vm_page.c revision 98849
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 * $FreeBSD: head/sys/vm/vm_page.c 98849 2002-06-26 03:37:47Z ken $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *			GENERAL RULES ON VM_PAGE MANIPULATION
69 *
70 *	- a pageq mutex is required when adding or removing a page from a
71 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72 *	  busy state of a page.
73 *
74 *	- a hash chain mutex is required when associating or disassociating
75 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76 *	  regardless of other mutexes or the busy state of a page.
77 *
78 *	- either a hash chain mutex OR a busied page is required in order
79 *	  to modify the page flags.  A hash chain mutex must be obtained in
80 *	  order to busy a page.  A page's flags cannot be modified by a
81 *	  hash chain mutex if the page is marked busy.
82 *
83 *	- The object memq mutex is held when inserting or removing
84 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85 *	  is different from the object's main mutex.
86 *
87 *	Generally speaking, you have to be aware of side effects when running
88 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90 *	vm_page_cache(), vm_page_activate(), and a number of other routines
91 *	will release the hash chain mutex for you.  Intermediate manipulation
92 *	routines such as vm_page_flag_set() expect the hash chain to be held
93 *	on entry and the hash chain will remain held on return.
94 *
95 *	pageq scanning can only occur with the pageq in question locked.
96 *	We have a known bottleneck with the active queue, but the cache
97 *	and free queues are actually arrays already.
98 */
99
100/*
101 *	Resident memory management module.
102 */
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/lock.h>
107#include <sys/malloc.h>
108#include <sys/mutex.h>
109#include <sys/proc.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124/*
125 *	Associated with page of user-allocatable memory is a
126 *	page structure.
127 */
128static struct mtx vm_page_buckets_mtx;
129static struct vm_page **vm_page_buckets; /* Array of buckets */
130static int vm_page_bucket_count;	/* How big is array? */
131static int vm_page_hash_mask;		/* Mask for hash function */
132
133vm_page_t vm_page_array = 0;
134int vm_page_array_size = 0;
135long first_page = 0;
136int vm_page_zero_count = 0;
137
138/*
139 *	vm_set_page_size:
140 *
141 *	Sets the page size, perhaps based upon the memory
142 *	size.  Must be called before any use of page-size
143 *	dependent functions.
144 */
145void
146vm_set_page_size(void)
147{
148	if (cnt.v_page_size == 0)
149		cnt.v_page_size = PAGE_SIZE;
150	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
151		panic("vm_set_page_size: page size not a power of two");
152}
153
154/*
155 *	vm_page_startup:
156 *
157 *	Initializes the resident memory module.
158 *
159 *	Allocates memory for the page cells, and
160 *	for the object/offset-to-page hash table headers.
161 *	Each page cell is initialized and placed on the free list.
162 */
163vm_offset_t
164vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
165{
166	vm_offset_t mapped;
167	struct vm_page **bucket;
168	vm_size_t npages, page_range;
169	vm_offset_t new_end;
170	int i;
171	vm_offset_t pa;
172	int nblocks;
173	vm_offset_t last_pa;
174
175	/* the biggest memory array is the second group of pages */
176	vm_offset_t end;
177	vm_offset_t biggestone, biggestsize;
178
179	vm_offset_t total;
180	vm_size_t bootpages;
181
182	total = 0;
183	biggestsize = 0;
184	biggestone = 0;
185	nblocks = 0;
186	vaddr = round_page(vaddr);
187
188	for (i = 0; phys_avail[i + 1]; i += 2) {
189		phys_avail[i] = round_page(phys_avail[i]);
190		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
191	}
192
193	for (i = 0; phys_avail[i + 1]; i += 2) {
194		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
195
196		if (size > biggestsize) {
197			biggestone = i;
198			biggestsize = size;
199		}
200		++nblocks;
201		total += size;
202	}
203
204	end = phys_avail[biggestone+1];
205
206	/*
207	 * Initialize the queue headers for the free queue, the active queue
208	 * and the inactive queue.
209	 */
210	vm_pageq_init();
211
212	/*
213	 * Allocate memory for use when boot strapping the kernel memory allocator
214	 */
215	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
216	new_end = end - bootpages;
217	new_end = trunc_page(new_end);
218	mapped = pmap_map(&vaddr, new_end, end,
219	    VM_PROT_READ | VM_PROT_WRITE);
220	bzero((caddr_t) mapped, end - new_end);
221	uma_startup((caddr_t)mapped);
222
223	end = new_end;
224
225	/*
226	 * Allocate (and initialize) the hash table buckets.
227	 *
228	 * The number of buckets MUST BE a power of 2, and the actual value is
229	 * the next power of 2 greater than the number of physical pages in
230	 * the system.
231	 *
232	 * We make the hash table approximately 2x the number of pages to
233	 * reduce the chain length.  This is about the same size using the
234	 * singly-linked list as the 1x hash table we were using before
235	 * using TAILQ but the chain length will be smaller.
236	 *
237	 * Note: This computation can be tweaked if desired.
238	 */
239	if (vm_page_bucket_count == 0) {
240		vm_page_bucket_count = 1;
241		while (vm_page_bucket_count < atop(total))
242			vm_page_bucket_count <<= 1;
243	}
244	vm_page_bucket_count <<= 1;
245	vm_page_hash_mask = vm_page_bucket_count - 1;
246
247	/*
248	 * Validate these addresses.
249	 */
250	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
251	new_end = trunc_page(new_end);
252	mapped = pmap_map(&vaddr, new_end, end,
253	    VM_PROT_READ | VM_PROT_WRITE);
254	bzero((caddr_t) mapped, end - new_end);
255
256	mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN);
257	vm_page_buckets = (struct vm_page **)mapped;
258	bucket = vm_page_buckets;
259	for (i = 0; i < vm_page_bucket_count; i++) {
260		*bucket = NULL;
261		bucket++;
262	}
263
264	/*
265	 * Compute the number of pages of memory that will be available for
266	 * use (taking into account the overhead of a page structure per
267	 * page).
268	 */
269	first_page = phys_avail[0] / PAGE_SIZE;
270	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
271	npages = (total - (page_range * sizeof(struct vm_page)) -
272	    (end - new_end)) / PAGE_SIZE;
273	end = new_end;
274
275	/*
276	 * Initialize the mem entry structures now, and put them in the free
277	 * queue.
278	 */
279	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
280	mapped = pmap_map(&vaddr, new_end, end,
281	    VM_PROT_READ | VM_PROT_WRITE);
282	vm_page_array = (vm_page_t) mapped;
283
284	/*
285	 * Clear all of the page structures
286	 */
287	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
288	vm_page_array_size = page_range;
289
290	/*
291	 * Construct the free queue(s) in descending order (by physical
292	 * address) so that the first 16MB of physical memory is allocated
293	 * last rather than first.  On large-memory machines, this avoids
294	 * the exhaustion of low physical memory before isa_dmainit has run.
295	 */
296	cnt.v_page_count = 0;
297	cnt.v_free_count = 0;
298	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
299		pa = phys_avail[i];
300		if (i == biggestone)
301			last_pa = new_end;
302		else
303			last_pa = phys_avail[i + 1];
304		while (pa < last_pa && npages-- > 0) {
305			vm_pageq_add_new_page(pa);
306			pa += PAGE_SIZE;
307		}
308	}
309	return (vaddr);
310}
311
312/*
313 *	vm_page_hash:
314 *
315 *	Distributes the object/offset key pair among hash buckets.
316 *
317 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
318 *	This routine may not block.
319 *
320 *	We try to randomize the hash based on the object to spread the pages
321 *	out in the hash table without it costing us too much.
322 */
323static __inline int
324vm_page_hash(vm_object_t object, vm_pindex_t pindex)
325{
326	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
327
328	return (i & vm_page_hash_mask);
329}
330
331void
332vm_page_flag_set(vm_page_t m, unsigned short bits)
333{
334	GIANT_REQUIRED;
335	m->flags |= bits;
336}
337
338void
339vm_page_flag_clear(vm_page_t m, unsigned short bits)
340{
341	GIANT_REQUIRED;
342	m->flags &= ~bits;
343}
344
345void
346vm_page_busy(vm_page_t m)
347{
348	KASSERT((m->flags & PG_BUSY) == 0,
349	    ("vm_page_busy: page already busy!!!"));
350	vm_page_flag_set(m, PG_BUSY);
351}
352
353/*
354 *      vm_page_flash:
355 *
356 *      wakeup anyone waiting for the page.
357 */
358void
359vm_page_flash(vm_page_t m)
360{
361	if (m->flags & PG_WANTED) {
362		vm_page_flag_clear(m, PG_WANTED);
363		wakeup(m);
364	}
365}
366
367/*
368 *      vm_page_wakeup:
369 *
370 *      clear the PG_BUSY flag and wakeup anyone waiting for the
371 *      page.
372 *
373 */
374void
375vm_page_wakeup(vm_page_t m)
376{
377	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
378	vm_page_flag_clear(m, PG_BUSY);
379	vm_page_flash(m);
380}
381
382/*
383 *
384 *
385 */
386void
387vm_page_io_start(vm_page_t m)
388{
389	GIANT_REQUIRED;
390	m->busy++;
391}
392
393void
394vm_page_io_finish(vm_page_t m)
395{
396	GIANT_REQUIRED;
397	m->busy--;
398	if (m->busy == 0)
399		vm_page_flash(m);
400}
401
402/*
403 * Keep page from being freed by the page daemon
404 * much of the same effect as wiring, except much lower
405 * overhead and should be used only for *very* temporary
406 * holding ("wiring").
407 */
408void
409vm_page_hold(vm_page_t mem)
410{
411        GIANT_REQUIRED;
412        mem->hold_count++;
413}
414
415void
416vm_page_unhold(vm_page_t mem)
417{
418	GIANT_REQUIRED;
419	--mem->hold_count;
420	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
421	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
422		vm_page_free_toq(mem);
423}
424
425/*
426 *	vm_page_protect:
427 *
428 *	Reduce the protection of a page.  This routine never raises the
429 *	protection and therefore can be safely called if the page is already
430 *	at VM_PROT_NONE (it will be a NOP effectively ).
431 */
432void
433vm_page_protect(vm_page_t mem, int prot)
434{
435	if (prot == VM_PROT_NONE) {
436		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
437			pmap_page_protect(mem, VM_PROT_NONE);
438			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
439		}
440	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
441		pmap_page_protect(mem, VM_PROT_READ);
442		vm_page_flag_clear(mem, PG_WRITEABLE);
443	}
444}
445/*
446 *	vm_page_zero_fill:
447 *
448 *	Zero-fill the specified page.
449 *	Written as a standard pagein routine, to
450 *	be used by the zero-fill object.
451 */
452boolean_t
453vm_page_zero_fill(vm_page_t m)
454{
455	pmap_zero_page(m);
456	return (TRUE);
457}
458
459/*
460 *	vm_page_zero_fill_area:
461 *
462 *	Like vm_page_zero_fill but only fill the specified area.
463 */
464boolean_t
465vm_page_zero_fill_area(vm_page_t m, int off, int size)
466{
467	pmap_zero_page_area(m, off, size);
468	return (TRUE);
469}
470
471/*
472 *	vm_page_copy:
473 *
474 *	Copy one page to another
475 */
476void
477vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
478{
479	pmap_copy_page(src_m, dest_m);
480	dest_m->valid = VM_PAGE_BITS_ALL;
481}
482
483/*
484 *	vm_page_free:
485 *
486 *	Free a page
487 *
488 *	The clearing of PG_ZERO is a temporary safety until the code can be
489 *	reviewed to determine that PG_ZERO is being properly cleared on
490 *	write faults or maps.  PG_ZERO was previously cleared in
491 *	vm_page_alloc().
492 */
493void
494vm_page_free(vm_page_t m)
495{
496	vm_page_flag_clear(m, PG_ZERO);
497	vm_page_free_toq(m);
498	vm_page_zero_idle_wakeup();
499}
500
501/*
502 *	vm_page_free_zero:
503 *
504 *	Free a page to the zerod-pages queue
505 */
506void
507vm_page_free_zero(vm_page_t m)
508{
509	vm_page_flag_set(m, PG_ZERO);
510	vm_page_free_toq(m);
511}
512
513/*
514 *	vm_page_sleep_busy:
515 *
516 *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
517 *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
518 *	it almost had to sleep and made temporary spl*() mods), FALSE
519 *	otherwise.
520 *
521 *	This routine assumes that interrupts can only remove the busy
522 *	status from a page, not set the busy status or change it from
523 *	PG_BUSY to m->busy or vise versa (which would create a timing
524 *	window).
525 */
526int
527vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
528{
529	GIANT_REQUIRED;
530	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
531		int s = splvm();
532		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
533			/*
534			 * Page is busy. Wait and retry.
535			 */
536			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
537			tsleep(m, PVM, msg, 0);
538		}
539		splx(s);
540		return (TRUE);
541		/* not reached */
542	}
543	return (FALSE);
544}
545/*
546 *	vm_page_dirty:
547 *
548 *	make page all dirty
549 */
550void
551vm_page_dirty(vm_page_t m)
552{
553	KASSERT(m->queue - m->pc != PQ_CACHE,
554	    ("vm_page_dirty: page in cache!"));
555	m->dirty = VM_PAGE_BITS_ALL;
556}
557
558/*
559 *	vm_page_undirty:
560 *
561 *	Set page to not be dirty.  Note: does not clear pmap modify bits
562 */
563void
564vm_page_undirty(vm_page_t m)
565{
566	m->dirty = 0;
567}
568
569/*
570 *	vm_page_insert:		[ internal use only ]
571 *
572 *	Inserts the given mem entry into the object and object list.
573 *
574 *	The pagetables are not updated but will presumably fault the page
575 *	in if necessary, or if a kernel page the caller will at some point
576 *	enter the page into the kernel's pmap.  We are not allowed to block
577 *	here so we *can't* do this anyway.
578 *
579 *	The object and page must be locked, and must be splhigh.
580 *	This routine may not block.
581 */
582void
583vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
584{
585	struct vm_page **bucket;
586
587	GIANT_REQUIRED;
588
589	if (m->object != NULL)
590		panic("vm_page_insert: already inserted");
591
592	/*
593	 * Record the object/offset pair in this page
594	 */
595	m->object = object;
596	m->pindex = pindex;
597
598	/*
599	 * Insert it into the object_object/offset hash table
600	 */
601	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
602	mtx_lock_spin(&vm_page_buckets_mtx);
603	m->hnext = *bucket;
604	*bucket = m;
605	mtx_unlock_spin(&vm_page_buckets_mtx);
606
607	/*
608	 * Now link into the object's list of backed pages.
609	 */
610	TAILQ_INSERT_TAIL(&object->memq, m, listq);
611	object->generation++;
612
613	/*
614	 * show that the object has one more resident page.
615	 */
616	object->resident_page_count++;
617
618	/*
619	 * Since we are inserting a new and possibly dirty page,
620	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
621	 */
622	if (m->flags & PG_WRITEABLE)
623		vm_object_set_writeable_dirty(object);
624}
625
626/*
627 *	vm_page_remove:
628 *				NOTE: used by device pager as well -wfj
629 *
630 *	Removes the given mem entry from the object/offset-page
631 *	table and the object page list, but do not invalidate/terminate
632 *	the backing store.
633 *
634 *	The object and page must be locked, and at splhigh.
635 *	The underlying pmap entry (if any) is NOT removed here.
636 *	This routine may not block.
637 */
638void
639vm_page_remove(vm_page_t m)
640{
641	vm_object_t object;
642	vm_page_t *bucket;
643
644	GIANT_REQUIRED;
645
646	if (m->object == NULL)
647		return;
648
649	if ((m->flags & PG_BUSY) == 0) {
650		panic("vm_page_remove: page not busy");
651	}
652
653	/*
654	 * Basically destroy the page.
655	 */
656	vm_page_wakeup(m);
657
658	object = m->object;
659
660	/*
661	 * Remove from the object_object/offset hash table.  The object
662	 * must be on the hash queue, we will panic if it isn't
663	 */
664	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
665	mtx_lock_spin(&vm_page_buckets_mtx);
666	while (*bucket != m) {
667		if (*bucket == NULL)
668			panic("vm_page_remove(): page not found in hash");
669		bucket = &(*bucket)->hnext;
670	}
671	*bucket = m->hnext;
672	m->hnext = NULL;
673	mtx_unlock_spin(&vm_page_buckets_mtx);
674
675	/*
676	 * Now remove from the object's list of backed pages.
677	 */
678	TAILQ_REMOVE(&object->memq, m, listq);
679
680	/*
681	 * And show that the object has one fewer resident page.
682	 */
683	object->resident_page_count--;
684	object->generation++;
685
686	m->object = NULL;
687}
688
689/*
690 *	vm_page_lookup:
691 *
692 *	Returns the page associated with the object/offset
693 *	pair specified; if none is found, NULL is returned.
694 *
695 *	The object must be locked.  No side effects.
696 *	This routine may not block.
697 *	This is a critical path routine
698 */
699vm_page_t
700vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
701{
702	vm_page_t m;
703	struct vm_page **bucket;
704
705	/*
706	 * Search the hash table for this object/offset pair
707	 */
708	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
709	mtx_lock_spin(&vm_page_buckets_mtx);
710	for (m = *bucket; m != NULL; m = m->hnext)
711		if (m->object == object && m->pindex == pindex)
712			break;
713	mtx_unlock_spin(&vm_page_buckets_mtx);
714	return (m);
715}
716
717/*
718 *	vm_page_rename:
719 *
720 *	Move the given memory entry from its
721 *	current object to the specified target object/offset.
722 *
723 *	The object must be locked.
724 *	This routine may not block.
725 *
726 *	Note: this routine will raise itself to splvm(), the caller need not.
727 *
728 *	Note: swap associated with the page must be invalidated by the move.  We
729 *	      have to do this for several reasons:  (1) we aren't freeing the
730 *	      page, (2) we are dirtying the page, (3) the VM system is probably
731 *	      moving the page from object A to B, and will then later move
732 *	      the backing store from A to B and we can't have a conflict.
733 *
734 *	Note: we *always* dirty the page.  It is necessary both for the
735 *	      fact that we moved it, and because we may be invalidating
736 *	      swap.  If the page is on the cache, we have to deactivate it
737 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
738 *	      on the cache.
739 */
740void
741vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
742{
743	int s;
744
745	s = splvm();
746	vm_page_remove(m);
747	vm_page_insert(m, new_object, new_pindex);
748	if (m->queue - m->pc == PQ_CACHE)
749		vm_page_deactivate(m);
750	vm_page_dirty(m);
751	splx(s);
752}
753
754/*
755 *	vm_page_select_cache:
756 *
757 *	Find a page on the cache queue with color optimization.  As pages
758 *	might be found, but not applicable, they are deactivated.  This
759 *	keeps us from using potentially busy cached pages.
760 *
761 *	This routine must be called at splvm().
762 *	This routine may not block.
763 */
764static vm_page_t
765vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
766{
767	vm_page_t m;
768
769	GIANT_REQUIRED;
770	while (TRUE) {
771		m = vm_pageq_find(
772		    PQ_CACHE,
773		    (pindex + object->pg_color) & PQ_L2_MASK,
774		    FALSE
775		);
776		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
777			       m->hold_count || m->wire_count)) {
778			vm_page_deactivate(m);
779			continue;
780		}
781		return m;
782	}
783}
784
785/*
786 *	vm_page_select_free:
787 *
788 *	Find a free or zero page, with specified preference.
789 *
790 *	This routine must be called at splvm().
791 *	This routine may not block.
792 */
793static __inline vm_page_t
794vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
795{
796	vm_page_t m;
797
798	m = vm_pageq_find(
799		PQ_FREE,
800		(pindex + object->pg_color) & PQ_L2_MASK,
801		prefer_zero
802	);
803	return (m);
804}
805
806/*
807 *	vm_page_alloc:
808 *
809 *	Allocate and return a memory cell associated
810 *	with this VM object/offset pair.
811 *
812 *	page_req classes:
813 *	VM_ALLOC_NORMAL		normal process request
814 *	VM_ALLOC_SYSTEM		system *really* needs a page
815 *	VM_ALLOC_INTERRUPT	interrupt time request
816 *	VM_ALLOC_ZERO		zero page
817 *
818 *	This routine may not block.
819 *
820 *	Additional special handling is required when called from an
821 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
822 *	the page cache in this case.
823 */
824vm_page_t
825vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
826{
827	vm_page_t m = NULL;
828	boolean_t prefer_zero;
829	int s;
830
831	GIANT_REQUIRED;
832
833	KASSERT(!vm_page_lookup(object, pindex),
834		("vm_page_alloc: page already allocated"));
835
836	prefer_zero = (page_req & VM_ALLOC_ZERO) != 0 ? TRUE : FALSE;
837	page_req &= ~VM_ALLOC_ZERO;
838
839	/*
840	 * The pager is allowed to eat deeper into the free page list.
841	 */
842	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
843		page_req = VM_ALLOC_SYSTEM;
844	};
845
846	s = splvm();
847
848loop:
849	if (cnt.v_free_count > cnt.v_free_reserved) {
850		/*
851		 * Allocate from the free queue if there are plenty of pages
852		 * in it.
853		 */
854
855		m = vm_page_select_free(object, pindex, prefer_zero);
856	} else if (
857	    (page_req == VM_ALLOC_SYSTEM &&
858	     cnt.v_cache_count == 0 &&
859	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
860	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
861	) {
862		/*
863		 * Interrupt or system, dig deeper into the free list.
864		 */
865		m = vm_page_select_free(object, pindex, FALSE);
866	} else if (page_req != VM_ALLOC_INTERRUPT) {
867		/*
868		 * Allocatable from cache (non-interrupt only).  On success,
869		 * we must free the page and try again, thus ensuring that
870		 * cnt.v_*_free_min counters are replenished.
871		 */
872		m = vm_page_select_cache(object, pindex);
873		if (m == NULL) {
874			splx(s);
875#if defined(DIAGNOSTIC)
876			if (cnt.v_cache_count > 0)
877				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
878#endif
879			vm_pageout_deficit++;
880			pagedaemon_wakeup();
881			return (NULL);
882		}
883		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
884		vm_page_busy(m);
885		vm_page_protect(m, VM_PROT_NONE);
886		vm_page_free(m);
887		goto loop;
888	} else {
889		/*
890		 * Not allocatable from cache from interrupt, give up.
891		 */
892		splx(s);
893		vm_pageout_deficit++;
894		pagedaemon_wakeup();
895		return (NULL);
896	}
897
898	/*
899	 *  At this point we had better have found a good page.
900	 */
901
902	KASSERT(
903	    m != NULL,
904	    ("vm_page_alloc(): missing page on free queue\n")
905	);
906
907	/*
908	 * Remove from free queue
909	 */
910
911	vm_pageq_remove_nowakeup(m);
912
913	/*
914	 * Initialize structure.  Only the PG_ZERO flag is inherited.
915	 */
916	if (m->flags & PG_ZERO) {
917		vm_page_zero_count--;
918		m->flags = PG_ZERO | PG_BUSY;
919	} else {
920		m->flags = PG_BUSY;
921	}
922	m->wire_count = 0;
923	m->hold_count = 0;
924	m->act_count = 0;
925	m->busy = 0;
926	m->valid = 0;
927	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
928
929	/*
930	 * vm_page_insert() is safe prior to the splx().  Note also that
931	 * inserting a page here does not insert it into the pmap (which
932	 * could cause us to block allocating memory).  We cannot block
933	 * anywhere.
934	 */
935	vm_page_insert(m, object, pindex);
936
937	/*
938	 * Don't wakeup too often - wakeup the pageout daemon when
939	 * we would be nearly out of memory.
940	 */
941	if (vm_paging_needed())
942		pagedaemon_wakeup();
943
944	splx(s);
945	return (m);
946}
947
948/*
949 *	vm_wait:	(also see VM_WAIT macro)
950 *
951 *	Block until free pages are available for allocation
952 *	- Called in various places before memory allocations.
953 */
954void
955vm_wait(void)
956{
957	int s;
958
959	s = splvm();
960	if (curproc == pageproc) {
961		vm_pageout_pages_needed = 1;
962		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
963	} else {
964		if (!vm_pages_needed) {
965			vm_pages_needed = 1;
966			wakeup(&vm_pages_needed);
967		}
968		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
969	}
970	splx(s);
971}
972
973/*
974 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
975 *
976 *	Block until free pages are available for allocation
977 *	- Called only in vm_fault so that processes page faulting
978 *	  can be easily tracked.
979 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
980 *	  processes will be able to grab memory first.  Do not change
981 *	  this balance without careful testing first.
982 */
983void
984vm_waitpfault(void)
985{
986	int s;
987
988	s = splvm();
989	if (!vm_pages_needed) {
990		vm_pages_needed = 1;
991		wakeup(&vm_pages_needed);
992	}
993	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
994	splx(s);
995}
996
997/*
998 *	vm_page_activate:
999 *
1000 *	Put the specified page on the active list (if appropriate).
1001 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1002 *	mess with it.
1003 *
1004 *	The page queues must be locked.
1005 *	This routine may not block.
1006 */
1007void
1008vm_page_activate(vm_page_t m)
1009{
1010	int s;
1011
1012	GIANT_REQUIRED;
1013	s = splvm();
1014	if (m->queue != PQ_ACTIVE) {
1015		if ((m->queue - m->pc) == PQ_CACHE)
1016			cnt.v_reactivated++;
1017		vm_pageq_remove(m);
1018		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1019			if (m->act_count < ACT_INIT)
1020				m->act_count = ACT_INIT;
1021			vm_pageq_enqueue(PQ_ACTIVE, m);
1022		}
1023	} else {
1024		if (m->act_count < ACT_INIT)
1025			m->act_count = ACT_INIT;
1026	}
1027	splx(s);
1028}
1029
1030/*
1031 *	vm_page_free_wakeup:
1032 *
1033 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1034 *	routine is called when a page has been added to the cache or free
1035 *	queues.
1036 *
1037 *	This routine may not block.
1038 *	This routine must be called at splvm()
1039 */
1040static __inline void
1041vm_page_free_wakeup(void)
1042{
1043	/*
1044	 * if pageout daemon needs pages, then tell it that there are
1045	 * some free.
1046	 */
1047	if (vm_pageout_pages_needed &&
1048	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1049		wakeup(&vm_pageout_pages_needed);
1050		vm_pageout_pages_needed = 0;
1051	}
1052	/*
1053	 * wakeup processes that are waiting on memory if we hit a
1054	 * high water mark. And wakeup scheduler process if we have
1055	 * lots of memory. this process will swapin processes.
1056	 */
1057	if (vm_pages_needed && !vm_page_count_min()) {
1058		vm_pages_needed = 0;
1059		wakeup(&cnt.v_free_count);
1060	}
1061}
1062
1063/*
1064 *	vm_page_free_toq:
1065 *
1066 *	Returns the given page to the PQ_FREE list,
1067 *	disassociating it with any VM object.
1068 *
1069 *	Object and page must be locked prior to entry.
1070 *	This routine may not block.
1071 */
1072
1073void
1074vm_page_free_toq(vm_page_t m)
1075{
1076	int s;
1077	struct vpgqueues *pq;
1078	vm_object_t object = m->object;
1079
1080	GIANT_REQUIRED;
1081	s = splvm();
1082	cnt.v_tfree++;
1083
1084	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1085		printf(
1086		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1087		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1088		    m->hold_count);
1089		if ((m->queue - m->pc) == PQ_FREE)
1090			panic("vm_page_free: freeing free page");
1091		else
1092			panic("vm_page_free: freeing busy page");
1093	}
1094
1095	/*
1096	 * unqueue, then remove page.  Note that we cannot destroy
1097	 * the page here because we do not want to call the pager's
1098	 * callback routine until after we've put the page on the
1099	 * appropriate free queue.
1100	 */
1101	vm_pageq_remove_nowakeup(m);
1102	vm_page_remove(m);
1103
1104	/*
1105	 * If fictitious remove object association and
1106	 * return, otherwise delay object association removal.
1107	 */
1108	if ((m->flags & PG_FICTITIOUS) != 0) {
1109		splx(s);
1110		return;
1111	}
1112
1113	m->valid = 0;
1114	vm_page_undirty(m);
1115
1116	if (m->wire_count != 0) {
1117		if (m->wire_count > 1) {
1118			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1119				m->wire_count, (long)m->pindex);
1120		}
1121		panic("vm_page_free: freeing wired page\n");
1122	}
1123
1124	/*
1125	 * If we've exhausted the object's resident pages we want to free
1126	 * it up.
1127	 */
1128	if (object &&
1129	    (object->type == OBJT_VNODE) &&
1130	    ((object->flags & OBJ_DEAD) == 0)
1131	) {
1132		struct vnode *vp = (struct vnode *)object->handle;
1133
1134		if (vp && VSHOULDFREE(vp))
1135			vfree(vp);
1136	}
1137
1138	/*
1139	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1140	 */
1141	if (m->flags & PG_UNMANAGED) {
1142		m->flags &= ~PG_UNMANAGED;
1143	} else {
1144#ifdef __alpha__
1145		pmap_page_is_free(m);
1146#endif
1147	}
1148
1149	if (m->hold_count != 0) {
1150		m->flags &= ~PG_ZERO;
1151		m->queue = PQ_HOLD;
1152	} else
1153		m->queue = PQ_FREE + m->pc;
1154	pq = &vm_page_queues[m->queue];
1155	pq->lcnt++;
1156	++(*pq->cnt);
1157
1158	/*
1159	 * Put zero'd pages on the end ( where we look for zero'd pages
1160	 * first ) and non-zerod pages at the head.
1161	 */
1162	if (m->flags & PG_ZERO) {
1163		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1164		++vm_page_zero_count;
1165	} else {
1166		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1167	}
1168	vm_page_free_wakeup();
1169	splx(s);
1170}
1171
1172/*
1173 *	vm_page_unmanage:
1174 *
1175 * 	Prevent PV management from being done on the page.  The page is
1176 *	removed from the paging queues as if it were wired, and as a
1177 *	consequence of no longer being managed the pageout daemon will not
1178 *	touch it (since there is no way to locate the pte mappings for the
1179 *	page).  madvise() calls that mess with the pmap will also no longer
1180 *	operate on the page.
1181 *
1182 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1183 *	will clear the flag.
1184 *
1185 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1186 *	physical memory as backing store rather then swap-backed memory and
1187 *	will eventually be extended to support 4MB unmanaged physical
1188 *	mappings.
1189 */
1190void
1191vm_page_unmanage(vm_page_t m)
1192{
1193	int s;
1194
1195	s = splvm();
1196	if ((m->flags & PG_UNMANAGED) == 0) {
1197		if (m->wire_count == 0)
1198			vm_pageq_remove(m);
1199	}
1200	vm_page_flag_set(m, PG_UNMANAGED);
1201	splx(s);
1202}
1203
1204/*
1205 *	vm_page_wire:
1206 *
1207 *	Mark this page as wired down by yet
1208 *	another map, removing it from paging queues
1209 *	as necessary.
1210 *
1211 *	The page queues must be locked.
1212 *	This routine may not block.
1213 */
1214void
1215vm_page_wire(vm_page_t m)
1216{
1217	int s;
1218
1219	/*
1220	 * Only bump the wire statistics if the page is not already wired,
1221	 * and only unqueue the page if it is on some queue (if it is unmanaged
1222	 * it is already off the queues).
1223	 */
1224	s = splvm();
1225	if (m->wire_count == 0) {
1226		if ((m->flags & PG_UNMANAGED) == 0)
1227			vm_pageq_remove(m);
1228		cnt.v_wire_count++;
1229	}
1230	m->wire_count++;
1231	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1232	splx(s);
1233	vm_page_flag_set(m, PG_MAPPED);
1234}
1235
1236/*
1237 *	vm_page_unwire:
1238 *
1239 *	Release one wiring of this page, potentially
1240 *	enabling it to be paged again.
1241 *
1242 *	Many pages placed on the inactive queue should actually go
1243 *	into the cache, but it is difficult to figure out which.  What
1244 *	we do instead, if the inactive target is well met, is to put
1245 *	clean pages at the head of the inactive queue instead of the tail.
1246 *	This will cause them to be moved to the cache more quickly and
1247 *	if not actively re-referenced, freed more quickly.  If we just
1248 *	stick these pages at the end of the inactive queue, heavy filesystem
1249 *	meta-data accesses can cause an unnecessary paging load on memory bound
1250 *	processes.  This optimization causes one-time-use metadata to be
1251 *	reused more quickly.
1252 *
1253 *	BUT, if we are in a low-memory situation we have no choice but to
1254 *	put clean pages on the cache queue.
1255 *
1256 *	A number of routines use vm_page_unwire() to guarantee that the page
1257 *	will go into either the inactive or active queues, and will NEVER
1258 *	be placed in the cache - for example, just after dirtying a page.
1259 *	dirty pages in the cache are not allowed.
1260 *
1261 *	The page queues must be locked.
1262 *	This routine may not block.
1263 */
1264void
1265vm_page_unwire(vm_page_t m, int activate)
1266{
1267	int s;
1268
1269	s = splvm();
1270
1271	if (m->wire_count > 0) {
1272		m->wire_count--;
1273		if (m->wire_count == 0) {
1274			cnt.v_wire_count--;
1275			if (m->flags & PG_UNMANAGED) {
1276				;
1277			} else if (activate)
1278				vm_pageq_enqueue(PQ_ACTIVE, m);
1279			else {
1280				vm_page_flag_clear(m, PG_WINATCFLS);
1281				vm_pageq_enqueue(PQ_INACTIVE, m);
1282			}
1283		}
1284	} else {
1285		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1286	}
1287	splx(s);
1288}
1289
1290
1291/*
1292 * Move the specified page to the inactive queue.  If the page has
1293 * any associated swap, the swap is deallocated.
1294 *
1295 * Normally athead is 0 resulting in LRU operation.  athead is set
1296 * to 1 if we want this page to be 'as if it were placed in the cache',
1297 * except without unmapping it from the process address space.
1298 *
1299 * This routine may not block.
1300 */
1301static __inline void
1302_vm_page_deactivate(vm_page_t m, int athead)
1303{
1304	int s;
1305
1306	GIANT_REQUIRED;
1307	/*
1308	 * Ignore if already inactive.
1309	 */
1310	if (m->queue == PQ_INACTIVE)
1311		return;
1312
1313	s = splvm();
1314	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1315		if ((m->queue - m->pc) == PQ_CACHE)
1316			cnt.v_reactivated++;
1317		vm_page_flag_clear(m, PG_WINATCFLS);
1318		vm_pageq_remove(m);
1319		if (athead)
1320			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1321		else
1322			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1323		m->queue = PQ_INACTIVE;
1324		vm_page_queues[PQ_INACTIVE].lcnt++;
1325		cnt.v_inactive_count++;
1326	}
1327	splx(s);
1328}
1329
1330void
1331vm_page_deactivate(vm_page_t m)
1332{
1333    _vm_page_deactivate(m, 0);
1334}
1335
1336/*
1337 * vm_page_try_to_cache:
1338 *
1339 * Returns 0 on failure, 1 on success
1340 */
1341int
1342vm_page_try_to_cache(vm_page_t m)
1343{
1344	GIANT_REQUIRED;
1345
1346	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1347	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1348		return (0);
1349	}
1350	vm_page_test_dirty(m);
1351	if (m->dirty)
1352		return (0);
1353	vm_page_cache(m);
1354	return (1);
1355}
1356
1357/*
1358 * vm_page_try_to_free()
1359 *
1360 *	Attempt to free the page.  If we cannot free it, we do nothing.
1361 *	1 is returned on success, 0 on failure.
1362 */
1363int
1364vm_page_try_to_free(vm_page_t m)
1365{
1366	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1367	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1368		return (0);
1369	}
1370	vm_page_test_dirty(m);
1371	if (m->dirty)
1372		return (0);
1373	vm_page_busy(m);
1374	vm_page_protect(m, VM_PROT_NONE);
1375	vm_page_free(m);
1376	return (1);
1377}
1378
1379/*
1380 * vm_page_cache
1381 *
1382 * Put the specified page onto the page cache queue (if appropriate).
1383 *
1384 * This routine may not block.
1385 */
1386void
1387vm_page_cache(vm_page_t m)
1388{
1389	int s;
1390
1391	GIANT_REQUIRED;
1392	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1393		printf("vm_page_cache: attempting to cache busy page\n");
1394		return;
1395	}
1396	if ((m->queue - m->pc) == PQ_CACHE)
1397		return;
1398
1399	/*
1400	 * Remove all pmaps and indicate that the page is not
1401	 * writeable or mapped.
1402	 */
1403	vm_page_protect(m, VM_PROT_NONE);
1404	if (m->dirty != 0) {
1405		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1406			(long)m->pindex);
1407	}
1408	s = splvm();
1409	vm_pageq_remove_nowakeup(m);
1410	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1411	vm_page_free_wakeup();
1412	splx(s);
1413}
1414
1415/*
1416 * vm_page_dontneed
1417 *
1418 *	Cache, deactivate, or do nothing as appropriate.  This routine
1419 *	is typically used by madvise() MADV_DONTNEED.
1420 *
1421 *	Generally speaking we want to move the page into the cache so
1422 *	it gets reused quickly.  However, this can result in a silly syndrome
1423 *	due to the page recycling too quickly.  Small objects will not be
1424 *	fully cached.  On the otherhand, if we move the page to the inactive
1425 *	queue we wind up with a problem whereby very large objects
1426 *	unnecessarily blow away our inactive and cache queues.
1427 *
1428 *	The solution is to move the pages based on a fixed weighting.  We
1429 *	either leave them alone, deactivate them, or move them to the cache,
1430 *	where moving them to the cache has the highest weighting.
1431 *	By forcing some pages into other queues we eventually force the
1432 *	system to balance the queues, potentially recovering other unrelated
1433 *	space from active.  The idea is to not force this to happen too
1434 *	often.
1435 */
1436void
1437vm_page_dontneed(vm_page_t m)
1438{
1439	static int dnweight;
1440	int dnw;
1441	int head;
1442
1443	GIANT_REQUIRED;
1444	dnw = ++dnweight;
1445
1446	/*
1447	 * occassionally leave the page alone
1448	 */
1449	if ((dnw & 0x01F0) == 0 ||
1450	    m->queue == PQ_INACTIVE ||
1451	    m->queue - m->pc == PQ_CACHE
1452	) {
1453		if (m->act_count >= ACT_INIT)
1454			--m->act_count;
1455		return;
1456	}
1457
1458	if (m->dirty == 0)
1459		vm_page_test_dirty(m);
1460
1461	if (m->dirty || (dnw & 0x0070) == 0) {
1462		/*
1463		 * Deactivate the page 3 times out of 32.
1464		 */
1465		head = 0;
1466	} else {
1467		/*
1468		 * Cache the page 28 times out of every 32.  Note that
1469		 * the page is deactivated instead of cached, but placed
1470		 * at the head of the queue instead of the tail.
1471		 */
1472		head = 1;
1473	}
1474	_vm_page_deactivate(m, head);
1475}
1476
1477/*
1478 * Grab a page, waiting until we are waken up due to the page
1479 * changing state.  We keep on waiting, if the page continues
1480 * to be in the object.  If the page doesn't exist, allocate it.
1481 *
1482 * This routine may block.
1483 */
1484vm_page_t
1485vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1486{
1487	vm_page_t m;
1488	int s, generation;
1489
1490	GIANT_REQUIRED;
1491retrylookup:
1492	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1493		if (m->busy || (m->flags & PG_BUSY)) {
1494			generation = object->generation;
1495
1496			s = splvm();
1497			while ((object->generation == generation) &&
1498					(m->busy || (m->flags & PG_BUSY))) {
1499				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1500				tsleep(m, PVM, "pgrbwt", 0);
1501				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1502					splx(s);
1503					return NULL;
1504				}
1505			}
1506			splx(s);
1507			goto retrylookup;
1508		} else {
1509			vm_page_busy(m);
1510			return m;
1511		}
1512	}
1513
1514	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1515	if (m == NULL) {
1516		VM_WAIT;
1517		if ((allocflags & VM_ALLOC_RETRY) == 0)
1518			return NULL;
1519		goto retrylookup;
1520	}
1521
1522	return m;
1523}
1524
1525/*
1526 * Mapping function for valid bits or for dirty bits in
1527 * a page.  May not block.
1528 *
1529 * Inputs are required to range within a page.
1530 */
1531__inline int
1532vm_page_bits(int base, int size)
1533{
1534	int first_bit;
1535	int last_bit;
1536
1537	KASSERT(
1538	    base + size <= PAGE_SIZE,
1539	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1540	);
1541
1542	if (size == 0)		/* handle degenerate case */
1543		return (0);
1544
1545	first_bit = base >> DEV_BSHIFT;
1546	last_bit = (base + size - 1) >> DEV_BSHIFT;
1547
1548	return ((2 << last_bit) - (1 << first_bit));
1549}
1550
1551/*
1552 *	vm_page_set_validclean:
1553 *
1554 *	Sets portions of a page valid and clean.  The arguments are expected
1555 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1556 *	of any partial chunks touched by the range.  The invalid portion of
1557 *	such chunks will be zero'd.
1558 *
1559 *	This routine may not block.
1560 *
1561 *	(base + size) must be less then or equal to PAGE_SIZE.
1562 */
1563void
1564vm_page_set_validclean(vm_page_t m, int base, int size)
1565{
1566	int pagebits;
1567	int frag;
1568	int endoff;
1569
1570	GIANT_REQUIRED;
1571	if (size == 0)	/* handle degenerate case */
1572		return;
1573
1574	/*
1575	 * If the base is not DEV_BSIZE aligned and the valid
1576	 * bit is clear, we have to zero out a portion of the
1577	 * first block.
1578	 */
1579	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1580	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1581		pmap_zero_page_area(m, frag, base - frag);
1582
1583	/*
1584	 * If the ending offset is not DEV_BSIZE aligned and the
1585	 * valid bit is clear, we have to zero out a portion of
1586	 * the last block.
1587	 */
1588	endoff = base + size;
1589	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1590	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1591		pmap_zero_page_area(m, endoff,
1592		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1593
1594	/*
1595	 * Set valid, clear dirty bits.  If validating the entire
1596	 * page we can safely clear the pmap modify bit.  We also
1597	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1598	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1599	 * be set again.
1600	 *
1601	 * We set valid bits inclusive of any overlap, but we can only
1602	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1603	 * the range.
1604	 */
1605	pagebits = vm_page_bits(base, size);
1606	m->valid |= pagebits;
1607#if 0	/* NOT YET */
1608	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1609		frag = DEV_BSIZE - frag;
1610		base += frag;
1611		size -= frag;
1612		if (size < 0)
1613			size = 0;
1614	}
1615	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1616#endif
1617	m->dirty &= ~pagebits;
1618	if (base == 0 && size == PAGE_SIZE) {
1619		pmap_clear_modify(m);
1620		vm_page_flag_clear(m, PG_NOSYNC);
1621	}
1622}
1623
1624#if 0
1625
1626void
1627vm_page_set_dirty(vm_page_t m, int base, int size)
1628{
1629	m->dirty |= vm_page_bits(base, size);
1630}
1631
1632#endif
1633
1634void
1635vm_page_clear_dirty(vm_page_t m, int base, int size)
1636{
1637	GIANT_REQUIRED;
1638	m->dirty &= ~vm_page_bits(base, size);
1639}
1640
1641/*
1642 *	vm_page_set_invalid:
1643 *
1644 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1645 *	valid and dirty bits for the effected areas are cleared.
1646 *
1647 *	May not block.
1648 */
1649void
1650vm_page_set_invalid(vm_page_t m, int base, int size)
1651{
1652	int bits;
1653
1654	GIANT_REQUIRED;
1655	bits = vm_page_bits(base, size);
1656	m->valid &= ~bits;
1657	m->dirty &= ~bits;
1658	m->object->generation++;
1659}
1660
1661/*
1662 * vm_page_zero_invalid()
1663 *
1664 *	The kernel assumes that the invalid portions of a page contain
1665 *	garbage, but such pages can be mapped into memory by user code.
1666 *	When this occurs, we must zero out the non-valid portions of the
1667 *	page so user code sees what it expects.
1668 *
1669 *	Pages are most often semi-valid when the end of a file is mapped
1670 *	into memory and the file's size is not page aligned.
1671 */
1672void
1673vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1674{
1675	int b;
1676	int i;
1677
1678	/*
1679	 * Scan the valid bits looking for invalid sections that
1680	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1681	 * valid bit may be set ) have already been zerod by
1682	 * vm_page_set_validclean().
1683	 */
1684	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1685		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1686		    (m->valid & (1 << i))
1687		) {
1688			if (i > b) {
1689				pmap_zero_page_area(m,
1690				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1691			}
1692			b = i + 1;
1693		}
1694	}
1695
1696	/*
1697	 * setvalid is TRUE when we can safely set the zero'd areas
1698	 * as being valid.  We can do this if there are no cache consistancy
1699	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1700	 */
1701	if (setvalid)
1702		m->valid = VM_PAGE_BITS_ALL;
1703}
1704
1705/*
1706 *	vm_page_is_valid:
1707 *
1708 *	Is (partial) page valid?  Note that the case where size == 0
1709 *	will return FALSE in the degenerate case where the page is
1710 *	entirely invalid, and TRUE otherwise.
1711 *
1712 *	May not block.
1713 */
1714int
1715vm_page_is_valid(vm_page_t m, int base, int size)
1716{
1717	int bits = vm_page_bits(base, size);
1718
1719	if (m->valid && ((m->valid & bits) == bits))
1720		return 1;
1721	else
1722		return 0;
1723}
1724
1725/*
1726 * update dirty bits from pmap/mmu.  May not block.
1727 */
1728void
1729vm_page_test_dirty(vm_page_t m)
1730{
1731	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1732		vm_page_dirty(m);
1733	}
1734}
1735
1736int so_zerocp_fullpage = 0;
1737
1738void
1739vm_page_cowfault(vm_page_t m)
1740{
1741	vm_page_t mnew;
1742	vm_object_t object;
1743	vm_pindex_t pindex;
1744
1745	object = m->object;
1746	pindex = m->pindex;
1747	vm_page_busy(m);
1748
1749 retry_alloc:
1750	vm_page_remove(m);
1751	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1752	if (mnew == NULL) {
1753		vm_page_insert(m, object, pindex);
1754		VM_WAIT;
1755		goto retry_alloc;
1756	}
1757
1758	if (m->cow == 0) {
1759		/*
1760		 * check to see if we raced with an xmit complete when
1761		 * waiting to allocate a page.  If so, put things back
1762		 * the way they were
1763		 */
1764		vm_page_busy(mnew);
1765		vm_page_free(mnew);
1766		vm_page_insert(m, object, pindex);
1767	} else { /* clear COW & copy page */
1768		if (so_zerocp_fullpage) {
1769			mnew->valid = VM_PAGE_BITS_ALL;
1770		} else {
1771			vm_page_copy(m, mnew);
1772		}
1773		vm_page_dirty(mnew);
1774		vm_page_flag_clear(mnew, PG_BUSY);
1775	}
1776	vm_page_wakeup(m); /*unbusy the page */
1777}
1778
1779void
1780vm_page_cowclear(vm_page_t m)
1781{
1782
1783	/* XXX KDM find out if giant is required here. */
1784	GIANT_REQUIRED;
1785	if (m->cow) {
1786		atomic_subtract_int(&m->cow, 1);
1787		/*
1788		 * let vm_fault add back write permission  lazily
1789		 */
1790	}
1791	/*
1792	 *  sf_buf_free() will free the page, so we needn't do it here
1793	 */
1794}
1795
1796void
1797vm_page_cowsetup(vm_page_t m)
1798{
1799	/* XXX KDM find out if giant is required here */
1800	GIANT_REQUIRED;
1801	atomic_add_int(&m->cow, 1);
1802	vm_page_protect(m, VM_PROT_READ);
1803}
1804
1805#include "opt_ddb.h"
1806#ifdef DDB
1807#include <sys/kernel.h>
1808
1809#include <ddb/ddb.h>
1810
1811DB_SHOW_COMMAND(page, vm_page_print_page_info)
1812{
1813	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1814	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1815	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1816	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1817	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1818	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1819	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1820	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1821	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1822	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1823}
1824
1825DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1826{
1827	int i;
1828	db_printf("PQ_FREE:");
1829	for (i = 0; i < PQ_L2_SIZE; i++) {
1830		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1831	}
1832	db_printf("\n");
1833
1834	db_printf("PQ_CACHE:");
1835	for (i = 0; i < PQ_L2_SIZE; i++) {
1836		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1837	}
1838	db_printf("\n");
1839
1840	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1841		vm_page_queues[PQ_ACTIVE].lcnt,
1842		vm_page_queues[PQ_INACTIVE].lcnt);
1843}
1844#endif /* DDB */
1845