vm_page.c revision 301212
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 301212 2016-06-02 17:11:24Z markj $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/linker.h>
95#include <sys/malloc.h>
96#include <sys/mman.h>
97#include <sys/msgbuf.h>
98#include <sys/mutex.h>
99#include <sys/proc.h>
100#include <sys/rwlock.h>
101#include <sys/sbuf.h>
102#include <sys/sysctl.h>
103#include <sys/vmmeter.h>
104#include <sys/vnode.h>
105
106#include <vm/vm.h>
107#include <vm/pmap.h>
108#include <vm/vm_param.h>
109#include <vm/vm_kern.h>
110#include <vm/vm_object.h>
111#include <vm/vm_page.h>
112#include <vm/vm_pageout.h>
113#include <vm/vm_pager.h>
114#include <vm/vm_phys.h>
115#include <vm/vm_radix.h>
116#include <vm/vm_reserv.h>
117#include <vm/vm_extern.h>
118#include <vm/uma.h>
119#include <vm/uma_int.h>
120
121#include <machine/md_var.h>
122
123/*
124 *	Associated with page of user-allocatable memory is a
125 *	page structure.
126 */
127
128struct vm_domain vm_dom[MAXMEMDOM];
129struct mtx_padalign vm_page_queue_free_mtx;
130
131struct mtx_padalign pa_lock[PA_LOCK_COUNT];
132
133vm_page_t vm_page_array;
134long vm_page_array_size;
135long first_page;
136int vm_page_zero_count;
137
138static int boot_pages = UMA_BOOT_PAGES;
139SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
140    &boot_pages, 0,
141    "number of pages allocated for bootstrapping the VM system");
142
143static int pa_tryrelock_restart;
144SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
145    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
146
147static TAILQ_HEAD(, vm_page) blacklist_head;
148static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
149SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
150    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
151
152/* Is the page daemon waiting for free pages? */
153static int vm_pageout_pages_needed;
154
155static uma_zone_t fakepg_zone;
156
157static struct vnode *vm_page_alloc_init(vm_page_t m);
158static void vm_page_cache_turn_free(vm_page_t m);
159static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
160static void vm_page_enqueue(uint8_t queue, vm_page_t m);
161static void vm_page_free_wakeup(void);
162static void vm_page_init_fakepg(void *dummy);
163static int vm_page_insert_after(vm_page_t m, vm_object_t object,
164    vm_pindex_t pindex, vm_page_t mpred);
165static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
166    vm_page_t mpred);
167static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
168    vm_paddr_t high);
169
170SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
171
172static void
173vm_page_init_fakepg(void *dummy)
174{
175
176	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
177	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
178}
179
180/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
181#if PAGE_SIZE == 32768
182#ifdef CTASSERT
183CTASSERT(sizeof(u_long) >= 8);
184#endif
185#endif
186
187/*
188 * Try to acquire a physical address lock while a pmap is locked.  If we
189 * fail to trylock we unlock and lock the pmap directly and cache the
190 * locked pa in *locked.  The caller should then restart their loop in case
191 * the virtual to physical mapping has changed.
192 */
193int
194vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
195{
196	vm_paddr_t lockpa;
197
198	lockpa = *locked;
199	*locked = pa;
200	if (lockpa) {
201		PA_LOCK_ASSERT(lockpa, MA_OWNED);
202		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
203			return (0);
204		PA_UNLOCK(lockpa);
205	}
206	if (PA_TRYLOCK(pa))
207		return (0);
208	PMAP_UNLOCK(pmap);
209	atomic_add_int(&pa_tryrelock_restart, 1);
210	PA_LOCK(pa);
211	PMAP_LOCK(pmap);
212	return (EAGAIN);
213}
214
215/*
216 *	vm_set_page_size:
217 *
218 *	Sets the page size, perhaps based upon the memory
219 *	size.  Must be called before any use of page-size
220 *	dependent functions.
221 */
222void
223vm_set_page_size(void)
224{
225	if (vm_cnt.v_page_size == 0)
226		vm_cnt.v_page_size = PAGE_SIZE;
227	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
228		panic("vm_set_page_size: page size not a power of two");
229}
230
231/*
232 *	vm_page_blacklist_next:
233 *
234 *	Find the next entry in the provided string of blacklist
235 *	addresses.  Entries are separated by space, comma, or newline.
236 *	If an invalid integer is encountered then the rest of the
237 *	string is skipped.  Updates the list pointer to the next
238 *	character, or NULL if the string is exhausted or invalid.
239 */
240static vm_paddr_t
241vm_page_blacklist_next(char **list, char *end)
242{
243	vm_paddr_t bad;
244	char *cp, *pos;
245
246	if (list == NULL || *list == NULL)
247		return (0);
248	if (**list =='\0') {
249		*list = NULL;
250		return (0);
251	}
252
253	/*
254	 * If there's no end pointer then the buffer is coming from
255	 * the kenv and we know it's null-terminated.
256	 */
257	if (end == NULL)
258		end = *list + strlen(*list);
259
260	/* Ensure that strtoq() won't walk off the end */
261	if (*end != '\0') {
262		if (*end == '\n' || *end == ' ' || *end  == ',')
263			*end = '\0';
264		else {
265			printf("Blacklist not terminated, skipping\n");
266			*list = NULL;
267			return (0);
268		}
269	}
270
271	for (pos = *list; *pos != '\0'; pos = cp) {
272		bad = strtoq(pos, &cp, 0);
273		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
274			if (bad == 0) {
275				if (++cp < end)
276					continue;
277				else
278					break;
279			}
280		} else
281			break;
282		if (*cp == '\0' || ++cp >= end)
283			*list = NULL;
284		else
285			*list = cp;
286		return (trunc_page(bad));
287	}
288	printf("Garbage in RAM blacklist, skipping\n");
289	*list = NULL;
290	return (0);
291}
292
293/*
294 *	vm_page_blacklist_check:
295 *
296 *	Iterate through the provided string of blacklist addresses, pulling
297 *	each entry out of the physical allocator free list and putting it
298 *	onto a list for reporting via the vm.page_blacklist sysctl.
299 */
300static void
301vm_page_blacklist_check(char *list, char *end)
302{
303	vm_paddr_t pa;
304	vm_page_t m;
305	char *next;
306	int ret;
307
308	next = list;
309	while (next != NULL) {
310		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
311			continue;
312		m = vm_phys_paddr_to_vm_page(pa);
313		if (m == NULL)
314			continue;
315		mtx_lock(&vm_page_queue_free_mtx);
316		ret = vm_phys_unfree_page(m);
317		mtx_unlock(&vm_page_queue_free_mtx);
318		if (ret == TRUE) {
319			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
320			if (bootverbose)
321				printf("Skipping page with pa 0x%jx\n",
322				    (uintmax_t)pa);
323		}
324	}
325}
326
327/*
328 *	vm_page_blacklist_load:
329 *
330 *	Search for a special module named "ram_blacklist".  It'll be a
331 *	plain text file provided by the user via the loader directive
332 *	of the same name.
333 */
334static void
335vm_page_blacklist_load(char **list, char **end)
336{
337	void *mod;
338	u_char *ptr;
339	u_int len;
340
341	mod = NULL;
342	ptr = NULL;
343
344	mod = preload_search_by_type("ram_blacklist");
345	if (mod != NULL) {
346		ptr = preload_fetch_addr(mod);
347		len = preload_fetch_size(mod);
348        }
349	*list = ptr;
350	if (ptr != NULL)
351		*end = ptr + len;
352	else
353		*end = NULL;
354	return;
355}
356
357static int
358sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
359{
360	vm_page_t m;
361	struct sbuf sbuf;
362	int error, first;
363
364	first = 1;
365	error = sysctl_wire_old_buffer(req, 0);
366	if (error != 0)
367		return (error);
368	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
369	TAILQ_FOREACH(m, &blacklist_head, listq) {
370		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
371		    (uintmax_t)m->phys_addr);
372		first = 0;
373	}
374	error = sbuf_finish(&sbuf);
375	sbuf_delete(&sbuf);
376	return (error);
377}
378
379static void
380vm_page_domain_init(struct vm_domain *vmd)
381{
382	struct vm_pagequeue *pq;
383	int i;
384
385	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
386	    "vm inactive pagequeue";
387	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
388	    &vm_cnt.v_inactive_count;
389	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
390	    "vm active pagequeue";
391	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
392	    &vm_cnt.v_active_count;
393	vmd->vmd_page_count = 0;
394	vmd->vmd_free_count = 0;
395	vmd->vmd_segs = 0;
396	vmd->vmd_oom = FALSE;
397	vmd->vmd_pass = 0;
398	for (i = 0; i < PQ_COUNT; i++) {
399		pq = &vmd->vmd_pagequeues[i];
400		TAILQ_INIT(&pq->pq_pl);
401		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
402		    MTX_DEF | MTX_DUPOK);
403	}
404}
405
406/*
407 *	vm_page_startup:
408 *
409 *	Initializes the resident memory module.
410 *
411 *	Allocates memory for the page cells, and
412 *	for the object/offset-to-page hash table headers.
413 *	Each page cell is initialized and placed on the free list.
414 */
415vm_offset_t
416vm_page_startup(vm_offset_t vaddr)
417{
418	vm_offset_t mapped;
419	vm_paddr_t page_range;
420	vm_paddr_t new_end;
421	int i;
422	vm_paddr_t pa;
423	vm_paddr_t last_pa;
424	char *list, *listend;
425	vm_paddr_t end;
426	vm_paddr_t biggestsize;
427	vm_paddr_t low_water, high_water;
428	int biggestone;
429
430	biggestsize = 0;
431	biggestone = 0;
432	vaddr = round_page(vaddr);
433
434	for (i = 0; phys_avail[i + 1]; i += 2) {
435		phys_avail[i] = round_page(phys_avail[i]);
436		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
437	}
438
439	low_water = phys_avail[0];
440	high_water = phys_avail[1];
441
442	for (i = 0; i < vm_phys_nsegs; i++) {
443		if (vm_phys_segs[i].start < low_water)
444			low_water = vm_phys_segs[i].start;
445		if (vm_phys_segs[i].end > high_water)
446			high_water = vm_phys_segs[i].end;
447	}
448	for (i = 0; phys_avail[i + 1]; i += 2) {
449		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
450
451		if (size > biggestsize) {
452			biggestone = i;
453			biggestsize = size;
454		}
455		if (phys_avail[i] < low_water)
456			low_water = phys_avail[i];
457		if (phys_avail[i + 1] > high_water)
458			high_water = phys_avail[i + 1];
459	}
460
461	end = phys_avail[biggestone+1];
462
463	/*
464	 * Initialize the page and queue locks.
465	 */
466	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
467	for (i = 0; i < PA_LOCK_COUNT; i++)
468		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
469	for (i = 0; i < vm_ndomains; i++)
470		vm_page_domain_init(&vm_dom[i]);
471
472	/*
473	 * Allocate memory for use when boot strapping the kernel memory
474	 * allocator.
475	 *
476	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
477	 * manually fetch the value.
478	 */
479	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
480	new_end = end - (boot_pages * UMA_SLAB_SIZE);
481	new_end = trunc_page(new_end);
482	mapped = pmap_map(&vaddr, new_end, end,
483	    VM_PROT_READ | VM_PROT_WRITE);
484	bzero((void *)mapped, end - new_end);
485	uma_startup((void *)mapped, boot_pages);
486
487#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
488    defined(__i386__) || defined(__mips__)
489	/*
490	 * Allocate a bitmap to indicate that a random physical page
491	 * needs to be included in a minidump.
492	 *
493	 * The amd64 port needs this to indicate which direct map pages
494	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
495	 *
496	 * However, i386 still needs this workspace internally within the
497	 * minidump code.  In theory, they are not needed on i386, but are
498	 * included should the sf_buf code decide to use them.
499	 */
500	last_pa = 0;
501	for (i = 0; dump_avail[i + 1] != 0; i += 2)
502		if (dump_avail[i + 1] > last_pa)
503			last_pa = dump_avail[i + 1];
504	page_range = last_pa / PAGE_SIZE;
505	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
506	new_end -= vm_page_dump_size;
507	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
508	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
509	bzero((void *)vm_page_dump, vm_page_dump_size);
510#endif
511#ifdef __amd64__
512	/*
513	 * Request that the physical pages underlying the message buffer be
514	 * included in a crash dump.  Since the message buffer is accessed
515	 * through the direct map, they are not automatically included.
516	 */
517	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
518	last_pa = pa + round_page(msgbufsize);
519	while (pa < last_pa) {
520		dump_add_page(pa);
521		pa += PAGE_SIZE;
522	}
523#endif
524	/*
525	 * Compute the number of pages of memory that will be available for
526	 * use (taking into account the overhead of a page structure per
527	 * page).
528	 */
529	first_page = low_water / PAGE_SIZE;
530#ifdef VM_PHYSSEG_SPARSE
531	page_range = 0;
532	for (i = 0; i < vm_phys_nsegs; i++) {
533		page_range += atop(vm_phys_segs[i].end -
534		    vm_phys_segs[i].start);
535	}
536	for (i = 0; phys_avail[i + 1] != 0; i += 2)
537		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
538#elif defined(VM_PHYSSEG_DENSE)
539	page_range = high_water / PAGE_SIZE - first_page;
540#else
541#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
542#endif
543	end = new_end;
544
545	/*
546	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
547	 */
548	vaddr += PAGE_SIZE;
549
550	/*
551	 * Initialize the mem entry structures now, and put them in the free
552	 * queue.
553	 */
554	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
555	mapped = pmap_map(&vaddr, new_end, end,
556	    VM_PROT_READ | VM_PROT_WRITE);
557	vm_page_array = (vm_page_t) mapped;
558#if VM_NRESERVLEVEL > 0
559	/*
560	 * Allocate memory for the reservation management system's data
561	 * structures.
562	 */
563	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
564#endif
565#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
566	/*
567	 * pmap_map on arm64, amd64, and mips can come out of the direct-map,
568	 * not kvm like i386, so the pages must be tracked for a crashdump to
569	 * include this data.  This includes the vm_page_array and the early
570	 * UMA bootstrap pages.
571	 */
572	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
573		dump_add_page(pa);
574#endif
575	phys_avail[biggestone + 1] = new_end;
576
577	/*
578	 * Add physical memory segments corresponding to the available
579	 * physical pages.
580	 */
581	for (i = 0; phys_avail[i + 1] != 0; i += 2)
582		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
583
584	/*
585	 * Clear all of the page structures
586	 */
587	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
588	for (i = 0; i < page_range; i++)
589		vm_page_array[i].order = VM_NFREEORDER;
590	vm_page_array_size = page_range;
591
592	/*
593	 * Initialize the physical memory allocator.
594	 */
595	vm_phys_init();
596
597	/*
598	 * Add every available physical page that is not blacklisted to
599	 * the free lists.
600	 */
601	vm_cnt.v_page_count = 0;
602	vm_cnt.v_free_count = 0;
603	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
604		pa = phys_avail[i];
605		last_pa = phys_avail[i + 1];
606		while (pa < last_pa) {
607			vm_phys_add_page(pa);
608			pa += PAGE_SIZE;
609		}
610	}
611
612	TAILQ_INIT(&blacklist_head);
613	vm_page_blacklist_load(&list, &listend);
614	vm_page_blacklist_check(list, listend);
615
616	list = kern_getenv("vm.blacklist");
617	vm_page_blacklist_check(list, NULL);
618
619	freeenv(list);
620#if VM_NRESERVLEVEL > 0
621	/*
622	 * Initialize the reservation management system.
623	 */
624	vm_reserv_init();
625#endif
626	return (vaddr);
627}
628
629void
630vm_page_reference(vm_page_t m)
631{
632
633	vm_page_aflag_set(m, PGA_REFERENCED);
634}
635
636/*
637 *	vm_page_busy_downgrade:
638 *
639 *	Downgrade an exclusive busy page into a single shared busy page.
640 */
641void
642vm_page_busy_downgrade(vm_page_t m)
643{
644	u_int x;
645
646	vm_page_assert_xbusied(m);
647
648	for (;;) {
649		x = m->busy_lock;
650		x &= VPB_BIT_WAITERS;
651		if (atomic_cmpset_rel_int(&m->busy_lock,
652		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
653			break;
654	}
655}
656
657/*
658 *	vm_page_sbusied:
659 *
660 *	Return a positive value if the page is shared busied, 0 otherwise.
661 */
662int
663vm_page_sbusied(vm_page_t m)
664{
665	u_int x;
666
667	x = m->busy_lock;
668	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
669}
670
671/*
672 *	vm_page_sunbusy:
673 *
674 *	Shared unbusy a page.
675 */
676void
677vm_page_sunbusy(vm_page_t m)
678{
679	u_int x;
680
681	vm_page_assert_sbusied(m);
682
683	for (;;) {
684		x = m->busy_lock;
685		if (VPB_SHARERS(x) > 1) {
686			if (atomic_cmpset_int(&m->busy_lock, x,
687			    x - VPB_ONE_SHARER))
688				break;
689			continue;
690		}
691		if ((x & VPB_BIT_WAITERS) == 0) {
692			KASSERT(x == VPB_SHARERS_WORD(1),
693			    ("vm_page_sunbusy: invalid lock state"));
694			if (atomic_cmpset_int(&m->busy_lock,
695			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
696				break;
697			continue;
698		}
699		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
700		    ("vm_page_sunbusy: invalid lock state for waiters"));
701
702		vm_page_lock(m);
703		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
704			vm_page_unlock(m);
705			continue;
706		}
707		wakeup(m);
708		vm_page_unlock(m);
709		break;
710	}
711}
712
713/*
714 *	vm_page_busy_sleep:
715 *
716 *	Sleep and release the page lock, using the page pointer as wchan.
717 *	This is used to implement the hard-path of busying mechanism.
718 *
719 *	The given page must be locked.
720 */
721void
722vm_page_busy_sleep(vm_page_t m, const char *wmesg)
723{
724	u_int x;
725
726	vm_page_lock_assert(m, MA_OWNED);
727
728	x = m->busy_lock;
729	if (x == VPB_UNBUSIED) {
730		vm_page_unlock(m);
731		return;
732	}
733	if ((x & VPB_BIT_WAITERS) == 0 &&
734	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
735		vm_page_unlock(m);
736		return;
737	}
738	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
739}
740
741/*
742 *	vm_page_trysbusy:
743 *
744 *	Try to shared busy a page.
745 *	If the operation succeeds 1 is returned otherwise 0.
746 *	The operation never sleeps.
747 */
748int
749vm_page_trysbusy(vm_page_t m)
750{
751	u_int x;
752
753	for (;;) {
754		x = m->busy_lock;
755		if ((x & VPB_BIT_SHARED) == 0)
756			return (0);
757		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
758			return (1);
759	}
760}
761
762static void
763vm_page_xunbusy_maybelocked(vm_page_t m)
764{
765	bool lockacq;
766
767	vm_page_assert_xbusied(m);
768
769	lockacq = !mtx_owned(vm_page_lockptr(m));
770	if (lockacq)
771		vm_page_lock(m);
772	vm_page_flash(m);
773	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
774	if (lockacq)
775		vm_page_unlock(m);
776}
777
778/*
779 *	vm_page_xunbusy_hard:
780 *
781 *	Called after the first try the exclusive unbusy of a page failed.
782 *	It is assumed that the waiters bit is on.
783 */
784void
785vm_page_xunbusy_hard(vm_page_t m)
786{
787
788	vm_page_assert_xbusied(m);
789
790	vm_page_lock(m);
791	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
792	wakeup(m);
793	vm_page_unlock(m);
794}
795
796/*
797 *	vm_page_flash:
798 *
799 *	Wakeup anyone waiting for the page.
800 *	The ownership bits do not change.
801 *
802 *	The given page must be locked.
803 */
804void
805vm_page_flash(vm_page_t m)
806{
807	u_int x;
808
809	vm_page_lock_assert(m, MA_OWNED);
810
811	for (;;) {
812		x = m->busy_lock;
813		if ((x & VPB_BIT_WAITERS) == 0)
814			return;
815		if (atomic_cmpset_int(&m->busy_lock, x,
816		    x & (~VPB_BIT_WAITERS)))
817			break;
818	}
819	wakeup(m);
820}
821
822/*
823 * Keep page from being freed by the page daemon
824 * much of the same effect as wiring, except much lower
825 * overhead and should be used only for *very* temporary
826 * holding ("wiring").
827 */
828void
829vm_page_hold(vm_page_t mem)
830{
831
832	vm_page_lock_assert(mem, MA_OWNED);
833        mem->hold_count++;
834}
835
836void
837vm_page_unhold(vm_page_t mem)
838{
839
840	vm_page_lock_assert(mem, MA_OWNED);
841	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
842	--mem->hold_count;
843	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
844		vm_page_free_toq(mem);
845}
846
847/*
848 *	vm_page_unhold_pages:
849 *
850 *	Unhold each of the pages that is referenced by the given array.
851 */
852void
853vm_page_unhold_pages(vm_page_t *ma, int count)
854{
855	struct mtx *mtx, *new_mtx;
856
857	mtx = NULL;
858	for (; count != 0; count--) {
859		/*
860		 * Avoid releasing and reacquiring the same page lock.
861		 */
862		new_mtx = vm_page_lockptr(*ma);
863		if (mtx != new_mtx) {
864			if (mtx != NULL)
865				mtx_unlock(mtx);
866			mtx = new_mtx;
867			mtx_lock(mtx);
868		}
869		vm_page_unhold(*ma);
870		ma++;
871	}
872	if (mtx != NULL)
873		mtx_unlock(mtx);
874}
875
876vm_page_t
877PHYS_TO_VM_PAGE(vm_paddr_t pa)
878{
879	vm_page_t m;
880
881#ifdef VM_PHYSSEG_SPARSE
882	m = vm_phys_paddr_to_vm_page(pa);
883	if (m == NULL)
884		m = vm_phys_fictitious_to_vm_page(pa);
885	return (m);
886#elif defined(VM_PHYSSEG_DENSE)
887	long pi;
888
889	pi = atop(pa);
890	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
891		m = &vm_page_array[pi - first_page];
892		return (m);
893	}
894	return (vm_phys_fictitious_to_vm_page(pa));
895#else
896#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
897#endif
898}
899
900/*
901 *	vm_page_getfake:
902 *
903 *	Create a fictitious page with the specified physical address and
904 *	memory attribute.  The memory attribute is the only the machine-
905 *	dependent aspect of a fictitious page that must be initialized.
906 */
907vm_page_t
908vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
909{
910	vm_page_t m;
911
912	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
913	vm_page_initfake(m, paddr, memattr);
914	return (m);
915}
916
917void
918vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
919{
920
921	if ((m->flags & PG_FICTITIOUS) != 0) {
922		/*
923		 * The page's memattr might have changed since the
924		 * previous initialization.  Update the pmap to the
925		 * new memattr.
926		 */
927		goto memattr;
928	}
929	m->phys_addr = paddr;
930	m->queue = PQ_NONE;
931	/* Fictitious pages don't use "segind". */
932	m->flags = PG_FICTITIOUS;
933	/* Fictitious pages don't use "order" or "pool". */
934	m->oflags = VPO_UNMANAGED;
935	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
936	m->wire_count = 1;
937	pmap_page_init(m);
938memattr:
939	pmap_page_set_memattr(m, memattr);
940}
941
942/*
943 *	vm_page_putfake:
944 *
945 *	Release a fictitious page.
946 */
947void
948vm_page_putfake(vm_page_t m)
949{
950
951	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
952	KASSERT((m->flags & PG_FICTITIOUS) != 0,
953	    ("vm_page_putfake: bad page %p", m));
954	uma_zfree(fakepg_zone, m);
955}
956
957/*
958 *	vm_page_updatefake:
959 *
960 *	Update the given fictitious page to the specified physical address and
961 *	memory attribute.
962 */
963void
964vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
965{
966
967	KASSERT((m->flags & PG_FICTITIOUS) != 0,
968	    ("vm_page_updatefake: bad page %p", m));
969	m->phys_addr = paddr;
970	pmap_page_set_memattr(m, memattr);
971}
972
973/*
974 *	vm_page_free:
975 *
976 *	Free a page.
977 */
978void
979vm_page_free(vm_page_t m)
980{
981
982	m->flags &= ~PG_ZERO;
983	vm_page_free_toq(m);
984}
985
986/*
987 *	vm_page_free_zero:
988 *
989 *	Free a page to the zerod-pages queue
990 */
991void
992vm_page_free_zero(vm_page_t m)
993{
994
995	m->flags |= PG_ZERO;
996	vm_page_free_toq(m);
997}
998
999/*
1000 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
1001 * array which was optionally read ahead or behind.
1002 */
1003void
1004vm_page_readahead_finish(vm_page_t m)
1005{
1006
1007	/* We shouldn't put invalid pages on queues. */
1008	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1009
1010	/*
1011	 * Since the page is not the actually needed one, whether it should
1012	 * be activated or deactivated is not obvious.  Empirical results
1013	 * have shown that deactivating the page is usually the best choice,
1014	 * unless the page is wanted by another thread.
1015	 */
1016	vm_page_lock(m);
1017	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1018		vm_page_activate(m);
1019	else
1020		vm_page_deactivate(m);
1021	vm_page_unlock(m);
1022	vm_page_xunbusy(m);
1023}
1024
1025/*
1026 *	vm_page_sleep_if_busy:
1027 *
1028 *	Sleep and release the page queues lock if the page is busied.
1029 *	Returns TRUE if the thread slept.
1030 *
1031 *	The given page must be unlocked and object containing it must
1032 *	be locked.
1033 */
1034int
1035vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1036{
1037	vm_object_t obj;
1038
1039	vm_page_lock_assert(m, MA_NOTOWNED);
1040	VM_OBJECT_ASSERT_WLOCKED(m->object);
1041
1042	if (vm_page_busied(m)) {
1043		/*
1044		 * The page-specific object must be cached because page
1045		 * identity can change during the sleep, causing the
1046		 * re-lock of a different object.
1047		 * It is assumed that a reference to the object is already
1048		 * held by the callers.
1049		 */
1050		obj = m->object;
1051		vm_page_lock(m);
1052		VM_OBJECT_WUNLOCK(obj);
1053		vm_page_busy_sleep(m, msg);
1054		VM_OBJECT_WLOCK(obj);
1055		return (TRUE);
1056	}
1057	return (FALSE);
1058}
1059
1060/*
1061 *	vm_page_dirty_KBI:		[ internal use only ]
1062 *
1063 *	Set all bits in the page's dirty field.
1064 *
1065 *	The object containing the specified page must be locked if the
1066 *	call is made from the machine-independent layer.
1067 *
1068 *	See vm_page_clear_dirty_mask().
1069 *
1070 *	This function should only be called by vm_page_dirty().
1071 */
1072void
1073vm_page_dirty_KBI(vm_page_t m)
1074{
1075
1076	/* These assertions refer to this operation by its public name. */
1077	KASSERT((m->flags & PG_CACHED) == 0,
1078	    ("vm_page_dirty: page in cache!"));
1079	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1080	    ("vm_page_dirty: page is invalid!"));
1081	m->dirty = VM_PAGE_BITS_ALL;
1082}
1083
1084/*
1085 *	vm_page_insert:		[ internal use only ]
1086 *
1087 *	Inserts the given mem entry into the object and object list.
1088 *
1089 *	The object must be locked.
1090 */
1091int
1092vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1093{
1094	vm_page_t mpred;
1095
1096	VM_OBJECT_ASSERT_WLOCKED(object);
1097	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1098	return (vm_page_insert_after(m, object, pindex, mpred));
1099}
1100
1101/*
1102 *	vm_page_insert_after:
1103 *
1104 *	Inserts the page "m" into the specified object at offset "pindex".
1105 *
1106 *	The page "mpred" must immediately precede the offset "pindex" within
1107 *	the specified object.
1108 *
1109 *	The object must be locked.
1110 */
1111static int
1112vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1113    vm_page_t mpred)
1114{
1115	vm_page_t msucc;
1116
1117	VM_OBJECT_ASSERT_WLOCKED(object);
1118	KASSERT(m->object == NULL,
1119	    ("vm_page_insert_after: page already inserted"));
1120	if (mpred != NULL) {
1121		KASSERT(mpred->object == object,
1122		    ("vm_page_insert_after: object doesn't contain mpred"));
1123		KASSERT(mpred->pindex < pindex,
1124		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1125		msucc = TAILQ_NEXT(mpred, listq);
1126	} else
1127		msucc = TAILQ_FIRST(&object->memq);
1128	if (msucc != NULL)
1129		KASSERT(msucc->pindex > pindex,
1130		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1131
1132	/*
1133	 * Record the object/offset pair in this page
1134	 */
1135	m->object = object;
1136	m->pindex = pindex;
1137
1138	/*
1139	 * Now link into the object's ordered list of backed pages.
1140	 */
1141	if (vm_radix_insert(&object->rtree, m)) {
1142		m->object = NULL;
1143		m->pindex = 0;
1144		return (1);
1145	}
1146	vm_page_insert_radixdone(m, object, mpred);
1147	return (0);
1148}
1149
1150/*
1151 *	vm_page_insert_radixdone:
1152 *
1153 *	Complete page "m" insertion into the specified object after the
1154 *	radix trie hooking.
1155 *
1156 *	The page "mpred" must precede the offset "m->pindex" within the
1157 *	specified object.
1158 *
1159 *	The object must be locked.
1160 */
1161static void
1162vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1163{
1164
1165	VM_OBJECT_ASSERT_WLOCKED(object);
1166	KASSERT(object != NULL && m->object == object,
1167	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1168	if (mpred != NULL) {
1169		KASSERT(mpred->object == object,
1170		    ("vm_page_insert_after: object doesn't contain mpred"));
1171		KASSERT(mpred->pindex < m->pindex,
1172		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1173	}
1174
1175	if (mpred != NULL)
1176		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1177	else
1178		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1179
1180	/*
1181	 * Show that the object has one more resident page.
1182	 */
1183	object->resident_page_count++;
1184
1185	/*
1186	 * Hold the vnode until the last page is released.
1187	 */
1188	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1189		vhold(object->handle);
1190
1191	/*
1192	 * Since we are inserting a new and possibly dirty page,
1193	 * update the object's OBJ_MIGHTBEDIRTY flag.
1194	 */
1195	if (pmap_page_is_write_mapped(m))
1196		vm_object_set_writeable_dirty(object);
1197}
1198
1199/*
1200 *	vm_page_remove:
1201 *
1202 *	Removes the given mem entry from the object/offset-page
1203 *	table and the object page list, but do not invalidate/terminate
1204 *	the backing store.
1205 *
1206 *	The object must be locked.  The page must be locked if it is managed.
1207 */
1208void
1209vm_page_remove(vm_page_t m)
1210{
1211	vm_object_t object;
1212
1213	if ((m->oflags & VPO_UNMANAGED) == 0)
1214		vm_page_assert_locked(m);
1215	if ((object = m->object) == NULL)
1216		return;
1217	VM_OBJECT_ASSERT_WLOCKED(object);
1218	if (vm_page_xbusied(m))
1219		vm_page_xunbusy_maybelocked(m);
1220
1221	/*
1222	 * Now remove from the object's list of backed pages.
1223	 */
1224	vm_radix_remove(&object->rtree, m->pindex);
1225	TAILQ_REMOVE(&object->memq, m, listq);
1226
1227	/*
1228	 * And show that the object has one fewer resident page.
1229	 */
1230	object->resident_page_count--;
1231
1232	/*
1233	 * The vnode may now be recycled.
1234	 */
1235	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1236		vdrop(object->handle);
1237
1238	m->object = NULL;
1239}
1240
1241/*
1242 *	vm_page_lookup:
1243 *
1244 *	Returns the page associated with the object/offset
1245 *	pair specified; if none is found, NULL is returned.
1246 *
1247 *	The object must be locked.
1248 */
1249vm_page_t
1250vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1251{
1252
1253	VM_OBJECT_ASSERT_LOCKED(object);
1254	return (vm_radix_lookup(&object->rtree, pindex));
1255}
1256
1257/*
1258 *	vm_page_find_least:
1259 *
1260 *	Returns the page associated with the object with least pindex
1261 *	greater than or equal to the parameter pindex, or NULL.
1262 *
1263 *	The object must be locked.
1264 */
1265vm_page_t
1266vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1267{
1268	vm_page_t m;
1269
1270	VM_OBJECT_ASSERT_LOCKED(object);
1271	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1272		m = vm_radix_lookup_ge(&object->rtree, pindex);
1273	return (m);
1274}
1275
1276/*
1277 * Returns the given page's successor (by pindex) within the object if it is
1278 * resident; if none is found, NULL is returned.
1279 *
1280 * The object must be locked.
1281 */
1282vm_page_t
1283vm_page_next(vm_page_t m)
1284{
1285	vm_page_t next;
1286
1287	VM_OBJECT_ASSERT_LOCKED(m->object);
1288	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1289	    next->pindex != m->pindex + 1)
1290		next = NULL;
1291	return (next);
1292}
1293
1294/*
1295 * Returns the given page's predecessor (by pindex) within the object if it is
1296 * resident; if none is found, NULL is returned.
1297 *
1298 * The object must be locked.
1299 */
1300vm_page_t
1301vm_page_prev(vm_page_t m)
1302{
1303	vm_page_t prev;
1304
1305	VM_OBJECT_ASSERT_LOCKED(m->object);
1306	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1307	    prev->pindex != m->pindex - 1)
1308		prev = NULL;
1309	return (prev);
1310}
1311
1312/*
1313 * Uses the page mnew as a replacement for an existing page at index
1314 * pindex which must be already present in the object.
1315 *
1316 * The existing page must not be on a paging queue.
1317 */
1318vm_page_t
1319vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1320{
1321	vm_page_t mold;
1322
1323	VM_OBJECT_ASSERT_WLOCKED(object);
1324	KASSERT(mnew->object == NULL,
1325	    ("vm_page_replace: page already in object"));
1326
1327	/*
1328	 * This function mostly follows vm_page_insert() and
1329	 * vm_page_remove() without the radix, object count and vnode
1330	 * dance.  Double check such functions for more comments.
1331	 */
1332
1333	mnew->object = object;
1334	mnew->pindex = pindex;
1335	mold = vm_radix_replace(&object->rtree, mnew);
1336	KASSERT(mold->queue == PQ_NONE,
1337	    ("vm_page_replace: mold is on a paging queue"));
1338
1339	/* Keep the resident page list in sorted order. */
1340	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1341	TAILQ_REMOVE(&object->memq, mold, listq);
1342
1343	mold->object = NULL;
1344	vm_page_xunbusy_maybelocked(mold);
1345
1346	/*
1347	 * The object's resident_page_count does not change because we have
1348	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1349	 */
1350	if (pmap_page_is_write_mapped(mnew))
1351		vm_object_set_writeable_dirty(object);
1352	return (mold);
1353}
1354
1355/*
1356 *	vm_page_rename:
1357 *
1358 *	Move the given memory entry from its
1359 *	current object to the specified target object/offset.
1360 *
1361 *	Note: swap associated with the page must be invalidated by the move.  We
1362 *	      have to do this for several reasons:  (1) we aren't freeing the
1363 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1364 *	      moving the page from object A to B, and will then later move
1365 *	      the backing store from A to B and we can't have a conflict.
1366 *
1367 *	Note: we *always* dirty the page.  It is necessary both for the
1368 *	      fact that we moved it, and because we may be invalidating
1369 *	      swap.  If the page is on the cache, we have to deactivate it
1370 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1371 *	      on the cache.
1372 *
1373 *	The objects must be locked.
1374 */
1375int
1376vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1377{
1378	vm_page_t mpred;
1379	vm_pindex_t opidx;
1380
1381	VM_OBJECT_ASSERT_WLOCKED(new_object);
1382
1383	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1384	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1385	    ("vm_page_rename: pindex already renamed"));
1386
1387	/*
1388	 * Create a custom version of vm_page_insert() which does not depend
1389	 * by m_prev and can cheat on the implementation aspects of the
1390	 * function.
1391	 */
1392	opidx = m->pindex;
1393	m->pindex = new_pindex;
1394	if (vm_radix_insert(&new_object->rtree, m)) {
1395		m->pindex = opidx;
1396		return (1);
1397	}
1398
1399	/*
1400	 * The operation cannot fail anymore.  The removal must happen before
1401	 * the listq iterator is tainted.
1402	 */
1403	m->pindex = opidx;
1404	vm_page_lock(m);
1405	vm_page_remove(m);
1406
1407	/* Return back to the new pindex to complete vm_page_insert(). */
1408	m->pindex = new_pindex;
1409	m->object = new_object;
1410	vm_page_unlock(m);
1411	vm_page_insert_radixdone(m, new_object, mpred);
1412	vm_page_dirty(m);
1413	return (0);
1414}
1415
1416/*
1417 *	Convert all of the given object's cached pages that have a
1418 *	pindex within the given range into free pages.  If the value
1419 *	zero is given for "end", then the range's upper bound is
1420 *	infinity.  If the given object is backed by a vnode and it
1421 *	transitions from having one or more cached pages to none, the
1422 *	vnode's hold count is reduced.
1423 */
1424void
1425vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1426{
1427	vm_page_t m;
1428	boolean_t empty;
1429
1430	mtx_lock(&vm_page_queue_free_mtx);
1431	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1432		mtx_unlock(&vm_page_queue_free_mtx);
1433		return;
1434	}
1435	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1436		if (end != 0 && m->pindex >= end)
1437			break;
1438		vm_radix_remove(&object->cache, m->pindex);
1439		vm_page_cache_turn_free(m);
1440	}
1441	empty = vm_radix_is_empty(&object->cache);
1442	mtx_unlock(&vm_page_queue_free_mtx);
1443	if (object->type == OBJT_VNODE && empty)
1444		vdrop(object->handle);
1445}
1446
1447/*
1448 *	Returns the cached page that is associated with the given
1449 *	object and offset.  If, however, none exists, returns NULL.
1450 *
1451 *	The free page queue must be locked.
1452 */
1453static inline vm_page_t
1454vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1455{
1456
1457	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1458	return (vm_radix_lookup(&object->cache, pindex));
1459}
1460
1461/*
1462 *	Remove the given cached page from its containing object's
1463 *	collection of cached pages.
1464 *
1465 *	The free page queue must be locked.
1466 */
1467static void
1468vm_page_cache_remove(vm_page_t m)
1469{
1470
1471	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1472	KASSERT((m->flags & PG_CACHED) != 0,
1473	    ("vm_page_cache_remove: page %p is not cached", m));
1474	vm_radix_remove(&m->object->cache, m->pindex);
1475	m->object = NULL;
1476	vm_cnt.v_cache_count--;
1477}
1478
1479/*
1480 *	Transfer all of the cached pages with offset greater than or
1481 *	equal to 'offidxstart' from the original object's cache to the
1482 *	new object's cache.  However, any cached pages with offset
1483 *	greater than or equal to the new object's size are kept in the
1484 *	original object.  Initially, the new object's cache must be
1485 *	empty.  Offset 'offidxstart' in the original object must
1486 *	correspond to offset zero in the new object.
1487 *
1488 *	The new object must be locked.
1489 */
1490void
1491vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1492    vm_object_t new_object)
1493{
1494	vm_page_t m;
1495
1496	/*
1497	 * Insertion into an object's collection of cached pages
1498	 * requires the object to be locked.  In contrast, removal does
1499	 * not.
1500	 */
1501	VM_OBJECT_ASSERT_WLOCKED(new_object);
1502	KASSERT(vm_radix_is_empty(&new_object->cache),
1503	    ("vm_page_cache_transfer: object %p has cached pages",
1504	    new_object));
1505	mtx_lock(&vm_page_queue_free_mtx);
1506	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1507	    offidxstart)) != NULL) {
1508		/*
1509		 * Transfer all of the pages with offset greater than or
1510		 * equal to 'offidxstart' from the original object's
1511		 * cache to the new object's cache.
1512		 */
1513		if ((m->pindex - offidxstart) >= new_object->size)
1514			break;
1515		vm_radix_remove(&orig_object->cache, m->pindex);
1516		/* Update the page's object and offset. */
1517		m->object = new_object;
1518		m->pindex -= offidxstart;
1519		if (vm_radix_insert(&new_object->cache, m))
1520			vm_page_cache_turn_free(m);
1521	}
1522	mtx_unlock(&vm_page_queue_free_mtx);
1523}
1524
1525/*
1526 *	Returns TRUE if a cached page is associated with the given object and
1527 *	offset, and FALSE otherwise.
1528 *
1529 *	The object must be locked.
1530 */
1531boolean_t
1532vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1533{
1534	vm_page_t m;
1535
1536	/*
1537	 * Insertion into an object's collection of cached pages requires the
1538	 * object to be locked.  Therefore, if the object is locked and the
1539	 * object's collection is empty, there is no need to acquire the free
1540	 * page queues lock in order to prove that the specified page doesn't
1541	 * exist.
1542	 */
1543	VM_OBJECT_ASSERT_WLOCKED(object);
1544	if (__predict_true(vm_object_cache_is_empty(object)))
1545		return (FALSE);
1546	mtx_lock(&vm_page_queue_free_mtx);
1547	m = vm_page_cache_lookup(object, pindex);
1548	mtx_unlock(&vm_page_queue_free_mtx);
1549	return (m != NULL);
1550}
1551
1552/*
1553 *	vm_page_alloc:
1554 *
1555 *	Allocate and return a page that is associated with the specified
1556 *	object and offset pair.  By default, this page is exclusive busied.
1557 *
1558 *	The caller must always specify an allocation class.
1559 *
1560 *	allocation classes:
1561 *	VM_ALLOC_NORMAL		normal process request
1562 *	VM_ALLOC_SYSTEM		system *really* needs a page
1563 *	VM_ALLOC_INTERRUPT	interrupt time request
1564 *
1565 *	optional allocation flags:
1566 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1567 *				intends to allocate
1568 *	VM_ALLOC_IFCACHED	return page only if it is cached
1569 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1570 *				is cached
1571 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1572 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1573 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1574 *				should not be exclusive busy
1575 *	VM_ALLOC_SBUSY		shared busy the allocated page
1576 *	VM_ALLOC_WIRED		wire the allocated page
1577 *	VM_ALLOC_ZERO		prefer a zeroed page
1578 *
1579 *	This routine may not sleep.
1580 */
1581vm_page_t
1582vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1583{
1584	struct vnode *vp = NULL;
1585	vm_object_t m_object;
1586	vm_page_t m, mpred;
1587	int flags, req_class;
1588
1589	mpred = 0;	/* XXX: pacify gcc */
1590	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1591	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1592	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1593	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1594	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1595	    req));
1596	if (object != NULL)
1597		VM_OBJECT_ASSERT_WLOCKED(object);
1598
1599	req_class = req & VM_ALLOC_CLASS_MASK;
1600
1601	/*
1602	 * The page daemon is allowed to dig deeper into the free page list.
1603	 */
1604	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1605		req_class = VM_ALLOC_SYSTEM;
1606
1607	if (object != NULL) {
1608		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1609		KASSERT(mpred == NULL || mpred->pindex != pindex,
1610		   ("vm_page_alloc: pindex already allocated"));
1611	}
1612
1613	/*
1614	 * The page allocation request can came from consumers which already
1615	 * hold the free page queue mutex, like vm_page_insert() in
1616	 * vm_page_cache().
1617	 */
1618	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1619	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1620	    (req_class == VM_ALLOC_SYSTEM &&
1621	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1622	    (req_class == VM_ALLOC_INTERRUPT &&
1623	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1624		/*
1625		 * Allocate from the free queue if the number of free pages
1626		 * exceeds the minimum for the request class.
1627		 */
1628		if (object != NULL &&
1629		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1630			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1631				mtx_unlock(&vm_page_queue_free_mtx);
1632				return (NULL);
1633			}
1634			if (vm_phys_unfree_page(m))
1635				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1636#if VM_NRESERVLEVEL > 0
1637			else if (!vm_reserv_reactivate_page(m))
1638#else
1639			else
1640#endif
1641				panic("vm_page_alloc: cache page %p is missing"
1642				    " from the free queue", m);
1643		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1644			mtx_unlock(&vm_page_queue_free_mtx);
1645			return (NULL);
1646#if VM_NRESERVLEVEL > 0
1647		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1648		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1649		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1650#else
1651		} else {
1652#endif
1653			m = vm_phys_alloc_pages(object != NULL ?
1654			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1655#if VM_NRESERVLEVEL > 0
1656			if (m == NULL && vm_reserv_reclaim_inactive()) {
1657				m = vm_phys_alloc_pages(object != NULL ?
1658				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1659				    0);
1660			}
1661#endif
1662		}
1663	} else {
1664		/*
1665		 * Not allocatable, give up.
1666		 */
1667		mtx_unlock(&vm_page_queue_free_mtx);
1668		atomic_add_int(&vm_pageout_deficit,
1669		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1670		pagedaemon_wakeup();
1671		return (NULL);
1672	}
1673
1674	/*
1675	 *  At this point we had better have found a good page.
1676	 */
1677	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1678	KASSERT(m->queue == PQ_NONE,
1679	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1680	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1681	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1682	KASSERT(!vm_page_sbusied(m),
1683	    ("vm_page_alloc: page %p is busy", m));
1684	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1685	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1686	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1687	    pmap_page_get_memattr(m)));
1688	if ((m->flags & PG_CACHED) != 0) {
1689		KASSERT((m->flags & PG_ZERO) == 0,
1690		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1691		KASSERT(m->valid != 0,
1692		    ("vm_page_alloc: cached page %p is invalid", m));
1693		if (m->object == object && m->pindex == pindex)
1694			vm_cnt.v_reactivated++;
1695		else
1696			m->valid = 0;
1697		m_object = m->object;
1698		vm_page_cache_remove(m);
1699		if (m_object->type == OBJT_VNODE &&
1700		    vm_object_cache_is_empty(m_object))
1701			vp = m_object->handle;
1702	} else {
1703		KASSERT(m->valid == 0,
1704		    ("vm_page_alloc: free page %p is valid", m));
1705		vm_phys_freecnt_adj(m, -1);
1706		if ((m->flags & PG_ZERO) != 0)
1707			vm_page_zero_count--;
1708	}
1709	mtx_unlock(&vm_page_queue_free_mtx);
1710
1711	/*
1712	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1713	 */
1714	flags = 0;
1715	if ((req & VM_ALLOC_ZERO) != 0)
1716		flags = PG_ZERO;
1717	flags &= m->flags;
1718	if ((req & VM_ALLOC_NODUMP) != 0)
1719		flags |= PG_NODUMP;
1720	m->flags = flags;
1721	m->aflags = 0;
1722	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1723	    VPO_UNMANAGED : 0;
1724	m->busy_lock = VPB_UNBUSIED;
1725	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1726		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1727	if ((req & VM_ALLOC_SBUSY) != 0)
1728		m->busy_lock = VPB_SHARERS_WORD(1);
1729	if (req & VM_ALLOC_WIRED) {
1730		/*
1731		 * The page lock is not required for wiring a page until that
1732		 * page is inserted into the object.
1733		 */
1734		atomic_add_int(&vm_cnt.v_wire_count, 1);
1735		m->wire_count = 1;
1736	}
1737	m->act_count = 0;
1738
1739	if (object != NULL) {
1740		if (vm_page_insert_after(m, object, pindex, mpred)) {
1741			/* See the comment below about hold count. */
1742			if (vp != NULL)
1743				vdrop(vp);
1744			pagedaemon_wakeup();
1745			if (req & VM_ALLOC_WIRED) {
1746				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1747				m->wire_count = 0;
1748			}
1749			m->object = NULL;
1750			m->oflags = VPO_UNMANAGED;
1751			m->busy_lock = VPB_UNBUSIED;
1752			vm_page_free(m);
1753			return (NULL);
1754		}
1755
1756		/* Ignore device objects; the pager sets "memattr" for them. */
1757		if (object->memattr != VM_MEMATTR_DEFAULT &&
1758		    (object->flags & OBJ_FICTITIOUS) == 0)
1759			pmap_page_set_memattr(m, object->memattr);
1760	} else
1761		m->pindex = pindex;
1762
1763	/*
1764	 * The following call to vdrop() must come after the above call
1765	 * to vm_page_insert() in case both affect the same object and
1766	 * vnode.  Otherwise, the affected vnode's hold count could
1767	 * temporarily become zero.
1768	 */
1769	if (vp != NULL)
1770		vdrop(vp);
1771
1772	/*
1773	 * Don't wakeup too often - wakeup the pageout daemon when
1774	 * we would be nearly out of memory.
1775	 */
1776	if (vm_paging_needed())
1777		pagedaemon_wakeup();
1778
1779	return (m);
1780}
1781
1782static void
1783vm_page_alloc_contig_vdrop(struct spglist *lst)
1784{
1785
1786	while (!SLIST_EMPTY(lst)) {
1787		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1788		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1789	}
1790}
1791
1792/*
1793 *	vm_page_alloc_contig:
1794 *
1795 *	Allocate a contiguous set of physical pages of the given size "npages"
1796 *	from the free lists.  All of the physical pages must be at or above
1797 *	the given physical address "low" and below the given physical address
1798 *	"high".  The given value "alignment" determines the alignment of the
1799 *	first physical page in the set.  If the given value "boundary" is
1800 *	non-zero, then the set of physical pages cannot cross any physical
1801 *	address boundary that is a multiple of that value.  Both "alignment"
1802 *	and "boundary" must be a power of two.
1803 *
1804 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1805 *	then the memory attribute setting for the physical pages is configured
1806 *	to the object's memory attribute setting.  Otherwise, the memory
1807 *	attribute setting for the physical pages is configured to "memattr",
1808 *	overriding the object's memory attribute setting.  However, if the
1809 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1810 *	memory attribute setting for the physical pages cannot be configured
1811 *	to VM_MEMATTR_DEFAULT.
1812 *
1813 *	The caller must always specify an allocation class.
1814 *
1815 *	allocation classes:
1816 *	VM_ALLOC_NORMAL		normal process request
1817 *	VM_ALLOC_SYSTEM		system *really* needs a page
1818 *	VM_ALLOC_INTERRUPT	interrupt time request
1819 *
1820 *	optional allocation flags:
1821 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1822 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1823 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1824 *				should not be exclusive busy
1825 *	VM_ALLOC_SBUSY		shared busy the allocated page
1826 *	VM_ALLOC_WIRED		wire the allocated page
1827 *	VM_ALLOC_ZERO		prefer a zeroed page
1828 *
1829 *	This routine may not sleep.
1830 */
1831vm_page_t
1832vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1833    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1834    vm_paddr_t boundary, vm_memattr_t memattr)
1835{
1836	struct vnode *drop;
1837	struct spglist deferred_vdrop_list;
1838	vm_page_t m, m_tmp, m_ret;
1839	u_int flags;
1840	int req_class;
1841
1842	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1843	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1844	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1845	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1846	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1847	    req));
1848	if (object != NULL) {
1849		VM_OBJECT_ASSERT_WLOCKED(object);
1850		KASSERT(object->type == OBJT_PHYS,
1851		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1852		    object));
1853	}
1854	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1855	req_class = req & VM_ALLOC_CLASS_MASK;
1856
1857	/*
1858	 * The page daemon is allowed to dig deeper into the free page list.
1859	 */
1860	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1861		req_class = VM_ALLOC_SYSTEM;
1862
1863	SLIST_INIT(&deferred_vdrop_list);
1864	mtx_lock(&vm_page_queue_free_mtx);
1865	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1866	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1867	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1868	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1869	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1870#if VM_NRESERVLEVEL > 0
1871retry:
1872		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1873		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1874		    low, high, alignment, boundary)) == NULL)
1875#endif
1876			m_ret = vm_phys_alloc_contig(npages, low, high,
1877			    alignment, boundary);
1878	} else {
1879		mtx_unlock(&vm_page_queue_free_mtx);
1880		atomic_add_int(&vm_pageout_deficit, npages);
1881		pagedaemon_wakeup();
1882		return (NULL);
1883	}
1884	if (m_ret != NULL)
1885		for (m = m_ret; m < &m_ret[npages]; m++) {
1886			drop = vm_page_alloc_init(m);
1887			if (drop != NULL) {
1888				/*
1889				 * Enqueue the vnode for deferred vdrop().
1890				 */
1891				m->plinks.s.pv = drop;
1892				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1893				    plinks.s.ss);
1894			}
1895		}
1896	else {
1897#if VM_NRESERVLEVEL > 0
1898		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1899		    boundary))
1900			goto retry;
1901#endif
1902	}
1903	mtx_unlock(&vm_page_queue_free_mtx);
1904	if (m_ret == NULL)
1905		return (NULL);
1906
1907	/*
1908	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1909	 */
1910	flags = 0;
1911	if ((req & VM_ALLOC_ZERO) != 0)
1912		flags = PG_ZERO;
1913	if ((req & VM_ALLOC_NODUMP) != 0)
1914		flags |= PG_NODUMP;
1915	if ((req & VM_ALLOC_WIRED) != 0)
1916		atomic_add_int(&vm_cnt.v_wire_count, npages);
1917	if (object != NULL) {
1918		if (object->memattr != VM_MEMATTR_DEFAULT &&
1919		    memattr == VM_MEMATTR_DEFAULT)
1920			memattr = object->memattr;
1921	}
1922	for (m = m_ret; m < &m_ret[npages]; m++) {
1923		m->aflags = 0;
1924		m->flags = (m->flags | PG_NODUMP) & flags;
1925		m->busy_lock = VPB_UNBUSIED;
1926		if (object != NULL) {
1927			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1928				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1929			if ((req & VM_ALLOC_SBUSY) != 0)
1930				m->busy_lock = VPB_SHARERS_WORD(1);
1931		}
1932		if ((req & VM_ALLOC_WIRED) != 0)
1933			m->wire_count = 1;
1934		/* Unmanaged pages don't use "act_count". */
1935		m->oflags = VPO_UNMANAGED;
1936		if (object != NULL) {
1937			if (vm_page_insert(m, object, pindex)) {
1938				vm_page_alloc_contig_vdrop(
1939				    &deferred_vdrop_list);
1940				if (vm_paging_needed())
1941					pagedaemon_wakeup();
1942				if ((req & VM_ALLOC_WIRED) != 0)
1943					atomic_subtract_int(&vm_cnt.v_wire_count,
1944					    npages);
1945				for (m_tmp = m, m = m_ret;
1946				    m < &m_ret[npages]; m++) {
1947					if ((req & VM_ALLOC_WIRED) != 0)
1948						m->wire_count = 0;
1949					if (m >= m_tmp) {
1950						m->object = NULL;
1951						m->oflags |= VPO_UNMANAGED;
1952					}
1953					m->busy_lock = VPB_UNBUSIED;
1954					vm_page_free(m);
1955				}
1956				return (NULL);
1957			}
1958		} else
1959			m->pindex = pindex;
1960		if (memattr != VM_MEMATTR_DEFAULT)
1961			pmap_page_set_memattr(m, memattr);
1962		pindex++;
1963	}
1964	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1965	if (vm_paging_needed())
1966		pagedaemon_wakeup();
1967	return (m_ret);
1968}
1969
1970/*
1971 * Initialize a page that has been freshly dequeued from a freelist.
1972 * The caller has to drop the vnode returned, if it is not NULL.
1973 *
1974 * This function may only be used to initialize unmanaged pages.
1975 *
1976 * To be called with vm_page_queue_free_mtx held.
1977 */
1978static struct vnode *
1979vm_page_alloc_init(vm_page_t m)
1980{
1981	struct vnode *drop;
1982	vm_object_t m_object;
1983
1984	KASSERT(m->queue == PQ_NONE,
1985	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1986	    m, m->queue));
1987	KASSERT(m->wire_count == 0,
1988	    ("vm_page_alloc_init: page %p is wired", m));
1989	KASSERT(m->hold_count == 0,
1990	    ("vm_page_alloc_init: page %p is held", m));
1991	KASSERT(!vm_page_sbusied(m),
1992	    ("vm_page_alloc_init: page %p is busy", m));
1993	KASSERT(m->dirty == 0,
1994	    ("vm_page_alloc_init: page %p is dirty", m));
1995	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1996	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1997	    m, pmap_page_get_memattr(m)));
1998	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1999	drop = NULL;
2000	if ((m->flags & PG_CACHED) != 0) {
2001		KASSERT((m->flags & PG_ZERO) == 0,
2002		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
2003		m->valid = 0;
2004		m_object = m->object;
2005		vm_page_cache_remove(m);
2006		if (m_object->type == OBJT_VNODE &&
2007		    vm_object_cache_is_empty(m_object))
2008			drop = m_object->handle;
2009	} else {
2010		KASSERT(m->valid == 0,
2011		    ("vm_page_alloc_init: free page %p is valid", m));
2012		vm_phys_freecnt_adj(m, -1);
2013		if ((m->flags & PG_ZERO) != 0)
2014			vm_page_zero_count--;
2015	}
2016	return (drop);
2017}
2018
2019/*
2020 * 	vm_page_alloc_freelist:
2021 *
2022 *	Allocate a physical page from the specified free page list.
2023 *
2024 *	The caller must always specify an allocation class.
2025 *
2026 *	allocation classes:
2027 *	VM_ALLOC_NORMAL		normal process request
2028 *	VM_ALLOC_SYSTEM		system *really* needs a page
2029 *	VM_ALLOC_INTERRUPT	interrupt time request
2030 *
2031 *	optional allocation flags:
2032 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2033 *				intends to allocate
2034 *	VM_ALLOC_WIRED		wire the allocated page
2035 *	VM_ALLOC_ZERO		prefer a zeroed page
2036 *
2037 *	This routine may not sleep.
2038 */
2039vm_page_t
2040vm_page_alloc_freelist(int flind, int req)
2041{
2042	struct vnode *drop;
2043	vm_page_t m;
2044	u_int flags;
2045	int req_class;
2046
2047	req_class = req & VM_ALLOC_CLASS_MASK;
2048
2049	/*
2050	 * The page daemon is allowed to dig deeper into the free page list.
2051	 */
2052	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2053		req_class = VM_ALLOC_SYSTEM;
2054
2055	/*
2056	 * Do not allocate reserved pages unless the req has asked for it.
2057	 */
2058	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
2059	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
2060	    (req_class == VM_ALLOC_SYSTEM &&
2061	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
2062	    (req_class == VM_ALLOC_INTERRUPT &&
2063	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
2064		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2065	else {
2066		mtx_unlock(&vm_page_queue_free_mtx);
2067		atomic_add_int(&vm_pageout_deficit,
2068		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2069		pagedaemon_wakeup();
2070		return (NULL);
2071	}
2072	if (m == NULL) {
2073		mtx_unlock(&vm_page_queue_free_mtx);
2074		return (NULL);
2075	}
2076	drop = vm_page_alloc_init(m);
2077	mtx_unlock(&vm_page_queue_free_mtx);
2078
2079	/*
2080	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2081	 */
2082	m->aflags = 0;
2083	flags = 0;
2084	if ((req & VM_ALLOC_ZERO) != 0)
2085		flags = PG_ZERO;
2086	m->flags &= flags;
2087	if ((req & VM_ALLOC_WIRED) != 0) {
2088		/*
2089		 * The page lock is not required for wiring a page that does
2090		 * not belong to an object.
2091		 */
2092		atomic_add_int(&vm_cnt.v_wire_count, 1);
2093		m->wire_count = 1;
2094	}
2095	/* Unmanaged pages don't use "act_count". */
2096	m->oflags = VPO_UNMANAGED;
2097	if (drop != NULL)
2098		vdrop(drop);
2099	if (vm_paging_needed())
2100		pagedaemon_wakeup();
2101	return (m);
2102}
2103
2104#define	VPSC_ANY	0	/* No restrictions. */
2105#define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2106#define	VPSC_NOSUPER	2	/* Skip superpages. */
2107
2108/*
2109 *	vm_page_scan_contig:
2110 *
2111 *	Scan vm_page_array[] between the specified entries "m_start" and
2112 *	"m_end" for a run of contiguous physical pages that satisfy the
2113 *	specified conditions, and return the lowest page in the run.  The
2114 *	specified "alignment" determines the alignment of the lowest physical
2115 *	page in the run.  If the specified "boundary" is non-zero, then the
2116 *	run of physical pages cannot span a physical address that is a
2117 *	multiple of "boundary".
2118 *
2119 *	"m_end" is never dereferenced, so it need not point to a vm_page
2120 *	structure within vm_page_array[].
2121 *
2122 *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2123 *	span a hole (or discontiguity) in the physical address space.  Both
2124 *	"alignment" and "boundary" must be a power of two.
2125 */
2126vm_page_t
2127vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2128    u_long alignment, vm_paddr_t boundary, int options)
2129{
2130	struct mtx *m_mtx, *new_mtx;
2131	vm_object_t object;
2132	vm_paddr_t pa;
2133	vm_page_t m, m_run;
2134#if VM_NRESERVLEVEL > 0
2135	int level;
2136#endif
2137	int m_inc, order, run_ext, run_len;
2138
2139	KASSERT(npages > 0, ("npages is 0"));
2140	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2141	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2142	m_run = NULL;
2143	run_len = 0;
2144	m_mtx = NULL;
2145	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2146		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2147		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2148
2149		/*
2150		 * If the current page would be the start of a run, check its
2151		 * physical address against the end, alignment, and boundary
2152		 * conditions.  If it doesn't satisfy these conditions, either
2153		 * terminate the scan or advance to the next page that
2154		 * satisfies the failed condition.
2155		 */
2156		if (run_len == 0) {
2157			KASSERT(m_run == NULL, ("m_run != NULL"));
2158			if (m + npages > m_end)
2159				break;
2160			pa = VM_PAGE_TO_PHYS(m);
2161			if ((pa & (alignment - 1)) != 0) {
2162				m_inc = atop(roundup2(pa, alignment) - pa);
2163				continue;
2164			}
2165			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2166			    boundary) != 0) {
2167				m_inc = atop(roundup2(pa, boundary) - pa);
2168				continue;
2169			}
2170		} else
2171			KASSERT(m_run != NULL, ("m_run == NULL"));
2172
2173		/*
2174		 * Avoid releasing and reacquiring the same page lock.
2175		 */
2176		new_mtx = vm_page_lockptr(m);
2177		if (m_mtx != new_mtx) {
2178			if (m_mtx != NULL)
2179				mtx_unlock(m_mtx);
2180			m_mtx = new_mtx;
2181			mtx_lock(m_mtx);
2182		}
2183		m_inc = 1;
2184retry:
2185		if (m->wire_count != 0 || m->hold_count != 0)
2186			run_ext = 0;
2187#if VM_NRESERVLEVEL > 0
2188		else if ((level = vm_reserv_level(m)) >= 0 &&
2189		    (options & VPSC_NORESERV) != 0) {
2190			run_ext = 0;
2191			/* Advance to the end of the reservation. */
2192			pa = VM_PAGE_TO_PHYS(m);
2193			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2194			    pa);
2195		}
2196#endif
2197		else if ((object = m->object) != NULL) {
2198			/*
2199			 * The page is considered eligible for relocation if
2200			 * and only if it could be laundered or reclaimed by
2201			 * the page daemon.
2202			 */
2203			if (!VM_OBJECT_TRYRLOCK(object)) {
2204				mtx_unlock(m_mtx);
2205				VM_OBJECT_RLOCK(object);
2206				mtx_lock(m_mtx);
2207				if (m->object != object) {
2208					/*
2209					 * The page may have been freed.
2210					 */
2211					VM_OBJECT_RUNLOCK(object);
2212					goto retry;
2213				} else if (m->wire_count != 0 ||
2214				    m->hold_count != 0) {
2215					run_ext = 0;
2216					goto unlock;
2217				}
2218			}
2219			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2220			    ("page %p is PG_UNHOLDFREE", m));
2221			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2222			if (object->type != OBJT_DEFAULT &&
2223			    object->type != OBJT_SWAP &&
2224			    object->type != OBJT_VNODE)
2225				run_ext = 0;
2226			else if ((m->flags & PG_CACHED) != 0 ||
2227			    m != vm_page_lookup(object, m->pindex)) {
2228				/*
2229				 * The page is cached or recently converted
2230				 * from cached to free.
2231				 */
2232#if VM_NRESERVLEVEL > 0
2233				if (level >= 0) {
2234					/*
2235					 * The page is reserved.  Extend the
2236					 * current run by one page.
2237					 */
2238					run_ext = 1;
2239				} else
2240#endif
2241				if ((order = m->order) < VM_NFREEORDER) {
2242					/*
2243					 * The page is enqueued in the
2244					 * physical memory allocator's cache/
2245					 * free page queues.  Moreover, it is
2246					 * the first page in a power-of-two-
2247					 * sized run of contiguous cache/free
2248					 * pages.  Add these pages to the end
2249					 * of the current run, and jump
2250					 * ahead.
2251					 */
2252					run_ext = 1 << order;
2253					m_inc = 1 << order;
2254				} else
2255					run_ext = 0;
2256#if VM_NRESERVLEVEL > 0
2257			} else if ((options & VPSC_NOSUPER) != 0 &&
2258			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2259				run_ext = 0;
2260				/* Advance to the end of the superpage. */
2261				pa = VM_PAGE_TO_PHYS(m);
2262				m_inc = atop(roundup2(pa + 1,
2263				    vm_reserv_size(level)) - pa);
2264#endif
2265			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2266			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2267				/*
2268				 * The page is allocated but eligible for
2269				 * relocation.  Extend the current run by one
2270				 * page.
2271				 */
2272				KASSERT(pmap_page_get_memattr(m) ==
2273				    VM_MEMATTR_DEFAULT,
2274				    ("page %p has an unexpected memattr", m));
2275				KASSERT((m->oflags & (VPO_SWAPINPROG |
2276				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2277				    ("page %p has unexpected oflags", m));
2278				/* Don't care: VPO_NOSYNC. */
2279				run_ext = 1;
2280			} else
2281				run_ext = 0;
2282unlock:
2283			VM_OBJECT_RUNLOCK(object);
2284#if VM_NRESERVLEVEL > 0
2285		} else if (level >= 0) {
2286			/*
2287			 * The page is reserved but not yet allocated.  In
2288			 * other words, it is still cached or free.  Extend
2289			 * the current run by one page.
2290			 */
2291			run_ext = 1;
2292#endif
2293		} else if ((order = m->order) < VM_NFREEORDER) {
2294			/*
2295			 * The page is enqueued in the physical memory
2296			 * allocator's cache/free page queues.  Moreover, it
2297			 * is the first page in a power-of-two-sized run of
2298			 * contiguous cache/free pages.  Add these pages to
2299			 * the end of the current run, and jump ahead.
2300			 */
2301			run_ext = 1 << order;
2302			m_inc = 1 << order;
2303		} else {
2304			/*
2305			 * Skip the page for one of the following reasons: (1)
2306			 * It is enqueued in the physical memory allocator's
2307			 * cache/free page queues.  However, it is not the
2308			 * first page in a run of contiguous cache/free pages.
2309			 * (This case rarely occurs because the scan is
2310			 * performed in ascending order.) (2) It is not
2311			 * reserved, and it is transitioning from free to
2312			 * allocated.  (Conversely, the transition from
2313			 * allocated to free for managed pages is blocked by
2314			 * the page lock.) (3) It is allocated but not
2315			 * contained by an object and not wired, e.g.,
2316			 * allocated by Xen's balloon driver.
2317			 */
2318			run_ext = 0;
2319		}
2320
2321		/*
2322		 * Extend or reset the current run of pages.
2323		 */
2324		if (run_ext > 0) {
2325			if (run_len == 0)
2326				m_run = m;
2327			run_len += run_ext;
2328		} else {
2329			if (run_len > 0) {
2330				m_run = NULL;
2331				run_len = 0;
2332			}
2333		}
2334	}
2335	if (m_mtx != NULL)
2336		mtx_unlock(m_mtx);
2337	if (run_len >= npages)
2338		return (m_run);
2339	return (NULL);
2340}
2341
2342/*
2343 *	vm_page_reclaim_run:
2344 *
2345 *	Try to relocate each of the allocated virtual pages within the
2346 *	specified run of physical pages to a new physical address.  Free the
2347 *	physical pages underlying the relocated virtual pages.  A virtual page
2348 *	is relocatable if and only if it could be laundered or reclaimed by
2349 *	the page daemon.  Whenever possible, a virtual page is relocated to a
2350 *	physical address above "high".
2351 *
2352 *	Returns 0 if every physical page within the run was already free or
2353 *	just freed by a successful relocation.  Otherwise, returns a non-zero
2354 *	value indicating why the last attempt to relocate a virtual page was
2355 *	unsuccessful.
2356 *
2357 *	"req_class" must be an allocation class.
2358 */
2359static int
2360vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2361    vm_paddr_t high)
2362{
2363	struct mtx *m_mtx, *new_mtx;
2364	struct spglist free;
2365	vm_object_t object;
2366	vm_paddr_t pa;
2367	vm_page_t m, m_end, m_new;
2368	int error, order, req;
2369
2370	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2371	    ("req_class is not an allocation class"));
2372	SLIST_INIT(&free);
2373	error = 0;
2374	m = m_run;
2375	m_end = m_run + npages;
2376	m_mtx = NULL;
2377	for (; error == 0 && m < m_end; m++) {
2378		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2379		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2380
2381		/*
2382		 * Avoid releasing and reacquiring the same page lock.
2383		 */
2384		new_mtx = vm_page_lockptr(m);
2385		if (m_mtx != new_mtx) {
2386			if (m_mtx != NULL)
2387				mtx_unlock(m_mtx);
2388			m_mtx = new_mtx;
2389			mtx_lock(m_mtx);
2390		}
2391retry:
2392		if (m->wire_count != 0 || m->hold_count != 0)
2393			error = EBUSY;
2394		else if ((object = m->object) != NULL) {
2395			/*
2396			 * The page is relocated if and only if it could be
2397			 * laundered or reclaimed by the page daemon.
2398			 */
2399			if (!VM_OBJECT_TRYWLOCK(object)) {
2400				mtx_unlock(m_mtx);
2401				VM_OBJECT_WLOCK(object);
2402				mtx_lock(m_mtx);
2403				if (m->object != object) {
2404					/*
2405					 * The page may have been freed.
2406					 */
2407					VM_OBJECT_WUNLOCK(object);
2408					goto retry;
2409				} else if (m->wire_count != 0 ||
2410				    m->hold_count != 0) {
2411					error = EBUSY;
2412					goto unlock;
2413				}
2414			}
2415			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2416			    ("page %p is PG_UNHOLDFREE", m));
2417			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2418			if (object->type != OBJT_DEFAULT &&
2419			    object->type != OBJT_SWAP &&
2420			    object->type != OBJT_VNODE)
2421				error = EINVAL;
2422			else if ((m->flags & PG_CACHED) != 0 ||
2423			    m != vm_page_lookup(object, m->pindex)) {
2424				/*
2425				 * The page is cached or recently converted
2426				 * from cached to free.
2427				 */
2428				VM_OBJECT_WUNLOCK(object);
2429				goto cached;
2430			} else if (object->memattr != VM_MEMATTR_DEFAULT)
2431				error = EINVAL;
2432			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2433				KASSERT(pmap_page_get_memattr(m) ==
2434				    VM_MEMATTR_DEFAULT,
2435				    ("page %p has an unexpected memattr", m));
2436				KASSERT((m->oflags & (VPO_SWAPINPROG |
2437				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2438				    ("page %p has unexpected oflags", m));
2439				/* Don't care: VPO_NOSYNC. */
2440				if (m->valid != 0) {
2441					/*
2442					 * First, try to allocate a new page
2443					 * that is above "high".  Failing
2444					 * that, try to allocate a new page
2445					 * that is below "m_run".  Allocate
2446					 * the new page between the end of
2447					 * "m_run" and "high" only as a last
2448					 * resort.
2449					 */
2450					req = req_class | VM_ALLOC_NOOBJ;
2451					if ((m->flags & PG_NODUMP) != 0)
2452						req |= VM_ALLOC_NODUMP;
2453					if (trunc_page(high) !=
2454					    ~(vm_paddr_t)PAGE_MASK) {
2455						m_new = vm_page_alloc_contig(
2456						    NULL, 0, req, 1,
2457						    round_page(high),
2458						    ~(vm_paddr_t)0,
2459						    PAGE_SIZE, 0,
2460						    VM_MEMATTR_DEFAULT);
2461					} else
2462						m_new = NULL;
2463					if (m_new == NULL) {
2464						pa = VM_PAGE_TO_PHYS(m_run);
2465						m_new = vm_page_alloc_contig(
2466						    NULL, 0, req, 1,
2467						    0, pa - 1, PAGE_SIZE, 0,
2468						    VM_MEMATTR_DEFAULT);
2469					}
2470					if (m_new == NULL) {
2471						pa += ptoa(npages);
2472						m_new = vm_page_alloc_contig(
2473						    NULL, 0, req, 1,
2474						    pa, high, PAGE_SIZE, 0,
2475						    VM_MEMATTR_DEFAULT);
2476					}
2477					if (m_new == NULL) {
2478						error = ENOMEM;
2479						goto unlock;
2480					}
2481					KASSERT(m_new->wire_count == 0,
2482					    ("page %p is wired", m));
2483
2484					/*
2485					 * Replace "m" with the new page.  For
2486					 * vm_page_replace(), "m" must be busy
2487					 * and dequeued.  Finally, change "m"
2488					 * as if vm_page_free() was called.
2489					 */
2490					if (object->ref_count != 0)
2491						pmap_remove_all(m);
2492					m_new->aflags = m->aflags;
2493					KASSERT(m_new->oflags == VPO_UNMANAGED,
2494					    ("page %p is managed", m));
2495					m_new->oflags = m->oflags & VPO_NOSYNC;
2496					pmap_copy_page(m, m_new);
2497					m_new->valid = m->valid;
2498					m_new->dirty = m->dirty;
2499					m->flags &= ~PG_ZERO;
2500					vm_page_xbusy(m);
2501					vm_page_remque(m);
2502					vm_page_replace_checked(m_new, object,
2503					    m->pindex, m);
2504					m->valid = 0;
2505					vm_page_undirty(m);
2506
2507					/*
2508					 * The new page must be deactivated
2509					 * before the object is unlocked.
2510					 */
2511					new_mtx = vm_page_lockptr(m_new);
2512					if (m_mtx != new_mtx) {
2513						mtx_unlock(m_mtx);
2514						m_mtx = new_mtx;
2515						mtx_lock(m_mtx);
2516					}
2517					vm_page_deactivate(m_new);
2518				} else {
2519					m->flags &= ~PG_ZERO;
2520					vm_page_remque(m);
2521					vm_page_remove(m);
2522					KASSERT(m->dirty == 0,
2523					    ("page %p is dirty", m));
2524				}
2525				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2526			} else
2527				error = EBUSY;
2528unlock:
2529			VM_OBJECT_WUNLOCK(object);
2530		} else {
2531cached:
2532			mtx_lock(&vm_page_queue_free_mtx);
2533			order = m->order;
2534			if (order < VM_NFREEORDER) {
2535				/*
2536				 * The page is enqueued in the physical memory
2537				 * allocator's cache/free page queues.
2538				 * Moreover, it is the first page in a power-
2539				 * of-two-sized run of contiguous cache/free
2540				 * pages.  Jump ahead to the last page within
2541				 * that run, and continue from there.
2542				 */
2543				m += (1 << order) - 1;
2544			}
2545#if VM_NRESERVLEVEL > 0
2546			else if (vm_reserv_is_page_free(m))
2547				order = 0;
2548#endif
2549			mtx_unlock(&vm_page_queue_free_mtx);
2550			if (order == VM_NFREEORDER)
2551				error = EINVAL;
2552		}
2553	}
2554	if (m_mtx != NULL)
2555		mtx_unlock(m_mtx);
2556	if ((m = SLIST_FIRST(&free)) != NULL) {
2557		mtx_lock(&vm_page_queue_free_mtx);
2558		do {
2559			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2560			vm_phys_freecnt_adj(m, 1);
2561#if VM_NRESERVLEVEL > 0
2562			if (!vm_reserv_free_page(m))
2563#else
2564			if (true)
2565#endif
2566				vm_phys_free_pages(m, 0);
2567		} while ((m = SLIST_FIRST(&free)) != NULL);
2568		vm_page_zero_idle_wakeup();
2569		vm_page_free_wakeup();
2570		mtx_unlock(&vm_page_queue_free_mtx);
2571	}
2572	return (error);
2573}
2574
2575#define	NRUNS	16
2576
2577CTASSERT(powerof2(NRUNS));
2578
2579#define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2580
2581#define	MIN_RECLAIM	8
2582
2583/*
2584 *	vm_page_reclaim_contig:
2585 *
2586 *	Reclaim allocated, contiguous physical memory satisfying the specified
2587 *	conditions by relocating the virtual pages using that physical memory.
2588 *	Returns true if reclamation is successful and false otherwise.  Since
2589 *	relocation requires the allocation of physical pages, reclamation may
2590 *	fail due to a shortage of cache/free pages.  When reclamation fails,
2591 *	callers are expected to perform VM_WAIT before retrying a failed
2592 *	allocation operation, e.g., vm_page_alloc_contig().
2593 *
2594 *	The caller must always specify an allocation class through "req".
2595 *
2596 *	allocation classes:
2597 *	VM_ALLOC_NORMAL		normal process request
2598 *	VM_ALLOC_SYSTEM		system *really* needs a page
2599 *	VM_ALLOC_INTERRUPT	interrupt time request
2600 *
2601 *	The optional allocation flags are ignored.
2602 *
2603 *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2604 *	must be a power of two.
2605 */
2606bool
2607vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2608    u_long alignment, vm_paddr_t boundary)
2609{
2610	vm_paddr_t curr_low;
2611	vm_page_t m_run, m_runs[NRUNS];
2612	u_long count, reclaimed;
2613	int error, i, options, req_class;
2614
2615	KASSERT(npages > 0, ("npages is 0"));
2616	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2617	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2618	req_class = req & VM_ALLOC_CLASS_MASK;
2619
2620	/*
2621	 * The page daemon is allowed to dig deeper into the free page list.
2622	 */
2623	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2624		req_class = VM_ALLOC_SYSTEM;
2625
2626	/*
2627	 * Return if the number of cached and free pages cannot satisfy the
2628	 * requested allocation.
2629	 */
2630	count = vm_cnt.v_free_count + vm_cnt.v_cache_count;
2631	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2632	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2633	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2634		return (false);
2635
2636	/*
2637	 * Scan up to three times, relaxing the restrictions ("options") on
2638	 * the reclamation of reservations and superpages each time.
2639	 */
2640	for (options = VPSC_NORESERV;;) {
2641		/*
2642		 * Find the highest runs that satisfy the given constraints
2643		 * and restrictions, and record them in "m_runs".
2644		 */
2645		curr_low = low;
2646		count = 0;
2647		for (;;) {
2648			m_run = vm_phys_scan_contig(npages, curr_low, high,
2649			    alignment, boundary, options);
2650			if (m_run == NULL)
2651				break;
2652			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2653			m_runs[RUN_INDEX(count)] = m_run;
2654			count++;
2655		}
2656
2657		/*
2658		 * Reclaim the highest runs in LIFO (descending) order until
2659		 * the number of reclaimed pages, "reclaimed", is at least
2660		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2661		 * reclamation is idempotent, and runs will (likely) recur
2662		 * from one scan to the next as restrictions are relaxed.
2663		 */
2664		reclaimed = 0;
2665		for (i = 0; count > 0 && i < NRUNS; i++) {
2666			count--;
2667			m_run = m_runs[RUN_INDEX(count)];
2668			error = vm_page_reclaim_run(req_class, npages, m_run,
2669			    high);
2670			if (error == 0) {
2671				reclaimed += npages;
2672				if (reclaimed >= MIN_RECLAIM)
2673					return (true);
2674			}
2675		}
2676
2677		/*
2678		 * Either relax the restrictions on the next scan or return if
2679		 * the last scan had no restrictions.
2680		 */
2681		if (options == VPSC_NORESERV)
2682			options = VPSC_NOSUPER;
2683		else if (options == VPSC_NOSUPER)
2684			options = VPSC_ANY;
2685		else if (options == VPSC_ANY)
2686			return (reclaimed != 0);
2687	}
2688}
2689
2690/*
2691 *	vm_wait:	(also see VM_WAIT macro)
2692 *
2693 *	Sleep until free pages are available for allocation.
2694 *	- Called in various places before memory allocations.
2695 */
2696void
2697vm_wait(void)
2698{
2699
2700	mtx_lock(&vm_page_queue_free_mtx);
2701	if (curproc == pageproc) {
2702		vm_pageout_pages_needed = 1;
2703		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2704		    PDROP | PSWP, "VMWait", 0);
2705	} else {
2706		if (!vm_pageout_wanted) {
2707			vm_pageout_wanted = true;
2708			wakeup(&vm_pageout_wanted);
2709		}
2710		vm_pages_needed = true;
2711		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2712		    "vmwait", 0);
2713	}
2714}
2715
2716/*
2717 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2718 *
2719 *	Sleep until free pages are available for allocation.
2720 *	- Called only in vm_fault so that processes page faulting
2721 *	  can be easily tracked.
2722 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2723 *	  processes will be able to grab memory first.  Do not change
2724 *	  this balance without careful testing first.
2725 */
2726void
2727vm_waitpfault(void)
2728{
2729
2730	mtx_lock(&vm_page_queue_free_mtx);
2731	if (!vm_pageout_wanted) {
2732		vm_pageout_wanted = true;
2733		wakeup(&vm_pageout_wanted);
2734	}
2735	vm_pages_needed = true;
2736	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2737	    "pfault", 0);
2738}
2739
2740struct vm_pagequeue *
2741vm_page_pagequeue(vm_page_t m)
2742{
2743
2744	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2745}
2746
2747/*
2748 *	vm_page_dequeue:
2749 *
2750 *	Remove the given page from its current page queue.
2751 *
2752 *	The page must be locked.
2753 */
2754void
2755vm_page_dequeue(vm_page_t m)
2756{
2757	struct vm_pagequeue *pq;
2758
2759	vm_page_assert_locked(m);
2760	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2761	    m));
2762	pq = vm_page_pagequeue(m);
2763	vm_pagequeue_lock(pq);
2764	m->queue = PQ_NONE;
2765	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2766	vm_pagequeue_cnt_dec(pq);
2767	vm_pagequeue_unlock(pq);
2768}
2769
2770/*
2771 *	vm_page_dequeue_locked:
2772 *
2773 *	Remove the given page from its current page queue.
2774 *
2775 *	The page and page queue must be locked.
2776 */
2777void
2778vm_page_dequeue_locked(vm_page_t m)
2779{
2780	struct vm_pagequeue *pq;
2781
2782	vm_page_lock_assert(m, MA_OWNED);
2783	pq = vm_page_pagequeue(m);
2784	vm_pagequeue_assert_locked(pq);
2785	m->queue = PQ_NONE;
2786	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2787	vm_pagequeue_cnt_dec(pq);
2788}
2789
2790/*
2791 *	vm_page_enqueue:
2792 *
2793 *	Add the given page to the specified page queue.
2794 *
2795 *	The page must be locked.
2796 */
2797static void
2798vm_page_enqueue(uint8_t queue, vm_page_t m)
2799{
2800	struct vm_pagequeue *pq;
2801
2802	vm_page_lock_assert(m, MA_OWNED);
2803	KASSERT(queue < PQ_COUNT,
2804	    ("vm_page_enqueue: invalid queue %u request for page %p",
2805	    queue, m));
2806	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2807	vm_pagequeue_lock(pq);
2808	m->queue = queue;
2809	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2810	vm_pagequeue_cnt_inc(pq);
2811	vm_pagequeue_unlock(pq);
2812}
2813
2814/*
2815 *	vm_page_requeue:
2816 *
2817 *	Move the given page to the tail of its current page queue.
2818 *
2819 *	The page must be locked.
2820 */
2821void
2822vm_page_requeue(vm_page_t m)
2823{
2824	struct vm_pagequeue *pq;
2825
2826	vm_page_lock_assert(m, MA_OWNED);
2827	KASSERT(m->queue != PQ_NONE,
2828	    ("vm_page_requeue: page %p is not queued", m));
2829	pq = vm_page_pagequeue(m);
2830	vm_pagequeue_lock(pq);
2831	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2832	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2833	vm_pagequeue_unlock(pq);
2834}
2835
2836/*
2837 *	vm_page_requeue_locked:
2838 *
2839 *	Move the given page to the tail of its current page queue.
2840 *
2841 *	The page queue must be locked.
2842 */
2843void
2844vm_page_requeue_locked(vm_page_t m)
2845{
2846	struct vm_pagequeue *pq;
2847
2848	KASSERT(m->queue != PQ_NONE,
2849	    ("vm_page_requeue_locked: page %p is not queued", m));
2850	pq = vm_page_pagequeue(m);
2851	vm_pagequeue_assert_locked(pq);
2852	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2853	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2854}
2855
2856/*
2857 *	vm_page_activate:
2858 *
2859 *	Put the specified page on the active list (if appropriate).
2860 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2861 *	mess with it.
2862 *
2863 *	The page must be locked.
2864 */
2865void
2866vm_page_activate(vm_page_t m)
2867{
2868	int queue;
2869
2870	vm_page_lock_assert(m, MA_OWNED);
2871	if ((queue = m->queue) != PQ_ACTIVE) {
2872		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2873			if (m->act_count < ACT_INIT)
2874				m->act_count = ACT_INIT;
2875			if (queue != PQ_NONE)
2876				vm_page_dequeue(m);
2877			vm_page_enqueue(PQ_ACTIVE, m);
2878		} else
2879			KASSERT(queue == PQ_NONE,
2880			    ("vm_page_activate: wired page %p is queued", m));
2881	} else {
2882		if (m->act_count < ACT_INIT)
2883			m->act_count = ACT_INIT;
2884	}
2885}
2886
2887/*
2888 *	vm_page_free_wakeup:
2889 *
2890 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2891 *	routine is called when a page has been added to the cache or free
2892 *	queues.
2893 *
2894 *	The page queues must be locked.
2895 */
2896static inline void
2897vm_page_free_wakeup(void)
2898{
2899
2900	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2901	/*
2902	 * if pageout daemon needs pages, then tell it that there are
2903	 * some free.
2904	 */
2905	if (vm_pageout_pages_needed &&
2906	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2907		wakeup(&vm_pageout_pages_needed);
2908		vm_pageout_pages_needed = 0;
2909	}
2910	/*
2911	 * wakeup processes that are waiting on memory if we hit a
2912	 * high water mark. And wakeup scheduler process if we have
2913	 * lots of memory. this process will swapin processes.
2914	 */
2915	if (vm_pages_needed && !vm_page_count_min()) {
2916		vm_pages_needed = false;
2917		wakeup(&vm_cnt.v_free_count);
2918	}
2919}
2920
2921/*
2922 *	Turn a cached page into a free page, by changing its attributes.
2923 *	Keep the statistics up-to-date.
2924 *
2925 *	The free page queue must be locked.
2926 */
2927static void
2928vm_page_cache_turn_free(vm_page_t m)
2929{
2930
2931	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2932
2933	m->object = NULL;
2934	m->valid = 0;
2935	KASSERT((m->flags & PG_CACHED) != 0,
2936	    ("vm_page_cache_turn_free: page %p is not cached", m));
2937	m->flags &= ~PG_CACHED;
2938	vm_cnt.v_cache_count--;
2939	vm_phys_freecnt_adj(m, 1);
2940}
2941
2942/*
2943 *	vm_page_free_toq:
2944 *
2945 *	Returns the given page to the free list,
2946 *	disassociating it with any VM object.
2947 *
2948 *	The object must be locked.  The page must be locked if it is managed.
2949 */
2950void
2951vm_page_free_toq(vm_page_t m)
2952{
2953
2954	if ((m->oflags & VPO_UNMANAGED) == 0) {
2955		vm_page_lock_assert(m, MA_OWNED);
2956		KASSERT(!pmap_page_is_mapped(m),
2957		    ("vm_page_free_toq: freeing mapped page %p", m));
2958	} else
2959		KASSERT(m->queue == PQ_NONE,
2960		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2961	PCPU_INC(cnt.v_tfree);
2962
2963	if (vm_page_sbusied(m))
2964		panic("vm_page_free: freeing busy page %p", m);
2965
2966	/*
2967	 * Unqueue, then remove page.  Note that we cannot destroy
2968	 * the page here because we do not want to call the pager's
2969	 * callback routine until after we've put the page on the
2970	 * appropriate free queue.
2971	 */
2972	vm_page_remque(m);
2973	vm_page_remove(m);
2974
2975	/*
2976	 * If fictitious remove object association and
2977	 * return, otherwise delay object association removal.
2978	 */
2979	if ((m->flags & PG_FICTITIOUS) != 0) {
2980		return;
2981	}
2982
2983	m->valid = 0;
2984	vm_page_undirty(m);
2985
2986	if (m->wire_count != 0)
2987		panic("vm_page_free: freeing wired page %p", m);
2988	if (m->hold_count != 0) {
2989		m->flags &= ~PG_ZERO;
2990		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2991		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2992		m->flags |= PG_UNHOLDFREE;
2993	} else {
2994		/*
2995		 * Restore the default memory attribute to the page.
2996		 */
2997		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2998			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2999
3000		/*
3001		 * Insert the page into the physical memory allocator's
3002		 * cache/free page queues.
3003		 */
3004		mtx_lock(&vm_page_queue_free_mtx);
3005		vm_phys_freecnt_adj(m, 1);
3006#if VM_NRESERVLEVEL > 0
3007		if (!vm_reserv_free_page(m))
3008#else
3009		if (TRUE)
3010#endif
3011			vm_phys_free_pages(m, 0);
3012		if ((m->flags & PG_ZERO) != 0)
3013			++vm_page_zero_count;
3014		else
3015			vm_page_zero_idle_wakeup();
3016		vm_page_free_wakeup();
3017		mtx_unlock(&vm_page_queue_free_mtx);
3018	}
3019}
3020
3021/*
3022 *	vm_page_wire:
3023 *
3024 *	Mark this page as wired down by yet
3025 *	another map, removing it from paging queues
3026 *	as necessary.
3027 *
3028 *	If the page is fictitious, then its wire count must remain one.
3029 *
3030 *	The page must be locked.
3031 */
3032void
3033vm_page_wire(vm_page_t m)
3034{
3035
3036	/*
3037	 * Only bump the wire statistics if the page is not already wired,
3038	 * and only unqueue the page if it is on some queue (if it is unmanaged
3039	 * it is already off the queues).
3040	 */
3041	vm_page_lock_assert(m, MA_OWNED);
3042	if ((m->flags & PG_FICTITIOUS) != 0) {
3043		KASSERT(m->wire_count == 1,
3044		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3045		    m));
3046		return;
3047	}
3048	if (m->wire_count == 0) {
3049		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3050		    m->queue == PQ_NONE,
3051		    ("vm_page_wire: unmanaged page %p is queued", m));
3052		vm_page_remque(m);
3053		atomic_add_int(&vm_cnt.v_wire_count, 1);
3054	}
3055	m->wire_count++;
3056	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3057}
3058
3059/*
3060 * vm_page_unwire:
3061 *
3062 * Release one wiring of the specified page, potentially allowing it to be
3063 * paged out.  Returns TRUE if the number of wirings transitions to zero and
3064 * FALSE otherwise.
3065 *
3066 * Only managed pages belonging to an object can be paged out.  If the number
3067 * of wirings transitions to zero and the page is eligible for page out, then
3068 * the page is added to the specified paging queue (unless PQ_NONE is
3069 * specified).
3070 *
3071 * If a page is fictitious, then its wire count must always be one.
3072 *
3073 * A managed page must be locked.
3074 */
3075boolean_t
3076vm_page_unwire(vm_page_t m, uint8_t queue)
3077{
3078
3079	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3080	    ("vm_page_unwire: invalid queue %u request for page %p",
3081	    queue, m));
3082	if ((m->oflags & VPO_UNMANAGED) == 0)
3083		vm_page_assert_locked(m);
3084	if ((m->flags & PG_FICTITIOUS) != 0) {
3085		KASSERT(m->wire_count == 1,
3086	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3087		return (FALSE);
3088	}
3089	if (m->wire_count > 0) {
3090		m->wire_count--;
3091		if (m->wire_count == 0) {
3092			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
3093			if ((m->oflags & VPO_UNMANAGED) == 0 &&
3094			    m->object != NULL && queue != PQ_NONE) {
3095				if (queue == PQ_INACTIVE)
3096					m->flags &= ~PG_WINATCFLS;
3097				vm_page_enqueue(queue, m);
3098			}
3099			return (TRUE);
3100		} else
3101			return (FALSE);
3102	} else
3103		panic("vm_page_unwire: page %p's wire count is zero", m);
3104}
3105
3106/*
3107 * Move the specified page to the inactive queue.
3108 *
3109 * Many pages placed on the inactive queue should actually go
3110 * into the cache, but it is difficult to figure out which.  What
3111 * we do instead, if the inactive target is well met, is to put
3112 * clean pages at the head of the inactive queue instead of the tail.
3113 * This will cause them to be moved to the cache more quickly and
3114 * if not actively re-referenced, reclaimed more quickly.  If we just
3115 * stick these pages at the end of the inactive queue, heavy filesystem
3116 * meta-data accesses can cause an unnecessary paging load on memory bound
3117 * processes.  This optimization causes one-time-use metadata to be
3118 * reused more quickly.
3119 *
3120 * Normally noreuse is FALSE, resulting in LRU operation.  noreuse is set
3121 * to TRUE if we want this page to be 'as if it were placed in the cache',
3122 * except without unmapping it from the process address space.  In
3123 * practice this is implemented by inserting the page at the head of the
3124 * queue, using a marker page to guide FIFO insertion ordering.
3125 *
3126 * The page must be locked.
3127 */
3128static inline void
3129_vm_page_deactivate(vm_page_t m, boolean_t noreuse)
3130{
3131	struct vm_pagequeue *pq;
3132	int queue;
3133
3134	vm_page_assert_locked(m);
3135
3136	/*
3137	 * Ignore if the page is already inactive, unless it is unlikely to be
3138	 * reactivated.
3139	 */
3140	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
3141		return;
3142	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3143		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
3144		/* Avoid multiple acquisitions of the inactive queue lock. */
3145		if (queue == PQ_INACTIVE) {
3146			vm_pagequeue_lock(pq);
3147			vm_page_dequeue_locked(m);
3148		} else {
3149			if (queue != PQ_NONE)
3150				vm_page_dequeue(m);
3151			m->flags &= ~PG_WINATCFLS;
3152			vm_pagequeue_lock(pq);
3153		}
3154		m->queue = PQ_INACTIVE;
3155		if (noreuse)
3156			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
3157			    m, plinks.q);
3158		else
3159			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3160		vm_pagequeue_cnt_inc(pq);
3161		vm_pagequeue_unlock(pq);
3162	}
3163}
3164
3165/*
3166 * Move the specified page to the inactive queue.
3167 *
3168 * The page must be locked.
3169 */
3170void
3171vm_page_deactivate(vm_page_t m)
3172{
3173
3174	_vm_page_deactivate(m, FALSE);
3175}
3176
3177/*
3178 * Move the specified page to the inactive queue with the expectation
3179 * that it is unlikely to be reused.
3180 *
3181 * The page must be locked.
3182 */
3183void
3184vm_page_deactivate_noreuse(vm_page_t m)
3185{
3186
3187	_vm_page_deactivate(m, TRUE);
3188}
3189
3190/*
3191 * vm_page_try_to_cache:
3192 *
3193 * Returns 0 on failure, 1 on success
3194 */
3195int
3196vm_page_try_to_cache(vm_page_t m)
3197{
3198
3199	vm_page_lock_assert(m, MA_OWNED);
3200	VM_OBJECT_ASSERT_WLOCKED(m->object);
3201	if (m->dirty || m->hold_count || m->wire_count ||
3202	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3203		return (0);
3204	pmap_remove_all(m);
3205	if (m->dirty)
3206		return (0);
3207	vm_page_cache(m);
3208	return (1);
3209}
3210
3211/*
3212 * vm_page_try_to_free()
3213 *
3214 *	Attempt to free the page.  If we cannot free it, we do nothing.
3215 *	1 is returned on success, 0 on failure.
3216 */
3217int
3218vm_page_try_to_free(vm_page_t m)
3219{
3220
3221	vm_page_lock_assert(m, MA_OWNED);
3222	if (m->object != NULL)
3223		VM_OBJECT_ASSERT_WLOCKED(m->object);
3224	if (m->dirty || m->hold_count || m->wire_count ||
3225	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3226		return (0);
3227	pmap_remove_all(m);
3228	if (m->dirty)
3229		return (0);
3230	vm_page_free(m);
3231	return (1);
3232}
3233
3234/*
3235 * vm_page_cache
3236 *
3237 * Put the specified page onto the page cache queue (if appropriate).
3238 *
3239 * The object and page must be locked.
3240 */
3241void
3242vm_page_cache(vm_page_t m)
3243{
3244	vm_object_t object;
3245	boolean_t cache_was_empty;
3246
3247	vm_page_lock_assert(m, MA_OWNED);
3248	object = m->object;
3249	VM_OBJECT_ASSERT_WLOCKED(object);
3250	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
3251	    m->hold_count || m->wire_count)
3252		panic("vm_page_cache: attempting to cache busy page");
3253	KASSERT(!pmap_page_is_mapped(m),
3254	    ("vm_page_cache: page %p is mapped", m));
3255	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
3256	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
3257	    (object->type == OBJT_SWAP &&
3258	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
3259		/*
3260		 * Hypothesis: A cache-eligible page belonging to a
3261		 * default object or swap object but without a backing
3262		 * store must be zero filled.
3263		 */
3264		vm_page_free(m);
3265		return;
3266	}
3267	KASSERT((m->flags & PG_CACHED) == 0,
3268	    ("vm_page_cache: page %p is already cached", m));
3269
3270	/*
3271	 * Remove the page from the paging queues.
3272	 */
3273	vm_page_remque(m);
3274
3275	/*
3276	 * Remove the page from the object's collection of resident
3277	 * pages.
3278	 */
3279	vm_radix_remove(&object->rtree, m->pindex);
3280	TAILQ_REMOVE(&object->memq, m, listq);
3281	object->resident_page_count--;
3282
3283	/*
3284	 * Restore the default memory attribute to the page.
3285	 */
3286	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3287		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3288
3289	/*
3290	 * Insert the page into the object's collection of cached pages
3291	 * and the physical memory allocator's cache/free page queues.
3292	 */
3293	m->flags &= ~PG_ZERO;
3294	mtx_lock(&vm_page_queue_free_mtx);
3295	cache_was_empty = vm_radix_is_empty(&object->cache);
3296	if (vm_radix_insert(&object->cache, m)) {
3297		mtx_unlock(&vm_page_queue_free_mtx);
3298		if (object->type == OBJT_VNODE &&
3299		    object->resident_page_count == 0)
3300			vdrop(object->handle);
3301		m->object = NULL;
3302		vm_page_free(m);
3303		return;
3304	}
3305
3306	/*
3307	 * The above call to vm_radix_insert() could reclaim the one pre-
3308	 * existing cached page from this object, resulting in a call to
3309	 * vdrop().
3310	 */
3311	if (!cache_was_empty)
3312		cache_was_empty = vm_radix_is_singleton(&object->cache);
3313
3314	m->flags |= PG_CACHED;
3315	vm_cnt.v_cache_count++;
3316	PCPU_INC(cnt.v_tcached);
3317#if VM_NRESERVLEVEL > 0
3318	if (!vm_reserv_free_page(m)) {
3319#else
3320	if (TRUE) {
3321#endif
3322		vm_phys_free_pages(m, 0);
3323	}
3324	vm_page_free_wakeup();
3325	mtx_unlock(&vm_page_queue_free_mtx);
3326
3327	/*
3328	 * Increment the vnode's hold count if this is the object's only
3329	 * cached page.  Decrement the vnode's hold count if this was
3330	 * the object's only resident page.
3331	 */
3332	if (object->type == OBJT_VNODE) {
3333		if (cache_was_empty && object->resident_page_count != 0)
3334			vhold(object->handle);
3335		else if (!cache_was_empty && object->resident_page_count == 0)
3336			vdrop(object->handle);
3337	}
3338}
3339
3340/*
3341 * vm_page_advise
3342 *
3343 * 	Deactivate or do nothing, as appropriate.
3344 *
3345 *	The object and page must be locked.
3346 */
3347void
3348vm_page_advise(vm_page_t m, int advice)
3349{
3350
3351	vm_page_assert_locked(m);
3352	VM_OBJECT_ASSERT_WLOCKED(m->object);
3353	if (advice == MADV_FREE)
3354		/*
3355		 * Mark the page clean.  This will allow the page to be freed
3356		 * up by the system.  However, such pages are often reused
3357		 * quickly by malloc() so we do not do anything that would
3358		 * cause a page fault if we can help it.
3359		 *
3360		 * Specifically, we do not try to actually free the page now
3361		 * nor do we try to put it in the cache (which would cause a
3362		 * page fault on reuse).
3363		 *
3364		 * But we do make the page as freeable as we can without
3365		 * actually taking the step of unmapping it.
3366		 */
3367		m->dirty = 0;
3368	else if (advice != MADV_DONTNEED)
3369		return;
3370
3371	/*
3372	 * Clear any references to the page.  Otherwise, the page daemon will
3373	 * immediately reactivate the page.
3374	 */
3375	vm_page_aflag_clear(m, PGA_REFERENCED);
3376
3377	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3378		vm_page_dirty(m);
3379
3380	/*
3381	 * Place clean pages at the head of the inactive queue rather than the
3382	 * tail, thus defeating the queue's LRU operation and ensuring that the
3383	 * page will be reused quickly.
3384	 */
3385	_vm_page_deactivate(m, m->dirty == 0);
3386}
3387
3388/*
3389 * Grab a page, waiting until we are waken up due to the page
3390 * changing state.  We keep on waiting, if the page continues
3391 * to be in the object.  If the page doesn't exist, first allocate it
3392 * and then conditionally zero it.
3393 *
3394 * This routine may sleep.
3395 *
3396 * The object must be locked on entry.  The lock will, however, be released
3397 * and reacquired if the routine sleeps.
3398 */
3399vm_page_t
3400vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3401{
3402	vm_page_t m;
3403	int sleep;
3404
3405	VM_OBJECT_ASSERT_WLOCKED(object);
3406	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3407	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3408	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3409retrylookup:
3410	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3411		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3412		    vm_page_xbusied(m) : vm_page_busied(m);
3413		if (sleep) {
3414			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3415				return (NULL);
3416			/*
3417			 * Reference the page before unlocking and
3418			 * sleeping so that the page daemon is less
3419			 * likely to reclaim it.
3420			 */
3421			vm_page_aflag_set(m, PGA_REFERENCED);
3422			vm_page_lock(m);
3423			VM_OBJECT_WUNLOCK(object);
3424			vm_page_busy_sleep(m, "pgrbwt");
3425			VM_OBJECT_WLOCK(object);
3426			goto retrylookup;
3427		} else {
3428			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3429				vm_page_lock(m);
3430				vm_page_wire(m);
3431				vm_page_unlock(m);
3432			}
3433			if ((allocflags &
3434			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3435				vm_page_xbusy(m);
3436			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3437				vm_page_sbusy(m);
3438			return (m);
3439		}
3440	}
3441	m = vm_page_alloc(object, pindex, allocflags);
3442	if (m == NULL) {
3443		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3444			return (NULL);
3445		VM_OBJECT_WUNLOCK(object);
3446		VM_WAIT;
3447		VM_OBJECT_WLOCK(object);
3448		goto retrylookup;
3449	} else if (m->valid != 0)
3450		return (m);
3451	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3452		pmap_zero_page(m);
3453	return (m);
3454}
3455
3456/*
3457 * Mapping function for valid or dirty bits in a page.
3458 *
3459 * Inputs are required to range within a page.
3460 */
3461vm_page_bits_t
3462vm_page_bits(int base, int size)
3463{
3464	int first_bit;
3465	int last_bit;
3466
3467	KASSERT(
3468	    base + size <= PAGE_SIZE,
3469	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3470	);
3471
3472	if (size == 0)		/* handle degenerate case */
3473		return (0);
3474
3475	first_bit = base >> DEV_BSHIFT;
3476	last_bit = (base + size - 1) >> DEV_BSHIFT;
3477
3478	return (((vm_page_bits_t)2 << last_bit) -
3479	    ((vm_page_bits_t)1 << first_bit));
3480}
3481
3482/*
3483 *	vm_page_set_valid_range:
3484 *
3485 *	Sets portions of a page valid.  The arguments are expected
3486 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3487 *	of any partial chunks touched by the range.  The invalid portion of
3488 *	such chunks will be zeroed.
3489 *
3490 *	(base + size) must be less then or equal to PAGE_SIZE.
3491 */
3492void
3493vm_page_set_valid_range(vm_page_t m, int base, int size)
3494{
3495	int endoff, frag;
3496
3497	VM_OBJECT_ASSERT_WLOCKED(m->object);
3498	if (size == 0)	/* handle degenerate case */
3499		return;
3500
3501	/*
3502	 * If the base is not DEV_BSIZE aligned and the valid
3503	 * bit is clear, we have to zero out a portion of the
3504	 * first block.
3505	 */
3506	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3507	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3508		pmap_zero_page_area(m, frag, base - frag);
3509
3510	/*
3511	 * If the ending offset is not DEV_BSIZE aligned and the
3512	 * valid bit is clear, we have to zero out a portion of
3513	 * the last block.
3514	 */
3515	endoff = base + size;
3516	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3517	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3518		pmap_zero_page_area(m, endoff,
3519		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3520
3521	/*
3522	 * Assert that no previously invalid block that is now being validated
3523	 * is already dirty.
3524	 */
3525	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3526	    ("vm_page_set_valid_range: page %p is dirty", m));
3527
3528	/*
3529	 * Set valid bits inclusive of any overlap.
3530	 */
3531	m->valid |= vm_page_bits(base, size);
3532}
3533
3534/*
3535 * Clear the given bits from the specified page's dirty field.
3536 */
3537static __inline void
3538vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3539{
3540	uintptr_t addr;
3541#if PAGE_SIZE < 16384
3542	int shift;
3543#endif
3544
3545	/*
3546	 * If the object is locked and the page is neither exclusive busy nor
3547	 * write mapped, then the page's dirty field cannot possibly be
3548	 * set by a concurrent pmap operation.
3549	 */
3550	VM_OBJECT_ASSERT_WLOCKED(m->object);
3551	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3552		m->dirty &= ~pagebits;
3553	else {
3554		/*
3555		 * The pmap layer can call vm_page_dirty() without
3556		 * holding a distinguished lock.  The combination of
3557		 * the object's lock and an atomic operation suffice
3558		 * to guarantee consistency of the page dirty field.
3559		 *
3560		 * For PAGE_SIZE == 32768 case, compiler already
3561		 * properly aligns the dirty field, so no forcible
3562		 * alignment is needed. Only require existence of
3563		 * atomic_clear_64 when page size is 32768.
3564		 */
3565		addr = (uintptr_t)&m->dirty;
3566#if PAGE_SIZE == 32768
3567		atomic_clear_64((uint64_t *)addr, pagebits);
3568#elif PAGE_SIZE == 16384
3569		atomic_clear_32((uint32_t *)addr, pagebits);
3570#else		/* PAGE_SIZE <= 8192 */
3571		/*
3572		 * Use a trick to perform a 32-bit atomic on the
3573		 * containing aligned word, to not depend on the existence
3574		 * of atomic_clear_{8, 16}.
3575		 */
3576		shift = addr & (sizeof(uint32_t) - 1);
3577#if BYTE_ORDER == BIG_ENDIAN
3578		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3579#else
3580		shift *= NBBY;
3581#endif
3582		addr &= ~(sizeof(uint32_t) - 1);
3583		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3584#endif		/* PAGE_SIZE */
3585	}
3586}
3587
3588/*
3589 *	vm_page_set_validclean:
3590 *
3591 *	Sets portions of a page valid and clean.  The arguments are expected
3592 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3593 *	of any partial chunks touched by the range.  The invalid portion of
3594 *	such chunks will be zero'd.
3595 *
3596 *	(base + size) must be less then or equal to PAGE_SIZE.
3597 */
3598void
3599vm_page_set_validclean(vm_page_t m, int base, int size)
3600{
3601	vm_page_bits_t oldvalid, pagebits;
3602	int endoff, frag;
3603
3604	VM_OBJECT_ASSERT_WLOCKED(m->object);
3605	if (size == 0)	/* handle degenerate case */
3606		return;
3607
3608	/*
3609	 * If the base is not DEV_BSIZE aligned and the valid
3610	 * bit is clear, we have to zero out a portion of the
3611	 * first block.
3612	 */
3613	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3614	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3615		pmap_zero_page_area(m, frag, base - frag);
3616
3617	/*
3618	 * If the ending offset is not DEV_BSIZE aligned and the
3619	 * valid bit is clear, we have to zero out a portion of
3620	 * the last block.
3621	 */
3622	endoff = base + size;
3623	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3624	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3625		pmap_zero_page_area(m, endoff,
3626		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3627
3628	/*
3629	 * Set valid, clear dirty bits.  If validating the entire
3630	 * page we can safely clear the pmap modify bit.  We also
3631	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3632	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3633	 * be set again.
3634	 *
3635	 * We set valid bits inclusive of any overlap, but we can only
3636	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3637	 * the range.
3638	 */
3639	oldvalid = m->valid;
3640	pagebits = vm_page_bits(base, size);
3641	m->valid |= pagebits;
3642#if 0	/* NOT YET */
3643	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3644		frag = DEV_BSIZE - frag;
3645		base += frag;
3646		size -= frag;
3647		if (size < 0)
3648			size = 0;
3649	}
3650	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3651#endif
3652	if (base == 0 && size == PAGE_SIZE) {
3653		/*
3654		 * The page can only be modified within the pmap if it is
3655		 * mapped, and it can only be mapped if it was previously
3656		 * fully valid.
3657		 */
3658		if (oldvalid == VM_PAGE_BITS_ALL)
3659			/*
3660			 * Perform the pmap_clear_modify() first.  Otherwise,
3661			 * a concurrent pmap operation, such as
3662			 * pmap_protect(), could clear a modification in the
3663			 * pmap and set the dirty field on the page before
3664			 * pmap_clear_modify() had begun and after the dirty
3665			 * field was cleared here.
3666			 */
3667			pmap_clear_modify(m);
3668		m->dirty = 0;
3669		m->oflags &= ~VPO_NOSYNC;
3670	} else if (oldvalid != VM_PAGE_BITS_ALL)
3671		m->dirty &= ~pagebits;
3672	else
3673		vm_page_clear_dirty_mask(m, pagebits);
3674}
3675
3676void
3677vm_page_clear_dirty(vm_page_t m, int base, int size)
3678{
3679
3680	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3681}
3682
3683/*
3684 *	vm_page_set_invalid:
3685 *
3686 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3687 *	valid and dirty bits for the effected areas are cleared.
3688 */
3689void
3690vm_page_set_invalid(vm_page_t m, int base, int size)
3691{
3692	vm_page_bits_t bits;
3693	vm_object_t object;
3694
3695	object = m->object;
3696	VM_OBJECT_ASSERT_WLOCKED(object);
3697	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3698	    size >= object->un_pager.vnp.vnp_size)
3699		bits = VM_PAGE_BITS_ALL;
3700	else
3701		bits = vm_page_bits(base, size);
3702	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3703	    bits != 0)
3704		pmap_remove_all(m);
3705	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3706	    !pmap_page_is_mapped(m),
3707	    ("vm_page_set_invalid: page %p is mapped", m));
3708	m->valid &= ~bits;
3709	m->dirty &= ~bits;
3710}
3711
3712/*
3713 * vm_page_zero_invalid()
3714 *
3715 *	The kernel assumes that the invalid portions of a page contain
3716 *	garbage, but such pages can be mapped into memory by user code.
3717 *	When this occurs, we must zero out the non-valid portions of the
3718 *	page so user code sees what it expects.
3719 *
3720 *	Pages are most often semi-valid when the end of a file is mapped
3721 *	into memory and the file's size is not page aligned.
3722 */
3723void
3724vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3725{
3726	int b;
3727	int i;
3728
3729	VM_OBJECT_ASSERT_WLOCKED(m->object);
3730	/*
3731	 * Scan the valid bits looking for invalid sections that
3732	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3733	 * valid bit may be set ) have already been zeroed by
3734	 * vm_page_set_validclean().
3735	 */
3736	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3737		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3738		    (m->valid & ((vm_page_bits_t)1 << i))) {
3739			if (i > b) {
3740				pmap_zero_page_area(m,
3741				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3742			}
3743			b = i + 1;
3744		}
3745	}
3746
3747	/*
3748	 * setvalid is TRUE when we can safely set the zero'd areas
3749	 * as being valid.  We can do this if there are no cache consistancy
3750	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3751	 */
3752	if (setvalid)
3753		m->valid = VM_PAGE_BITS_ALL;
3754}
3755
3756/*
3757 *	vm_page_is_valid:
3758 *
3759 *	Is (partial) page valid?  Note that the case where size == 0
3760 *	will return FALSE in the degenerate case where the page is
3761 *	entirely invalid, and TRUE otherwise.
3762 */
3763int
3764vm_page_is_valid(vm_page_t m, int base, int size)
3765{
3766	vm_page_bits_t bits;
3767
3768	VM_OBJECT_ASSERT_LOCKED(m->object);
3769	bits = vm_page_bits(base, size);
3770	return (m->valid != 0 && (m->valid & bits) == bits);
3771}
3772
3773/*
3774 *	vm_page_ps_is_valid:
3775 *
3776 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3777 */
3778boolean_t
3779vm_page_ps_is_valid(vm_page_t m)
3780{
3781	int i, npages;
3782
3783	VM_OBJECT_ASSERT_LOCKED(m->object);
3784	npages = atop(pagesizes[m->psind]);
3785
3786	/*
3787	 * The physically contiguous pages that make up a superpage, i.e., a
3788	 * page with a page size index ("psind") greater than zero, will
3789	 * occupy adjacent entries in vm_page_array[].
3790	 */
3791	for (i = 0; i < npages; i++) {
3792		if (m[i].valid != VM_PAGE_BITS_ALL)
3793			return (FALSE);
3794	}
3795	return (TRUE);
3796}
3797
3798/*
3799 * Set the page's dirty bits if the page is modified.
3800 */
3801void
3802vm_page_test_dirty(vm_page_t m)
3803{
3804
3805	VM_OBJECT_ASSERT_WLOCKED(m->object);
3806	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3807		vm_page_dirty(m);
3808}
3809
3810void
3811vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3812{
3813
3814	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3815}
3816
3817void
3818vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3819{
3820
3821	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3822}
3823
3824int
3825vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3826{
3827
3828	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3829}
3830
3831#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3832void
3833vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3834{
3835
3836	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3837}
3838
3839void
3840vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3841{
3842
3843	mtx_assert_(vm_page_lockptr(m), a, file, line);
3844}
3845#endif
3846
3847#ifdef INVARIANTS
3848void
3849vm_page_object_lock_assert(vm_page_t m)
3850{
3851
3852	/*
3853	 * Certain of the page's fields may only be modified by the
3854	 * holder of the containing object's lock or the exclusive busy.
3855	 * holder.  Unfortunately, the holder of the write busy is
3856	 * not recorded, and thus cannot be checked here.
3857	 */
3858	if (m->object != NULL && !vm_page_xbusied(m))
3859		VM_OBJECT_ASSERT_WLOCKED(m->object);
3860}
3861
3862void
3863vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3864{
3865
3866	if ((bits & PGA_WRITEABLE) == 0)
3867		return;
3868
3869	/*
3870	 * The PGA_WRITEABLE flag can only be set if the page is
3871	 * managed, is exclusively busied or the object is locked.
3872	 * Currently, this flag is only set by pmap_enter().
3873	 */
3874	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3875	    ("PGA_WRITEABLE on unmanaged page"));
3876	if (!vm_page_xbusied(m))
3877		VM_OBJECT_ASSERT_LOCKED(m->object);
3878}
3879#endif
3880
3881#include "opt_ddb.h"
3882#ifdef DDB
3883#include <sys/kernel.h>
3884
3885#include <ddb/ddb.h>
3886
3887DB_SHOW_COMMAND(page, vm_page_print_page_info)
3888{
3889	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3890	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3891	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3892	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3893	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3894	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3895	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3896	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3897	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3898}
3899
3900DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3901{
3902	int dom;
3903
3904	db_printf("pq_free %d pq_cache %d\n",
3905	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3906	for (dom = 0; dom < vm_ndomains; dom++) {
3907		db_printf(
3908	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3909		    dom,
3910		    vm_dom[dom].vmd_page_count,
3911		    vm_dom[dom].vmd_free_count,
3912		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3913		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3914		    vm_dom[dom].vmd_pass);
3915	}
3916}
3917
3918DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3919{
3920	vm_page_t m;
3921	boolean_t phys;
3922
3923	if (!have_addr) {
3924		db_printf("show pginfo addr\n");
3925		return;
3926	}
3927
3928	phys = strchr(modif, 'p') != NULL;
3929	if (phys)
3930		m = PHYS_TO_VM_PAGE(addr);
3931	else
3932		m = (vm_page_t)addr;
3933	db_printf(
3934    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3935    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3936	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3937	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3938	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3939}
3940#endif /* DDB */
3941