vm_page.c revision 93818
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 * $FreeBSD: head/sys/vm/vm_page.c 93818 2002-04-04 21:03:38Z jhb $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *			GENERAL RULES ON VM_PAGE MANIPULATION
69 *
70 *	- a pageq mutex is required when adding or removing a page from a
71 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72 *	  busy state of a page.
73 *
74 *	- a hash chain mutex is required when associating or disassociating
75 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76 *	  regardless of other mutexes or the busy state of a page.
77 *
78 *	- either a hash chain mutex OR a busied page is required in order
79 *	  to modify the page flags.  A hash chain mutex must be obtained in
80 *	  order to busy a page.  A page's flags cannot be modified by a
81 *	  hash chain mutex if the page is marked busy.
82 *
83 *	- The object memq mutex is held when inserting or removing
84 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85 *	  is different from the object's main mutex.
86 *
87 *	Generally speaking, you have to be aware of side effects when running
88 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90 *	vm_page_cache(), vm_page_activate(), and a number of other routines
91 *	will release the hash chain mutex for you.  Intermediate manipulation
92 *	routines such as vm_page_flag_set() expect the hash chain to be held
93 *	on entry and the hash chain will remain held on return.
94 *
95 *	pageq scanning can only occur with the pageq in question locked.
96 *	We have a known bottleneck with the active queue, but the cache
97 *	and free queues are actually arrays already.
98 */
99
100/*
101 *	Resident memory management module.
102 */
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/lock.h>
107#include <sys/malloc.h>
108#include <sys/mutex.h>
109#include <sys/proc.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124/*
125 *	Associated with page of user-allocatable memory is a
126 *	page structure.
127 */
128static struct vm_page **vm_page_buckets; /* Array of buckets */
129static int vm_page_bucket_count;	/* How big is array? */
130static int vm_page_hash_mask;		/* Mask for hash function */
131static volatile int vm_page_bucket_generation;
132static struct mtx vm_buckets_mtx[BUCKET_HASH_SIZE];
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139/*
140 *	vm_set_page_size:
141 *
142 *	Sets the page size, perhaps based upon the memory
143 *	size.  Must be called before any use of page-size
144 *	dependent functions.
145 */
146void
147vm_set_page_size(void)
148{
149	if (cnt.v_page_size == 0)
150		cnt.v_page_size = PAGE_SIZE;
151	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
152		panic("vm_set_page_size: page size not a power of two");
153}
154
155/*
156 *	vm_page_startup:
157 *
158 *	Initializes the resident memory module.
159 *
160 *	Allocates memory for the page cells, and
161 *	for the object/offset-to-page hash table headers.
162 *	Each page cell is initialized and placed on the free list.
163 */
164vm_offset_t
165vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166{
167	vm_offset_t mapped;
168	struct vm_page **bucket;
169	vm_size_t npages, page_range;
170	vm_offset_t new_end;
171	int i;
172	vm_offset_t pa;
173	int nblocks;
174	vm_offset_t last_pa;
175
176	/* the biggest memory array is the second group of pages */
177	vm_offset_t end;
178	vm_offset_t biggestone, biggestsize;
179
180	vm_offset_t total;
181	vm_size_t bootpages;
182
183	total = 0;
184	biggestsize = 0;
185	biggestone = 0;
186	nblocks = 0;
187	vaddr = round_page(vaddr);
188
189	for (i = 0; phys_avail[i + 1]; i += 2) {
190		phys_avail[i] = round_page(phys_avail[i]);
191		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
192	}
193
194	for (i = 0; phys_avail[i + 1]; i += 2) {
195		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
196
197		if (size > biggestsize) {
198			biggestone = i;
199			biggestsize = size;
200		}
201		++nblocks;
202		total += size;
203	}
204
205	end = phys_avail[biggestone+1];
206
207	/*
208	 * Initialize the queue headers for the free queue, the active queue
209	 * and the inactive queue.
210	 */
211	vm_pageq_init();
212
213	/*
214	 * Allocate memory for use when boot strapping the kernel memory allocator
215	 */
216	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
217	new_end = end - bootpages;
218	new_end = trunc_page(new_end);
219	mapped = pmap_map(&vaddr, new_end, end,
220	    VM_PROT_READ | VM_PROT_WRITE);
221	bzero((caddr_t) mapped, end - new_end);
222	uma_startup((caddr_t)mapped);
223
224	end = new_end;
225
226	/*
227	 * Allocate (and initialize) the hash table buckets.
228	 *
229	 * The number of buckets MUST BE a power of 2, and the actual value is
230	 * the next power of 2 greater than the number of physical pages in
231	 * the system.
232	 *
233	 * We make the hash table approximately 2x the number of pages to
234	 * reduce the chain length.  This is about the same size using the
235	 * singly-linked list as the 1x hash table we were using before
236	 * using TAILQ but the chain length will be smaller.
237	 *
238	 * Note: This computation can be tweaked if desired.
239	 */
240	if (vm_page_bucket_count == 0) {
241		vm_page_bucket_count = 1;
242		while (vm_page_bucket_count < atop(total))
243			vm_page_bucket_count <<= 1;
244	}
245	vm_page_bucket_count <<= 1;
246	vm_page_hash_mask = vm_page_bucket_count - 1;
247
248	/*
249	 * Validate these addresses.
250	 */
251	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
252	new_end = trunc_page(new_end);
253	mapped = pmap_map(&vaddr, new_end, end,
254	    VM_PROT_READ | VM_PROT_WRITE);
255	bzero((caddr_t) mapped, end - new_end);
256
257	vm_page_buckets = (struct vm_page **)mapped;
258	bucket = vm_page_buckets;
259	for (i = 0; i < vm_page_bucket_count; i++) {
260		*bucket = NULL;
261		bucket++;
262	}
263	for (i = 0; i < BUCKET_HASH_SIZE; ++i)
264		mtx_init(&vm_buckets_mtx[i],  "vm buckets hash mutexes", NULL,
265		    MTX_DEF);
266
267	/*
268	 * Compute the number of pages of memory that will be available for
269	 * use (taking into account the overhead of a page structure per
270	 * page).
271	 */
272	first_page = phys_avail[0] / PAGE_SIZE;
273	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
274	npages = (total - (page_range * sizeof(struct vm_page)) -
275	    (end - new_end)) / PAGE_SIZE;
276	end = new_end;
277
278	/*
279	 * Initialize the mem entry structures now, and put them in the free
280	 * queue.
281	 */
282	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
283	mapped = pmap_map(&vaddr, new_end, end,
284	    VM_PROT_READ | VM_PROT_WRITE);
285	vm_page_array = (vm_page_t) mapped;
286
287	/*
288	 * Clear all of the page structures
289	 */
290	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
291	vm_page_array_size = page_range;
292
293	/*
294	 * Construct the free queue(s) in descending order (by physical
295	 * address) so that the first 16MB of physical memory is allocated
296	 * last rather than first.  On large-memory machines, this avoids
297	 * the exhaustion of low physical memory before isa_dmainit has run.
298	 */
299	cnt.v_page_count = 0;
300	cnt.v_free_count = 0;
301	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
302		pa = phys_avail[i];
303		if (i == biggestone)
304			last_pa = new_end;
305		else
306			last_pa = phys_avail[i + 1];
307		while (pa < last_pa && npages-- > 0) {
308			vm_pageq_add_new_page(pa);
309			pa += PAGE_SIZE;
310		}
311	}
312	return (vaddr);
313}
314
315/*
316 *	vm_page_hash:
317 *
318 *	Distributes the object/offset key pair among hash buckets.
319 *
320 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
321 *	This routine may not block.
322 *
323 *	We try to randomize the hash based on the object to spread the pages
324 *	out in the hash table without it costing us too much.
325 */
326static __inline int
327vm_page_hash(vm_object_t object, vm_pindex_t pindex)
328{
329	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
330
331	return (i & vm_page_hash_mask);
332}
333
334void
335vm_page_flag_set(vm_page_t m, unsigned short bits)
336{
337	GIANT_REQUIRED;
338	m->flags |= bits;
339}
340
341void
342vm_page_flag_clear(vm_page_t m, unsigned short bits)
343{
344	GIANT_REQUIRED;
345	m->flags &= ~bits;
346}
347
348void
349vm_page_busy(vm_page_t m)
350{
351	KASSERT((m->flags & PG_BUSY) == 0,
352	    ("vm_page_busy: page already busy!!!"));
353	vm_page_flag_set(m, PG_BUSY);
354}
355
356/*
357 *      vm_page_flash:
358 *
359 *      wakeup anyone waiting for the page.
360 */
361void
362vm_page_flash(vm_page_t m)
363{
364	if (m->flags & PG_WANTED) {
365		vm_page_flag_clear(m, PG_WANTED);
366		wakeup(m);
367	}
368}
369
370/*
371 *      vm_page_wakeup:
372 *
373 *      clear the PG_BUSY flag and wakeup anyone waiting for the
374 *      page.
375 *
376 */
377void
378vm_page_wakeup(vm_page_t m)
379{
380	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
381	vm_page_flag_clear(m, PG_BUSY);
382	vm_page_flash(m);
383}
384
385/*
386 *
387 *
388 */
389void
390vm_page_io_start(vm_page_t m)
391{
392	GIANT_REQUIRED;
393	m->busy++;
394}
395
396void
397vm_page_io_finish(vm_page_t m)
398{
399	GIANT_REQUIRED;
400	m->busy--;
401	if (m->busy == 0)
402		vm_page_flash(m);
403}
404
405/*
406 * Keep page from being freed by the page daemon
407 * much of the same effect as wiring, except much lower
408 * overhead and should be used only for *very* temporary
409 * holding ("wiring").
410 */
411void
412vm_page_hold(vm_page_t mem)
413{
414        GIANT_REQUIRED;
415        mem->hold_count++;
416}
417
418void
419vm_page_unhold(vm_page_t mem)
420{
421	GIANT_REQUIRED;
422	--mem->hold_count;
423	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
424	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
425		vm_page_free_toq(mem);
426}
427
428/*
429 *	vm_page_protect:
430 *
431 *	Reduce the protection of a page.  This routine never raises the
432 *	protection and therefore can be safely called if the page is already
433 *	at VM_PROT_NONE (it will be a NOP effectively ).
434 */
435void
436vm_page_protect(vm_page_t mem, int prot)
437{
438	if (prot == VM_PROT_NONE) {
439		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
440			pmap_page_protect(mem, VM_PROT_NONE);
441			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
442		}
443	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
444		pmap_page_protect(mem, VM_PROT_READ);
445		vm_page_flag_clear(mem, PG_WRITEABLE);
446	}
447}
448/*
449 *	vm_page_zero_fill:
450 *
451 *	Zero-fill the specified page.
452 *	Written as a standard pagein routine, to
453 *	be used by the zero-fill object.
454 */
455boolean_t
456vm_page_zero_fill(vm_page_t m)
457{
458	pmap_zero_page(VM_PAGE_TO_PHYS(m));
459	return (TRUE);
460}
461
462/*
463 *	vm_page_copy:
464 *
465 *	Copy one page to another
466 */
467void
468vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
469{
470	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
471	dest_m->valid = VM_PAGE_BITS_ALL;
472}
473
474/*
475 *	vm_page_free:
476 *
477 *	Free a page
478 *
479 *	The clearing of PG_ZERO is a temporary safety until the code can be
480 *	reviewed to determine that PG_ZERO is being properly cleared on
481 *	write faults or maps.  PG_ZERO was previously cleared in
482 *	vm_page_alloc().
483 */
484void
485vm_page_free(vm_page_t m)
486{
487	vm_page_flag_clear(m, PG_ZERO);
488	vm_page_free_toq(m);
489	vm_page_zero_idle_wakeup();
490}
491
492/*
493 *	vm_page_free_zero:
494 *
495 *	Free a page to the zerod-pages queue
496 */
497void
498vm_page_free_zero(vm_page_t m)
499{
500	vm_page_flag_set(m, PG_ZERO);
501	vm_page_free_toq(m);
502}
503
504/*
505 *	vm_page_sleep_busy:
506 *
507 *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
508 *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
509 *	it almost had to sleep and made temporary spl*() mods), FALSE
510 *	otherwise.
511 *
512 *	This routine assumes that interrupts can only remove the busy
513 *	status from a page, not set the busy status or change it from
514 *	PG_BUSY to m->busy or vise versa (which would create a timing
515 *	window).
516 */
517int
518vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
519{
520	GIANT_REQUIRED;
521	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
522		int s = splvm();
523		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
524			/*
525			 * Page is busy. Wait and retry.
526			 */
527			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
528			tsleep(m, PVM, msg, 0);
529		}
530		splx(s);
531		return (TRUE);
532		/* not reached */
533	}
534	return (FALSE);
535}
536/*
537 *	vm_page_dirty:
538 *
539 *	make page all dirty
540 */
541void
542vm_page_dirty(vm_page_t m)
543{
544	KASSERT(m->queue - m->pc != PQ_CACHE,
545	    ("vm_page_dirty: page in cache!"));
546	m->dirty = VM_PAGE_BITS_ALL;
547}
548
549/*
550 *	vm_page_undirty:
551 *
552 *	Set page to not be dirty.  Note: does not clear pmap modify bits
553 */
554void
555vm_page_undirty(vm_page_t m)
556{
557	m->dirty = 0;
558}
559
560/*
561 *	vm_page_insert:		[ internal use only ]
562 *
563 *	Inserts the given mem entry into the object and object list.
564 *
565 *	The pagetables are not updated but will presumably fault the page
566 *	in if necessary, or if a kernel page the caller will at some point
567 *	enter the page into the kernel's pmap.  We are not allowed to block
568 *	here so we *can't* do this anyway.
569 *
570 *	The object and page must be locked, and must be splhigh.
571 *	This routine may not block.
572 */
573void
574vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
575{
576	struct vm_page **bucket;
577
578	GIANT_REQUIRED;
579
580	if (m->object != NULL)
581		panic("vm_page_insert: already inserted");
582
583	/*
584	 * Record the object/offset pair in this page
585	 */
586	m->object = object;
587	m->pindex = pindex;
588
589	/*
590	 * Insert it into the object_object/offset hash table
591	 */
592	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
593	m->hnext = *bucket;
594	*bucket = m;
595	vm_page_bucket_generation++;
596
597	/*
598	 * Now link into the object's list of backed pages.
599	 */
600	TAILQ_INSERT_TAIL(&object->memq, m, listq);
601	object->generation++;
602
603	/*
604	 * show that the object has one more resident page.
605	 */
606	object->resident_page_count++;
607
608	/*
609	 * Since we are inserting a new and possibly dirty page,
610	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
611	 */
612	if (m->flags & PG_WRITEABLE)
613		vm_object_set_writeable_dirty(object);
614}
615
616/*
617 *	vm_page_remove:
618 *				NOTE: used by device pager as well -wfj
619 *
620 *	Removes the given mem entry from the object/offset-page
621 *	table and the object page list, but do not invalidate/terminate
622 *	the backing store.
623 *
624 *	The object and page must be locked, and at splhigh.
625 *	The underlying pmap entry (if any) is NOT removed here.
626 *	This routine may not block.
627 */
628void
629vm_page_remove(vm_page_t m)
630{
631	vm_object_t object;
632
633	GIANT_REQUIRED;
634
635	if (m->object == NULL)
636		return;
637
638	if ((m->flags & PG_BUSY) == 0) {
639		panic("vm_page_remove: page not busy");
640	}
641
642	/*
643	 * Basically destroy the page.
644	 */
645	vm_page_wakeup(m);
646
647	object = m->object;
648
649	/*
650	 * Remove from the object_object/offset hash table.  The object
651	 * must be on the hash queue, we will panic if it isn't
652	 *
653	 * Note: we must NULL-out m->hnext to prevent loops in detached
654	 * buffers with vm_page_lookup().
655	 */
656	{
657		struct vm_page **bucket;
658
659		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
660		while (*bucket != m) {
661			if (*bucket == NULL)
662				panic("vm_page_remove(): page not found in hash");
663			bucket = &(*bucket)->hnext;
664		}
665		*bucket = m->hnext;
666		m->hnext = NULL;
667		vm_page_bucket_generation++;
668	}
669
670	/*
671	 * Now remove from the object's list of backed pages.
672	 */
673	TAILQ_REMOVE(&object->memq, m, listq);
674
675	/*
676	 * And show that the object has one fewer resident page.
677	 */
678	object->resident_page_count--;
679	object->generation++;
680
681	m->object = NULL;
682}
683
684/*
685 *	vm_page_lookup:
686 *
687 *	Returns the page associated with the object/offset
688 *	pair specified; if none is found, NULL is returned.
689 *
690 *	NOTE: the code below does not lock.  It will operate properly if
691 *	an interrupt makes a change, but the generation algorithm will not
692 *	operate properly in an SMP environment where both cpu's are able to run
693 *	kernel code simultaneously.
694 *
695 *	The object must be locked.  No side effects.
696 *	This routine may not block.
697 *	This is a critical path routine
698 */
699vm_page_t
700vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
701{
702	vm_page_t m;
703	struct vm_page **bucket;
704	int generation;
705
706	/*
707	 * Search the hash table for this object/offset pair
708	 */
709retry:
710	generation = vm_page_bucket_generation;
711	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
712	for (m = *bucket; m != NULL; m = m->hnext) {
713		if ((m->object == object) && (m->pindex == pindex)) {
714			if (vm_page_bucket_generation != generation)
715				goto retry;
716			return (m);
717		}
718	}
719	if (vm_page_bucket_generation != generation)
720		goto retry;
721	return (NULL);
722}
723
724/*
725 *	vm_page_rename:
726 *
727 *	Move the given memory entry from its
728 *	current object to the specified target object/offset.
729 *
730 *	The object must be locked.
731 *	This routine may not block.
732 *
733 *	Note: this routine will raise itself to splvm(), the caller need not.
734 *
735 *	Note: swap associated with the page must be invalidated by the move.  We
736 *	      have to do this for several reasons:  (1) we aren't freeing the
737 *	      page, (2) we are dirtying the page, (3) the VM system is probably
738 *	      moving the page from object A to B, and will then later move
739 *	      the backing store from A to B and we can't have a conflict.
740 *
741 *	Note: we *always* dirty the page.  It is necessary both for the
742 *	      fact that we moved it, and because we may be invalidating
743 *	      swap.  If the page is on the cache, we have to deactivate it
744 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
745 *	      on the cache.
746 */
747void
748vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
749{
750	int s;
751
752	s = splvm();
753	vm_page_remove(m);
754	vm_page_insert(m, new_object, new_pindex);
755	if (m->queue - m->pc == PQ_CACHE)
756		vm_page_deactivate(m);
757	vm_page_dirty(m);
758	splx(s);
759}
760
761/*
762 *	vm_page_select_cache:
763 *
764 *	Find a page on the cache queue with color optimization.  As pages
765 *	might be found, but not applicable, they are deactivated.  This
766 *	keeps us from using potentially busy cached pages.
767 *
768 *	This routine must be called at splvm().
769 *	This routine may not block.
770 */
771static vm_page_t
772vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
773{
774	vm_page_t m;
775
776	GIANT_REQUIRED;
777	while (TRUE) {
778		m = vm_pageq_find(
779		    PQ_CACHE,
780		    (pindex + object->pg_color) & PQ_L2_MASK,
781		    FALSE
782		);
783		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
784			       m->hold_count || m->wire_count)) {
785			vm_page_deactivate(m);
786			continue;
787		}
788		return m;
789	}
790}
791
792/*
793 *	vm_page_select_free:
794 *
795 *	Find a free or zero page, with specified preference.
796 *
797 *	This routine must be called at splvm().
798 *	This routine may not block.
799 */
800static __inline vm_page_t
801vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
802{
803	vm_page_t m;
804
805	m = vm_pageq_find(
806		PQ_FREE,
807		(pindex + object->pg_color) & PQ_L2_MASK,
808		prefer_zero
809	);
810	return (m);
811}
812
813/*
814 *	vm_page_alloc:
815 *
816 *	Allocate and return a memory cell associated
817 *	with this VM object/offset pair.
818 *
819 *	page_req classes:
820 *	VM_ALLOC_NORMAL		normal process request
821 *	VM_ALLOC_SYSTEM		system *really* needs a page
822 *	VM_ALLOC_INTERRUPT	interrupt time request
823 *	VM_ALLOC_ZERO		zero page
824 *
825 *	This routine may not block.
826 *
827 *	Additional special handling is required when called from an
828 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
829 *	the page cache in this case.
830 */
831vm_page_t
832vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
833{
834	vm_page_t m = NULL;
835	int s;
836
837	GIANT_REQUIRED;
838
839	KASSERT(!vm_page_lookup(object, pindex),
840		("vm_page_alloc: page already allocated"));
841
842	/*
843	 * The pager is allowed to eat deeper into the free page list.
844	 */
845	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
846		page_req = VM_ALLOC_SYSTEM;
847	};
848
849	s = splvm();
850
851loop:
852	if (cnt.v_free_count > cnt.v_free_reserved) {
853		/*
854		 * Allocate from the free queue if there are plenty of pages
855		 * in it.
856		 */
857		if (page_req == VM_ALLOC_ZERO)
858			m = vm_page_select_free(object, pindex, TRUE);
859		else
860			m = vm_page_select_free(object, pindex, FALSE);
861	} else if (
862	    (page_req == VM_ALLOC_SYSTEM &&
863	     cnt.v_cache_count == 0 &&
864	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
865	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
866	) {
867		/*
868		 * Interrupt or system, dig deeper into the free list.
869		 */
870		m = vm_page_select_free(object, pindex, FALSE);
871	} else if (page_req != VM_ALLOC_INTERRUPT) {
872		/*
873		 * Allocatable from cache (non-interrupt only).  On success,
874		 * we must free the page and try again, thus ensuring that
875		 * cnt.v_*_free_min counters are replenished.
876		 */
877		m = vm_page_select_cache(object, pindex);
878		if (m == NULL) {
879			splx(s);
880#if defined(DIAGNOSTIC)
881			if (cnt.v_cache_count > 0)
882				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
883#endif
884			vm_pageout_deficit++;
885			pagedaemon_wakeup();
886			return (NULL);
887		}
888		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
889		vm_page_busy(m);
890		vm_page_protect(m, VM_PROT_NONE);
891		vm_page_free(m);
892		goto loop;
893	} else {
894		/*
895		 * Not allocatable from cache from interrupt, give up.
896		 */
897		splx(s);
898		vm_pageout_deficit++;
899		pagedaemon_wakeup();
900		return (NULL);
901	}
902
903	/*
904	 *  At this point we had better have found a good page.
905	 */
906
907	KASSERT(
908	    m != NULL,
909	    ("vm_page_alloc(): missing page on free queue\n")
910	);
911
912	/*
913	 * Remove from free queue
914	 */
915
916	vm_pageq_remove_nowakeup(m);
917
918	/*
919	 * Initialize structure.  Only the PG_ZERO flag is inherited.
920	 */
921	if (m->flags & PG_ZERO) {
922		vm_page_zero_count--;
923		m->flags = PG_ZERO | PG_BUSY;
924	} else {
925		m->flags = PG_BUSY;
926	}
927	m->wire_count = 0;
928	m->hold_count = 0;
929	m->act_count = 0;
930	m->busy = 0;
931	m->valid = 0;
932	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
933
934	/*
935	 * vm_page_insert() is safe prior to the splx().  Note also that
936	 * inserting a page here does not insert it into the pmap (which
937	 * could cause us to block allocating memory).  We cannot block
938	 * anywhere.
939	 */
940	vm_page_insert(m, object, pindex);
941
942	/*
943	 * Don't wakeup too often - wakeup the pageout daemon when
944	 * we would be nearly out of memory.
945	 */
946	if (vm_paging_needed())
947		pagedaemon_wakeup();
948
949	splx(s);
950	return (m);
951}
952
953/*
954 *	vm_wait:	(also see VM_WAIT macro)
955 *
956 *	Block until free pages are available for allocation
957 *	- Called in various places before memory allocations.
958 */
959void
960vm_wait(void)
961{
962	int s;
963
964	s = splvm();
965	if (curproc == pageproc) {
966		vm_pageout_pages_needed = 1;
967		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
968	} else {
969		if (!vm_pages_needed) {
970			vm_pages_needed = 1;
971			wakeup(&vm_pages_needed);
972		}
973		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
974	}
975	splx(s);
976}
977
978/*
979 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
980 *
981 *	Block until free pages are available for allocation
982 *	- Called only in vm_fault so that processes page faulting
983 *	  can be easily tracked.
984 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
985 *	  processes will be able to grab memory first.  Do not change
986 *	  this balance without careful testing first.
987 */
988void
989vm_waitpfault(void)
990{
991	int s;
992
993	s = splvm();
994	if (!vm_pages_needed) {
995		vm_pages_needed = 1;
996		wakeup(&vm_pages_needed);
997	}
998	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
999	splx(s);
1000}
1001
1002/*
1003 *	vm_page_activate:
1004 *
1005 *	Put the specified page on the active list (if appropriate).
1006 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1007 *	mess with it.
1008 *
1009 *	The page queues must be locked.
1010 *	This routine may not block.
1011 */
1012void
1013vm_page_activate(vm_page_t m)
1014{
1015	int s;
1016
1017	GIANT_REQUIRED;
1018	s = splvm();
1019	if (m->queue != PQ_ACTIVE) {
1020		if ((m->queue - m->pc) == PQ_CACHE)
1021			cnt.v_reactivated++;
1022		vm_pageq_remove(m);
1023		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1024			if (m->act_count < ACT_INIT)
1025				m->act_count = ACT_INIT;
1026			vm_pageq_enqueue(PQ_ACTIVE, m);
1027		}
1028	} else {
1029		if (m->act_count < ACT_INIT)
1030			m->act_count = ACT_INIT;
1031	}
1032	splx(s);
1033}
1034
1035/*
1036 *	vm_page_free_wakeup:
1037 *
1038 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1039 *	routine is called when a page has been added to the cache or free
1040 *	queues.
1041 *
1042 *	This routine may not block.
1043 *	This routine must be called at splvm()
1044 */
1045static __inline void
1046vm_page_free_wakeup(void)
1047{
1048	/*
1049	 * if pageout daemon needs pages, then tell it that there are
1050	 * some free.
1051	 */
1052	if (vm_pageout_pages_needed &&
1053	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1054		wakeup(&vm_pageout_pages_needed);
1055		vm_pageout_pages_needed = 0;
1056	}
1057	/*
1058	 * wakeup processes that are waiting on memory if we hit a
1059	 * high water mark. And wakeup scheduler process if we have
1060	 * lots of memory. this process will swapin processes.
1061	 */
1062	if (vm_pages_needed && !vm_page_count_min()) {
1063		vm_pages_needed = 0;
1064		wakeup(&cnt.v_free_count);
1065	}
1066}
1067
1068/*
1069 *	vm_page_free_toq:
1070 *
1071 *	Returns the given page to the PQ_FREE list,
1072 *	disassociating it with any VM object.
1073 *
1074 *	Object and page must be locked prior to entry.
1075 *	This routine may not block.
1076 */
1077
1078void
1079vm_page_free_toq(vm_page_t m)
1080{
1081	int s;
1082	struct vpgqueues *pq;
1083	vm_object_t object = m->object;
1084
1085	GIANT_REQUIRED;
1086	s = splvm();
1087	cnt.v_tfree++;
1088
1089	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1090		printf(
1091		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1092		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1093		    m->hold_count);
1094		if ((m->queue - m->pc) == PQ_FREE)
1095			panic("vm_page_free: freeing free page");
1096		else
1097			panic("vm_page_free: freeing busy page");
1098	}
1099
1100	/*
1101	 * unqueue, then remove page.  Note that we cannot destroy
1102	 * the page here because we do not want to call the pager's
1103	 * callback routine until after we've put the page on the
1104	 * appropriate free queue.
1105	 */
1106	vm_pageq_remove_nowakeup(m);
1107	vm_page_remove(m);
1108
1109	/*
1110	 * If fictitious remove object association and
1111	 * return, otherwise delay object association removal.
1112	 */
1113	if ((m->flags & PG_FICTITIOUS) != 0) {
1114		splx(s);
1115		return;
1116	}
1117
1118	m->valid = 0;
1119	vm_page_undirty(m);
1120
1121	if (m->wire_count != 0) {
1122		if (m->wire_count > 1) {
1123			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1124				m->wire_count, (long)m->pindex);
1125		}
1126		panic("vm_page_free: freeing wired page\n");
1127	}
1128
1129	/*
1130	 * If we've exhausted the object's resident pages we want to free
1131	 * it up.
1132	 */
1133	if (object &&
1134	    (object->type == OBJT_VNODE) &&
1135	    ((object->flags & OBJ_DEAD) == 0)
1136	) {
1137		struct vnode *vp = (struct vnode *)object->handle;
1138
1139		if (vp && VSHOULDFREE(vp))
1140			vfree(vp);
1141	}
1142
1143	/*
1144	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1145	 */
1146	if (m->flags & PG_UNMANAGED) {
1147		m->flags &= ~PG_UNMANAGED;
1148	} else {
1149#ifdef __alpha__
1150		pmap_page_is_free(m);
1151#endif
1152	}
1153
1154	if (m->hold_count != 0) {
1155		m->flags &= ~PG_ZERO;
1156		m->queue = PQ_HOLD;
1157	} else
1158		m->queue = PQ_FREE + m->pc;
1159	pq = &vm_page_queues[m->queue];
1160	pq->lcnt++;
1161	++(*pq->cnt);
1162
1163	/*
1164	 * Put zero'd pages on the end ( where we look for zero'd pages
1165	 * first ) and non-zerod pages at the head.
1166	 */
1167	if (m->flags & PG_ZERO) {
1168		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1169		++vm_page_zero_count;
1170	} else {
1171		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1172	}
1173	vm_page_free_wakeup();
1174	splx(s);
1175}
1176
1177/*
1178 *	vm_page_unmanage:
1179 *
1180 * 	Prevent PV management from being done on the page.  The page is
1181 *	removed from the paging queues as if it were wired, and as a
1182 *	consequence of no longer being managed the pageout daemon will not
1183 *	touch it (since there is no way to locate the pte mappings for the
1184 *	page).  madvise() calls that mess with the pmap will also no longer
1185 *	operate on the page.
1186 *
1187 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1188 *	will clear the flag.
1189 *
1190 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1191 *	physical memory as backing store rather then swap-backed memory and
1192 *	will eventually be extended to support 4MB unmanaged physical
1193 *	mappings.
1194 */
1195void
1196vm_page_unmanage(vm_page_t m)
1197{
1198	int s;
1199
1200	s = splvm();
1201	if ((m->flags & PG_UNMANAGED) == 0) {
1202		if (m->wire_count == 0)
1203			vm_pageq_remove(m);
1204	}
1205	vm_page_flag_set(m, PG_UNMANAGED);
1206	splx(s);
1207}
1208
1209/*
1210 *	vm_page_wire:
1211 *
1212 *	Mark this page as wired down by yet
1213 *	another map, removing it from paging queues
1214 *	as necessary.
1215 *
1216 *	The page queues must be locked.
1217 *	This routine may not block.
1218 */
1219void
1220vm_page_wire(vm_page_t m)
1221{
1222	int s;
1223
1224	/*
1225	 * Only bump the wire statistics if the page is not already wired,
1226	 * and only unqueue the page if it is on some queue (if it is unmanaged
1227	 * it is already off the queues).
1228	 */
1229	s = splvm();
1230	if (m->wire_count == 0) {
1231		if ((m->flags & PG_UNMANAGED) == 0)
1232			vm_pageq_remove(m);
1233		cnt.v_wire_count++;
1234	}
1235	m->wire_count++;
1236	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1237	splx(s);
1238	vm_page_flag_set(m, PG_MAPPED);
1239}
1240
1241/*
1242 *	vm_page_unwire:
1243 *
1244 *	Release one wiring of this page, potentially
1245 *	enabling it to be paged again.
1246 *
1247 *	Many pages placed on the inactive queue should actually go
1248 *	into the cache, but it is difficult to figure out which.  What
1249 *	we do instead, if the inactive target is well met, is to put
1250 *	clean pages at the head of the inactive queue instead of the tail.
1251 *	This will cause them to be moved to the cache more quickly and
1252 *	if not actively re-referenced, freed more quickly.  If we just
1253 *	stick these pages at the end of the inactive queue, heavy filesystem
1254 *	meta-data accesses can cause an unnecessary paging load on memory bound
1255 *	processes.  This optimization causes one-time-use metadata to be
1256 *	reused more quickly.
1257 *
1258 *	BUT, if we are in a low-memory situation we have no choice but to
1259 *	put clean pages on the cache queue.
1260 *
1261 *	A number of routines use vm_page_unwire() to guarantee that the page
1262 *	will go into either the inactive or active queues, and will NEVER
1263 *	be placed in the cache - for example, just after dirtying a page.
1264 *	dirty pages in the cache are not allowed.
1265 *
1266 *	The page queues must be locked.
1267 *	This routine may not block.
1268 */
1269void
1270vm_page_unwire(vm_page_t m, int activate)
1271{
1272	int s;
1273
1274	s = splvm();
1275
1276	if (m->wire_count > 0) {
1277		m->wire_count--;
1278		if (m->wire_count == 0) {
1279			cnt.v_wire_count--;
1280			if (m->flags & PG_UNMANAGED) {
1281				;
1282			} else if (activate)
1283				vm_pageq_enqueue(PQ_ACTIVE, m);
1284			else {
1285				vm_page_flag_clear(m, PG_WINATCFLS);
1286				vm_pageq_enqueue(PQ_INACTIVE, m);
1287			}
1288		}
1289	} else {
1290		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1291	}
1292	splx(s);
1293}
1294
1295
1296/*
1297 * Move the specified page to the inactive queue.  If the page has
1298 * any associated swap, the swap is deallocated.
1299 *
1300 * Normally athead is 0 resulting in LRU operation.  athead is set
1301 * to 1 if we want this page to be 'as if it were placed in the cache',
1302 * except without unmapping it from the process address space.
1303 *
1304 * This routine may not block.
1305 */
1306static __inline void
1307_vm_page_deactivate(vm_page_t m, int athead)
1308{
1309	int s;
1310
1311	GIANT_REQUIRED;
1312	/*
1313	 * Ignore if already inactive.
1314	 */
1315	if (m->queue == PQ_INACTIVE)
1316		return;
1317
1318	s = splvm();
1319	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1320		if ((m->queue - m->pc) == PQ_CACHE)
1321			cnt.v_reactivated++;
1322		vm_page_flag_clear(m, PG_WINATCFLS);
1323		vm_pageq_remove(m);
1324		if (athead)
1325			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1326		else
1327			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1328		m->queue = PQ_INACTIVE;
1329		vm_page_queues[PQ_INACTIVE].lcnt++;
1330		cnt.v_inactive_count++;
1331	}
1332	splx(s);
1333}
1334
1335void
1336vm_page_deactivate(vm_page_t m)
1337{
1338    _vm_page_deactivate(m, 0);
1339}
1340
1341/*
1342 * vm_page_try_to_cache:
1343 *
1344 * Returns 0 on failure, 1 on success
1345 */
1346int
1347vm_page_try_to_cache(vm_page_t m)
1348{
1349	GIANT_REQUIRED;
1350
1351	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1352	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1353		return (0);
1354	}
1355	vm_page_test_dirty(m);
1356	if (m->dirty)
1357		return (0);
1358	vm_page_cache(m);
1359	return (1);
1360}
1361
1362/*
1363 * vm_page_try_to_free()
1364 *
1365 *	Attempt to free the page.  If we cannot free it, we do nothing.
1366 *	1 is returned on success, 0 on failure.
1367 */
1368int
1369vm_page_try_to_free(vm_page_t m)
1370{
1371	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1372	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1373		return (0);
1374	}
1375	vm_page_test_dirty(m);
1376	if (m->dirty)
1377		return (0);
1378	vm_page_busy(m);
1379	vm_page_protect(m, VM_PROT_NONE);
1380	vm_page_free(m);
1381	return (1);
1382}
1383
1384/*
1385 * vm_page_cache
1386 *
1387 * Put the specified page onto the page cache queue (if appropriate).
1388 *
1389 * This routine may not block.
1390 */
1391void
1392vm_page_cache(vm_page_t m)
1393{
1394	int s;
1395
1396	GIANT_REQUIRED;
1397	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1398		printf("vm_page_cache: attempting to cache busy page\n");
1399		return;
1400	}
1401	if ((m->queue - m->pc) == PQ_CACHE)
1402		return;
1403
1404	/*
1405	 * Remove all pmaps and indicate that the page is not
1406	 * writeable or mapped.
1407	 */
1408	vm_page_protect(m, VM_PROT_NONE);
1409	if (m->dirty != 0) {
1410		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1411			(long)m->pindex);
1412	}
1413	s = splvm();
1414	vm_pageq_remove_nowakeup(m);
1415	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1416	vm_page_free_wakeup();
1417	splx(s);
1418}
1419
1420/*
1421 * vm_page_dontneed
1422 *
1423 *	Cache, deactivate, or do nothing as appropriate.  This routine
1424 *	is typically used by madvise() MADV_DONTNEED.
1425 *
1426 *	Generally speaking we want to move the page into the cache so
1427 *	it gets reused quickly.  However, this can result in a silly syndrome
1428 *	due to the page recycling too quickly.  Small objects will not be
1429 *	fully cached.  On the otherhand, if we move the page to the inactive
1430 *	queue we wind up with a problem whereby very large objects
1431 *	unnecessarily blow away our inactive and cache queues.
1432 *
1433 *	The solution is to move the pages based on a fixed weighting.  We
1434 *	either leave them alone, deactivate them, or move them to the cache,
1435 *	where moving them to the cache has the highest weighting.
1436 *	By forcing some pages into other queues we eventually force the
1437 *	system to balance the queues, potentially recovering other unrelated
1438 *	space from active.  The idea is to not force this to happen too
1439 *	often.
1440 */
1441void
1442vm_page_dontneed(vm_page_t m)
1443{
1444	static int dnweight;
1445	int dnw;
1446	int head;
1447
1448	GIANT_REQUIRED;
1449	dnw = ++dnweight;
1450
1451	/*
1452	 * occassionally leave the page alone
1453	 */
1454	if ((dnw & 0x01F0) == 0 ||
1455	    m->queue == PQ_INACTIVE ||
1456	    m->queue - m->pc == PQ_CACHE
1457	) {
1458		if (m->act_count >= ACT_INIT)
1459			--m->act_count;
1460		return;
1461	}
1462
1463	if (m->dirty == 0)
1464		vm_page_test_dirty(m);
1465
1466	if (m->dirty || (dnw & 0x0070) == 0) {
1467		/*
1468		 * Deactivate the page 3 times out of 32.
1469		 */
1470		head = 0;
1471	} else {
1472		/*
1473		 * Cache the page 28 times out of every 32.  Note that
1474		 * the page is deactivated instead of cached, but placed
1475		 * at the head of the queue instead of the tail.
1476		 */
1477		head = 1;
1478	}
1479	_vm_page_deactivate(m, head);
1480}
1481
1482/*
1483 * Grab a page, waiting until we are waken up due to the page
1484 * changing state.  We keep on waiting, if the page continues
1485 * to be in the object.  If the page doesn't exist, allocate it.
1486 *
1487 * This routine may block.
1488 */
1489vm_page_t
1490vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1491{
1492	vm_page_t m;
1493	int s, generation;
1494
1495	GIANT_REQUIRED;
1496retrylookup:
1497	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1498		if (m->busy || (m->flags & PG_BUSY)) {
1499			generation = object->generation;
1500
1501			s = splvm();
1502			while ((object->generation == generation) &&
1503					(m->busy || (m->flags & PG_BUSY))) {
1504				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1505				tsleep(m, PVM, "pgrbwt", 0);
1506				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1507					splx(s);
1508					return NULL;
1509				}
1510			}
1511			splx(s);
1512			goto retrylookup;
1513		} else {
1514			vm_page_busy(m);
1515			return m;
1516		}
1517	}
1518
1519	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1520	if (m == NULL) {
1521		VM_WAIT;
1522		if ((allocflags & VM_ALLOC_RETRY) == 0)
1523			return NULL;
1524		goto retrylookup;
1525	}
1526
1527	return m;
1528}
1529
1530/*
1531 * Mapping function for valid bits or for dirty bits in
1532 * a page.  May not block.
1533 *
1534 * Inputs are required to range within a page.
1535 */
1536__inline int
1537vm_page_bits(int base, int size)
1538{
1539	int first_bit;
1540	int last_bit;
1541
1542	KASSERT(
1543	    base + size <= PAGE_SIZE,
1544	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1545	);
1546
1547	if (size == 0)		/* handle degenerate case */
1548		return (0);
1549
1550	first_bit = base >> DEV_BSHIFT;
1551	last_bit = (base + size - 1) >> DEV_BSHIFT;
1552
1553	return ((2 << last_bit) - (1 << first_bit));
1554}
1555
1556/*
1557 *	vm_page_set_validclean:
1558 *
1559 *	Sets portions of a page valid and clean.  The arguments are expected
1560 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1561 *	of any partial chunks touched by the range.  The invalid portion of
1562 *	such chunks will be zero'd.
1563 *
1564 *	This routine may not block.
1565 *
1566 *	(base + size) must be less then or equal to PAGE_SIZE.
1567 */
1568void
1569vm_page_set_validclean(vm_page_t m, int base, int size)
1570{
1571	int pagebits;
1572	int frag;
1573	int endoff;
1574
1575	GIANT_REQUIRED;
1576	if (size == 0)	/* handle degenerate case */
1577		return;
1578
1579	/*
1580	 * If the base is not DEV_BSIZE aligned and the valid
1581	 * bit is clear, we have to zero out a portion of the
1582	 * first block.
1583	 */
1584	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1585	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1586	) {
1587		pmap_zero_page_area(
1588		    VM_PAGE_TO_PHYS(m),
1589		    frag,
1590		    base - frag
1591		);
1592	}
1593
1594	/*
1595	 * If the ending offset is not DEV_BSIZE aligned and the
1596	 * valid bit is clear, we have to zero out a portion of
1597	 * the last block.
1598	 */
1599	endoff = base + size;
1600	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1601	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1602	) {
1603		pmap_zero_page_area(
1604		    VM_PAGE_TO_PHYS(m),
1605		    endoff,
1606		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1607		);
1608	}
1609
1610	/*
1611	 * Set valid, clear dirty bits.  If validating the entire
1612	 * page we can safely clear the pmap modify bit.  We also
1613	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1614	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1615	 * be set again.
1616	 *
1617	 * We set valid bits inclusive of any overlap, but we can only
1618	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1619	 * the range.
1620	 */
1621	pagebits = vm_page_bits(base, size);
1622	m->valid |= pagebits;
1623#if 0	/* NOT YET */
1624	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1625		frag = DEV_BSIZE - frag;
1626		base += frag;
1627		size -= frag;
1628		if (size < 0)
1629			size = 0;
1630	}
1631	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1632#endif
1633	m->dirty &= ~pagebits;
1634	if (base == 0 && size == PAGE_SIZE) {
1635		pmap_clear_modify(m);
1636		vm_page_flag_clear(m, PG_NOSYNC);
1637	}
1638}
1639
1640#if 0
1641
1642void
1643vm_page_set_dirty(vm_page_t m, int base, int size)
1644{
1645	m->dirty |= vm_page_bits(base, size);
1646}
1647
1648#endif
1649
1650void
1651vm_page_clear_dirty(vm_page_t m, int base, int size)
1652{
1653	GIANT_REQUIRED;
1654	m->dirty &= ~vm_page_bits(base, size);
1655}
1656
1657/*
1658 *	vm_page_set_invalid:
1659 *
1660 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1661 *	valid and dirty bits for the effected areas are cleared.
1662 *
1663 *	May not block.
1664 */
1665void
1666vm_page_set_invalid(vm_page_t m, int base, int size)
1667{
1668	int bits;
1669
1670	GIANT_REQUIRED;
1671	bits = vm_page_bits(base, size);
1672	m->valid &= ~bits;
1673	m->dirty &= ~bits;
1674	m->object->generation++;
1675}
1676
1677/*
1678 * vm_page_zero_invalid()
1679 *
1680 *	The kernel assumes that the invalid portions of a page contain
1681 *	garbage, but such pages can be mapped into memory by user code.
1682 *	When this occurs, we must zero out the non-valid portions of the
1683 *	page so user code sees what it expects.
1684 *
1685 *	Pages are most often semi-valid when the end of a file is mapped
1686 *	into memory and the file's size is not page aligned.
1687 */
1688void
1689vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1690{
1691	int b;
1692	int i;
1693
1694	/*
1695	 * Scan the valid bits looking for invalid sections that
1696	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1697	 * valid bit may be set ) have already been zerod by
1698	 * vm_page_set_validclean().
1699	 */
1700	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1701		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1702		    (m->valid & (1 << i))
1703		) {
1704			if (i > b) {
1705				pmap_zero_page_area(
1706				    VM_PAGE_TO_PHYS(m),
1707				    b << DEV_BSHIFT,
1708				    (i - b) << DEV_BSHIFT
1709				);
1710			}
1711			b = i + 1;
1712		}
1713	}
1714
1715	/*
1716	 * setvalid is TRUE when we can safely set the zero'd areas
1717	 * as being valid.  We can do this if there are no cache consistancy
1718	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1719	 */
1720	if (setvalid)
1721		m->valid = VM_PAGE_BITS_ALL;
1722}
1723
1724/*
1725 *	vm_page_is_valid:
1726 *
1727 *	Is (partial) page valid?  Note that the case where size == 0
1728 *	will return FALSE in the degenerate case where the page is
1729 *	entirely invalid, and TRUE otherwise.
1730 *
1731 *	May not block.
1732 */
1733int
1734vm_page_is_valid(vm_page_t m, int base, int size)
1735{
1736	int bits = vm_page_bits(base, size);
1737
1738	if (m->valid && ((m->valid & bits) == bits))
1739		return 1;
1740	else
1741		return 0;
1742}
1743
1744/*
1745 * update dirty bits from pmap/mmu.  May not block.
1746 */
1747void
1748vm_page_test_dirty(vm_page_t m)
1749{
1750	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1751		vm_page_dirty(m);
1752	}
1753}
1754
1755#include "opt_ddb.h"
1756#ifdef DDB
1757#include <sys/kernel.h>
1758
1759#include <ddb/ddb.h>
1760
1761DB_SHOW_COMMAND(page, vm_page_print_page_info)
1762{
1763	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1764	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1765	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1766	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1767	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1768	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1769	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1770	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1771	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1772	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1773}
1774
1775DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1776{
1777	int i;
1778	db_printf("PQ_FREE:");
1779	for (i = 0; i < PQ_L2_SIZE; i++) {
1780		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1781	}
1782	db_printf("\n");
1783
1784	db_printf("PQ_CACHE:");
1785	for (i = 0; i < PQ_L2_SIZE; i++) {
1786		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1787	}
1788	db_printf("\n");
1789
1790	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1791		vm_page_queues[PQ_ACTIVE].lcnt,
1792		vm_page_queues[PQ_INACTIVE].lcnt);
1793}
1794#endif /* DDB */
1795