vm_page.c revision 53074
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 * $FreeBSD: head/sys/vm/vm_page.c 53074 1999-11-10 05:23:19Z alc $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *	Resident memory management module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/malloc.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/vnode.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <sys/lock.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88static void	vm_page_queue_init __P((void));
89static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
90
91/*
92 *	Associated with page of user-allocatable memory is a
93 *	page structure.
94 */
95
96static struct vm_page **vm_page_buckets; /* Array of buckets */
97static int vm_page_bucket_count;	/* How big is array? */
98static int vm_page_hash_mask;		/* Mask for hash function */
99static volatile int vm_page_bucket_generation;
100
101struct vpgqueues vm_page_queues[PQ_COUNT];
102
103static void
104vm_page_queue_init(void) {
105	int i;
106
107	for(i=0;i<PQ_L2_SIZE;i++) {
108		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
109	}
110	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
111
112	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
113	for(i=0;i<PQ_L2_SIZE;i++) {
114		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
115	}
116	for(i=0;i<PQ_COUNT;i++) {
117		TAILQ_INIT(&vm_page_queues[i].pl);
118	}
119}
120
121vm_page_t vm_page_array = 0;
122static int vm_page_array_size = 0;
123long first_page = 0;
124int vm_page_zero_count = 0;
125
126static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
127static void vm_page_free_wakeup __P((void));
128
129/*
130 *	vm_set_page_size:
131 *
132 *	Sets the page size, perhaps based upon the memory
133 *	size.  Must be called before any use of page-size
134 *	dependent functions.
135 */
136void
137vm_set_page_size()
138{
139	if (cnt.v_page_size == 0)
140		cnt.v_page_size = PAGE_SIZE;
141	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
142		panic("vm_set_page_size: page size not a power of two");
143}
144
145/*
146 *	vm_page_startup:
147 *
148 *	Initializes the resident memory module.
149 *
150 *	Allocates memory for the page cells, and
151 *	for the object/offset-to-page hash table headers.
152 *	Each page cell is initialized and placed on the free list.
153 */
154
155vm_offset_t
156vm_page_startup(starta, enda, vaddr)
157	register vm_offset_t starta;
158	vm_offset_t enda;
159	register vm_offset_t vaddr;
160{
161	register vm_offset_t mapped;
162	register vm_page_t m;
163	register struct vm_page **bucket;
164	vm_size_t npages, page_range;
165	register vm_offset_t new_start;
166	int i;
167	vm_offset_t pa;
168	int nblocks;
169	vm_offset_t first_managed_page;
170
171	/* the biggest memory array is the second group of pages */
172	vm_offset_t start;
173	vm_offset_t biggestone, biggestsize;
174
175	vm_offset_t total;
176
177	total = 0;
178	biggestsize = 0;
179	biggestone = 0;
180	nblocks = 0;
181	vaddr = round_page(vaddr);
182
183	for (i = 0; phys_avail[i + 1]; i += 2) {
184		phys_avail[i] = round_page(phys_avail[i]);
185		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
186	}
187
188	for (i = 0; phys_avail[i + 1]; i += 2) {
189		int size = phys_avail[i + 1] - phys_avail[i];
190
191		if (size > biggestsize) {
192			biggestone = i;
193			biggestsize = size;
194		}
195		++nblocks;
196		total += size;
197	}
198
199	start = phys_avail[biggestone];
200
201	/*
202	 * Initialize the queue headers for the free queue, the active queue
203	 * and the inactive queue.
204	 */
205
206	vm_page_queue_init();
207
208	/*
209	 * Allocate (and initialize) the hash table buckets.
210	 *
211	 * The number of buckets MUST BE a power of 2, and the actual value is
212	 * the next power of 2 greater than the number of physical pages in
213	 * the system.
214	 *
215	 * We make the hash table approximately 2x the number of pages to
216	 * reduce the chain length.  This is about the same size using the
217	 * singly-linked list as the 1x hash table we were using before
218	 * using TAILQ but the chain length will be smaller.
219	 *
220	 * Note: This computation can be tweaked if desired.
221	 */
222	vm_page_buckets = (struct vm_page **)vaddr;
223	bucket = vm_page_buckets;
224	if (vm_page_bucket_count == 0) {
225		vm_page_bucket_count = 1;
226		while (vm_page_bucket_count < atop(total))
227			vm_page_bucket_count <<= 1;
228	}
229	vm_page_bucket_count <<= 1;
230	vm_page_hash_mask = vm_page_bucket_count - 1;
231
232	/*
233	 * Validate these addresses.
234	 */
235
236	new_start = start + vm_page_bucket_count * sizeof(struct vm_page *);
237	new_start = round_page(new_start);
238	mapped = round_page(vaddr);
239	vaddr = pmap_map(mapped, start, new_start,
240	    VM_PROT_READ | VM_PROT_WRITE);
241	start = new_start;
242	vaddr = round_page(vaddr);
243	bzero((caddr_t) mapped, vaddr - mapped);
244
245	for (i = 0; i < vm_page_bucket_count; i++) {
246		*bucket = NULL;
247		bucket++;
248	}
249
250	/*
251	 * Compute the number of pages of memory that will be available for
252	 * use (taking into account the overhead of a page structure per
253	 * page).
254	 */
255
256	first_page = phys_avail[0] / PAGE_SIZE;
257
258	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
259	npages = (total - (page_range * sizeof(struct vm_page)) -
260	    (start - phys_avail[biggestone])) / PAGE_SIZE;
261
262	/*
263	 * Initialize the mem entry structures now, and put them in the free
264	 * queue.
265	 */
266	vm_page_array = (vm_page_t) vaddr;
267	mapped = vaddr;
268
269	/*
270	 * Validate these addresses.
271	 */
272	new_start = round_page(start + page_range * sizeof(struct vm_page));
273	mapped = pmap_map(mapped, start, new_start,
274	    VM_PROT_READ | VM_PROT_WRITE);
275	start = new_start;
276
277	first_managed_page = start / PAGE_SIZE;
278
279	/*
280	 * Clear all of the page structures
281	 */
282	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
283	vm_page_array_size = page_range;
284
285	/*
286	 * Construct the free queue(s) in descending order (by physical
287	 * address) so that the first 16MB of physical memory is allocated
288	 * last rather than first.  On large-memory machines, this avoids
289	 * the exhaustion of low physical memory before isa_dmainit has run.
290	 */
291	cnt.v_page_count = 0;
292	cnt.v_free_count = 0;
293	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
294		if (i == biggestone)
295			pa = ptoa(first_managed_page);
296		else
297			pa = phys_avail[i];
298		while (pa < phys_avail[i + 1] && npages-- > 0) {
299			++cnt.v_page_count;
300			++cnt.v_free_count;
301			m = PHYS_TO_VM_PAGE(pa);
302			m->phys_addr = pa;
303			m->flags = 0;
304			m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
305			m->queue = m->pc + PQ_FREE;
306			TAILQ_INSERT_HEAD(&vm_page_queues[m->queue].pl, m, pageq);
307			vm_page_queues[m->queue].lcnt++;
308			pa += PAGE_SIZE;
309		}
310	}
311	return (mapped);
312}
313
314/*
315 *	vm_page_hash:
316 *
317 *	Distributes the object/offset key pair among hash buckets.
318 *
319 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
320 *	This routine may not block.
321 *
322 *	We try to randomize the hash based on the object to spread the pages
323 *	out in the hash table without it costing us too much.
324 */
325static __inline int
326vm_page_hash(object, pindex)
327	vm_object_t object;
328	vm_pindex_t pindex;
329{
330	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
331
332	return(i & vm_page_hash_mask);
333}
334
335/*
336 *	vm_page_insert:		[ internal use only ]
337 *
338 *	Inserts the given mem entry into the object and object list.
339 *
340 *	The pagetables are not updated but will presumably fault the page
341 *	in if necessary, or if a kernel page the caller will at some point
342 *	enter the page into the kernel's pmap.  We are not allowed to block
343 *	here so we *can't* do this anyway.
344 *
345 *	The object and page must be locked, and must be splhigh.
346 *	This routine may not block.
347 */
348
349void
350vm_page_insert(m, object, pindex)
351	register vm_page_t m;
352	register vm_object_t object;
353	register vm_pindex_t pindex;
354{
355	register struct vm_page **bucket;
356
357	if (m->object != NULL)
358		panic("vm_page_insert: already inserted");
359
360	/*
361	 * Record the object/offset pair in this page
362	 */
363
364	m->object = object;
365	m->pindex = pindex;
366
367	/*
368	 * Insert it into the object_object/offset hash table
369	 */
370
371	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
372	m->hnext = *bucket;
373	*bucket = m;
374	vm_page_bucket_generation++;
375
376	/*
377	 * Now link into the object's list of backed pages.
378	 */
379
380	TAILQ_INSERT_TAIL(&object->memq, m, listq);
381	object->generation++;
382
383	/*
384	 * show that the object has one more resident page.
385	 */
386
387	object->resident_page_count++;
388
389	/*
390	 * Since we are inserting a new and possibly dirty page,
391	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
392	 */
393	if (m->flags & PG_WRITEABLE)
394	    vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
395}
396
397/*
398 *	vm_page_remove:
399 *				NOTE: used by device pager as well -wfj
400 *
401 *	Removes the given mem entry from the object/offset-page
402 *	table and the object page list, but do not invalidate/terminate
403 *	the backing store.
404 *
405 *	The object and page must be locked, and at splhigh.
406 *	The underlying pmap entry (if any) is NOT removed here.
407 *	This routine may not block.
408 */
409
410void
411vm_page_remove(m)
412	vm_page_t m;
413{
414	vm_object_t object;
415
416	if (m->object == NULL)
417		return;
418
419#if !defined(MAX_PERF)
420	if ((m->flags & PG_BUSY) == 0) {
421		panic("vm_page_remove: page not busy");
422	}
423#endif
424
425	/*
426	 * Basically destroy the page.
427	 */
428
429	vm_page_wakeup(m);
430
431	object = m->object;
432
433	/*
434	 * Remove from the object_object/offset hash table.  The object
435	 * must be on the hash queue, we will panic if it isn't
436	 *
437	 * Note: we must NULL-out m->hnext to prevent loops in detached
438	 * buffers with vm_page_lookup().
439	 */
440
441	{
442		struct vm_page **bucket;
443
444		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
445		while (*bucket != m) {
446#if !defined(MAX_PERF)
447			if (*bucket == NULL)
448				panic("vm_page_remove(): page not found in hash");
449#endif
450			bucket = &(*bucket)->hnext;
451		}
452		*bucket = m->hnext;
453		m->hnext = NULL;
454		vm_page_bucket_generation++;
455	}
456
457	/*
458	 * Now remove from the object's list of backed pages.
459	 */
460
461	TAILQ_REMOVE(&object->memq, m, listq);
462
463	/*
464	 * And show that the object has one fewer resident page.
465	 */
466
467	object->resident_page_count--;
468	object->generation++;
469
470	m->object = NULL;
471}
472
473/*
474 *	vm_page_lookup:
475 *
476 *	Returns the page associated with the object/offset
477 *	pair specified; if none is found, NULL is returned.
478 *
479 *	NOTE: the code below does not lock.  It will operate properly if
480 *	an interrupt makes a change, but the generation algorithm will not
481 *	operate properly in an SMP environment where both cpu's are able to run
482 *	kernel code simultaniously.
483 *
484 *	The object must be locked.  No side effects.
485 *	This routine may not block.
486 *	This is a critical path routine
487 */
488
489vm_page_t
490vm_page_lookup(object, pindex)
491	register vm_object_t object;
492	register vm_pindex_t pindex;
493{
494	register vm_page_t m;
495	register struct vm_page **bucket;
496	int generation;
497
498	/*
499	 * Search the hash table for this object/offset pair
500	 */
501
502retry:
503	generation = vm_page_bucket_generation;
504	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
505	for (m = *bucket; m != NULL; m = m->hnext) {
506		if ((m->object == object) && (m->pindex == pindex)) {
507			if (vm_page_bucket_generation != generation)
508				goto retry;
509			return (m);
510		}
511	}
512	if (vm_page_bucket_generation != generation)
513		goto retry;
514	return (NULL);
515}
516
517/*
518 *	vm_page_rename:
519 *
520 *	Move the given memory entry from its
521 *	current object to the specified target object/offset.
522 *
523 *	The object must be locked.
524 *	This routine may not block.
525 *
526 *	Note: this routine will raise itself to splvm(), the caller need not.
527 *
528 *	Note: swap associated with the page must be invalidated by the move.  We
529 *	      have to do this for several reasons:  (1) we aren't freeing the
530 *	      page, (2) we are dirtying the page, (3) the VM system is probably
531 *	      moving the page from object A to B, and will then later move
532 *	      the backing store from A to B and we can't have a conflict.
533 *
534 *	Note: we *always* dirty the page.  It is necessary both for the
535 *	      fact that we moved it, and because we may be invalidating
536 *	      swap.  If the page is on the cache, we have to deactivate it
537 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
538 *	      on the cache.
539 */
540
541void
542vm_page_rename(m, new_object, new_pindex)
543	register vm_page_t m;
544	register vm_object_t new_object;
545	vm_pindex_t new_pindex;
546{
547	int s;
548
549	s = splvm();
550	vm_page_remove(m);
551	vm_page_insert(m, new_object, new_pindex);
552	if (m->queue - m->pc == PQ_CACHE)
553		vm_page_deactivate(m);
554	vm_page_dirty(m);
555	splx(s);
556}
557
558/*
559 * vm_page_unqueue_nowakeup:
560 *
561 * 	vm_page_unqueue() without any wakeup
562 *
563 *	This routine must be called at splhigh().
564 *	This routine may not block.
565 */
566
567void
568vm_page_unqueue_nowakeup(m)
569	vm_page_t m;
570{
571	int queue = m->queue;
572	struct vpgqueues *pq;
573	if (queue != PQ_NONE) {
574		pq = &vm_page_queues[queue];
575		m->queue = PQ_NONE;
576		TAILQ_REMOVE(&pq->pl, m, pageq);
577		(*pq->cnt)--;
578		pq->lcnt--;
579	}
580}
581
582/*
583 * vm_page_unqueue:
584 *
585 *	Remove a page from its queue.
586 *
587 *	This routine must be called at splhigh().
588 *	This routine may not block.
589 */
590
591void
592vm_page_unqueue(m)
593	vm_page_t m;
594{
595	int queue = m->queue;
596	struct vpgqueues *pq;
597	if (queue != PQ_NONE) {
598		m->queue = PQ_NONE;
599		pq = &vm_page_queues[queue];
600		TAILQ_REMOVE(&pq->pl, m, pageq);
601		(*pq->cnt)--;
602		pq->lcnt--;
603		if ((queue - m->pc) == PQ_CACHE) {
604			if (vm_paging_needed())
605				pagedaemon_wakeup();
606		}
607	}
608}
609
610#if PQ_L2_SIZE > 1
611
612/*
613 *	vm_page_list_find:
614 *
615 *	Find a page on the specified queue with color optimization.
616 *
617 *	The page coloring optimization attempts to locate a page
618 *	that does not overload other nearby pages in the object in
619 *	the cpu's L1 or L2 caches.  We need this optmization because
620 *	cpu caches tend to be physical caches, while object spaces tend
621 *	to be virtual.
622 *
623 *	This routine must be called at splvm().
624 *	This routine may not block.
625 *
626 *	This routine may only be called from the vm_page_list_find() macro
627 *	in vm_page.h
628 */
629vm_page_t
630_vm_page_list_find(basequeue, index)
631	int basequeue, index;
632{
633	int i;
634	vm_page_t m = NULL;
635	struct vpgqueues *pq;
636
637	pq = &vm_page_queues[basequeue];
638
639	/*
640	 * Note that for the first loop, index+i and index-i wind up at the
641	 * same place.  Even though this is not totally optimal, we've already
642	 * blown it by missing the cache case so we do not care.
643	 */
644
645	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
646		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
647			break;
648
649		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
650			break;
651	}
652	return(m);
653}
654
655#endif
656
657/*
658 *	vm_page_select_cache:
659 *
660 *	Find a page on the cache queue with color optimization.  As pages
661 *	might be found, but not applicable, they are deactivated.  This
662 *	keeps us from using potentially busy cached pages.
663 *
664 *	This routine must be called at splvm().
665 *	This routine may not block.
666 */
667vm_page_t
668vm_page_select_cache(object, pindex)
669	vm_object_t object;
670	vm_pindex_t pindex;
671{
672	vm_page_t m;
673
674	while (TRUE) {
675		m = vm_page_list_find(
676		    PQ_CACHE,
677		    (pindex + object->pg_color) & PQ_L2_MASK,
678		    FALSE
679		);
680		if (m && ((m->flags & PG_BUSY) || m->busy ||
681			       m->hold_count || m->wire_count)) {
682			vm_page_deactivate(m);
683			continue;
684		}
685		return m;
686	}
687}
688
689/*
690 *	vm_page_select_free:
691 *
692 *	Find a free or zero page, with specified preference.  We attempt to
693 *	inline the nominal case and fall back to _vm_page_select_free()
694 *	otherwise.
695 *
696 *	This routine must be called at splvm().
697 *	This routine may not block.
698 */
699
700static __inline vm_page_t
701vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
702{
703	vm_page_t m;
704
705	m = vm_page_list_find(
706		PQ_FREE,
707		(pindex + object->pg_color) & PQ_L2_MASK,
708		prefer_zero
709	);
710	return(m);
711}
712
713/*
714 *	vm_page_alloc:
715 *
716 *	Allocate and return a memory cell associated
717 *	with this VM object/offset pair.
718 *
719 *	page_req classes:
720 *	VM_ALLOC_NORMAL		normal process request
721 *	VM_ALLOC_SYSTEM		system *really* needs a page
722 *	VM_ALLOC_INTERRUPT	interrupt time request
723 *	VM_ALLOC_ZERO		zero page
724 *
725 *	Object must be locked.
726 *	This routine may not block.
727 *
728 *	Additional special handling is required when called from an
729 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
730 *	the page cache in this case.
731 */
732
733vm_page_t
734vm_page_alloc(object, pindex, page_req)
735	vm_object_t object;
736	vm_pindex_t pindex;
737	int page_req;
738{
739	register vm_page_t m = NULL;
740	int s;
741
742	KASSERT(!vm_page_lookup(object, pindex),
743		("vm_page_alloc: page already allocated"));
744
745	/*
746	 * The pager is allowed to eat deeper into the free page list.
747	 */
748
749	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
750		page_req = VM_ALLOC_SYSTEM;
751	};
752
753	s = splvm();
754
755loop:
756	if (cnt.v_free_count > cnt.v_free_reserved) {
757		/*
758		 * Allocate from the free queue if there are plenty of pages
759		 * in it.
760		 */
761		if (page_req == VM_ALLOC_ZERO)
762			m = vm_page_select_free(object, pindex, TRUE);
763		else
764			m = vm_page_select_free(object, pindex, FALSE);
765	} else if (
766	    (page_req == VM_ALLOC_SYSTEM &&
767	     cnt.v_cache_count == 0 &&
768	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
769	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
770	) {
771		/*
772		 * Interrupt or system, dig deeper into the free list.
773		 */
774		m = vm_page_select_free(object, pindex, FALSE);
775	} else if (page_req != VM_ALLOC_INTERRUPT) {
776		/*
777		 * Allocateable from cache (non-interrupt only).  On success,
778		 * we must free the page and try again, thus ensuring that
779		 * cnt.v_*_free_min counters are replenished.
780		 */
781		m = vm_page_select_cache(object, pindex);
782		if (m == NULL) {
783			splx(s);
784#if defined(DIAGNOSTIC)
785			if (cnt.v_cache_count > 0)
786				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
787#endif
788			vm_pageout_deficit++;
789			pagedaemon_wakeup();
790			return (NULL);
791		}
792		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
793		vm_page_busy(m);
794		vm_page_protect(m, VM_PROT_NONE);
795		vm_page_free(m);
796		goto loop;
797	} else {
798		/*
799		 * Not allocateable from cache from interrupt, give up.
800		 */
801		splx(s);
802		vm_pageout_deficit++;
803		pagedaemon_wakeup();
804		return (NULL);
805	}
806
807	/*
808	 *  At this point we had better have found a good page.
809	 */
810
811	KASSERT(
812	    m != NULL,
813	    ("vm_page_alloc(): missing page on free queue\n")
814	);
815
816	/*
817	 * Remove from free queue
818	 */
819
820	vm_page_unqueue_nowakeup(m);
821
822	/*
823	 * Initialize structure.  Only the PG_ZERO flag is inherited.
824	 */
825
826	if (m->flags & PG_ZERO) {
827		vm_page_zero_count--;
828		m->flags = PG_ZERO | PG_BUSY;
829	} else {
830		m->flags = PG_BUSY;
831	}
832	m->wire_count = 0;
833	m->hold_count = 0;
834	m->act_count = 0;
835	m->busy = 0;
836	m->valid = 0;
837	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
838
839	/*
840	 * vm_page_insert() is safe prior to the splx().  Note also that
841	 * inserting a page here does not insert it into the pmap (which
842	 * could cause us to block allocating memory).  We cannot block
843	 * anywhere.
844	 */
845
846	vm_page_insert(m, object, pindex);
847
848	/*
849	 * Don't wakeup too often - wakeup the pageout daemon when
850	 * we would be nearly out of memory.
851	 */
852	if (vm_paging_needed() || cnt.v_free_count < cnt.v_pageout_free_min)
853		pagedaemon_wakeup();
854
855	splx(s);
856
857	return (m);
858}
859
860/*
861 *	vm_wait:	(also see VM_WAIT macro)
862 *
863 *	Block until free pages are available for allocation
864 */
865
866void
867vm_wait()
868{
869	int s;
870
871	s = splvm();
872	if (curproc == pageproc) {
873		vm_pageout_pages_needed = 1;
874		tsleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
875	} else {
876		if (!vm_pages_needed) {
877			vm_pages_needed++;
878			wakeup(&vm_pages_needed);
879		}
880		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
881	}
882	splx(s);
883}
884
885/*
886 *	vm_await:	(also see VM_AWAIT macro)
887 *
888 *	asleep on an event that will signal when free pages are available
889 *	for allocation.
890 */
891
892void
893vm_await()
894{
895	int s;
896
897	s = splvm();
898	if (curproc == pageproc) {
899		vm_pageout_pages_needed = 1;
900		asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
901	} else {
902		if (!vm_pages_needed) {
903			vm_pages_needed++;
904			wakeup(&vm_pages_needed);
905		}
906		asleep(&cnt.v_free_count, PVM, "vmwait", 0);
907	}
908	splx(s);
909}
910
911#if 0
912/*
913 *	vm_page_sleep:
914 *
915 *	Block until page is no longer busy.
916 */
917
918int
919vm_page_sleep(vm_page_t m, char *msg, char *busy) {
920	int slept = 0;
921	if ((busy && *busy) || (m->flags & PG_BUSY)) {
922		int s;
923		s = splvm();
924		if ((busy && *busy) || (m->flags & PG_BUSY)) {
925			vm_page_flag_set(m, PG_WANTED);
926			tsleep(m, PVM, msg, 0);
927			slept = 1;
928		}
929		splx(s);
930	}
931	return slept;
932}
933
934#endif
935
936#if 0
937
938/*
939 *	vm_page_asleep:
940 *
941 *	Similar to vm_page_sleep(), but does not block.  Returns 0 if
942 *	the page is not busy, or 1 if the page is busy.
943 *
944 *	This routine has the side effect of calling asleep() if the page
945 *	was busy (1 returned).
946 */
947
948int
949vm_page_asleep(vm_page_t m, char *msg, char *busy) {
950	int slept = 0;
951	if ((busy && *busy) || (m->flags & PG_BUSY)) {
952		int s;
953		s = splvm();
954		if ((busy && *busy) || (m->flags & PG_BUSY)) {
955			vm_page_flag_set(m, PG_WANTED);
956			asleep(m, PVM, msg, 0);
957			slept = 1;
958		}
959		splx(s);
960	}
961	return slept;
962}
963
964#endif
965
966/*
967 *	vm_page_activate:
968 *
969 *	Put the specified page on the active list (if appropriate).
970 *	Ensure that act_count is at least ACT_INIT but do not otherwise
971 *	mess with it.
972 *
973 *	The page queues must be locked.
974 *	This routine may not block.
975 */
976void
977vm_page_activate(m)
978	register vm_page_t m;
979{
980	int s;
981
982	s = splvm();
983	if (m->queue != PQ_ACTIVE) {
984		if ((m->queue - m->pc) == PQ_CACHE)
985			cnt.v_reactivated++;
986
987		vm_page_unqueue(m);
988
989		if (m->wire_count == 0) {
990			m->queue = PQ_ACTIVE;
991			vm_page_queues[PQ_ACTIVE].lcnt++;
992			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
993			if (m->act_count < ACT_INIT)
994				m->act_count = ACT_INIT;
995			cnt.v_active_count++;
996		}
997	} else {
998		if (m->act_count < ACT_INIT)
999			m->act_count = ACT_INIT;
1000	}
1001
1002	splx(s);
1003}
1004
1005/*
1006 *	vm_page_free_wakeup:
1007 *
1008 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1009 *	routine is called when a page has been added to the cache or free
1010 *	queues.
1011 *
1012 *	This routine may not block.
1013 *	This routine must be called at splvm()
1014 */
1015static __inline void
1016vm_page_free_wakeup()
1017{
1018	/*
1019	 * if pageout daemon needs pages, then tell it that there are
1020	 * some free.
1021	 */
1022	if (vm_pageout_pages_needed) {
1023		wakeup(&vm_pageout_pages_needed);
1024		vm_pageout_pages_needed = 0;
1025	}
1026	/*
1027	 * wakeup processes that are waiting on memory if we hit a
1028	 * high water mark. And wakeup scheduler process if we have
1029	 * lots of memory. this process will swapin processes.
1030	 */
1031	if (vm_pages_needed && vm_page_count_min()) {
1032		wakeup(&cnt.v_free_count);
1033		vm_pages_needed = 0;
1034	}
1035}
1036
1037/*
1038 *	vm_page_free_toq:
1039 *
1040 *	Returns the given page to the PQ_FREE list,
1041 *	disassociating it with any VM object.
1042 *
1043 *	Object and page must be locked prior to entry.
1044 *	This routine may not block.
1045 */
1046
1047void
1048vm_page_free_toq(vm_page_t m)
1049{
1050	int s;
1051	struct vpgqueues *pq;
1052	vm_object_t object = m->object;
1053
1054	s = splvm();
1055
1056	cnt.v_tfree++;
1057
1058#if !defined(MAX_PERF)
1059	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1060		(m->hold_count != 0)) {
1061		printf(
1062		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1063		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1064		    m->hold_count);
1065		if ((m->queue - m->pc) == PQ_FREE)
1066			panic("vm_page_free: freeing free page");
1067		else
1068			panic("vm_page_free: freeing busy page");
1069	}
1070#endif
1071
1072	/*
1073	 * unqueue, then remove page.  Note that we cannot destroy
1074	 * the page here because we do not want to call the pager's
1075	 * callback routine until after we've put the page on the
1076	 * appropriate free queue.
1077	 */
1078
1079	vm_page_unqueue_nowakeup(m);
1080	vm_page_remove(m);
1081
1082	/*
1083	 * If fictitious remove object association and
1084	 * return, otherwise delay object association removal.
1085	 */
1086
1087	if ((m->flags & PG_FICTITIOUS) != 0) {
1088		splx(s);
1089		return;
1090	}
1091
1092	m->valid = 0;
1093	vm_page_undirty(m);
1094
1095	if (m->wire_count != 0) {
1096#if !defined(MAX_PERF)
1097		if (m->wire_count > 1) {
1098			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1099				m->wire_count, (long)m->pindex);
1100		}
1101#endif
1102		panic("vm_page_free: freeing wired page\n");
1103	}
1104
1105	/*
1106	 * If we've exhausted the object's resident pages we want to free
1107	 * it up.
1108	 */
1109
1110	if (object &&
1111	    (object->type == OBJT_VNODE) &&
1112	    ((object->flags & OBJ_DEAD) == 0)
1113	) {
1114		struct vnode *vp = (struct vnode *)object->handle;
1115
1116		if (vp && VSHOULDFREE(vp)) {
1117			if ((vp->v_flag & (VTBFREE|VDOOMED|VFREE)) == 0) {
1118				TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
1119				vp->v_flag |= VTBFREE;
1120			}
1121		}
1122	}
1123
1124#ifdef __alpha__
1125	pmap_page_is_free(m);
1126#endif
1127
1128	m->queue = PQ_FREE + m->pc;
1129	pq = &vm_page_queues[m->queue];
1130	pq->lcnt++;
1131	++(*pq->cnt);
1132
1133	/*
1134	 * Put zero'd pages on the end ( where we look for zero'd pages
1135	 * first ) and non-zerod pages at the head.
1136	 */
1137
1138	if (m->flags & PG_ZERO) {
1139		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1140		++vm_page_zero_count;
1141	} else {
1142		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1143	}
1144
1145	vm_page_free_wakeup();
1146
1147	splx(s);
1148}
1149
1150/*
1151 *	vm_page_wire:
1152 *
1153 *	Mark this page as wired down by yet
1154 *	another map, removing it from paging queues
1155 *	as necessary.
1156 *
1157 *	The page queues must be locked.
1158 *	This routine may not block.
1159 */
1160void
1161vm_page_wire(m)
1162	register vm_page_t m;
1163{
1164	int s;
1165
1166	s = splvm();
1167	if (m->wire_count == 0) {
1168		vm_page_unqueue(m);
1169		cnt.v_wire_count++;
1170	}
1171	m->wire_count++;
1172	splx(s);
1173	vm_page_flag_set(m, PG_MAPPED);
1174}
1175
1176/*
1177 *	vm_page_unwire:
1178 *
1179 *	Release one wiring of this page, potentially
1180 *	enabling it to be paged again.
1181 *
1182 *	Many pages placed on the inactive queue should actually go
1183 *	into the cache, but it is difficult to figure out which.  What
1184 *	we do instead, if the inactive target is well met, is to put
1185 *	clean pages at the head of the inactive queue instead of the tail.
1186 *	This will cause them to be moved to the cache more quickly and
1187 *	if not actively re-referenced, freed more quickly.  If we just
1188 *	stick these pages at the end of the inactive queue, heavy filesystem
1189 *	meta-data accesses can cause an unnecessary paging load on memory bound
1190 *	processes.  This optimization causes one-time-use metadata to be
1191 *	reused more quickly.
1192 *
1193 *	A number of routines use vm_page_unwire() to guarentee that the page
1194 *	will go into either the inactive or active queues, and will NEVER
1195 *	be placed in the cache - for example, just after dirtying a page.
1196 *	dirty pages in the cache are not allowed.
1197 *
1198 *	The page queues must be locked.
1199 *	This routine may not block.
1200 */
1201void
1202vm_page_unwire(m, activate)
1203	register vm_page_t m;
1204	int activate;
1205{
1206	int s;
1207
1208	s = splvm();
1209
1210	if (m->wire_count > 0) {
1211		m->wire_count--;
1212		if (m->wire_count == 0) {
1213			cnt.v_wire_count--;
1214			if (activate) {
1215				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1216				m->queue = PQ_ACTIVE;
1217				vm_page_queues[PQ_ACTIVE].lcnt++;
1218				cnt.v_active_count++;
1219			} else {
1220				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1221				m->queue = PQ_INACTIVE;
1222				vm_page_queues[PQ_INACTIVE].lcnt++;
1223				cnt.v_inactive_count++;
1224			}
1225		}
1226	} else {
1227#if !defined(MAX_PERF)
1228		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1229#endif
1230	}
1231	splx(s);
1232}
1233
1234
1235/*
1236 * Move the specified page to the inactive queue.  If the page has
1237 * any associated swap, the swap is deallocated.
1238 *
1239 * Normally athead is 0 resulting in LRU operation.  athead is set
1240 * to 1 if we want this page to be 'as if it were placed in the cache',
1241 * except without unmapping it from the process address space.
1242 *
1243 * This routine may not block.
1244 */
1245static __inline void
1246_vm_page_deactivate(vm_page_t m, int athead)
1247{
1248	int s;
1249
1250	/*
1251	 * Ignore if already inactive.
1252	 */
1253	if (m->queue == PQ_INACTIVE)
1254		return;
1255
1256	s = splvm();
1257	if (m->wire_count == 0) {
1258		if ((m->queue - m->pc) == PQ_CACHE)
1259			cnt.v_reactivated++;
1260		vm_page_unqueue(m);
1261		if (athead)
1262			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1263		else
1264			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1265		m->queue = PQ_INACTIVE;
1266		vm_page_queues[PQ_INACTIVE].lcnt++;
1267		cnt.v_inactive_count++;
1268	}
1269	splx(s);
1270}
1271
1272void
1273vm_page_deactivate(vm_page_t m)
1274{
1275    _vm_page_deactivate(m, 0);
1276}
1277
1278/*
1279 * vm_page_cache
1280 *
1281 * Put the specified page onto the page cache queue (if appropriate).
1282 *
1283 * This routine may not block.
1284 */
1285void
1286vm_page_cache(m)
1287	register vm_page_t m;
1288{
1289	int s;
1290
1291#if !defined(MAX_PERF)
1292	if ((m->flags & PG_BUSY) || m->busy || m->wire_count) {
1293		printf("vm_page_cache: attempting to cache busy page\n");
1294		return;
1295	}
1296#endif
1297	if ((m->queue - m->pc) == PQ_CACHE)
1298		return;
1299
1300	/*
1301	 * Remove all pmaps and indicate that the page is not
1302	 * writeable or mapped.
1303	 */
1304
1305	vm_page_protect(m, VM_PROT_NONE);
1306#if !defined(MAX_PERF)
1307	if (m->dirty != 0) {
1308		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1309			(long)m->pindex);
1310	}
1311#endif
1312	s = splvm();
1313	vm_page_unqueue_nowakeup(m);
1314	m->queue = PQ_CACHE + m->pc;
1315	vm_page_queues[m->queue].lcnt++;
1316	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1317	cnt.v_cache_count++;
1318	vm_page_free_wakeup();
1319	splx(s);
1320}
1321
1322/*
1323 * vm_page_dontneed
1324 *
1325 *	Cache, deactivate, or do nothing as appropriate.  This routine
1326 *	is typically used by madvise() MADV_DONTNEED.
1327 *
1328 *	Generally speaking we want to move the page into the cache so
1329 *	it gets reused quickly.  However, this can result in a silly syndrome
1330 *	due to the page recycling too quickly.  Small objects will not be
1331 *	fully cached.  On the otherhand, if we move the page to the inactive
1332 *	queue we wind up with a problem whereby very large objects
1333 *	unnecessarily blow away our inactive and cache queues.
1334 *
1335 *	The solution is to move the pages based on a fixed weighting.  We
1336 *	either leave them alone, deactivate them, or move them to the cache,
1337 *	where moving them to the cache has the highest weighting.
1338 *	By forcing some pages into other queues we eventually force the
1339 *	system to balance the queues, potentially recovering other unrelated
1340 *	space from active.  The idea is to not force this to happen too
1341 *	often.
1342 */
1343
1344void
1345vm_page_dontneed(m)
1346	vm_page_t m;
1347{
1348	static int dnweight;
1349	int dnw;
1350	int head;
1351
1352	dnw = ++dnweight;
1353
1354	/*
1355	 * occassionally leave the page alone
1356	 */
1357
1358	if ((dnw & 0x01F0) == 0 ||
1359	    m->queue == PQ_INACTIVE ||
1360	    m->queue - m->pc == PQ_CACHE
1361	) {
1362		if (m->act_count >= ACT_INIT)
1363			--m->act_count;
1364		return;
1365	}
1366
1367	if (m->dirty == 0)
1368		vm_page_test_dirty(m);
1369
1370	if (m->dirty || (dnw & 0x0070) == 0) {
1371		/*
1372		 * Deactivate the page 3 times out of 32.
1373		 */
1374		head = 0;
1375	} else {
1376		/*
1377		 * Cache the page 28 times out of every 32.  Note that
1378		 * the page is deactivated instead of cached, but placed
1379		 * at the head of the queue instead of the tail.
1380		 */
1381		head = 1;
1382	}
1383	_vm_page_deactivate(m, head);
1384}
1385
1386/*
1387 * Grab a page, waiting until we are waken up due to the page
1388 * changing state.  We keep on waiting, if the page continues
1389 * to be in the object.  If the page doesn't exist, allocate it.
1390 *
1391 * This routine may block.
1392 */
1393vm_page_t
1394vm_page_grab(object, pindex, allocflags)
1395	vm_object_t object;
1396	vm_pindex_t pindex;
1397	int allocflags;
1398{
1399
1400	vm_page_t m;
1401	int s, generation;
1402
1403retrylookup:
1404	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1405		if (m->busy || (m->flags & PG_BUSY)) {
1406			generation = object->generation;
1407
1408			s = splvm();
1409			while ((object->generation == generation) &&
1410					(m->busy || (m->flags & PG_BUSY))) {
1411				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1412				tsleep(m, PVM, "pgrbwt", 0);
1413				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1414					splx(s);
1415					return NULL;
1416				}
1417			}
1418			splx(s);
1419			goto retrylookup;
1420		} else {
1421			vm_page_busy(m);
1422			return m;
1423		}
1424	}
1425
1426	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1427	if (m == NULL) {
1428		VM_WAIT;
1429		if ((allocflags & VM_ALLOC_RETRY) == 0)
1430			return NULL;
1431		goto retrylookup;
1432	}
1433
1434	return m;
1435}
1436
1437/*
1438 * Mapping function for valid bits or for dirty bits in
1439 * a page.  May not block.
1440 *
1441 * Inputs are required to range within a page.
1442 */
1443
1444__inline int
1445vm_page_bits(int base, int size)
1446{
1447	int first_bit;
1448	int last_bit;
1449
1450	KASSERT(
1451	    base + size <= PAGE_SIZE,
1452	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1453	);
1454
1455	if (size == 0)		/* handle degenerate case */
1456		return(0);
1457
1458	first_bit = base >> DEV_BSHIFT;
1459	last_bit = (base + size - 1) >> DEV_BSHIFT;
1460
1461	return ((2 << last_bit) - (1 << first_bit));
1462}
1463
1464/*
1465 *	vm_page_set_validclean:
1466 *
1467 *	Sets portions of a page valid and clean.  The arguments are expected
1468 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1469 *	of any partial chunks touched by the range.  The invalid portion of
1470 *	such chunks will be zero'd.
1471 *
1472 *	This routine may not block.
1473 *
1474 *	(base + size) must be less then or equal to PAGE_SIZE.
1475 */
1476void
1477vm_page_set_validclean(m, base, size)
1478	vm_page_t m;
1479	int base;
1480	int size;
1481{
1482	int pagebits;
1483	int frag;
1484	int endoff;
1485
1486	if (size == 0)	/* handle degenerate case */
1487		return;
1488
1489	/*
1490	 * If the base is not DEV_BSIZE aligned and the valid
1491	 * bit is clear, we have to zero out a portion of the
1492	 * first block.
1493	 */
1494
1495	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1496	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1497	) {
1498		pmap_zero_page_area(
1499		    VM_PAGE_TO_PHYS(m),
1500		    frag,
1501		    base - frag
1502		);
1503	}
1504
1505	/*
1506	 * If the ending offset is not DEV_BSIZE aligned and the
1507	 * valid bit is clear, we have to zero out a portion of
1508	 * the last block.
1509	 */
1510
1511	endoff = base + size;
1512
1513	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1514	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1515	) {
1516		pmap_zero_page_area(
1517		    VM_PAGE_TO_PHYS(m),
1518		    endoff,
1519		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1520		);
1521	}
1522
1523	/*
1524	 * Set valid, clear dirty bits.  If validating the entire
1525	 * page we can safely clear the pmap modify bit.
1526	 */
1527
1528	pagebits = vm_page_bits(base, size);
1529	m->valid |= pagebits;
1530	m->dirty &= ~pagebits;
1531
1532	if (base == 0 && size == PAGE_SIZE)
1533		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1534}
1535
1536#if 0
1537
1538void
1539vm_page_set_dirty(m, base, size)
1540	vm_page_t m;
1541	int base;
1542	int size;
1543{
1544	m->dirty |= vm_page_bits(base, size);
1545}
1546
1547#endif
1548
1549void
1550vm_page_clear_dirty(m, base, size)
1551	vm_page_t m;
1552	int base;
1553	int size;
1554{
1555	m->dirty &= ~vm_page_bits(base, size);
1556}
1557
1558/*
1559 *	vm_page_set_invalid:
1560 *
1561 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1562 *	valid and dirty bits for the effected areas are cleared.
1563 *
1564 *	May not block.
1565 */
1566void
1567vm_page_set_invalid(m, base, size)
1568	vm_page_t m;
1569	int base;
1570	int size;
1571{
1572	int bits;
1573
1574	bits = vm_page_bits(base, size);
1575	m->valid &= ~bits;
1576	m->dirty &= ~bits;
1577	m->object->generation++;
1578}
1579
1580/*
1581 * vm_page_zero_invalid()
1582 *
1583 *	The kernel assumes that the invalid portions of a page contain
1584 *	garbage, but such pages can be mapped into memory by user code.
1585 *	When this occurs, we must zero out the non-valid portions of the
1586 *	page so user code sees what it expects.
1587 *
1588 *	Pages are most often semi-valid when the end of a file is mapped
1589 *	into memory and the file's size is not page aligned.
1590 */
1591
1592void
1593vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1594{
1595	int b;
1596	int i;
1597
1598	/*
1599	 * Scan the valid bits looking for invalid sections that
1600	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1601	 * valid bit may be set ) have already been zerod by
1602	 * vm_page_set_validclean().
1603	 */
1604
1605	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1606		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1607		    (m->valid & (1 << i))
1608		) {
1609			if (i > b) {
1610				pmap_zero_page_area(
1611				    VM_PAGE_TO_PHYS(m),
1612				    b << DEV_BSHIFT,
1613				    (i - b) << DEV_BSHIFT
1614				);
1615			}
1616			b = i + 1;
1617		}
1618	}
1619
1620	/*
1621	 * setvalid is TRUE when we can safely set the zero'd areas
1622	 * as being valid.  We can do this if there are no cache consistancy
1623	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1624	 */
1625
1626	if (setvalid)
1627		m->valid = VM_PAGE_BITS_ALL;
1628}
1629
1630/*
1631 *	vm_page_is_valid:
1632 *
1633 *	Is (partial) page valid?  Note that the case where size == 0
1634 *	will return FALSE in the degenerate case where the page is
1635 *	entirely invalid, and TRUE otherwise.
1636 *
1637 *	May not block.
1638 */
1639
1640int
1641vm_page_is_valid(m, base, size)
1642	vm_page_t m;
1643	int base;
1644	int size;
1645{
1646	int bits = vm_page_bits(base, size);
1647
1648	if (m->valid && ((m->valid & bits) == bits))
1649		return 1;
1650	else
1651		return 0;
1652}
1653
1654/*
1655 * update dirty bits from pmap/mmu.  May not block.
1656 */
1657
1658void
1659vm_page_test_dirty(m)
1660	vm_page_t m;
1661{
1662	if ((m->dirty != VM_PAGE_BITS_ALL) &&
1663	    pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
1664		vm_page_dirty(m);
1665	}
1666}
1667
1668/*
1669 * This interface is for merging with malloc() someday.
1670 * Even if we never implement compaction so that contiguous allocation
1671 * works after initialization time, malloc()'s data structures are good
1672 * for statistics and for allocations of less than a page.
1673 */
1674void *
1675contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
1676	unsigned long size;	/* should be size_t here and for malloc() */
1677	struct malloc_type *type;
1678	int flags;
1679	unsigned long low;
1680	unsigned long high;
1681	unsigned long alignment;
1682	unsigned long boundary;
1683	vm_map_t map;
1684{
1685	int i, s, start;
1686	vm_offset_t addr, phys, tmp_addr;
1687	int pass;
1688	vm_page_t pga = vm_page_array;
1689
1690	size = round_page(size);
1691#if !defined(MAX_PERF)
1692	if (size == 0)
1693		panic("contigmalloc1: size must not be 0");
1694	if ((alignment & (alignment - 1)) != 0)
1695		panic("contigmalloc1: alignment must be a power of 2");
1696	if ((boundary & (boundary - 1)) != 0)
1697		panic("contigmalloc1: boundary must be a power of 2");
1698#endif
1699
1700	start = 0;
1701	for (pass = 0; pass <= 1; pass++) {
1702		s = splvm();
1703again:
1704		/*
1705		 * Find first page in array that is free, within range, aligned, and
1706		 * such that the boundary won't be crossed.
1707		 */
1708		for (i = start; i < cnt.v_page_count; i++) {
1709			int pqtype;
1710			phys = VM_PAGE_TO_PHYS(&pga[i]);
1711			pqtype = pga[i].queue - pga[i].pc;
1712			if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1713			    (phys >= low) && (phys < high) &&
1714			    ((phys & (alignment - 1)) == 0) &&
1715			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1716				break;
1717		}
1718
1719		/*
1720		 * If the above failed or we will exceed the upper bound, fail.
1721		 */
1722		if ((i == cnt.v_page_count) ||
1723			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1724			vm_page_t m, next;
1725
1726again1:
1727			for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
1728				m != NULL;
1729				m = next) {
1730
1731				KASSERT(m->queue == PQ_INACTIVE,
1732					("contigmalloc1: page %p is not PQ_INACTIVE", m));
1733
1734				next = TAILQ_NEXT(m, pageq);
1735				if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
1736					goto again1;
1737				vm_page_test_dirty(m);
1738				if (m->dirty) {
1739					if (m->object->type == OBJT_VNODE) {
1740						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1741						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1742						VOP_UNLOCK(m->object->handle, 0, curproc);
1743						goto again1;
1744					} else if (m->object->type == OBJT_SWAP ||
1745								m->object->type == OBJT_DEFAULT) {
1746						vm_pageout_flush(&m, 1, 0);
1747						goto again1;
1748					}
1749				}
1750				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1751					vm_page_cache(m);
1752			}
1753
1754			for (m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1755				m != NULL;
1756				m = next) {
1757
1758				KASSERT(m->queue == PQ_ACTIVE,
1759					("contigmalloc1: page %p is not PQ_ACTIVE", m));
1760
1761				next = TAILQ_NEXT(m, pageq);
1762				if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
1763					goto again1;
1764				vm_page_test_dirty(m);
1765				if (m->dirty) {
1766					if (m->object->type == OBJT_VNODE) {
1767						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1768						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1769						VOP_UNLOCK(m->object->handle, 0, curproc);
1770						goto again1;
1771					} else if (m->object->type == OBJT_SWAP ||
1772								m->object->type == OBJT_DEFAULT) {
1773						vm_pageout_flush(&m, 1, 0);
1774						goto again1;
1775					}
1776				}
1777				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1778					vm_page_cache(m);
1779			}
1780
1781			splx(s);
1782			continue;
1783		}
1784		start = i;
1785
1786		/*
1787		 * Check successive pages for contiguous and free.
1788		 */
1789		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1790			int pqtype;
1791			pqtype = pga[i].queue - pga[i].pc;
1792			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1793			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1794			    ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1795				start++;
1796				goto again;
1797			}
1798		}
1799
1800		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1801			int pqtype;
1802			vm_page_t m = &pga[i];
1803
1804			pqtype = m->queue - m->pc;
1805			if (pqtype == PQ_CACHE) {
1806				vm_page_busy(m);
1807				vm_page_free(m);
1808			}
1809
1810			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
1811			vm_page_queues[m->queue].lcnt--;
1812			cnt.v_free_count--;
1813			m->valid = VM_PAGE_BITS_ALL;
1814			m->flags = 0;
1815			KASSERT(m->dirty == 0, ("contigmalloc1: page %p was dirty", m));
1816			m->wire_count = 0;
1817			m->busy = 0;
1818			m->queue = PQ_NONE;
1819			m->object = NULL;
1820			vm_page_wire(m);
1821		}
1822
1823		/*
1824		 * We've found a contiguous chunk that meets are requirements.
1825		 * Allocate kernel VM, unfree and assign the physical pages to it and
1826		 * return kernel VM pointer.
1827		 */
1828		tmp_addr = addr = kmem_alloc_pageable(map, size);
1829		if (addr == 0) {
1830			/*
1831			 * XXX We almost never run out of kernel virtual
1832			 * space, so we don't make the allocated memory
1833			 * above available.
1834			 */
1835			splx(s);
1836			return (NULL);
1837		}
1838
1839		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1840			vm_page_t m = &pga[i];
1841			vm_page_insert(m, kernel_object,
1842				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1843			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1844			tmp_addr += PAGE_SIZE;
1845		}
1846
1847		splx(s);
1848		return ((void *)addr);
1849	}
1850	return NULL;
1851}
1852
1853void *
1854contigmalloc(size, type, flags, low, high, alignment, boundary)
1855	unsigned long size;	/* should be size_t here and for malloc() */
1856	struct malloc_type *type;
1857	int flags;
1858	unsigned long low;
1859	unsigned long high;
1860	unsigned long alignment;
1861	unsigned long boundary;
1862{
1863	return contigmalloc1(size, type, flags, low, high, alignment, boundary,
1864			     kernel_map);
1865}
1866
1867void
1868contigfree(addr, size, type)
1869	void *addr;
1870	unsigned long size;
1871	struct malloc_type *type;
1872{
1873	kmem_free(kernel_map, (vm_offset_t)addr, size);
1874}
1875
1876vm_offset_t
1877vm_page_alloc_contig(size, low, high, alignment)
1878	vm_offset_t size;
1879	vm_offset_t low;
1880	vm_offset_t high;
1881	vm_offset_t alignment;
1882{
1883	return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
1884					  alignment, 0ul, kernel_map));
1885}
1886
1887#include "opt_ddb.h"
1888#ifdef DDB
1889#include <sys/kernel.h>
1890
1891#include <ddb/ddb.h>
1892
1893DB_SHOW_COMMAND(page, vm_page_print_page_info)
1894{
1895	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1896	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1897	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1898	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1899	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1900	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1901	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1902	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1903	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1904	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1905}
1906
1907DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1908{
1909	int i;
1910	db_printf("PQ_FREE:");
1911	for(i=0;i<PQ_L2_SIZE;i++) {
1912		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1913	}
1914	db_printf("\n");
1915
1916	db_printf("PQ_CACHE:");
1917	for(i=0;i<PQ_L2_SIZE;i++) {
1918		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1919	}
1920	db_printf("\n");
1921
1922	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1923		vm_page_queues[PQ_ACTIVE].lcnt,
1924		vm_page_queues[PQ_INACTIVE].lcnt);
1925}
1926#endif /* DDB */
1927