1089#define target_stopped_data_address() \
1090    (*current_target.to_stopped_data_address) ()
1091#endif
1092
1093/* Sometimes gdb may pick up what appears to be a valid target address
1094   from a minimal symbol, but the value really means, essentially,
1095   "This is an index into a table which is populated when the inferior
1096   is run.  Therefore, do not attempt to use this as a PC."  */
1097
1098#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1099#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1100#endif
1101
1102/* This will only be defined by a target that supports catching vfork events,
1103   such as HP-UX.
1104
1105   On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1106   child process after it has exec'd, causes the parent process to resume as
1107   well.  To prevent the parent from running spontaneously, such targets should
1108   define this to a function that prevents that from happening.  */
1109#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1110#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1111#endif
1112
1113/* This will only be defined by a target that supports catching vfork events,
1114   such as HP-UX.
1115
1116   On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1117   process must be resumed when it delivers its exec event, before the parent
1118   vfork event will be delivered to us.  */
1119
1120#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1121#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1122#endif
1123
1124/* Routines for maintenance of the target structures...
1125
1126   add_target:   Add a target to the list of all possible targets.
1127
1128   push_target:  Make this target the top of the stack of currently used
1129   targets, within its particular stratum of the stack.  Result
1130   is 0 if now atop the stack, nonzero if not on top (maybe
1131   should warn user).
1132
1133   unpush_target: Remove this from the stack of currently used targets,
1134   no matter where it is on the list.  Returns 0 if no
1135   change, 1 if removed from stack.
1136
1137   pop_target:   Remove the top thing on the stack of current targets.  */
1138
1139extern void add_target (struct target_ops *);
1140
1141extern int push_target (struct target_ops *);
1142
1143extern int unpush_target (struct target_ops *);
1144
1145extern void target_preopen (int);
1146
1147extern void pop_target (void);
1148
1149/* Struct section_table maps address ranges to file sections.  It is
1150   mostly used with BFD files, but can be used without (e.g. for handling
1151   raw disks, or files not in formats handled by BFD).  */
1152
1153struct section_table
1154  {
1155    CORE_ADDR addr;		/* Lowest address in section */
1156    CORE_ADDR endaddr;		/* 1+highest address in section */
1157
1158    struct bfd_section *the_bfd_section;
1159
1160    bfd *bfd;			/* BFD file pointer */
1161  };
1162
1163/* Return the "section" containing the specified address.  */
1164struct section_table *target_section_by_addr (struct target_ops *target,
1165					      CORE_ADDR addr);
1166
1167
1168/* From mem-break.c */
1169
1170extern int memory_remove_breakpoint (CORE_ADDR, char *);
1171
1172extern int memory_insert_breakpoint (CORE_ADDR, char *);
1173
1174extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1175
1176extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1177
1178
1179/* From target.c */
1180
1181extern void initialize_targets (void);
1182
1183extern void noprocess (void);
1184
1185extern void find_default_attach (char *, int);
1186
1187extern void find_default_create_inferior (char *, char *, char **);
1188
1189extern struct target_ops *find_run_target (void);
1190
1191extern struct target_ops *find_core_target (void);
1192
1193extern struct target_ops *find_target_beneath (struct target_ops *);
1194
1195extern int target_resize_to_sections (struct target_ops *target,
1196				      int num_added);
1197
1198extern void remove_target_sections (bfd *abfd);
1199
1200
1201/* Stuff that should be shared among the various remote targets.  */
1202
1203/* Debugging level.  0 is off, and non-zero values mean to print some debug
1204   information (higher values, more information).  */
1205extern int remote_debug;
1206
1207/* Speed in bits per second, or -1 which means don't mess with the speed.  */
1208extern int baud_rate;
1209/* Timeout limit for response from target. */
1210extern int remote_timeout;
1211
1212
1213/* Functions for helping to write a native target.  */
1214
1215/* This is for native targets which use a unix/POSIX-style waitstatus.  */
1216extern void store_waitstatus (struct target_waitstatus *, int);
1217
1218/* Predicate to target_signal_to_host(). Return non-zero if the enum
1219   targ_signal SIGNO has an equivalent ``host'' representation.  */
1220/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1221   to the shorter target_signal_p() because it is far less ambigious.
1222   In this context ``target_signal'' refers to GDB's internal
1223   representation of the target's set of signals while ``host signal''
1224   refers to the target operating system's signal.  Confused?  */
1225
1226extern int target_signal_to_host_p (enum target_signal signo);
1227
1228/* Convert between host signal numbers and enum target_signal's.
1229   target_signal_to_host() returns 0 and prints a warning() on GDB's
1230   console if SIGNO has no equivalent host representation.  */
1231/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1232   refering to the target operating system's signal numbering.
1233   Similarly, ``enum target_signal'' is named incorrectly, ``enum
1234   gdb_signal'' would probably be better as it is refering to GDB's
1235   internal representation of a target operating system's signal.  */
1236
1237extern enum target_signal target_signal_from_host (int);
1238extern int target_signal_to_host (enum target_signal);
1239
1240/* Convert from a number used in a GDB command to an enum target_signal.  */
1241extern enum target_signal target_signal_from_command (int);
1242
1243/* Any target can call this to switch to remote protocol (in remote.c). */
1244extern void push_remote_target (char *name, int from_tty);
1245
1246/* Imported from machine dependent code */
1247
1248/* Blank target vector entries are initialized to target_ignore. */
1249void target_ignore (void);
1250
1251#endif /* !defined (TARGET_H) */
1252