1/*
2 * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining
5 * a copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sublicense, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25#include "inner.h"
26
27#if BR_INT128 || BR_UMUL128
28
29#if BR_UMUL128
30#include <intrin.h>
31#endif
32
33static const unsigned char P256_G[] = {
34	0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8,
35	0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D,
36	0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8,
37	0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F,
38	0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B,
39	0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40,
40	0x68, 0x37, 0xBF, 0x51, 0xF5
41};
42
43static const unsigned char P256_N[] = {
44	0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
45	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD,
46	0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63,
47	0x25, 0x51
48};
49
50static const unsigned char *
51api_generator(int curve, size_t *len)
52{
53	(void)curve;
54	*len = sizeof P256_G;
55	return P256_G;
56}
57
58static const unsigned char *
59api_order(int curve, size_t *len)
60{
61	(void)curve;
62	*len = sizeof P256_N;
63	return P256_N;
64}
65
66static size_t
67api_xoff(int curve, size_t *len)
68{
69	(void)curve;
70	*len = 32;
71	return 1;
72}
73
74/*
75 * A field element is encoded as five 64-bit integers, in basis 2^52.
76 * Limbs may occasionally exceed 2^52.
77 *
78 * A _partially reduced_ value is such that the following hold:
79 *   - top limb is less than 2^48 + 2^30
80 *   - the other limbs fit on 53 bits each
81 * In particular, such a value is less than twice the modulus p.
82 */
83
84#define BIT(n)   ((uint64_t)1 << (n))
85#define MASK48   (BIT(48) - BIT(0))
86#define MASK52   (BIT(52) - BIT(0))
87
88/* R = 2^260 mod p */
89static const uint64_t F256_R[] = {
90	0x0000000000010, 0xF000000000000, 0xFFFFFFFFFFFFF,
91	0xFFEFFFFFFFFFF, 0x00000000FFFFF
92};
93
94/* Curve equation is y^2 = x^3 - 3*x + B. This constant is B*R mod p
95   (Montgomery representation of B). */
96static const uint64_t P256_B_MONTY[] = {
97	0xDF6229C4BDDFD, 0xCA8843090D89C, 0x212ED6ACF005C,
98	0x83415A220ABF7, 0x0C30061DD4874
99};
100
101/*
102 * Addition in the field. Carry propagation is not performed.
103 * On input, limbs may be up to 63 bits each; on output, they will
104 * be up to one bit more than on input.
105 */
106static inline void
107f256_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
108{
109	d[0] = a[0] + b[0];
110	d[1] = a[1] + b[1];
111	d[2] = a[2] + b[2];
112	d[3] = a[3] + b[3];
113	d[4] = a[4] + b[4];
114}
115
116/*
117 * Partially reduce the provided value.
118 * Input: limbs can go up to 61 bits each.
119 * Output: partially reduced.
120 */
121static inline void
122f256_partial_reduce(uint64_t *a)
123{
124	uint64_t w, cc, s;
125
126	/*
127	 * Propagate carries.
128	 */
129	w = a[0];
130	a[0] = w & MASK52;
131	cc = w >> 52;
132	w = a[1] + cc;
133	a[1] = w & MASK52;
134	cc = w >> 52;
135	w = a[2] + cc;
136	a[2] = w & MASK52;
137	cc = w >> 52;
138	w = a[3] + cc;
139	a[3] = w & MASK52;
140	cc = w >> 52;
141	a[4] += cc;
142
143	s = a[4] >> 48;             /* s < 2^14 */
144	a[0] += s;                  /* a[0] < 2^52 + 2^14 */
145	w = a[1] - (s << 44);
146	a[1] = w & MASK52;          /* a[1] < 2^52 */
147	cc = -(w >> 52) & 0xFFF;    /* cc < 16 */
148	w = a[2] - cc;
149	a[2] = w & MASK52;          /* a[2] < 2^52 */
150	cc = w >> 63;               /* cc = 0 or 1 */
151	w = a[3] - cc - (s << 36);
152	a[3] = w & MASK52;          /* a[3] < 2^52 */
153	cc = w >> 63;               /* cc = 0 or 1 */
154	w = a[4] & MASK48;
155	a[4] = w + (s << 16) - cc;  /* a[4] < 2^48 + 2^30 */
156}
157
158/*
159 * Subtraction in the field.
160 * Input: limbs must fit on 60 bits each; in particular, the complete
161 * integer will be less than 2^268 + 2^217.
162 * Output: partially reduced.
163 */
164static inline void
165f256_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
166{
167	uint64_t t[5], w, s, cc;
168
169	/*
170	 * We compute d = 2^13*p + a - b; this ensures a positive
171	 * intermediate value.
172	 *
173	 * Each individual addition/subtraction may yield a positive or
174	 * negative result; thus, we need to handle a signed carry, thus
175	 * with sign extension. We prefer not to use signed types (int64_t)
176	 * because conversion from unsigned to signed is cumbersome (a
177	 * direct cast with the top bit set is undefined behavior; instead,
178	 * we have to use pointer aliasing, using the guaranteed properties
179	 * of exact-width types, but this requires the compiler to optimize
180	 * away the writes and reads from RAM), and right-shifting a
181	 * signed negative value is implementation-defined. Therefore,
182	 * we use a custom sign extension.
183	 */
184
185	w = a[0] - b[0] - BIT(13);
186	t[0] = w & MASK52;
187	cc = w >> 52;
188	cc |= -(cc & BIT(11));
189	w = a[1] - b[1] + cc;
190	t[1] = w & MASK52;
191	cc = w >> 52;
192	cc |= -(cc & BIT(11));
193	w = a[2] - b[2] + cc;
194	t[2] = (w & MASK52) + BIT(5);
195	cc = w >> 52;
196	cc |= -(cc & BIT(11));
197	w = a[3] - b[3] + cc;
198	t[3] = (w & MASK52) + BIT(49);
199	cc = w >> 52;
200	cc |= -(cc & BIT(11));
201	t[4] = (BIT(61) - BIT(29)) + a[4] - b[4] + cc;
202
203	/*
204	 * Perform partial reduction. Rule is:
205	 *  2^256 = 2^224 - 2^192 - 2^96 + 1 mod p
206	 *
207	 * At that point:
208	 *    0 <= t[0] <= 2^52 - 1
209	 *    0 <= t[1] <= 2^52 - 1
210	 *    2^5 <= t[2] <= 2^52 + 2^5 - 1
211	 *    2^49 <= t[3] <= 2^52 + 2^49 - 1
212	 *    2^59 < t[4] <= 2^61 + 2^60 - 2^29
213	 *
214	 * Thus, the value 's' (t[4] / 2^48) will be necessarily
215	 * greater than 2048, and less than 12288.
216	 */
217	s = t[4] >> 48;
218
219	d[0] = t[0] + s;             /* d[0] <= 2^52 + 12287 */
220	w = t[1] - (s << 44);
221	d[1] = w & MASK52;           /* d[1] <= 2^52 - 1 */
222	cc = -(w >> 52) & 0xFFF;     /* cc <= 48 */
223	w = t[2] - cc;
224	cc = w >> 63;                /* cc = 0 or 1 */
225	d[2] = w + (cc << 52);       /* d[2] <= 2^52 + 31 */
226	w = t[3] - cc - (s << 36);
227	cc = w >> 63;                /* cc = 0 or 1 */
228	d[3] = w + (cc << 52);       /* t[3] <= 2^52 + 2^49 - 1 */
229	d[4] = (t[4] & MASK48) + (s << 16) - cc;  /* d[4] < 2^48 + 2^30 */
230
231	/*
232	 * If s = 0, then none of the limbs is modified, and there cannot
233	 * be an overflow; if s != 0, then (s << 16) > cc, and there is
234	 * no overflow either.
235	 */
236}
237
238/*
239 * Montgomery multiplication in the field.
240 * Input: limbs must fit on 56 bits each.
241 * Output: partially reduced.
242 */
243static void
244f256_montymul(uint64_t *d, const uint64_t *a, const uint64_t *b)
245{
246#if BR_INT128
247
248	int i;
249	uint64_t t[5];
250
251	t[0] = 0;
252	t[1] = 0;
253	t[2] = 0;
254	t[3] = 0;
255	t[4] = 0;
256	for (i = 0; i < 5; i ++) {
257		uint64_t x, f, cc, w, s;
258		unsigned __int128 z;
259
260		/*
261		 * Since limbs of a[] and b[] fit on 56 bits each,
262		 * each individual product fits on 112 bits. Also,
263		 * the factor f fits on 52 bits, so f<<48 fits on
264		 * 112 bits too. This guarantees that carries (cc)
265		 * will fit on 62 bits, thus no overflow.
266		 *
267		 * The operations below compute:
268		 *   t <- (t + x*b + f*p) / 2^64
269		 */
270		x = a[i];
271		z = (unsigned __int128)b[0] * (unsigned __int128)x
272			+ (unsigned __int128)t[0];
273		f = (uint64_t)z & MASK52;
274		cc = (uint64_t)(z >> 52);
275		z = (unsigned __int128)b[1] * (unsigned __int128)x
276			+ (unsigned __int128)t[1] + cc
277			+ ((unsigned __int128)f << 44);
278		t[0] = (uint64_t)z & MASK52;
279		cc = (uint64_t)(z >> 52);
280		z = (unsigned __int128)b[2] * (unsigned __int128)x
281			+ (unsigned __int128)t[2] + cc;
282		t[1] = (uint64_t)z & MASK52;
283		cc = (uint64_t)(z >> 52);
284		z = (unsigned __int128)b[3] * (unsigned __int128)x
285			+ (unsigned __int128)t[3] + cc
286			+ ((unsigned __int128)f << 36);
287		t[2] = (uint64_t)z & MASK52;
288		cc = (uint64_t)(z >> 52);
289		z = (unsigned __int128)b[4] * (unsigned __int128)x
290			+ (unsigned __int128)t[4] + cc
291			+ ((unsigned __int128)f << 48)
292			- ((unsigned __int128)f << 16);
293		t[3] = (uint64_t)z & MASK52;
294		t[4] = (uint64_t)(z >> 52);
295
296		/*
297		 * t[4] may be up to 62 bits here; we need to do a
298		 * partial reduction. Note that limbs t[0] to t[3]
299		 * fit on 52 bits each.
300		 */
301		s = t[4] >> 48;             /* s < 2^14 */
302		t[0] += s;                  /* t[0] < 2^52 + 2^14 */
303		w = t[1] - (s << 44);
304		t[1] = w & MASK52;          /* t[1] < 2^52 */
305		cc = -(w >> 52) & 0xFFF;    /* cc < 16 */
306		w = t[2] - cc;
307		t[2] = w & MASK52;          /* t[2] < 2^52 */
308		cc = w >> 63;               /* cc = 0 or 1 */
309		w = t[3] - cc - (s << 36);
310		t[3] = w & MASK52;          /* t[3] < 2^52 */
311		cc = w >> 63;               /* cc = 0 or 1 */
312		w = t[4] & MASK48;
313		t[4] = w + (s << 16) - cc;  /* t[4] < 2^48 + 2^30 */
314
315		/*
316		 * The final t[4] cannot overflow because cc is 0 or 1,
317		 * and cc can be 1 only if s != 0.
318		 */
319	}
320
321	d[0] = t[0];
322	d[1] = t[1];
323	d[2] = t[2];
324	d[3] = t[3];
325	d[4] = t[4];
326
327#elif BR_UMUL128
328
329	int i;
330	uint64_t t[5];
331
332	t[0] = 0;
333	t[1] = 0;
334	t[2] = 0;
335	t[3] = 0;
336	t[4] = 0;
337	for (i = 0; i < 5; i ++) {
338		uint64_t x, f, cc, w, s, zh, zl;
339		unsigned char k;
340
341		/*
342		 * Since limbs of a[] and b[] fit on 56 bits each,
343		 * each individual product fits on 112 bits. Also,
344		 * the factor f fits on 52 bits, so f<<48 fits on
345		 * 112 bits too. This guarantees that carries (cc)
346		 * will fit on 62 bits, thus no overflow.
347		 *
348		 * The operations below compute:
349		 *   t <- (t + x*b + f*p) / 2^64
350		 */
351		x = a[i];
352		zl = _umul128(b[0], x, &zh);
353		k = _addcarry_u64(0, t[0], zl, &zl);
354		(void)_addcarry_u64(k, 0, zh, &zh);
355		f = zl & MASK52;
356		cc = (zl >> 52) | (zh << 12);
357
358		zl = _umul128(b[1], x, &zh);
359		k = _addcarry_u64(0, t[1], zl, &zl);
360		(void)_addcarry_u64(k, 0, zh, &zh);
361		k = _addcarry_u64(0, cc, zl, &zl);
362		(void)_addcarry_u64(k, 0, zh, &zh);
363		k = _addcarry_u64(0, f << 44, zl, &zl);
364		(void)_addcarry_u64(k, f >> 20, zh, &zh);
365		t[0] = zl & MASK52;
366		cc = (zl >> 52) | (zh << 12);
367
368		zl = _umul128(b[2], x, &zh);
369		k = _addcarry_u64(0, t[2], zl, &zl);
370		(void)_addcarry_u64(k, 0, zh, &zh);
371		k = _addcarry_u64(0, cc, zl, &zl);
372		(void)_addcarry_u64(k, 0, zh, &zh);
373		t[1] = zl & MASK52;
374		cc = (zl >> 52) | (zh << 12);
375
376		zl = _umul128(b[3], x, &zh);
377		k = _addcarry_u64(0, t[3], zl, &zl);
378		(void)_addcarry_u64(k, 0, zh, &zh);
379		k = _addcarry_u64(0, cc, zl, &zl);
380		(void)_addcarry_u64(k, 0, zh, &zh);
381		k = _addcarry_u64(0, f << 36, zl, &zl);
382		(void)_addcarry_u64(k, f >> 28, zh, &zh);
383		t[2] = zl & MASK52;
384		cc = (zl >> 52) | (zh << 12);
385
386		zl = _umul128(b[4], x, &zh);
387		k = _addcarry_u64(0, t[4], zl, &zl);
388		(void)_addcarry_u64(k, 0, zh, &zh);
389		k = _addcarry_u64(0, cc, zl, &zl);
390		(void)_addcarry_u64(k, 0, zh, &zh);
391		k = _addcarry_u64(0, f << 48, zl, &zl);
392		(void)_addcarry_u64(k, f >> 16, zh, &zh);
393		k = _subborrow_u64(0, zl, f << 16, &zl);
394		(void)_subborrow_u64(k, zh, f >> 48, &zh);
395		t[3] = zl & MASK52;
396		t[4] = (zl >> 52) | (zh << 12);
397
398		/*
399		 * t[4] may be up to 62 bits here; we need to do a
400		 * partial reduction. Note that limbs t[0] to t[3]
401		 * fit on 52 bits each.
402		 */
403		s = t[4] >> 48;             /* s < 2^14 */
404		t[0] += s;                  /* t[0] < 2^52 + 2^14 */
405		w = t[1] - (s << 44);
406		t[1] = w & MASK52;          /* t[1] < 2^52 */
407		cc = -(w >> 52) & 0xFFF;    /* cc < 16 */
408		w = t[2] - cc;
409		t[2] = w & MASK52;          /* t[2] < 2^52 */
410		cc = w >> 63;               /* cc = 0 or 1 */
411		w = t[3] - cc - (s << 36);
412		t[3] = w & MASK52;          /* t[3] < 2^52 */
413		cc = w >> 63;               /* cc = 0 or 1 */
414		w = t[4] & MASK48;
415		t[4] = w + (s << 16) - cc;  /* t[4] < 2^48 + 2^30 */
416
417		/*
418		 * The final t[4] cannot overflow because cc is 0 or 1,
419		 * and cc can be 1 only if s != 0.
420		 */
421	}
422
423	d[0] = t[0];
424	d[1] = t[1];
425	d[2] = t[2];
426	d[3] = t[3];
427	d[4] = t[4];
428
429#endif
430}
431
432/*
433 * Montgomery squaring in the field; currently a basic wrapper around
434 * multiplication (inline, should be optimized away).
435 * TODO: see if some extra speed can be gained here.
436 */
437static inline void
438f256_montysquare(uint64_t *d, const uint64_t *a)
439{
440	f256_montymul(d, a, a);
441}
442
443/*
444 * Convert to Montgomery representation.
445 */
446static void
447f256_tomonty(uint64_t *d, const uint64_t *a)
448{
449	/*
450	 * R2 = 2^520 mod p.
451	 * If R = 2^260 mod p, then R2 = R^2 mod p; and the Montgomery
452	 * multiplication of a by R2 is: a*R2/R = a*R mod p, i.e. the
453	 * conversion to Montgomery representation.
454	 */
455	static const uint64_t R2[] = {
456		0x0000000000300, 0xFFFFFFFF00000, 0xFFFFEFFFFFFFB,
457		0xFDFFFFFFFFFFF, 0x0000004FFFFFF
458	};
459
460	f256_montymul(d, a, R2);
461}
462
463/*
464 * Convert from Montgomery representation.
465 */
466static void
467f256_frommonty(uint64_t *d, const uint64_t *a)
468{
469	/*
470	 * Montgomery multiplication by 1 is division by 2^260 modulo p.
471	 */
472	static const uint64_t one[] = { 1, 0, 0, 0, 0 };
473
474	f256_montymul(d, a, one);
475}
476
477/*
478 * Inversion in the field. If the source value is 0 modulo p, then this
479 * returns 0 or p. This function uses Montgomery representation.
480 */
481static void
482f256_invert(uint64_t *d, const uint64_t *a)
483{
484	/*
485	 * We compute a^(p-2) mod p. The exponent pattern (from high to
486	 * low) is:
487	 *  - 32 bits of value 1
488	 *  - 31 bits of value 0
489	 *  - 1 bit of value 1
490	 *  - 96 bits of value 0
491	 *  - 94 bits of value 1
492	 *  - 1 bit of value 0
493	 *  - 1 bit of value 1
494	 * To speed up the square-and-multiply algorithm, we precompute
495	 * a^(2^31-1).
496	 */
497
498	uint64_t r[5], t[5];
499	int i;
500
501	memcpy(t, a, sizeof t);
502	for (i = 0; i < 30; i ++) {
503		f256_montysquare(t, t);
504		f256_montymul(t, t, a);
505	}
506
507	memcpy(r, t, sizeof t);
508	for (i = 224; i >= 0; i --) {
509		f256_montysquare(r, r);
510		switch (i) {
511		case 0:
512		case 2:
513		case 192:
514		case 224:
515			f256_montymul(r, r, a);
516			break;
517		case 3:
518		case 34:
519		case 65:
520			f256_montymul(r, r, t);
521			break;
522		}
523	}
524	memcpy(d, r, sizeof r);
525}
526
527/*
528 * Finalize reduction.
529 * Input value should be partially reduced.
530 * On output, limbs a[0] to a[3] fit on 52 bits each, limb a[4] fits
531 * on 48 bits, and the integer is less than p.
532 */
533static inline void
534f256_final_reduce(uint64_t *a)
535{
536	uint64_t r[5], t[5], w, cc;
537	int i;
538
539	/*
540	 * Propagate carries to ensure that limbs 0 to 3 fit on 52 bits.
541	 */
542	cc = 0;
543	for (i = 0; i < 5; i ++) {
544		w = a[i] + cc;
545		r[i] = w & MASK52;
546		cc = w >> 52;
547	}
548
549	/*
550	 * We compute t = r + (2^256 - p) = r + 2^224 - 2^192 - 2^96 + 1.
551	 * If t < 2^256, then r < p, and we return r. Otherwise, we
552	 * want to return r - p = t - 2^256.
553	 */
554
555	/*
556	 * Add 2^224 + 1, and propagate carries to ensure that limbs
557	 * t[0] to t[3] fit in 52 bits each.
558	 */
559	w = r[0] + 1;
560	t[0] = w & MASK52;
561	cc = w >> 52;
562	w = r[1] + cc;
563	t[1] = w & MASK52;
564	cc = w >> 52;
565	w = r[2] + cc;
566	t[2] = w & MASK52;
567	cc = w >> 52;
568	w = r[3] + cc;
569	t[3] = w & MASK52;
570	cc = w >> 52;
571	t[4] = r[4] + cc + BIT(16);
572
573	/*
574	 * Subtract 2^192 + 2^96. Since we just added 2^224 + 1, the
575	 * result cannot be negative.
576	 */
577	w = t[1] - BIT(44);
578	t[1] = w & MASK52;
579	cc = w >> 63;
580	w = t[2] - cc;
581	t[2] = w & MASK52;
582	cc = w >> 63;
583	w = t[3] - BIT(36);
584	t[3] = w & MASK52;
585	cc = w >> 63;
586	t[4] -= cc;
587
588	/*
589	 * If the top limb t[4] fits on 48 bits, then r[] is already
590	 * in the proper range. Otherwise, t[] is the value to return
591	 * (truncated to 256 bits).
592	 */
593	cc = -(t[4] >> 48);
594	t[4] &= MASK48;
595	for (i = 0; i < 5; i ++) {
596		a[i] = r[i] ^ (cc & (r[i] ^ t[i]));
597	}
598}
599
600/*
601 * Points in affine and Jacobian coordinates.
602 *
603 *  - In affine coordinates, the point-at-infinity cannot be encoded.
604 *  - Jacobian coordinates (X,Y,Z) correspond to affine (X/Z^2,Y/Z^3);
605 *    if Z = 0 then this is the point-at-infinity.
606 */
607typedef struct {
608	uint64_t x[5];
609	uint64_t y[5];
610} p256_affine;
611
612typedef struct {
613	uint64_t x[5];
614	uint64_t y[5];
615	uint64_t z[5];
616} p256_jacobian;
617
618/*
619 * Decode a field element (unsigned big endian notation).
620 */
621static void
622f256_decode(uint64_t *a, const unsigned char *buf)
623{
624	uint64_t w0, w1, w2, w3;
625
626	w3 = br_dec64be(buf +  0);
627	w2 = br_dec64be(buf +  8);
628	w1 = br_dec64be(buf + 16);
629	w0 = br_dec64be(buf + 24);
630	a[0] = w0 & MASK52;
631	a[1] = ((w0 >> 52) | (w1 << 12)) & MASK52;
632	a[2] = ((w1 >> 40) | (w2 << 24)) & MASK52;
633	a[3] = ((w2 >> 28) | (w3 << 36)) & MASK52;
634	a[4] = w3 >> 16;
635}
636
637/*
638 * Encode a field element (unsigned big endian notation). The field
639 * element MUST be fully reduced.
640 */
641static void
642f256_encode(unsigned char *buf, const uint64_t *a)
643{
644	uint64_t w0, w1, w2, w3;
645
646	w0 = a[0] | (a[1] << 52);
647	w1 = (a[1] >> 12) | (a[2] << 40);
648	w2 = (a[2] >> 24) | (a[3] << 28);
649	w3 = (a[3] >> 36) | (a[4] << 16);
650	br_enc64be(buf +  0, w3);
651	br_enc64be(buf +  8, w2);
652	br_enc64be(buf + 16, w1);
653	br_enc64be(buf + 24, w0);
654}
655
656/*
657 * Decode a point. The returned point is in Jacobian coordinates, but
658 * with z = 1. If the encoding is invalid, or encodes a point which is
659 * not on the curve, or encodes the point at infinity, then this function
660 * returns 0. Otherwise, 1 is returned.
661 *
662 * The buffer is assumed to have length exactly 65 bytes.
663 */
664static uint32_t
665point_decode(p256_jacobian *P, const unsigned char *buf)
666{
667	uint64_t x[5], y[5], t[5], x3[5], tt;
668	uint32_t r;
669
670	/*
671	 * Header byte shall be 0x04.
672	 */
673	r = EQ(buf[0], 0x04);
674
675	/*
676	 * Decode X and Y coordinates, and convert them into
677	 * Montgomery representation.
678	 */
679	f256_decode(x, buf +  1);
680	f256_decode(y, buf + 33);
681	f256_tomonty(x, x);
682	f256_tomonty(y, y);
683
684	/*
685	 * Verify y^2 = x^3 + A*x + B. In curve P-256, A = -3.
686	 * Note that the Montgomery representation of 0 is 0. We must
687	 * take care to apply the final reduction to make sure we have
688	 * 0 and not p.
689	 */
690	f256_montysquare(t, y);
691	f256_montysquare(x3, x);
692	f256_montymul(x3, x3, x);
693	f256_sub(t, t, x3);
694	f256_add(t, t, x);
695	f256_add(t, t, x);
696	f256_add(t, t, x);
697	f256_sub(t, t, P256_B_MONTY);
698	f256_final_reduce(t);
699	tt = t[0] | t[1] | t[2] | t[3] | t[4];
700	r &= EQ((uint32_t)(tt | (tt >> 32)), 0);
701
702	/*
703	 * Return the point in Jacobian coordinates (and Montgomery
704	 * representation).
705	 */
706	memcpy(P->x, x, sizeof x);
707	memcpy(P->y, y, sizeof y);
708	memcpy(P->z, F256_R, sizeof F256_R);
709	return r;
710}
711
712/*
713 * Final conversion for a point:
714 *  - The point is converted back to affine coordinates.
715 *  - Final reduction is performed.
716 *  - The point is encoded into the provided buffer.
717 *
718 * If the point is the point-at-infinity, all operations are performed,
719 * but the buffer contents are indeterminate, and 0 is returned. Otherwise,
720 * the encoded point is written in the buffer, and 1 is returned.
721 */
722static uint32_t
723point_encode(unsigned char *buf, const p256_jacobian *P)
724{
725	uint64_t t1[5], t2[5], z;
726
727	/* Set t1 = 1/z^2 and t2 = 1/z^3. */
728	f256_invert(t2, P->z);
729	f256_montysquare(t1, t2);
730	f256_montymul(t2, t2, t1);
731
732	/* Compute affine coordinates x (in t1) and y (in t2). */
733	f256_montymul(t1, P->x, t1);
734	f256_montymul(t2, P->y, t2);
735
736	/* Convert back from Montgomery representation, and finalize
737	   reductions. */
738	f256_frommonty(t1, t1);
739	f256_frommonty(t2, t2);
740	f256_final_reduce(t1);
741	f256_final_reduce(t2);
742
743	/* Encode. */
744	buf[0] = 0x04;
745	f256_encode(buf +  1, t1);
746	f256_encode(buf + 33, t2);
747
748	/* Return success if and only if P->z != 0. */
749	z = P->z[0] | P->z[1] | P->z[2] | P->z[3] | P->z[4];
750	return NEQ((uint32_t)(z | z >> 32), 0);
751}
752
753/*
754 * Point doubling in Jacobian coordinates: point P is doubled.
755 * Note: if the source point is the point-at-infinity, then the result is
756 * still the point-at-infinity, which is correct. Moreover, if the three
757 * coordinates were zero, then they still are zero in the returned value.
758 */
759static void
760p256_double(p256_jacobian *P)
761{
762	/*
763	 * Doubling formulas are:
764	 *
765	 *   s = 4*x*y^2
766	 *   m = 3*(x + z^2)*(x - z^2)
767	 *   x' = m^2 - 2*s
768	 *   y' = m*(s - x') - 8*y^4
769	 *   z' = 2*y*z
770	 *
771	 * These formulas work for all points, including points of order 2
772	 * and points at infinity:
773	 *   - If y = 0 then z' = 0. But there is no such point in P-256
774	 *     anyway.
775	 *   - If z = 0 then z' = 0.
776	 */
777	uint64_t t1[5], t2[5], t3[5], t4[5];
778
779	/*
780	 * Compute z^2 in t1.
781	 */
782	f256_montysquare(t1, P->z);
783
784	/*
785	 * Compute x-z^2 in t2 and x+z^2 in t1.
786	 */
787	f256_add(t2, P->x, t1);
788	f256_sub(t1, P->x, t1);
789
790	/*
791	 * Compute 3*(x+z^2)*(x-z^2) in t1.
792	 */
793	f256_montymul(t3, t1, t2);
794	f256_add(t1, t3, t3);
795	f256_add(t1, t3, t1);
796
797	/*
798	 * Compute 4*x*y^2 (in t2) and 2*y^2 (in t3).
799	 */
800	f256_montysquare(t3, P->y);
801	f256_add(t3, t3, t3);
802	f256_montymul(t2, P->x, t3);
803	f256_add(t2, t2, t2);
804
805	/*
806	 * Compute x' = m^2 - 2*s.
807	 */
808	f256_montysquare(P->x, t1);
809	f256_sub(P->x, P->x, t2);
810	f256_sub(P->x, P->x, t2);
811
812	/*
813	 * Compute z' = 2*y*z.
814	 */
815	f256_montymul(t4, P->y, P->z);
816	f256_add(P->z, t4, t4);
817	f256_partial_reduce(P->z);
818
819	/*
820	 * Compute y' = m*(s - x') - 8*y^4. Note that we already have
821	 * 2*y^2 in t3.
822	 */
823	f256_sub(t2, t2, P->x);
824	f256_montymul(P->y, t1, t2);
825	f256_montysquare(t4, t3);
826	f256_add(t4, t4, t4);
827	f256_sub(P->y, P->y, t4);
828}
829
830/*
831 * Point addition (Jacobian coordinates): P1 is replaced with P1+P2.
832 * This function computes the wrong result in the following cases:
833 *
834 *   - If P1 == 0 but P2 != 0
835 *   - If P1 != 0 but P2 == 0
836 *   - If P1 == P2
837 *
838 * In all three cases, P1 is set to the point at infinity.
839 *
840 * Returned value is 0 if one of the following occurs:
841 *
842 *   - P1 and P2 have the same Y coordinate.
843 *   - P1 == 0 and P2 == 0.
844 *   - The Y coordinate of one of the points is 0 and the other point is
845 *     the point at infinity.
846 *
847 * The third case cannot actually happen with valid points, since a point
848 * with Y == 0 is a point of order 2, and there is no point of order 2 on
849 * curve P-256.
850 *
851 * Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller
852 * can apply the following:
853 *
854 *   - If the result is not the point at infinity, then it is correct.
855 *   - Otherwise, if the returned value is 1, then this is a case of
856 *     P1+P2 == 0, so the result is indeed the point at infinity.
857 *   - Otherwise, P1 == P2, so a "double" operation should have been
858 *     performed.
859 *
860 * Note that you can get a returned value of 0 with a correct result,
861 * e.g. if P1 and P2 have the same Y coordinate, but distinct X coordinates.
862 */
863static uint32_t
864p256_add(p256_jacobian *P1, const p256_jacobian *P2)
865{
866	/*
867	 * Addtions formulas are:
868	 *
869	 *   u1 = x1 * z2^2
870	 *   u2 = x2 * z1^2
871	 *   s1 = y1 * z2^3
872	 *   s2 = y2 * z1^3
873	 *   h = u2 - u1
874	 *   r = s2 - s1
875	 *   x3 = r^2 - h^3 - 2 * u1 * h^2
876	 *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
877	 *   z3 = h * z1 * z2
878	 */
879	uint64_t t1[5], t2[5], t3[5], t4[5], t5[5], t6[5], t7[5], tt;
880	uint32_t ret;
881
882	/*
883	 * Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3).
884	 */
885	f256_montysquare(t3, P2->z);
886	f256_montymul(t1, P1->x, t3);
887	f256_montymul(t4, P2->z, t3);
888	f256_montymul(t3, P1->y, t4);
889
890	/*
891	 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
892	 */
893	f256_montysquare(t4, P1->z);
894	f256_montymul(t2, P2->x, t4);
895	f256_montymul(t5, P1->z, t4);
896	f256_montymul(t4, P2->y, t5);
897
898	/*
899	 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
900	 * We need to test whether r is zero, so we will do some extra
901	 * reduce.
902	 */
903	f256_sub(t2, t2, t1);
904	f256_sub(t4, t4, t3);
905	f256_final_reduce(t4);
906	tt = t4[0] | t4[1] | t4[2] | t4[3] | t4[4];
907	ret = (uint32_t)(tt | (tt >> 32));
908	ret = (ret | -ret) >> 31;
909
910	/*
911	 * Compute u1*h^2 (in t6) and h^3 (in t5);
912	 */
913	f256_montysquare(t7, t2);
914	f256_montymul(t6, t1, t7);
915	f256_montymul(t5, t7, t2);
916
917	/*
918	 * Compute x3 = r^2 - h^3 - 2*u1*h^2.
919	 */
920	f256_montysquare(P1->x, t4);
921	f256_sub(P1->x, P1->x, t5);
922	f256_sub(P1->x, P1->x, t6);
923	f256_sub(P1->x, P1->x, t6);
924
925	/*
926	 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
927	 */
928	f256_sub(t6, t6, P1->x);
929	f256_montymul(P1->y, t4, t6);
930	f256_montymul(t1, t5, t3);
931	f256_sub(P1->y, P1->y, t1);
932
933	/*
934	 * Compute z3 = h*z1*z2.
935	 */
936	f256_montymul(t1, P1->z, P2->z);
937	f256_montymul(P1->z, t1, t2);
938
939	return ret;
940}
941
942/*
943 * Point addition (mixed coordinates): P1 is replaced with P1+P2.
944 * This is a specialised function for the case when P2 is a non-zero point
945 * in affine coordinates.
946 *
947 * This function computes the wrong result in the following cases:
948 *
949 *   - If P1 == 0
950 *   - If P1 == P2
951 *
952 * In both cases, P1 is set to the point at infinity.
953 *
954 * Returned value is 0 if one of the following occurs:
955 *
956 *   - P1 and P2 have the same Y (affine) coordinate.
957 *   - The Y coordinate of P2 is 0 and P1 is the point at infinity.
958 *
959 * The second case cannot actually happen with valid points, since a point
960 * with Y == 0 is a point of order 2, and there is no point of order 2 on
961 * curve P-256.
962 *
963 * Therefore, assuming that P1 != 0 on input, then the caller
964 * can apply the following:
965 *
966 *   - If the result is not the point at infinity, then it is correct.
967 *   - Otherwise, if the returned value is 1, then this is a case of
968 *     P1+P2 == 0, so the result is indeed the point at infinity.
969 *   - Otherwise, P1 == P2, so a "double" operation should have been
970 *     performed.
971 *
972 * Again, a value of 0 may be returned in some cases where the addition
973 * result is correct.
974 */
975static uint32_t
976p256_add_mixed(p256_jacobian *P1, const p256_affine *P2)
977{
978	/*
979	 * Addtions formulas are:
980	 *
981	 *   u1 = x1
982	 *   u2 = x2 * z1^2
983	 *   s1 = y1
984	 *   s2 = y2 * z1^3
985	 *   h = u2 - u1
986	 *   r = s2 - s1
987	 *   x3 = r^2 - h^3 - 2 * u1 * h^2
988	 *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
989	 *   z3 = h * z1
990	 */
991	uint64_t t1[5], t2[5], t3[5], t4[5], t5[5], t6[5], t7[5], tt;
992	uint32_t ret;
993
994	/*
995	 * Compute u1 = x1 (in t1) and s1 = y1 (in t3).
996	 */
997	memcpy(t1, P1->x, sizeof t1);
998	memcpy(t3, P1->y, sizeof t3);
999
1000	/*
1001	 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
1002	 */
1003	f256_montysquare(t4, P1->z);
1004	f256_montymul(t2, P2->x, t4);
1005	f256_montymul(t5, P1->z, t4);
1006	f256_montymul(t4, P2->y, t5);
1007
1008	/*
1009	 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
1010	 * We need to test whether r is zero, so we will do some extra
1011	 * reduce.
1012	 */
1013	f256_sub(t2, t2, t1);
1014	f256_sub(t4, t4, t3);
1015	f256_final_reduce(t4);
1016	tt = t4[0] | t4[1] | t4[2] | t4[3] | t4[4];
1017	ret = (uint32_t)(tt | (tt >> 32));
1018	ret = (ret | -ret) >> 31;
1019
1020	/*
1021	 * Compute u1*h^2 (in t6) and h^3 (in t5);
1022	 */
1023	f256_montysquare(t7, t2);
1024	f256_montymul(t6, t1, t7);
1025	f256_montymul(t5, t7, t2);
1026
1027	/*
1028	 * Compute x3 = r^2 - h^3 - 2*u1*h^2.
1029	 */
1030	f256_montysquare(P1->x, t4);
1031	f256_sub(P1->x, P1->x, t5);
1032	f256_sub(P1->x, P1->x, t6);
1033	f256_sub(P1->x, P1->x, t6);
1034
1035	/*
1036	 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
1037	 */
1038	f256_sub(t6, t6, P1->x);
1039	f256_montymul(P1->y, t4, t6);
1040	f256_montymul(t1, t5, t3);
1041	f256_sub(P1->y, P1->y, t1);
1042
1043	/*
1044	 * Compute z3 = h*z1*z2.
1045	 */
1046	f256_montymul(P1->z, P1->z, t2);
1047
1048	return ret;
1049}
1050
1051#if 0
1052/* unused */
1053/*
1054 * Point addition (mixed coordinates, complete): P1 is replaced with P1+P2.
1055 * This is a specialised function for the case when P2 is a non-zero point
1056 * in affine coordinates.
1057 *
1058 * This function returns the correct result in all cases.
1059 */
1060static uint32_t
1061p256_add_complete_mixed(p256_jacobian *P1, const p256_affine *P2)
1062{
1063	/*
1064	 * Addtions formulas, in the general case, are:
1065	 *
1066	 *   u1 = x1
1067	 *   u2 = x2 * z1^2
1068	 *   s1 = y1
1069	 *   s2 = y2 * z1^3
1070	 *   h = u2 - u1
1071	 *   r = s2 - s1
1072	 *   x3 = r^2 - h^3 - 2 * u1 * h^2
1073	 *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
1074	 *   z3 = h * z1
1075	 *
1076	 * These formulas mishandle the two following cases:
1077	 *
1078	 *  - If P1 is the point-at-infinity (z1 = 0), then z3 is
1079	 *    incorrectly set to 0.
1080	 *
1081	 *  - If P1 = P2, then u1 = u2 and s1 = s2, and x3, y3 and z3
1082	 *    are all set to 0.
1083	 *
1084	 * However, if P1 + P2 = 0, then u1 = u2 but s1 != s2, and then
1085	 * we correctly get z3 = 0 (the point-at-infinity).
1086	 *
1087	 * To fix the case P1 = 0, we perform at the end a copy of P2
1088	 * over P1, conditional to z1 = 0.
1089	 *
1090	 * For P1 = P2: in that case, both h and r are set to 0, and
1091	 * we get x3, y3 and z3 equal to 0. We can test for that
1092	 * occurrence to make a mask which will be all-one if P1 = P2,
1093	 * or all-zero otherwise; then we can compute the double of P2
1094	 * and add it, combined with the mask, to (x3,y3,z3).
1095	 *
1096	 * Using the doubling formulas in p256_double() on (x2,y2),
1097	 * simplifying since P2 is affine (i.e. z2 = 1, implicitly),
1098	 * we get:
1099	 *   s = 4*x2*y2^2
1100	 *   m = 3*(x2 + 1)*(x2 - 1)
1101	 *   x' = m^2 - 2*s
1102	 *   y' = m*(s - x') - 8*y2^4
1103	 *   z' = 2*y2
1104	 * which requires only 6 multiplications. Added to the 11
1105	 * multiplications of the normal mixed addition in Jacobian
1106	 * coordinates, we get a cost of 17 multiplications in total.
1107	 */
1108	uint64_t t1[5], t2[5], t3[5], t4[5], t5[5], t6[5], t7[5], tt, zz;
1109	int i;
1110
1111	/*
1112	 * Set zz to -1 if P1 is the point at infinity, 0 otherwise.
1113	 */
1114	zz = P1->z[0] | P1->z[1] | P1->z[2] | P1->z[3] | P1->z[4];
1115	zz = ((zz | -zz) >> 63) - (uint64_t)1;
1116
1117	/*
1118	 * Compute u1 = x1 (in t1) and s1 = y1 (in t3).
1119	 */
1120	memcpy(t1, P1->x, sizeof t1);
1121	memcpy(t3, P1->y, sizeof t3);
1122
1123	/*
1124	 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
1125	 */
1126	f256_montysquare(t4, P1->z);
1127	f256_montymul(t2, P2->x, t4);
1128	f256_montymul(t5, P1->z, t4);
1129	f256_montymul(t4, P2->y, t5);
1130
1131	/*
1132	 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
1133	 * reduce.
1134	 */
1135	f256_sub(t2, t2, t1);
1136	f256_sub(t4, t4, t3);
1137
1138	/*
1139	 * If both h = 0 and r = 0, then P1 = P2, and we want to set
1140	 * the mask tt to -1; otherwise, the mask will be 0.
1141	 */
1142	f256_final_reduce(t2);
1143	f256_final_reduce(t4);
1144	tt = t2[0] | t2[1] | t2[2] | t2[3] | t2[4]
1145		| t4[0] | t4[1] | t4[2] | t4[3] | t4[4];
1146	tt = ((tt | -tt) >> 63) - (uint64_t)1;
1147
1148	/*
1149	 * Compute u1*h^2 (in t6) and h^3 (in t5);
1150	 */
1151	f256_montysquare(t7, t2);
1152	f256_montymul(t6, t1, t7);
1153	f256_montymul(t5, t7, t2);
1154
1155	/*
1156	 * Compute x3 = r^2 - h^3 - 2*u1*h^2.
1157	 */
1158	f256_montysquare(P1->x, t4);
1159	f256_sub(P1->x, P1->x, t5);
1160	f256_sub(P1->x, P1->x, t6);
1161	f256_sub(P1->x, P1->x, t6);
1162
1163	/*
1164	 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
1165	 */
1166	f256_sub(t6, t6, P1->x);
1167	f256_montymul(P1->y, t4, t6);
1168	f256_montymul(t1, t5, t3);
1169	f256_sub(P1->y, P1->y, t1);
1170
1171	/*
1172	 * Compute z3 = h*z1.
1173	 */
1174	f256_montymul(P1->z, P1->z, t2);
1175
1176	/*
1177	 * The "double" result, in case P1 = P2.
1178	 */
1179
1180	/*
1181	 * Compute z' = 2*y2 (in t1).
1182	 */
1183	f256_add(t1, P2->y, P2->y);
1184	f256_partial_reduce(t1);
1185
1186	/*
1187	 * Compute 2*(y2^2) (in t2) and s = 4*x2*(y2^2) (in t3).
1188	 */
1189	f256_montysquare(t2, P2->y);
1190	f256_add(t2, t2, t2);
1191	f256_add(t3, t2, t2);
1192	f256_montymul(t3, P2->x, t3);
1193
1194	/*
1195	 * Compute m = 3*(x2^2 - 1) (in t4).
1196	 */
1197	f256_montysquare(t4, P2->x);
1198	f256_sub(t4, t4, F256_R);
1199	f256_add(t5, t4, t4);
1200	f256_add(t4, t4, t5);
1201
1202	/*
1203	 * Compute x' = m^2 - 2*s (in t5).
1204	 */
1205	f256_montysquare(t5, t4);
1206	f256_sub(t5, t3);
1207	f256_sub(t5, t3);
1208
1209	/*
1210	 * Compute y' = m*(s - x') - 8*y2^4 (in t6).
1211	 */
1212	f256_sub(t6, t3, t5);
1213	f256_montymul(t6, t6, t4);
1214	f256_montysquare(t7, t2);
1215	f256_sub(t6, t6, t7);
1216	f256_sub(t6, t6, t7);
1217
1218	/*
1219	 * We now have the alternate (doubling) coordinates in (t5,t6,t1).
1220	 * We combine them with (x3,y3,z3).
1221	 */
1222	for (i = 0; i < 5; i ++) {
1223		P1->x[i] |= tt & t5[i];
1224		P1->y[i] |= tt & t6[i];
1225		P1->z[i] |= tt & t1[i];
1226	}
1227
1228	/*
1229	 * If P1 = 0, then we get z3 = 0 (which is invalid); if z1 is 0,
1230	 * then we want to replace the result with a copy of P2. The
1231	 * test on z1 was done at the start, in the zz mask.
1232	 */
1233	for (i = 0; i < 5; i ++) {
1234		P1->x[i] ^= zz & (P1->x[i] ^ P2->x[i]);
1235		P1->y[i] ^= zz & (P1->y[i] ^ P2->y[i]);
1236		P1->z[i] ^= zz & (P1->z[i] ^ F256_R[i]);
1237	}
1238}
1239#endif
1240
1241/*
1242 * Inner function for computing a point multiplication. A window is
1243 * provided, with points 1*P to 15*P in affine coordinates.
1244 *
1245 * Assumptions:
1246 *  - All provided points are valid points on the curve.
1247 *  - Multiplier is non-zero, and smaller than the curve order.
1248 *  - Everything is in Montgomery representation.
1249 */
1250static void
1251point_mul_inner(p256_jacobian *R, const p256_affine *W,
1252	const unsigned char *k, size_t klen)
1253{
1254	p256_jacobian Q;
1255	uint32_t qz;
1256
1257	memset(&Q, 0, sizeof Q);
1258	qz = 1;
1259	while (klen -- > 0) {
1260		int i;
1261		unsigned bk;
1262
1263		bk = *k ++;
1264		for (i = 0; i < 2; i ++) {
1265			uint32_t bits;
1266			uint32_t bnz;
1267			p256_affine T;
1268			p256_jacobian U;
1269			uint32_t n;
1270			int j;
1271			uint64_t m;
1272
1273			p256_double(&Q);
1274			p256_double(&Q);
1275			p256_double(&Q);
1276			p256_double(&Q);
1277			bits = (bk >> 4) & 0x0F;
1278			bnz = NEQ(bits, 0);
1279
1280			/*
1281			 * Lookup point in window. If the bits are 0,
1282			 * we get something invalid, which is not a
1283			 * problem because we will use it only if the
1284			 * bits are non-zero.
1285			 */
1286			memset(&T, 0, sizeof T);
1287			for (n = 0; n < 15; n ++) {
1288				m = -(uint64_t)EQ(bits, n + 1);
1289				T.x[0] |= m & W[n].x[0];
1290				T.x[1] |= m & W[n].x[1];
1291				T.x[2] |= m & W[n].x[2];
1292				T.x[3] |= m & W[n].x[3];
1293				T.x[4] |= m & W[n].x[4];
1294				T.y[0] |= m & W[n].y[0];
1295				T.y[1] |= m & W[n].y[1];
1296				T.y[2] |= m & W[n].y[2];
1297				T.y[3] |= m & W[n].y[3];
1298				T.y[4] |= m & W[n].y[4];
1299			}
1300
1301			U = Q;
1302			p256_add_mixed(&U, &T);
1303
1304			/*
1305			 * If qz is still 1, then Q was all-zeros, and this
1306			 * is conserved through p256_double().
1307			 */
1308			m = -(uint64_t)(bnz & qz);
1309			for (j = 0; j < 5; j ++) {
1310				Q.x[j] ^= m & (Q.x[j] ^ T.x[j]);
1311				Q.y[j] ^= m & (Q.y[j] ^ T.y[j]);
1312				Q.z[j] ^= m & (Q.z[j] ^ F256_R[j]);
1313			}
1314			CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
1315			qz &= ~bnz;
1316			bk <<= 4;
1317		}
1318	}
1319	*R = Q;
1320}
1321
1322/*
1323 * Convert a window from Jacobian to affine coordinates. A single
1324 * field inversion is used. This function works for windows up to
1325 * 32 elements.
1326 *
1327 * The destination array (aff[]) and the source array (jac[]) may
1328 * overlap, provided that the start of aff[] is not after the start of
1329 * jac[]. Even if the arrays do _not_ overlap, the source array is
1330 * modified.
1331 */
1332static void
1333window_to_affine(p256_affine *aff, p256_jacobian *jac, int num)
1334{
1335	/*
1336	 * Convert the window points to affine coordinates. We use the
1337	 * following trick to mutualize the inversion computation: if
1338	 * we have z1, z2, z3, and z4, and want to invert all of them,
1339	 * we compute u = 1/(z1*z2*z3*z4), and then we have:
1340	 *   1/z1 = u*z2*z3*z4
1341	 *   1/z2 = u*z1*z3*z4
1342	 *   1/z3 = u*z1*z2*z4
1343	 *   1/z4 = u*z1*z2*z3
1344	 *
1345	 * The partial products are computed recursively:
1346	 *
1347	 *  - on input (z_1,z_2), return (z_2,z_1) and z_1*z_2
1348	 *  - on input (z_1,z_2,... z_n):
1349	 *       recurse on (z_1,z_2,... z_(n/2)) -> r1 and m1
1350	 *       recurse on (z_(n/2+1),z_(n/2+2)... z_n) -> r2 and m2
1351	 *       multiply elements of r1 by m2 -> s1
1352	 *       multiply elements of r2 by m1 -> s2
1353	 *       return r1||r2 and m1*m2
1354	 *
1355	 * In the example below, we suppose that we have 14 elements.
1356	 * Let z1, z2,... zE be the 14 values to invert (index noted in
1357	 * hexadecimal, starting at 1).
1358	 *
1359	 *  - Depth 1:
1360	 *      swap(z1, z2); z12 = z1*z2
1361	 *      swap(z3, z4); z34 = z3*z4
1362	 *      swap(z5, z6); z56 = z5*z6
1363	 *      swap(z7, z8); z78 = z7*z8
1364	 *      swap(z9, zA); z9A = z9*zA
1365	 *      swap(zB, zC); zBC = zB*zC
1366	 *      swap(zD, zE); zDE = zD*zE
1367	 *
1368	 *  - Depth 2:
1369	 *      z1 <- z1*z34, z2 <- z2*z34, z3 <- z3*z12, z4 <- z4*z12
1370	 *      z1234 = z12*z34
1371	 *      z5 <- z5*z78, z6 <- z6*z78, z7 <- z7*z56, z8 <- z8*z56
1372	 *      z5678 = z56*z78
1373	 *      z9 <- z9*zBC, zA <- zA*zBC, zB <- zB*z9A, zC <- zC*z9A
1374	 *      z9ABC = z9A*zBC
1375	 *
1376	 *  - Depth 3:
1377	 *      z1 <- z1*z5678, z2 <- z2*z5678, z3 <- z3*z5678, z4 <- z4*z5678
1378	 *      z5 <- z5*z1234, z6 <- z6*z1234, z7 <- z7*z1234, z8 <- z8*z1234
1379	 *      z12345678 = z1234*z5678
1380	 *      z9 <- z9*zDE, zA <- zA*zDE, zB <- zB*zDE, zC <- zC*zDE
1381	 *      zD <- zD*z9ABC, zE*z9ABC
1382	 *      z9ABCDE = z9ABC*zDE
1383	 *
1384	 *  - Depth 4:
1385	 *      multiply z1..z8 by z9ABCDE
1386	 *      multiply z9..zE by z12345678
1387	 *      final z = z12345678*z9ABCDE
1388	 */
1389
1390	uint64_t z[16][5];
1391	int i, k, s;
1392#define zt   (z[15])
1393#define zu   (z[14])
1394#define zv   (z[13])
1395
1396	/*
1397	 * First recursion step (pairwise swapping and multiplication).
1398	 * If there is an odd number of elements, then we "invent" an
1399	 * extra one with coordinate Z = 1 (in Montgomery representation).
1400	 */
1401	for (i = 0; (i + 1) < num; i += 2) {
1402		memcpy(zt, jac[i].z, sizeof zt);
1403		memcpy(jac[i].z, jac[i + 1].z, sizeof zt);
1404		memcpy(jac[i + 1].z, zt, sizeof zt);
1405		f256_montymul(z[i >> 1], jac[i].z, jac[i + 1].z);
1406	}
1407	if ((num & 1) != 0) {
1408		memcpy(z[num >> 1], jac[num - 1].z, sizeof zt);
1409		memcpy(jac[num - 1].z, F256_R, sizeof F256_R);
1410	}
1411
1412	/*
1413	 * Perform further recursion steps. At the entry of each step,
1414	 * the process has been done for groups of 's' points. The
1415	 * integer k is the log2 of s.
1416	 */
1417	for (k = 1, s = 2; s < num; k ++, s <<= 1) {
1418		int n;
1419
1420		for (i = 0; i < num; i ++) {
1421			f256_montymul(jac[i].z, jac[i].z, z[(i >> k) ^ 1]);
1422		}
1423		n = (num + s - 1) >> k;
1424		for (i = 0; i < (n >> 1); i ++) {
1425			f256_montymul(z[i], z[i << 1], z[(i << 1) + 1]);
1426		}
1427		if ((n & 1) != 0) {
1428			memmove(z[n >> 1], z[n], sizeof zt);
1429		}
1430	}
1431
1432	/*
1433	 * Invert the final result, and convert all points.
1434	 */
1435	f256_invert(zt, z[0]);
1436	for (i = 0; i < num; i ++) {
1437		f256_montymul(zv, jac[i].z, zt);
1438		f256_montysquare(zu, zv);
1439		f256_montymul(zv, zv, zu);
1440		f256_montymul(aff[i].x, jac[i].x, zu);
1441		f256_montymul(aff[i].y, jac[i].y, zv);
1442	}
1443}
1444
1445/*
1446 * Multiply the provided point by an integer.
1447 * Assumptions:
1448 *  - Source point is a valid curve point.
1449 *  - Source point is not the point-at-infinity.
1450 *  - Integer is not 0, and is lower than the curve order.
1451 * If these conditions are not met, then the result is indeterminate
1452 * (but the process is still constant-time).
1453 */
1454static void
1455p256_mul(p256_jacobian *P, const unsigned char *k, size_t klen)
1456{
1457	union {
1458		p256_affine aff[15];
1459		p256_jacobian jac[15];
1460	} window;
1461	int i;
1462
1463	/*
1464	 * Compute window, in Jacobian coordinates.
1465	 */
1466	window.jac[0] = *P;
1467	for (i = 2; i < 16; i ++) {
1468		window.jac[i - 1] = window.jac[(i >> 1) - 1];
1469		if ((i & 1) == 0) {
1470			p256_double(&window.jac[i - 1]);
1471		} else {
1472			p256_add(&window.jac[i - 1], &window.jac[i >> 1]);
1473		}
1474	}
1475
1476	/*
1477	 * Convert the window points to affine coordinates. Point
1478	 * window[0] is the source point, already in affine coordinates.
1479	 */
1480	window_to_affine(window.aff, window.jac, 15);
1481
1482	/*
1483	 * Perform point multiplication.
1484	 */
1485	point_mul_inner(P, window.aff, k, klen);
1486}
1487
1488/*
1489 * Precomputed window for the conventional generator: P256_Gwin[n]
1490 * contains (n+1)*G (affine coordinates, in Montgomery representation).
1491 */
1492static const p256_affine P256_Gwin[] = {
1493	{
1494		{ 0x30D418A9143C1, 0xC4FEDB60179E7, 0x62251075BA95F,
1495		  0x5C669FB732B77, 0x08905F76B5375 },
1496		{ 0x5357CE95560A8, 0x43A19E45CDDF2, 0x21F3258B4AB8E,
1497		  0xD8552E88688DD, 0x0571FF18A5885 }
1498	},
1499	{
1500		{ 0x46D410DDD64DF, 0x0B433827D8500, 0x1490D9AA6AE3C,
1501		  0xA3A832205038D, 0x06BB32E52DCF3 },
1502		{ 0x48D361BEE1A57, 0xB7B236FF82F36, 0x042DBE152CD7C,
1503		  0xA3AA9A8FB0E92, 0x08C577517A5B8 }
1504	},
1505	{
1506		{ 0x3F904EEBC1272, 0x9E87D81FBFFAC, 0xCBBC98B027F84,
1507		  0x47E46AD77DD87, 0x06936A3FD6FF7 },
1508		{ 0x5C1FC983A7EBD, 0xC3861FE1AB04C, 0x2EE98E583E47A,
1509		  0xC06A88208311A, 0x05F06A2AB587C }
1510	},
1511	{
1512		{ 0xB50D46918DCC5, 0xD7623C17374B0, 0x100AF24650A6E,
1513		  0x76ABCDAACACE8, 0x077362F591B01 },
1514		{ 0xF24CE4CBABA68, 0x17AD6F4472D96, 0xDDD22E1762847,
1515		  0x862EB6C36DEE5, 0x04B14C39CC5AB }
1516	},
1517	{
1518		{ 0x8AAEC45C61F5C, 0x9D4B9537DBE1B, 0x76C20C90EC649,
1519		  0x3C7D41CB5AAD0, 0x0907960649052 },
1520		{ 0x9B4AE7BA4F107, 0xF75EB882BEB30, 0x7A1F6873C568E,
1521		  0x915C540A9877E, 0x03A076BB9DD1E }
1522	},
1523	{
1524		{ 0x47373E77664A1, 0xF246CEE3E4039, 0x17A3AD55AE744,
1525		  0x673C50A961A5B, 0x03074B5964213 },
1526		{ 0x6220D377E44BA, 0x30DFF14B593D3, 0x639F11299C2B5,
1527		  0x75F5424D44CEF, 0x04C9916DEA07F }
1528	},
1529	{
1530		{ 0x354EA0173B4F1, 0x3C23C00F70746, 0x23BB082BD2021,
1531		  0xE03E43EAAB50C, 0x03BA5119D3123 },
1532		{ 0xD0303F5B9D4DE, 0x17DA67BDD2847, 0xC941956742F2F,
1533		  0x8670F933BDC77, 0x0AEDD9164E240 }
1534	},
1535	{
1536		{ 0x4CD19499A78FB, 0x4BF9B345527F1, 0x2CFC6B462AB5C,
1537		  0x30CDF90F02AF0, 0x0763891F62652 },
1538		{ 0xA3A9532D49775, 0xD7F9EBA15F59D, 0x60BBF021E3327,
1539		  0xF75C23C7B84BE, 0x06EC12F2C706D }
1540	},
1541	{
1542		{ 0x6E8F264E20E8E, 0xC79A7A84175C9, 0xC8EB00ABE6BFE,
1543		  0x16A4CC09C0444, 0x005B3081D0C4E },
1544		{ 0x777AA45F33140, 0xDCE5D45E31EB7, 0xB12F1A56AF7BE,
1545		  0xF9B2B6E019A88, 0x086659CDFD835 }
1546	},
1547	{
1548		{ 0xDBD19DC21EC8C, 0x94FCF81392C18, 0x250B4998F9868,
1549		  0x28EB37D2CD648, 0x0C61C947E4B34 },
1550		{ 0x407880DD9E767, 0x0C83FBE080C2B, 0x9BE5D2C43A899,
1551		  0xAB4EF7D2D6577, 0x08719A555B3B4 }
1552	},
1553	{
1554		{ 0x260A6245E4043, 0x53E7FDFE0EA7D, 0xAC1AB59DE4079,
1555		  0x072EFF3A4158D, 0x0E7090F1949C9 },
1556		{ 0x85612B944E886, 0xE857F61C81A76, 0xAD643D250F939,
1557		  0x88DAC0DAA891E, 0x089300244125B }
1558	},
1559	{
1560		{ 0x1AA7D26977684, 0x58A345A3304B7, 0x37385EABDEDEF,
1561		  0x155E409D29DEE, 0x0EE1DF780B83E },
1562		{ 0x12D91CBB5B437, 0x65A8956370CAC, 0xDE6D66170ED2F,
1563		  0xAC9B8228CFA8A, 0x0FF57C95C3238 }
1564	},
1565	{
1566		{ 0x25634B2ED7097, 0x9156FD30DCCC4, 0x9E98110E35676,
1567		  0x7594CBCD43F55, 0x038477ACC395B },
1568		{ 0x2B90C00EE17FF, 0xF842ED2E33575, 0x1F5BC16874838,
1569		  0x7968CD06422BD, 0x0BC0876AB9E7B }
1570	},
1571	{
1572		{ 0xA35BB0CF664AF, 0x68F9707E3A242, 0x832660126E48F,
1573		  0x72D2717BF54C6, 0x0AAE7333ED12C },
1574		{ 0x2DB7995D586B1, 0xE732237C227B5, 0x65E7DBBE29569,
1575		  0xBBBD8E4193E2A, 0x052706DC3EAA1 }
1576	},
1577	{
1578		{ 0xD8B7BC60055BE, 0xD76E27E4B72BC, 0x81937003CC23E,
1579		  0xA090E337424E4, 0x02AA0E43EAD3D },
1580		{ 0x524F6383C45D2, 0x422A41B2540B8, 0x8A4797D766355,
1581		  0xDF444EFA6DE77, 0x0042170A9079A }
1582	},
1583};
1584
1585/*
1586 * Multiply the conventional generator of the curve by the provided
1587 * integer. Return is written in *P.
1588 *
1589 * Assumptions:
1590 *  - Integer is not 0, and is lower than the curve order.
1591 * If this conditions is not met, then the result is indeterminate
1592 * (but the process is still constant-time).
1593 */
1594static void
1595p256_mulgen(p256_jacobian *P, const unsigned char *k, size_t klen)
1596{
1597	point_mul_inner(P, P256_Gwin, k, klen);
1598}
1599
1600/*
1601 * Return 1 if all of the following hold:
1602 *  - klen <= 32
1603 *  - k != 0
1604 *  - k is lower than the curve order
1605 * Otherwise, return 0.
1606 *
1607 * Constant-time behaviour: only klen may be observable.
1608 */
1609static uint32_t
1610check_scalar(const unsigned char *k, size_t klen)
1611{
1612	uint32_t z;
1613	int32_t c;
1614	size_t u;
1615
1616	if (klen > 32) {
1617		return 0;
1618	}
1619	z = 0;
1620	for (u = 0; u < klen; u ++) {
1621		z |= k[u];
1622	}
1623	if (klen == 32) {
1624		c = 0;
1625		for (u = 0; u < klen; u ++) {
1626			c |= -(int32_t)EQ0(c) & CMP(k[u], P256_N[u]);
1627		}
1628	} else {
1629		c = -1;
1630	}
1631	return NEQ(z, 0) & LT0(c);
1632}
1633
1634static uint32_t
1635api_mul(unsigned char *G, size_t Glen,
1636	const unsigned char *k, size_t klen, int curve)
1637{
1638	uint32_t r;
1639	p256_jacobian P;
1640
1641	(void)curve;
1642	if (Glen != 65) {
1643		return 0;
1644	}
1645	r = check_scalar(k, klen);
1646	r &= point_decode(&P, G);
1647	p256_mul(&P, k, klen);
1648	r &= point_encode(G, &P);
1649	return r;
1650}
1651
1652static size_t
1653api_mulgen(unsigned char *R,
1654	const unsigned char *k, size_t klen, int curve)
1655{
1656	p256_jacobian P;
1657
1658	(void)curve;
1659	p256_mulgen(&P, k, klen);
1660	point_encode(R, &P);
1661	return 65;
1662}
1663
1664static uint32_t
1665api_muladd(unsigned char *A, const unsigned char *B, size_t len,
1666	const unsigned char *x, size_t xlen,
1667	const unsigned char *y, size_t ylen, int curve)
1668{
1669	/*
1670	 * We might want to use Shamir's trick here: make a composite
1671	 * window of u*P+v*Q points, to merge the two doubling-ladders
1672	 * into one. This, however, has some complications:
1673	 *
1674	 *  - During the computation, we may hit the point-at-infinity.
1675	 *    Thus, we would need p256_add_complete_mixed() (complete
1676	 *    formulas for point addition), with a higher cost (17 muls
1677	 *    instead of 11).
1678	 *
1679	 *  - A 4-bit window would be too large, since it would involve
1680	 *    16*16-1 = 255 points. For the same window size as in the
1681	 *    p256_mul() case, we would need to reduce the window size
1682	 *    to 2 bits, and thus perform twice as many non-doubling
1683	 *    point additions.
1684	 *
1685	 *  - The window may itself contain the point-at-infinity, and
1686	 *    thus cannot be in all generality be made of affine points.
1687	 *    Instead, we would need to make it a window of points in
1688	 *    Jacobian coordinates. Even p256_add_complete_mixed() would
1689	 *    be inappropriate.
1690	 *
1691	 * For these reasons, the code below performs two separate
1692	 * point multiplications, then computes the final point addition
1693	 * (which is both a "normal" addition, and a doubling, to handle
1694	 * all cases).
1695	 */
1696
1697	p256_jacobian P, Q;
1698	uint32_t r, t, s;
1699	uint64_t z;
1700
1701	(void)curve;
1702	if (len != 65) {
1703		return 0;
1704	}
1705	r = point_decode(&P, A);
1706	p256_mul(&P, x, xlen);
1707	if (B == NULL) {
1708		p256_mulgen(&Q, y, ylen);
1709	} else {
1710		r &= point_decode(&Q, B);
1711		p256_mul(&Q, y, ylen);
1712	}
1713
1714	/*
1715	 * The final addition may fail in case both points are equal.
1716	 */
1717	t = p256_add(&P, &Q);
1718	f256_final_reduce(P.z);
1719	z = P.z[0] | P.z[1] | P.z[2] | P.z[3] | P.z[4];
1720	s = EQ((uint32_t)(z | (z >> 32)), 0);
1721	p256_double(&Q);
1722
1723	/*
1724	 * If s is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we
1725	 * have the following:
1726	 *
1727	 *   s = 0, t = 0   return P (normal addition)
1728	 *   s = 0, t = 1   return P (normal addition)
1729	 *   s = 1, t = 0   return Q (a 'double' case)
1730	 *   s = 1, t = 1   report an error (P+Q = 0)
1731	 */
1732	CCOPY(s & ~t, &P, &Q, sizeof Q);
1733	point_encode(A, &P);
1734	r &= ~(s & t);
1735	return r;
1736}
1737
1738/* see bearssl_ec.h */
1739const br_ec_impl br_ec_p256_m62 = {
1740	(uint32_t)0x00800000,
1741	&api_generator,
1742	&api_order,
1743	&api_xoff,
1744	&api_mul,
1745	&api_mulgen,
1746	&api_muladd
1747};
1748
1749/* see bearssl_ec.h */
1750const br_ec_impl *
1751br_ec_p256_m62_get(void)
1752{
1753	return &br_ec_p256_m62;
1754}
1755
1756#else
1757
1758/* see bearssl_ec.h */
1759const br_ec_impl *
1760br_ec_p256_m62_get(void)
1761{
1762	return 0;
1763}
1764
1765#endif
1766