1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright 2015 RackTop Systems.
26 * Copyright 2016 Nexenta Systems, Inc.
27 */
28
29/*
30 * Pool import support functions.
31 *
32 * To import a pool, we rely on reading the configuration information from the
33 * ZFS label of each device.  If we successfully read the label, then we
34 * organize the configuration information in the following hierarchy:
35 *
36 *	pool guid -> toplevel vdev guid -> label txg
37 *
38 * Duplicate entries matching this same tuple will be discarded.  Once we have
39 * examined every device, we pick the best label txg config for each toplevel
40 * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
41 * update any paths that have changed.  Finally, we attempt to import the pool
42 * using our derived config, and record the results.
43 */
44
45#include <aio.h>
46#include <ctype.h>
47#include <devid.h>
48#include <dirent.h>
49#include <errno.h>
50#include <libintl.h>
51#include <stddef.h>
52#include <stdlib.h>
53#include <string.h>
54#include <sys/stat.h>
55#include <unistd.h>
56#include <fcntl.h>
57#include <thread_pool.h>
58#include <libgeom.h>
59
60#include <sys/vdev_impl.h>
61
62#include "libzfs.h"
63#include "libzfs_impl.h"
64
65/*
66 * Intermediate structures used to gather configuration information.
67 */
68typedef struct config_entry {
69	uint64_t		ce_txg;
70	nvlist_t		*ce_config;
71	struct config_entry	*ce_next;
72} config_entry_t;
73
74typedef struct vdev_entry {
75	uint64_t		ve_guid;
76	config_entry_t		*ve_configs;
77	struct vdev_entry	*ve_next;
78} vdev_entry_t;
79
80typedef struct pool_entry {
81	uint64_t		pe_guid;
82	vdev_entry_t		*pe_vdevs;
83	struct pool_entry	*pe_next;
84} pool_entry_t;
85
86typedef struct name_entry {
87	char			*ne_name;
88	uint64_t		ne_guid;
89	struct name_entry	*ne_next;
90} name_entry_t;
91
92typedef struct pool_list {
93	pool_entry_t		*pools;
94	name_entry_t		*names;
95} pool_list_t;
96
97static char *
98get_devid(const char *path)
99{
100#ifdef have_devid
101	int fd;
102	ddi_devid_t devid;
103	char *minor, *ret;
104
105	if ((fd = open(path, O_RDONLY)) < 0)
106		return (NULL);
107
108	minor = NULL;
109	ret = NULL;
110	if (devid_get(fd, &devid) == 0) {
111		if (devid_get_minor_name(fd, &minor) == 0)
112			ret = devid_str_encode(devid, minor);
113		if (minor != NULL)
114			devid_str_free(minor);
115		devid_free(devid);
116	}
117	(void) close(fd);
118
119	return (ret);
120#else
121	return (NULL);
122#endif
123}
124
125
126/*
127 * Go through and fix up any path and/or devid information for the given vdev
128 * configuration.
129 */
130static int
131fix_paths(nvlist_t *nv, name_entry_t *names)
132{
133	nvlist_t **child;
134	uint_t c, children;
135	uint64_t guid;
136	name_entry_t *ne, *best;
137	char *path, *devid;
138	int matched;
139
140	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
141	    &child, &children) == 0) {
142		for (c = 0; c < children; c++)
143			if (fix_paths(child[c], names) != 0)
144				return (-1);
145		return (0);
146	}
147
148	/*
149	 * This is a leaf (file or disk) vdev.  In either case, go through
150	 * the name list and see if we find a matching guid.  If so, replace
151	 * the path and see if we can calculate a new devid.
152	 *
153	 * There may be multiple names associated with a particular guid, in
154	 * which case we have overlapping slices or multiple paths to the same
155	 * disk.  If this is the case, then we want to pick the path that is
156	 * the most similar to the original, where "most similar" is the number
157	 * of matching characters starting from the end of the path.  This will
158	 * preserve slice numbers even if the disks have been reorganized, and
159	 * will also catch preferred disk names if multiple paths exist.
160	 */
161	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
162	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
163		path = NULL;
164
165	matched = 0;
166	best = NULL;
167	for (ne = names; ne != NULL; ne = ne->ne_next) {
168		if (ne->ne_guid == guid) {
169			const char *src, *dst;
170			int count;
171
172			if (path == NULL) {
173				best = ne;
174				break;
175			}
176
177			src = ne->ne_name + strlen(ne->ne_name) - 1;
178			dst = path + strlen(path) - 1;
179			for (count = 0; src >= ne->ne_name && dst >= path;
180			    src--, dst--, count++)
181				if (*src != *dst)
182					break;
183
184			/*
185			 * At this point, 'count' is the number of characters
186			 * matched from the end.
187			 */
188			if (count > matched || best == NULL) {
189				best = ne;
190				matched = count;
191			}
192		}
193	}
194
195	if (best == NULL)
196		return (0);
197
198	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
199		return (-1);
200
201	if ((devid = get_devid(best->ne_name)) == NULL) {
202		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
203	} else {
204		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
205			devid_str_free(devid);
206			return (-1);
207		}
208		devid_str_free(devid);
209	}
210
211	return (0);
212}
213
214/*
215 * Add the given configuration to the list of known devices.
216 */
217static int
218add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
219    nvlist_t *config)
220{
221	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
222	pool_entry_t *pe;
223	vdev_entry_t *ve;
224	config_entry_t *ce;
225	name_entry_t *ne;
226
227	/*
228	 * If this is a hot spare not currently in use or level 2 cache
229	 * device, add it to the list of names to translate, but don't do
230	 * anything else.
231	 */
232	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
233	    &state) == 0 &&
234	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
235	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
236		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
237			return (-1);
238
239		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
240			free(ne);
241			return (-1);
242		}
243
244		ne->ne_guid = vdev_guid;
245		ne->ne_next = pl->names;
246		pl->names = ne;
247
248		return (0);
249	}
250
251	/*
252	 * If we have a valid config but cannot read any of these fields, then
253	 * it means we have a half-initialized label.  In vdev_label_init()
254	 * we write a label with txg == 0 so that we can identify the device
255	 * in case the user refers to the same disk later on.  If we fail to
256	 * create the pool, we'll be left with a label in this state
257	 * which should not be considered part of a valid pool.
258	 */
259	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
260	    &pool_guid) != 0 ||
261	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
262	    &vdev_guid) != 0 ||
263	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
264	    &top_guid) != 0 ||
265	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
266	    &txg) != 0 || txg == 0) {
267		return (0);
268	}
269
270	/*
271	 * First, see if we know about this pool.  If not, then add it to the
272	 * list of known pools.
273	 */
274	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
275		if (pe->pe_guid == pool_guid)
276			break;
277	}
278
279	if (pe == NULL) {
280		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
281			return (-1);
282		}
283		pe->pe_guid = pool_guid;
284		pe->pe_next = pl->pools;
285		pl->pools = pe;
286	}
287
288	/*
289	 * Second, see if we know about this toplevel vdev.  Add it if its
290	 * missing.
291	 */
292	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
293		if (ve->ve_guid == top_guid)
294			break;
295	}
296
297	if (ve == NULL) {
298		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
299			return (-1);
300		}
301		ve->ve_guid = top_guid;
302		ve->ve_next = pe->pe_vdevs;
303		pe->pe_vdevs = ve;
304	}
305
306	/*
307	 * Third, see if we have a config with a matching transaction group.  If
308	 * so, then we do nothing.  Otherwise, add it to the list of known
309	 * configs.
310	 */
311	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
312		if (ce->ce_txg == txg)
313			break;
314	}
315
316	if (ce == NULL) {
317		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
318			return (-1);
319		}
320		ce->ce_txg = txg;
321		ce->ce_config = fnvlist_dup(config);
322		ce->ce_next = ve->ve_configs;
323		ve->ve_configs = ce;
324	}
325
326	/*
327	 * At this point we've successfully added our config to the list of
328	 * known configs.  The last thing to do is add the vdev guid -> path
329	 * mappings so that we can fix up the configuration as necessary before
330	 * doing the import.
331	 */
332	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
333		return (-1);
334
335	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
336		free(ne);
337		return (-1);
338	}
339
340	ne->ne_guid = vdev_guid;
341	ne->ne_next = pl->names;
342	pl->names = ne;
343
344	return (0);
345}
346
347/*
348 * Returns true if the named pool matches the given GUID.
349 */
350static int
351pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
352    boolean_t *isactive)
353{
354	zpool_handle_t *zhp;
355	uint64_t theguid;
356
357	if (zpool_open_silent(hdl, name, &zhp) != 0)
358		return (-1);
359
360	if (zhp == NULL) {
361		*isactive = B_FALSE;
362		return (0);
363	}
364
365	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
366	    &theguid) == 0);
367
368	zpool_close(zhp);
369
370	*isactive = (theguid == guid);
371	return (0);
372}
373
374static nvlist_t *
375refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
376{
377	nvlist_t *nvl;
378	zfs_cmd_t zc = { 0 };
379	int err, dstbuf_size;
380
381	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
382		return (NULL);
383
384	dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4);
385
386	if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) {
387		zcmd_free_nvlists(&zc);
388		return (NULL);
389	}
390
391	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
392	    &zc)) != 0 && errno == ENOMEM) {
393		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
394			zcmd_free_nvlists(&zc);
395			return (NULL);
396		}
397	}
398
399	if (err) {
400		zcmd_free_nvlists(&zc);
401		return (NULL);
402	}
403
404	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
405		zcmd_free_nvlists(&zc);
406		return (NULL);
407	}
408
409	zcmd_free_nvlists(&zc);
410	return (nvl);
411}
412
413/*
414 * Determine if the vdev id is a hole in the namespace.
415 */
416boolean_t
417vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
418{
419	for (int c = 0; c < holes; c++) {
420
421		/* Top-level is a hole */
422		if (hole_array[c] == id)
423			return (B_TRUE);
424	}
425	return (B_FALSE);
426}
427
428/*
429 * Convert our list of pools into the definitive set of configurations.  We
430 * start by picking the best config for each toplevel vdev.  Once that's done,
431 * we assemble the toplevel vdevs into a full config for the pool.  We make a
432 * pass to fix up any incorrect paths, and then add it to the main list to
433 * return to the user.
434 */
435static nvlist_t *
436get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok,
437    nvlist_t *policy)
438{
439	pool_entry_t *pe;
440	vdev_entry_t *ve;
441	config_entry_t *ce;
442	nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
443	nvlist_t **spares, **l2cache;
444	uint_t i, nspares, nl2cache;
445	boolean_t config_seen;
446	uint64_t best_txg;
447	char *name, *hostname = NULL;
448	uint64_t guid;
449	uint_t children = 0;
450	nvlist_t **child = NULL;
451	uint_t holes;
452	uint64_t *hole_array, max_id;
453	uint_t c;
454	boolean_t isactive;
455	uint64_t hostid;
456	nvlist_t *nvl;
457	boolean_t found_one = B_FALSE;
458	boolean_t valid_top_config = B_FALSE;
459
460	if (nvlist_alloc(&ret, 0, 0) != 0)
461		goto nomem;
462
463	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
464		uint64_t id, max_txg = 0;
465
466		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
467			goto nomem;
468		config_seen = B_FALSE;
469
470		/*
471		 * Iterate over all toplevel vdevs.  Grab the pool configuration
472		 * from the first one we find, and then go through the rest and
473		 * add them as necessary to the 'vdevs' member of the config.
474		 */
475		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
476
477			/*
478			 * Determine the best configuration for this vdev by
479			 * selecting the config with the latest transaction
480			 * group.
481			 */
482			best_txg = 0;
483			for (ce = ve->ve_configs; ce != NULL;
484			    ce = ce->ce_next) {
485
486				if (ce->ce_txg > best_txg) {
487					tmp = ce->ce_config;
488					best_txg = ce->ce_txg;
489				}
490			}
491
492			/*
493			 * We rely on the fact that the max txg for the
494			 * pool will contain the most up-to-date information
495			 * about the valid top-levels in the vdev namespace.
496			 */
497			if (best_txg > max_txg) {
498				(void) nvlist_remove(config,
499				    ZPOOL_CONFIG_VDEV_CHILDREN,
500				    DATA_TYPE_UINT64);
501				(void) nvlist_remove(config,
502				    ZPOOL_CONFIG_HOLE_ARRAY,
503				    DATA_TYPE_UINT64_ARRAY);
504
505				max_txg = best_txg;
506				hole_array = NULL;
507				holes = 0;
508				max_id = 0;
509				valid_top_config = B_FALSE;
510
511				if (nvlist_lookup_uint64(tmp,
512				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
513					verify(nvlist_add_uint64(config,
514					    ZPOOL_CONFIG_VDEV_CHILDREN,
515					    max_id) == 0);
516					valid_top_config = B_TRUE;
517				}
518
519				if (nvlist_lookup_uint64_array(tmp,
520				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
521				    &holes) == 0) {
522					verify(nvlist_add_uint64_array(config,
523					    ZPOOL_CONFIG_HOLE_ARRAY,
524					    hole_array, holes) == 0);
525				}
526			}
527
528			if (!config_seen) {
529				/*
530				 * Copy the relevant pieces of data to the pool
531				 * configuration:
532				 *
533				 *	version
534				 *	pool guid
535				 *	name
536				 *	comment (if available)
537				 *	pool state
538				 *	hostid (if available)
539				 *	hostname (if available)
540				 */
541				uint64_t state, version;
542				char *comment = NULL;
543
544				version = fnvlist_lookup_uint64(tmp,
545				    ZPOOL_CONFIG_VERSION);
546				fnvlist_add_uint64(config,
547				    ZPOOL_CONFIG_VERSION, version);
548				guid = fnvlist_lookup_uint64(tmp,
549				    ZPOOL_CONFIG_POOL_GUID);
550				fnvlist_add_uint64(config,
551				    ZPOOL_CONFIG_POOL_GUID, guid);
552				name = fnvlist_lookup_string(tmp,
553				    ZPOOL_CONFIG_POOL_NAME);
554				fnvlist_add_string(config,
555				    ZPOOL_CONFIG_POOL_NAME, name);
556
557				if (nvlist_lookup_string(tmp,
558				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
559					fnvlist_add_string(config,
560					    ZPOOL_CONFIG_COMMENT, comment);
561
562				state = fnvlist_lookup_uint64(tmp,
563				    ZPOOL_CONFIG_POOL_STATE);
564				fnvlist_add_uint64(config,
565				    ZPOOL_CONFIG_POOL_STATE, state);
566
567				hostid = 0;
568				if (nvlist_lookup_uint64(tmp,
569				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
570					fnvlist_add_uint64(config,
571					    ZPOOL_CONFIG_HOSTID, hostid);
572					hostname = fnvlist_lookup_string(tmp,
573					    ZPOOL_CONFIG_HOSTNAME);
574					fnvlist_add_string(config,
575					    ZPOOL_CONFIG_HOSTNAME, hostname);
576				}
577
578				config_seen = B_TRUE;
579			}
580
581			/*
582			 * Add this top-level vdev to the child array.
583			 */
584			verify(nvlist_lookup_nvlist(tmp,
585			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
586			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
587			    &id) == 0);
588
589			if (id >= children) {
590				nvlist_t **newchild;
591
592				newchild = zfs_alloc(hdl, (id + 1) *
593				    sizeof (nvlist_t *));
594				if (newchild == NULL)
595					goto nomem;
596
597				for (c = 0; c < children; c++)
598					newchild[c] = child[c];
599
600				free(child);
601				child = newchild;
602				children = id + 1;
603			}
604			if (nvlist_dup(nvtop, &child[id], 0) != 0)
605				goto nomem;
606
607		}
608
609		/*
610		 * If we have information about all the top-levels then
611		 * clean up the nvlist which we've constructed. This
612		 * means removing any extraneous devices that are
613		 * beyond the valid range or adding devices to the end
614		 * of our array which appear to be missing.
615		 */
616		if (valid_top_config) {
617			if (max_id < children) {
618				for (c = max_id; c < children; c++)
619					nvlist_free(child[c]);
620				children = max_id;
621			} else if (max_id > children) {
622				nvlist_t **newchild;
623
624				newchild = zfs_alloc(hdl, (max_id) *
625				    sizeof (nvlist_t *));
626				if (newchild == NULL)
627					goto nomem;
628
629				for (c = 0; c < children; c++)
630					newchild[c] = child[c];
631
632				free(child);
633				child = newchild;
634				children = max_id;
635			}
636		}
637
638		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
639		    &guid) == 0);
640
641		/*
642		 * The vdev namespace may contain holes as a result of
643		 * device removal. We must add them back into the vdev
644		 * tree before we process any missing devices.
645		 */
646		if (holes > 0) {
647			ASSERT(valid_top_config);
648
649			for (c = 0; c < children; c++) {
650				nvlist_t *holey;
651
652				if (child[c] != NULL ||
653				    !vdev_is_hole(hole_array, holes, c))
654					continue;
655
656				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
657				    0) != 0)
658					goto nomem;
659
660				/*
661				 * Holes in the namespace are treated as
662				 * "hole" top-level vdevs and have a
663				 * special flag set on them.
664				 */
665				if (nvlist_add_string(holey,
666				    ZPOOL_CONFIG_TYPE,
667				    VDEV_TYPE_HOLE) != 0 ||
668				    nvlist_add_uint64(holey,
669				    ZPOOL_CONFIG_ID, c) != 0 ||
670				    nvlist_add_uint64(holey,
671				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
672					nvlist_free(holey);
673					goto nomem;
674				}
675				child[c] = holey;
676			}
677		}
678
679		/*
680		 * Look for any missing top-level vdevs.  If this is the case,
681		 * create a faked up 'missing' vdev as a placeholder.  We cannot
682		 * simply compress the child array, because the kernel performs
683		 * certain checks to make sure the vdev IDs match their location
684		 * in the configuration.
685		 */
686		for (c = 0; c < children; c++) {
687			if (child[c] == NULL) {
688				nvlist_t *missing;
689				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
690				    0) != 0)
691					goto nomem;
692				if (nvlist_add_string(missing,
693				    ZPOOL_CONFIG_TYPE,
694				    VDEV_TYPE_MISSING) != 0 ||
695				    nvlist_add_uint64(missing,
696				    ZPOOL_CONFIG_ID, c) != 0 ||
697				    nvlist_add_uint64(missing,
698				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
699					nvlist_free(missing);
700					goto nomem;
701				}
702				child[c] = missing;
703			}
704		}
705
706		/*
707		 * Put all of this pool's top-level vdevs into a root vdev.
708		 */
709		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
710			goto nomem;
711		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
712		    VDEV_TYPE_ROOT) != 0 ||
713		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
714		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
715		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
716		    child, children) != 0) {
717			nvlist_free(nvroot);
718			goto nomem;
719		}
720
721		for (c = 0; c < children; c++)
722			nvlist_free(child[c]);
723		free(child);
724		children = 0;
725		child = NULL;
726
727		/*
728		 * Go through and fix up any paths and/or devids based on our
729		 * known list of vdev GUID -> path mappings.
730		 */
731		if (fix_paths(nvroot, pl->names) != 0) {
732			nvlist_free(nvroot);
733			goto nomem;
734		}
735
736		/*
737		 * Add the root vdev to this pool's configuration.
738		 */
739		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
740		    nvroot) != 0) {
741			nvlist_free(nvroot);
742			goto nomem;
743		}
744		nvlist_free(nvroot);
745
746		/*
747		 * zdb uses this path to report on active pools that were
748		 * imported or created using -R.
749		 */
750		if (active_ok)
751			goto add_pool;
752
753		/*
754		 * Determine if this pool is currently active, in which case we
755		 * can't actually import it.
756		 */
757		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
758		    &name) == 0);
759		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
760		    &guid) == 0);
761
762		if (pool_active(hdl, name, guid, &isactive) != 0)
763			goto error;
764
765		if (isactive) {
766			nvlist_free(config);
767			config = NULL;
768			continue;
769		}
770
771		if (policy != NULL) {
772			if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY,
773			    policy) != 0)
774				goto nomem;
775		}
776
777		if ((nvl = refresh_config(hdl, config)) == NULL) {
778			nvlist_free(config);
779			config = NULL;
780			continue;
781		}
782
783		nvlist_free(config);
784		config = nvl;
785
786		/*
787		 * Go through and update the paths for spares, now that we have
788		 * them.
789		 */
790		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
791		    &nvroot) == 0);
792		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
793		    &spares, &nspares) == 0) {
794			for (i = 0; i < nspares; i++) {
795				if (fix_paths(spares[i], pl->names) != 0)
796					goto nomem;
797			}
798		}
799
800		/*
801		 * Update the paths for l2cache devices.
802		 */
803		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
804		    &l2cache, &nl2cache) == 0) {
805			for (i = 0; i < nl2cache; i++) {
806				if (fix_paths(l2cache[i], pl->names) != 0)
807					goto nomem;
808			}
809		}
810
811		/*
812		 * Restore the original information read from the actual label.
813		 */
814		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
815		    DATA_TYPE_UINT64);
816		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
817		    DATA_TYPE_STRING);
818		if (hostid != 0) {
819			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
820			    hostid) == 0);
821			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
822			    hostname) == 0);
823		}
824
825add_pool:
826		/*
827		 * Add this pool to the list of configs.
828		 */
829		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
830		    &name) == 0);
831		if (nvlist_add_nvlist(ret, name, config) != 0)
832			goto nomem;
833
834		found_one = B_TRUE;
835		nvlist_free(config);
836		config = NULL;
837	}
838
839	if (!found_one) {
840		nvlist_free(ret);
841		ret = NULL;
842	}
843
844	return (ret);
845
846nomem:
847	(void) no_memory(hdl);
848error:
849	nvlist_free(config);
850	nvlist_free(ret);
851	for (c = 0; c < children; c++)
852		nvlist_free(child[c]);
853	free(child);
854
855	return (NULL);
856}
857
858/*
859 * Return the offset of the given label.
860 */
861static uint64_t
862label_offset(uint64_t size, int l)
863{
864	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
865	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
866	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
867}
868
869/*
870 * Given a file descriptor, read the label information and return an nvlist
871 * describing the configuration, if there is one.
872 * Return 0 on success, or -1 on failure
873 */
874int
875zpool_read_label(int fd, nvlist_t **config)
876{
877	struct stat64 statbuf;
878	int l;
879	vdev_label_t *label;
880	uint64_t state, txg, size;
881
882	*config = NULL;
883
884	if (fstat64(fd, &statbuf) == -1)
885		return (-1);
886	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
887
888	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
889		return (-1);
890
891	for (l = 0; l < VDEV_LABELS; l++) {
892		if (pread64(fd, label, sizeof (vdev_label_t),
893		    label_offset(size, l)) != sizeof (vdev_label_t))
894			continue;
895
896		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
897		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
898			continue;
899
900		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
901		    &state) != 0 || state > POOL_STATE_L2CACHE) {
902			nvlist_free(*config);
903			continue;
904		}
905
906		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
907		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
908		    &txg) != 0 || txg == 0)) {
909			nvlist_free(*config);
910			continue;
911		}
912
913		free(label);
914		return (0);
915	}
916
917	free(label);
918	*config = NULL;
919	errno = ENOENT;
920	return (-1);
921}
922
923/*
924 * Given a file descriptor, read the label information and return an nvlist
925 * describing the configuration, if there is one.
926 * returns the number of valid labels found
927 * If a label is found, returns it via config.  The caller is responsible for
928 * freeing it.
929 */
930int
931zpool_read_all_labels(int fd, nvlist_t **config)
932{
933	struct stat64 statbuf;
934	struct aiocb aiocbs[VDEV_LABELS];
935	struct aiocb *aiocbps[VDEV_LABELS];
936	int l;
937	vdev_phys_t *labels;
938	uint64_t state, txg, size;
939	int nlabels = 0;
940
941	*config = NULL;
942
943	if (fstat64(fd, &statbuf) == -1)
944		return (0);
945	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
946
947	if ((labels = calloc(VDEV_LABELS, sizeof (vdev_phys_t))) == NULL)
948		return (0);
949
950	memset(aiocbs, 0, sizeof(aiocbs));
951	for (l = 0; l < VDEV_LABELS; l++) {
952		aiocbs[l].aio_fildes = fd;
953		aiocbs[l].aio_offset = label_offset(size, l) + VDEV_SKIP_SIZE;
954		aiocbs[l].aio_buf = &labels[l];
955		aiocbs[l].aio_nbytes = sizeof(vdev_phys_t);
956		aiocbs[l].aio_lio_opcode = LIO_READ;
957		aiocbps[l] = &aiocbs[l];
958	}
959
960	if (lio_listio(LIO_WAIT, aiocbps, VDEV_LABELS, NULL) != 0) {
961		if (errno == EAGAIN || errno == EINTR || errno == EIO) {
962			for (l = 0; l < VDEV_LABELS; l++) {
963				errno = 0;
964				int r = aio_error(&aiocbs[l]);
965				if (r != EINVAL)
966					(void)aio_return(&aiocbs[l]);
967			}
968		}
969		free(labels);
970		return (0);
971	}
972
973	for (l = 0; l < VDEV_LABELS; l++) {
974		nvlist_t *temp = NULL;
975
976		if (aio_return(&aiocbs[l]) != sizeof(vdev_phys_t))
977			continue;
978
979		if (nvlist_unpack(labels[l].vp_nvlist,
980		    sizeof (labels[l].vp_nvlist), &temp, 0) != 0)
981			continue;
982
983		if (nvlist_lookup_uint64(temp, ZPOOL_CONFIG_POOL_STATE,
984		    &state) != 0 || state > POOL_STATE_L2CACHE) {
985			nvlist_free(temp);
986			temp = NULL;
987			continue;
988		}
989
990		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
991		    (nvlist_lookup_uint64(temp, ZPOOL_CONFIG_POOL_TXG,
992		    &txg) != 0 || txg == 0)) {
993			nvlist_free(temp);
994			temp = NULL;
995			continue;
996		}
997		if (temp)
998			*config = temp;
999
1000		nlabels++;
1001	}
1002
1003	free(labels);
1004	return (nlabels);
1005}
1006
1007typedef struct rdsk_node {
1008	char *rn_name;
1009	int rn_dfd;
1010	libzfs_handle_t *rn_hdl;
1011	nvlist_t *rn_config;
1012	avl_tree_t *rn_avl;
1013	avl_node_t rn_node;
1014	boolean_t rn_nozpool;
1015} rdsk_node_t;
1016
1017static int
1018slice_cache_compare(const void *arg1, const void *arg2)
1019{
1020	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
1021	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
1022	char *nm1slice, *nm2slice;
1023	int rv;
1024
1025	/*
1026	 * slices zero and two are the most likely to provide results,
1027	 * so put those first
1028	 */
1029	nm1slice = strstr(nm1, "s0");
1030	nm2slice = strstr(nm2, "s0");
1031	if (nm1slice && !nm2slice) {
1032		return (-1);
1033	}
1034	if (!nm1slice && nm2slice) {
1035		return (1);
1036	}
1037	nm1slice = strstr(nm1, "s2");
1038	nm2slice = strstr(nm2, "s2");
1039	if (nm1slice && !nm2slice) {
1040		return (-1);
1041	}
1042	if (!nm1slice && nm2slice) {
1043		return (1);
1044	}
1045
1046	rv = strcmp(nm1, nm2);
1047	if (rv == 0)
1048		return (0);
1049	return (rv > 0 ? 1 : -1);
1050}
1051
1052#ifdef illumos
1053static void
1054check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
1055    diskaddr_t size, uint_t blksz)
1056{
1057	rdsk_node_t tmpnode;
1058	rdsk_node_t *node;
1059	char sname[MAXNAMELEN];
1060
1061	tmpnode.rn_name = &sname[0];
1062	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
1063	    diskname, partno);
1064	/*
1065	 * protect against division by zero for disk labels that
1066	 * contain a bogus sector size
1067	 */
1068	if (blksz == 0)
1069		blksz = DEV_BSIZE;
1070	/* too small to contain a zpool? */
1071	if ((size < (SPA_MINDEVSIZE / blksz)) &&
1072	    (node = avl_find(r, &tmpnode, NULL)))
1073		node->rn_nozpool = B_TRUE;
1074}
1075#endif	/* illumos */
1076
1077static void
1078nozpool_all_slices(avl_tree_t *r, const char *sname)
1079{
1080#ifdef illumos
1081	char diskname[MAXNAMELEN];
1082	char *ptr;
1083	int i;
1084
1085	(void) strncpy(diskname, sname, MAXNAMELEN);
1086	if (((ptr = strrchr(diskname, 's')) == NULL) &&
1087	    ((ptr = strrchr(diskname, 'p')) == NULL))
1088		return;
1089	ptr[0] = 's';
1090	ptr[1] = '\0';
1091	for (i = 0; i < NDKMAP; i++)
1092		check_one_slice(r, diskname, i, 0, 1);
1093	ptr[0] = 'p';
1094	for (i = 0; i <= FD_NUMPART; i++)
1095		check_one_slice(r, diskname, i, 0, 1);
1096#endif	/* illumos */
1097}
1098
1099#ifdef illumos
1100static void
1101check_slices(avl_tree_t *r, int fd, const char *sname)
1102{
1103	struct extvtoc vtoc;
1104	struct dk_gpt *gpt;
1105	char diskname[MAXNAMELEN];
1106	char *ptr;
1107	int i;
1108
1109	(void) strncpy(diskname, sname, MAXNAMELEN);
1110	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1111		return;
1112	ptr[1] = '\0';
1113
1114	if (read_extvtoc(fd, &vtoc) >= 0) {
1115		for (i = 0; i < NDKMAP; i++)
1116			check_one_slice(r, diskname, i,
1117			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1118	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1119		/*
1120		 * on x86 we'll still have leftover links that point
1121		 * to slices s[9-15], so use NDKMAP instead
1122		 */
1123		for (i = 0; i < NDKMAP; i++)
1124			check_one_slice(r, diskname, i,
1125			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1126		/* nodes p[1-4] are never used with EFI labels */
1127		ptr[0] = 'p';
1128		for (i = 1; i <= FD_NUMPART; i++)
1129			check_one_slice(r, diskname, i, 0, 1);
1130		efi_free(gpt);
1131	}
1132}
1133#endif	/* illumos */
1134
1135static void
1136zpool_open_func(void *arg)
1137{
1138	rdsk_node_t *rn = arg;
1139	struct stat64 statbuf;
1140	nvlist_t *config;
1141	int fd;
1142
1143	if (rn->rn_nozpool)
1144		return;
1145	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1146		/* symlink to a device that's no longer there */
1147		if (errno == ENOENT)
1148			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1149		return;
1150	}
1151	/*
1152	 * Ignore failed stats.  We only want regular
1153	 * files, character devs and block devs.
1154	 */
1155	if (fstat64(fd, &statbuf) != 0 ||
1156	    (!S_ISREG(statbuf.st_mode) &&
1157	    !S_ISCHR(statbuf.st_mode) &&
1158	    !S_ISBLK(statbuf.st_mode))) {
1159		(void) close(fd);
1160		return;
1161	}
1162	/* this file is too small to hold a zpool */
1163#ifdef illumos
1164	if (S_ISREG(statbuf.st_mode) &&
1165	    statbuf.st_size < SPA_MINDEVSIZE) {
1166		(void) close(fd);
1167		return;
1168	} else if (!S_ISREG(statbuf.st_mode)) {
1169		/*
1170		 * Try to read the disk label first so we don't have to
1171		 * open a bunch of minor nodes that can't have a zpool.
1172		 */
1173		check_slices(rn->rn_avl, fd, rn->rn_name);
1174	}
1175#else	/* !illumos */
1176	if (statbuf.st_size < SPA_MINDEVSIZE) {
1177		(void) close(fd);
1178		return;
1179	}
1180#endif	/* illumos */
1181
1182	if ((zpool_read_label(fd, &config)) != 0 && errno == ENOMEM) {
1183		(void) close(fd);
1184		(void) no_memory(rn->rn_hdl);
1185		return;
1186	}
1187	(void) close(fd);
1188
1189	rn->rn_config = config;
1190}
1191
1192/*
1193 * Given a file descriptor, clear (zero) the label information.
1194 */
1195int
1196zpool_clear_label(int fd)
1197{
1198	struct stat64 statbuf;
1199	int l;
1200	vdev_label_t *label;
1201	uint64_t size;
1202
1203	if (fstat64(fd, &statbuf) == -1)
1204		return (0);
1205	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1206
1207	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1208		return (-1);
1209
1210	for (l = 0; l < VDEV_LABELS; l++) {
1211		if (pwrite64(fd, label, sizeof (vdev_label_t),
1212		    label_offset(size, l)) != sizeof (vdev_label_t)) {
1213			free(label);
1214			return (-1);
1215		}
1216	}
1217
1218	free(label);
1219	return (0);
1220}
1221
1222/*
1223 * Given a list of directories to search, find all pools stored on disk.  This
1224 * includes partial pools which are not available to import.  If no args are
1225 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1226 * poolname or guid (but not both) are provided by the caller when trying
1227 * to import a specific pool.
1228 */
1229static nvlist_t *
1230zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1231{
1232	int i, dirs = iarg->paths;
1233	struct dirent64 *dp;
1234	char path[MAXPATHLEN];
1235	char *end, **dir = iarg->path;
1236	size_t pathleft;
1237	nvlist_t *ret = NULL;
1238	static char *default_dir = "/dev";
1239	pool_list_t pools = { 0 };
1240	pool_entry_t *pe, *penext;
1241	vdev_entry_t *ve, *venext;
1242	config_entry_t *ce, *cenext;
1243	name_entry_t *ne, *nenext;
1244	avl_tree_t slice_cache;
1245	rdsk_node_t *slice;
1246	void *cookie;
1247	boolean_t skip_zvols = B_FALSE;
1248	int value;
1249	size_t size = sizeof(value);
1250
1251	if (dirs == 0) {
1252		dirs = 1;
1253		dir = &default_dir;
1254	}
1255
1256	if (sysctlbyname("vfs.zfs.vol.recursive", &value, &size, NULL, 0) == 0
1257	    && value == 0) {
1258		skip_zvols = B_TRUE;
1259	}
1260
1261	/*
1262	 * Go through and read the label configuration information from every
1263	 * possible device, organizing the information according to pool GUID
1264	 * and toplevel GUID.
1265	 */
1266	for (i = 0; i < dirs; i++) {
1267		tpool_t *t;
1268		char rdsk[MAXPATHLEN];
1269		int dfd;
1270		boolean_t config_failed = B_FALSE;
1271		DIR *dirp;
1272
1273		/* use realpath to normalize the path */
1274		if (realpath(dir[i], path) == 0) {
1275			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1276			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1277			goto error;
1278		}
1279		end = &path[strlen(path)];
1280		*end++ = '/';
1281		*end = 0;
1282		pathleft = &path[sizeof (path)] - end;
1283
1284#ifdef illumos
1285		/*
1286		 * Using raw devices instead of block devices when we're
1287		 * reading the labels skips a bunch of slow operations during
1288		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1289		 */
1290		if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1291			(void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1292		else
1293#endif
1294			(void) strlcpy(rdsk, path, sizeof (rdsk));
1295
1296		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1297		    (dirp = fdopendir(dfd)) == NULL) {
1298			if (dfd >= 0)
1299				(void) close(dfd);
1300			zfs_error_aux(hdl, strerror(errno));
1301			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1302			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1303			    rdsk);
1304			goto error;
1305		}
1306
1307		avl_create(&slice_cache, slice_cache_compare,
1308		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1309
1310		if (strcmp(rdsk, "/dev/") == 0) {
1311			struct gmesh mesh;
1312			struct gclass *mp;
1313			struct ggeom *gp;
1314			struct gprovider *pp;
1315
1316			errno = geom_gettree(&mesh);
1317			if (errno != 0) {
1318				zfs_error_aux(hdl, strerror(errno));
1319				(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1320				    dgettext(TEXT_DOMAIN, "cannot get GEOM tree"));
1321				goto error;
1322			}
1323
1324			LIST_FOREACH(mp, &mesh.lg_class, lg_class) {
1325				if (skip_zvols &&
1326				    strcmp(mp->lg_name, "ZFS::ZVOL") == 0) {
1327					continue;
1328				}
1329		        	LIST_FOREACH(gp, &mp->lg_geom, lg_geom) {
1330					LIST_FOREACH(pp, &gp->lg_provider, lg_provider) {
1331						slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1332						slice->rn_name = zfs_strdup(hdl, pp->lg_name);
1333						slice->rn_avl = &slice_cache;
1334						slice->rn_dfd = dfd;
1335						slice->rn_hdl = hdl;
1336						slice->rn_nozpool = B_FALSE;
1337						avl_add(&slice_cache, slice);
1338					}
1339				}
1340			}
1341
1342			geom_deletetree(&mesh);
1343			goto skipdir;
1344		}
1345
1346		/*
1347		 * This is not MT-safe, but we have no MT consumers of libzfs
1348		 */
1349		while ((dp = readdir64(dirp)) != NULL) {
1350			const char *name = dp->d_name;
1351			if (name[0] == '.' &&
1352			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1353				continue;
1354
1355			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1356			slice->rn_name = zfs_strdup(hdl, name);
1357			slice->rn_avl = &slice_cache;
1358			slice->rn_dfd = dfd;
1359			slice->rn_hdl = hdl;
1360			slice->rn_nozpool = B_FALSE;
1361			avl_add(&slice_cache, slice);
1362		}
1363skipdir:
1364		/*
1365		 * create a thread pool to do all of this in parallel;
1366		 * rn_nozpool is not protected, so this is racy in that
1367		 * multiple tasks could decide that the same slice can
1368		 * not hold a zpool, which is benign.  Also choose
1369		 * double the number of processors; we hold a lot of
1370		 * locks in the kernel, so going beyond this doesn't
1371		 * buy us much.
1372		 */
1373		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1374		    0, NULL);
1375		for (slice = avl_first(&slice_cache); slice;
1376		    (slice = avl_walk(&slice_cache, slice,
1377		    AVL_AFTER)))
1378			(void) tpool_dispatch(t, zpool_open_func, slice);
1379		tpool_wait(t);
1380		tpool_destroy(t);
1381
1382		cookie = NULL;
1383		while ((slice = avl_destroy_nodes(&slice_cache,
1384		    &cookie)) != NULL) {
1385			if (slice->rn_config != NULL && !config_failed) {
1386				nvlist_t *config = slice->rn_config;
1387				boolean_t matched = B_TRUE;
1388
1389				if (iarg->poolname != NULL) {
1390					char *pname;
1391
1392					matched = nvlist_lookup_string(config,
1393					    ZPOOL_CONFIG_POOL_NAME,
1394					    &pname) == 0 &&
1395					    strcmp(iarg->poolname, pname) == 0;
1396				} else if (iarg->guid != 0) {
1397					uint64_t this_guid;
1398
1399					matched = nvlist_lookup_uint64(config,
1400					    ZPOOL_CONFIG_POOL_GUID,
1401					    &this_guid) == 0 &&
1402					    iarg->guid == this_guid;
1403				}
1404				if (matched) {
1405					/*
1406					 * use the non-raw path for the config
1407					 */
1408					(void) strlcpy(end, slice->rn_name,
1409					    pathleft);
1410					if (add_config(hdl, &pools, path,
1411					    config) != 0)
1412						config_failed = B_TRUE;
1413				}
1414				nvlist_free(config);
1415			}
1416			free(slice->rn_name);
1417			free(slice);
1418		}
1419		avl_destroy(&slice_cache);
1420
1421		(void) closedir(dirp);
1422
1423		if (config_failed)
1424			goto error;
1425	}
1426
1427	ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy);
1428
1429error:
1430	for (pe = pools.pools; pe != NULL; pe = penext) {
1431		penext = pe->pe_next;
1432		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1433			venext = ve->ve_next;
1434			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1435				cenext = ce->ce_next;
1436				nvlist_free(ce->ce_config);
1437				free(ce);
1438			}
1439			free(ve);
1440		}
1441		free(pe);
1442	}
1443
1444	for (ne = pools.names; ne != NULL; ne = nenext) {
1445		nenext = ne->ne_next;
1446		free(ne->ne_name);
1447		free(ne);
1448	}
1449
1450	return (ret);
1451}
1452
1453nvlist_t *
1454zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1455{
1456	importargs_t iarg = { 0 };
1457
1458	iarg.paths = argc;
1459	iarg.path = argv;
1460
1461	return (zpool_find_import_impl(hdl, &iarg));
1462}
1463
1464/*
1465 * Given a cache file, return the contents as a list of importable pools.
1466 * poolname or guid (but not both) are provided by the caller when trying
1467 * to import a specific pool.
1468 */
1469nvlist_t *
1470zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1471    char *poolname, uint64_t guid)
1472{
1473	char *buf;
1474	int fd;
1475	struct stat64 statbuf;
1476	nvlist_t *raw, *src, *dst;
1477	nvlist_t *pools;
1478	nvpair_t *elem;
1479	char *name;
1480	uint64_t this_guid;
1481	boolean_t active;
1482
1483	verify(poolname == NULL || guid == 0);
1484
1485	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1486		zfs_error_aux(hdl, "%s", strerror(errno));
1487		(void) zfs_error(hdl, EZFS_BADCACHE,
1488		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1489		return (NULL);
1490	}
1491
1492	if (fstat64(fd, &statbuf) != 0) {
1493		zfs_error_aux(hdl, "%s", strerror(errno));
1494		(void) close(fd);
1495		(void) zfs_error(hdl, EZFS_BADCACHE,
1496		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1497		return (NULL);
1498	}
1499
1500	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1501		(void) close(fd);
1502		return (NULL);
1503	}
1504
1505	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1506		(void) close(fd);
1507		free(buf);
1508		(void) zfs_error(hdl, EZFS_BADCACHE,
1509		    dgettext(TEXT_DOMAIN,
1510		    "failed to read cache file contents"));
1511		return (NULL);
1512	}
1513
1514	(void) close(fd);
1515
1516	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1517		free(buf);
1518		(void) zfs_error(hdl, EZFS_BADCACHE,
1519		    dgettext(TEXT_DOMAIN,
1520		    "invalid or corrupt cache file contents"));
1521		return (NULL);
1522	}
1523
1524	free(buf);
1525
1526	/*
1527	 * Go through and get the current state of the pools and refresh their
1528	 * state.
1529	 */
1530	if (nvlist_alloc(&pools, 0, 0) != 0) {
1531		(void) no_memory(hdl);
1532		nvlist_free(raw);
1533		return (NULL);
1534	}
1535
1536	elem = NULL;
1537	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1538		src = fnvpair_value_nvlist(elem);
1539
1540		name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1541		if (poolname != NULL && strcmp(poolname, name) != 0)
1542			continue;
1543
1544		this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1545		if (guid != 0 && guid != this_guid)
1546			continue;
1547
1548		if (pool_active(hdl, name, this_guid, &active) != 0) {
1549			nvlist_free(raw);
1550			nvlist_free(pools);
1551			return (NULL);
1552		}
1553
1554		if (active)
1555			continue;
1556
1557		if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE,
1558		    cachefile) != 0) {
1559			(void) no_memory(hdl);
1560			nvlist_free(raw);
1561			nvlist_free(pools);
1562			return (NULL);
1563		}
1564
1565		if ((dst = refresh_config(hdl, src)) == NULL) {
1566			nvlist_free(raw);
1567			nvlist_free(pools);
1568			return (NULL);
1569		}
1570
1571		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1572			(void) no_memory(hdl);
1573			nvlist_free(dst);
1574			nvlist_free(raw);
1575			nvlist_free(pools);
1576			return (NULL);
1577		}
1578		nvlist_free(dst);
1579	}
1580
1581	nvlist_free(raw);
1582	return (pools);
1583}
1584
1585static int
1586name_or_guid_exists(zpool_handle_t *zhp, void *data)
1587{
1588	importargs_t *import = data;
1589	int found = 0;
1590
1591	if (import->poolname != NULL) {
1592		char *pool_name;
1593
1594		verify(nvlist_lookup_string(zhp->zpool_config,
1595		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1596		if (strcmp(pool_name, import->poolname) == 0)
1597			found = 1;
1598	} else {
1599		uint64_t pool_guid;
1600
1601		verify(nvlist_lookup_uint64(zhp->zpool_config,
1602		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1603		if (pool_guid == import->guid)
1604			found = 1;
1605	}
1606
1607	zpool_close(zhp);
1608	return (found);
1609}
1610
1611nvlist_t *
1612zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1613{
1614	nvlist_t *pools = NULL;
1615
1616	verify(import->poolname == NULL || import->guid == 0);
1617
1618	if (import->unique)
1619		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1620
1621	if (import->cachefile != NULL)
1622		pools = zpool_find_import_cached(hdl, import->cachefile,
1623		    import->poolname, import->guid);
1624	else
1625		pools = zpool_find_import_impl(hdl, import);
1626
1627	return (pools);
1628}
1629
1630static boolean_t
1631pool_match(nvlist_t *cfg, char *tgt)
1632{
1633	uint64_t v, guid = strtoull(tgt, NULL, 0);
1634	char *s;
1635
1636	if (guid != 0) {
1637		if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0)
1638			return (v == guid);
1639	} else {
1640		if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0)
1641			return (strcmp(s, tgt) == 0);
1642	}
1643	return (B_FALSE);
1644}
1645
1646int
1647zpool_tryimport(libzfs_handle_t *hdl, char *target, nvlist_t **configp,
1648    importargs_t *args)
1649{
1650	nvlist_t *pools;
1651	nvlist_t *match = NULL;
1652	nvlist_t *config = NULL;
1653	char *sepp = NULL;
1654	int count = 0;
1655	char *targetdup = strdup(target);
1656
1657	*configp = NULL;
1658
1659	if ((sepp = strpbrk(targetdup, "/@")) != NULL) {
1660		*sepp = '\0';
1661	}
1662
1663	pools = zpool_search_import(hdl, args);
1664
1665	if (pools != NULL) {
1666		nvpair_t *elem = NULL;
1667		while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) {
1668			VERIFY0(nvpair_value_nvlist(elem, &config));
1669			if (pool_match(config, targetdup)) {
1670				count++;
1671				if (match != NULL) {
1672					/* multiple matches found */
1673					continue;
1674				} else {
1675					match = config;
1676				}
1677			}
1678		}
1679	}
1680
1681	if (count == 0) {
1682		free(targetdup);
1683		return (ENOENT);
1684	}
1685
1686	if (count > 1) {
1687		free(targetdup);
1688		return (EINVAL);
1689	}
1690
1691	*configp = match;
1692	free(targetdup);
1693
1694	return (0);
1695}
1696
1697boolean_t
1698find_guid(nvlist_t *nv, uint64_t guid)
1699{
1700	uint64_t tmp;
1701	nvlist_t **child;
1702	uint_t c, children;
1703
1704	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1705	if (tmp == guid)
1706		return (B_TRUE);
1707
1708	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1709	    &child, &children) == 0) {
1710		for (c = 0; c < children; c++)
1711			if (find_guid(child[c], guid))
1712				return (B_TRUE);
1713	}
1714
1715	return (B_FALSE);
1716}
1717
1718typedef struct aux_cbdata {
1719	const char	*cb_type;
1720	uint64_t	cb_guid;
1721	zpool_handle_t	*cb_zhp;
1722} aux_cbdata_t;
1723
1724static int
1725find_aux(zpool_handle_t *zhp, void *data)
1726{
1727	aux_cbdata_t *cbp = data;
1728	nvlist_t **list;
1729	uint_t i, count;
1730	uint64_t guid;
1731	nvlist_t *nvroot;
1732
1733	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1734	    &nvroot) == 0);
1735
1736	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1737	    &list, &count) == 0) {
1738		for (i = 0; i < count; i++) {
1739			verify(nvlist_lookup_uint64(list[i],
1740			    ZPOOL_CONFIG_GUID, &guid) == 0);
1741			if (guid == cbp->cb_guid) {
1742				cbp->cb_zhp = zhp;
1743				return (1);
1744			}
1745		}
1746	}
1747
1748	zpool_close(zhp);
1749	return (0);
1750}
1751
1752/*
1753 * Determines if the pool is in use.  If so, it returns true and the state of
1754 * the pool as well as the name of the pool.  Both strings are allocated and
1755 * must be freed by the caller.
1756 */
1757int
1758zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1759    boolean_t *inuse)
1760{
1761	nvlist_t *config;
1762	char *name;
1763	boolean_t ret;
1764	uint64_t guid, vdev_guid;
1765	zpool_handle_t *zhp;
1766	nvlist_t *pool_config;
1767	uint64_t stateval, isspare;
1768	aux_cbdata_t cb = { 0 };
1769	boolean_t isactive;
1770
1771	*inuse = B_FALSE;
1772
1773	if (zpool_read_label(fd, &config) != 0 && errno == ENOMEM) {
1774		(void) no_memory(hdl);
1775		return (-1);
1776	}
1777
1778	if (config == NULL)
1779		return (0);
1780
1781	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1782	    &stateval) == 0);
1783	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1784	    &vdev_guid) == 0);
1785
1786	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1787		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1788		    &name) == 0);
1789		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1790		    &guid) == 0);
1791	}
1792
1793	switch (stateval) {
1794	case POOL_STATE_EXPORTED:
1795		/*
1796		 * A pool with an exported state may in fact be imported
1797		 * read-only, so check the in-core state to see if it's
1798		 * active and imported read-only.  If it is, set
1799		 * its state to active.
1800		 */
1801		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1802		    (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1803			if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1804				stateval = POOL_STATE_ACTIVE;
1805
1806			/*
1807			 * All we needed the zpool handle for is the
1808			 * readonly prop check.
1809			 */
1810			zpool_close(zhp);
1811		}
1812
1813		ret = B_TRUE;
1814		break;
1815
1816	case POOL_STATE_ACTIVE:
1817		/*
1818		 * For an active pool, we have to determine if it's really part
1819		 * of a currently active pool (in which case the pool will exist
1820		 * and the guid will be the same), or whether it's part of an
1821		 * active pool that was disconnected without being explicitly
1822		 * exported.
1823		 */
1824		if (pool_active(hdl, name, guid, &isactive) != 0) {
1825			nvlist_free(config);
1826			return (-1);
1827		}
1828
1829		if (isactive) {
1830			/*
1831			 * Because the device may have been removed while
1832			 * offlined, we only report it as active if the vdev is
1833			 * still present in the config.  Otherwise, pretend like
1834			 * it's not in use.
1835			 */
1836			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1837			    (pool_config = zpool_get_config(zhp, NULL))
1838			    != NULL) {
1839				nvlist_t *nvroot;
1840
1841				verify(nvlist_lookup_nvlist(pool_config,
1842				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1843				ret = find_guid(nvroot, vdev_guid);
1844			} else {
1845				ret = B_FALSE;
1846			}
1847
1848			/*
1849			 * If this is an active spare within another pool, we
1850			 * treat it like an unused hot spare.  This allows the
1851			 * user to create a pool with a hot spare that currently
1852			 * in use within another pool.  Since we return B_TRUE,
1853			 * libdiskmgt will continue to prevent generic consumers
1854			 * from using the device.
1855			 */
1856			if (ret && nvlist_lookup_uint64(config,
1857			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1858				stateval = POOL_STATE_SPARE;
1859
1860			if (zhp != NULL)
1861				zpool_close(zhp);
1862		} else {
1863			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1864			ret = B_TRUE;
1865		}
1866		break;
1867
1868	case POOL_STATE_SPARE:
1869		/*
1870		 * For a hot spare, it can be either definitively in use, or
1871		 * potentially active.  To determine if it's in use, we iterate
1872		 * over all pools in the system and search for one with a spare
1873		 * with a matching guid.
1874		 *
1875		 * Due to the shared nature of spares, we don't actually report
1876		 * the potentially active case as in use.  This means the user
1877		 * can freely create pools on the hot spares of exported pools,
1878		 * but to do otherwise makes the resulting code complicated, and
1879		 * we end up having to deal with this case anyway.
1880		 */
1881		cb.cb_zhp = NULL;
1882		cb.cb_guid = vdev_guid;
1883		cb.cb_type = ZPOOL_CONFIG_SPARES;
1884		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1885			name = (char *)zpool_get_name(cb.cb_zhp);
1886			ret = B_TRUE;
1887		} else {
1888			ret = B_FALSE;
1889		}
1890		break;
1891
1892	case POOL_STATE_L2CACHE:
1893
1894		/*
1895		 * Check if any pool is currently using this l2cache device.
1896		 */
1897		cb.cb_zhp = NULL;
1898		cb.cb_guid = vdev_guid;
1899		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1900		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1901			name = (char *)zpool_get_name(cb.cb_zhp);
1902			ret = B_TRUE;
1903		} else {
1904			ret = B_FALSE;
1905		}
1906		break;
1907
1908	default:
1909		ret = B_FALSE;
1910	}
1911
1912
1913	if (ret) {
1914		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1915			if (cb.cb_zhp)
1916				zpool_close(cb.cb_zhp);
1917			nvlist_free(config);
1918			return (-1);
1919		}
1920		*state = (pool_state_t)stateval;
1921	}
1922
1923	if (cb.cb_zhp)
1924		zpool_close(cb.cb_zhp);
1925
1926	nvlist_free(config);
1927	*inuse = ret;
1928	return (0);
1929}
1930