vm_page.c revision 58705
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 * $FreeBSD: head/sys/vm/vm_page.c 58705 2000-03-27 20:41:17Z charnier $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *	Resident memory management module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/malloc.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/vnode.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <sys/lock.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88static void	vm_page_queue_init __P((void));
89static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
90
91/*
92 *	Associated with page of user-allocatable memory is a
93 *	page structure.
94 */
95
96static struct vm_page **vm_page_buckets; /* Array of buckets */
97static int vm_page_bucket_count;	/* How big is array? */
98static int vm_page_hash_mask;		/* Mask for hash function */
99static volatile int vm_page_bucket_generation;
100
101struct vpgqueues vm_page_queues[PQ_COUNT];
102
103static void
104vm_page_queue_init(void) {
105	int i;
106
107	for(i=0;i<PQ_L2_SIZE;i++) {
108		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
109	}
110	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
111
112	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
113	for(i=0;i<PQ_L2_SIZE;i++) {
114		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
115	}
116	for(i=0;i<PQ_COUNT;i++) {
117		TAILQ_INIT(&vm_page_queues[i].pl);
118	}
119}
120
121vm_page_t vm_page_array = 0;
122static int vm_page_array_size = 0;
123long first_page = 0;
124int vm_page_zero_count = 0;
125
126static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
127static void vm_page_free_wakeup __P((void));
128
129/*
130 *	vm_set_page_size:
131 *
132 *	Sets the page size, perhaps based upon the memory
133 *	size.  Must be called before any use of page-size
134 *	dependent functions.
135 */
136void
137vm_set_page_size()
138{
139	if (cnt.v_page_size == 0)
140		cnt.v_page_size = PAGE_SIZE;
141	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
142		panic("vm_set_page_size: page size not a power of two");
143}
144
145/*
146 *	vm_page_startup:
147 *
148 *	Initializes the resident memory module.
149 *
150 *	Allocates memory for the page cells, and
151 *	for the object/offset-to-page hash table headers.
152 *	Each page cell is initialized and placed on the free list.
153 */
154
155vm_offset_t
156vm_page_startup(starta, enda, vaddr)
157	register vm_offset_t starta;
158	vm_offset_t enda;
159	register vm_offset_t vaddr;
160{
161	register vm_offset_t mapped;
162	register vm_page_t m;
163	register struct vm_page **bucket;
164	vm_size_t npages, page_range;
165	register vm_offset_t new_start;
166	int i;
167	vm_offset_t pa;
168	int nblocks;
169	vm_offset_t first_managed_page;
170
171	/* the biggest memory array is the second group of pages */
172	vm_offset_t start;
173	vm_offset_t biggestone, biggestsize;
174
175	vm_offset_t total;
176
177	total = 0;
178	biggestsize = 0;
179	biggestone = 0;
180	nblocks = 0;
181	vaddr = round_page(vaddr);
182
183	for (i = 0; phys_avail[i + 1]; i += 2) {
184		phys_avail[i] = round_page(phys_avail[i]);
185		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
186	}
187
188	for (i = 0; phys_avail[i + 1]; i += 2) {
189		int size = phys_avail[i + 1] - phys_avail[i];
190
191		if (size > biggestsize) {
192			biggestone = i;
193			biggestsize = size;
194		}
195		++nblocks;
196		total += size;
197	}
198
199	start = phys_avail[biggestone];
200
201	/*
202	 * Initialize the queue headers for the free queue, the active queue
203	 * and the inactive queue.
204	 */
205
206	vm_page_queue_init();
207
208	/*
209	 * Allocate (and initialize) the hash table buckets.
210	 *
211	 * The number of buckets MUST BE a power of 2, and the actual value is
212	 * the next power of 2 greater than the number of physical pages in
213	 * the system.
214	 *
215	 * We make the hash table approximately 2x the number of pages to
216	 * reduce the chain length.  This is about the same size using the
217	 * singly-linked list as the 1x hash table we were using before
218	 * using TAILQ but the chain length will be smaller.
219	 *
220	 * Note: This computation can be tweaked if desired.
221	 */
222	vm_page_buckets = (struct vm_page **)vaddr;
223	bucket = vm_page_buckets;
224	if (vm_page_bucket_count == 0) {
225		vm_page_bucket_count = 1;
226		while (vm_page_bucket_count < atop(total))
227			vm_page_bucket_count <<= 1;
228	}
229	vm_page_bucket_count <<= 1;
230	vm_page_hash_mask = vm_page_bucket_count - 1;
231
232	/*
233	 * Validate these addresses.
234	 */
235
236	new_start = start + vm_page_bucket_count * sizeof(struct vm_page *);
237	new_start = round_page(new_start);
238	mapped = round_page(vaddr);
239	vaddr = pmap_map(mapped, start, new_start,
240	    VM_PROT_READ | VM_PROT_WRITE);
241	start = new_start;
242	vaddr = round_page(vaddr);
243	bzero((caddr_t) mapped, vaddr - mapped);
244
245	for (i = 0; i < vm_page_bucket_count; i++) {
246		*bucket = NULL;
247		bucket++;
248	}
249
250	/*
251	 * Compute the number of pages of memory that will be available for
252	 * use (taking into account the overhead of a page structure per
253	 * page).
254	 */
255
256	first_page = phys_avail[0] / PAGE_SIZE;
257
258	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
259	npages = (total - (page_range * sizeof(struct vm_page)) -
260	    (start - phys_avail[biggestone])) / PAGE_SIZE;
261
262	/*
263	 * Initialize the mem entry structures now, and put them in the free
264	 * queue.
265	 */
266	vm_page_array = (vm_page_t) vaddr;
267	mapped = vaddr;
268
269	/*
270	 * Validate these addresses.
271	 */
272	new_start = round_page(start + page_range * sizeof(struct vm_page));
273	mapped = pmap_map(mapped, start, new_start,
274	    VM_PROT_READ | VM_PROT_WRITE);
275	start = new_start;
276
277	first_managed_page = start / PAGE_SIZE;
278
279	/*
280	 * Clear all of the page structures
281	 */
282	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
283	vm_page_array_size = page_range;
284
285	/*
286	 * Construct the free queue(s) in descending order (by physical
287	 * address) so that the first 16MB of physical memory is allocated
288	 * last rather than first.  On large-memory machines, this avoids
289	 * the exhaustion of low physical memory before isa_dmainit has run.
290	 */
291	cnt.v_page_count = 0;
292	cnt.v_free_count = 0;
293	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
294		if (i == biggestone)
295			pa = ptoa(first_managed_page);
296		else
297			pa = phys_avail[i];
298		while (pa < phys_avail[i + 1] && npages-- > 0) {
299			++cnt.v_page_count;
300			++cnt.v_free_count;
301			m = PHYS_TO_VM_PAGE(pa);
302			m->phys_addr = pa;
303			m->flags = 0;
304			m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
305			m->queue = m->pc + PQ_FREE;
306			TAILQ_INSERT_HEAD(&vm_page_queues[m->queue].pl, m, pageq);
307			vm_page_queues[m->queue].lcnt++;
308			pa += PAGE_SIZE;
309		}
310	}
311	return (mapped);
312}
313
314/*
315 *	vm_page_hash:
316 *
317 *	Distributes the object/offset key pair among hash buckets.
318 *
319 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
320 *	This routine may not block.
321 *
322 *	We try to randomize the hash based on the object to spread the pages
323 *	out in the hash table without it costing us too much.
324 */
325static __inline int
326vm_page_hash(object, pindex)
327	vm_object_t object;
328	vm_pindex_t pindex;
329{
330	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
331
332	return(i & vm_page_hash_mask);
333}
334
335/*
336 *	vm_page_insert:		[ internal use only ]
337 *
338 *	Inserts the given mem entry into the object and object list.
339 *
340 *	The pagetables are not updated but will presumably fault the page
341 *	in if necessary, or if a kernel page the caller will at some point
342 *	enter the page into the kernel's pmap.  We are not allowed to block
343 *	here so we *can't* do this anyway.
344 *
345 *	The object and page must be locked, and must be splhigh.
346 *	This routine may not block.
347 */
348
349void
350vm_page_insert(m, object, pindex)
351	register vm_page_t m;
352	register vm_object_t object;
353	register vm_pindex_t pindex;
354{
355	register struct vm_page **bucket;
356
357	if (m->object != NULL)
358		panic("vm_page_insert: already inserted");
359
360	/*
361	 * Record the object/offset pair in this page
362	 */
363
364	m->object = object;
365	m->pindex = pindex;
366
367	/*
368	 * Insert it into the object_object/offset hash table
369	 */
370
371	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
372	m->hnext = *bucket;
373	*bucket = m;
374	vm_page_bucket_generation++;
375
376	/*
377	 * Now link into the object's list of backed pages.
378	 */
379
380	TAILQ_INSERT_TAIL(&object->memq, m, listq);
381	object->generation++;
382
383	/*
384	 * show that the object has one more resident page.
385	 */
386
387	object->resident_page_count++;
388
389	/*
390	 * Since we are inserting a new and possibly dirty page,
391	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
392	 */
393	if (m->flags & PG_WRITEABLE)
394	    vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
395}
396
397/*
398 *	vm_page_remove:
399 *				NOTE: used by device pager as well -wfj
400 *
401 *	Removes the given mem entry from the object/offset-page
402 *	table and the object page list, but do not invalidate/terminate
403 *	the backing store.
404 *
405 *	The object and page must be locked, and at splhigh.
406 *	The underlying pmap entry (if any) is NOT removed here.
407 *	This routine may not block.
408 */
409
410void
411vm_page_remove(m)
412	vm_page_t m;
413{
414	vm_object_t object;
415
416	if (m->object == NULL)
417		return;
418
419	if ((m->flags & PG_BUSY) == 0) {
420		panic("vm_page_remove: page not busy");
421	}
422
423	/*
424	 * Basically destroy the page.
425	 */
426
427	vm_page_wakeup(m);
428
429	object = m->object;
430
431	/*
432	 * Remove from the object_object/offset hash table.  The object
433	 * must be on the hash queue, we will panic if it isn't
434	 *
435	 * Note: we must NULL-out m->hnext to prevent loops in detached
436	 * buffers with vm_page_lookup().
437	 */
438
439	{
440		struct vm_page **bucket;
441
442		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
443		while (*bucket != m) {
444			if (*bucket == NULL)
445				panic("vm_page_remove(): page not found in hash");
446			bucket = &(*bucket)->hnext;
447		}
448		*bucket = m->hnext;
449		m->hnext = NULL;
450		vm_page_bucket_generation++;
451	}
452
453	/*
454	 * Now remove from the object's list of backed pages.
455	 */
456
457	TAILQ_REMOVE(&object->memq, m, listq);
458
459	/*
460	 * And show that the object has one fewer resident page.
461	 */
462
463	object->resident_page_count--;
464	object->generation++;
465
466	m->object = NULL;
467}
468
469/*
470 *	vm_page_lookup:
471 *
472 *	Returns the page associated with the object/offset
473 *	pair specified; if none is found, NULL is returned.
474 *
475 *	NOTE: the code below does not lock.  It will operate properly if
476 *	an interrupt makes a change, but the generation algorithm will not
477 *	operate properly in an SMP environment where both cpu's are able to run
478 *	kernel code simultaneously.
479 *
480 *	The object must be locked.  No side effects.
481 *	This routine may not block.
482 *	This is a critical path routine
483 */
484
485vm_page_t
486vm_page_lookup(object, pindex)
487	register vm_object_t object;
488	register vm_pindex_t pindex;
489{
490	register vm_page_t m;
491	register struct vm_page **bucket;
492	int generation;
493
494	/*
495	 * Search the hash table for this object/offset pair
496	 */
497
498retry:
499	generation = vm_page_bucket_generation;
500	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
501	for (m = *bucket; m != NULL; m = m->hnext) {
502		if ((m->object == object) && (m->pindex == pindex)) {
503			if (vm_page_bucket_generation != generation)
504				goto retry;
505			return (m);
506		}
507	}
508	if (vm_page_bucket_generation != generation)
509		goto retry;
510	return (NULL);
511}
512
513/*
514 *	vm_page_rename:
515 *
516 *	Move the given memory entry from its
517 *	current object to the specified target object/offset.
518 *
519 *	The object must be locked.
520 *	This routine may not block.
521 *
522 *	Note: this routine will raise itself to splvm(), the caller need not.
523 *
524 *	Note: swap associated with the page must be invalidated by the move.  We
525 *	      have to do this for several reasons:  (1) we aren't freeing the
526 *	      page, (2) we are dirtying the page, (3) the VM system is probably
527 *	      moving the page from object A to B, and will then later move
528 *	      the backing store from A to B and we can't have a conflict.
529 *
530 *	Note: we *always* dirty the page.  It is necessary both for the
531 *	      fact that we moved it, and because we may be invalidating
532 *	      swap.  If the page is on the cache, we have to deactivate it
533 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
534 *	      on the cache.
535 */
536
537void
538vm_page_rename(m, new_object, new_pindex)
539	register vm_page_t m;
540	register vm_object_t new_object;
541	vm_pindex_t new_pindex;
542{
543	int s;
544
545	s = splvm();
546	vm_page_remove(m);
547	vm_page_insert(m, new_object, new_pindex);
548	if (m->queue - m->pc == PQ_CACHE)
549		vm_page_deactivate(m);
550	vm_page_dirty(m);
551	splx(s);
552}
553
554/*
555 * vm_page_unqueue_nowakeup:
556 *
557 * 	vm_page_unqueue() without any wakeup
558 *
559 *	This routine must be called at splhigh().
560 *	This routine may not block.
561 */
562
563void
564vm_page_unqueue_nowakeup(m)
565	vm_page_t m;
566{
567	int queue = m->queue;
568	struct vpgqueues *pq;
569	if (queue != PQ_NONE) {
570		pq = &vm_page_queues[queue];
571		m->queue = PQ_NONE;
572		TAILQ_REMOVE(&pq->pl, m, pageq);
573		(*pq->cnt)--;
574		pq->lcnt--;
575	}
576}
577
578/*
579 * vm_page_unqueue:
580 *
581 *	Remove a page from its queue.
582 *
583 *	This routine must be called at splhigh().
584 *	This routine may not block.
585 */
586
587void
588vm_page_unqueue(m)
589	vm_page_t m;
590{
591	int queue = m->queue;
592	struct vpgqueues *pq;
593	if (queue != PQ_NONE) {
594		m->queue = PQ_NONE;
595		pq = &vm_page_queues[queue];
596		TAILQ_REMOVE(&pq->pl, m, pageq);
597		(*pq->cnt)--;
598		pq->lcnt--;
599		if ((queue - m->pc) == PQ_CACHE) {
600			if (vm_paging_needed())
601				pagedaemon_wakeup();
602		}
603	}
604}
605
606#if PQ_L2_SIZE > 1
607
608/*
609 *	vm_page_list_find:
610 *
611 *	Find a page on the specified queue with color optimization.
612 *
613 *	The page coloring optimization attempts to locate a page
614 *	that does not overload other nearby pages in the object in
615 *	the cpu's L1 or L2 caches.  We need this optimization because
616 *	cpu caches tend to be physical caches, while object spaces tend
617 *	to be virtual.
618 *
619 *	This routine must be called at splvm().
620 *	This routine may not block.
621 *
622 *	This routine may only be called from the vm_page_list_find() macro
623 *	in vm_page.h
624 */
625vm_page_t
626_vm_page_list_find(basequeue, index)
627	int basequeue, index;
628{
629	int i;
630	vm_page_t m = NULL;
631	struct vpgqueues *pq;
632
633	pq = &vm_page_queues[basequeue];
634
635	/*
636	 * Note that for the first loop, index+i and index-i wind up at the
637	 * same place.  Even though this is not totally optimal, we've already
638	 * blown it by missing the cache case so we do not care.
639	 */
640
641	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
642		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
643			break;
644
645		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
646			break;
647	}
648	return(m);
649}
650
651#endif
652
653/*
654 *	vm_page_select_cache:
655 *
656 *	Find a page on the cache queue with color optimization.  As pages
657 *	might be found, but not applicable, they are deactivated.  This
658 *	keeps us from using potentially busy cached pages.
659 *
660 *	This routine must be called at splvm().
661 *	This routine may not block.
662 */
663vm_page_t
664vm_page_select_cache(object, pindex)
665	vm_object_t object;
666	vm_pindex_t pindex;
667{
668	vm_page_t m;
669
670	while (TRUE) {
671		m = vm_page_list_find(
672		    PQ_CACHE,
673		    (pindex + object->pg_color) & PQ_L2_MASK,
674		    FALSE
675		);
676		if (m && ((m->flags & PG_BUSY) || m->busy ||
677			       m->hold_count || m->wire_count)) {
678			vm_page_deactivate(m);
679			continue;
680		}
681		return m;
682	}
683}
684
685/*
686 *	vm_page_select_free:
687 *
688 *	Find a free or zero page, with specified preference.  We attempt to
689 *	inline the nominal case and fall back to _vm_page_select_free()
690 *	otherwise.
691 *
692 *	This routine must be called at splvm().
693 *	This routine may not block.
694 */
695
696static __inline vm_page_t
697vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
698{
699	vm_page_t m;
700
701	m = vm_page_list_find(
702		PQ_FREE,
703		(pindex + object->pg_color) & PQ_L2_MASK,
704		prefer_zero
705	);
706	return(m);
707}
708
709/*
710 *	vm_page_alloc:
711 *
712 *	Allocate and return a memory cell associated
713 *	with this VM object/offset pair.
714 *
715 *	page_req classes:
716 *	VM_ALLOC_NORMAL		normal process request
717 *	VM_ALLOC_SYSTEM		system *really* needs a page
718 *	VM_ALLOC_INTERRUPT	interrupt time request
719 *	VM_ALLOC_ZERO		zero page
720 *
721 *	Object must be locked.
722 *	This routine may not block.
723 *
724 *	Additional special handling is required when called from an
725 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
726 *	the page cache in this case.
727 */
728
729vm_page_t
730vm_page_alloc(object, pindex, page_req)
731	vm_object_t object;
732	vm_pindex_t pindex;
733	int page_req;
734{
735	register vm_page_t m = NULL;
736	int s;
737
738	KASSERT(!vm_page_lookup(object, pindex),
739		("vm_page_alloc: page already allocated"));
740
741	/*
742	 * The pager is allowed to eat deeper into the free page list.
743	 */
744
745	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
746		page_req = VM_ALLOC_SYSTEM;
747	};
748
749	s = splvm();
750
751loop:
752	if (cnt.v_free_count > cnt.v_free_reserved) {
753		/*
754		 * Allocate from the free queue if there are plenty of pages
755		 * in it.
756		 */
757		if (page_req == VM_ALLOC_ZERO)
758			m = vm_page_select_free(object, pindex, TRUE);
759		else
760			m = vm_page_select_free(object, pindex, FALSE);
761	} else if (
762	    (page_req == VM_ALLOC_SYSTEM &&
763	     cnt.v_cache_count == 0 &&
764	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
765	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
766	) {
767		/*
768		 * Interrupt or system, dig deeper into the free list.
769		 */
770		m = vm_page_select_free(object, pindex, FALSE);
771	} else if (page_req != VM_ALLOC_INTERRUPT) {
772		/*
773		 * Allocatable from cache (non-interrupt only).  On success,
774		 * we must free the page and try again, thus ensuring that
775		 * cnt.v_*_free_min counters are replenished.
776		 */
777		m = vm_page_select_cache(object, pindex);
778		if (m == NULL) {
779			splx(s);
780#if defined(DIAGNOSTIC)
781			if (cnt.v_cache_count > 0)
782				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
783#endif
784			vm_pageout_deficit++;
785			pagedaemon_wakeup();
786			return (NULL);
787		}
788		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
789		vm_page_busy(m);
790		vm_page_protect(m, VM_PROT_NONE);
791		vm_page_free(m);
792		goto loop;
793	} else {
794		/*
795		 * Not allocatable from cache from interrupt, give up.
796		 */
797		splx(s);
798		vm_pageout_deficit++;
799		pagedaemon_wakeup();
800		return (NULL);
801	}
802
803	/*
804	 *  At this point we had better have found a good page.
805	 */
806
807	KASSERT(
808	    m != NULL,
809	    ("vm_page_alloc(): missing page on free queue\n")
810	);
811
812	/*
813	 * Remove from free queue
814	 */
815
816	vm_page_unqueue_nowakeup(m);
817
818	/*
819	 * Initialize structure.  Only the PG_ZERO flag is inherited.
820	 */
821
822	if (m->flags & PG_ZERO) {
823		vm_page_zero_count--;
824		m->flags = PG_ZERO | PG_BUSY;
825	} else {
826		m->flags = PG_BUSY;
827	}
828	m->wire_count = 0;
829	m->hold_count = 0;
830	m->act_count = 0;
831	m->busy = 0;
832	m->valid = 0;
833	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
834
835	/*
836	 * vm_page_insert() is safe prior to the splx().  Note also that
837	 * inserting a page here does not insert it into the pmap (which
838	 * could cause us to block allocating memory).  We cannot block
839	 * anywhere.
840	 */
841
842	vm_page_insert(m, object, pindex);
843
844	/*
845	 * Don't wakeup too often - wakeup the pageout daemon when
846	 * we would be nearly out of memory.
847	 */
848	if (vm_paging_needed() || cnt.v_free_count < cnt.v_pageout_free_min)
849		pagedaemon_wakeup();
850
851	splx(s);
852
853	return (m);
854}
855
856/*
857 *	vm_wait:	(also see VM_WAIT macro)
858 *
859 *	Block until free pages are available for allocation
860 */
861
862void
863vm_wait()
864{
865	int s;
866
867	s = splvm();
868	if (curproc == pageproc) {
869		vm_pageout_pages_needed = 1;
870		tsleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
871	} else {
872		if (!vm_pages_needed) {
873			vm_pages_needed++;
874			wakeup(&vm_pages_needed);
875		}
876		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
877	}
878	splx(s);
879}
880
881/*
882 *	vm_await:	(also see VM_AWAIT macro)
883 *
884 *	asleep on an event that will signal when free pages are available
885 *	for allocation.
886 */
887
888void
889vm_await()
890{
891	int s;
892
893	s = splvm();
894	if (curproc == pageproc) {
895		vm_pageout_pages_needed = 1;
896		asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
897	} else {
898		if (!vm_pages_needed) {
899			vm_pages_needed++;
900			wakeup(&vm_pages_needed);
901		}
902		asleep(&cnt.v_free_count, PVM, "vmwait", 0);
903	}
904	splx(s);
905}
906
907#if 0
908/*
909 *	vm_page_sleep:
910 *
911 *	Block until page is no longer busy.
912 */
913
914int
915vm_page_sleep(vm_page_t m, char *msg, char *busy) {
916	int slept = 0;
917	if ((busy && *busy) || (m->flags & PG_BUSY)) {
918		int s;
919		s = splvm();
920		if ((busy && *busy) || (m->flags & PG_BUSY)) {
921			vm_page_flag_set(m, PG_WANTED);
922			tsleep(m, PVM, msg, 0);
923			slept = 1;
924		}
925		splx(s);
926	}
927	return slept;
928}
929
930#endif
931
932#if 0
933
934/*
935 *	vm_page_asleep:
936 *
937 *	Similar to vm_page_sleep(), but does not block.  Returns 0 if
938 *	the page is not busy, or 1 if the page is busy.
939 *
940 *	This routine has the side effect of calling asleep() if the page
941 *	was busy (1 returned).
942 */
943
944int
945vm_page_asleep(vm_page_t m, char *msg, char *busy) {
946	int slept = 0;
947	if ((busy && *busy) || (m->flags & PG_BUSY)) {
948		int s;
949		s = splvm();
950		if ((busy && *busy) || (m->flags & PG_BUSY)) {
951			vm_page_flag_set(m, PG_WANTED);
952			asleep(m, PVM, msg, 0);
953			slept = 1;
954		}
955		splx(s);
956	}
957	return slept;
958}
959
960#endif
961
962/*
963 *	vm_page_activate:
964 *
965 *	Put the specified page on the active list (if appropriate).
966 *	Ensure that act_count is at least ACT_INIT but do not otherwise
967 *	mess with it.
968 *
969 *	The page queues must be locked.
970 *	This routine may not block.
971 */
972void
973vm_page_activate(m)
974	register vm_page_t m;
975{
976	int s;
977
978	s = splvm();
979	if (m->queue != PQ_ACTIVE) {
980		if ((m->queue - m->pc) == PQ_CACHE)
981			cnt.v_reactivated++;
982
983		vm_page_unqueue(m);
984
985		if (m->wire_count == 0) {
986			m->queue = PQ_ACTIVE;
987			vm_page_queues[PQ_ACTIVE].lcnt++;
988			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
989			if (m->act_count < ACT_INIT)
990				m->act_count = ACT_INIT;
991			cnt.v_active_count++;
992		}
993	} else {
994		if (m->act_count < ACT_INIT)
995			m->act_count = ACT_INIT;
996	}
997
998	splx(s);
999}
1000
1001/*
1002 *	vm_page_free_wakeup:
1003 *
1004 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1005 *	routine is called when a page has been added to the cache or free
1006 *	queues.
1007 *
1008 *	This routine may not block.
1009 *	This routine must be called at splvm()
1010 */
1011static __inline void
1012vm_page_free_wakeup()
1013{
1014	/*
1015	 * if pageout daemon needs pages, then tell it that there are
1016	 * some free.
1017	 */
1018	if (vm_pageout_pages_needed) {
1019		wakeup(&vm_pageout_pages_needed);
1020		vm_pageout_pages_needed = 0;
1021	}
1022	/*
1023	 * wakeup processes that are waiting on memory if we hit a
1024	 * high water mark. And wakeup scheduler process if we have
1025	 * lots of memory. this process will swapin processes.
1026	 */
1027	if (vm_pages_needed && vm_page_count_min()) {
1028		wakeup(&cnt.v_free_count);
1029		vm_pages_needed = 0;
1030	}
1031}
1032
1033/*
1034 *	vm_page_free_toq:
1035 *
1036 *	Returns the given page to the PQ_FREE list,
1037 *	disassociating it with any VM object.
1038 *
1039 *	Object and page must be locked prior to entry.
1040 *	This routine may not block.
1041 */
1042
1043void
1044vm_page_free_toq(vm_page_t m)
1045{
1046	int s;
1047	struct vpgqueues *pq;
1048	vm_object_t object = m->object;
1049
1050	s = splvm();
1051
1052	cnt.v_tfree++;
1053
1054	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1055		(m->hold_count != 0)) {
1056		printf(
1057		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1058		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1059		    m->hold_count);
1060		if ((m->queue - m->pc) == PQ_FREE)
1061			panic("vm_page_free: freeing free page");
1062		else
1063			panic("vm_page_free: freeing busy page");
1064	}
1065
1066	/*
1067	 * unqueue, then remove page.  Note that we cannot destroy
1068	 * the page here because we do not want to call the pager's
1069	 * callback routine until after we've put the page on the
1070	 * appropriate free queue.
1071	 */
1072
1073	vm_page_unqueue_nowakeup(m);
1074	vm_page_remove(m);
1075
1076	/*
1077	 * If fictitious remove object association and
1078	 * return, otherwise delay object association removal.
1079	 */
1080
1081	if ((m->flags & PG_FICTITIOUS) != 0) {
1082		splx(s);
1083		return;
1084	}
1085
1086	m->valid = 0;
1087	vm_page_undirty(m);
1088
1089	if (m->wire_count != 0) {
1090		if (m->wire_count > 1) {
1091			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1092				m->wire_count, (long)m->pindex);
1093		}
1094		panic("vm_page_free: freeing wired page\n");
1095	}
1096
1097	/*
1098	 * If we've exhausted the object's resident pages we want to free
1099	 * it up.
1100	 */
1101
1102	if (object &&
1103	    (object->type == OBJT_VNODE) &&
1104	    ((object->flags & OBJ_DEAD) == 0)
1105	) {
1106		struct vnode *vp = (struct vnode *)object->handle;
1107
1108		if (vp && VSHOULDFREE(vp)) {
1109			if ((vp->v_flag & (VTBFREE|VDOOMED|VFREE)) == 0) {
1110				TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
1111				vp->v_flag |= VTBFREE;
1112			}
1113		}
1114	}
1115
1116#ifdef __alpha__
1117	pmap_page_is_free(m);
1118#endif
1119
1120	m->queue = PQ_FREE + m->pc;
1121	pq = &vm_page_queues[m->queue];
1122	pq->lcnt++;
1123	++(*pq->cnt);
1124
1125	/*
1126	 * Put zero'd pages on the end ( where we look for zero'd pages
1127	 * first ) and non-zerod pages at the head.
1128	 */
1129
1130	if (m->flags & PG_ZERO) {
1131		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1132		++vm_page_zero_count;
1133	} else {
1134		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1135	}
1136
1137	vm_page_free_wakeup();
1138
1139	splx(s);
1140}
1141
1142/*
1143 *	vm_page_wire:
1144 *
1145 *	Mark this page as wired down by yet
1146 *	another map, removing it from paging queues
1147 *	as necessary.
1148 *
1149 *	The page queues must be locked.
1150 *	This routine may not block.
1151 */
1152void
1153vm_page_wire(m)
1154	register vm_page_t m;
1155{
1156	int s;
1157
1158	s = splvm();
1159	if (m->wire_count == 0) {
1160		vm_page_unqueue(m);
1161		cnt.v_wire_count++;
1162	}
1163	m->wire_count++;
1164	splx(s);
1165	vm_page_flag_set(m, PG_MAPPED);
1166}
1167
1168/*
1169 *	vm_page_unwire:
1170 *
1171 *	Release one wiring of this page, potentially
1172 *	enabling it to be paged again.
1173 *
1174 *	Many pages placed on the inactive queue should actually go
1175 *	into the cache, but it is difficult to figure out which.  What
1176 *	we do instead, if the inactive target is well met, is to put
1177 *	clean pages at the head of the inactive queue instead of the tail.
1178 *	This will cause them to be moved to the cache more quickly and
1179 *	if not actively re-referenced, freed more quickly.  If we just
1180 *	stick these pages at the end of the inactive queue, heavy filesystem
1181 *	meta-data accesses can cause an unnecessary paging load on memory bound
1182 *	processes.  This optimization causes one-time-use metadata to be
1183 *	reused more quickly.
1184 *
1185 *	A number of routines use vm_page_unwire() to guarantee that the page
1186 *	will go into either the inactive or active queues, and will NEVER
1187 *	be placed in the cache - for example, just after dirtying a page.
1188 *	dirty pages in the cache are not allowed.
1189 *
1190 *	The page queues must be locked.
1191 *	This routine may not block.
1192 */
1193void
1194vm_page_unwire(m, activate)
1195	register vm_page_t m;
1196	int activate;
1197{
1198	int s;
1199
1200	s = splvm();
1201
1202	if (m->wire_count > 0) {
1203		m->wire_count--;
1204		if (m->wire_count == 0) {
1205			cnt.v_wire_count--;
1206			if (activate) {
1207				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1208				m->queue = PQ_ACTIVE;
1209				vm_page_queues[PQ_ACTIVE].lcnt++;
1210				cnt.v_active_count++;
1211			} else {
1212				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1213				m->queue = PQ_INACTIVE;
1214				vm_page_queues[PQ_INACTIVE].lcnt++;
1215				cnt.v_inactive_count++;
1216			}
1217		}
1218	} else {
1219		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1220	}
1221	splx(s);
1222}
1223
1224
1225/*
1226 * Move the specified page to the inactive queue.  If the page has
1227 * any associated swap, the swap is deallocated.
1228 *
1229 * Normally athead is 0 resulting in LRU operation.  athead is set
1230 * to 1 if we want this page to be 'as if it were placed in the cache',
1231 * except without unmapping it from the process address space.
1232 *
1233 * This routine may not block.
1234 */
1235static __inline void
1236_vm_page_deactivate(vm_page_t m, int athead)
1237{
1238	int s;
1239
1240	/*
1241	 * Ignore if already inactive.
1242	 */
1243	if (m->queue == PQ_INACTIVE)
1244		return;
1245
1246	s = splvm();
1247	if (m->wire_count == 0) {
1248		if ((m->queue - m->pc) == PQ_CACHE)
1249			cnt.v_reactivated++;
1250		vm_page_unqueue(m);
1251		if (athead)
1252			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1253		else
1254			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1255		m->queue = PQ_INACTIVE;
1256		vm_page_queues[PQ_INACTIVE].lcnt++;
1257		cnt.v_inactive_count++;
1258	}
1259	splx(s);
1260}
1261
1262void
1263vm_page_deactivate(vm_page_t m)
1264{
1265    _vm_page_deactivate(m, 0);
1266}
1267
1268/*
1269 * vm_page_cache
1270 *
1271 * Put the specified page onto the page cache queue (if appropriate).
1272 *
1273 * This routine may not block.
1274 */
1275void
1276vm_page_cache(m)
1277	register vm_page_t m;
1278{
1279	int s;
1280
1281	if ((m->flags & PG_BUSY) || m->busy || m->wire_count) {
1282		printf("vm_page_cache: attempting to cache busy page\n");
1283		return;
1284	}
1285	if ((m->queue - m->pc) == PQ_CACHE)
1286		return;
1287
1288	/*
1289	 * Remove all pmaps and indicate that the page is not
1290	 * writeable or mapped.
1291	 */
1292
1293	vm_page_protect(m, VM_PROT_NONE);
1294	if (m->dirty != 0) {
1295		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1296			(long)m->pindex);
1297	}
1298	s = splvm();
1299	vm_page_unqueue_nowakeup(m);
1300	m->queue = PQ_CACHE + m->pc;
1301	vm_page_queues[m->queue].lcnt++;
1302	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1303	cnt.v_cache_count++;
1304	vm_page_free_wakeup();
1305	splx(s);
1306}
1307
1308/*
1309 * vm_page_dontneed
1310 *
1311 *	Cache, deactivate, or do nothing as appropriate.  This routine
1312 *	is typically used by madvise() MADV_DONTNEED.
1313 *
1314 *	Generally speaking we want to move the page into the cache so
1315 *	it gets reused quickly.  However, this can result in a silly syndrome
1316 *	due to the page recycling too quickly.  Small objects will not be
1317 *	fully cached.  On the otherhand, if we move the page to the inactive
1318 *	queue we wind up with a problem whereby very large objects
1319 *	unnecessarily blow away our inactive and cache queues.
1320 *
1321 *	The solution is to move the pages based on a fixed weighting.  We
1322 *	either leave them alone, deactivate them, or move them to the cache,
1323 *	where moving them to the cache has the highest weighting.
1324 *	By forcing some pages into other queues we eventually force the
1325 *	system to balance the queues, potentially recovering other unrelated
1326 *	space from active.  The idea is to not force this to happen too
1327 *	often.
1328 */
1329
1330void
1331vm_page_dontneed(m)
1332	vm_page_t m;
1333{
1334	static int dnweight;
1335	int dnw;
1336	int head;
1337
1338	dnw = ++dnweight;
1339
1340	/*
1341	 * occassionally leave the page alone
1342	 */
1343
1344	if ((dnw & 0x01F0) == 0 ||
1345	    m->queue == PQ_INACTIVE ||
1346	    m->queue - m->pc == PQ_CACHE
1347	) {
1348		if (m->act_count >= ACT_INIT)
1349			--m->act_count;
1350		return;
1351	}
1352
1353	if (m->dirty == 0)
1354		vm_page_test_dirty(m);
1355
1356	if (m->dirty || (dnw & 0x0070) == 0) {
1357		/*
1358		 * Deactivate the page 3 times out of 32.
1359		 */
1360		head = 0;
1361	} else {
1362		/*
1363		 * Cache the page 28 times out of every 32.  Note that
1364		 * the page is deactivated instead of cached, but placed
1365		 * at the head of the queue instead of the tail.
1366		 */
1367		head = 1;
1368	}
1369	_vm_page_deactivate(m, head);
1370}
1371
1372/*
1373 * Grab a page, waiting until we are waken up due to the page
1374 * changing state.  We keep on waiting, if the page continues
1375 * to be in the object.  If the page doesn't exist, allocate it.
1376 *
1377 * This routine may block.
1378 */
1379vm_page_t
1380vm_page_grab(object, pindex, allocflags)
1381	vm_object_t object;
1382	vm_pindex_t pindex;
1383	int allocflags;
1384{
1385
1386	vm_page_t m;
1387	int s, generation;
1388
1389retrylookup:
1390	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1391		if (m->busy || (m->flags & PG_BUSY)) {
1392			generation = object->generation;
1393
1394			s = splvm();
1395			while ((object->generation == generation) &&
1396					(m->busy || (m->flags & PG_BUSY))) {
1397				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1398				tsleep(m, PVM, "pgrbwt", 0);
1399				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1400					splx(s);
1401					return NULL;
1402				}
1403			}
1404			splx(s);
1405			goto retrylookup;
1406		} else {
1407			vm_page_busy(m);
1408			return m;
1409		}
1410	}
1411
1412	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1413	if (m == NULL) {
1414		VM_WAIT;
1415		if ((allocflags & VM_ALLOC_RETRY) == 0)
1416			return NULL;
1417		goto retrylookup;
1418	}
1419
1420	return m;
1421}
1422
1423/*
1424 * Mapping function for valid bits or for dirty bits in
1425 * a page.  May not block.
1426 *
1427 * Inputs are required to range within a page.
1428 */
1429
1430__inline int
1431vm_page_bits(int base, int size)
1432{
1433	int first_bit;
1434	int last_bit;
1435
1436	KASSERT(
1437	    base + size <= PAGE_SIZE,
1438	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1439	);
1440
1441	if (size == 0)		/* handle degenerate case */
1442		return(0);
1443
1444	first_bit = base >> DEV_BSHIFT;
1445	last_bit = (base + size - 1) >> DEV_BSHIFT;
1446
1447	return ((2 << last_bit) - (1 << first_bit));
1448}
1449
1450/*
1451 *	vm_page_set_validclean:
1452 *
1453 *	Sets portions of a page valid and clean.  The arguments are expected
1454 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1455 *	of any partial chunks touched by the range.  The invalid portion of
1456 *	such chunks will be zero'd.
1457 *
1458 *	This routine may not block.
1459 *
1460 *	(base + size) must be less then or equal to PAGE_SIZE.
1461 */
1462void
1463vm_page_set_validclean(m, base, size)
1464	vm_page_t m;
1465	int base;
1466	int size;
1467{
1468	int pagebits;
1469	int frag;
1470	int endoff;
1471
1472	if (size == 0)	/* handle degenerate case */
1473		return;
1474
1475	/*
1476	 * If the base is not DEV_BSIZE aligned and the valid
1477	 * bit is clear, we have to zero out a portion of the
1478	 * first block.
1479	 */
1480
1481	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1482	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1483	) {
1484		pmap_zero_page_area(
1485		    VM_PAGE_TO_PHYS(m),
1486		    frag,
1487		    base - frag
1488		);
1489	}
1490
1491	/*
1492	 * If the ending offset is not DEV_BSIZE aligned and the
1493	 * valid bit is clear, we have to zero out a portion of
1494	 * the last block.
1495	 */
1496
1497	endoff = base + size;
1498
1499	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1500	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1501	) {
1502		pmap_zero_page_area(
1503		    VM_PAGE_TO_PHYS(m),
1504		    endoff,
1505		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1506		);
1507	}
1508
1509	/*
1510	 * Set valid, clear dirty bits.  If validating the entire
1511	 * page we can safely clear the pmap modify bit.  We also
1512	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1513	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1514	 * be set again.
1515	 */
1516
1517	pagebits = vm_page_bits(base, size);
1518	m->valid |= pagebits;
1519	m->dirty &= ~pagebits;
1520	if (base == 0 && size == PAGE_SIZE) {
1521		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1522		vm_page_flag_clear(m, PG_NOSYNC);
1523	}
1524}
1525
1526#if 0
1527
1528void
1529vm_page_set_dirty(m, base, size)
1530	vm_page_t m;
1531	int base;
1532	int size;
1533{
1534	m->dirty |= vm_page_bits(base, size);
1535}
1536
1537#endif
1538
1539void
1540vm_page_clear_dirty(m, base, size)
1541	vm_page_t m;
1542	int base;
1543	int size;
1544{
1545	m->dirty &= ~vm_page_bits(base, size);
1546}
1547
1548/*
1549 *	vm_page_set_invalid:
1550 *
1551 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1552 *	valid and dirty bits for the effected areas are cleared.
1553 *
1554 *	May not block.
1555 */
1556void
1557vm_page_set_invalid(m, base, size)
1558	vm_page_t m;
1559	int base;
1560	int size;
1561{
1562	int bits;
1563
1564	bits = vm_page_bits(base, size);
1565	m->valid &= ~bits;
1566	m->dirty &= ~bits;
1567	m->object->generation++;
1568}
1569
1570/*
1571 * vm_page_zero_invalid()
1572 *
1573 *	The kernel assumes that the invalid portions of a page contain
1574 *	garbage, but such pages can be mapped into memory by user code.
1575 *	When this occurs, we must zero out the non-valid portions of the
1576 *	page so user code sees what it expects.
1577 *
1578 *	Pages are most often semi-valid when the end of a file is mapped
1579 *	into memory and the file's size is not page aligned.
1580 */
1581
1582void
1583vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1584{
1585	int b;
1586	int i;
1587
1588	/*
1589	 * Scan the valid bits looking for invalid sections that
1590	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1591	 * valid bit may be set ) have already been zerod by
1592	 * vm_page_set_validclean().
1593	 */
1594
1595	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1596		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1597		    (m->valid & (1 << i))
1598		) {
1599			if (i > b) {
1600				pmap_zero_page_area(
1601				    VM_PAGE_TO_PHYS(m),
1602				    b << DEV_BSHIFT,
1603				    (i - b) << DEV_BSHIFT
1604				);
1605			}
1606			b = i + 1;
1607		}
1608	}
1609
1610	/*
1611	 * setvalid is TRUE when we can safely set the zero'd areas
1612	 * as being valid.  We can do this if there are no cache consistancy
1613	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1614	 */
1615
1616	if (setvalid)
1617		m->valid = VM_PAGE_BITS_ALL;
1618}
1619
1620/*
1621 *	vm_page_is_valid:
1622 *
1623 *	Is (partial) page valid?  Note that the case where size == 0
1624 *	will return FALSE in the degenerate case where the page is
1625 *	entirely invalid, and TRUE otherwise.
1626 *
1627 *	May not block.
1628 */
1629
1630int
1631vm_page_is_valid(m, base, size)
1632	vm_page_t m;
1633	int base;
1634	int size;
1635{
1636	int bits = vm_page_bits(base, size);
1637
1638	if (m->valid && ((m->valid & bits) == bits))
1639		return 1;
1640	else
1641		return 0;
1642}
1643
1644/*
1645 * update dirty bits from pmap/mmu.  May not block.
1646 */
1647
1648void
1649vm_page_test_dirty(m)
1650	vm_page_t m;
1651{
1652	if ((m->dirty != VM_PAGE_BITS_ALL) &&
1653	    pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
1654		vm_page_dirty(m);
1655	}
1656}
1657
1658/*
1659 * This interface is for merging with malloc() someday.
1660 * Even if we never implement compaction so that contiguous allocation
1661 * works after initialization time, malloc()'s data structures are good
1662 * for statistics and for allocations of less than a page.
1663 */
1664void *
1665contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
1666	unsigned long size;	/* should be size_t here and for malloc() */
1667	struct malloc_type *type;
1668	int flags;
1669	unsigned long low;
1670	unsigned long high;
1671	unsigned long alignment;
1672	unsigned long boundary;
1673	vm_map_t map;
1674{
1675	int i, s, start;
1676	vm_offset_t addr, phys, tmp_addr;
1677	int pass;
1678	vm_page_t pga = vm_page_array;
1679
1680	size = round_page(size);
1681	if (size == 0)
1682		panic("contigmalloc1: size must not be 0");
1683	if ((alignment & (alignment - 1)) != 0)
1684		panic("contigmalloc1: alignment must be a power of 2");
1685	if ((boundary & (boundary - 1)) != 0)
1686		panic("contigmalloc1: boundary must be a power of 2");
1687
1688	start = 0;
1689	for (pass = 0; pass <= 1; pass++) {
1690		s = splvm();
1691again:
1692		/*
1693		 * Find first page in array that is free, within range, aligned, and
1694		 * such that the boundary won't be crossed.
1695		 */
1696		for (i = start; i < cnt.v_page_count; i++) {
1697			int pqtype;
1698			phys = VM_PAGE_TO_PHYS(&pga[i]);
1699			pqtype = pga[i].queue - pga[i].pc;
1700			if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1701			    (phys >= low) && (phys < high) &&
1702			    ((phys & (alignment - 1)) == 0) &&
1703			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1704				break;
1705		}
1706
1707		/*
1708		 * If the above failed or we will exceed the upper bound, fail.
1709		 */
1710		if ((i == cnt.v_page_count) ||
1711			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1712			vm_page_t m, next;
1713
1714again1:
1715			for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
1716				m != NULL;
1717				m = next) {
1718
1719				KASSERT(m->queue == PQ_INACTIVE,
1720					("contigmalloc1: page %p is not PQ_INACTIVE", m));
1721
1722				next = TAILQ_NEXT(m, pageq);
1723				if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
1724					goto again1;
1725				vm_page_test_dirty(m);
1726				if (m->dirty) {
1727					if (m->object->type == OBJT_VNODE) {
1728						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1729						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1730						VOP_UNLOCK(m->object->handle, 0, curproc);
1731						goto again1;
1732					} else if (m->object->type == OBJT_SWAP ||
1733								m->object->type == OBJT_DEFAULT) {
1734						vm_pageout_flush(&m, 1, 0);
1735						goto again1;
1736					}
1737				}
1738				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1739					vm_page_cache(m);
1740			}
1741
1742			for (m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1743				m != NULL;
1744				m = next) {
1745
1746				KASSERT(m->queue == PQ_ACTIVE,
1747					("contigmalloc1: page %p is not PQ_ACTIVE", m));
1748
1749				next = TAILQ_NEXT(m, pageq);
1750				if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
1751					goto again1;
1752				vm_page_test_dirty(m);
1753				if (m->dirty) {
1754					if (m->object->type == OBJT_VNODE) {
1755						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1756						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1757						VOP_UNLOCK(m->object->handle, 0, curproc);
1758						goto again1;
1759					} else if (m->object->type == OBJT_SWAP ||
1760								m->object->type == OBJT_DEFAULT) {
1761						vm_pageout_flush(&m, 1, 0);
1762						goto again1;
1763					}
1764				}
1765				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1766					vm_page_cache(m);
1767			}
1768
1769			splx(s);
1770			continue;
1771		}
1772		start = i;
1773
1774		/*
1775		 * Check successive pages for contiguous and free.
1776		 */
1777		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1778			int pqtype;
1779			pqtype = pga[i].queue - pga[i].pc;
1780			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1781			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1782			    ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1783				start++;
1784				goto again;
1785			}
1786		}
1787
1788		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1789			int pqtype;
1790			vm_page_t m = &pga[i];
1791
1792			pqtype = m->queue - m->pc;
1793			if (pqtype == PQ_CACHE) {
1794				vm_page_busy(m);
1795				vm_page_free(m);
1796			}
1797
1798			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
1799			vm_page_queues[m->queue].lcnt--;
1800			cnt.v_free_count--;
1801			m->valid = VM_PAGE_BITS_ALL;
1802			m->flags = 0;
1803			KASSERT(m->dirty == 0, ("contigmalloc1: page %p was dirty", m));
1804			m->wire_count = 0;
1805			m->busy = 0;
1806			m->queue = PQ_NONE;
1807			m->object = NULL;
1808			vm_page_wire(m);
1809		}
1810
1811		/*
1812		 * We've found a contiguous chunk that meets are requirements.
1813		 * Allocate kernel VM, unfree and assign the physical pages to it and
1814		 * return kernel VM pointer.
1815		 */
1816		tmp_addr = addr = kmem_alloc_pageable(map, size);
1817		if (addr == 0) {
1818			/*
1819			 * XXX We almost never run out of kernel virtual
1820			 * space, so we don't make the allocated memory
1821			 * above available.
1822			 */
1823			splx(s);
1824			return (NULL);
1825		}
1826
1827		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1828			vm_page_t m = &pga[i];
1829			vm_page_insert(m, kernel_object,
1830				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1831			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1832			tmp_addr += PAGE_SIZE;
1833		}
1834
1835		splx(s);
1836		return ((void *)addr);
1837	}
1838	return NULL;
1839}
1840
1841void *
1842contigmalloc(size, type, flags, low, high, alignment, boundary)
1843	unsigned long size;	/* should be size_t here and for malloc() */
1844	struct malloc_type *type;
1845	int flags;
1846	unsigned long low;
1847	unsigned long high;
1848	unsigned long alignment;
1849	unsigned long boundary;
1850{
1851	return contigmalloc1(size, type, flags, low, high, alignment, boundary,
1852			     kernel_map);
1853}
1854
1855void
1856contigfree(addr, size, type)
1857	void *addr;
1858	unsigned long size;
1859	struct malloc_type *type;
1860{
1861	kmem_free(kernel_map, (vm_offset_t)addr, size);
1862}
1863
1864vm_offset_t
1865vm_page_alloc_contig(size, low, high, alignment)
1866	vm_offset_t size;
1867	vm_offset_t low;
1868	vm_offset_t high;
1869	vm_offset_t alignment;
1870{
1871	return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
1872					  alignment, 0ul, kernel_map));
1873}
1874
1875#include "opt_ddb.h"
1876#ifdef DDB
1877#include <sys/kernel.h>
1878
1879#include <ddb/ddb.h>
1880
1881DB_SHOW_COMMAND(page, vm_page_print_page_info)
1882{
1883	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1884	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1885	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1886	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1887	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1888	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1889	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1890	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1891	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1892	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1893}
1894
1895DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1896{
1897	int i;
1898	db_printf("PQ_FREE:");
1899	for(i=0;i<PQ_L2_SIZE;i++) {
1900		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1901	}
1902	db_printf("\n");
1903
1904	db_printf("PQ_CACHE:");
1905	for(i=0;i<PQ_L2_SIZE;i++) {
1906		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1907	}
1908	db_printf("\n");
1909
1910	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1911		vm_page_queues[PQ_ACTIVE].lcnt,
1912		vm_page_queues[PQ_INACTIVE].lcnt);
1913}
1914#endif /* DDB */
1915