intel_utils.c revision 302408
1/*-
2 * Copyright (c) 2013 The FreeBSD Foundation
3 * All rights reserved.
4 *
5 * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
6 * under sponsorship from the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/sys/x86/iommu/intel_utils.c 298144 2016-04-17 10:56:56Z kib $");
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/kernel.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/memdesc.h>
39#include <sys/mutex.h>
40#include <sys/proc.h>
41#include <sys/queue.h>
42#include <sys/rman.h>
43#include <sys/rwlock.h>
44#include <sys/sched.h>
45#include <sys/sf_buf.h>
46#include <sys/sysctl.h>
47#include <sys/systm.h>
48#include <sys/taskqueue.h>
49#include <sys/tree.h>
50#include <sys/vmem.h>
51#include <dev/pci/pcivar.h>
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#include <vm/vm_kern.h>
55#include <vm/vm_object.h>
56#include <vm/vm_page.h>
57#include <vm/vm_map.h>
58#include <vm/vm_pageout.h>
59#include <machine/bus.h>
60#include <machine/cpu.h>
61#include <machine/intr_machdep.h>
62#include <x86/include/apicvar.h>
63#include <x86/include/busdma_impl.h>
64#include <x86/iommu/intel_reg.h>
65#include <x86/iommu/busdma_dmar.h>
66#include <x86/iommu/intel_dmar.h>
67
68u_int
69dmar_nd2mask(u_int nd)
70{
71	static const u_int masks[] = {
72		0x000f,	/* nd == 0 */
73		0x002f,	/* nd == 1 */
74		0x00ff,	/* nd == 2 */
75		0x02ff,	/* nd == 3 */
76		0x0fff,	/* nd == 4 */
77		0x2fff,	/* nd == 5 */
78		0xffff,	/* nd == 6 */
79		0x0000,	/* nd == 7 reserved */
80	};
81
82	KASSERT(nd <= 6, ("number of domains %d", nd));
83	return (masks[nd]);
84}
85
86static const struct sagaw_bits_tag {
87	int agaw;
88	int cap;
89	int awlvl;
90	int pglvl;
91} sagaw_bits[] = {
92	{.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL,
93	    .pglvl = 2},
94	{.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL,
95	    .pglvl = 3},
96	{.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL,
97	    .pglvl = 4},
98	{.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL,
99	    .pglvl = 5},
100	{.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL,
101	    .pglvl = 6}
102};
103
104bool
105dmar_pglvl_supported(struct dmar_unit *unit, int pglvl)
106{
107	int i;
108
109	for (i = 0; i < nitems(sagaw_bits); i++) {
110		if (sagaw_bits[i].pglvl != pglvl)
111			continue;
112		if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
113			return (true);
114	}
115	return (false);
116}
117
118int
119domain_set_agaw(struct dmar_domain *domain, int mgaw)
120{
121	int sagaw, i;
122
123	domain->mgaw = mgaw;
124	sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap);
125	for (i = 0; i < nitems(sagaw_bits); i++) {
126		if (sagaw_bits[i].agaw >= mgaw) {
127			domain->agaw = sagaw_bits[i].agaw;
128			domain->pglvl = sagaw_bits[i].pglvl;
129			domain->awlvl = sagaw_bits[i].awlvl;
130			return (0);
131		}
132	}
133	device_printf(domain->dmar->dev,
134	    "context request mgaw %d: no agaw found, sagaw %x\n",
135	    mgaw, sagaw);
136	return (EINVAL);
137}
138
139/*
140 * Find a best fit mgaw for the given maxaddr:
141 *   - if allow_less is false, must find sagaw which maps all requested
142 *     addresses (used by identity mappings);
143 *   - if allow_less is true, and no supported sagaw can map all requested
144 *     address space, accept the biggest sagaw, whatever is it.
145 */
146int
147dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less)
148{
149	int i;
150
151	for (i = 0; i < nitems(sagaw_bits); i++) {
152		if ((1ULL << sagaw_bits[i].agaw) >= maxaddr &&
153		    (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
154			break;
155	}
156	if (allow_less && i == nitems(sagaw_bits)) {
157		do {
158			i--;
159		} while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap)
160		    == 0);
161	}
162	if (i < nitems(sagaw_bits))
163		return (sagaw_bits[i].agaw);
164	KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d",
165	    (uintmax_t) maxaddr, allow_less));
166	return (-1);
167}
168
169/*
170 * Calculate the total amount of page table pages needed to map the
171 * whole bus address space on the context with the selected agaw.
172 */
173vm_pindex_t
174pglvl_max_pages(int pglvl)
175{
176	vm_pindex_t res;
177	int i;
178
179	for (res = 0, i = pglvl; i > 0; i--) {
180		res *= DMAR_NPTEPG;
181		res++;
182	}
183	return (res);
184}
185
186/*
187 * Return true if the page table level lvl supports the superpage for
188 * the context ctx.
189 */
190int
191domain_is_sp_lvl(struct dmar_domain *domain, int lvl)
192{
193	int alvl, cap_sps;
194	static const int sagaw_sp[] = {
195		DMAR_CAP_SPS_2M,
196		DMAR_CAP_SPS_1G,
197		DMAR_CAP_SPS_512G,
198		DMAR_CAP_SPS_1T
199	};
200
201	alvl = domain->pglvl - lvl - 1;
202	cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap);
203	return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0);
204}
205
206dmar_gaddr_t
207pglvl_page_size(int total_pglvl, int lvl)
208{
209	int rlvl;
210	static const dmar_gaddr_t pg_sz[] = {
211		(dmar_gaddr_t)DMAR_PAGE_SIZE,
212		(dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT,
213		(dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT),
214		(dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT),
215		(dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT),
216		(dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT)
217	};
218
219	KASSERT(lvl >= 0 && lvl < total_pglvl,
220	    ("total %d lvl %d", total_pglvl, lvl));
221	rlvl = total_pglvl - lvl - 1;
222	KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl));
223	return (pg_sz[rlvl]);
224}
225
226dmar_gaddr_t
227domain_page_size(struct dmar_domain *domain, int lvl)
228{
229
230	return (pglvl_page_size(domain->pglvl, lvl));
231}
232
233int
234calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
235    dmar_gaddr_t *isizep)
236{
237	dmar_gaddr_t isize;
238	int am;
239
240	for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) {
241		isize = 1ULL << (am + DMAR_PAGE_SHIFT);
242		if ((base & (isize - 1)) == 0 && size >= isize)
243			break;
244		if (am == 0)
245			break;
246	}
247	*isizep = isize;
248	return (am);
249}
250
251dmar_haddr_t dmar_high;
252int haw;
253int dmar_tbl_pagecnt;
254
255vm_page_t
256dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags)
257{
258	vm_page_t m;
259	int zeroed;
260
261	zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0;
262	for (;;) {
263		if ((flags & DMAR_PGF_OBJL) == 0)
264			VM_OBJECT_WLOCK(obj);
265		m = vm_page_lookup(obj, idx);
266		if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) {
267			if ((flags & DMAR_PGF_OBJL) == 0)
268				VM_OBJECT_WUNLOCK(obj);
269			break;
270		}
271		m = vm_page_alloc_contig(obj, idx, VM_ALLOC_NOBUSY |
272		    VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP | zeroed, 1, 0,
273		    dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
274		if ((flags & DMAR_PGF_OBJL) == 0)
275			VM_OBJECT_WUNLOCK(obj);
276		if (m != NULL) {
277			if (zeroed && (m->flags & PG_ZERO) == 0)
278				pmap_zero_page(m);
279			atomic_add_int(&dmar_tbl_pagecnt, 1);
280			break;
281		}
282		if ((flags & DMAR_PGF_WAITOK) == 0)
283			break;
284		if ((flags & DMAR_PGF_OBJL) != 0)
285			VM_OBJECT_WUNLOCK(obj);
286		VM_WAIT;
287		if ((flags & DMAR_PGF_OBJL) != 0)
288			VM_OBJECT_WLOCK(obj);
289	}
290	return (m);
291}
292
293void
294dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags)
295{
296	vm_page_t m;
297
298	if ((flags & DMAR_PGF_OBJL) == 0)
299		VM_OBJECT_WLOCK(obj);
300	m = vm_page_lookup(obj, idx);
301	if (m != NULL) {
302		vm_page_free(m);
303		atomic_subtract_int(&dmar_tbl_pagecnt, 1);
304	}
305	if ((flags & DMAR_PGF_OBJL) == 0)
306		VM_OBJECT_WUNLOCK(obj);
307}
308
309void *
310dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
311    struct sf_buf **sf)
312{
313	vm_page_t m;
314	bool allocated;
315
316	if ((flags & DMAR_PGF_OBJL) == 0)
317		VM_OBJECT_WLOCK(obj);
318	m = vm_page_lookup(obj, idx);
319	if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) {
320		m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL);
321		allocated = true;
322	} else
323		allocated = false;
324	if (m == NULL) {
325		if ((flags & DMAR_PGF_OBJL) == 0)
326			VM_OBJECT_WUNLOCK(obj);
327		return (NULL);
328	}
329	/* Sleepable allocations cannot fail. */
330	if ((flags & DMAR_PGF_WAITOK) != 0)
331		VM_OBJECT_WUNLOCK(obj);
332	sched_pin();
333	*sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK)
334	    == 0 ? SFB_NOWAIT : 0));
335	if (*sf == NULL) {
336		sched_unpin();
337		if (allocated) {
338			VM_OBJECT_ASSERT_WLOCKED(obj);
339			dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL);
340		}
341		if ((flags & DMAR_PGF_OBJL) == 0)
342			VM_OBJECT_WUNLOCK(obj);
343		return (NULL);
344	}
345	if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) ==
346	    (DMAR_PGF_WAITOK | DMAR_PGF_OBJL))
347		VM_OBJECT_WLOCK(obj);
348	else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0)
349		VM_OBJECT_WUNLOCK(obj);
350	return ((void *)sf_buf_kva(*sf));
351}
352
353void
354dmar_unmap_pgtbl(struct sf_buf *sf)
355{
356
357	sf_buf_free(sf);
358	sched_unpin();
359}
360
361static void
362dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz)
363{
364
365	if (DMAR_IS_COHERENT(unit))
366		return;
367	/*
368	 * If DMAR does not snoop paging structures accesses, flush
369	 * CPU cache to memory.
370	 */
371	pmap_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz,
372	    TRUE);
373}
374
375void
376dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst)
377{
378
379	dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
380}
381
382void
383dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst)
384{
385
386	dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
387}
388
389void
390dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst)
391{
392
393	dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
394}
395
396/*
397 * Load the root entry pointer into the hardware, busily waiting for
398 * the completion.
399 */
400int
401dmar_load_root_entry_ptr(struct dmar_unit *unit)
402{
403	vm_page_t root_entry;
404
405	/*
406	 * Access to the GCMD register must be serialized while the
407	 * command is submitted.
408	 */
409	DMAR_ASSERT_LOCKED(unit);
410
411	VM_OBJECT_RLOCK(unit->ctx_obj);
412	root_entry = vm_page_lookup(unit->ctx_obj, 0);
413	VM_OBJECT_RUNLOCK(unit->ctx_obj);
414	dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry));
415	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP);
416	/* XXXKIB should have a timeout */
417	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS) == 0)
418		cpu_spinwait();
419	return (0);
420}
421
422/*
423 * Globally invalidate the context entries cache, busily waiting for
424 * the completion.
425 */
426int
427dmar_inv_ctx_glob(struct dmar_unit *unit)
428{
429
430	/*
431	 * Access to the CCMD register must be serialized while the
432	 * command is submitted.
433	 */
434	DMAR_ASSERT_LOCKED(unit);
435	KASSERT(!unit->qi_enabled, ("QI enabled"));
436
437	/*
438	 * The DMAR_CCMD_ICC bit in the upper dword should be written
439	 * after the low dword write is completed.  Amd64
440	 * dmar_write8() does not have this issue, i386 dmar_write8()
441	 * writes the upper dword last.
442	 */
443	dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB);
444	/* XXXKIB should have a timeout */
445	while ((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32) != 0)
446		cpu_spinwait();
447	return (0);
448}
449
450/*
451 * Globally invalidate the IOTLB, busily waiting for the completion.
452 */
453int
454dmar_inv_iotlb_glob(struct dmar_unit *unit)
455{
456	int reg;
457
458	DMAR_ASSERT_LOCKED(unit);
459	KASSERT(!unit->qi_enabled, ("QI enabled"));
460
461	reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap);
462	/* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */
463	dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
464	    DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW);
465	/* XXXKIB should have a timeout */
466	while ((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) &
467	    DMAR_IOTLB_IVT32) != 0)
468		cpu_spinwait();
469	return (0);
470}
471
472/*
473 * Flush the chipset write buffers.  See 11.1 "Write Buffer Flushing"
474 * in the architecture specification.
475 */
476int
477dmar_flush_write_bufs(struct dmar_unit *unit)
478{
479
480	DMAR_ASSERT_LOCKED(unit);
481
482	/*
483	 * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported.
484	 */
485	KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0,
486	    ("dmar%d: no RWBF", unit->unit));
487
488	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF);
489	/* XXXKIB should have a timeout */
490	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS) == 0)
491		cpu_spinwait();
492	return (0);
493}
494
495int
496dmar_enable_translation(struct dmar_unit *unit)
497{
498
499	DMAR_ASSERT_LOCKED(unit);
500	unit->hw_gcmd |= DMAR_GCMD_TE;
501	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
502	/* XXXKIB should have a timeout */
503	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) == 0)
504		cpu_spinwait();
505	return (0);
506}
507
508int
509dmar_disable_translation(struct dmar_unit *unit)
510{
511
512	DMAR_ASSERT_LOCKED(unit);
513	unit->hw_gcmd &= ~DMAR_GCMD_TE;
514	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
515	/* XXXKIB should have a timeout */
516	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) != 0)
517		cpu_spinwait();
518	return (0);
519}
520
521int
522dmar_load_irt_ptr(struct dmar_unit *unit)
523{
524	uint64_t irta, s;
525
526	DMAR_ASSERT_LOCKED(unit);
527	irta = unit->irt_phys;
528	if (DMAR_X2APIC(unit))
529		irta |= DMAR_IRTA_EIME;
530	s = fls(unit->irte_cnt) - 2;
531	KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK &&
532	    powerof2(unit->irte_cnt),
533	    ("IRTA_REG_S overflow %x", unit->irte_cnt));
534	irta |= s;
535	dmar_write8(unit, DMAR_IRTA_REG, irta);
536	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP);
537	/* XXXKIB should have a timeout */
538	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS) == 0)
539		cpu_spinwait();
540	return (0);
541}
542
543int
544dmar_enable_ir(struct dmar_unit *unit)
545{
546
547	DMAR_ASSERT_LOCKED(unit);
548	unit->hw_gcmd |= DMAR_GCMD_IRE;
549	unit->hw_gcmd &= ~DMAR_GCMD_CFI;
550	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
551	/* XXXKIB should have a timeout */
552	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) == 0)
553		cpu_spinwait();
554	return (0);
555}
556
557int
558dmar_disable_ir(struct dmar_unit *unit)
559{
560
561	DMAR_ASSERT_LOCKED(unit);
562	unit->hw_gcmd &= ~DMAR_GCMD_IRE;
563	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
564	/* XXXKIB should have a timeout */
565	while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) != 0)
566		cpu_spinwait();
567	return (0);
568}
569
570#define BARRIER_F				\
571	u_int f_done, f_inproc, f_wakeup;	\
572						\
573	f_done = 1 << (barrier_id * 3);		\
574	f_inproc = 1 << (barrier_id * 3 + 1);	\
575	f_wakeup = 1 << (barrier_id * 3 + 2)
576
577bool
578dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id)
579{
580	BARRIER_F;
581
582	DMAR_LOCK(dmar);
583	if ((dmar->barrier_flags & f_done) != 0) {
584		DMAR_UNLOCK(dmar);
585		return (false);
586	}
587
588	if ((dmar->barrier_flags & f_inproc) != 0) {
589		while ((dmar->barrier_flags & f_inproc) != 0) {
590			dmar->barrier_flags |= f_wakeup;
591			msleep(&dmar->barrier_flags, &dmar->lock, 0,
592			    "dmarb", 0);
593		}
594		KASSERT((dmar->barrier_flags & f_done) != 0,
595		    ("dmar%d barrier %d missing done", dmar->unit, barrier_id));
596		DMAR_UNLOCK(dmar);
597		return (false);
598	}
599
600	dmar->barrier_flags |= f_inproc;
601	DMAR_UNLOCK(dmar);
602	return (true);
603}
604
605void
606dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id)
607{
608	BARRIER_F;
609
610	DMAR_ASSERT_LOCKED(dmar);
611	KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc,
612	    ("dmar%d barrier %d missed entry", dmar->unit, barrier_id));
613	dmar->barrier_flags |= f_done;
614	if ((dmar->barrier_flags & f_wakeup) != 0)
615		wakeup(&dmar->barrier_flags);
616	dmar->barrier_flags &= ~(f_inproc | f_wakeup);
617	DMAR_UNLOCK(dmar);
618}
619
620int dmar_match_verbose;
621int dmar_batch_coalesce = 100;
622
623static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, "");
624SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD,
625    &dmar_tbl_pagecnt, 0,
626    "Count of pages used for DMAR pagetables");
627SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN,
628    &dmar_match_verbose, 0,
629    "Verbose matching of the PCI devices to DMAR paths");
630SYSCTL_INT(_hw_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN,
631    &dmar_batch_coalesce, 0,
632    "Number of qi batches between interrupt");
633#ifdef INVARIANTS
634int dmar_check_free;
635SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN,
636    &dmar_check_free, 0,
637    "Check the GPA RBtree for free_down and free_after validity");
638#endif
639
640