vm_pager.c revision 52635
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_pager.c	8.6 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_pager.c 52635 1999-10-29 18:09:36Z phk $
65 */
66
67/*
68 *	Paging space routine stubs.  Emulates a matchmaker-like interface
69 *	for builtin pagers.
70 */
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/kernel.h>
75#include <sys/vnode.h>
76#include <sys/buf.h>
77#include <sys/ucred.h>
78#include <sys/malloc.h>
79#include <sys/proc.h>
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88MALLOC_DEFINE(M_VMPGDATA, "VM pgdata", "XXX: VM pager private data");
89
90extern struct pagerops defaultpagerops;
91extern struct pagerops swappagerops;
92extern struct pagerops vnodepagerops;
93extern struct pagerops devicepagerops;
94
95int cluster_pbuf_freecnt = -1;	/* unlimited to begin with */
96
97static int dead_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
98static vm_object_t dead_pager_alloc __P((void *, vm_ooffset_t, vm_prot_t,
99	vm_ooffset_t));
100static void dead_pager_putpages __P((vm_object_t, vm_page_t *, int, int, int *));
101static boolean_t dead_pager_haspage __P((vm_object_t, vm_pindex_t, int *, int *));
102static void dead_pager_dealloc __P((vm_object_t));
103
104static int
105dead_pager_getpages(obj, ma, count, req)
106	vm_object_t obj;
107	vm_page_t *ma;
108	int count;
109	int req;
110{
111	return VM_PAGER_FAIL;
112}
113
114static vm_object_t
115dead_pager_alloc(handle, size, prot, off)
116	void *handle;
117	vm_ooffset_t size;
118	vm_prot_t prot;
119	vm_ooffset_t off;
120{
121	return NULL;
122}
123
124static void
125dead_pager_putpages(object, m, count, flags, rtvals)
126	vm_object_t object;
127	vm_page_t *m;
128	int count;
129	int flags;
130	int *rtvals;
131{
132	int i;
133
134	for (i = 0; i < count; i++) {
135		rtvals[i] = VM_PAGER_AGAIN;
136	}
137}
138
139static int
140dead_pager_haspage(object, pindex, prev, next)
141	vm_object_t object;
142	vm_pindex_t pindex;
143	int *prev;
144	int *next;
145{
146	if (prev)
147		*prev = 0;
148	if (next)
149		*next = 0;
150	return FALSE;
151}
152
153static void
154dead_pager_dealloc(object)
155	vm_object_t object;
156{
157	return;
158}
159
160static struct pagerops deadpagerops = {
161	NULL,
162	dead_pager_alloc,
163	dead_pager_dealloc,
164	dead_pager_getpages,
165	dead_pager_putpages,
166	dead_pager_haspage,
167	NULL
168};
169
170struct pagerops *pagertab[] = {
171	&defaultpagerops,	/* OBJT_DEFAULT */
172	&swappagerops,		/* OBJT_SWAP */
173	&vnodepagerops,		/* OBJT_VNODE */
174	&devicepagerops,	/* OBJT_DEVICE */
175	&deadpagerops		/* OBJT_DEAD */
176};
177
178int npagers = sizeof(pagertab) / sizeof(pagertab[0]);
179
180/*
181 * Kernel address space for mapping pages.
182 * Used by pagers where KVAs are needed for IO.
183 *
184 * XXX needs to be large enough to support the number of pending async
185 * cleaning requests (NPENDINGIO == 64) * the maximum swap cluster size
186 * (MAXPHYS == 64k) if you want to get the most efficiency.
187 */
188#define PAGER_MAP_SIZE	(8 * 1024 * 1024)
189
190int pager_map_size = PAGER_MAP_SIZE;
191vm_map_t pager_map;
192static int bswneeded;
193static vm_offset_t swapbkva;		/* swap buffers kva */
194
195void
196vm_pager_init()
197{
198	struct pagerops **pgops;
199
200	/*
201	 * Initialize known pagers
202	 */
203	for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
204		if (pgops && ((*pgops)->pgo_init != NULL))
205			(*(*pgops)->pgo_init) ();
206}
207
208void
209vm_pager_bufferinit()
210{
211	struct buf *bp;
212	int i;
213
214	bp = swbuf;
215	/*
216	 * Now set up swap and physical I/O buffer headers.
217	 */
218	for (i = 0; i < nswbuf; i++, bp++) {
219		TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
220		BUF_LOCKINIT(bp);
221		LIST_INIT(&bp->b_dep);
222		bp->b_rcred = bp->b_wcred = NOCRED;
223		bp->b_xflags = 0;
224	}
225
226	cluster_pbuf_freecnt = nswbuf / 2;
227
228	swapbkva = kmem_alloc_pageable(pager_map, nswbuf * MAXPHYS);
229	if (!swapbkva)
230		panic("Not enough pager_map VM space for physical buffers");
231}
232
233/*
234 * Allocate an instance of a pager of the given type.
235 * Size, protection and offset parameters are passed in for pagers that
236 * need to perform page-level validation (e.g. the device pager).
237 */
238vm_object_t
239vm_pager_allocate(objtype_t type, void *handle, vm_ooffset_t size, vm_prot_t prot,
240		  vm_ooffset_t off)
241{
242	struct pagerops *ops;
243
244	ops = pagertab[type];
245	if (ops)
246		return ((*ops->pgo_alloc) (handle, size, prot, off));
247	return (NULL);
248}
249
250void
251vm_pager_deallocate(object)
252	vm_object_t object;
253{
254	(*pagertab[object->type]->pgo_dealloc) (object);
255}
256
257/*
258 *      vm_pager_strategy:
259 *
260 *      called with no specific spl
261 *      Execute strategy routine directly to pager.
262 */
263
264void
265vm_pager_strategy(vm_object_t object, struct buf *bp)
266{
267	if (pagertab[object->type]->pgo_strategy) {
268	    (*pagertab[object->type]->pgo_strategy)(object, bp);
269	} else {
270		bp->b_flags |= B_ERROR;
271		bp->b_error = ENXIO;
272		biodone(bp);
273	}
274}
275
276/*
277 * vm_pager_get_pages() - inline, see vm/vm_pager.h
278 * vm_pager_put_pages() - inline, see vm/vm_pager.h
279 * vm_pager_has_page() - inline, see vm/vm_pager.h
280 * vm_pager_page_inserted() - inline, see vm/vm_pager.h
281 * vm_pager_page_removed() - inline, see vm/vm_pager.h
282 */
283
284#if 0
285/*
286 *	vm_pager_sync:
287 *
288 *	Called by pageout daemon before going back to sleep.
289 *	Gives pagers a chance to clean up any completed async pageing
290 *	operations.
291 */
292void
293vm_pager_sync()
294{
295	struct pagerops **pgops;
296
297	for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
298		if (pgops && ((*pgops)->pgo_sync != NULL))
299			(*(*pgops)->pgo_sync) ();
300}
301
302#endif
303
304vm_offset_t
305vm_pager_map_page(m)
306	vm_page_t m;
307{
308	vm_offset_t kva;
309
310	kva = kmem_alloc_wait(pager_map, PAGE_SIZE);
311	pmap_kenter(kva, VM_PAGE_TO_PHYS(m));
312	return (kva);
313}
314
315void
316vm_pager_unmap_page(kva)
317	vm_offset_t kva;
318{
319	pmap_kremove(kva);
320	kmem_free_wakeup(pager_map, kva, PAGE_SIZE);
321}
322
323vm_object_t
324vm_pager_object_lookup(pg_list, handle)
325	register struct pagerlst *pg_list;
326	void *handle;
327{
328	register vm_object_t object;
329
330	for (object = TAILQ_FIRST(pg_list); object != NULL; object = TAILQ_NEXT(object,pager_object_list))
331		if (object->handle == handle)
332			return (object);
333	return (NULL);
334}
335
336/*
337 * initialize a physical buffer
338 */
339
340static void
341initpbuf(struct buf *bp)
342{
343	bp->b_rcred = NOCRED;
344	bp->b_wcred = NOCRED;
345	bp->b_qindex = QUEUE_NONE;
346	bp->b_data = (caddr_t) (MAXPHYS * (bp - swbuf)) + swapbkva;
347	bp->b_kvabase = bp->b_data;
348	bp->b_kvasize = MAXPHYS;
349	bp->b_xflags = 0;
350	bp->b_flags = 0;
351	bp->b_error = 0;
352	BUF_LOCK(bp, LK_EXCLUSIVE);
353}
354
355/*
356 * allocate a physical buffer
357 *
358 *	There are a limited number (nswbuf) of physical buffers.  We need
359 *	to make sure that no single subsystem is able to hog all of them,
360 *	so each subsystem implements a counter which is typically initialized
361 *	to 1/2 nswbuf.  getpbuf() decrements this counter in allocation and
362 *	increments it on release, and blocks if the counter hits zero.  A
363 *	subsystem may initialize the counter to -1 to disable the feature,
364 *	but it must still be sure to match up all uses of getpbuf() with
365 *	relpbuf() using the same variable.
366 *
367 *	NOTE: pfreecnt can be NULL, but this 'feature' will be removed
368 *	relatively soon when the rest of the subsystems get smart about it. XXX
369 */
370struct buf *
371getpbuf(pfreecnt)
372	int *pfreecnt;
373{
374	int s;
375	struct buf *bp;
376
377	s = splvm();
378
379	for (;;) {
380		if (pfreecnt) {
381			while (*pfreecnt == 0) {
382				tsleep(pfreecnt, PVM, "wswbuf0", 0);
383			}
384		}
385
386		/* get a bp from the swap buffer header pool */
387		if ((bp = TAILQ_FIRST(&bswlist)) != NULL)
388			break;
389
390		bswneeded = 1;
391		tsleep(&bswneeded, PVM, "wswbuf1", 0);
392		/* loop in case someone else grabbed one */
393	}
394	TAILQ_REMOVE(&bswlist, bp, b_freelist);
395	if (pfreecnt)
396		--*pfreecnt;
397	splx(s);
398
399	initpbuf(bp);
400	return bp;
401}
402
403/*
404 * allocate a physical buffer, if one is available.
405 *
406 *	Note that there is no NULL hack here - all subsystems using this
407 *	call understand how to use pfreecnt.
408 */
409struct buf *
410trypbuf(pfreecnt)
411	int *pfreecnt;
412{
413	int s;
414	struct buf *bp;
415
416	s = splvm();
417	if (*pfreecnt == 0 || (bp = TAILQ_FIRST(&bswlist)) == NULL) {
418		splx(s);
419		return NULL;
420	}
421	TAILQ_REMOVE(&bswlist, bp, b_freelist);
422
423	--*pfreecnt;
424
425	splx(s);
426
427	initpbuf(bp);
428
429	return bp;
430}
431
432/*
433 * release a physical buffer
434 *
435 *	NOTE: pfreecnt can be NULL, but this 'feature' will be removed
436 *	relatively soon when the rest of the subsystems get smart about it. XXX
437 */
438void
439relpbuf(bp, pfreecnt)
440	struct buf *bp;
441	int *pfreecnt;
442{
443	int s;
444
445	s = splvm();
446
447	if (bp->b_rcred != NOCRED) {
448		crfree(bp->b_rcred);
449		bp->b_rcred = NOCRED;
450	}
451	if (bp->b_wcred != NOCRED) {
452		crfree(bp->b_wcred);
453		bp->b_wcred = NOCRED;
454	}
455
456	if (bp->b_vp)
457		pbrelvp(bp);
458
459	BUF_UNLOCK(bp);
460
461	TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
462
463	if (bswneeded) {
464		bswneeded = 0;
465		wakeup(&bswneeded);
466	}
467	if (pfreecnt) {
468		if (++*pfreecnt == 1)
469			wakeup(pfreecnt);
470	}
471	splx(s);
472}
473
474/********************************************************
475 *		CHAINING FUNCTIONS			*
476 ********************************************************
477 *
478 *	These functions support recursion of I/O operations
479 *	on bp's, typically by chaining one or more 'child' bp's
480 *	to the parent.  Synchronous, asynchronous, and semi-synchronous
481 *	chaining is possible.
482 */
483
484/*
485 *	vm_pager_chain_iodone:
486 *
487 *	io completion routine for child bp.  Currently we fudge a bit
488 *	on dealing with b_resid.   Since users of these routines may issue
489 *	multiple children simultaniously, sequencing of the error can be lost.
490 */
491
492static void
493vm_pager_chain_iodone(struct buf *nbp)
494{
495	struct buf *bp;
496
497	if ((bp = nbp->b_chain.parent) != NULL) {
498		if (nbp->b_flags & B_ERROR) {
499			bp->b_flags |= B_ERROR;
500			bp->b_error = nbp->b_error;
501		} else if (nbp->b_resid != 0) {
502			bp->b_flags |= B_ERROR;
503			bp->b_error = EINVAL;
504		} else {
505			bp->b_resid -= nbp->b_bcount;
506		}
507		nbp->b_chain.parent = NULL;
508		--bp->b_chain.count;
509		if (bp->b_flags & B_WANT) {
510			bp->b_flags &= ~B_WANT;
511			wakeup(bp);
512		}
513		if (!bp->b_chain.count && (bp->b_flags & B_AUTOCHAINDONE)) {
514			bp->b_flags &= ~B_AUTOCHAINDONE;
515			if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
516				bp->b_flags |= B_ERROR;
517				bp->b_error = EINVAL;
518			}
519			biodone(bp);
520		}
521	}
522	nbp->b_flags |= B_DONE;
523	nbp->b_flags &= ~B_ASYNC;
524	relpbuf(nbp, NULL);
525}
526
527/*
528 *	getchainbuf:
529 *
530 *	Obtain a physical buffer and chain it to its parent buffer.  When
531 *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
532 *	automatically propogated to the parent
533 *
534 *	Since these are brand new buffers, we do not have to clear B_INVAL
535 *	and B_ERROR because they are already clear.
536 */
537
538struct buf *
539getchainbuf(struct buf *bp, struct vnode *vp, int flags)
540{
541	struct buf *nbp = getpbuf(NULL);
542
543	nbp->b_chain.parent = bp;
544	++bp->b_chain.count;
545
546	if (bp->b_chain.count > 4)
547		waitchainbuf(bp, 4, 0);
548
549	nbp->b_flags = B_CALL | (bp->b_flags & B_ORDERED) | flags;
550	nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
551	nbp->b_iodone = vm_pager_chain_iodone;
552
553	crhold(nbp->b_rcred);
554	crhold(nbp->b_wcred);
555
556	if (vp)
557		pbgetvp(vp, nbp);
558	return(nbp);
559}
560
561void
562flushchainbuf(struct buf *nbp)
563{
564	if (nbp->b_bcount) {
565		nbp->b_bufsize = nbp->b_bcount;
566		if ((nbp->b_flags & B_READ) == 0)
567			nbp->b_dirtyend = nbp->b_bcount;
568		BUF_KERNPROC(nbp);
569		VOP_STRATEGY(nbp->b_vp, nbp);
570	} else {
571		biodone(nbp);
572	}
573}
574
575void
576waitchainbuf(struct buf *bp, int count, int done)
577{
578 	int s;
579
580	s = splbio();
581	while (bp->b_chain.count > count) {
582		bp->b_flags |= B_WANT;
583		tsleep(bp, PRIBIO + 4, "bpchain", 0);
584	}
585	if (done) {
586		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
587			bp->b_flags |= B_ERROR;
588			bp->b_error = EINVAL;
589		}
590		biodone(bp);
591	}
592	splx(s);
593}
594
595void
596autochaindone(struct buf *bp)
597{
598 	int s;
599
600	s = splbio();
601	if (bp->b_chain.count == 0)
602		biodone(bp);
603	else
604		bp->b_flags |= B_AUTOCHAINDONE;
605	splx(s);
606}
607
608