vm_page.c revision 80705
1132720Skan/*
2132720Skan * Copyright (c) 1991 Regents of the University of California.
3132720Skan * All rights reserved.
4132720Skan *
5132720Skan * This code is derived from software contributed to Berkeley by
6132720Skan * The Mach Operating System project at Carnegie-Mellon University.
7132720Skan *
8132720Skan * Redistribution and use in source and binary forms, with or without
9132720Skan * modification, are permitted provided that the following conditions
10132720Skan * are met:
11132720Skan * 1. Redistributions of source code must retain the above copyright
12132720Skan *    notice, this list of conditions and the following disclaimer.
13132720Skan * 2. Redistributions in binary form must reproduce the above copyright
14132720Skan *    notice, this list of conditions and the following disclaimer in the
15132720Skan *    documentation and/or other materials provided with the distribution.
16132720Skan * 3. All advertising materials mentioning features or use of this software
17132720Skan *    must display the following acknowledgement:
18132720Skan *	This product includes software developed by the University of
19132720Skan *	California, Berkeley and its contributors.
20132720Skan * 4. Neither the name of the University nor the names of its contributors
21132720Skan *    may be used to endorse or promote products derived from this software
22132720Skan *    without specific prior written permission.
23132720Skan *
24132720Skan * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25132720Skan * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26132720Skan * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27132720Skan * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28132720Skan * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29132720Skan * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30132720Skan * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31132720Skan * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32132720Skan * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33132720Skan * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34132720Skan * SUCH DAMAGE.
35132720Skan *
36132720Skan *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37132720Skan * $FreeBSD: head/sys/vm/vm_page.c 80705 2001-07-31 04:09:52Z jake $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *			GENERAL RULES ON VM_PAGE MANIPULATION
69 *
70 *	- a pageq mutex is required when adding or removing a page from a
71 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72 *	  busy state of a page.
73 *
74 *	- a hash chain mutex is required when associating or disassociating
75 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76 *	  regardless of other mutexes or the busy state of a page.
77 *
78 *	- either a hash chain mutex OR a busied page is required in order
79 *	  to modify the page flags.  A hash chain mutex must be obtained in
80 *	  order to busy a page.  A page's flags cannot be modified by a
81 *	  hash chain mutex if the page is marked busy.
82 *
83 *	- The object memq mutex is held when inserting or removing
84 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85 *	  is different from the object's main mutex.
86 *
87 *	Generally speaking, you have to be aware of side effects when running
88 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90 *	vm_page_cache(), vm_page_activate(), and a number of other routines
91 *	will release the hash chain mutex for you.  Intermediate manipulation
92 *	routines such as vm_page_flag_set() expect the hash chain to be held
93 *	on entry and the hash chain will remain held on return.
94 *
95 *	pageq scanning can only occur with the pageq in question locked.
96 *	We have a known bottleneck with the active queue, but the cache
97 *	and free queues are actually arrays already.
98 */
99
100/*
101 *	Resident memory management module.
102 */
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/lock.h>
107#include <sys/malloc.h>
108#include <sys/mutex.h>
109#include <sys/proc.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121
122/*
123 *	Associated with page of user-allocatable memory is a
124 *	page structure.
125 */
126
127static struct vm_page **vm_page_buckets; /* Array of buckets */
128static int vm_page_bucket_count;	/* How big is array? */
129static int vm_page_hash_mask;		/* Mask for hash function */
130static volatile int vm_page_bucket_generation;
131static struct mtx vm_buckets_mtx[BUCKET_HASH_SIZE];
132
133vm_page_t vm_page_array = 0;
134int vm_page_array_size = 0;
135long first_page = 0;
136int vm_page_zero_count = 0;
137
138/*
139 *	vm_set_page_size:
140 *
141 *	Sets the page size, perhaps based upon the memory
142 *	size.  Must be called before any use of page-size
143 *	dependent functions.
144 */
145void
146vm_set_page_size(void)
147{
148	if (cnt.v_page_size == 0)
149		cnt.v_page_size = PAGE_SIZE;
150	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
151		panic("vm_set_page_size: page size not a power of two");
152}
153
154/*
155 *	vm_page_startup:
156 *
157 *	Initializes the resident memory module.
158 *
159 *	Allocates memory for the page cells, and
160 *	for the object/offset-to-page hash table headers.
161 *	Each page cell is initialized and placed on the free list.
162 */
163
164vm_offset_t
165vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166{
167	vm_offset_t mapped;
168	struct vm_page **bucket;
169	vm_size_t npages, page_range;
170	vm_offset_t new_end;
171	int i;
172	vm_offset_t pa;
173	int nblocks;
174	vm_offset_t last_pa;
175
176	/* the biggest memory array is the second group of pages */
177	vm_offset_t end;
178	vm_offset_t biggestone, biggestsize;
179
180	vm_offset_t total;
181
182	total = 0;
183	biggestsize = 0;
184	biggestone = 0;
185	nblocks = 0;
186	vaddr = round_page(vaddr);
187
188	for (i = 0; phys_avail[i + 1]; i += 2) {
189		phys_avail[i] = round_page(phys_avail[i]);
190		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
191	}
192
193	for (i = 0; phys_avail[i + 1]; i += 2) {
194		int size = phys_avail[i + 1] - phys_avail[i];
195
196		if (size > biggestsize) {
197			biggestone = i;
198			biggestsize = size;
199		}
200		++nblocks;
201		total += size;
202	}
203
204	end = phys_avail[biggestone+1];
205
206	/*
207	 * Initialize the queue headers for the free queue, the active queue
208	 * and the inactive queue.
209	 */
210
211	vm_pageq_init();
212
213	/*
214	 * Allocate (and initialize) the hash table buckets.
215	 *
216	 * The number of buckets MUST BE a power of 2, and the actual value is
217	 * the next power of 2 greater than the number of physical pages in
218	 * the system.
219	 *
220	 * We make the hash table approximately 2x the number of pages to
221	 * reduce the chain length.  This is about the same size using the
222	 * singly-linked list as the 1x hash table we were using before
223	 * using TAILQ but the chain length will be smaller.
224	 *
225	 * Note: This computation can be tweaked if desired.
226	 */
227	if (vm_page_bucket_count == 0) {
228		vm_page_bucket_count = 1;
229		while (vm_page_bucket_count < atop(total))
230			vm_page_bucket_count <<= 1;
231	}
232	vm_page_bucket_count <<= 1;
233	vm_page_hash_mask = vm_page_bucket_count - 1;
234
235	/*
236	 * Validate these addresses.
237	 */
238	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
239	new_end = trunc_page(new_end);
240	mapped = pmap_map(&vaddr, new_end, end,
241	    VM_PROT_READ | VM_PROT_WRITE);
242	bzero((caddr_t) mapped, end - new_end);
243
244	vm_page_buckets = (struct vm_page **)mapped;
245	bucket = vm_page_buckets;
246	for (i = 0; i < vm_page_bucket_count; i++) {
247		*bucket = NULL;
248		bucket++;
249	}
250	for (i = 0; i < BUCKET_HASH_SIZE; ++i)
251		mtx_init(&vm_buckets_mtx[i],  "vm buckets hash mutexes", MTX_DEF);
252
253	/*
254	 * Compute the number of pages of memory that will be available for
255	 * use (taking into account the overhead of a page structure per
256	 * page).
257	 */
258
259	first_page = phys_avail[0] / PAGE_SIZE;
260
261	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
262	npages = (total - (page_range * sizeof(struct vm_page)) -
263	    (end - new_end)) / PAGE_SIZE;
264
265	end = new_end;
266
267	/*
268	 * Initialize the mem entry structures now, and put them in the free
269	 * queue.
270	 */
271	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
272	mapped = pmap_map(&vaddr, new_end, end,
273	    VM_PROT_READ | VM_PROT_WRITE);
274	vm_page_array = (vm_page_t) mapped;
275
276	/*
277	 * Clear all of the page structures
278	 */
279	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
280	vm_page_array_size = page_range;
281
282	/*
283	 * Construct the free queue(s) in descending order (by physical
284	 * address) so that the first 16MB of physical memory is allocated
285	 * last rather than first.  On large-memory machines, this avoids
286	 * the exhaustion of low physical memory before isa_dmainit has run.
287	 */
288	cnt.v_page_count = 0;
289	cnt.v_free_count = 0;
290	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
291		pa = phys_avail[i];
292		if (i == biggestone)
293			last_pa = new_end;
294		else
295			last_pa = phys_avail[i + 1];
296		while (pa < last_pa && npages-- > 0) {
297			vm_pageq_add_new_page(pa);
298			pa += PAGE_SIZE;
299		}
300	}
301	return (vaddr);
302}
303
304/*
305 *	vm_page_hash:
306 *
307 *	Distributes the object/offset key pair among hash buckets.
308 *
309 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
310 *	This routine may not block.
311 *
312 *	We try to randomize the hash based on the object to spread the pages
313 *	out in the hash table without it costing us too much.
314 */
315static __inline int
316vm_page_hash(vm_object_t object, vm_pindex_t pindex)
317{
318	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
319
320	return(i & vm_page_hash_mask);
321}
322
323void
324vm_page_flag_set(vm_page_t m, unsigned short bits)
325{
326	GIANT_REQUIRED;
327	m->flags |= bits;
328}
329
330void
331vm_page_flag_clear(vm_page_t m, unsigned short bits)
332{
333	GIANT_REQUIRED;
334	m->flags &= ~bits;
335}
336
337void
338vm_page_busy(vm_page_t m)
339{
340	KASSERT((m->flags & PG_BUSY) == 0,
341	    ("vm_page_busy: page already busy!!!"));
342	vm_page_flag_set(m, PG_BUSY);
343}
344
345/*
346 *      vm_page_flash:
347 *
348 *      wakeup anyone waiting for the page.
349 */
350
351void
352vm_page_flash(vm_page_t m)
353{
354	if (m->flags & PG_WANTED) {
355		vm_page_flag_clear(m, PG_WANTED);
356		wakeup(m);
357	}
358}
359
360/*
361 *      vm_page_wakeup:
362 *
363 *      clear the PG_BUSY flag and wakeup anyone waiting for the
364 *      page.
365 *
366 */
367
368void
369vm_page_wakeup(vm_page_t m)
370{
371	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
372	vm_page_flag_clear(m, PG_BUSY);
373	vm_page_flash(m);
374}
375
376/*
377 *
378 *
379 */
380
381void
382vm_page_io_start(vm_page_t m)
383{
384	GIANT_REQUIRED;
385	m->busy++;
386}
387
388void
389vm_page_io_finish(vm_page_t m)
390{
391	GIANT_REQUIRED;
392	m->busy--;
393	if (m->busy == 0)
394		vm_page_flash(m);
395}
396
397/*
398 * Keep page from being freed by the page daemon
399 * much of the same effect as wiring, except much lower
400 * overhead and should be used only for *very* temporary
401 * holding ("wiring").
402 */
403void
404vm_page_hold(vm_page_t mem)
405{
406        GIANT_REQUIRED;
407        mem->hold_count++;
408}
409
410void
411vm_page_unhold(vm_page_t mem)
412{
413	GIANT_REQUIRED;
414	--mem->hold_count;
415	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
416}
417
418/*
419 *	vm_page_protect:
420 *
421 *	Reduce the protection of a page.  This routine never raises the
422 *	protection and therefore can be safely called if the page is already
423 *	at VM_PROT_NONE (it will be a NOP effectively ).
424 */
425
426void
427vm_page_protect(vm_page_t mem, int prot)
428{
429	if (prot == VM_PROT_NONE) {
430		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
431			pmap_page_protect(mem, VM_PROT_NONE);
432			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
433		}
434	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
435		pmap_page_protect(mem, VM_PROT_READ);
436		vm_page_flag_clear(mem, PG_WRITEABLE);
437	}
438}
439/*
440 *	vm_page_zero_fill:
441 *
442 *	Zero-fill the specified page.
443 *	Written as a standard pagein routine, to
444 *	be used by the zero-fill object.
445 */
446boolean_t
447vm_page_zero_fill(vm_page_t m)
448{
449	pmap_zero_page(VM_PAGE_TO_PHYS(m));
450	return (TRUE);
451}
452
453/*
454 *	vm_page_copy:
455 *
456 *	Copy one page to another
457 */
458void
459vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
460{
461	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
462	dest_m->valid = VM_PAGE_BITS_ALL;
463}
464
465/*
466 *	vm_page_free:
467 *
468 *	Free a page
469 *
470 *	The clearing of PG_ZERO is a temporary safety until the code can be
471 *	reviewed to determine that PG_ZERO is being properly cleared on
472 *	write faults or maps.  PG_ZERO was previously cleared in
473 *	vm_page_alloc().
474 */
475void
476vm_page_free(vm_page_t m)
477{
478	vm_page_flag_clear(m, PG_ZERO);
479	vm_page_free_toq(m);
480}
481
482/*
483 *	vm_page_free_zero:
484 *
485 *	Free a page to the zerod-pages queue
486 */
487void
488vm_page_free_zero(vm_page_t m)
489{
490	vm_page_flag_set(m, PG_ZERO);
491	vm_page_free_toq(m);
492}
493
494/*
495 *	vm_page_sleep_busy:
496 *
497 *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
498 *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
499 *	it almost had to sleep and made temporary spl*() mods), FALSE
500 *	otherwise.
501 *
502 *	This routine assumes that interrupts can only remove the busy
503 *	status from a page, not set the busy status or change it from
504 *	PG_BUSY to m->busy or vise versa (which would create a timing
505 *	window).
506 */
507
508int
509vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
510{
511	GIANT_REQUIRED;
512	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
513		int s = splvm();
514		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
515			/*
516			 * Page is busy. Wait and retry.
517			 */
518			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
519			tsleep(m, PVM, msg, 0);
520		}
521		splx(s);
522		return(TRUE);
523		/* not reached */
524	}
525	return(FALSE);
526}
527/*
528 *	vm_page_dirty:
529 *
530 *	make page all dirty
531 */
532
533void
534vm_page_dirty(vm_page_t m)
535{
536	KASSERT(m->queue - m->pc != PQ_CACHE,
537	    ("vm_page_dirty: page in cache!"));
538	m->dirty = VM_PAGE_BITS_ALL;
539}
540
541/*
542 *	vm_page_undirty:
543 *
544 *	Set page to not be dirty.  Note: does not clear pmap modify bits
545 */
546
547void
548vm_page_undirty(vm_page_t m)
549{
550	m->dirty = 0;
551}
552
553/*
554 *	vm_page_insert:		[ internal use only ]
555 *
556 *	Inserts the given mem entry into the object and object list.
557 *
558 *	The pagetables are not updated but will presumably fault the page
559 *	in if necessary, or if a kernel page the caller will at some point
560 *	enter the page into the kernel's pmap.  We are not allowed to block
561 *	here so we *can't* do this anyway.
562 *
563 *	The object and page must be locked, and must be splhigh.
564 *	This routine may not block.
565 */
566
567void
568vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
569{
570	struct vm_page **bucket;
571
572	GIANT_REQUIRED;
573
574	if (m->object != NULL)
575		panic("vm_page_insert: already inserted");
576
577	/*
578	 * Record the object/offset pair in this page
579	 */
580
581	m->object = object;
582	m->pindex = pindex;
583
584	/*
585	 * Insert it into the object_object/offset hash table
586	 */
587
588	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
589	m->hnext = *bucket;
590	*bucket = m;
591	vm_page_bucket_generation++;
592
593	/*
594	 * Now link into the object's list of backed pages.
595	 */
596
597	TAILQ_INSERT_TAIL(&object->memq, m, listq);
598	object->generation++;
599
600	/*
601	 * show that the object has one more resident page.
602	 */
603
604	object->resident_page_count++;
605
606	/*
607	 * Since we are inserting a new and possibly dirty page,
608	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
609	 */
610	if (m->flags & PG_WRITEABLE)
611	    vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
612}
613
614/*
615 *	vm_page_remove:
616 *				NOTE: used by device pager as well -wfj
617 *
618 *	Removes the given mem entry from the object/offset-page
619 *	table and the object page list, but do not invalidate/terminate
620 *	the backing store.
621 *
622 *	The object and page must be locked, and at splhigh.
623 *	The underlying pmap entry (if any) is NOT removed here.
624 *	This routine may not block.
625 */
626
627void
628vm_page_remove(vm_page_t m)
629{
630	vm_object_t object;
631
632	GIANT_REQUIRED;
633
634	if (m->object == NULL)
635		return;
636
637	if ((m->flags & PG_BUSY) == 0) {
638		panic("vm_page_remove: page not busy");
639	}
640
641	/*
642	 * Basically destroy the page.
643	 */
644
645	vm_page_wakeup(m);
646
647	object = m->object;
648
649	/*
650	 * Remove from the object_object/offset hash table.  The object
651	 * must be on the hash queue, we will panic if it isn't
652	 *
653	 * Note: we must NULL-out m->hnext to prevent loops in detached
654	 * buffers with vm_page_lookup().
655	 */
656
657	{
658		struct vm_page **bucket;
659
660		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
661		while (*bucket != m) {
662			if (*bucket == NULL)
663				panic("vm_page_remove(): page not found in hash");
664			bucket = &(*bucket)->hnext;
665		}
666		*bucket = m->hnext;
667		m->hnext = NULL;
668		vm_page_bucket_generation++;
669	}
670
671	/*
672	 * Now remove from the object's list of backed pages.
673	 */
674
675	TAILQ_REMOVE(&object->memq, m, listq);
676
677	/*
678	 * And show that the object has one fewer resident page.
679	 */
680
681	object->resident_page_count--;
682	object->generation++;
683
684	m->object = NULL;
685}
686
687/*
688 *	vm_page_lookup:
689 *
690 *	Returns the page associated with the object/offset
691 *	pair specified; if none is found, NULL is returned.
692 *
693 *	NOTE: the code below does not lock.  It will operate properly if
694 *	an interrupt makes a change, but the generation algorithm will not
695 *	operate properly in an SMP environment where both cpu's are able to run
696 *	kernel code simultaneously.
697 *
698 *	The object must be locked.  No side effects.
699 *	This routine may not block.
700 *	This is a critical path routine
701 */
702
703vm_page_t
704vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
705{
706	vm_page_t m;
707	struct vm_page **bucket;
708	int generation;
709
710	/*
711	 * Search the hash table for this object/offset pair
712	 */
713
714retry:
715	generation = vm_page_bucket_generation;
716	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
717	for (m = *bucket; m != NULL; m = m->hnext) {
718		if ((m->object == object) && (m->pindex == pindex)) {
719			if (vm_page_bucket_generation != generation)
720				goto retry;
721			return (m);
722		}
723	}
724	if (vm_page_bucket_generation != generation)
725		goto retry;
726	return (NULL);
727}
728
729/*
730 *	vm_page_rename:
731 *
732 *	Move the given memory entry from its
733 *	current object to the specified target object/offset.
734 *
735 *	The object must be locked.
736 *	This routine may not block.
737 *
738 *	Note: this routine will raise itself to splvm(), the caller need not.
739 *
740 *	Note: swap associated with the page must be invalidated by the move.  We
741 *	      have to do this for several reasons:  (1) we aren't freeing the
742 *	      page, (2) we are dirtying the page, (3) the VM system is probably
743 *	      moving the page from object A to B, and will then later move
744 *	      the backing store from A to B and we can't have a conflict.
745 *
746 *	Note: we *always* dirty the page.  It is necessary both for the
747 *	      fact that we moved it, and because we may be invalidating
748 *	      swap.  If the page is on the cache, we have to deactivate it
749 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
750 *	      on the cache.
751 */
752
753void
754vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
755{
756	int s;
757
758	s = splvm();
759	vm_page_remove(m);
760	vm_page_insert(m, new_object, new_pindex);
761	if (m->queue - m->pc == PQ_CACHE)
762		vm_page_deactivate(m);
763	vm_page_dirty(m);
764	splx(s);
765}
766
767/*
768 *	vm_page_select_cache:
769 *
770 *	Find a page on the cache queue with color optimization.  As pages
771 *	might be found, but not applicable, they are deactivated.  This
772 *	keeps us from using potentially busy cached pages.
773 *
774 *	This routine must be called at splvm().
775 *	This routine may not block.
776 */
777static vm_page_t
778vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
779{
780	vm_page_t m;
781
782	GIANT_REQUIRED;
783	while (TRUE) {
784		m = vm_pageq_find(
785		    PQ_CACHE,
786		    (pindex + object->pg_color) & PQ_L2_MASK,
787		    FALSE
788		);
789		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
790			       m->hold_count || m->wire_count)) {
791			vm_page_deactivate(m);
792			continue;
793		}
794		return m;
795	}
796}
797
798/*
799 *	vm_page_select_free:
800 *
801 *	Find a free or zero page, with specified preference.
802 *
803 *	This routine must be called at splvm().
804 *	This routine may not block.
805 */
806
807static __inline vm_page_t
808vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
809{
810	vm_page_t m;
811
812	m = vm_pageq_find(
813		PQ_FREE,
814		(pindex + object->pg_color) & PQ_L2_MASK,
815		prefer_zero
816	);
817	return(m);
818}
819
820/*
821 *	vm_page_alloc:
822 *
823 *	Allocate and return a memory cell associated
824 *	with this VM object/offset pair.
825 *
826 *	page_req classes:
827 *	VM_ALLOC_NORMAL		normal process request
828 *	VM_ALLOC_SYSTEM		system *really* needs a page
829 *	VM_ALLOC_INTERRUPT	interrupt time request
830 *	VM_ALLOC_ZERO		zero page
831 *
832 *	This routine may not block.
833 *
834 *	Additional special handling is required when called from an
835 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
836 *	the page cache in this case.
837 */
838
839vm_page_t
840vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
841{
842	vm_page_t m = NULL;
843	int s;
844
845	GIANT_REQUIRED;
846
847	KASSERT(!vm_page_lookup(object, pindex),
848		("vm_page_alloc: page already allocated"));
849
850	/*
851	 * The pager is allowed to eat deeper into the free page list.
852	 */
853
854	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
855		page_req = VM_ALLOC_SYSTEM;
856	};
857
858	s = splvm();
859
860loop:
861	if (cnt.v_free_count > cnt.v_free_reserved) {
862		/*
863		 * Allocate from the free queue if there are plenty of pages
864		 * in it.
865		 */
866		if (page_req == VM_ALLOC_ZERO)
867			m = vm_page_select_free(object, pindex, TRUE);
868		else
869			m = vm_page_select_free(object, pindex, FALSE);
870	} else if (
871	    (page_req == VM_ALLOC_SYSTEM &&
872	     cnt.v_cache_count == 0 &&
873	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
874	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
875	) {
876		/*
877		 * Interrupt or system, dig deeper into the free list.
878		 */
879		m = vm_page_select_free(object, pindex, FALSE);
880	} else if (page_req != VM_ALLOC_INTERRUPT) {
881		/*
882		 * Allocatable from cache (non-interrupt only).  On success,
883		 * we must free the page and try again, thus ensuring that
884		 * cnt.v_*_free_min counters are replenished.
885		 */
886		m = vm_page_select_cache(object, pindex);
887		if (m == NULL) {
888			splx(s);
889#if defined(DIAGNOSTIC)
890			if (cnt.v_cache_count > 0)
891				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
892#endif
893			vm_pageout_deficit++;
894			pagedaemon_wakeup();
895			return (NULL);
896		}
897		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
898		vm_page_busy(m);
899		vm_page_protect(m, VM_PROT_NONE);
900		vm_page_free(m);
901		goto loop;
902	} else {
903		/*
904		 * Not allocatable from cache from interrupt, give up.
905		 */
906		splx(s);
907		vm_pageout_deficit++;
908		pagedaemon_wakeup();
909		return (NULL);
910	}
911
912	/*
913	 *  At this point we had better have found a good page.
914	 */
915
916	KASSERT(
917	    m != NULL,
918	    ("vm_page_alloc(): missing page on free queue\n")
919	);
920
921	/*
922	 * Remove from free queue
923	 */
924
925	vm_pageq_remove_nowakeup(m);
926
927	/*
928	 * Initialize structure.  Only the PG_ZERO flag is inherited.
929	 */
930
931	if (m->flags & PG_ZERO) {
932		vm_page_zero_count--;
933		m->flags = PG_ZERO | PG_BUSY;
934	} else {
935		m->flags = PG_BUSY;
936	}
937	m->wire_count = 0;
938	m->hold_count = 0;
939	m->act_count = 0;
940	m->busy = 0;
941	m->valid = 0;
942	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
943
944	/*
945	 * vm_page_insert() is safe prior to the splx().  Note also that
946	 * inserting a page here does not insert it into the pmap (which
947	 * could cause us to block allocating memory).  We cannot block
948	 * anywhere.
949	 */
950
951	vm_page_insert(m, object, pindex);
952
953	/*
954	 * Don't wakeup too often - wakeup the pageout daemon when
955	 * we would be nearly out of memory.
956	 */
957	if (vm_paging_needed())
958		pagedaemon_wakeup();
959
960	splx(s);
961
962	return (m);
963}
964
965/*
966 *	vm_wait:	(also see VM_WAIT macro)
967 *
968 *	Block until free pages are available for allocation
969 */
970
971void
972vm_wait(void)
973{
974	int s;
975
976	s = splvm();
977	if (curproc == pageproc) {
978		vm_pageout_pages_needed = 1;
979		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
980	} else {
981		if (!vm_pages_needed) {
982			vm_pages_needed = 1;
983			wakeup(&vm_pages_needed);
984		}
985		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
986	}
987	splx(s);
988}
989
990/*
991 *	vm_await:	(also see VM_AWAIT macro)
992 *
993 *	asleep on an event that will signal when free pages are available
994 *	for allocation.
995 */
996
997void
998vm_await(void)
999{
1000	int s;
1001
1002	s = splvm();
1003	if (curproc == pageproc) {
1004		vm_pageout_pages_needed = 1;
1005		asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
1006	} else {
1007		if (!vm_pages_needed) {
1008			vm_pages_needed++;
1009			wakeup(&vm_pages_needed);
1010		}
1011		asleep(&cnt.v_free_count, PVM, "vmwait", 0);
1012	}
1013	splx(s);
1014}
1015
1016/*
1017 *	vm_page_activate:
1018 *
1019 *	Put the specified page on the active list (if appropriate).
1020 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1021 *	mess with it.
1022 *
1023 *	The page queues must be locked.
1024 *	This routine may not block.
1025 */
1026void
1027vm_page_activate(vm_page_t m)
1028{
1029	int s;
1030
1031	GIANT_REQUIRED;
1032	s = splvm();
1033
1034	if (m->queue != PQ_ACTIVE) {
1035		if ((m->queue - m->pc) == PQ_CACHE)
1036			cnt.v_reactivated++;
1037
1038		vm_pageq_remove(m);
1039
1040		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1041			m->queue = PQ_ACTIVE;
1042			vm_page_queues[PQ_ACTIVE].lcnt++;
1043			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1044			if (m->act_count < ACT_INIT)
1045				m->act_count = ACT_INIT;
1046			cnt.v_active_count++;
1047		}
1048	} else {
1049		if (m->act_count < ACT_INIT)
1050			m->act_count = ACT_INIT;
1051	}
1052
1053	splx(s);
1054}
1055
1056/*
1057 *	vm_page_free_wakeup:
1058 *
1059 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1060 *	routine is called when a page has been added to the cache or free
1061 *	queues.
1062 *
1063 *	This routine may not block.
1064 *	This routine must be called at splvm()
1065 */
1066static __inline void
1067vm_page_free_wakeup(void)
1068{
1069	/*
1070	 * if pageout daemon needs pages, then tell it that there are
1071	 * some free.
1072	 */
1073	if (vm_pageout_pages_needed &&
1074	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1075		wakeup(&vm_pageout_pages_needed);
1076		vm_pageout_pages_needed = 0;
1077	}
1078	/*
1079	 * wakeup processes that are waiting on memory if we hit a
1080	 * high water mark. And wakeup scheduler process if we have
1081	 * lots of memory. this process will swapin processes.
1082	 */
1083	if (vm_pages_needed && !vm_page_count_min()) {
1084		vm_pages_needed = 0;
1085		wakeup(&cnt.v_free_count);
1086	}
1087}
1088
1089/*
1090 *	vm_page_free_toq:
1091 *
1092 *	Returns the given page to the PQ_FREE list,
1093 *	disassociating it with any VM object.
1094 *
1095 *	Object and page must be locked prior to entry.
1096 *	This routine may not block.
1097 */
1098
1099void
1100vm_page_free_toq(vm_page_t m)
1101{
1102	int s;
1103	struct vpgqueues *pq;
1104	vm_object_t object = m->object;
1105
1106	GIANT_REQUIRED;
1107	s = splvm();
1108	cnt.v_tfree++;
1109
1110	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1111		(m->hold_count != 0)) {
1112		printf(
1113		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1114		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1115		    m->hold_count);
1116		if ((m->queue - m->pc) == PQ_FREE)
1117			panic("vm_page_free: freeing free page");
1118		else
1119			panic("vm_page_free: freeing busy page");
1120	}
1121
1122	/*
1123	 * unqueue, then remove page.  Note that we cannot destroy
1124	 * the page here because we do not want to call the pager's
1125	 * callback routine until after we've put the page on the
1126	 * appropriate free queue.
1127	 */
1128
1129	vm_pageq_remove_nowakeup(m);
1130	vm_page_remove(m);
1131
1132	/*
1133	 * If fictitious remove object association and
1134	 * return, otherwise delay object association removal.
1135	 */
1136
1137	if ((m->flags & PG_FICTITIOUS) != 0) {
1138		splx(s);
1139		return;
1140	}
1141
1142	m->valid = 0;
1143	vm_page_undirty(m);
1144
1145	if (m->wire_count != 0) {
1146		if (m->wire_count > 1) {
1147			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1148				m->wire_count, (long)m->pindex);
1149		}
1150		panic("vm_page_free: freeing wired page\n");
1151	}
1152
1153	/*
1154	 * If we've exhausted the object's resident pages we want to free
1155	 * it up.
1156	 */
1157
1158	if (object &&
1159	    (object->type == OBJT_VNODE) &&
1160	    ((object->flags & OBJ_DEAD) == 0)
1161	) {
1162		struct vnode *vp = (struct vnode *)object->handle;
1163
1164		if (vp && VSHOULDFREE(vp))
1165			vfree(vp);
1166	}
1167
1168	/*
1169	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1170	 */
1171
1172	if (m->flags & PG_UNMANAGED) {
1173	    m->flags &= ~PG_UNMANAGED;
1174	} else {
1175#ifdef __alpha__
1176	    pmap_page_is_free(m);
1177#endif
1178	}
1179
1180	m->queue = PQ_FREE + m->pc;
1181	pq = &vm_page_queues[m->queue];
1182	pq->lcnt++;
1183	++(*pq->cnt);
1184
1185	/*
1186	 * Put zero'd pages on the end ( where we look for zero'd pages
1187	 * first ) and non-zerod pages at the head.
1188	 */
1189
1190	if (m->flags & PG_ZERO) {
1191		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1192		++vm_page_zero_count;
1193	} else {
1194		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1195	}
1196
1197	vm_page_free_wakeup();
1198
1199	splx(s);
1200}
1201
1202/*
1203 *	vm_page_unmanage:
1204 *
1205 * 	Prevent PV management from being done on the page.  The page is
1206 *	removed from the paging queues as if it were wired, and as a
1207 *	consequence of no longer being managed the pageout daemon will not
1208 *	touch it (since there is no way to locate the pte mappings for the
1209 *	page).  madvise() calls that mess with the pmap will also no longer
1210 *	operate on the page.
1211 *
1212 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1213 *	will clear the flag.
1214 *
1215 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1216 *	physical memory as backing store rather then swap-backed memory and
1217 *	will eventually be extended to support 4MB unmanaged physical
1218 *	mappings.
1219 */
1220
1221void
1222vm_page_unmanage(vm_page_t m)
1223{
1224	int s;
1225
1226	s = splvm();
1227	if ((m->flags & PG_UNMANAGED) == 0) {
1228		if (m->wire_count == 0)
1229			vm_pageq_remove(m);
1230	}
1231	vm_page_flag_set(m, PG_UNMANAGED);
1232	splx(s);
1233}
1234
1235/*
1236 *	vm_page_wire:
1237 *
1238 *	Mark this page as wired down by yet
1239 *	another map, removing it from paging queues
1240 *	as necessary.
1241 *
1242 *	The page queues must be locked.
1243 *	This routine may not block.
1244 */
1245void
1246vm_page_wire(vm_page_t m)
1247{
1248	int s;
1249
1250	/*
1251	 * Only bump the wire statistics if the page is not already wired,
1252	 * and only unqueue the page if it is on some queue (if it is unmanaged
1253	 * it is already off the queues).
1254	 */
1255	s = splvm();
1256	if (m->wire_count == 0) {
1257		if ((m->flags & PG_UNMANAGED) == 0)
1258			vm_pageq_remove(m);
1259		cnt.v_wire_count++;
1260	}
1261	m->wire_count++;
1262	splx(s);
1263	vm_page_flag_set(m, PG_MAPPED);
1264}
1265
1266/*
1267 *	vm_page_unwire:
1268 *
1269 *	Release one wiring of this page, potentially
1270 *	enabling it to be paged again.
1271 *
1272 *	Many pages placed on the inactive queue should actually go
1273 *	into the cache, but it is difficult to figure out which.  What
1274 *	we do instead, if the inactive target is well met, is to put
1275 *	clean pages at the head of the inactive queue instead of the tail.
1276 *	This will cause them to be moved to the cache more quickly and
1277 *	if not actively re-referenced, freed more quickly.  If we just
1278 *	stick these pages at the end of the inactive queue, heavy filesystem
1279 *	meta-data accesses can cause an unnecessary paging load on memory bound
1280 *	processes.  This optimization causes one-time-use metadata to be
1281 *	reused more quickly.
1282 *
1283 *	BUT, if we are in a low-memory situation we have no choice but to
1284 *	put clean pages on the cache queue.
1285 *
1286 *	A number of routines use vm_page_unwire() to guarantee that the page
1287 *	will go into either the inactive or active queues, and will NEVER
1288 *	be placed in the cache - for example, just after dirtying a page.
1289 *	dirty pages in the cache are not allowed.
1290 *
1291 *	The page queues must be locked.
1292 *	This routine may not block.
1293 */
1294void
1295vm_page_unwire(vm_page_t m, int activate)
1296{
1297	int s;
1298
1299	s = splvm();
1300
1301	if (m->wire_count > 0) {
1302		m->wire_count--;
1303		if (m->wire_count == 0) {
1304			cnt.v_wire_count--;
1305			if (m->flags & PG_UNMANAGED) {
1306				;
1307			} else if (activate) {
1308				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1309				m->queue = PQ_ACTIVE;
1310				vm_page_queues[PQ_ACTIVE].lcnt++;
1311				cnt.v_active_count++;
1312			} else {
1313				vm_page_flag_clear(m, PG_WINATCFLS);
1314				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1315				m->queue = PQ_INACTIVE;
1316				vm_page_queues[PQ_INACTIVE].lcnt++;
1317				cnt.v_inactive_count++;
1318			}
1319		}
1320	} else {
1321		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1322	}
1323	splx(s);
1324}
1325
1326
1327/*
1328 * Move the specified page to the inactive queue.  If the page has
1329 * any associated swap, the swap is deallocated.
1330 *
1331 * Normally athead is 0 resulting in LRU operation.  athead is set
1332 * to 1 if we want this page to be 'as if it were placed in the cache',
1333 * except without unmapping it from the process address space.
1334 *
1335 * This routine may not block.
1336 */
1337static __inline void
1338_vm_page_deactivate(vm_page_t m, int athead)
1339{
1340	int s;
1341
1342	GIANT_REQUIRED;
1343	/*
1344	 * Ignore if already inactive.
1345	 */
1346	if (m->queue == PQ_INACTIVE)
1347		return;
1348
1349	s = splvm();
1350	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1351		if ((m->queue - m->pc) == PQ_CACHE)
1352			cnt.v_reactivated++;
1353		vm_page_flag_clear(m, PG_WINATCFLS);
1354		vm_pageq_remove(m);
1355		if (athead)
1356			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1357		else
1358			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1359		m->queue = PQ_INACTIVE;
1360		vm_page_queues[PQ_INACTIVE].lcnt++;
1361		cnt.v_inactive_count++;
1362	}
1363	splx(s);
1364}
1365
1366void
1367vm_page_deactivate(vm_page_t m)
1368{
1369    _vm_page_deactivate(m, 0);
1370}
1371
1372/*
1373 * vm_page_try_to_cache:
1374 *
1375 * Returns 0 on failure, 1 on success
1376 */
1377int
1378vm_page_try_to_cache(vm_page_t m)
1379{
1380	GIANT_REQUIRED;
1381
1382	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1383	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1384		return(0);
1385	}
1386	vm_page_test_dirty(m);
1387	if (m->dirty)
1388		return(0);
1389	vm_page_cache(m);
1390	return(1);
1391}
1392
1393/*
1394 * vm_page_try_to_free()
1395 *
1396 *	Attempt to free the page.  If we cannot free it, we do nothing.
1397 *	1 is returned on success, 0 on failure.
1398 */
1399int
1400vm_page_try_to_free(vm_page_t m)
1401{
1402	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1403	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1404		return(0);
1405	}
1406	vm_page_test_dirty(m);
1407	if (m->dirty)
1408		return(0);
1409	vm_page_busy(m);
1410	vm_page_protect(m, VM_PROT_NONE);
1411	vm_page_free(m);
1412	return(1);
1413}
1414
1415/*
1416 * vm_page_cache
1417 *
1418 * Put the specified page onto the page cache queue (if appropriate).
1419 *
1420 * This routine may not block.
1421 */
1422void
1423vm_page_cache(vm_page_t m)
1424{
1425	int s;
1426
1427	GIANT_REQUIRED;
1428	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1429		printf("vm_page_cache: attempting to cache busy page\n");
1430		return;
1431	}
1432	if ((m->queue - m->pc) == PQ_CACHE)
1433		return;
1434
1435	/*
1436	 * Remove all pmaps and indicate that the page is not
1437	 * writeable or mapped.
1438	 */
1439
1440	vm_page_protect(m, VM_PROT_NONE);
1441	if (m->dirty != 0) {
1442		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1443			(long)m->pindex);
1444	}
1445	s = splvm();
1446	vm_pageq_remove_nowakeup(m);
1447	m->queue = PQ_CACHE + m->pc;
1448	vm_page_queues[m->queue].lcnt++;
1449	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1450	cnt.v_cache_count++;
1451	vm_page_free_wakeup();
1452	splx(s);
1453}
1454
1455/*
1456 * vm_page_dontneed
1457 *
1458 *	Cache, deactivate, or do nothing as appropriate.  This routine
1459 *	is typically used by madvise() MADV_DONTNEED.
1460 *
1461 *	Generally speaking we want to move the page into the cache so
1462 *	it gets reused quickly.  However, this can result in a silly syndrome
1463 *	due to the page recycling too quickly.  Small objects will not be
1464 *	fully cached.  On the otherhand, if we move the page to the inactive
1465 *	queue we wind up with a problem whereby very large objects
1466 *	unnecessarily blow away our inactive and cache queues.
1467 *
1468 *	The solution is to move the pages based on a fixed weighting.  We
1469 *	either leave them alone, deactivate them, or move them to the cache,
1470 *	where moving them to the cache has the highest weighting.
1471 *	By forcing some pages into other queues we eventually force the
1472 *	system to balance the queues, potentially recovering other unrelated
1473 *	space from active.  The idea is to not force this to happen too
1474 *	often.
1475 */
1476
1477void
1478vm_page_dontneed(vm_page_t m)
1479{
1480	static int dnweight;
1481	int dnw;
1482	int head;
1483
1484	GIANT_REQUIRED;
1485	dnw = ++dnweight;
1486
1487	/*
1488	 * occassionally leave the page alone
1489	 */
1490
1491	if ((dnw & 0x01F0) == 0 ||
1492	    m->queue == PQ_INACTIVE ||
1493	    m->queue - m->pc == PQ_CACHE
1494	) {
1495		if (m->act_count >= ACT_INIT)
1496			--m->act_count;
1497		return;
1498	}
1499
1500	if (m->dirty == 0)
1501		vm_page_test_dirty(m);
1502
1503	if (m->dirty || (dnw & 0x0070) == 0) {
1504		/*
1505		 * Deactivate the page 3 times out of 32.
1506		 */
1507		head = 0;
1508	} else {
1509		/*
1510		 * Cache the page 28 times out of every 32.  Note that
1511		 * the page is deactivated instead of cached, but placed
1512		 * at the head of the queue instead of the tail.
1513		 */
1514		head = 1;
1515	}
1516	_vm_page_deactivate(m, head);
1517}
1518
1519/*
1520 * Grab a page, waiting until we are waken up due to the page
1521 * changing state.  We keep on waiting, if the page continues
1522 * to be in the object.  If the page doesn't exist, allocate it.
1523 *
1524 * This routine may block.
1525 */
1526vm_page_t
1527vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1528{
1529	vm_page_t m;
1530	int s, generation;
1531
1532	GIANT_REQUIRED;
1533retrylookup:
1534	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1535		if (m->busy || (m->flags & PG_BUSY)) {
1536			generation = object->generation;
1537
1538			s = splvm();
1539			while ((object->generation == generation) &&
1540					(m->busy || (m->flags & PG_BUSY))) {
1541				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1542				tsleep(m, PVM, "pgrbwt", 0);
1543				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1544					splx(s);
1545					return NULL;
1546				}
1547			}
1548			splx(s);
1549			goto retrylookup;
1550		} else {
1551			vm_page_busy(m);
1552			return m;
1553		}
1554	}
1555
1556	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1557	if (m == NULL) {
1558		VM_WAIT;
1559		if ((allocflags & VM_ALLOC_RETRY) == 0)
1560			return NULL;
1561		goto retrylookup;
1562	}
1563
1564	return m;
1565}
1566
1567/*
1568 * Mapping function for valid bits or for dirty bits in
1569 * a page.  May not block.
1570 *
1571 * Inputs are required to range within a page.
1572 */
1573
1574__inline int
1575vm_page_bits(int base, int size)
1576{
1577	int first_bit;
1578	int last_bit;
1579
1580	KASSERT(
1581	    base + size <= PAGE_SIZE,
1582	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1583	);
1584
1585	if (size == 0)		/* handle degenerate case */
1586		return(0);
1587
1588	first_bit = base >> DEV_BSHIFT;
1589	last_bit = (base + size - 1) >> DEV_BSHIFT;
1590
1591	return ((2 << last_bit) - (1 << first_bit));
1592}
1593
1594/*
1595 *	vm_page_set_validclean:
1596 *
1597 *	Sets portions of a page valid and clean.  The arguments are expected
1598 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1599 *	of any partial chunks touched by the range.  The invalid portion of
1600 *	such chunks will be zero'd.
1601 *
1602 *	This routine may not block.
1603 *
1604 *	(base + size) must be less then or equal to PAGE_SIZE.
1605 */
1606void
1607vm_page_set_validclean(vm_page_t m, int base, int size)
1608{
1609	int pagebits;
1610	int frag;
1611	int endoff;
1612
1613	GIANT_REQUIRED;
1614	if (size == 0)	/* handle degenerate case */
1615		return;
1616
1617	/*
1618	 * If the base is not DEV_BSIZE aligned and the valid
1619	 * bit is clear, we have to zero out a portion of the
1620	 * first block.
1621	 */
1622
1623	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1624	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1625	) {
1626		pmap_zero_page_area(
1627		    VM_PAGE_TO_PHYS(m),
1628		    frag,
1629		    base - frag
1630		);
1631	}
1632
1633	/*
1634	 * If the ending offset is not DEV_BSIZE aligned and the
1635	 * valid bit is clear, we have to zero out a portion of
1636	 * the last block.
1637	 */
1638
1639	endoff = base + size;
1640
1641	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1642	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1643	) {
1644		pmap_zero_page_area(
1645		    VM_PAGE_TO_PHYS(m),
1646		    endoff,
1647		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1648		);
1649	}
1650
1651	/*
1652	 * Set valid, clear dirty bits.  If validating the entire
1653	 * page we can safely clear the pmap modify bit.  We also
1654	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1655	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1656	 * be set again.
1657	 */
1658
1659	pagebits = vm_page_bits(base, size);
1660	m->valid |= pagebits;
1661	m->dirty &= ~pagebits;
1662	if (base == 0 && size == PAGE_SIZE) {
1663		pmap_clear_modify(m);
1664		vm_page_flag_clear(m, PG_NOSYNC);
1665	}
1666}
1667
1668#if 0
1669
1670void
1671vm_page_set_dirty(vm_page_t m, int base, int size)
1672{
1673	m->dirty |= vm_page_bits(base, size);
1674}
1675
1676#endif
1677
1678void
1679vm_page_clear_dirty(vm_page_t m, int base, int size)
1680{
1681	GIANT_REQUIRED;
1682	m->dirty &= ~vm_page_bits(base, size);
1683}
1684
1685/*
1686 *	vm_page_set_invalid:
1687 *
1688 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1689 *	valid and dirty bits for the effected areas are cleared.
1690 *
1691 *	May not block.
1692 */
1693void
1694vm_page_set_invalid(vm_page_t m, int base, int size)
1695{
1696	int bits;
1697
1698	GIANT_REQUIRED;
1699	bits = vm_page_bits(base, size);
1700	m->valid &= ~bits;
1701	m->dirty &= ~bits;
1702	m->object->generation++;
1703}
1704
1705/*
1706 * vm_page_zero_invalid()
1707 *
1708 *	The kernel assumes that the invalid portions of a page contain
1709 *	garbage, but such pages can be mapped into memory by user code.
1710 *	When this occurs, we must zero out the non-valid portions of the
1711 *	page so user code sees what it expects.
1712 *
1713 *	Pages are most often semi-valid when the end of a file is mapped
1714 *	into memory and the file's size is not page aligned.
1715 */
1716
1717void
1718vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1719{
1720	int b;
1721	int i;
1722
1723	/*
1724	 * Scan the valid bits looking for invalid sections that
1725	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1726	 * valid bit may be set ) have already been zerod by
1727	 * vm_page_set_validclean().
1728	 */
1729
1730	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1731		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1732		    (m->valid & (1 << i))
1733		) {
1734			if (i > b) {
1735				pmap_zero_page_area(
1736				    VM_PAGE_TO_PHYS(m),
1737				    b << DEV_BSHIFT,
1738				    (i - b) << DEV_BSHIFT
1739				);
1740			}
1741			b = i + 1;
1742		}
1743	}
1744
1745	/*
1746	 * setvalid is TRUE when we can safely set the zero'd areas
1747	 * as being valid.  We can do this if there are no cache consistancy
1748	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1749	 */
1750
1751	if (setvalid)
1752		m->valid = VM_PAGE_BITS_ALL;
1753}
1754
1755/*
1756 *	vm_page_is_valid:
1757 *
1758 *	Is (partial) page valid?  Note that the case where size == 0
1759 *	will return FALSE in the degenerate case where the page is
1760 *	entirely invalid, and TRUE otherwise.
1761 *
1762 *	May not block.
1763 */
1764
1765int
1766vm_page_is_valid(vm_page_t m, int base, int size)
1767{
1768	int bits = vm_page_bits(base, size);
1769
1770	if (m->valid && ((m->valid & bits) == bits))
1771		return 1;
1772	else
1773		return 0;
1774}
1775
1776/*
1777 * update dirty bits from pmap/mmu.  May not block.
1778 */
1779
1780void
1781vm_page_test_dirty(vm_page_t m)
1782{
1783	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1784		vm_page_dirty(m);
1785	}
1786}
1787
1788#include "opt_ddb.h"
1789#ifdef DDB
1790#include <sys/kernel.h>
1791
1792#include <ddb/ddb.h>
1793
1794DB_SHOW_COMMAND(page, vm_page_print_page_info)
1795{
1796	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1797	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1798	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1799	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1800	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1801	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1802	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1803	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1804	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1805	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1806}
1807
1808DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1809{
1810	int i;
1811	db_printf("PQ_FREE:");
1812	for (i = 0; i < PQ_L2_SIZE; i++) {
1813		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1814	}
1815	db_printf("\n");
1816
1817	db_printf("PQ_CACHE:");
1818	for (i = 0; i < PQ_L2_SIZE; i++) {
1819		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1820	}
1821	db_printf("\n");
1822
1823	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1824		vm_page_queues[PQ_ACTIVE].lcnt,
1825		vm_page_queues[PQ_INACTIVE].lcnt);
1826}
1827#endif /* DDB */
1828