vm_page.c revision 37101
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 *	$Id: vm_page.c,v 1.101 1998/06/07 17:13:13 dfr Exp $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *	Resident memory management module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/malloc.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/vnode.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <vm/vm_prot.h>
81#include <sys/lock.h>
82#include <vm/vm_kern.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_extern.h>
87
88static void	vm_page_queue_init __P((void));
89static vm_page_t vm_page_select_free __P((vm_object_t object,
90			vm_pindex_t pindex, int prefqueue));
91static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
92
93/*
94 *	Associated with page of user-allocatable memory is a
95 *	page structure.
96 */
97
98static struct pglist *vm_page_buckets;	/* Array of buckets */
99static int vm_page_bucket_count;	/* How big is array? */
100static int vm_page_hash_mask;		/* Mask for hash function */
101static volatile int vm_page_bucket_generation;
102
103struct pglist vm_page_queue_free[PQ_L2_SIZE] = {0};
104struct pglist vm_page_queue_zero[PQ_L2_SIZE] = {0};
105struct pglist vm_page_queue_active = {0};
106struct pglist vm_page_queue_inactive = {0};
107struct pglist vm_page_queue_cache[PQ_L2_SIZE] = {0};
108
109static int no_queue=0;
110
111struct vpgqueues vm_page_queues[PQ_COUNT] = {0};
112static int pqcnt[PQ_COUNT] = {0};
113
114static void
115vm_page_queue_init(void) {
116	int i;
117
118	vm_page_queues[PQ_NONE].pl = NULL;
119	vm_page_queues[PQ_NONE].cnt = &no_queue;
120	for(i=0;i<PQ_L2_SIZE;i++) {
121		vm_page_queues[PQ_FREE+i].pl = &vm_page_queue_free[i];
122		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
123	}
124	for(i=0;i<PQ_L2_SIZE;i++) {
125		vm_page_queues[PQ_ZERO+i].pl = &vm_page_queue_zero[i];
126		vm_page_queues[PQ_ZERO+i].cnt = &cnt.v_free_count;
127	}
128	vm_page_queues[PQ_INACTIVE].pl = &vm_page_queue_inactive;
129	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
130
131	vm_page_queues[PQ_ACTIVE].pl = &vm_page_queue_active;
132	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
133	for(i=0;i<PQ_L2_SIZE;i++) {
134		vm_page_queues[PQ_CACHE+i].pl = &vm_page_queue_cache[i];
135		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
136	}
137	for(i=0;i<PQ_COUNT;i++) {
138		if (vm_page_queues[i].pl) {
139			TAILQ_INIT(vm_page_queues[i].pl);
140		} else if (i != 0) {
141			panic("vm_page_queue_init: queue %d is null", i);
142		}
143		vm_page_queues[i].lcnt = &pqcnt[i];
144	}
145}
146
147vm_page_t vm_page_array = 0;
148static int vm_page_array_size = 0;
149long first_page = 0;
150static long last_page;
151static vm_size_t page_mask;
152static int page_shift;
153int vm_page_zero_count = 0;
154
155/*
156 * map of contiguous valid DEV_BSIZE chunks in a page
157 * (this list is valid for page sizes upto 16*DEV_BSIZE)
158 */
159static u_short vm_page_dev_bsize_chunks[] = {
160	0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff,
161	0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff
162};
163
164static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
165static int vm_page_freechk_and_unqueue __P((vm_page_t m));
166static void vm_page_free_wakeup __P((void));
167
168/*
169 *	vm_set_page_size:
170 *
171 *	Sets the page size, perhaps based upon the memory
172 *	size.  Must be called before any use of page-size
173 *	dependent functions.
174 *
175 *	Sets page_shift and page_mask from cnt.v_page_size.
176 */
177void
178vm_set_page_size()
179{
180
181	if (cnt.v_page_size == 0)
182		cnt.v_page_size = DEFAULT_PAGE_SIZE;
183	page_mask = cnt.v_page_size - 1;
184	if ((page_mask & cnt.v_page_size) != 0)
185		panic("vm_set_page_size: page size not a power of two");
186	for (page_shift = 0;; page_shift++)
187		if ((1 << page_shift) == cnt.v_page_size)
188			break;
189}
190
191/*
192 *	vm_page_startup:
193 *
194 *	Initializes the resident memory module.
195 *
196 *	Allocates memory for the page cells, and
197 *	for the object/offset-to-page hash table headers.
198 *	Each page cell is initialized and placed on the free list.
199 */
200
201vm_offset_t
202vm_page_startup(starta, enda, vaddr)
203	register vm_offset_t starta;
204	vm_offset_t enda;
205	register vm_offset_t vaddr;
206{
207	register vm_offset_t mapped;
208	register vm_page_t m;
209	register struct pglist *bucket;
210	vm_size_t npages, page_range;
211	register vm_offset_t new_start;
212	int i;
213	vm_offset_t pa;
214	int nblocks;
215	vm_offset_t first_managed_page;
216
217	/* the biggest memory array is the second group of pages */
218	vm_offset_t start;
219	vm_offset_t biggestone, biggestsize;
220
221	vm_offset_t total;
222
223	total = 0;
224	biggestsize = 0;
225	biggestone = 0;
226	nblocks = 0;
227	vaddr = round_page(vaddr);
228
229	for (i = 0; phys_avail[i + 1]; i += 2) {
230		phys_avail[i] = round_page(phys_avail[i]);
231		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
232	}
233
234	for (i = 0; phys_avail[i + 1]; i += 2) {
235		int size = phys_avail[i + 1] - phys_avail[i];
236
237		if (size > biggestsize) {
238			biggestone = i;
239			biggestsize = size;
240		}
241		++nblocks;
242		total += size;
243	}
244
245	start = phys_avail[biggestone];
246
247	/*
248	 * Initialize the queue headers for the free queue, the active queue
249	 * and the inactive queue.
250	 */
251
252	vm_page_queue_init();
253
254	/*
255	 * Allocate (and initialize) the hash table buckets.
256	 *
257	 * The number of buckets MUST BE a power of 2, and the actual value is
258	 * the next power of 2 greater than the number of physical pages in
259	 * the system.
260	 *
261	 * Note: This computation can be tweaked if desired.
262	 */
263	vm_page_buckets = (struct pglist *) vaddr;
264	bucket = vm_page_buckets;
265	if (vm_page_bucket_count == 0) {
266		vm_page_bucket_count = 1;
267		while (vm_page_bucket_count < atop(total))
268			vm_page_bucket_count <<= 1;
269	}
270	vm_page_hash_mask = vm_page_bucket_count - 1;
271
272	/*
273	 * Validate these addresses.
274	 */
275
276	new_start = start + vm_page_bucket_count * sizeof(struct pglist);
277	new_start = round_page(new_start);
278	mapped = round_page(vaddr);
279	vaddr = pmap_map(mapped, start, new_start,
280	    VM_PROT_READ | VM_PROT_WRITE);
281	start = new_start;
282	vaddr = round_page(vaddr);
283	bzero((caddr_t) mapped, vaddr - mapped);
284
285	for (i = 0; i < vm_page_bucket_count; i++) {
286		TAILQ_INIT(bucket);
287		bucket++;
288	}
289
290	/*
291	 * Compute the number of pages of memory that will be available for
292	 * use (taking into account the overhead of a page structure per
293	 * page).
294	 */
295
296	first_page = phys_avail[0] / PAGE_SIZE;
297	last_page = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
298
299	page_range = last_page - (phys_avail[0] / PAGE_SIZE);
300	npages = (total - (page_range * sizeof(struct vm_page)) -
301	    (start - phys_avail[biggestone])) / PAGE_SIZE;
302
303	/*
304	 * Initialize the mem entry structures now, and put them in the free
305	 * queue.
306	 */
307	vm_page_array = (vm_page_t) vaddr;
308	mapped = vaddr;
309
310	/*
311	 * Validate these addresses.
312	 */
313	new_start = round_page(start + page_range * sizeof(struct vm_page));
314	mapped = pmap_map(mapped, start, new_start,
315	    VM_PROT_READ | VM_PROT_WRITE);
316	start = new_start;
317
318	first_managed_page = start / PAGE_SIZE;
319
320	/*
321	 * Clear all of the page structures
322	 */
323	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
324	vm_page_array_size = page_range;
325
326	cnt.v_page_count = 0;
327	cnt.v_free_count = 0;
328	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
329		if (i == biggestone)
330			pa = ptoa(first_managed_page);
331		else
332			pa = phys_avail[i];
333		while (pa < phys_avail[i + 1] && npages-- > 0) {
334			++cnt.v_page_count;
335			++cnt.v_free_count;
336			m = PHYS_TO_VM_PAGE(pa);
337			m->phys_addr = pa;
338			m->flags = 0;
339			m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
340			m->queue = m->pc + PQ_FREE;
341			TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq);
342			++(*vm_page_queues[m->queue].lcnt);
343			pa += PAGE_SIZE;
344		}
345	}
346	return (mapped);
347}
348
349/*
350 *	vm_page_hash:
351 *
352 *	Distributes the object/offset key pair among hash buckets.
353 *
354 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
355 */
356static __inline int
357vm_page_hash(object, pindex)
358	vm_object_t object;
359	vm_pindex_t pindex;
360{
361	return ((((unsigned long) object) >> 5) + (pindex >> 1)) & vm_page_hash_mask;
362}
363
364/*
365 *	vm_page_insert:		[ internal use only ]
366 *
367 *	Inserts the given mem entry into the object/object-page
368 *	table and object list.
369 *
370 *	The object and page must be locked, and must be splhigh.
371 */
372
373void
374vm_page_insert(m, object, pindex)
375	register vm_page_t m;
376	register vm_object_t object;
377	register vm_pindex_t pindex;
378{
379	register struct pglist *bucket;
380
381#if !defined(MAX_PERF)
382	if (m->flags & PG_TABLED)
383		panic("vm_page_insert: already inserted");
384#endif
385
386	/*
387	 * Record the object/offset pair in this page
388	 */
389
390	m->object = object;
391	m->pindex = pindex;
392
393	/*
394	 * Insert it into the object_object/offset hash table
395	 */
396
397	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
398	TAILQ_INSERT_TAIL(bucket, m, hashq);
399	vm_page_bucket_generation++;
400
401	/*
402	 * Now link into the object's list of backed pages.
403	 */
404
405	TAILQ_INSERT_TAIL(&object->memq, m, listq);
406	m->flags |= PG_TABLED;
407	m->object->page_hint = m;
408	m->object->generation++;
409
410	if (m->wire_count)
411		object->wire_count++;
412
413	if ((m->queue - m->pc) == PQ_CACHE)
414		object->cache_count++;
415
416	/*
417	 * And show that the object has one more resident page.
418	 */
419
420	object->resident_page_count++;
421}
422
423/*
424 *	vm_page_remove:		[ internal use only ]
425 *				NOTE: used by device pager as well -wfj
426 *
427 *	Removes the given mem entry from the object/offset-page
428 *	table and the object page list.
429 *
430 *	The object and page must be locked, and at splhigh.
431 */
432
433void
434vm_page_remove(m)
435	register vm_page_t m;
436{
437	register struct pglist *bucket;
438	vm_object_t object;
439
440	if (!(m->flags & PG_TABLED))
441		return;
442
443#if !defined(MAX_PERF)
444	if ((m->flags & PG_BUSY) == 0) {
445		panic("vm_page_remove: page not busy");
446	}
447#endif
448
449	m->flags &= ~PG_BUSY;
450	if (m->flags & PG_WANTED) {
451		m->flags &= ~PG_WANTED;
452		wakeup(m);
453	}
454
455	object = m->object;
456	if (object->page_hint == m)
457		object->page_hint = NULL;
458
459	if (m->wire_count)
460		object->wire_count--;
461
462	if ((m->queue - m->pc) == PQ_CACHE)
463		object->cache_count--;
464
465	/*
466	 * Remove from the object_object/offset hash table
467	 */
468
469	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
470	TAILQ_REMOVE(bucket, m, hashq);
471	vm_page_bucket_generation++;
472
473	/*
474	 * Now remove from the object's list of backed pages.
475	 */
476
477	TAILQ_REMOVE(&object->memq, m, listq);
478
479	/*
480	 * And show that the object has one fewer resident page.
481	 */
482
483	object->resident_page_count--;
484	object->generation++;
485	m->object = NULL;
486
487	m->flags &= ~PG_TABLED;
488}
489
490/*
491 *	vm_page_lookup:
492 *
493 *	Returns the page associated with the object/offset
494 *	pair specified; if none is found, NULL is returned.
495 *
496 *	The object must be locked.  No side effects.
497 */
498
499vm_page_t
500vm_page_lookup(object, pindex)
501	register vm_object_t object;
502	register vm_pindex_t pindex;
503{
504	register vm_page_t m;
505	register struct pglist *bucket;
506	int generation;
507	int s;
508
509	/*
510	 * Search the hash table for this object/offset pair
511	 */
512
513	if (object->page_hint && (object->page_hint->pindex == pindex) &&
514		(object->page_hint->object == object))
515		return object->page_hint;
516
517retry:
518	generation = vm_page_bucket_generation;
519	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
520	for (m = TAILQ_FIRST(bucket); m != NULL; m = TAILQ_NEXT(m,hashq)) {
521		if ((m->object == object) && (m->pindex == pindex)) {
522			if (vm_page_bucket_generation != generation)
523				goto retry;
524			m->object->page_hint = m;
525			return (m);
526		}
527	}
528	if (vm_page_bucket_generation != generation)
529		goto retry;
530	return (NULL);
531}
532
533/*
534 *	vm_page_rename:
535 *
536 *	Move the given memory entry from its
537 *	current object to the specified target object/offset.
538 *
539 *	The object must be locked.
540 */
541void
542vm_page_rename(m, new_object, new_pindex)
543	register vm_page_t m;
544	register vm_object_t new_object;
545	vm_pindex_t new_pindex;
546{
547	int s;
548
549	s = splvm();
550	vm_page_remove(m);
551	vm_page_insert(m, new_object, new_pindex);
552	splx(s);
553}
554
555/*
556 * vm_page_unqueue without any wakeup
557 */
558void
559vm_page_unqueue_nowakeup(m)
560	vm_page_t m;
561{
562	int queue = m->queue;
563	struct vpgqueues *pq;
564	if (queue != PQ_NONE) {
565		pq = &vm_page_queues[queue];
566		m->queue = PQ_NONE;
567		TAILQ_REMOVE(pq->pl, m, pageq);
568		(*pq->cnt)--;
569		(*pq->lcnt)--;
570		if ((queue - m->pc) == PQ_CACHE) {
571			if (m->object)
572				m->object->cache_count--;
573		}
574	}
575}
576
577/*
578 * vm_page_unqueue must be called at splhigh();
579 */
580void
581vm_page_unqueue(m)
582	vm_page_t m;
583{
584	int queue = m->queue;
585	struct vpgqueues *pq;
586	if (queue != PQ_NONE) {
587		m->queue = PQ_NONE;
588		pq = &vm_page_queues[queue];
589		TAILQ_REMOVE(pq->pl, m, pageq);
590		(*pq->cnt)--;
591		(*pq->lcnt)--;
592		if ((queue - m->pc) == PQ_CACHE) {
593			if ((cnt.v_cache_count + cnt.v_free_count) <
594				(cnt.v_free_reserved + cnt.v_cache_min))
595				pagedaemon_wakeup();
596			if (m->object)
597				m->object->cache_count--;
598		}
599	}
600}
601
602/*
603 * Find a page on the specified queue with color optimization.
604 */
605vm_page_t
606vm_page_list_find(basequeue, index)
607	int basequeue, index;
608{
609#if PQ_L2_SIZE > 1
610
611	int i,j;
612	vm_page_t m;
613	int hindex;
614	struct vpgqueues *pq;
615
616	pq = &vm_page_queues[basequeue];
617
618	m = TAILQ_FIRST(pq[index].pl);
619	if (m)
620		return m;
621
622	for(j = 0; j < PQ_L1_SIZE; j++) {
623		int ij;
624		for(i = (PQ_L2_SIZE / 2) - PQ_L1_SIZE;
625			(ij = i + j) > 0;
626			i -= PQ_L1_SIZE) {
627
628			hindex = index + ij;
629			if (hindex >= PQ_L2_SIZE)
630				hindex -= PQ_L2_SIZE;
631			if (m = TAILQ_FIRST(pq[hindex].pl))
632				return m;
633
634			hindex = index - ij;
635			if (hindex < 0)
636				hindex += PQ_L2_SIZE;
637			if (m = TAILQ_FIRST(pq[hindex].pl))
638				return m;
639		}
640	}
641
642	hindex = index + PQ_L2_SIZE / 2;
643	if (hindex >= PQ_L2_SIZE)
644		hindex -= PQ_L2_SIZE;
645	m = TAILQ_FIRST(pq[hindex].pl);
646	if (m)
647		return m;
648
649	return NULL;
650#else
651	return TAILQ_FIRST(vm_page_queues[basequeue].pl);
652#endif
653
654}
655
656/*
657 * Find a page on the specified queue with color optimization.
658 */
659vm_page_t
660vm_page_select(object, pindex, basequeue)
661	vm_object_t object;
662	vm_pindex_t pindex;
663	int basequeue;
664{
665
666#if PQ_L2_SIZE > 1
667	int index;
668	index = (pindex + object->pg_color) & PQ_L2_MASK;
669	return vm_page_list_find(basequeue, index);
670
671#else
672	return TAILQ_FIRST(vm_page_queues[basequeue].pl);
673#endif
674
675}
676
677/*
678 * Find a page on the cache queue with color optimization.  As pages
679 * might be found, but not applicable, they are deactivated.  This
680 * keeps us from using potentially busy cached pages.
681 */
682vm_page_t
683vm_page_select_cache(object, pindex)
684	vm_object_t object;
685	vm_pindex_t pindex;
686{
687	vm_page_t m;
688
689	while (TRUE) {
690#if PQ_L2_SIZE > 1
691		int index;
692		index = (pindex + object->pg_color) & PQ_L2_MASK;
693		m = vm_page_list_find(PQ_CACHE, index);
694
695#else
696		m = TAILQ_FIRST(vm_page_queues[PQ_CACHE].pl);
697#endif
698		if (m && ((m->flags & PG_BUSY) || m->busy ||
699			       m->hold_count || m->wire_count)) {
700			vm_page_deactivate(m);
701			continue;
702		}
703		return m;
704	}
705}
706
707/*
708 * Find a free or zero page, with specified preference.
709 */
710static vm_page_t
711vm_page_select_free(object, pindex, prefqueue)
712	vm_object_t object;
713	vm_pindex_t pindex;
714	int prefqueue;
715{
716#if PQ_L2_SIZE > 1
717	int i,j;
718	int index, hindex;
719#endif
720	vm_page_t m, mh;
721	int oqueuediff;
722	struct vpgqueues *pq;
723
724	if (prefqueue == PQ_ZERO)
725		oqueuediff = PQ_FREE - PQ_ZERO;
726	else
727		oqueuediff = PQ_ZERO - PQ_FREE;
728
729	if (mh = object->page_hint) {
730		 if (mh->pindex == (pindex - 1)) {
731			if ((mh->flags & PG_FICTITIOUS) == 0) {
732				if ((mh < &vm_page_array[cnt.v_page_count-1]) &&
733					(mh >= &vm_page_array[0])) {
734					int queue;
735					m = mh + 1;
736					if (VM_PAGE_TO_PHYS(m) == (VM_PAGE_TO_PHYS(mh) + PAGE_SIZE)) {
737						queue = m->queue - m->pc;
738						if (queue == PQ_FREE || queue == PQ_ZERO) {
739							return m;
740						}
741					}
742				}
743			}
744		}
745	}
746
747	pq = &vm_page_queues[prefqueue];
748
749#if PQ_L2_SIZE > 1
750
751	index = (pindex + object->pg_color) & PQ_L2_MASK;
752
753	if (m = TAILQ_FIRST(pq[index].pl))
754		return m;
755	if (m = TAILQ_FIRST(pq[index + oqueuediff].pl))
756		return m;
757
758	for(j = 0; j < PQ_L1_SIZE; j++) {
759		int ij;
760		for(i = (PQ_L2_SIZE / 2) - PQ_L1_SIZE;
761			(ij = i + j) >= 0;
762			i -= PQ_L1_SIZE) {
763
764			hindex = index + ij;
765			if (hindex >= PQ_L2_SIZE)
766				hindex -= PQ_L2_SIZE;
767			if (m = TAILQ_FIRST(pq[hindex].pl))
768				return m;
769			if (m = TAILQ_FIRST(pq[hindex + oqueuediff].pl))
770				return m;
771
772			hindex = index - ij;
773			if (hindex < 0)
774				hindex += PQ_L2_SIZE;
775			if (m = TAILQ_FIRST(pq[hindex].pl))
776				return m;
777			if (m = TAILQ_FIRST(pq[hindex + oqueuediff].pl))
778				return m;
779		}
780	}
781
782	hindex = index + PQ_L2_SIZE / 2;
783	if (hindex >= PQ_L2_SIZE)
784		hindex -= PQ_L2_SIZE;
785	if (m = TAILQ_FIRST(pq[hindex].pl))
786		return m;
787	if (m = TAILQ_FIRST(pq[hindex+oqueuediff].pl))
788		return m;
789
790#else
791	if (m = TAILQ_FIRST(pq[0].pl))
792		return m;
793	else
794		return TAILQ_FIRST(pq[oqueuediff].pl);
795#endif
796
797	return NULL;
798}
799
800/*
801 *	vm_page_alloc:
802 *
803 *	Allocate and return a memory cell associated
804 *	with this VM object/offset pair.
805 *
806 *	page_req classes:
807 *	VM_ALLOC_NORMAL		normal process request
808 *	VM_ALLOC_SYSTEM		system *really* needs a page
809 *	VM_ALLOC_INTERRUPT	interrupt time request
810 *	VM_ALLOC_ZERO		zero page
811 *
812 *	Object must be locked.
813 */
814vm_page_t
815vm_page_alloc(object, pindex, page_req)
816	vm_object_t object;
817	vm_pindex_t pindex;
818	int page_req;
819{
820	register vm_page_t m;
821	struct vpgqueues *pq;
822	vm_object_t oldobject;
823	int queue, qtype;
824	int s;
825
826#ifdef DIAGNOSTIC
827	m = vm_page_lookup(object, pindex);
828	if (m)
829		panic("vm_page_alloc: page already allocated");
830#endif
831
832	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
833		page_req = VM_ALLOC_SYSTEM;
834	};
835
836	s = splvm();
837
838	switch (page_req) {
839
840	case VM_ALLOC_NORMAL:
841		if (cnt.v_free_count >= cnt.v_free_reserved) {
842			m = vm_page_select_free(object, pindex, PQ_FREE);
843#if defined(DIAGNOSTIC)
844			if (m == NULL)
845				panic("vm_page_alloc(NORMAL): missing page on free queue\n");
846#endif
847		} else {
848			m = vm_page_select_cache(object, pindex);
849			if (m == NULL) {
850				splx(s);
851#if defined(DIAGNOSTIC)
852				if (cnt.v_cache_count > 0)
853					printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
854#endif
855				vm_pageout_deficit++;
856				pagedaemon_wakeup();
857				return (NULL);
858			}
859		}
860		break;
861
862	case VM_ALLOC_ZERO:
863		if (cnt.v_free_count >= cnt.v_free_reserved) {
864			m = vm_page_select_free(object, pindex, PQ_ZERO);
865#if defined(DIAGNOSTIC)
866			if (m == NULL)
867				panic("vm_page_alloc(ZERO): missing page on free queue\n");
868#endif
869		} else {
870			m = vm_page_select_cache(object, pindex);
871			if (m == NULL) {
872				splx(s);
873#if defined(DIAGNOSTIC)
874				if (cnt.v_cache_count > 0)
875					printf("vm_page_alloc(ZERO): missing pages on cache queue: %d\n", cnt.v_cache_count);
876#endif
877				vm_pageout_deficit++;
878				pagedaemon_wakeup();
879				return (NULL);
880			}
881		}
882		break;
883
884	case VM_ALLOC_SYSTEM:
885		if ((cnt.v_free_count >= cnt.v_free_reserved) ||
886		    ((cnt.v_cache_count == 0) &&
887		    (cnt.v_free_count >= cnt.v_interrupt_free_min))) {
888			m = vm_page_select_free(object, pindex, PQ_FREE);
889#if defined(DIAGNOSTIC)
890			if (m == NULL)
891				panic("vm_page_alloc(SYSTEM): missing page on free queue\n");
892#endif
893		} else {
894			m = vm_page_select_cache(object, pindex);
895			if (m == NULL) {
896				splx(s);
897#if defined(DIAGNOSTIC)
898				if (cnt.v_cache_count > 0)
899					printf("vm_page_alloc(SYSTEM): missing pages on cache queue: %d\n", cnt.v_cache_count);
900#endif
901				vm_pageout_deficit++;
902				pagedaemon_wakeup();
903				return (NULL);
904			}
905		}
906		break;
907
908	case VM_ALLOC_INTERRUPT:
909		if (cnt.v_free_count > 0) {
910			m = vm_page_select_free(object, pindex, PQ_FREE);
911#if defined(DIAGNOSTIC)
912			if (m == NULL)
913				panic("vm_page_alloc(INTERRUPT): missing page on free queue\n");
914#endif
915		} else {
916			splx(s);
917			vm_pageout_deficit++;
918			pagedaemon_wakeup();
919			return (NULL);
920		}
921		break;
922
923	default:
924		m = NULL;
925#if !defined(MAX_PERF)
926		panic("vm_page_alloc: invalid allocation class");
927#endif
928	}
929
930	queue = m->queue;
931	qtype = queue - m->pc;
932	if (qtype == PQ_ZERO)
933		vm_page_zero_count--;
934	pq = &vm_page_queues[queue];
935	TAILQ_REMOVE(pq->pl, m, pageq);
936	(*pq->cnt)--;
937	(*pq->lcnt)--;
938	oldobject = NULL;
939	if (qtype == PQ_ZERO) {
940		m->flags = PG_ZERO | PG_BUSY;
941	} else if (qtype == PQ_CACHE) {
942		oldobject = m->object;
943		m->flags |= PG_BUSY;
944		vm_page_remove(m);
945		m->flags = PG_BUSY;
946	} else {
947		m->flags = PG_BUSY;
948	}
949	m->wire_count = 0;
950	m->hold_count = 0;
951	m->act_count = 0;
952	m->busy = 0;
953	m->valid = 0;
954	m->dirty = 0;
955	m->queue = PQ_NONE;
956
957	/* XXX before splx until vm_page_insert is safe */
958	vm_page_insert(m, object, pindex);
959
960	/*
961	 * Don't wakeup too often - wakeup the pageout daemon when
962	 * we would be nearly out of memory.
963	 */
964	if (((cnt.v_free_count + cnt.v_cache_count) <
965		(cnt.v_free_reserved + cnt.v_cache_min)) ||
966			(cnt.v_free_count < cnt.v_pageout_free_min))
967		pagedaemon_wakeup();
968
969	if ((qtype == PQ_CACHE) &&
970		((page_req == VM_ALLOC_NORMAL) || (page_req == VM_ALLOC_ZERO)) &&
971		oldobject && (oldobject->type == OBJT_VNODE) &&
972		((oldobject->flags & OBJ_DEAD) == 0)) {
973		struct vnode *vp;
974		vp = (struct vnode *) oldobject->handle;
975		if (vp && VSHOULDFREE(vp)) {
976			if ((vp->v_flag & (VFREE|VTBFREE|VDOOMED)) == 0) {
977				TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
978				vp->v_flag |= VTBFREE;
979			}
980		}
981	}
982	splx(s);
983
984	return (m);
985}
986
987void
988vm_wait()
989{
990	int s;
991
992	s = splvm();
993	if (curproc == pageproc) {
994		vm_pageout_pages_needed = 1;
995		tsleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
996	} else {
997		if (!vm_pages_needed) {
998			vm_pages_needed++;
999			wakeup(&vm_pages_needed);
1000		}
1001		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
1002	}
1003	splx(s);
1004}
1005
1006int
1007vm_page_sleep(vm_page_t m, char *msg, char *busy) {
1008	vm_object_t object = m->object;
1009	int slept = 0;
1010	if ((busy && *busy) || (m->flags & PG_BUSY)) {
1011		int s;
1012		s = splvm();
1013		if ((busy && *busy) || (m->flags & PG_BUSY)) {
1014			m->flags |= PG_WANTED;
1015			tsleep(m, PVM, msg, 0);
1016			slept = 1;
1017		}
1018		splx(s);
1019	}
1020	return slept;
1021}
1022
1023/*
1024 *	vm_page_activate:
1025 *
1026 *	Put the specified page on the active list (if appropriate).
1027 *
1028 *	The page queues must be locked.
1029 */
1030void
1031vm_page_activate(m)
1032	register vm_page_t m;
1033{
1034	int s;
1035	vm_page_t np;
1036	vm_object_t object;
1037
1038	s = splvm();
1039	if (m->queue != PQ_ACTIVE) {
1040		if ((m->queue - m->pc) == PQ_CACHE)
1041			cnt.v_reactivated++;
1042
1043		vm_page_unqueue(m);
1044
1045		if (m->wire_count == 0) {
1046			m->queue = PQ_ACTIVE;
1047			++(*vm_page_queues[PQ_ACTIVE].lcnt);
1048			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1049			if (m->act_count < ACT_INIT)
1050				m->act_count = ACT_INIT;
1051			cnt.v_active_count++;
1052		}
1053	} else {
1054		if (m->act_count < ACT_INIT)
1055			m->act_count = ACT_INIT;
1056	}
1057
1058	splx(s);
1059}
1060
1061/*
1062 * helper routine for vm_page_free and vm_page_free_zero
1063 */
1064static int
1065vm_page_freechk_and_unqueue(m)
1066	vm_page_t m;
1067{
1068	vm_object_t oldobject;
1069
1070	oldobject = m->object;
1071
1072#if !defined(MAX_PERF)
1073	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1074		(m->hold_count != 0)) {
1075		printf("vm_page_free: pindex(%ld), busy(%d), PG_BUSY(%d), hold(%d)\n",
1076			m->pindex, m->busy,
1077			(m->flags & PG_BUSY) ? 1 : 0, m->hold_count);
1078		if ((m->queue - m->pc) == PQ_FREE)
1079			panic("vm_page_free: freeing free page");
1080		else
1081			panic("vm_page_free: freeing busy page");
1082	}
1083#endif
1084
1085	vm_page_unqueue_nowakeup(m);
1086	vm_page_remove(m);
1087
1088	if ((m->flags & PG_FICTITIOUS) != 0) {
1089		return 0;
1090	}
1091
1092	m->valid = 0;
1093
1094	if (m->wire_count != 0) {
1095#if !defined(MAX_PERF)
1096		if (m->wire_count > 1) {
1097			panic("vm_page_free: invalid wire count (%d), pindex: 0x%x",
1098				m->wire_count, m->pindex);
1099		}
1100#endif
1101		m->wire_count = 0;
1102		if (m->object)
1103			m->object->wire_count--;
1104		cnt.v_wire_count--;
1105	}
1106
1107	if (oldobject && (oldobject->type == OBJT_VNODE) &&
1108		((oldobject->flags & OBJ_DEAD) == 0)) {
1109		struct vnode *vp;
1110		vp = (struct vnode *) oldobject->handle;
1111		if (vp && VSHOULDFREE(vp)) {
1112			if ((vp->v_flag & (VTBFREE|VDOOMED|VFREE)) == 0) {
1113				TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
1114				vp->v_flag |= VTBFREE;
1115			}
1116		}
1117	}
1118
1119	return 1;
1120}
1121
1122/*
1123 * helper routine for vm_page_free and vm_page_free_zero
1124 */
1125static __inline void
1126vm_page_free_wakeup()
1127{
1128
1129/*
1130 * if pageout daemon needs pages, then tell it that there are
1131 * some free.
1132 */
1133	if (vm_pageout_pages_needed) {
1134		wakeup(&vm_pageout_pages_needed);
1135		vm_pageout_pages_needed = 0;
1136	}
1137	/*
1138	 * wakeup processes that are waiting on memory if we hit a
1139	 * high water mark. And wakeup scheduler process if we have
1140	 * lots of memory. this process will swapin processes.
1141	 */
1142	if (vm_pages_needed &&
1143		((cnt.v_free_count + cnt.v_cache_count) >= cnt.v_free_min)) {
1144		wakeup(&cnt.v_free_count);
1145		vm_pages_needed = 0;
1146	}
1147}
1148
1149/*
1150 *	vm_page_free:
1151 *
1152 *	Returns the given page to the free list,
1153 *	disassociating it with any VM object.
1154 *
1155 *	Object and page must be locked prior to entry.
1156 */
1157void
1158vm_page_free(m)
1159	register vm_page_t m;
1160{
1161	int s;
1162	struct vpgqueues *pq;
1163
1164	s = splvm();
1165
1166	cnt.v_tfree++;
1167
1168	if (!vm_page_freechk_and_unqueue(m)) {
1169		splx(s);
1170		return;
1171	}
1172
1173	m->queue = PQ_FREE + m->pc;
1174	pq = &vm_page_queues[m->queue];
1175	++(*pq->lcnt);
1176	++(*pq->cnt);
1177	/*
1178	 * If the pageout process is grabbing the page, it is likely
1179	 * that the page is NOT in the cache.  It is more likely that
1180	 * the page will be partially in the cache if it is being
1181	 * explicitly freed.
1182	 */
1183	if (curproc == pageproc) {
1184		TAILQ_INSERT_TAIL(pq->pl, m, pageq);
1185	} else {
1186		TAILQ_INSERT_HEAD(pq->pl, m, pageq);
1187	}
1188
1189	vm_page_free_wakeup();
1190	splx(s);
1191}
1192
1193void
1194vm_page_free_zero(m)
1195	register vm_page_t m;
1196{
1197	int s;
1198	struct vpgqueues *pq;
1199
1200	s = splvm();
1201
1202	cnt.v_tfree++;
1203
1204	if (!vm_page_freechk_and_unqueue(m)) {
1205		splx(s);
1206		return;
1207	}
1208
1209	m->queue = PQ_ZERO + m->pc;
1210	pq = &vm_page_queues[m->queue];
1211	++(*pq->lcnt);
1212	++(*pq->cnt);
1213
1214	TAILQ_INSERT_HEAD(pq->pl, m, pageq);
1215	++vm_page_zero_count;
1216	vm_page_free_wakeup();
1217	splx(s);
1218}
1219
1220/*
1221 *	vm_page_wire:
1222 *
1223 *	Mark this page as wired down by yet
1224 *	another map, removing it from paging queues
1225 *	as necessary.
1226 *
1227 *	The page queues must be locked.
1228 */
1229void
1230vm_page_wire(m)
1231	register vm_page_t m;
1232{
1233	int s;
1234
1235	if (m->wire_count == 0) {
1236		s = splvm();
1237		vm_page_unqueue(m);
1238		splx(s);
1239		cnt.v_wire_count++;
1240		if (m->object)
1241			m->object->wire_count++;
1242	}
1243	(*vm_page_queues[PQ_NONE].lcnt)++;
1244	m->wire_count++;
1245	m->flags |= PG_MAPPED;
1246}
1247
1248/*
1249 *	vm_page_unwire:
1250 *
1251 *	Release one wiring of this page, potentially
1252 *	enabling it to be paged again.
1253 *
1254 *	The page queues must be locked.
1255 */
1256void
1257vm_page_unwire(m)
1258	register vm_page_t m;
1259{
1260	int s;
1261
1262	s = splvm();
1263
1264	if (m->wire_count > 0) {
1265		m->wire_count--;
1266		if (m->wire_count == 0) {
1267			if (m->object)
1268				m->object->wire_count--;
1269			cnt.v_wire_count--;
1270			TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1271			m->queue = PQ_ACTIVE;
1272			(*vm_page_queues[PQ_ACTIVE].lcnt)++;
1273			cnt.v_active_count++;
1274		}
1275	} else {
1276#if !defined(MAX_PERF)
1277		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1278#endif
1279	}
1280	splx(s);
1281}
1282
1283
1284/*
1285 *	vm_page_deactivate:
1286 *
1287 *	Returns the given page to the inactive list,
1288 *	indicating that no physical maps have access
1289 *	to this page.  [Used by the physical mapping system.]
1290 *
1291 *	The page queues must be locked.
1292 */
1293void
1294vm_page_deactivate(m)
1295	register vm_page_t m;
1296{
1297	int s;
1298
1299	/*
1300	 * Only move active pages -- ignore locked or already inactive ones.
1301	 *
1302	 * XXX: sometimes we get pages which aren't wired down or on any queue -
1303	 * we need to put them on the inactive queue also, otherwise we lose
1304	 * track of them. Paul Mackerras (paulus@cs.anu.edu.au) 9-Jan-93.
1305	 */
1306	if (m->queue == PQ_INACTIVE)
1307		return;
1308
1309	s = splvm();
1310	if (m->wire_count == 0) {
1311		if ((m->queue - m->pc) == PQ_CACHE)
1312			cnt.v_reactivated++;
1313		vm_page_unqueue(m);
1314		TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
1315		m->queue = PQ_INACTIVE;
1316		++(*vm_page_queues[PQ_INACTIVE].lcnt);
1317		cnt.v_inactive_count++;
1318	}
1319	splx(s);
1320}
1321
1322/*
1323 * vm_page_cache
1324 *
1325 * Put the specified page onto the page cache queue (if appropriate).
1326 */
1327void
1328vm_page_cache(m)
1329	register vm_page_t m;
1330{
1331	int s;
1332
1333#if !defined(MAX_PERF)
1334	if ((m->flags & PG_BUSY) || m->busy || m->wire_count) {
1335		printf("vm_page_cache: attempting to cache busy page\n");
1336		return;
1337	}
1338#endif
1339	if ((m->queue - m->pc) == PQ_CACHE)
1340		return;
1341
1342	vm_page_protect(m, VM_PROT_NONE);
1343#if !defined(MAX_PERF)
1344	if (m->dirty != 0) {
1345		panic("vm_page_cache: caching a dirty page, pindex: %d", m->pindex);
1346	}
1347#endif
1348	s = splvm();
1349	vm_page_unqueue_nowakeup(m);
1350	m->queue = PQ_CACHE + m->pc;
1351	(*vm_page_queues[m->queue].lcnt)++;
1352	TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq);
1353	cnt.v_cache_count++;
1354	m->object->cache_count++;
1355	vm_page_free_wakeup();
1356	splx(s);
1357}
1358
1359/*
1360 * Grab a page, waiting until we are waken up due to the page
1361 * changing state.  We keep on waiting, if the page continues
1362 * to be in the object.  If the page doesn't exist, allocate it.
1363 */
1364vm_page_t
1365vm_page_grab(object, pindex, allocflags)
1366	vm_object_t object;
1367	vm_pindex_t pindex;
1368	int allocflags;
1369{
1370
1371	vm_page_t m;
1372	int s, generation;
1373
1374retrylookup:
1375	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1376		if (m->busy || (m->flags & PG_BUSY)) {
1377			generation = object->generation;
1378
1379			s = splvm();
1380			while ((object->generation == generation) &&
1381					(m->busy || (m->flags & PG_BUSY))) {
1382				m->flags |= PG_WANTED | PG_REFERENCED;
1383				tsleep(m, PVM, "pgrbwt", 0);
1384				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1385					splx(s);
1386					return NULL;
1387				}
1388			}
1389			splx(s);
1390			goto retrylookup;
1391		} else {
1392			m->flags |= PG_BUSY;
1393			return m;
1394		}
1395	}
1396
1397	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1398	if (m == NULL) {
1399		VM_WAIT;
1400		if ((allocflags & VM_ALLOC_RETRY) == 0)
1401			return NULL;
1402		goto retrylookup;
1403	}
1404
1405	return m;
1406}
1407
1408/*
1409 * mapping function for valid bits or for dirty bits in
1410 * a page
1411 */
1412__inline int
1413vm_page_bits(int base, int size)
1414{
1415	u_short chunk;
1416
1417	if ((base == 0) && (size >= PAGE_SIZE))
1418		return VM_PAGE_BITS_ALL;
1419
1420	size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1421	base &= PAGE_MASK;
1422	if (size > PAGE_SIZE - base) {
1423		size = PAGE_SIZE - base;
1424	}
1425
1426	base = base / DEV_BSIZE;
1427	chunk = vm_page_dev_bsize_chunks[size / DEV_BSIZE];
1428	return (chunk << base) & VM_PAGE_BITS_ALL;
1429}
1430
1431/*
1432 * set a page valid and clean
1433 */
1434void
1435vm_page_set_validclean(m, base, size)
1436	vm_page_t m;
1437	int base;
1438	int size;
1439{
1440	int pagebits = vm_page_bits(base, size);
1441	m->valid |= pagebits;
1442	m->dirty &= ~pagebits;
1443	if( base == 0 && size == PAGE_SIZE)
1444		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1445}
1446
1447/*
1448 * set a page (partially) invalid
1449 */
1450void
1451vm_page_set_invalid(m, base, size)
1452	vm_page_t m;
1453	int base;
1454	int size;
1455{
1456	int bits;
1457
1458	m->valid &= ~(bits = vm_page_bits(base, size));
1459	if (m->valid == 0)
1460		m->dirty &= ~bits;
1461	m->object->generation++;
1462}
1463
1464/*
1465 * is (partial) page valid?
1466 */
1467int
1468vm_page_is_valid(m, base, size)
1469	vm_page_t m;
1470	int base;
1471	int size;
1472{
1473	int bits = vm_page_bits(base, size);
1474
1475	if (m->valid && ((m->valid & bits) == bits))
1476		return 1;
1477	else
1478		return 0;
1479}
1480
1481void
1482vm_page_test_dirty(m)
1483	vm_page_t m;
1484{
1485	if ((m->dirty != VM_PAGE_BITS_ALL) &&
1486	    pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
1487		m->dirty = VM_PAGE_BITS_ALL;
1488	}
1489}
1490
1491/*
1492 * This interface is for merging with malloc() someday.
1493 * Even if we never implement compaction so that contiguous allocation
1494 * works after initialization time, malloc()'s data structures are good
1495 * for statistics and for allocations of less than a page.
1496 */
1497void *
1498contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
1499	unsigned long size;	/* should be size_t here and for malloc() */
1500	struct malloc_type *type;
1501	int flags;
1502	unsigned long low;
1503	unsigned long high;
1504	unsigned long alignment;
1505	unsigned long boundary;
1506	vm_map_t map;
1507{
1508	int i, s, start;
1509	vm_offset_t addr, phys, tmp_addr;
1510	int pass;
1511	vm_page_t pga = vm_page_array;
1512
1513	size = round_page(size);
1514#if !defined(MAX_PERF)
1515	if (size == 0)
1516		panic("contigmalloc1: size must not be 0");
1517	if ((alignment & (alignment - 1)) != 0)
1518		panic("contigmalloc1: alignment must be a power of 2");
1519	if ((boundary & (boundary - 1)) != 0)
1520		panic("contigmalloc1: boundary must be a power of 2");
1521#endif
1522
1523	start = 0;
1524	for (pass = 0; pass <= 1; pass++) {
1525		s = splvm();
1526again:
1527		/*
1528		 * Find first page in array that is free, within range, aligned, and
1529		 * such that the boundary won't be crossed.
1530		 */
1531		for (i = start; i < cnt.v_page_count; i++) {
1532			int pqtype;
1533			phys = VM_PAGE_TO_PHYS(&pga[i]);
1534			pqtype = pga[i].queue - pga[i].pc;
1535			if (((pqtype == PQ_ZERO) || (pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1536			    (phys >= low) && (phys < high) &&
1537			    ((phys & (alignment - 1)) == 0) &&
1538			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1539				break;
1540		}
1541
1542		/*
1543		 * If the above failed or we will exceed the upper bound, fail.
1544		 */
1545		if ((i == cnt.v_page_count) ||
1546			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1547			vm_page_t m, next;
1548
1549again1:
1550			for (m = TAILQ_FIRST(&vm_page_queue_inactive);
1551				m != NULL;
1552				m = next) {
1553
1554				if (m->queue != PQ_INACTIVE) {
1555					break;
1556				}
1557
1558				next = TAILQ_NEXT(m, pageq);
1559				if (vm_page_sleep(m, "vpctw0", &m->busy))
1560					goto again1;
1561				vm_page_test_dirty(m);
1562				if (m->dirty) {
1563					if (m->object->type == OBJT_VNODE) {
1564						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1565						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1566						VOP_UNLOCK(m->object->handle, 0, curproc);
1567						goto again1;
1568					} else if (m->object->type == OBJT_SWAP ||
1569								m->object->type == OBJT_DEFAULT) {
1570						vm_pageout_flush(&m, 1, 0);
1571						goto again1;
1572					}
1573				}
1574				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1575					vm_page_cache(m);
1576			}
1577
1578			for (m = TAILQ_FIRST(&vm_page_queue_active);
1579				m != NULL;
1580				m = next) {
1581
1582				if (m->queue != PQ_ACTIVE) {
1583					break;
1584				}
1585
1586				next = TAILQ_NEXT(m, pageq);
1587				if (vm_page_sleep(m, "vpctw1", &m->busy))
1588					goto again1;
1589				vm_page_test_dirty(m);
1590				if (m->dirty) {
1591					if (m->object->type == OBJT_VNODE) {
1592						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1593						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1594						VOP_UNLOCK(m->object->handle, 0, curproc);
1595						goto again1;
1596					} else if (m->object->type == OBJT_SWAP ||
1597								m->object->type == OBJT_DEFAULT) {
1598						vm_pageout_flush(&m, 1, 0);
1599						goto again1;
1600					}
1601				}
1602				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1603					vm_page_cache(m);
1604			}
1605
1606			splx(s);
1607			continue;
1608		}
1609		start = i;
1610
1611		/*
1612		 * Check successive pages for contiguous and free.
1613		 */
1614		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1615			int pqtype;
1616			pqtype = pga[i].queue - pga[i].pc;
1617			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1618			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1619			    ((pqtype != PQ_ZERO) && (pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1620				start++;
1621				goto again;
1622			}
1623		}
1624
1625		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1626			int pqtype;
1627			vm_page_t m = &pga[i];
1628
1629			pqtype = m->queue - m->pc;
1630			if (pqtype == PQ_CACHE) {
1631				m->flags |= PG_BUSY;
1632				vm_page_free(m);
1633			}
1634
1635			TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
1636			(*vm_page_queues[m->queue].lcnt)--;
1637			cnt.v_free_count--;
1638			m->valid = VM_PAGE_BITS_ALL;
1639			m->flags = 0;
1640			m->dirty = 0;
1641			m->wire_count = 0;
1642			m->busy = 0;
1643			m->queue = PQ_NONE;
1644			m->object = NULL;
1645			vm_page_wire(m);
1646		}
1647
1648		/*
1649		 * We've found a contiguous chunk that meets are requirements.
1650		 * Allocate kernel VM, unfree and assign the physical pages to it and
1651		 * return kernel VM pointer.
1652		 */
1653		tmp_addr = addr = kmem_alloc_pageable(map, size);
1654		if (addr == 0) {
1655			/*
1656			 * XXX We almost never run out of kernel virtual
1657			 * space, so we don't make the allocated memory
1658			 * above available.
1659			 */
1660			splx(s);
1661			return (NULL);
1662		}
1663
1664		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1665			vm_page_t m = &pga[i];
1666			vm_page_insert(m, kernel_object,
1667				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1668			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1669			tmp_addr += PAGE_SIZE;
1670		}
1671
1672		splx(s);
1673		return ((void *)addr);
1674	}
1675	return NULL;
1676}
1677
1678void *
1679contigmalloc(size, type, flags, low, high, alignment, boundary)
1680	unsigned long size;	/* should be size_t here and for malloc() */
1681	struct malloc_type *type;
1682	int flags;
1683	unsigned long low;
1684	unsigned long high;
1685	unsigned long alignment;
1686	unsigned long boundary;
1687{
1688	return contigmalloc1(size, type, flags, low, high, alignment, boundary,
1689			     kernel_map);
1690}
1691
1692vm_offset_t
1693vm_page_alloc_contig(size, low, high, alignment)
1694	vm_offset_t size;
1695	vm_offset_t low;
1696	vm_offset_t high;
1697	vm_offset_t alignment;
1698{
1699	return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
1700					  alignment, 0ul, kernel_map));
1701}
1702
1703#include "opt_ddb.h"
1704#ifdef DDB
1705#include <sys/kernel.h>
1706
1707#include <ddb/ddb.h>
1708
1709DB_SHOW_COMMAND(page, vm_page_print_page_info)
1710{
1711	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1712	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1713	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1714	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1715	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1716	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1717	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1718	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1719	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1720	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1721}
1722
1723DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1724{
1725	int i;
1726	db_printf("PQ_FREE:");
1727	for(i=0;i<PQ_L2_SIZE;i++) {
1728		db_printf(" %d", *vm_page_queues[PQ_FREE + i].lcnt);
1729	}
1730	db_printf("\n");
1731
1732	db_printf("PQ_CACHE:");
1733	for(i=0;i<PQ_L2_SIZE;i++) {
1734		db_printf(" %d", *vm_page_queues[PQ_CACHE + i].lcnt);
1735	}
1736	db_printf("\n");
1737
1738	db_printf("PQ_ZERO:");
1739	for(i=0;i<PQ_L2_SIZE;i++) {
1740		db_printf(" %d", *vm_page_queues[PQ_ZERO + i].lcnt);
1741	}
1742	db_printf("\n");
1743
1744	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1745		*vm_page_queues[PQ_ACTIVE].lcnt,
1746		*vm_page_queues[PQ_INACTIVE].lcnt);
1747}
1748#endif /* DDB */
1749