vm_page.c revision 40546
1234949Sbapt/*
2234949Sbapt * Copyright (c) 1991 Regents of the University of California.
3234949Sbapt * All rights reserved.
4234949Sbapt *
5234949Sbapt * This code is derived from software contributed to Berkeley by
6234949Sbapt * The Mach Operating System project at Carnegie-Mellon University.
7234949Sbapt *
8234949Sbapt * Redistribution and use in source and binary forms, with or without
9234949Sbapt * modification, are permitted provided that the following conditions
10234949Sbapt * are met:
11234949Sbapt * 1. Redistributions of source code must retain the above copyright
12234949Sbapt *    notice, this list of conditions and the following disclaimer.
13234949Sbapt * 2. Redistributions in binary form must reproduce the above copyright
14234949Sbapt *    notice, this list of conditions and the following disclaimer in the
15234949Sbapt *    documentation and/or other materials provided with the distribution.
16234949Sbapt * 3. All advertising materials mentioning features or use of this software
17234949Sbapt *    must display the following acknowledgement:
18234949Sbapt *	This product includes software developed by the University of
19234949Sbapt *	California, Berkeley and its contributors.
20234949Sbapt * 4. Neither the name of the University nor the names of its contributors
21234949Sbapt *    may be used to endorse or promote products derived from this software
22234949Sbapt *    without specific prior written permission.
23234949Sbapt *
24234949Sbapt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25234949Sbapt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26234949Sbapt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27234949Sbapt * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28234949Sbapt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29234949Sbapt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30234949Sbapt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31234949Sbapt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32234949Sbapt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33234949Sbapt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34234949Sbapt * SUCH DAMAGE.
35234949Sbapt *
36234949Sbapt *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37234949Sbapt *	$Id: vm_page.c,v 1.107 1998/09/04 08:06:57 dfr Exp $
38234949Sbapt */
39234949Sbapt
40234949Sbapt/*
41234949Sbapt * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *	Resident memory management module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/malloc.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/vnode.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <vm/vm_prot.h>
81#include <sys/lock.h>
82#include <vm/vm_kern.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_extern.h>
87
88static void	vm_page_queue_init __P((void));
89static vm_page_t vm_page_select_free __P((vm_object_t object,
90			vm_pindex_t pindex, int prefqueue));
91static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
92
93/*
94 *	Associated with page of user-allocatable memory is a
95 *	page structure.
96 */
97
98static struct pglist *vm_page_buckets;	/* Array of buckets */
99static int vm_page_bucket_count;	/* How big is array? */
100static int vm_page_hash_mask;		/* Mask for hash function */
101static volatile int vm_page_bucket_generation;
102
103struct pglist vm_page_queue_free[PQ_L2_SIZE] = {0};
104struct pglist vm_page_queue_zero[PQ_L2_SIZE] = {0};
105struct pglist vm_page_queue_active = {0};
106struct pglist vm_page_queue_inactive = {0};
107struct pglist vm_page_queue_cache[PQ_L2_SIZE] = {0};
108
109static int no_queue=0;
110
111struct vpgqueues vm_page_queues[PQ_COUNT] = {0};
112static int pqcnt[PQ_COUNT] = {0};
113
114static void
115vm_page_queue_init(void) {
116	int i;
117
118	vm_page_queues[PQ_NONE].pl = NULL;
119	vm_page_queues[PQ_NONE].cnt = &no_queue;
120	for(i=0;i<PQ_L2_SIZE;i++) {
121		vm_page_queues[PQ_FREE+i].pl = &vm_page_queue_free[i];
122		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
123	}
124	for(i=0;i<PQ_L2_SIZE;i++) {
125		vm_page_queues[PQ_ZERO+i].pl = &vm_page_queue_zero[i];
126		vm_page_queues[PQ_ZERO+i].cnt = &cnt.v_free_count;
127	}
128	vm_page_queues[PQ_INACTIVE].pl = &vm_page_queue_inactive;
129	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
130
131	vm_page_queues[PQ_ACTIVE].pl = &vm_page_queue_active;
132	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
133	for(i=0;i<PQ_L2_SIZE;i++) {
134		vm_page_queues[PQ_CACHE+i].pl = &vm_page_queue_cache[i];
135		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
136	}
137	for(i=0;i<PQ_COUNT;i++) {
138		if (vm_page_queues[i].pl) {
139			TAILQ_INIT(vm_page_queues[i].pl);
140		} else if (i != 0) {
141			panic("vm_page_queue_init: queue %d is null", i);
142		}
143		vm_page_queues[i].lcnt = &pqcnt[i];
144	}
145}
146
147vm_page_t vm_page_array = 0;
148static int vm_page_array_size = 0;
149long first_page = 0;
150static long last_page;
151static vm_size_t page_mask;
152static int page_shift;
153int vm_page_zero_count = 0;
154
155/*
156 * map of contiguous valid DEV_BSIZE chunks in a page
157 * (this list is valid for page sizes upto 16*DEV_BSIZE)
158 */
159static u_short vm_page_dev_bsize_chunks[] = {
160	0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff,
161	0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff
162};
163
164static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
165static int vm_page_freechk_and_unqueue __P((vm_page_t m));
166static void vm_page_free_wakeup __P((void));
167
168/*
169 *	vm_set_page_size:
170 *
171 *	Sets the page size, perhaps based upon the memory
172 *	size.  Must be called before any use of page-size
173 *	dependent functions.
174 *
175 *	Sets page_shift and page_mask from cnt.v_page_size.
176 */
177void
178vm_set_page_size()
179{
180
181	if (cnt.v_page_size == 0)
182		cnt.v_page_size = DEFAULT_PAGE_SIZE;
183	page_mask = cnt.v_page_size - 1;
184	if ((page_mask & cnt.v_page_size) != 0)
185		panic("vm_set_page_size: page size not a power of two");
186	for (page_shift = 0;; page_shift++)
187		if ((1 << page_shift) == cnt.v_page_size)
188			break;
189}
190
191/*
192 *	vm_page_startup:
193 *
194 *	Initializes the resident memory module.
195 *
196 *	Allocates memory for the page cells, and
197 *	for the object/offset-to-page hash table headers.
198 *	Each page cell is initialized and placed on the free list.
199 */
200
201vm_offset_t
202vm_page_startup(starta, enda, vaddr)
203	register vm_offset_t starta;
204	vm_offset_t enda;
205	register vm_offset_t vaddr;
206{
207	register vm_offset_t mapped;
208	register vm_page_t m;
209	register struct pglist *bucket;
210	vm_size_t npages, page_range;
211	register vm_offset_t new_start;
212	int i;
213	vm_offset_t pa;
214	int nblocks;
215	vm_offset_t first_managed_page;
216
217	/* the biggest memory array is the second group of pages */
218	vm_offset_t start;
219	vm_offset_t biggestone, biggestsize;
220
221	vm_offset_t total;
222
223	total = 0;
224	biggestsize = 0;
225	biggestone = 0;
226	nblocks = 0;
227	vaddr = round_page(vaddr);
228
229	for (i = 0; phys_avail[i + 1]; i += 2) {
230		phys_avail[i] = round_page(phys_avail[i]);
231		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
232	}
233
234	for (i = 0; phys_avail[i + 1]; i += 2) {
235		int size = phys_avail[i + 1] - phys_avail[i];
236
237		if (size > biggestsize) {
238			biggestone = i;
239			biggestsize = size;
240		}
241		++nblocks;
242		total += size;
243	}
244
245	start = phys_avail[biggestone];
246
247	/*
248	 * Initialize the queue headers for the free queue, the active queue
249	 * and the inactive queue.
250	 */
251
252	vm_page_queue_init();
253
254	/*
255	 * Allocate (and initialize) the hash table buckets.
256	 *
257	 * The number of buckets MUST BE a power of 2, and the actual value is
258	 * the next power of 2 greater than the number of physical pages in
259	 * the system.
260	 *
261	 * Note: This computation can be tweaked if desired.
262	 */
263	vm_page_buckets = (struct pglist *) vaddr;
264	bucket = vm_page_buckets;
265	if (vm_page_bucket_count == 0) {
266		vm_page_bucket_count = 1;
267		while (vm_page_bucket_count < atop(total))
268			vm_page_bucket_count <<= 1;
269	}
270	vm_page_hash_mask = vm_page_bucket_count - 1;
271
272	/*
273	 * Validate these addresses.
274	 */
275
276	new_start = start + vm_page_bucket_count * sizeof(struct pglist);
277	new_start = round_page(new_start);
278	mapped = round_page(vaddr);
279	vaddr = pmap_map(mapped, start, new_start,
280	    VM_PROT_READ | VM_PROT_WRITE);
281	start = new_start;
282	vaddr = round_page(vaddr);
283	bzero((caddr_t) mapped, vaddr - mapped);
284
285	for (i = 0; i < vm_page_bucket_count; i++) {
286		TAILQ_INIT(bucket);
287		bucket++;
288	}
289
290	/*
291	 * Compute the number of pages of memory that will be available for
292	 * use (taking into account the overhead of a page structure per
293	 * page).
294	 */
295
296	first_page = phys_avail[0] / PAGE_SIZE;
297	last_page = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
298
299	page_range = last_page - (phys_avail[0] / PAGE_SIZE);
300	npages = (total - (page_range * sizeof(struct vm_page)) -
301	    (start - phys_avail[biggestone])) / PAGE_SIZE;
302
303	/*
304	 * Initialize the mem entry structures now, and put them in the free
305	 * queue.
306	 */
307	vm_page_array = (vm_page_t) vaddr;
308	mapped = vaddr;
309
310	/*
311	 * Validate these addresses.
312	 */
313	new_start = round_page(start + page_range * sizeof(struct vm_page));
314	mapped = pmap_map(mapped, start, new_start,
315	    VM_PROT_READ | VM_PROT_WRITE);
316	start = new_start;
317
318	first_managed_page = start / PAGE_SIZE;
319
320	/*
321	 * Clear all of the page structures
322	 */
323	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
324	vm_page_array_size = page_range;
325
326	cnt.v_page_count = 0;
327	cnt.v_free_count = 0;
328	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
329		if (i == biggestone)
330			pa = ptoa(first_managed_page);
331		else
332			pa = phys_avail[i];
333		while (pa < phys_avail[i + 1] && npages-- > 0) {
334			++cnt.v_page_count;
335			++cnt.v_free_count;
336			m = PHYS_TO_VM_PAGE(pa);
337			m->phys_addr = pa;
338			m->flags = 0;
339			m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
340			m->queue = m->pc + PQ_FREE;
341			TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq);
342			++(*vm_page_queues[m->queue].lcnt);
343			pa += PAGE_SIZE;
344		}
345	}
346	return (mapped);
347}
348
349/*
350 *	vm_page_hash:
351 *
352 *	Distributes the object/offset key pair among hash buckets.
353 *
354 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
355 */
356static __inline int
357vm_page_hash(object, pindex)
358	vm_object_t object;
359	vm_pindex_t pindex;
360{
361	return ((((uintptr_t) object) >> 5) + (pindex >> 1)) & vm_page_hash_mask;
362}
363
364/*
365 *	vm_page_insert:		[ internal use only ]
366 *
367 *	Inserts the given mem entry into the object/object-page
368 *	table and object list.
369 *
370 *	The object and page must be locked, and must be splhigh.
371 */
372
373void
374vm_page_insert(m, object, pindex)
375	register vm_page_t m;
376	register vm_object_t object;
377	register vm_pindex_t pindex;
378{
379	register struct pglist *bucket;
380
381#if !defined(MAX_PERF)
382	if (m->flags & PG_TABLED)
383		panic("vm_page_insert: already inserted");
384#endif
385
386	/*
387	 * Record the object/offset pair in this page
388	 */
389
390	m->object = object;
391	m->pindex = pindex;
392
393	/*
394	 * Insert it into the object_object/offset hash table
395	 */
396
397	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
398	TAILQ_INSERT_TAIL(bucket, m, hashq);
399	vm_page_bucket_generation++;
400
401	/*
402	 * Now link into the object's list of backed pages.
403	 */
404
405	TAILQ_INSERT_TAIL(&object->memq, m, listq);
406	vm_page_flag_set(m, PG_TABLED);
407	m->object->page_hint = m;
408	m->object->generation++;
409
410	if (m->wire_count)
411		object->wire_count++;
412
413	if ((m->queue - m->pc) == PQ_CACHE)
414		object->cache_count++;
415
416	/*
417	 * And show that the object has one more resident page.
418	 */
419
420	object->resident_page_count++;
421}
422
423/*
424 *	vm_page_remove:		[ internal use only ]
425 *				NOTE: used by device pager as well -wfj
426 *
427 *	Removes the given mem entry from the object/offset-page
428 *	table and the object page list.
429 *
430 *	The object and page must be locked, and at splhigh.
431 */
432
433void
434vm_page_remove(m)
435	register vm_page_t m;
436{
437	register struct pglist *bucket;
438	vm_object_t object;
439
440	if (!(m->flags & PG_TABLED))
441		return;
442
443#if !defined(MAX_PERF)
444	if ((m->flags & PG_BUSY) == 0) {
445		panic("vm_page_remove: page not busy");
446	}
447#endif
448
449	vm_page_flag_clear(m, PG_BUSY);
450	if (m->flags & PG_WANTED) {
451		vm_page_flag_clear(m, PG_WANTED);
452		wakeup(m);
453	}
454
455	object = m->object;
456	if (object->page_hint == m)
457		object->page_hint = NULL;
458
459	if (m->wire_count)
460		object->wire_count--;
461
462	if ((m->queue - m->pc) == PQ_CACHE)
463		object->cache_count--;
464
465	/*
466	 * Remove from the object_object/offset hash table
467	 */
468
469	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
470	TAILQ_REMOVE(bucket, m, hashq);
471	vm_page_bucket_generation++;
472
473	/*
474	 * Now remove from the object's list of backed pages.
475	 */
476
477	TAILQ_REMOVE(&object->memq, m, listq);
478
479	/*
480	 * And show that the object has one fewer resident page.
481	 */
482
483	object->resident_page_count--;
484	object->generation++;
485	m->object = NULL;
486
487	vm_page_flag_clear(m, PG_TABLED);
488}
489
490/*
491 *	vm_page_lookup:
492 *
493 *	Returns the page associated with the object/offset
494 *	pair specified; if none is found, NULL is returned.
495 *
496 *	The object must be locked.  No side effects.
497 */
498
499vm_page_t
500vm_page_lookup(object, pindex)
501	register vm_object_t object;
502	register vm_pindex_t pindex;
503{
504	register vm_page_t m;
505	register struct pglist *bucket;
506	int generation;
507	int s;
508
509	/*
510	 * Search the hash table for this object/offset pair
511	 */
512
513	if (object->page_hint && (object->page_hint->pindex == pindex) &&
514		(object->page_hint->object == object))
515		return object->page_hint;
516
517retry:
518	generation = vm_page_bucket_generation;
519	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
520	for (m = TAILQ_FIRST(bucket); m != NULL; m = TAILQ_NEXT(m,hashq)) {
521		if ((m->object == object) && (m->pindex == pindex)) {
522			if (vm_page_bucket_generation != generation)
523				goto retry;
524			m->object->page_hint = m;
525			return (m);
526		}
527	}
528	if (vm_page_bucket_generation != generation)
529		goto retry;
530	return (NULL);
531}
532
533/*
534 *	vm_page_rename:
535 *
536 *	Move the given memory entry from its
537 *	current object to the specified target object/offset.
538 *
539 *	The object must be locked.
540 */
541void
542vm_page_rename(m, new_object, new_pindex)
543	register vm_page_t m;
544	register vm_object_t new_object;
545	vm_pindex_t new_pindex;
546{
547	int s;
548
549	s = splvm();
550	vm_page_remove(m);
551	vm_page_insert(m, new_object, new_pindex);
552	splx(s);
553}
554
555/*
556 * vm_page_unqueue without any wakeup
557 */
558void
559vm_page_unqueue_nowakeup(m)
560	vm_page_t m;
561{
562	int queue = m->queue;
563	struct vpgqueues *pq;
564	if (queue != PQ_NONE) {
565		pq = &vm_page_queues[queue];
566		m->queue = PQ_NONE;
567		TAILQ_REMOVE(pq->pl, m, pageq);
568		(*pq->cnt)--;
569		(*pq->lcnt)--;
570		if ((queue - m->pc) == PQ_CACHE) {
571			if (m->object)
572				m->object->cache_count--;
573		}
574	}
575}
576
577/*
578 * vm_page_unqueue must be called at splhigh();
579 */
580void
581vm_page_unqueue(m)
582	vm_page_t m;
583{
584	int queue = m->queue;
585	struct vpgqueues *pq;
586	if (queue != PQ_NONE) {
587		m->queue = PQ_NONE;
588		pq = &vm_page_queues[queue];
589		TAILQ_REMOVE(pq->pl, m, pageq);
590		(*pq->cnt)--;
591		(*pq->lcnt)--;
592		if ((queue - m->pc) == PQ_CACHE) {
593			if ((cnt.v_cache_count + cnt.v_free_count) <
594				(cnt.v_free_reserved + cnt.v_cache_min))
595				pagedaemon_wakeup();
596			if (m->object)
597				m->object->cache_count--;
598		}
599	}
600}
601
602/*
603 * Find a page on the specified queue with color optimization.
604 */
605vm_page_t
606vm_page_list_find(basequeue, index)
607	int basequeue, index;
608{
609#if PQ_L2_SIZE > 1
610
611	int i,j;
612	vm_page_t m;
613	int hindex;
614	struct vpgqueues *pq;
615
616	pq = &vm_page_queues[basequeue];
617
618	m = TAILQ_FIRST(pq[index].pl);
619	if (m)
620		return m;
621
622	for(j = 0; j < PQ_L1_SIZE; j++) {
623		int ij;
624		for(i = (PQ_L2_SIZE / 2) - PQ_L1_SIZE;
625			(ij = i + j) > 0;
626			i -= PQ_L1_SIZE) {
627
628			hindex = index + ij;
629			if (hindex >= PQ_L2_SIZE)
630				hindex -= PQ_L2_SIZE;
631			if (m = TAILQ_FIRST(pq[hindex].pl))
632				return m;
633
634			hindex = index - ij;
635			if (hindex < 0)
636				hindex += PQ_L2_SIZE;
637			if (m = TAILQ_FIRST(pq[hindex].pl))
638				return m;
639		}
640	}
641
642	hindex = index + PQ_L2_SIZE / 2;
643	if (hindex >= PQ_L2_SIZE)
644		hindex -= PQ_L2_SIZE;
645	m = TAILQ_FIRST(pq[hindex].pl);
646	if (m)
647		return m;
648
649	return NULL;
650#else
651	return TAILQ_FIRST(vm_page_queues[basequeue].pl);
652#endif
653
654}
655
656/*
657 * Find a page on the specified queue with color optimization.
658 */
659vm_page_t
660vm_page_select(object, pindex, basequeue)
661	vm_object_t object;
662	vm_pindex_t pindex;
663	int basequeue;
664{
665
666#if PQ_L2_SIZE > 1
667	int index;
668	index = (pindex + object->pg_color) & PQ_L2_MASK;
669	return vm_page_list_find(basequeue, index);
670
671#else
672	return TAILQ_FIRST(vm_page_queues[basequeue].pl);
673#endif
674
675}
676
677/*
678 * Find a page on the cache queue with color optimization.  As pages
679 * might be found, but not applicable, they are deactivated.  This
680 * keeps us from using potentially busy cached pages.
681 */
682vm_page_t
683vm_page_select_cache(object, pindex)
684	vm_object_t object;
685	vm_pindex_t pindex;
686{
687	vm_page_t m;
688
689	while (TRUE) {
690#if PQ_L2_SIZE > 1
691		int index;
692		index = (pindex + object->pg_color) & PQ_L2_MASK;
693		m = vm_page_list_find(PQ_CACHE, index);
694
695#else
696		m = TAILQ_FIRST(vm_page_queues[PQ_CACHE].pl);
697#endif
698		if (m && ((m->flags & PG_BUSY) || m->busy ||
699			       m->hold_count || m->wire_count)) {
700			vm_page_deactivate(m);
701			continue;
702		}
703		return m;
704	}
705}
706
707/*
708 * Find a free or zero page, with specified preference.
709 */
710static vm_page_t
711vm_page_select_free(object, pindex, prefqueue)
712	vm_object_t object;
713	vm_pindex_t pindex;
714	int prefqueue;
715{
716#if PQ_L2_SIZE > 1
717	int i,j;
718	int index, hindex;
719#endif
720	vm_page_t m, mh;
721	int oqueuediff;
722	struct vpgqueues *pq;
723
724	if (prefqueue == PQ_ZERO)
725		oqueuediff = PQ_FREE - PQ_ZERO;
726	else
727		oqueuediff = PQ_ZERO - PQ_FREE;
728
729	if (mh = object->page_hint) {
730		 if (mh->pindex == (pindex - 1)) {
731			if ((mh->flags & PG_FICTITIOUS) == 0) {
732				if ((mh < &vm_page_array[cnt.v_page_count-1]) &&
733					(mh >= &vm_page_array[0])) {
734					int queue;
735					m = mh + 1;
736					if (VM_PAGE_TO_PHYS(m) == (VM_PAGE_TO_PHYS(mh) + PAGE_SIZE)) {
737						queue = m->queue - m->pc;
738						if (queue == PQ_FREE || queue == PQ_ZERO) {
739							return m;
740						}
741					}
742				}
743			}
744		}
745	}
746
747	pq = &vm_page_queues[prefqueue];
748
749#if PQ_L2_SIZE > 1
750
751	index = (pindex + object->pg_color) & PQ_L2_MASK;
752
753	if (m = TAILQ_FIRST(pq[index].pl))
754		return m;
755	if (m = TAILQ_FIRST(pq[index + oqueuediff].pl))
756		return m;
757
758	for(j = 0; j < PQ_L1_SIZE; j++) {
759		int ij;
760		for(i = (PQ_L2_SIZE / 2) - PQ_L1_SIZE;
761			(ij = i + j) >= 0;
762			i -= PQ_L1_SIZE) {
763
764			hindex = index + ij;
765			if (hindex >= PQ_L2_SIZE)
766				hindex -= PQ_L2_SIZE;
767			if (m = TAILQ_FIRST(pq[hindex].pl))
768				return m;
769			if (m = TAILQ_FIRST(pq[hindex + oqueuediff].pl))
770				return m;
771
772			hindex = index - ij;
773			if (hindex < 0)
774				hindex += PQ_L2_SIZE;
775			if (m = TAILQ_FIRST(pq[hindex].pl))
776				return m;
777			if (m = TAILQ_FIRST(pq[hindex + oqueuediff].pl))
778				return m;
779		}
780	}
781
782	hindex = index + PQ_L2_SIZE / 2;
783	if (hindex >= PQ_L2_SIZE)
784		hindex -= PQ_L2_SIZE;
785	if (m = TAILQ_FIRST(pq[hindex].pl))
786		return m;
787	if (m = TAILQ_FIRST(pq[hindex+oqueuediff].pl))
788		return m;
789
790#else
791	if (m = TAILQ_FIRST(pq[0].pl))
792		return m;
793	else
794		return TAILQ_FIRST(pq[oqueuediff].pl);
795#endif
796
797	return NULL;
798}
799
800/*
801 *	vm_page_alloc:
802 *
803 *	Allocate and return a memory cell associated
804 *	with this VM object/offset pair.
805 *
806 *	page_req classes:
807 *	VM_ALLOC_NORMAL		normal process request
808 *	VM_ALLOC_SYSTEM		system *really* needs a page
809 *	VM_ALLOC_INTERRUPT	interrupt time request
810 *	VM_ALLOC_ZERO		zero page
811 *
812 *	Object must be locked.
813 */
814vm_page_t
815vm_page_alloc(object, pindex, page_req)
816	vm_object_t object;
817	vm_pindex_t pindex;
818	int page_req;
819{
820	register vm_page_t m;
821	struct vpgqueues *pq;
822	vm_object_t oldobject;
823	int queue, qtype;
824	int s;
825
826#ifdef DIAGNOSTIC
827	m = vm_page_lookup(object, pindex);
828	if (m)
829		panic("vm_page_alloc: page already allocated");
830#endif
831
832	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
833		page_req = VM_ALLOC_SYSTEM;
834	};
835
836	s = splvm();
837
838	switch (page_req) {
839
840	case VM_ALLOC_NORMAL:
841		if (cnt.v_free_count >= cnt.v_free_reserved) {
842			m = vm_page_select_free(object, pindex, PQ_FREE);
843#if defined(DIAGNOSTIC)
844			if (m == NULL)
845				panic("vm_page_alloc(NORMAL): missing page on free queue\n");
846#endif
847		} else {
848			m = vm_page_select_cache(object, pindex);
849			if (m == NULL) {
850				splx(s);
851#if defined(DIAGNOSTIC)
852				if (cnt.v_cache_count > 0)
853					printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
854#endif
855				vm_pageout_deficit++;
856				pagedaemon_wakeup();
857				return (NULL);
858			}
859		}
860		break;
861
862	case VM_ALLOC_ZERO:
863		if (cnt.v_free_count >= cnt.v_free_reserved) {
864			m = vm_page_select_free(object, pindex, PQ_ZERO);
865#if defined(DIAGNOSTIC)
866			if (m == NULL)
867				panic("vm_page_alloc(ZERO): missing page on free queue\n");
868#endif
869		} else {
870			m = vm_page_select_cache(object, pindex);
871			if (m == NULL) {
872				splx(s);
873#if defined(DIAGNOSTIC)
874				if (cnt.v_cache_count > 0)
875					printf("vm_page_alloc(ZERO): missing pages on cache queue: %d\n", cnt.v_cache_count);
876#endif
877				vm_pageout_deficit++;
878				pagedaemon_wakeup();
879				return (NULL);
880			}
881		}
882		break;
883
884	case VM_ALLOC_SYSTEM:
885		if ((cnt.v_free_count >= cnt.v_free_reserved) ||
886		    ((cnt.v_cache_count == 0) &&
887		    (cnt.v_free_count >= cnt.v_interrupt_free_min))) {
888			m = vm_page_select_free(object, pindex, PQ_FREE);
889#if defined(DIAGNOSTIC)
890			if (m == NULL)
891				panic("vm_page_alloc(SYSTEM): missing page on free queue\n");
892#endif
893		} else {
894			m = vm_page_select_cache(object, pindex);
895			if (m == NULL) {
896				splx(s);
897#if defined(DIAGNOSTIC)
898				if (cnt.v_cache_count > 0)
899					printf("vm_page_alloc(SYSTEM): missing pages on cache queue: %d\n", cnt.v_cache_count);
900#endif
901				vm_pageout_deficit++;
902				pagedaemon_wakeup();
903				return (NULL);
904			}
905		}
906		break;
907
908	case VM_ALLOC_INTERRUPT:
909		if (cnt.v_free_count > 0) {
910			m = vm_page_select_free(object, pindex, PQ_FREE);
911#if defined(DIAGNOSTIC)
912			if (m == NULL)
913				panic("vm_page_alloc(INTERRUPT): missing page on free queue\n");
914#endif
915		} else {
916			splx(s);
917			vm_pageout_deficit++;
918			pagedaemon_wakeup();
919			return (NULL);
920		}
921		break;
922
923	default:
924		m = NULL;
925#if !defined(MAX_PERF)
926		panic("vm_page_alloc: invalid allocation class");
927#endif
928	}
929
930	queue = m->queue;
931	qtype = queue - m->pc;
932	if (qtype == PQ_ZERO)
933		vm_page_zero_count--;
934	pq = &vm_page_queues[queue];
935	TAILQ_REMOVE(pq->pl, m, pageq);
936	(*pq->cnt)--;
937	(*pq->lcnt)--;
938	oldobject = NULL;
939	if (qtype == PQ_ZERO) {
940		m->flags = PG_ZERO | PG_BUSY;
941	} else if (qtype == PQ_CACHE) {
942		oldobject = m->object;
943		vm_page_busy(m);
944		vm_page_remove(m);
945		m->flags = PG_BUSY;
946	} else {
947		m->flags = PG_BUSY;
948	}
949	m->wire_count = 0;
950	m->hold_count = 0;
951	m->act_count = 0;
952	m->busy = 0;
953	m->valid = 0;
954	m->dirty = 0;
955	m->queue = PQ_NONE;
956
957	/* XXX before splx until vm_page_insert is safe */
958	vm_page_insert(m, object, pindex);
959
960	/*
961	 * Don't wakeup too often - wakeup the pageout daemon when
962	 * we would be nearly out of memory.
963	 */
964	if (((cnt.v_free_count + cnt.v_cache_count) <
965		(cnt.v_free_reserved + cnt.v_cache_min)) ||
966			(cnt.v_free_count < cnt.v_pageout_free_min))
967		pagedaemon_wakeup();
968
969	if ((qtype == PQ_CACHE) &&
970		((page_req == VM_ALLOC_NORMAL) || (page_req == VM_ALLOC_ZERO)) &&
971		oldobject && (oldobject->type == OBJT_VNODE) &&
972		((oldobject->flags & OBJ_DEAD) == 0)) {
973		struct vnode *vp;
974		vp = (struct vnode *) oldobject->handle;
975		if (vp && VSHOULDFREE(vp)) {
976			if ((vp->v_flag & (VFREE|VTBFREE|VDOOMED)) == 0) {
977				TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
978				vp->v_flag |= VTBFREE;
979			}
980		}
981	}
982	splx(s);
983
984	return (m);
985}
986
987void
988vm_wait()
989{
990	int s;
991
992	s = splvm();
993	if (curproc == pageproc) {
994		vm_pageout_pages_needed = 1;
995		tsleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
996	} else {
997		if (!vm_pages_needed) {
998			vm_pages_needed++;
999			wakeup(&vm_pages_needed);
1000		}
1001		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
1002	}
1003	splx(s);
1004}
1005
1006int
1007vm_page_sleep(vm_page_t m, char *msg, char *busy) {
1008	vm_object_t object = m->object;
1009	int slept = 0;
1010	if ((busy && *busy) || (m->flags & PG_BUSY)) {
1011		int s;
1012		s = splvm();
1013		if ((busy && *busy) || (m->flags & PG_BUSY)) {
1014			vm_page_flag_set(m, PG_WANTED);
1015			tsleep(m, PVM, msg, 0);
1016			slept = 1;
1017		}
1018		splx(s);
1019	}
1020	return slept;
1021}
1022
1023/*
1024 *	vm_page_activate:
1025 *
1026 *	Put the specified page on the active list (if appropriate).
1027 *
1028 *	The page queues must be locked.
1029 */
1030void
1031vm_page_activate(m)
1032	register vm_page_t m;
1033{
1034	int s;
1035	vm_page_t np;
1036	vm_object_t object;
1037
1038	s = splvm();
1039	if (m->queue != PQ_ACTIVE) {
1040		if ((m->queue - m->pc) == PQ_CACHE)
1041			cnt.v_reactivated++;
1042
1043		vm_page_unqueue(m);
1044
1045		if (m->wire_count == 0) {
1046			m->queue = PQ_ACTIVE;
1047			++(*vm_page_queues[PQ_ACTIVE].lcnt);
1048			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1049			if (m->act_count < ACT_INIT)
1050				m->act_count = ACT_INIT;
1051			cnt.v_active_count++;
1052		}
1053	} else {
1054		if (m->act_count < ACT_INIT)
1055			m->act_count = ACT_INIT;
1056	}
1057
1058	splx(s);
1059}
1060
1061/*
1062 * helper routine for vm_page_free and vm_page_free_zero
1063 */
1064static int
1065vm_page_freechk_and_unqueue(m)
1066	vm_page_t m;
1067{
1068	vm_object_t oldobject;
1069
1070	oldobject = m->object;
1071
1072#if !defined(MAX_PERF)
1073	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1074		(m->hold_count != 0)) {
1075		printf(
1076		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1077		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1078		    m->hold_count);
1079		if ((m->queue - m->pc) == PQ_FREE)
1080			panic("vm_page_free: freeing free page");
1081		else
1082			panic("vm_page_free: freeing busy page");
1083	}
1084#endif
1085
1086	vm_page_unqueue_nowakeup(m);
1087	vm_page_remove(m);
1088
1089	if ((m->flags & PG_FICTITIOUS) != 0) {
1090		return 0;
1091	}
1092
1093	m->valid = 0;
1094
1095	if (m->wire_count != 0) {
1096#if !defined(MAX_PERF)
1097		if (m->wire_count > 1) {
1098			panic("vm_page_free: invalid wire count (%d), pindex: 0x%x",
1099				m->wire_count, m->pindex);
1100		}
1101#endif
1102		printf("vm_page_free: freeing wired page\n");
1103		m->wire_count = 0;
1104		if (m->object)
1105			m->object->wire_count--;
1106		cnt.v_wire_count--;
1107	}
1108
1109	if (oldobject && (oldobject->type == OBJT_VNODE) &&
1110		((oldobject->flags & OBJ_DEAD) == 0)) {
1111		struct vnode *vp;
1112		vp = (struct vnode *) oldobject->handle;
1113		if (vp && VSHOULDFREE(vp)) {
1114			if ((vp->v_flag & (VTBFREE|VDOOMED|VFREE)) == 0) {
1115				TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
1116				vp->v_flag |= VTBFREE;
1117			}
1118		}
1119	}
1120
1121#ifdef __alpha__
1122	pmap_page_is_free(m);
1123#endif
1124
1125	return 1;
1126}
1127
1128/*
1129 * helper routine for vm_page_free and vm_page_free_zero
1130 */
1131static __inline void
1132vm_page_free_wakeup()
1133{
1134
1135/*
1136 * if pageout daemon needs pages, then tell it that there are
1137 * some free.
1138 */
1139	if (vm_pageout_pages_needed) {
1140		wakeup(&vm_pageout_pages_needed);
1141		vm_pageout_pages_needed = 0;
1142	}
1143	/*
1144	 * wakeup processes that are waiting on memory if we hit a
1145	 * high water mark. And wakeup scheduler process if we have
1146	 * lots of memory. this process will swapin processes.
1147	 */
1148	if (vm_pages_needed &&
1149		((cnt.v_free_count + cnt.v_cache_count) >= cnt.v_free_min)) {
1150		wakeup(&cnt.v_free_count);
1151		vm_pages_needed = 0;
1152	}
1153}
1154
1155/*
1156 *	vm_page_free:
1157 *
1158 *	Returns the given page to the free list,
1159 *	disassociating it with any VM object.
1160 *
1161 *	Object and page must be locked prior to entry.
1162 */
1163void
1164vm_page_free(m)
1165	register vm_page_t m;
1166{
1167	int s;
1168	struct vpgqueues *pq;
1169
1170	s = splvm();
1171
1172	cnt.v_tfree++;
1173
1174	if (!vm_page_freechk_and_unqueue(m)) {
1175		splx(s);
1176		return;
1177	}
1178
1179	m->queue = PQ_FREE + m->pc;
1180	pq = &vm_page_queues[m->queue];
1181	++(*pq->lcnt);
1182	++(*pq->cnt);
1183	/*
1184	 * If the pageout process is grabbing the page, it is likely
1185	 * that the page is NOT in the cache.  It is more likely that
1186	 * the page will be partially in the cache if it is being
1187	 * explicitly freed.
1188	 */
1189	if (curproc == pageproc) {
1190		TAILQ_INSERT_TAIL(pq->pl, m, pageq);
1191	} else {
1192		TAILQ_INSERT_HEAD(pq->pl, m, pageq);
1193	}
1194
1195	vm_page_free_wakeup();
1196	splx(s);
1197}
1198
1199void
1200vm_page_free_zero(m)
1201	register vm_page_t m;
1202{
1203	int s;
1204	struct vpgqueues *pq;
1205
1206	s = splvm();
1207
1208	cnt.v_tfree++;
1209
1210	if (!vm_page_freechk_and_unqueue(m)) {
1211		splx(s);
1212		return;
1213	}
1214
1215	m->queue = PQ_ZERO + m->pc;
1216	pq = &vm_page_queues[m->queue];
1217	++(*pq->lcnt);
1218	++(*pq->cnt);
1219
1220	TAILQ_INSERT_HEAD(pq->pl, m, pageq);
1221	++vm_page_zero_count;
1222	vm_page_free_wakeup();
1223	splx(s);
1224}
1225
1226/*
1227 *	vm_page_wire:
1228 *
1229 *	Mark this page as wired down by yet
1230 *	another map, removing it from paging queues
1231 *	as necessary.
1232 *
1233 *	The page queues must be locked.
1234 */
1235void
1236vm_page_wire(m)
1237	register vm_page_t m;
1238{
1239	int s;
1240
1241	if (m->wire_count == 0) {
1242		s = splvm();
1243		vm_page_unqueue(m);
1244		splx(s);
1245		cnt.v_wire_count++;
1246		if (m->object)
1247			m->object->wire_count++;
1248	}
1249	(*vm_page_queues[PQ_NONE].lcnt)++;
1250	m->wire_count++;
1251	vm_page_flag_set(m, PG_MAPPED);
1252}
1253
1254/*
1255 *	vm_page_unwire:
1256 *
1257 *	Release one wiring of this page, potentially
1258 *	enabling it to be paged again.
1259 *
1260 *	The page queues must be locked.
1261 */
1262void
1263vm_page_unwire(m)
1264	register vm_page_t m;
1265{
1266	int s;
1267
1268	s = splvm();
1269
1270	if (m->wire_count > 0) {
1271		m->wire_count--;
1272		if (m->wire_count == 0) {
1273			if (m->object)
1274				m->object->wire_count--;
1275			cnt.v_wire_count--;
1276			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1277			m->queue = PQ_ACTIVE;
1278			(*vm_page_queues[PQ_ACTIVE].lcnt)++;
1279			cnt.v_active_count++;
1280		}
1281	} else {
1282#if !defined(MAX_PERF)
1283		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1284#endif
1285	}
1286	splx(s);
1287}
1288
1289
1290/*
1291 *	vm_page_deactivate:
1292 *
1293 *	Returns the given page to the inactive list,
1294 *	indicating that no physical maps have access
1295 *	to this page.  [Used by the physical mapping system.]
1296 *
1297 *	The page queues must be locked.
1298 */
1299void
1300vm_page_deactivate(m)
1301	register vm_page_t m;
1302{
1303	int s;
1304
1305	/*
1306	 * Only move active pages -- ignore locked or already inactive ones.
1307	 *
1308	 * XXX: sometimes we get pages which aren't wired down or on any queue -
1309	 * we need to put them on the inactive queue also, otherwise we lose
1310	 * track of them. Paul Mackerras (paulus@cs.anu.edu.au) 9-Jan-93.
1311	 */
1312	if (m->queue == PQ_INACTIVE)
1313		return;
1314
1315	s = splvm();
1316	if (m->wire_count == 0) {
1317		if ((m->queue - m->pc) == PQ_CACHE)
1318			cnt.v_reactivated++;
1319		vm_page_unqueue(m);
1320		TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
1321		m->queue = PQ_INACTIVE;
1322		++(*vm_page_queues[PQ_INACTIVE].lcnt);
1323		cnt.v_inactive_count++;
1324	}
1325	splx(s);
1326}
1327
1328/*
1329 * vm_page_cache
1330 *
1331 * Put the specified page onto the page cache queue (if appropriate).
1332 */
1333void
1334vm_page_cache(m)
1335	register vm_page_t m;
1336{
1337	int s;
1338
1339#if !defined(MAX_PERF)
1340	if ((m->flags & PG_BUSY) || m->busy || m->wire_count) {
1341		printf("vm_page_cache: attempting to cache busy page\n");
1342		return;
1343	}
1344#endif
1345	if ((m->queue - m->pc) == PQ_CACHE)
1346		return;
1347
1348	vm_page_protect(m, VM_PROT_NONE);
1349#if !defined(MAX_PERF)
1350	if (m->dirty != 0) {
1351		panic("vm_page_cache: caching a dirty page, pindex: %d", m->pindex);
1352	}
1353#endif
1354	s = splvm();
1355	vm_page_unqueue_nowakeup(m);
1356	m->queue = PQ_CACHE + m->pc;
1357	(*vm_page_queues[m->queue].lcnt)++;
1358	TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq);
1359	cnt.v_cache_count++;
1360	m->object->cache_count++;
1361	vm_page_free_wakeup();
1362	splx(s);
1363}
1364
1365/*
1366 * Grab a page, waiting until we are waken up due to the page
1367 * changing state.  We keep on waiting, if the page continues
1368 * to be in the object.  If the page doesn't exist, allocate it.
1369 */
1370vm_page_t
1371vm_page_grab(object, pindex, allocflags)
1372	vm_object_t object;
1373	vm_pindex_t pindex;
1374	int allocflags;
1375{
1376
1377	vm_page_t m;
1378	int s, generation;
1379
1380retrylookup:
1381	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1382		if (m->busy || (m->flags & PG_BUSY)) {
1383			generation = object->generation;
1384
1385			s = splvm();
1386			while ((object->generation == generation) &&
1387					(m->busy || (m->flags & PG_BUSY))) {
1388				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1389				tsleep(m, PVM, "pgrbwt", 0);
1390				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1391					splx(s);
1392					return NULL;
1393				}
1394			}
1395			splx(s);
1396			goto retrylookup;
1397		} else {
1398			vm_page_busy(m);
1399			return m;
1400		}
1401	}
1402
1403	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1404	if (m == NULL) {
1405		VM_WAIT;
1406		if ((allocflags & VM_ALLOC_RETRY) == 0)
1407			return NULL;
1408		goto retrylookup;
1409	}
1410
1411	return m;
1412}
1413
1414/*
1415 * mapping function for valid bits or for dirty bits in
1416 * a page
1417 */
1418__inline int
1419vm_page_bits(int base, int size)
1420{
1421	u_short chunk;
1422
1423	if ((base == 0) && (size >= PAGE_SIZE))
1424		return VM_PAGE_BITS_ALL;
1425
1426	size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1427	base &= PAGE_MASK;
1428	if (size > PAGE_SIZE - base) {
1429		size = PAGE_SIZE - base;
1430	}
1431
1432	base = base / DEV_BSIZE;
1433	chunk = vm_page_dev_bsize_chunks[size / DEV_BSIZE];
1434	return (chunk << base) & VM_PAGE_BITS_ALL;
1435}
1436
1437/*
1438 * set a page valid and clean
1439 */
1440void
1441vm_page_set_validclean(m, base, size)
1442	vm_page_t m;
1443	int base;
1444	int size;
1445{
1446	int pagebits = vm_page_bits(base, size);
1447	m->valid |= pagebits;
1448	m->dirty &= ~pagebits;
1449	if( base == 0 && size == PAGE_SIZE)
1450		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1451}
1452
1453/*
1454 * set a page (partially) invalid
1455 */
1456void
1457vm_page_set_invalid(m, base, size)
1458	vm_page_t m;
1459	int base;
1460	int size;
1461{
1462	int bits;
1463
1464	m->valid &= ~(bits = vm_page_bits(base, size));
1465	if (m->valid == 0)
1466		m->dirty &= ~bits;
1467	m->object->generation++;
1468}
1469
1470/*
1471 * is (partial) page valid?
1472 */
1473int
1474vm_page_is_valid(m, base, size)
1475	vm_page_t m;
1476	int base;
1477	int size;
1478{
1479	int bits = vm_page_bits(base, size);
1480
1481	if (m->valid && ((m->valid & bits) == bits))
1482		return 1;
1483	else
1484		return 0;
1485}
1486
1487void
1488vm_page_test_dirty(m)
1489	vm_page_t m;
1490{
1491	if ((m->dirty != VM_PAGE_BITS_ALL) &&
1492	    pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
1493		m->dirty = VM_PAGE_BITS_ALL;
1494	}
1495}
1496
1497/*
1498 * This interface is for merging with malloc() someday.
1499 * Even if we never implement compaction so that contiguous allocation
1500 * works after initialization time, malloc()'s data structures are good
1501 * for statistics and for allocations of less than a page.
1502 */
1503void *
1504contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
1505	unsigned long size;	/* should be size_t here and for malloc() */
1506	struct malloc_type *type;
1507	int flags;
1508	unsigned long low;
1509	unsigned long high;
1510	unsigned long alignment;
1511	unsigned long boundary;
1512	vm_map_t map;
1513{
1514	int i, s, start;
1515	vm_offset_t addr, phys, tmp_addr;
1516	int pass;
1517	vm_page_t pga = vm_page_array;
1518
1519	size = round_page(size);
1520#if !defined(MAX_PERF)
1521	if (size == 0)
1522		panic("contigmalloc1: size must not be 0");
1523	if ((alignment & (alignment - 1)) != 0)
1524		panic("contigmalloc1: alignment must be a power of 2");
1525	if ((boundary & (boundary - 1)) != 0)
1526		panic("contigmalloc1: boundary must be a power of 2");
1527#endif
1528
1529	start = 0;
1530	for (pass = 0; pass <= 1; pass++) {
1531		s = splvm();
1532again:
1533		/*
1534		 * Find first page in array that is free, within range, aligned, and
1535		 * such that the boundary won't be crossed.
1536		 */
1537		for (i = start; i < cnt.v_page_count; i++) {
1538			int pqtype;
1539			phys = VM_PAGE_TO_PHYS(&pga[i]);
1540			pqtype = pga[i].queue - pga[i].pc;
1541			if (((pqtype == PQ_ZERO) || (pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1542			    (phys >= low) && (phys < high) &&
1543			    ((phys & (alignment - 1)) == 0) &&
1544			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1545				break;
1546		}
1547
1548		/*
1549		 * If the above failed or we will exceed the upper bound, fail.
1550		 */
1551		if ((i == cnt.v_page_count) ||
1552			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1553			vm_page_t m, next;
1554
1555again1:
1556			for (m = TAILQ_FIRST(&vm_page_queue_inactive);
1557				m != NULL;
1558				m = next) {
1559
1560				if (m->queue != PQ_INACTIVE) {
1561					break;
1562				}
1563
1564				next = TAILQ_NEXT(m, pageq);
1565				if (vm_page_sleep(m, "vpctw0", &m->busy))
1566					goto again1;
1567				vm_page_test_dirty(m);
1568				if (m->dirty) {
1569					if (m->object->type == OBJT_VNODE) {
1570						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1571						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1572						VOP_UNLOCK(m->object->handle, 0, curproc);
1573						goto again1;
1574					} else if (m->object->type == OBJT_SWAP ||
1575								m->object->type == OBJT_DEFAULT) {
1576						vm_pageout_flush(&m, 1, 0);
1577						goto again1;
1578					}
1579				}
1580				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1581					vm_page_cache(m);
1582			}
1583
1584			for (m = TAILQ_FIRST(&vm_page_queue_active);
1585				m != NULL;
1586				m = next) {
1587
1588				if (m->queue != PQ_ACTIVE) {
1589					break;
1590				}
1591
1592				next = TAILQ_NEXT(m, pageq);
1593				if (vm_page_sleep(m, "vpctw1", &m->busy))
1594					goto again1;
1595				vm_page_test_dirty(m);
1596				if (m->dirty) {
1597					if (m->object->type == OBJT_VNODE) {
1598						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1599						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1600						VOP_UNLOCK(m->object->handle, 0, curproc);
1601						goto again1;
1602					} else if (m->object->type == OBJT_SWAP ||
1603								m->object->type == OBJT_DEFAULT) {
1604						vm_pageout_flush(&m, 1, 0);
1605						goto again1;
1606					}
1607				}
1608				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1609					vm_page_cache(m);
1610			}
1611
1612			splx(s);
1613			continue;
1614		}
1615		start = i;
1616
1617		/*
1618		 * Check successive pages for contiguous and free.
1619		 */
1620		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1621			int pqtype;
1622			pqtype = pga[i].queue - pga[i].pc;
1623			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1624			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1625			    ((pqtype != PQ_ZERO) && (pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1626				start++;
1627				goto again;
1628			}
1629		}
1630
1631		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1632			int pqtype;
1633			vm_page_t m = &pga[i];
1634
1635			pqtype = m->queue - m->pc;
1636			if (pqtype == PQ_CACHE) {
1637				vm_page_busy(m);
1638				vm_page_free(m);
1639			}
1640
1641			TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
1642			(*vm_page_queues[m->queue].lcnt)--;
1643			cnt.v_free_count--;
1644			m->valid = VM_PAGE_BITS_ALL;
1645			m->flags = 0;
1646			m->dirty = 0;
1647			m->wire_count = 0;
1648			m->busy = 0;
1649			m->queue = PQ_NONE;
1650			m->object = NULL;
1651			vm_page_wire(m);
1652		}
1653
1654		/*
1655		 * We've found a contiguous chunk that meets are requirements.
1656		 * Allocate kernel VM, unfree and assign the physical pages to it and
1657		 * return kernel VM pointer.
1658		 */
1659		tmp_addr = addr = kmem_alloc_pageable(map, size);
1660		if (addr == 0) {
1661			/*
1662			 * XXX We almost never run out of kernel virtual
1663			 * space, so we don't make the allocated memory
1664			 * above available.
1665			 */
1666			splx(s);
1667			return (NULL);
1668		}
1669
1670		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1671			vm_page_t m = &pga[i];
1672			vm_page_insert(m, kernel_object,
1673				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1674			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1675			tmp_addr += PAGE_SIZE;
1676		}
1677
1678		splx(s);
1679		return ((void *)addr);
1680	}
1681	return NULL;
1682}
1683
1684void *
1685contigmalloc(size, type, flags, low, high, alignment, boundary)
1686	unsigned long size;	/* should be size_t here and for malloc() */
1687	struct malloc_type *type;
1688	int flags;
1689	unsigned long low;
1690	unsigned long high;
1691	unsigned long alignment;
1692	unsigned long boundary;
1693{
1694	return contigmalloc1(size, type, flags, low, high, alignment, boundary,
1695			     kernel_map);
1696}
1697
1698vm_offset_t
1699vm_page_alloc_contig(size, low, high, alignment)
1700	vm_offset_t size;
1701	vm_offset_t low;
1702	vm_offset_t high;
1703	vm_offset_t alignment;
1704{
1705	return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
1706					  alignment, 0ul, kernel_map));
1707}
1708
1709#include "opt_ddb.h"
1710#ifdef DDB
1711#include <sys/kernel.h>
1712
1713#include <ddb/ddb.h>
1714
1715DB_SHOW_COMMAND(page, vm_page_print_page_info)
1716{
1717	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1718	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1719	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1720	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1721	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1722	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1723	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1724	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1725	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1726	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1727}
1728
1729DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1730{
1731	int i;
1732	db_printf("PQ_FREE:");
1733	for(i=0;i<PQ_L2_SIZE;i++) {
1734		db_printf(" %d", *vm_page_queues[PQ_FREE + i].lcnt);
1735	}
1736	db_printf("\n");
1737
1738	db_printf("PQ_CACHE:");
1739	for(i=0;i<PQ_L2_SIZE;i++) {
1740		db_printf(" %d", *vm_page_queues[PQ_CACHE + i].lcnt);
1741	}
1742	db_printf("\n");
1743
1744	db_printf("PQ_ZERO:");
1745	for(i=0;i<PQ_L2_SIZE;i++) {
1746		db_printf(" %d", *vm_page_queues[PQ_ZERO + i].lcnt);
1747	}
1748	db_printf("\n");
1749
1750	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1751		*vm_page_queues[PQ_ACTIVE].lcnt,
1752		*vm_page_queues[PQ_INACTIVE].lcnt);
1753}
1754#endif /* DDB */
1755