vm_pager.c revision 51338
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_pager.c	8.6 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_pager.c 51338 1999-09-17 05:03:27Z dillon $
65 */
66
67/*
68 *	Paging space routine stubs.  Emulates a matchmaker-like interface
69 *	for builtin pagers.
70 */
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/kernel.h>
75#include <sys/vnode.h>
76#include <sys/buf.h>
77#include <sys/ucred.h>
78#include <sys/malloc.h>
79#include <sys/proc.h>
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <vm/vm_prot.h>
84#include <vm/vm_object.h>
85#include <vm/vm_page.h>
86#include <vm/vm_pager.h>
87#include <vm/vm_extern.h>
88
89MALLOC_DEFINE(M_VMPGDATA, "VM pgdata", "XXX: VM pager private data");
90
91extern struct pagerops defaultpagerops;
92extern struct pagerops swappagerops;
93extern struct pagerops vnodepagerops;
94extern struct pagerops devicepagerops;
95
96int cluster_pbuf_freecnt = -1;	/* unlimited to begin with */
97
98static int dead_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
99static vm_object_t dead_pager_alloc __P((void *, vm_ooffset_t, vm_prot_t,
100	vm_ooffset_t));
101static void dead_pager_putpages __P((vm_object_t, vm_page_t *, int, int, int *));
102static boolean_t dead_pager_haspage __P((vm_object_t, vm_pindex_t, int *, int *));
103static void dead_pager_dealloc __P((vm_object_t));
104
105static int
106dead_pager_getpages(obj, ma, count, req)
107	vm_object_t obj;
108	vm_page_t *ma;
109	int count;
110	int req;
111{
112	return VM_PAGER_FAIL;
113}
114
115static vm_object_t
116dead_pager_alloc(handle, size, prot, off)
117	void *handle;
118	vm_ooffset_t size;
119	vm_prot_t prot;
120	vm_ooffset_t off;
121{
122	return NULL;
123}
124
125static void
126dead_pager_putpages(object, m, count, flags, rtvals)
127	vm_object_t object;
128	vm_page_t *m;
129	int count;
130	int flags;
131	int *rtvals;
132{
133	int i;
134
135	for (i = 0; i < count; i++) {
136		rtvals[i] = VM_PAGER_AGAIN;
137	}
138}
139
140static int
141dead_pager_haspage(object, pindex, prev, next)
142	vm_object_t object;
143	vm_pindex_t pindex;
144	int *prev;
145	int *next;
146{
147	if (prev)
148		*prev = 0;
149	if (next)
150		*next = 0;
151	return FALSE;
152}
153
154static void
155dead_pager_dealloc(object)
156	vm_object_t object;
157{
158	return;
159}
160
161static struct pagerops deadpagerops = {
162	NULL,
163	dead_pager_alloc,
164	dead_pager_dealloc,
165	dead_pager_getpages,
166	dead_pager_putpages,
167	dead_pager_haspage,
168	NULL
169};
170
171struct pagerops *pagertab[] = {
172	&defaultpagerops,	/* OBJT_DEFAULT */
173	&swappagerops,		/* OBJT_SWAP */
174	&vnodepagerops,		/* OBJT_VNODE */
175	&devicepagerops,	/* OBJT_DEVICE */
176	&deadpagerops		/* OBJT_DEAD */
177};
178
179int npagers = sizeof(pagertab) / sizeof(pagertab[0]);
180
181/*
182 * Kernel address space for mapping pages.
183 * Used by pagers where KVAs are needed for IO.
184 *
185 * XXX needs to be large enough to support the number of pending async
186 * cleaning requests (NPENDINGIO == 64) * the maximum swap cluster size
187 * (MAXPHYS == 64k) if you want to get the most efficiency.
188 */
189#define PAGER_MAP_SIZE	(8 * 1024 * 1024)
190
191int pager_map_size = PAGER_MAP_SIZE;
192vm_map_t pager_map;
193static int bswneeded;
194static vm_offset_t swapbkva;		/* swap buffers kva */
195
196void
197vm_pager_init()
198{
199	struct pagerops **pgops;
200
201	/*
202	 * Initialize known pagers
203	 */
204	for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
205		if (pgops && ((*pgops)->pgo_init != NULL))
206			(*(*pgops)->pgo_init) ();
207}
208
209void
210vm_pager_bufferinit()
211{
212	struct buf *bp;
213	int i;
214
215	bp = swbuf;
216	/*
217	 * Now set up swap and physical I/O buffer headers.
218	 */
219	for (i = 0; i < nswbuf; i++, bp++) {
220		TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
221		BUF_LOCKINIT(bp);
222		LIST_INIT(&bp->b_dep);
223		bp->b_rcred = bp->b_wcred = NOCRED;
224		bp->b_xflags = 0;
225	}
226
227	cluster_pbuf_freecnt = nswbuf / 2;
228
229	swapbkva = kmem_alloc_pageable(pager_map, nswbuf * MAXPHYS);
230	if (!swapbkva)
231		panic("Not enough pager_map VM space for physical buffers");
232}
233
234/*
235 * Allocate an instance of a pager of the given type.
236 * Size, protection and offset parameters are passed in for pagers that
237 * need to perform page-level validation (e.g. the device pager).
238 */
239vm_object_t
240vm_pager_allocate(objtype_t type, void *handle, vm_ooffset_t size, vm_prot_t prot,
241		  vm_ooffset_t off)
242{
243	struct pagerops *ops;
244
245	ops = pagertab[type];
246	if (ops)
247		return ((*ops->pgo_alloc) (handle, size, prot, off));
248	return (NULL);
249}
250
251void
252vm_pager_deallocate(object)
253	vm_object_t object;
254{
255	(*pagertab[object->type]->pgo_dealloc) (object);
256}
257
258/*
259 *      vm_pager_strategy:
260 *
261 *      called with no specific spl
262 *      Execute strategy routine directly to pager.
263 */
264
265void
266vm_pager_strategy(vm_object_t object, struct buf *bp)
267{
268	if (pagertab[object->type]->pgo_strategy) {
269	    (*pagertab[object->type]->pgo_strategy)(object, bp);
270	} else {
271		bp->b_flags |= B_ERROR;
272		bp->b_error = ENXIO;
273		biodone(bp);
274	}
275}
276
277/*
278 * vm_pager_get_pages() - inline, see vm/vm_pager.h
279 * vm_pager_put_pages() - inline, see vm/vm_pager.h
280 * vm_pager_has_page() - inline, see vm/vm_pager.h
281 * vm_pager_page_inserted() - inline, see vm/vm_pager.h
282 * vm_pager_page_removed() - inline, see vm/vm_pager.h
283 */
284
285#if 0
286/*
287 *	vm_pager_sync:
288 *
289 *	Called by pageout daemon before going back to sleep.
290 *	Gives pagers a chance to clean up any completed async pageing
291 *	operations.
292 */
293void
294vm_pager_sync()
295{
296	struct pagerops **pgops;
297
298	for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
299		if (pgops && ((*pgops)->pgo_sync != NULL))
300			(*(*pgops)->pgo_sync) ();
301}
302
303#endif
304
305vm_offset_t
306vm_pager_map_page(m)
307	vm_page_t m;
308{
309	vm_offset_t kva;
310
311	kva = kmem_alloc_wait(pager_map, PAGE_SIZE);
312	pmap_kenter(kva, VM_PAGE_TO_PHYS(m));
313	return (kva);
314}
315
316void
317vm_pager_unmap_page(kva)
318	vm_offset_t kva;
319{
320	pmap_kremove(kva);
321	kmem_free_wakeup(pager_map, kva, PAGE_SIZE);
322}
323
324vm_object_t
325vm_pager_object_lookup(pg_list, handle)
326	register struct pagerlst *pg_list;
327	void *handle;
328{
329	register vm_object_t object;
330
331	for (object = TAILQ_FIRST(pg_list); object != NULL; object = TAILQ_NEXT(object,pager_object_list))
332		if (object->handle == handle)
333			return (object);
334	return (NULL);
335}
336
337/*
338 * initialize a physical buffer
339 */
340
341static void
342initpbuf(struct buf *bp)
343{
344	bp->b_rcred = NOCRED;
345	bp->b_wcred = NOCRED;
346	bp->b_qindex = QUEUE_NONE;
347	bp->b_data = (caddr_t) (MAXPHYS * (bp - swbuf)) + swapbkva;
348	bp->b_kvabase = bp->b_data;
349	bp->b_kvasize = MAXPHYS;
350	bp->b_xflags = 0;
351	bp->b_flags = 0;
352	bp->b_error = 0;
353	BUF_LOCK(bp, LK_EXCLUSIVE);
354}
355
356/*
357 * allocate a physical buffer
358 *
359 *	There are a limited number (nswbuf) of physical buffers.  We need
360 *	to make sure that no single subsystem is able to hog all of them,
361 *	so each subsystem implements a counter which is typically initialized
362 *	to 1/2 nswbuf.  getpbuf() decrements this counter in allocation and
363 *	increments it on release, and blocks if the counter hits zero.  A
364 *	subsystem may initialize the counter to -1 to disable the feature,
365 *	but it must still be sure to match up all uses of getpbuf() with
366 *	relpbuf() using the same variable.
367 *
368 *	NOTE: pfreecnt can be NULL, but this 'feature' will be removed
369 *	relatively soon when the rest of the subsystems get smart about it. XXX
370 */
371struct buf *
372getpbuf(pfreecnt)
373	int *pfreecnt;
374{
375	int s;
376	struct buf *bp;
377
378	s = splvm();
379
380	for (;;) {
381		if (pfreecnt) {
382			while (*pfreecnt == 0) {
383				tsleep(pfreecnt, PVM, "wswbuf0", 0);
384			}
385		}
386
387		/* get a bp from the swap buffer header pool */
388		if ((bp = TAILQ_FIRST(&bswlist)) != NULL)
389			break;
390
391		bswneeded = 1;
392		tsleep(&bswneeded, PVM, "wswbuf1", 0);
393		/* loop in case someone else grabbed one */
394	}
395	TAILQ_REMOVE(&bswlist, bp, b_freelist);
396	if (pfreecnt)
397		--*pfreecnt;
398	splx(s);
399
400	initpbuf(bp);
401	return bp;
402}
403
404/*
405 * allocate a physical buffer, if one is available.
406 *
407 *	Note that there is no NULL hack here - all subsystems using this
408 *	call understand how to use pfreecnt.
409 */
410struct buf *
411trypbuf(pfreecnt)
412	int *pfreecnt;
413{
414	int s;
415	struct buf *bp;
416
417	s = splvm();
418	if (*pfreecnt == 0 || (bp = TAILQ_FIRST(&bswlist)) == NULL) {
419		splx(s);
420		return NULL;
421	}
422	TAILQ_REMOVE(&bswlist, bp, b_freelist);
423
424	--*pfreecnt;
425
426	splx(s);
427
428	initpbuf(bp);
429
430	return bp;
431}
432
433/*
434 * release a physical buffer
435 *
436 *	NOTE: pfreecnt can be NULL, but this 'feature' will be removed
437 *	relatively soon when the rest of the subsystems get smart about it. XXX
438 */
439void
440relpbuf(bp, pfreecnt)
441	struct buf *bp;
442	int *pfreecnt;
443{
444	int s;
445
446	s = splvm();
447
448	if (bp->b_rcred != NOCRED) {
449		crfree(bp->b_rcred);
450		bp->b_rcred = NOCRED;
451	}
452	if (bp->b_wcred != NOCRED) {
453		crfree(bp->b_wcred);
454		bp->b_wcred = NOCRED;
455	}
456
457	if (bp->b_vp)
458		pbrelvp(bp);
459
460	BUF_UNLOCK(bp);
461
462	TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
463
464	if (bswneeded) {
465		bswneeded = 0;
466		wakeup(&bswneeded);
467	}
468	if (pfreecnt) {
469		if (++*pfreecnt == 1)
470			wakeup(pfreecnt);
471	}
472	splx(s);
473}
474
475/********************************************************
476 *		CHAINING FUNCTIONS			*
477 ********************************************************
478 *
479 *	These functions support recursion of I/O operations
480 *	on bp's, typically by chaining one or more 'child' bp's
481 *	to the parent.  Synchronous, asynchronous, and semi-synchronous
482 *	chaining is possible.
483 */
484
485/*
486 *	vm_pager_chain_iodone:
487 *
488 *	io completion routine for child bp.  Currently we fudge a bit
489 *	on dealing with b_resid.   Since users of these routines may issue
490 *	multiple children simultaniously, sequencing of the error can be lost.
491 */
492
493static void
494vm_pager_chain_iodone(struct buf *nbp)
495{
496	struct buf *bp;
497
498	if ((bp = nbp->b_chain.parent) != NULL) {
499		if (nbp->b_flags & B_ERROR) {
500			bp->b_flags |= B_ERROR;
501			bp->b_error = nbp->b_error;
502		} else if (nbp->b_resid != 0) {
503			bp->b_flags |= B_ERROR;
504			bp->b_error = EINVAL;
505		} else {
506			bp->b_resid -= nbp->b_bcount;
507		}
508		nbp->b_chain.parent = NULL;
509		--bp->b_chain.count;
510		if (bp->b_flags & B_WANT) {
511			bp->b_flags &= ~B_WANT;
512			wakeup(bp);
513		}
514		if (!bp->b_chain.count && (bp->b_flags & B_AUTOCHAINDONE)) {
515			bp->b_flags &= ~B_AUTOCHAINDONE;
516			if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
517				bp->b_flags |= B_ERROR;
518				bp->b_error = EINVAL;
519			}
520			biodone(bp);
521		}
522	}
523	nbp->b_flags |= B_DONE;
524	nbp->b_flags &= ~B_ASYNC;
525	relpbuf(nbp, NULL);
526}
527
528/*
529 *	getchainbuf:
530 *
531 *	Obtain a physical buffer and chain it to its parent buffer.  When
532 *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
533 *	automatically propogated to the parent
534 *
535 *	Since these are brand new buffers, we do not have to clear B_INVAL
536 *	and B_ERROR because they are already clear.
537 */
538
539struct buf *
540getchainbuf(struct buf *bp, struct vnode *vp, int flags)
541{
542	struct buf *nbp = getpbuf(NULL);
543
544	nbp->b_chain.parent = bp;
545	++bp->b_chain.count;
546
547	if (bp->b_chain.count > 4)
548		waitchainbuf(bp, 4, 0);
549
550	nbp->b_flags = B_CALL | (bp->b_flags & B_ORDERED) | flags;
551	nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
552	nbp->b_iodone = vm_pager_chain_iodone;
553
554	crhold(nbp->b_rcred);
555	crhold(nbp->b_wcred);
556
557	if (vp)
558		pbgetvp(vp, nbp);
559	return(nbp);
560}
561
562void
563flushchainbuf(struct buf *nbp)
564{
565	if (nbp->b_bcount) {
566		nbp->b_bufsize = nbp->b_bcount;
567		if ((nbp->b_flags & B_READ) == 0)
568			nbp->b_dirtyend = nbp->b_bcount;
569		BUF_KERNPROC(nbp);
570		VOP_STRATEGY(nbp->b_vp, nbp);
571	} else {
572		biodone(nbp);
573	}
574}
575
576void
577waitchainbuf(struct buf *bp, int count, int done)
578{
579 	int s;
580
581	s = splbio();
582	while (bp->b_chain.count > count) {
583		bp->b_flags |= B_WANT;
584		tsleep(bp, PRIBIO + 4, "bpchain", 0);
585	}
586	if (done) {
587		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
588			bp->b_flags |= B_ERROR;
589			bp->b_error = EINVAL;
590		}
591		biodone(bp);
592	}
593	splx(s);
594}
595
596void
597autochaindone(struct buf *bp)
598{
599 	int s;
600
601	s = splbio();
602	if (bp->b_chain.count == 0)
603		biodone(bp);
604	else
605		bp->b_flags |= B_AUTOCHAINDONE;
606	splx(s);
607}
608
609