1;; ARM 1020E & ARM 1022E Pipeline Description
2;; Copyright (C) 2005 Free Software Foundation, Inc.
3;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com)
4;;
5;; This file is part of GCC.
6;;
7;; GCC is free software; you can redistribute it and/or modify it
8;; under the terms of the GNU General Public License as published by
9;; the Free Software Foundation; either version 2, or (at your option)
10;; any later version.
11;;
12;; GCC is distributed in the hope that it will be useful, but
13;; WITHOUT ANY WARRANTY; without even the implied warranty of
14;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15;; General Public License for more details.
16;;
17;; You should have received a copy of the GNU General Public License
18;; along with GCC; see the file COPYING.  If not, write to the Free
19;; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20;; 02110-1301, USA.  */
21
22;; These descriptions are based on the information contained in the
23;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM
24;; Limited.
25;;
26
27;; This automaton provides a pipeline description for the ARM
28;; 1020E core.
29;;
30;; The model given here assumes that the condition for all conditional
31;; instructions is "true", i.e., that all of the instructions are
32;; actually executed.
33
34(define_automaton "arm1020e")
35
36;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
37;; Pipelines
38;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
39
40;; There are two pipelines:
41;; 
42;; - An Arithmetic Logic Unit (ALU) pipeline.
43;;
44;;   The ALU pipeline has fetch, issue, decode, execute, memory, and
45;;   write stages. We only need to model the execute, memory and write
46;;   stages.
47;;
48;; - A Load-Store Unit (LSU) pipeline.
49;;
50;;   The LSU pipeline has decode, execute, memory, and write stages.
51;;   We only model the execute, memory and write stages.
52
53(define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")
54(define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e")
55
56;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
57;; ALU Instructions
58;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
59
60;; ALU instructions require three cycles to execute, and use the ALU
61;; pipeline in each of the three stages.  The results are available
62;; after the execute stage stage has finished.
63;;
64;; If the destination register is the PC, the pipelines are stalled
65;; for several cycles.  That case is not modeled here.
66
67;; ALU operations with no shifted operand
68(define_insn_reservation "1020alu_op" 1 
69 (and (eq_attr "tune" "arm1020e,arm1022e")
70      (eq_attr "type" "alu"))
71 "1020a_e,1020a_m,1020a_w")
72
73;; ALU operations with a shift-by-constant operand
74(define_insn_reservation "1020alu_shift_op" 1 
75 (and (eq_attr "tune" "arm1020e,arm1022e")
76      (eq_attr "type" "alu_shift"))
77 "1020a_e,1020a_m,1020a_w")
78
79;; ALU operations with a shift-by-register operand
80;; These really stall in the decoder, in order to read
81;; the shift value in a second cycle. Pretend we take two cycles in
82;; the execute stage.
83(define_insn_reservation "1020alu_shift_reg_op" 2 
84 (and (eq_attr "tune" "arm1020e,arm1022e")
85      (eq_attr "type" "alu_shift_reg"))
86 "1020a_e*2,1020a_m,1020a_w")
87
88;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
89;; Multiplication Instructions
90;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
91
92;; Multiplication instructions loop in the execute stage until the
93;; instruction has been passed through the multiplier array enough
94;; times.
95
96;; The result of the "smul" and "smulw" instructions is not available
97;; until after the memory stage.
98(define_insn_reservation "1020mult1" 2
99 (and (eq_attr "tune" "arm1020e,arm1022e")
100      (eq_attr "insn" "smulxy,smulwy"))
101 "1020a_e,1020a_m,1020a_w")
102
103;; The "smlaxy" and "smlawx" instructions require two iterations through
104;; the execute stage; the result is available immediately following
105;; the execute stage.
106(define_insn_reservation "1020mult2" 2
107 (and (eq_attr "tune" "arm1020e,arm1022e")
108      (eq_attr "insn" "smlaxy,smlalxy,smlawx"))
109 "1020a_e*2,1020a_m,1020a_w")
110
111;; The "smlalxy", "mul", and "mla" instructions require two iterations
112;; through the execute stage; the result is not available until after
113;; the memory stage.
114(define_insn_reservation "1020mult3" 3
115 (and (eq_attr "tune" "arm1020e,arm1022e")
116      (eq_attr "insn" "smlalxy,mul,mla"))
117 "1020a_e*2,1020a_m,1020a_w")
118
119;; The "muls" and "mlas" instructions loop in the execute stage for
120;; four iterations in order to set the flags.  The value result is
121;; available after three iterations.
122(define_insn_reservation "1020mult4" 3
123 (and (eq_attr "tune" "arm1020e,arm1022e")
124      (eq_attr "insn" "muls,mlas"))
125 "1020a_e*4,1020a_m,1020a_w")
126
127;; Long multiply instructions that produce two registers of
128;; output (such as umull) make their results available in two cycles;
129;; the least significant word is available before the most significant
130;; word.  That fact is not modeled; instead, the instructions are
131;; described.as if the entire result was available at the end of the
132;; cycle in which both words are available.
133
134;; The "umull", "umlal", "smull", and "smlal" instructions all take
135;; three iterations through the execute cycle, and make their results
136;; available after the memory cycle.
137(define_insn_reservation "1020mult5" 4
138 (and (eq_attr "tune" "arm1020e,arm1022e")
139      (eq_attr "insn" "umull,umlal,smull,smlal"))
140 "1020a_e*3,1020a_m,1020a_w")
141
142;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
143;; the execute stage for five iterations in order to set the flags.
144;; The value result is available after four iterations.
145(define_insn_reservation "1020mult6" 4
146 (and (eq_attr "tune" "arm1020e,arm1022e")
147      (eq_attr "insn" "umulls,umlals,smulls,smlals"))
148 "1020a_e*5,1020a_m,1020a_w")
149
150;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
151;; Load/Store Instructions
152;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
153
154;; The models for load/store instructions do not accurately describe
155;; the difference between operations with a base register writeback
156;; (such as "ldm!").  These models assume that all memory references
157;; hit in dcache.
158
159;; LSU instructions require six cycles to execute.  They use the ALU
160;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
161;; three through six.
162;; Loads and stores which use a scaled register offset or scaled
163;; register pre-indexed addressing mode take three cycles EXCEPT for
164;; those that are base + offset with LSL of 0 or 2, or base - offset
165;; with LSL of zero.  The remainder take 1 cycle to execute.
166;; For 4byte loads there is a bypass from the load stage
167
168(define_insn_reservation "1020load1_op" 2
169 (and (eq_attr "tune" "arm1020e,arm1022e")
170      (eq_attr "type" "load_byte,load1"))
171 "1020a_e+1020l_e,1020l_m,1020l_w")
172
173(define_insn_reservation "1020store1_op" 0
174 (and (eq_attr "tune" "arm1020e,arm1022e")
175      (eq_attr "type" "store1"))
176 "1020a_e+1020l_e,1020l_m,1020l_w")
177
178;; A load's result can be stored by an immediately following store
179(define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep")
180
181;; On a LDM/STM operation, the LSU pipeline iterates until all of the
182;; registers have been processed.
183;;
184;; The time it takes to load the data depends on whether or not the
185;; base address is 64-bit aligned; if it is not, an additional cycle
186;; is required.  This model assumes that the address is always 64-bit
187;; aligned.  Because the processor can load two registers per cycle,
188;; that assumption means that we use the same instruction reservations
189;; for loading 2k and 2k - 1 registers.
190;;
191;; The ALU pipeline is decoupled after the first cycle unless there is
192;; a register dependency; the dependency is cleared as soon as the LDM/STM
193;; has dealt with the corresponding register.  So for example,
194;;  stmia sp, {r0-r3}
195;;  add	r0, r0, #4
196;; will have one fewer stalls than
197;;  stmia sp, {r0-r3}
198;;  add r3, r3, #4
199;;
200;; As with ALU operations, if one of the destination registers is the
201;; PC, there are additional stalls; that is not modeled.
202
203(define_insn_reservation "1020load2_op" 2
204 (and (eq_attr "tune" "arm1020e,arm1022e")
205      (eq_attr "type" "load2"))
206 "1020a_e+1020l_e,1020l_m,1020l_w")
207
208(define_insn_reservation "1020store2_op" 0
209 (and (eq_attr "tune" "arm1020e,arm1022e")
210      (eq_attr "type" "store2"))
211 "1020a_e+1020l_e,1020l_m,1020l_w")
212
213(define_insn_reservation "1020load34_op" 3
214 (and (eq_attr "tune" "arm1020e,arm1022e")
215      (eq_attr "type" "load3,load4"))
216 "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
217
218(define_insn_reservation "1020store34_op" 0
219 (and (eq_attr "tune" "arm1020e,arm1022e")
220      (eq_attr "type" "store3,store4"))
221 "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
222
223;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
224;; Branch and Call Instructions
225;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
226
227;; Branch instructions are difficult to model accurately.  The ARM
228;; core can predict most branches.  If the branch is predicted
229;; correctly, and predicted early enough, the branch can be completely
230;; eliminated from the instruction stream.  Some branches can
231;; therefore appear to require zero cycles to execute.  We assume that
232;; all branches are predicted correctly, and that the latency is
233;; therefore the minimum value.
234
235(define_insn_reservation "1020branch_op" 0
236 (and (eq_attr "tune" "arm1020e,arm1022e")
237      (eq_attr "type" "branch"))
238 "1020a_e")
239
240;; The latency for a call is not predictable.  Therefore, we use 32 as
241;; roughly equivalent to positive infinity.
242
243(define_insn_reservation "1020call_op" 32
244 (and (eq_attr "tune" "arm1020e,arm1022e")
245      (eq_attr "type" "call"))
246 "1020a_e*32")
247
248;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
249;; VFP
250;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
251
252(define_cpu_unit "v10_fmac" "arm1020e")
253
254(define_cpu_unit "v10_ds" "arm1020e")
255
256(define_cpu_unit "v10_fmstat" "arm1020e")
257
258(define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e")
259
260;; fmstat is a serializing instruction.  It will stall the core until
261;; the mac and ds units have completed.
262(exclusion_set "v10_fmac,v10_ds" "v10_fmstat")
263
264(define_attr "vfp10" "yes,no" 
265  (const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")
266			    (eq_attr "fpu" "vfp"))
267		       (const_string "yes") (const_string "no"))))
268
269;; The VFP "type" attributes differ from those used in the FPA model.
270;; ffarith	Fast floating point insns, e.g. abs, neg, cpy, cmp.
271;; farith	Most arithmetic insns.
272;; fmul		Double precision multiply.
273;; fdivs	Single precision sqrt or division.
274;; fdivd	Double precision sqrt or division.
275;; f_flag	fmstat operation
276;; f_load	Floating point load from memory.
277;; f_store	Floating point store to memory.
278;; f_2_r	Transfer vfp to arm reg.
279;; r_2_f	Transfer arm to vfp reg.
280
281;; Note, no instruction can issue to the VFP if the core is stalled in the
282;; first execute state.  We model this by using 1020a_e in the first cycle.
283(define_insn_reservation "v10_ffarith" 5
284 (and (eq_attr "vfp10" "yes")
285      (eq_attr "type" "ffarith"))
286 "1020a_e+v10_fmac")
287
288(define_insn_reservation "v10_farith" 5
289 (and (eq_attr "vfp10" "yes")
290      (eq_attr "type" "farith"))
291 "1020a_e+v10_fmac")
292
293(define_insn_reservation "v10_cvt" 5
294 (and (eq_attr "vfp10" "yes")
295      (eq_attr "type" "f_cvt"))
296 "1020a_e+v10_fmac")
297
298(define_insn_reservation "v10_fmul" 6
299 (and (eq_attr "vfp10" "yes")
300      (eq_attr "type" "fmul"))
301 "1020a_e+v10_fmac*2")
302
303(define_insn_reservation "v10_fdivs" 18
304 (and (eq_attr "vfp10" "yes")
305      (eq_attr "type" "fdivs"))
306 "1020a_e+v10_ds*14")
307
308(define_insn_reservation "v10_fdivd" 32
309 (and (eq_attr "vfp10" "yes")
310      (eq_attr "type" "fdivd"))
311 "1020a_e+v10_fmac+v10_ds*28")
312
313(define_insn_reservation "v10_floads" 4
314 (and (eq_attr "vfp10" "yes")
315      (eq_attr "type" "f_loads"))
316 "1020a_e+1020l_e+v10_ls1,v10_ls2")
317
318;; We model a load of a double as needing all the vfp ls* stage in cycle 1.
319;; This gives the correct mix between single-and double loads where a flds
320;; followed by and fldd will stall for one cycle, but two back-to-back fldd
321;; insns stall for two cycles.
322(define_insn_reservation "v10_floadd" 5
323 (and (eq_attr "vfp10" "yes")
324      (eq_attr "type" "f_loadd"))
325 "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
326 
327;; Moves to/from arm regs also use the load/store pipeline.
328
329(define_insn_reservation "v10_c2v" 4
330 (and (eq_attr "vfp10" "yes")
331      (eq_attr "type" "r_2_f"))
332 "1020a_e+1020l_e+v10_ls1,v10_ls2")
333
334(define_insn_reservation "v10_fstores" 1
335 (and (eq_attr "vfp10" "yes")
336      (eq_attr "type" "f_stores"))
337 "1020a_e+1020l_e+v10_ls1,v10_ls2")
338
339(define_insn_reservation "v10_fstored" 1
340 (and (eq_attr "vfp10" "yes")
341      (eq_attr "type" "f_stored"))
342 "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
343
344(define_insn_reservation "v10_v2c" 1
345 (and (eq_attr "vfp10" "yes")
346      (eq_attr "type" "f_2_r"))
347 "1020a_e+1020l_e,1020l_m,1020l_w")
348
349(define_insn_reservation "v10_to_cpsr" 2
350 (and (eq_attr "vfp10" "yes")
351      (eq_attr "type" "f_flag"))
352 "1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w")
353
354;; VFP bypasses
355
356;; There are bypasses for most operations other than store
357
358(define_bypass 3
359 "v10_c2v,v10_floads"
360 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")
361
362(define_bypass 4
363 "v10_floadd"
364 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
365
366;; Arithmetic to other arithmetic saves a cycle due to forwarding
367(define_bypass 4
368 "v10_ffarith,v10_farith"
369 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
370
371(define_bypass 5
372 "v10_fmul"
373 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
374
375(define_bypass 17
376 "v10_fdivs"
377 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
378
379(define_bypass 31
380 "v10_fdivd"
381 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
382
383;; VFP anti-dependencies.
384
385;; There is one anti-dependence in the following case (not yet modelled):
386;; - After a store: one extra cycle for both fsts and fstd
387;; Note, back-to-back fstd instructions will overload the load/store datapath 
388;; causing a two-cycle stall.
389