vm_page.c revision 301210
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 301210 2016-06-02 16:58:47Z markj $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/linker.h>
95#include <sys/malloc.h>
96#include <sys/mman.h>
97#include <sys/msgbuf.h>
98#include <sys/mutex.h>
99#include <sys/proc.h>
100#include <sys/rwlock.h>
101#include <sys/sbuf.h>
102#include <sys/sysctl.h>
103#include <sys/vmmeter.h>
104#include <sys/vnode.h>
105
106#include <vm/vm.h>
107#include <vm/pmap.h>
108#include <vm/vm_param.h>
109#include <vm/vm_kern.h>
110#include <vm/vm_object.h>
111#include <vm/vm_page.h>
112#include <vm/vm_pageout.h>
113#include <vm/vm_pager.h>
114#include <vm/vm_phys.h>
115#include <vm/vm_radix.h>
116#include <vm/vm_reserv.h>
117#include <vm/vm_extern.h>
118#include <vm/uma.h>
119#include <vm/uma_int.h>
120
121#include <machine/md_var.h>
122
123/*
124 *	Associated with page of user-allocatable memory is a
125 *	page structure.
126 */
127
128struct vm_domain vm_dom[MAXMEMDOM];
129struct mtx_padalign vm_page_queue_free_mtx;
130
131struct mtx_padalign pa_lock[PA_LOCK_COUNT];
132
133vm_page_t vm_page_array;
134long vm_page_array_size;
135long first_page;
136int vm_page_zero_count;
137
138static int boot_pages = UMA_BOOT_PAGES;
139SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
140    &boot_pages, 0,
141    "number of pages allocated for bootstrapping the VM system");
142
143static int pa_tryrelock_restart;
144SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
145    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
146
147static TAILQ_HEAD(, vm_page) blacklist_head;
148static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
149SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
150    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
151
152/* Is the page daemon waiting for free pages? */
153static int vm_pageout_pages_needed;
154
155static uma_zone_t fakepg_zone;
156
157static struct vnode *vm_page_alloc_init(vm_page_t m);
158static void vm_page_cache_turn_free(vm_page_t m);
159static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
160static void vm_page_enqueue(uint8_t queue, vm_page_t m);
161static void vm_page_free_wakeup(void);
162static void vm_page_init_fakepg(void *dummy);
163static int vm_page_insert_after(vm_page_t m, vm_object_t object,
164    vm_pindex_t pindex, vm_page_t mpred);
165static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
166    vm_page_t mpred);
167static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
168    vm_paddr_t high);
169
170SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
171
172static void
173vm_page_init_fakepg(void *dummy)
174{
175
176	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
177	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
178}
179
180/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
181#if PAGE_SIZE == 32768
182#ifdef CTASSERT
183CTASSERT(sizeof(u_long) >= 8);
184#endif
185#endif
186
187/*
188 * Try to acquire a physical address lock while a pmap is locked.  If we
189 * fail to trylock we unlock and lock the pmap directly and cache the
190 * locked pa in *locked.  The caller should then restart their loop in case
191 * the virtual to physical mapping has changed.
192 */
193int
194vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
195{
196	vm_paddr_t lockpa;
197
198	lockpa = *locked;
199	*locked = pa;
200	if (lockpa) {
201		PA_LOCK_ASSERT(lockpa, MA_OWNED);
202		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
203			return (0);
204		PA_UNLOCK(lockpa);
205	}
206	if (PA_TRYLOCK(pa))
207		return (0);
208	PMAP_UNLOCK(pmap);
209	atomic_add_int(&pa_tryrelock_restart, 1);
210	PA_LOCK(pa);
211	PMAP_LOCK(pmap);
212	return (EAGAIN);
213}
214
215/*
216 *	vm_set_page_size:
217 *
218 *	Sets the page size, perhaps based upon the memory
219 *	size.  Must be called before any use of page-size
220 *	dependent functions.
221 */
222void
223vm_set_page_size(void)
224{
225	if (vm_cnt.v_page_size == 0)
226		vm_cnt.v_page_size = PAGE_SIZE;
227	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
228		panic("vm_set_page_size: page size not a power of two");
229}
230
231/*
232 *	vm_page_blacklist_next:
233 *
234 *	Find the next entry in the provided string of blacklist
235 *	addresses.  Entries are separated by space, comma, or newline.
236 *	If an invalid integer is encountered then the rest of the
237 *	string is skipped.  Updates the list pointer to the next
238 *	character, or NULL if the string is exhausted or invalid.
239 */
240static vm_paddr_t
241vm_page_blacklist_next(char **list, char *end)
242{
243	vm_paddr_t bad;
244	char *cp, *pos;
245
246	if (list == NULL || *list == NULL)
247		return (0);
248	if (**list =='\0') {
249		*list = NULL;
250		return (0);
251	}
252
253	/*
254	 * If there's no end pointer then the buffer is coming from
255	 * the kenv and we know it's null-terminated.
256	 */
257	if (end == NULL)
258		end = *list + strlen(*list);
259
260	/* Ensure that strtoq() won't walk off the end */
261	if (*end != '\0') {
262		if (*end == '\n' || *end == ' ' || *end  == ',')
263			*end = '\0';
264		else {
265			printf("Blacklist not terminated, skipping\n");
266			*list = NULL;
267			return (0);
268		}
269	}
270
271	for (pos = *list; *pos != '\0'; pos = cp) {
272		bad = strtoq(pos, &cp, 0);
273		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
274			if (bad == 0) {
275				if (++cp < end)
276					continue;
277				else
278					break;
279			}
280		} else
281			break;
282		if (*cp == '\0' || ++cp >= end)
283			*list = NULL;
284		else
285			*list = cp;
286		return (trunc_page(bad));
287	}
288	printf("Garbage in RAM blacklist, skipping\n");
289	*list = NULL;
290	return (0);
291}
292
293/*
294 *	vm_page_blacklist_check:
295 *
296 *	Iterate through the provided string of blacklist addresses, pulling
297 *	each entry out of the physical allocator free list and putting it
298 *	onto a list for reporting via the vm.page_blacklist sysctl.
299 */
300static void
301vm_page_blacklist_check(char *list, char *end)
302{
303	vm_paddr_t pa;
304	vm_page_t m;
305	char *next;
306	int ret;
307
308	next = list;
309	while (next != NULL) {
310		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
311			continue;
312		m = vm_phys_paddr_to_vm_page(pa);
313		if (m == NULL)
314			continue;
315		mtx_lock(&vm_page_queue_free_mtx);
316		ret = vm_phys_unfree_page(m);
317		mtx_unlock(&vm_page_queue_free_mtx);
318		if (ret == TRUE) {
319			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
320			if (bootverbose)
321				printf("Skipping page with pa 0x%jx\n",
322				    (uintmax_t)pa);
323		}
324	}
325}
326
327/*
328 *	vm_page_blacklist_load:
329 *
330 *	Search for a special module named "ram_blacklist".  It'll be a
331 *	plain text file provided by the user via the loader directive
332 *	of the same name.
333 */
334static void
335vm_page_blacklist_load(char **list, char **end)
336{
337	void *mod;
338	u_char *ptr;
339	u_int len;
340
341	mod = NULL;
342	ptr = NULL;
343
344	mod = preload_search_by_type("ram_blacklist");
345	if (mod != NULL) {
346		ptr = preload_fetch_addr(mod);
347		len = preload_fetch_size(mod);
348        }
349	*list = ptr;
350	if (ptr != NULL)
351		*end = ptr + len;
352	else
353		*end = NULL;
354	return;
355}
356
357static int
358sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
359{
360	vm_page_t m;
361	struct sbuf sbuf;
362	int error, first;
363
364	first = 1;
365	error = sysctl_wire_old_buffer(req, 0);
366	if (error != 0)
367		return (error);
368	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
369	TAILQ_FOREACH(m, &blacklist_head, listq) {
370		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
371		    (uintmax_t)m->phys_addr);
372		first = 0;
373	}
374	error = sbuf_finish(&sbuf);
375	sbuf_delete(&sbuf);
376	return (error);
377}
378
379static void
380vm_page_domain_init(struct vm_domain *vmd)
381{
382	struct vm_pagequeue *pq;
383	int i;
384
385	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
386	    "vm inactive pagequeue";
387	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
388	    &vm_cnt.v_inactive_count;
389	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
390	    "vm active pagequeue";
391	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
392	    &vm_cnt.v_active_count;
393	vmd->vmd_page_count = 0;
394	vmd->vmd_free_count = 0;
395	vmd->vmd_segs = 0;
396	vmd->vmd_oom = FALSE;
397	vmd->vmd_pass = 0;
398	for (i = 0; i < PQ_COUNT; i++) {
399		pq = &vmd->vmd_pagequeues[i];
400		TAILQ_INIT(&pq->pq_pl);
401		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
402		    MTX_DEF | MTX_DUPOK);
403	}
404}
405
406/*
407 *	vm_page_startup:
408 *
409 *	Initializes the resident memory module.
410 *
411 *	Allocates memory for the page cells, and
412 *	for the object/offset-to-page hash table headers.
413 *	Each page cell is initialized and placed on the free list.
414 */
415vm_offset_t
416vm_page_startup(vm_offset_t vaddr)
417{
418	vm_offset_t mapped;
419	vm_paddr_t page_range;
420	vm_paddr_t new_end;
421	int i;
422	vm_paddr_t pa;
423	vm_paddr_t last_pa;
424	char *list, *listend;
425	vm_paddr_t end;
426	vm_paddr_t biggestsize;
427	vm_paddr_t low_water, high_water;
428	int biggestone;
429
430	biggestsize = 0;
431	biggestone = 0;
432	vaddr = round_page(vaddr);
433
434	for (i = 0; phys_avail[i + 1]; i += 2) {
435		phys_avail[i] = round_page(phys_avail[i]);
436		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
437	}
438
439	low_water = phys_avail[0];
440	high_water = phys_avail[1];
441
442	for (i = 0; i < vm_phys_nsegs; i++) {
443		if (vm_phys_segs[i].start < low_water)
444			low_water = vm_phys_segs[i].start;
445		if (vm_phys_segs[i].end > high_water)
446			high_water = vm_phys_segs[i].end;
447	}
448	for (i = 0; phys_avail[i + 1]; i += 2) {
449		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
450
451		if (size > biggestsize) {
452			biggestone = i;
453			biggestsize = size;
454		}
455		if (phys_avail[i] < low_water)
456			low_water = phys_avail[i];
457		if (phys_avail[i + 1] > high_water)
458			high_water = phys_avail[i + 1];
459	}
460
461	end = phys_avail[biggestone+1];
462
463	/*
464	 * Initialize the page and queue locks.
465	 */
466	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
467	for (i = 0; i < PA_LOCK_COUNT; i++)
468		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
469	for (i = 0; i < vm_ndomains; i++)
470		vm_page_domain_init(&vm_dom[i]);
471
472	/*
473	 * Allocate memory for use when boot strapping the kernel memory
474	 * allocator.
475	 *
476	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
477	 * manually fetch the value.
478	 */
479	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
480	new_end = end - (boot_pages * UMA_SLAB_SIZE);
481	new_end = trunc_page(new_end);
482	mapped = pmap_map(&vaddr, new_end, end,
483	    VM_PROT_READ | VM_PROT_WRITE);
484	bzero((void *)mapped, end - new_end);
485	uma_startup((void *)mapped, boot_pages);
486
487#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
488    defined(__i386__) || defined(__mips__)
489	/*
490	 * Allocate a bitmap to indicate that a random physical page
491	 * needs to be included in a minidump.
492	 *
493	 * The amd64 port needs this to indicate which direct map pages
494	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
495	 *
496	 * However, i386 still needs this workspace internally within the
497	 * minidump code.  In theory, they are not needed on i386, but are
498	 * included should the sf_buf code decide to use them.
499	 */
500	last_pa = 0;
501	for (i = 0; dump_avail[i + 1] != 0; i += 2)
502		if (dump_avail[i + 1] > last_pa)
503			last_pa = dump_avail[i + 1];
504	page_range = last_pa / PAGE_SIZE;
505	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
506	new_end -= vm_page_dump_size;
507	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
508	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
509	bzero((void *)vm_page_dump, vm_page_dump_size);
510#endif
511#ifdef __amd64__
512	/*
513	 * Request that the physical pages underlying the message buffer be
514	 * included in a crash dump.  Since the message buffer is accessed
515	 * through the direct map, they are not automatically included.
516	 */
517	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
518	last_pa = pa + round_page(msgbufsize);
519	while (pa < last_pa) {
520		dump_add_page(pa);
521		pa += PAGE_SIZE;
522	}
523#endif
524	/*
525	 * Compute the number of pages of memory that will be available for
526	 * use (taking into account the overhead of a page structure per
527	 * page).
528	 */
529	first_page = low_water / PAGE_SIZE;
530#ifdef VM_PHYSSEG_SPARSE
531	page_range = 0;
532	for (i = 0; i < vm_phys_nsegs; i++) {
533		page_range += atop(vm_phys_segs[i].end -
534		    vm_phys_segs[i].start);
535	}
536	for (i = 0; phys_avail[i + 1] != 0; i += 2)
537		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
538#elif defined(VM_PHYSSEG_DENSE)
539	page_range = high_water / PAGE_SIZE - first_page;
540#else
541#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
542#endif
543	end = new_end;
544
545	/*
546	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
547	 */
548	vaddr += PAGE_SIZE;
549
550	/*
551	 * Initialize the mem entry structures now, and put them in the free
552	 * queue.
553	 */
554	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
555	mapped = pmap_map(&vaddr, new_end, end,
556	    VM_PROT_READ | VM_PROT_WRITE);
557	vm_page_array = (vm_page_t) mapped;
558#if VM_NRESERVLEVEL > 0
559	/*
560	 * Allocate memory for the reservation management system's data
561	 * structures.
562	 */
563	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
564#endif
565#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
566	/*
567	 * pmap_map on arm64, amd64, and mips can come out of the direct-map,
568	 * not kvm like i386, so the pages must be tracked for a crashdump to
569	 * include this data.  This includes the vm_page_array and the early
570	 * UMA bootstrap pages.
571	 */
572	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
573		dump_add_page(pa);
574#endif
575	phys_avail[biggestone + 1] = new_end;
576
577	/*
578	 * Add physical memory segments corresponding to the available
579	 * physical pages.
580	 */
581	for (i = 0; phys_avail[i + 1] != 0; i += 2)
582		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
583
584	/*
585	 * Clear all of the page structures
586	 */
587	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
588	for (i = 0; i < page_range; i++)
589		vm_page_array[i].order = VM_NFREEORDER;
590	vm_page_array_size = page_range;
591
592	/*
593	 * Initialize the physical memory allocator.
594	 */
595	vm_phys_init();
596
597	/*
598	 * Add every available physical page that is not blacklisted to
599	 * the free lists.
600	 */
601	vm_cnt.v_page_count = 0;
602	vm_cnt.v_free_count = 0;
603	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
604		pa = phys_avail[i];
605		last_pa = phys_avail[i + 1];
606		while (pa < last_pa) {
607			vm_phys_add_page(pa);
608			pa += PAGE_SIZE;
609		}
610	}
611
612	TAILQ_INIT(&blacklist_head);
613	vm_page_blacklist_load(&list, &listend);
614	vm_page_blacklist_check(list, listend);
615
616	list = kern_getenv("vm.blacklist");
617	vm_page_blacklist_check(list, NULL);
618
619	freeenv(list);
620#if VM_NRESERVLEVEL > 0
621	/*
622	 * Initialize the reservation management system.
623	 */
624	vm_reserv_init();
625#endif
626	return (vaddr);
627}
628
629void
630vm_page_reference(vm_page_t m)
631{
632
633	vm_page_aflag_set(m, PGA_REFERENCED);
634}
635
636/*
637 *	vm_page_busy_downgrade:
638 *
639 *	Downgrade an exclusive busy page into a single shared busy page.
640 */
641void
642vm_page_busy_downgrade(vm_page_t m)
643{
644	u_int x;
645
646	vm_page_assert_xbusied(m);
647
648	for (;;) {
649		x = m->busy_lock;
650		x &= VPB_BIT_WAITERS;
651		if (atomic_cmpset_rel_int(&m->busy_lock,
652		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
653			break;
654	}
655}
656
657/*
658 *	vm_page_sbusied:
659 *
660 *	Return a positive value if the page is shared busied, 0 otherwise.
661 */
662int
663vm_page_sbusied(vm_page_t m)
664{
665	u_int x;
666
667	x = m->busy_lock;
668	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
669}
670
671/*
672 *	vm_page_sunbusy:
673 *
674 *	Shared unbusy a page.
675 */
676void
677vm_page_sunbusy(vm_page_t m)
678{
679	u_int x;
680
681	vm_page_assert_sbusied(m);
682
683	for (;;) {
684		x = m->busy_lock;
685		if (VPB_SHARERS(x) > 1) {
686			if (atomic_cmpset_int(&m->busy_lock, x,
687			    x - VPB_ONE_SHARER))
688				break;
689			continue;
690		}
691		if ((x & VPB_BIT_WAITERS) == 0) {
692			KASSERT(x == VPB_SHARERS_WORD(1),
693			    ("vm_page_sunbusy: invalid lock state"));
694			if (atomic_cmpset_int(&m->busy_lock,
695			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
696				break;
697			continue;
698		}
699		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
700		    ("vm_page_sunbusy: invalid lock state for waiters"));
701
702		vm_page_lock(m);
703		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
704			vm_page_unlock(m);
705			continue;
706		}
707		wakeup(m);
708		vm_page_unlock(m);
709		break;
710	}
711}
712
713/*
714 *	vm_page_busy_sleep:
715 *
716 *	Sleep and release the page lock, using the page pointer as wchan.
717 *	This is used to implement the hard-path of busying mechanism.
718 *
719 *	The given page must be locked.
720 */
721void
722vm_page_busy_sleep(vm_page_t m, const char *wmesg)
723{
724	u_int x;
725
726	vm_page_lock_assert(m, MA_OWNED);
727
728	x = m->busy_lock;
729	if (x == VPB_UNBUSIED) {
730		vm_page_unlock(m);
731		return;
732	}
733	if ((x & VPB_BIT_WAITERS) == 0 &&
734	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
735		vm_page_unlock(m);
736		return;
737	}
738	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
739}
740
741/*
742 *	vm_page_trysbusy:
743 *
744 *	Try to shared busy a page.
745 *	If the operation succeeds 1 is returned otherwise 0.
746 *	The operation never sleeps.
747 */
748int
749vm_page_trysbusy(vm_page_t m)
750{
751	u_int x;
752
753	for (;;) {
754		x = m->busy_lock;
755		if ((x & VPB_BIT_SHARED) == 0)
756			return (0);
757		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
758			return (1);
759	}
760}
761
762static void
763vm_page_xunbusy_maybelocked(vm_page_t m)
764{
765	bool lockacq;
766
767	vm_page_assert_xbusied(m);
768
769	lockacq = !mtx_owned(vm_page_lockptr(m));
770	if (lockacq)
771		vm_page_lock(m);
772	vm_page_flash(m);
773	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
774	if (lockacq)
775		vm_page_unlock(m);
776}
777
778/*
779 *	vm_page_xunbusy_hard:
780 *
781 *	Called after the first try the exclusive unbusy of a page failed.
782 *	It is assumed that the waiters bit is on.
783 */
784void
785vm_page_xunbusy_hard(vm_page_t m)
786{
787
788	vm_page_assert_xbusied(m);
789
790	vm_page_lock(m);
791	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
792	wakeup(m);
793	vm_page_unlock(m);
794}
795
796/*
797 *	vm_page_flash:
798 *
799 *	Wakeup anyone waiting for the page.
800 *	The ownership bits do not change.
801 *
802 *	The given page must be locked.
803 */
804void
805vm_page_flash(vm_page_t m)
806{
807	u_int x;
808
809	vm_page_lock_assert(m, MA_OWNED);
810
811	for (;;) {
812		x = m->busy_lock;
813		if ((x & VPB_BIT_WAITERS) == 0)
814			return;
815		if (atomic_cmpset_int(&m->busy_lock, x,
816		    x & (~VPB_BIT_WAITERS)))
817			break;
818	}
819	wakeup(m);
820}
821
822/*
823 * Keep page from being freed by the page daemon
824 * much of the same effect as wiring, except much lower
825 * overhead and should be used only for *very* temporary
826 * holding ("wiring").
827 */
828void
829vm_page_hold(vm_page_t mem)
830{
831
832	vm_page_lock_assert(mem, MA_OWNED);
833        mem->hold_count++;
834}
835
836void
837vm_page_unhold(vm_page_t mem)
838{
839
840	vm_page_lock_assert(mem, MA_OWNED);
841	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
842	--mem->hold_count;
843	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
844		vm_page_free_toq(mem);
845}
846
847/*
848 *	vm_page_unhold_pages:
849 *
850 *	Unhold each of the pages that is referenced by the given array.
851 */
852void
853vm_page_unhold_pages(vm_page_t *ma, int count)
854{
855	struct mtx *mtx, *new_mtx;
856
857	mtx = NULL;
858	for (; count != 0; count--) {
859		/*
860		 * Avoid releasing and reacquiring the same page lock.
861		 */
862		new_mtx = vm_page_lockptr(*ma);
863		if (mtx != new_mtx) {
864			if (mtx != NULL)
865				mtx_unlock(mtx);
866			mtx = new_mtx;
867			mtx_lock(mtx);
868		}
869		vm_page_unhold(*ma);
870		ma++;
871	}
872	if (mtx != NULL)
873		mtx_unlock(mtx);
874}
875
876vm_page_t
877PHYS_TO_VM_PAGE(vm_paddr_t pa)
878{
879	vm_page_t m;
880
881#ifdef VM_PHYSSEG_SPARSE
882	m = vm_phys_paddr_to_vm_page(pa);
883	if (m == NULL)
884		m = vm_phys_fictitious_to_vm_page(pa);
885	return (m);
886#elif defined(VM_PHYSSEG_DENSE)
887	long pi;
888
889	pi = atop(pa);
890	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
891		m = &vm_page_array[pi - first_page];
892		return (m);
893	}
894	return (vm_phys_fictitious_to_vm_page(pa));
895#else
896#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
897#endif
898}
899
900/*
901 *	vm_page_getfake:
902 *
903 *	Create a fictitious page with the specified physical address and
904 *	memory attribute.  The memory attribute is the only the machine-
905 *	dependent aspect of a fictitious page that must be initialized.
906 */
907vm_page_t
908vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
909{
910	vm_page_t m;
911
912	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
913	vm_page_initfake(m, paddr, memattr);
914	return (m);
915}
916
917void
918vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
919{
920
921	if ((m->flags & PG_FICTITIOUS) != 0) {
922		/*
923		 * The page's memattr might have changed since the
924		 * previous initialization.  Update the pmap to the
925		 * new memattr.
926		 */
927		goto memattr;
928	}
929	m->phys_addr = paddr;
930	m->queue = PQ_NONE;
931	/* Fictitious pages don't use "segind". */
932	m->flags = PG_FICTITIOUS;
933	/* Fictitious pages don't use "order" or "pool". */
934	m->oflags = VPO_UNMANAGED;
935	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
936	m->wire_count = 1;
937	pmap_page_init(m);
938memattr:
939	pmap_page_set_memattr(m, memattr);
940}
941
942/*
943 *	vm_page_putfake:
944 *
945 *	Release a fictitious page.
946 */
947void
948vm_page_putfake(vm_page_t m)
949{
950
951	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
952	KASSERT((m->flags & PG_FICTITIOUS) != 0,
953	    ("vm_page_putfake: bad page %p", m));
954	uma_zfree(fakepg_zone, m);
955}
956
957/*
958 *	vm_page_updatefake:
959 *
960 *	Update the given fictitious page to the specified physical address and
961 *	memory attribute.
962 */
963void
964vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
965{
966
967	KASSERT((m->flags & PG_FICTITIOUS) != 0,
968	    ("vm_page_updatefake: bad page %p", m));
969	m->phys_addr = paddr;
970	pmap_page_set_memattr(m, memattr);
971}
972
973/*
974 *	vm_page_free:
975 *
976 *	Free a page.
977 */
978void
979vm_page_free(vm_page_t m)
980{
981
982	m->flags &= ~PG_ZERO;
983	vm_page_free_toq(m);
984}
985
986/*
987 *	vm_page_free_zero:
988 *
989 *	Free a page to the zerod-pages queue
990 */
991void
992vm_page_free_zero(vm_page_t m)
993{
994
995	m->flags |= PG_ZERO;
996	vm_page_free_toq(m);
997}
998
999/*
1000 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
1001 * array which was optionally read ahead or behind.
1002 */
1003void
1004vm_page_readahead_finish(vm_page_t m)
1005{
1006
1007	/* We shouldn't put invalid pages on queues. */
1008	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1009
1010	/*
1011	 * Since the page is not the actually needed one, whether it should
1012	 * be activated or deactivated is not obvious.  Empirical results
1013	 * have shown that deactivating the page is usually the best choice,
1014	 * unless the page is wanted by another thread.
1015	 */
1016	vm_page_lock(m);
1017	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1018		vm_page_activate(m);
1019	else
1020		vm_page_deactivate(m);
1021	vm_page_unlock(m);
1022	vm_page_xunbusy(m);
1023}
1024
1025/*
1026 *	vm_page_sleep_if_busy:
1027 *
1028 *	Sleep and release the page queues lock if the page is busied.
1029 *	Returns TRUE if the thread slept.
1030 *
1031 *	The given page must be unlocked and object containing it must
1032 *	be locked.
1033 */
1034int
1035vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1036{
1037	vm_object_t obj;
1038
1039	vm_page_lock_assert(m, MA_NOTOWNED);
1040	VM_OBJECT_ASSERT_WLOCKED(m->object);
1041
1042	if (vm_page_busied(m)) {
1043		/*
1044		 * The page-specific object must be cached because page
1045		 * identity can change during the sleep, causing the
1046		 * re-lock of a different object.
1047		 * It is assumed that a reference to the object is already
1048		 * held by the callers.
1049		 */
1050		obj = m->object;
1051		vm_page_lock(m);
1052		VM_OBJECT_WUNLOCK(obj);
1053		vm_page_busy_sleep(m, msg);
1054		VM_OBJECT_WLOCK(obj);
1055		return (TRUE);
1056	}
1057	return (FALSE);
1058}
1059
1060/*
1061 *	vm_page_dirty_KBI:		[ internal use only ]
1062 *
1063 *	Set all bits in the page's dirty field.
1064 *
1065 *	The object containing the specified page must be locked if the
1066 *	call is made from the machine-independent layer.
1067 *
1068 *	See vm_page_clear_dirty_mask().
1069 *
1070 *	This function should only be called by vm_page_dirty().
1071 */
1072void
1073vm_page_dirty_KBI(vm_page_t m)
1074{
1075
1076	/* These assertions refer to this operation by its public name. */
1077	KASSERT((m->flags & PG_CACHED) == 0,
1078	    ("vm_page_dirty: page in cache!"));
1079	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1080	    ("vm_page_dirty: page is invalid!"));
1081	m->dirty = VM_PAGE_BITS_ALL;
1082}
1083
1084/*
1085 *	vm_page_insert:		[ internal use only ]
1086 *
1087 *	Inserts the given mem entry into the object and object list.
1088 *
1089 *	The object must be locked.
1090 */
1091int
1092vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1093{
1094	vm_page_t mpred;
1095
1096	VM_OBJECT_ASSERT_WLOCKED(object);
1097	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1098	return (vm_page_insert_after(m, object, pindex, mpred));
1099}
1100
1101/*
1102 *	vm_page_insert_after:
1103 *
1104 *	Inserts the page "m" into the specified object at offset "pindex".
1105 *
1106 *	The page "mpred" must immediately precede the offset "pindex" within
1107 *	the specified object.
1108 *
1109 *	The object must be locked.
1110 */
1111static int
1112vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1113    vm_page_t mpred)
1114{
1115	vm_page_t msucc;
1116
1117	VM_OBJECT_ASSERT_WLOCKED(object);
1118	KASSERT(m->object == NULL,
1119	    ("vm_page_insert_after: page already inserted"));
1120	if (mpred != NULL) {
1121		KASSERT(mpred->object == object,
1122		    ("vm_page_insert_after: object doesn't contain mpred"));
1123		KASSERT(mpred->pindex < pindex,
1124		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1125		msucc = TAILQ_NEXT(mpred, listq);
1126	} else
1127		msucc = TAILQ_FIRST(&object->memq);
1128	if (msucc != NULL)
1129		KASSERT(msucc->pindex > pindex,
1130		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1131
1132	/*
1133	 * Record the object/offset pair in this page
1134	 */
1135	m->object = object;
1136	m->pindex = pindex;
1137
1138	/*
1139	 * Now link into the object's ordered list of backed pages.
1140	 */
1141	if (vm_radix_insert(&object->rtree, m)) {
1142		m->object = NULL;
1143		m->pindex = 0;
1144		return (1);
1145	}
1146	vm_page_insert_radixdone(m, object, mpred);
1147	return (0);
1148}
1149
1150/*
1151 *	vm_page_insert_radixdone:
1152 *
1153 *	Complete page "m" insertion into the specified object after the
1154 *	radix trie hooking.
1155 *
1156 *	The page "mpred" must precede the offset "m->pindex" within the
1157 *	specified object.
1158 *
1159 *	The object must be locked.
1160 */
1161static void
1162vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1163{
1164
1165	VM_OBJECT_ASSERT_WLOCKED(object);
1166	KASSERT(object != NULL && m->object == object,
1167	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1168	if (mpred != NULL) {
1169		KASSERT(mpred->object == object,
1170		    ("vm_page_insert_after: object doesn't contain mpred"));
1171		KASSERT(mpred->pindex < m->pindex,
1172		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1173	}
1174
1175	if (mpred != NULL)
1176		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1177	else
1178		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1179
1180	/*
1181	 * Show that the object has one more resident page.
1182	 */
1183	object->resident_page_count++;
1184
1185	/*
1186	 * Hold the vnode until the last page is released.
1187	 */
1188	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1189		vhold(object->handle);
1190
1191	/*
1192	 * Since we are inserting a new and possibly dirty page,
1193	 * update the object's OBJ_MIGHTBEDIRTY flag.
1194	 */
1195	if (pmap_page_is_write_mapped(m))
1196		vm_object_set_writeable_dirty(object);
1197}
1198
1199/*
1200 *	vm_page_remove:
1201 *
1202 *	Removes the given mem entry from the object/offset-page
1203 *	table and the object page list, but do not invalidate/terminate
1204 *	the backing store.
1205 *
1206 *	The object must be locked.  The page must be locked if it is managed.
1207 */
1208void
1209vm_page_remove(vm_page_t m)
1210{
1211	vm_object_t object;
1212
1213	if ((m->oflags & VPO_UNMANAGED) == 0)
1214		vm_page_assert_locked(m);
1215	if ((object = m->object) == NULL)
1216		return;
1217	VM_OBJECT_ASSERT_WLOCKED(object);
1218	if (vm_page_xbusied(m))
1219		vm_page_xunbusy_maybelocked(m);
1220
1221	/*
1222	 * Now remove from the object's list of backed pages.
1223	 */
1224	vm_radix_remove(&object->rtree, m->pindex);
1225	TAILQ_REMOVE(&object->memq, m, listq);
1226
1227	/*
1228	 * And show that the object has one fewer resident page.
1229	 */
1230	object->resident_page_count--;
1231
1232	/*
1233	 * The vnode may now be recycled.
1234	 */
1235	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1236		vdrop(object->handle);
1237
1238	m->object = NULL;
1239}
1240
1241/*
1242 *	vm_page_lookup:
1243 *
1244 *	Returns the page associated with the object/offset
1245 *	pair specified; if none is found, NULL is returned.
1246 *
1247 *	The object must be locked.
1248 */
1249vm_page_t
1250vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1251{
1252
1253	VM_OBJECT_ASSERT_LOCKED(object);
1254	return (vm_radix_lookup(&object->rtree, pindex));
1255}
1256
1257/*
1258 *	vm_page_find_least:
1259 *
1260 *	Returns the page associated with the object with least pindex
1261 *	greater than or equal to the parameter pindex, or NULL.
1262 *
1263 *	The object must be locked.
1264 */
1265vm_page_t
1266vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1267{
1268	vm_page_t m;
1269
1270	VM_OBJECT_ASSERT_LOCKED(object);
1271	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1272		m = vm_radix_lookup_ge(&object->rtree, pindex);
1273	return (m);
1274}
1275
1276/*
1277 * Returns the given page's successor (by pindex) within the object if it is
1278 * resident; if none is found, NULL is returned.
1279 *
1280 * The object must be locked.
1281 */
1282vm_page_t
1283vm_page_next(vm_page_t m)
1284{
1285	vm_page_t next;
1286
1287	VM_OBJECT_ASSERT_LOCKED(m->object);
1288	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1289	    next->pindex != m->pindex + 1)
1290		next = NULL;
1291	return (next);
1292}
1293
1294/*
1295 * Returns the given page's predecessor (by pindex) within the object if it is
1296 * resident; if none is found, NULL is returned.
1297 *
1298 * The object must be locked.
1299 */
1300vm_page_t
1301vm_page_prev(vm_page_t m)
1302{
1303	vm_page_t prev;
1304
1305	VM_OBJECT_ASSERT_LOCKED(m->object);
1306	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1307	    prev->pindex != m->pindex - 1)
1308		prev = NULL;
1309	return (prev);
1310}
1311
1312/*
1313 * Uses the page mnew as a replacement for an existing page at index
1314 * pindex which must be already present in the object.
1315 *
1316 * The existing page must not be on a paging queue.
1317 */
1318vm_page_t
1319vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1320{
1321	vm_page_t mold;
1322
1323	VM_OBJECT_ASSERT_WLOCKED(object);
1324	KASSERT(mnew->object == NULL,
1325	    ("vm_page_replace: page already in object"));
1326
1327	/*
1328	 * This function mostly follows vm_page_insert() and
1329	 * vm_page_remove() without the radix, object count and vnode
1330	 * dance.  Double check such functions for more comments.
1331	 */
1332
1333	mnew->object = object;
1334	mnew->pindex = pindex;
1335	mold = vm_radix_replace(&object->rtree, mnew);
1336	KASSERT(mold->queue == PQ_NONE,
1337	    ("vm_page_replace: mold is on a paging queue"));
1338
1339	/* Keep the resident page list in sorted order. */
1340	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1341	TAILQ_REMOVE(&object->memq, mold, listq);
1342
1343	mold->object = NULL;
1344	vm_page_xunbusy_maybelocked(mold);
1345
1346	/*
1347	 * The object's resident_page_count does not change because we have
1348	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1349	 */
1350	if (pmap_page_is_write_mapped(mnew))
1351		vm_object_set_writeable_dirty(object);
1352	return (mold);
1353}
1354
1355/*
1356 *	vm_page_rename:
1357 *
1358 *	Move the given memory entry from its
1359 *	current object to the specified target object/offset.
1360 *
1361 *	Note: swap associated with the page must be invalidated by the move.  We
1362 *	      have to do this for several reasons:  (1) we aren't freeing the
1363 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1364 *	      moving the page from object A to B, and will then later move
1365 *	      the backing store from A to B and we can't have a conflict.
1366 *
1367 *	Note: we *always* dirty the page.  It is necessary both for the
1368 *	      fact that we moved it, and because we may be invalidating
1369 *	      swap.  If the page is on the cache, we have to deactivate it
1370 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1371 *	      on the cache.
1372 *
1373 *	The objects must be locked.
1374 */
1375int
1376vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1377{
1378	vm_page_t mpred;
1379	vm_pindex_t opidx;
1380
1381	VM_OBJECT_ASSERT_WLOCKED(new_object);
1382
1383	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1384	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1385	    ("vm_page_rename: pindex already renamed"));
1386
1387	/*
1388	 * Create a custom version of vm_page_insert() which does not depend
1389	 * by m_prev and can cheat on the implementation aspects of the
1390	 * function.
1391	 */
1392	opidx = m->pindex;
1393	m->pindex = new_pindex;
1394	if (vm_radix_insert(&new_object->rtree, m)) {
1395		m->pindex = opidx;
1396		return (1);
1397	}
1398
1399	/*
1400	 * The operation cannot fail anymore.  The removal must happen before
1401	 * the listq iterator is tainted.
1402	 */
1403	m->pindex = opidx;
1404	vm_page_lock(m);
1405	vm_page_remove(m);
1406
1407	/* Return back to the new pindex to complete vm_page_insert(). */
1408	m->pindex = new_pindex;
1409	m->object = new_object;
1410	vm_page_unlock(m);
1411	vm_page_insert_radixdone(m, new_object, mpred);
1412	vm_page_dirty(m);
1413	return (0);
1414}
1415
1416/*
1417 *	Convert all of the given object's cached pages that have a
1418 *	pindex within the given range into free pages.  If the value
1419 *	zero is given for "end", then the range's upper bound is
1420 *	infinity.  If the given object is backed by a vnode and it
1421 *	transitions from having one or more cached pages to none, the
1422 *	vnode's hold count is reduced.
1423 */
1424void
1425vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1426{
1427	vm_page_t m;
1428	boolean_t empty;
1429
1430	mtx_lock(&vm_page_queue_free_mtx);
1431	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1432		mtx_unlock(&vm_page_queue_free_mtx);
1433		return;
1434	}
1435	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1436		if (end != 0 && m->pindex >= end)
1437			break;
1438		vm_radix_remove(&object->cache, m->pindex);
1439		vm_page_cache_turn_free(m);
1440	}
1441	empty = vm_radix_is_empty(&object->cache);
1442	mtx_unlock(&vm_page_queue_free_mtx);
1443	if (object->type == OBJT_VNODE && empty)
1444		vdrop(object->handle);
1445}
1446
1447/*
1448 *	Returns the cached page that is associated with the given
1449 *	object and offset.  If, however, none exists, returns NULL.
1450 *
1451 *	The free page queue must be locked.
1452 */
1453static inline vm_page_t
1454vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1455{
1456
1457	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1458	return (vm_radix_lookup(&object->cache, pindex));
1459}
1460
1461/*
1462 *	Remove the given cached page from its containing object's
1463 *	collection of cached pages.
1464 *
1465 *	The free page queue must be locked.
1466 */
1467static void
1468vm_page_cache_remove(vm_page_t m)
1469{
1470
1471	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1472	KASSERT((m->flags & PG_CACHED) != 0,
1473	    ("vm_page_cache_remove: page %p is not cached", m));
1474	vm_radix_remove(&m->object->cache, m->pindex);
1475	m->object = NULL;
1476	vm_cnt.v_cache_count--;
1477}
1478
1479/*
1480 *	Transfer all of the cached pages with offset greater than or
1481 *	equal to 'offidxstart' from the original object's cache to the
1482 *	new object's cache.  However, any cached pages with offset
1483 *	greater than or equal to the new object's size are kept in the
1484 *	original object.  Initially, the new object's cache must be
1485 *	empty.  Offset 'offidxstart' in the original object must
1486 *	correspond to offset zero in the new object.
1487 *
1488 *	The new object must be locked.
1489 */
1490void
1491vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1492    vm_object_t new_object)
1493{
1494	vm_page_t m;
1495
1496	/*
1497	 * Insertion into an object's collection of cached pages
1498	 * requires the object to be locked.  In contrast, removal does
1499	 * not.
1500	 */
1501	VM_OBJECT_ASSERT_WLOCKED(new_object);
1502	KASSERT(vm_radix_is_empty(&new_object->cache),
1503	    ("vm_page_cache_transfer: object %p has cached pages",
1504	    new_object));
1505	mtx_lock(&vm_page_queue_free_mtx);
1506	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1507	    offidxstart)) != NULL) {
1508		/*
1509		 * Transfer all of the pages with offset greater than or
1510		 * equal to 'offidxstart' from the original object's
1511		 * cache to the new object's cache.
1512		 */
1513		if ((m->pindex - offidxstart) >= new_object->size)
1514			break;
1515		vm_radix_remove(&orig_object->cache, m->pindex);
1516		/* Update the page's object and offset. */
1517		m->object = new_object;
1518		m->pindex -= offidxstart;
1519		if (vm_radix_insert(&new_object->cache, m))
1520			vm_page_cache_turn_free(m);
1521	}
1522	mtx_unlock(&vm_page_queue_free_mtx);
1523}
1524
1525/*
1526 *	Returns TRUE if a cached page is associated with the given object and
1527 *	offset, and FALSE otherwise.
1528 *
1529 *	The object must be locked.
1530 */
1531boolean_t
1532vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1533{
1534	vm_page_t m;
1535
1536	/*
1537	 * Insertion into an object's collection of cached pages requires the
1538	 * object to be locked.  Therefore, if the object is locked and the
1539	 * object's collection is empty, there is no need to acquire the free
1540	 * page queues lock in order to prove that the specified page doesn't
1541	 * exist.
1542	 */
1543	VM_OBJECT_ASSERT_WLOCKED(object);
1544	if (__predict_true(vm_object_cache_is_empty(object)))
1545		return (FALSE);
1546	mtx_lock(&vm_page_queue_free_mtx);
1547	m = vm_page_cache_lookup(object, pindex);
1548	mtx_unlock(&vm_page_queue_free_mtx);
1549	return (m != NULL);
1550}
1551
1552/*
1553 *	vm_page_alloc:
1554 *
1555 *	Allocate and return a page that is associated with the specified
1556 *	object and offset pair.  By default, this page is exclusive busied.
1557 *
1558 *	The caller must always specify an allocation class.
1559 *
1560 *	allocation classes:
1561 *	VM_ALLOC_NORMAL		normal process request
1562 *	VM_ALLOC_SYSTEM		system *really* needs a page
1563 *	VM_ALLOC_INTERRUPT	interrupt time request
1564 *
1565 *	optional allocation flags:
1566 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1567 *				intends to allocate
1568 *	VM_ALLOC_IFCACHED	return page only if it is cached
1569 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1570 *				is cached
1571 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1572 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1573 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1574 *				should not be exclusive busy
1575 *	VM_ALLOC_SBUSY		shared busy the allocated page
1576 *	VM_ALLOC_WIRED		wire the allocated page
1577 *	VM_ALLOC_ZERO		prefer a zeroed page
1578 *
1579 *	This routine may not sleep.
1580 */
1581vm_page_t
1582vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1583{
1584	struct vnode *vp = NULL;
1585	vm_object_t m_object;
1586	vm_page_t m, mpred;
1587	int flags, req_class;
1588
1589	mpred = 0;	/* XXX: pacify gcc */
1590	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1591	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1592	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1593	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1594	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1595	    req));
1596	if (object != NULL)
1597		VM_OBJECT_ASSERT_WLOCKED(object);
1598
1599	req_class = req & VM_ALLOC_CLASS_MASK;
1600
1601	/*
1602	 * The page daemon is allowed to dig deeper into the free page list.
1603	 */
1604	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1605		req_class = VM_ALLOC_SYSTEM;
1606
1607	if (object != NULL) {
1608		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1609		KASSERT(mpred == NULL || mpred->pindex != pindex,
1610		   ("vm_page_alloc: pindex already allocated"));
1611	}
1612
1613	/*
1614	 * The page allocation request can came from consumers which already
1615	 * hold the free page queue mutex, like vm_page_insert() in
1616	 * vm_page_cache().
1617	 */
1618	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1619	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1620	    (req_class == VM_ALLOC_SYSTEM &&
1621	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1622	    (req_class == VM_ALLOC_INTERRUPT &&
1623	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1624		/*
1625		 * Allocate from the free queue if the number of free pages
1626		 * exceeds the minimum for the request class.
1627		 */
1628		if (object != NULL &&
1629		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1630			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1631				mtx_unlock(&vm_page_queue_free_mtx);
1632				return (NULL);
1633			}
1634			if (vm_phys_unfree_page(m))
1635				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1636#if VM_NRESERVLEVEL > 0
1637			else if (!vm_reserv_reactivate_page(m))
1638#else
1639			else
1640#endif
1641				panic("vm_page_alloc: cache page %p is missing"
1642				    " from the free queue", m);
1643		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1644			mtx_unlock(&vm_page_queue_free_mtx);
1645			return (NULL);
1646#if VM_NRESERVLEVEL > 0
1647		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1648		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1649		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1650#else
1651		} else {
1652#endif
1653			m = vm_phys_alloc_pages(object != NULL ?
1654			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1655#if VM_NRESERVLEVEL > 0
1656			if (m == NULL && vm_reserv_reclaim_inactive()) {
1657				m = vm_phys_alloc_pages(object != NULL ?
1658				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1659				    0);
1660			}
1661#endif
1662		}
1663	} else {
1664		/*
1665		 * Not allocatable, give up.
1666		 */
1667		mtx_unlock(&vm_page_queue_free_mtx);
1668		atomic_add_int(&vm_pageout_deficit,
1669		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1670		pagedaemon_wakeup();
1671		return (NULL);
1672	}
1673
1674	/*
1675	 *  At this point we had better have found a good page.
1676	 */
1677	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1678	KASSERT(m->queue == PQ_NONE,
1679	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1680	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1681	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1682	KASSERT(!vm_page_sbusied(m),
1683	    ("vm_page_alloc: page %p is busy", m));
1684	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1685	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1686	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1687	    pmap_page_get_memattr(m)));
1688	if ((m->flags & PG_CACHED) != 0) {
1689		KASSERT((m->flags & PG_ZERO) == 0,
1690		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1691		KASSERT(m->valid != 0,
1692		    ("vm_page_alloc: cached page %p is invalid", m));
1693		if (m->object == object && m->pindex == pindex)
1694			vm_cnt.v_reactivated++;
1695		else
1696			m->valid = 0;
1697		m_object = m->object;
1698		vm_page_cache_remove(m);
1699		if (m_object->type == OBJT_VNODE &&
1700		    vm_object_cache_is_empty(m_object))
1701			vp = m_object->handle;
1702	} else {
1703		KASSERT(m->valid == 0,
1704		    ("vm_page_alloc: free page %p is valid", m));
1705		vm_phys_freecnt_adj(m, -1);
1706		if ((m->flags & PG_ZERO) != 0)
1707			vm_page_zero_count--;
1708	}
1709	mtx_unlock(&vm_page_queue_free_mtx);
1710
1711	/*
1712	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1713	 */
1714	flags = 0;
1715	if ((req & VM_ALLOC_ZERO) != 0)
1716		flags = PG_ZERO;
1717	flags &= m->flags;
1718	if ((req & VM_ALLOC_NODUMP) != 0)
1719		flags |= PG_NODUMP;
1720	m->flags = flags;
1721	m->aflags = 0;
1722	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1723	    VPO_UNMANAGED : 0;
1724	m->busy_lock = VPB_UNBUSIED;
1725	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1726		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1727	if ((req & VM_ALLOC_SBUSY) != 0)
1728		m->busy_lock = VPB_SHARERS_WORD(1);
1729	if (req & VM_ALLOC_WIRED) {
1730		/*
1731		 * The page lock is not required for wiring a page until that
1732		 * page is inserted into the object.
1733		 */
1734		atomic_add_int(&vm_cnt.v_wire_count, 1);
1735		m->wire_count = 1;
1736	}
1737	m->act_count = 0;
1738
1739	if (object != NULL) {
1740		if (vm_page_insert_after(m, object, pindex, mpred)) {
1741			/* See the comment below about hold count. */
1742			if (vp != NULL)
1743				vdrop(vp);
1744			pagedaemon_wakeup();
1745			if (req & VM_ALLOC_WIRED) {
1746				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1747				m->wire_count = 0;
1748			}
1749			m->object = NULL;
1750			m->oflags = VPO_UNMANAGED;
1751			vm_page_free(m);
1752			return (NULL);
1753		}
1754
1755		/* Ignore device objects; the pager sets "memattr" for them. */
1756		if (object->memattr != VM_MEMATTR_DEFAULT &&
1757		    (object->flags & OBJ_FICTITIOUS) == 0)
1758			pmap_page_set_memattr(m, object->memattr);
1759	} else
1760		m->pindex = pindex;
1761
1762	/*
1763	 * The following call to vdrop() must come after the above call
1764	 * to vm_page_insert() in case both affect the same object and
1765	 * vnode.  Otherwise, the affected vnode's hold count could
1766	 * temporarily become zero.
1767	 */
1768	if (vp != NULL)
1769		vdrop(vp);
1770
1771	/*
1772	 * Don't wakeup too often - wakeup the pageout daemon when
1773	 * we would be nearly out of memory.
1774	 */
1775	if (vm_paging_needed())
1776		pagedaemon_wakeup();
1777
1778	return (m);
1779}
1780
1781static void
1782vm_page_alloc_contig_vdrop(struct spglist *lst)
1783{
1784
1785	while (!SLIST_EMPTY(lst)) {
1786		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1787		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1788	}
1789}
1790
1791/*
1792 *	vm_page_alloc_contig:
1793 *
1794 *	Allocate a contiguous set of physical pages of the given size "npages"
1795 *	from the free lists.  All of the physical pages must be at or above
1796 *	the given physical address "low" and below the given physical address
1797 *	"high".  The given value "alignment" determines the alignment of the
1798 *	first physical page in the set.  If the given value "boundary" is
1799 *	non-zero, then the set of physical pages cannot cross any physical
1800 *	address boundary that is a multiple of that value.  Both "alignment"
1801 *	and "boundary" must be a power of two.
1802 *
1803 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1804 *	then the memory attribute setting for the physical pages is configured
1805 *	to the object's memory attribute setting.  Otherwise, the memory
1806 *	attribute setting for the physical pages is configured to "memattr",
1807 *	overriding the object's memory attribute setting.  However, if the
1808 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1809 *	memory attribute setting for the physical pages cannot be configured
1810 *	to VM_MEMATTR_DEFAULT.
1811 *
1812 *	The caller must always specify an allocation class.
1813 *
1814 *	allocation classes:
1815 *	VM_ALLOC_NORMAL		normal process request
1816 *	VM_ALLOC_SYSTEM		system *really* needs a page
1817 *	VM_ALLOC_INTERRUPT	interrupt time request
1818 *
1819 *	optional allocation flags:
1820 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1821 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1822 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1823 *				should not be exclusive busy
1824 *	VM_ALLOC_SBUSY		shared busy the allocated page
1825 *	VM_ALLOC_WIRED		wire the allocated page
1826 *	VM_ALLOC_ZERO		prefer a zeroed page
1827 *
1828 *	This routine may not sleep.
1829 */
1830vm_page_t
1831vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1832    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1833    vm_paddr_t boundary, vm_memattr_t memattr)
1834{
1835	struct vnode *drop;
1836	struct spglist deferred_vdrop_list;
1837	vm_page_t m, m_tmp, m_ret;
1838	u_int flags;
1839	int req_class;
1840
1841	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1842	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1843	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1844	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1845	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1846	    req));
1847	if (object != NULL) {
1848		VM_OBJECT_ASSERT_WLOCKED(object);
1849		KASSERT(object->type == OBJT_PHYS,
1850		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1851		    object));
1852	}
1853	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1854	req_class = req & VM_ALLOC_CLASS_MASK;
1855
1856	/*
1857	 * The page daemon is allowed to dig deeper into the free page list.
1858	 */
1859	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1860		req_class = VM_ALLOC_SYSTEM;
1861
1862	SLIST_INIT(&deferred_vdrop_list);
1863	mtx_lock(&vm_page_queue_free_mtx);
1864	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1865	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1866	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1867	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1868	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1869#if VM_NRESERVLEVEL > 0
1870retry:
1871		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1872		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1873		    low, high, alignment, boundary)) == NULL)
1874#endif
1875			m_ret = vm_phys_alloc_contig(npages, low, high,
1876			    alignment, boundary);
1877	} else {
1878		mtx_unlock(&vm_page_queue_free_mtx);
1879		atomic_add_int(&vm_pageout_deficit, npages);
1880		pagedaemon_wakeup();
1881		return (NULL);
1882	}
1883	if (m_ret != NULL)
1884		for (m = m_ret; m < &m_ret[npages]; m++) {
1885			drop = vm_page_alloc_init(m);
1886			if (drop != NULL) {
1887				/*
1888				 * Enqueue the vnode for deferred vdrop().
1889				 */
1890				m->plinks.s.pv = drop;
1891				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1892				    plinks.s.ss);
1893			}
1894		}
1895	else {
1896#if VM_NRESERVLEVEL > 0
1897		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1898		    boundary))
1899			goto retry;
1900#endif
1901	}
1902	mtx_unlock(&vm_page_queue_free_mtx);
1903	if (m_ret == NULL)
1904		return (NULL);
1905
1906	/*
1907	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1908	 */
1909	flags = 0;
1910	if ((req & VM_ALLOC_ZERO) != 0)
1911		flags = PG_ZERO;
1912	if ((req & VM_ALLOC_NODUMP) != 0)
1913		flags |= PG_NODUMP;
1914	if ((req & VM_ALLOC_WIRED) != 0)
1915		atomic_add_int(&vm_cnt.v_wire_count, npages);
1916	if (object != NULL) {
1917		if (object->memattr != VM_MEMATTR_DEFAULT &&
1918		    memattr == VM_MEMATTR_DEFAULT)
1919			memattr = object->memattr;
1920	}
1921	for (m = m_ret; m < &m_ret[npages]; m++) {
1922		m->aflags = 0;
1923		m->flags = (m->flags | PG_NODUMP) & flags;
1924		m->busy_lock = VPB_UNBUSIED;
1925		if (object != NULL) {
1926			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1927				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1928			if ((req & VM_ALLOC_SBUSY) != 0)
1929				m->busy_lock = VPB_SHARERS_WORD(1);
1930		}
1931		if ((req & VM_ALLOC_WIRED) != 0)
1932			m->wire_count = 1;
1933		/* Unmanaged pages don't use "act_count". */
1934		m->oflags = VPO_UNMANAGED;
1935		if (object != NULL) {
1936			if (vm_page_insert(m, object, pindex)) {
1937				vm_page_alloc_contig_vdrop(
1938				    &deferred_vdrop_list);
1939				if (vm_paging_needed())
1940					pagedaemon_wakeup();
1941				if ((req & VM_ALLOC_WIRED) != 0)
1942					atomic_subtract_int(&vm_cnt.v_wire_count,
1943					    npages);
1944				for (m_tmp = m, m = m_ret;
1945				    m < &m_ret[npages]; m++) {
1946					if ((req & VM_ALLOC_WIRED) != 0)
1947						m->wire_count = 0;
1948					if (m >= m_tmp) {
1949						m->object = NULL;
1950						m->oflags |= VPO_UNMANAGED;
1951					}
1952					vm_page_free(m);
1953				}
1954				return (NULL);
1955			}
1956		} else
1957			m->pindex = pindex;
1958		if (memattr != VM_MEMATTR_DEFAULT)
1959			pmap_page_set_memattr(m, memattr);
1960		pindex++;
1961	}
1962	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1963	if (vm_paging_needed())
1964		pagedaemon_wakeup();
1965	return (m_ret);
1966}
1967
1968/*
1969 * Initialize a page that has been freshly dequeued from a freelist.
1970 * The caller has to drop the vnode returned, if it is not NULL.
1971 *
1972 * This function may only be used to initialize unmanaged pages.
1973 *
1974 * To be called with vm_page_queue_free_mtx held.
1975 */
1976static struct vnode *
1977vm_page_alloc_init(vm_page_t m)
1978{
1979	struct vnode *drop;
1980	vm_object_t m_object;
1981
1982	KASSERT(m->queue == PQ_NONE,
1983	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1984	    m, m->queue));
1985	KASSERT(m->wire_count == 0,
1986	    ("vm_page_alloc_init: page %p is wired", m));
1987	KASSERT(m->hold_count == 0,
1988	    ("vm_page_alloc_init: page %p is held", m));
1989	KASSERT(!vm_page_sbusied(m),
1990	    ("vm_page_alloc_init: page %p is busy", m));
1991	KASSERT(m->dirty == 0,
1992	    ("vm_page_alloc_init: page %p is dirty", m));
1993	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1994	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1995	    m, pmap_page_get_memattr(m)));
1996	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1997	drop = NULL;
1998	if ((m->flags & PG_CACHED) != 0) {
1999		KASSERT((m->flags & PG_ZERO) == 0,
2000		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
2001		m->valid = 0;
2002		m_object = m->object;
2003		vm_page_cache_remove(m);
2004		if (m_object->type == OBJT_VNODE &&
2005		    vm_object_cache_is_empty(m_object))
2006			drop = m_object->handle;
2007	} else {
2008		KASSERT(m->valid == 0,
2009		    ("vm_page_alloc_init: free page %p is valid", m));
2010		vm_phys_freecnt_adj(m, -1);
2011		if ((m->flags & PG_ZERO) != 0)
2012			vm_page_zero_count--;
2013	}
2014	return (drop);
2015}
2016
2017/*
2018 * 	vm_page_alloc_freelist:
2019 *
2020 *	Allocate a physical page from the specified free page list.
2021 *
2022 *	The caller must always specify an allocation class.
2023 *
2024 *	allocation classes:
2025 *	VM_ALLOC_NORMAL		normal process request
2026 *	VM_ALLOC_SYSTEM		system *really* needs a page
2027 *	VM_ALLOC_INTERRUPT	interrupt time request
2028 *
2029 *	optional allocation flags:
2030 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2031 *				intends to allocate
2032 *	VM_ALLOC_WIRED		wire the allocated page
2033 *	VM_ALLOC_ZERO		prefer a zeroed page
2034 *
2035 *	This routine may not sleep.
2036 */
2037vm_page_t
2038vm_page_alloc_freelist(int flind, int req)
2039{
2040	struct vnode *drop;
2041	vm_page_t m;
2042	u_int flags;
2043	int req_class;
2044
2045	req_class = req & VM_ALLOC_CLASS_MASK;
2046
2047	/*
2048	 * The page daemon is allowed to dig deeper into the free page list.
2049	 */
2050	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2051		req_class = VM_ALLOC_SYSTEM;
2052
2053	/*
2054	 * Do not allocate reserved pages unless the req has asked for it.
2055	 */
2056	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
2057	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
2058	    (req_class == VM_ALLOC_SYSTEM &&
2059	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
2060	    (req_class == VM_ALLOC_INTERRUPT &&
2061	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
2062		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2063	else {
2064		mtx_unlock(&vm_page_queue_free_mtx);
2065		atomic_add_int(&vm_pageout_deficit,
2066		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2067		pagedaemon_wakeup();
2068		return (NULL);
2069	}
2070	if (m == NULL) {
2071		mtx_unlock(&vm_page_queue_free_mtx);
2072		return (NULL);
2073	}
2074	drop = vm_page_alloc_init(m);
2075	mtx_unlock(&vm_page_queue_free_mtx);
2076
2077	/*
2078	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2079	 */
2080	m->aflags = 0;
2081	flags = 0;
2082	if ((req & VM_ALLOC_ZERO) != 0)
2083		flags = PG_ZERO;
2084	m->flags &= flags;
2085	if ((req & VM_ALLOC_WIRED) != 0) {
2086		/*
2087		 * The page lock is not required for wiring a page that does
2088		 * not belong to an object.
2089		 */
2090		atomic_add_int(&vm_cnt.v_wire_count, 1);
2091		m->wire_count = 1;
2092	}
2093	/* Unmanaged pages don't use "act_count". */
2094	m->oflags = VPO_UNMANAGED;
2095	if (drop != NULL)
2096		vdrop(drop);
2097	if (vm_paging_needed())
2098		pagedaemon_wakeup();
2099	return (m);
2100}
2101
2102#define	VPSC_ANY	0	/* No restrictions. */
2103#define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2104#define	VPSC_NOSUPER	2	/* Skip superpages. */
2105
2106/*
2107 *	vm_page_scan_contig:
2108 *
2109 *	Scan vm_page_array[] between the specified entries "m_start" and
2110 *	"m_end" for a run of contiguous physical pages that satisfy the
2111 *	specified conditions, and return the lowest page in the run.  The
2112 *	specified "alignment" determines the alignment of the lowest physical
2113 *	page in the run.  If the specified "boundary" is non-zero, then the
2114 *	run of physical pages cannot span a physical address that is a
2115 *	multiple of "boundary".
2116 *
2117 *	"m_end" is never dereferenced, so it need not point to a vm_page
2118 *	structure within vm_page_array[].
2119 *
2120 *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2121 *	span a hole (or discontiguity) in the physical address space.  Both
2122 *	"alignment" and "boundary" must be a power of two.
2123 */
2124vm_page_t
2125vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2126    u_long alignment, vm_paddr_t boundary, int options)
2127{
2128	struct mtx *m_mtx, *new_mtx;
2129	vm_object_t object;
2130	vm_paddr_t pa;
2131	vm_page_t m, m_run;
2132#if VM_NRESERVLEVEL > 0
2133	int level;
2134#endif
2135	int m_inc, order, run_ext, run_len;
2136
2137	KASSERT(npages > 0, ("npages is 0"));
2138	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2139	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2140	m_run = NULL;
2141	run_len = 0;
2142	m_mtx = NULL;
2143	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2144		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2145		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2146
2147		/*
2148		 * If the current page would be the start of a run, check its
2149		 * physical address against the end, alignment, and boundary
2150		 * conditions.  If it doesn't satisfy these conditions, either
2151		 * terminate the scan or advance to the next page that
2152		 * satisfies the failed condition.
2153		 */
2154		if (run_len == 0) {
2155			KASSERT(m_run == NULL, ("m_run != NULL"));
2156			if (m + npages > m_end)
2157				break;
2158			pa = VM_PAGE_TO_PHYS(m);
2159			if ((pa & (alignment - 1)) != 0) {
2160				m_inc = atop(roundup2(pa, alignment) - pa);
2161				continue;
2162			}
2163			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2164			    boundary) != 0) {
2165				m_inc = atop(roundup2(pa, boundary) - pa);
2166				continue;
2167			}
2168		} else
2169			KASSERT(m_run != NULL, ("m_run == NULL"));
2170
2171		/*
2172		 * Avoid releasing and reacquiring the same page lock.
2173		 */
2174		new_mtx = vm_page_lockptr(m);
2175		if (m_mtx != new_mtx) {
2176			if (m_mtx != NULL)
2177				mtx_unlock(m_mtx);
2178			m_mtx = new_mtx;
2179			mtx_lock(m_mtx);
2180		}
2181		m_inc = 1;
2182retry:
2183		if (m->wire_count != 0 || m->hold_count != 0)
2184			run_ext = 0;
2185#if VM_NRESERVLEVEL > 0
2186		else if ((level = vm_reserv_level(m)) >= 0 &&
2187		    (options & VPSC_NORESERV) != 0) {
2188			run_ext = 0;
2189			/* Advance to the end of the reservation. */
2190			pa = VM_PAGE_TO_PHYS(m);
2191			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2192			    pa);
2193		}
2194#endif
2195		else if ((object = m->object) != NULL) {
2196			/*
2197			 * The page is considered eligible for relocation if
2198			 * and only if it could be laundered or reclaimed by
2199			 * the page daemon.
2200			 */
2201			if (!VM_OBJECT_TRYRLOCK(object)) {
2202				mtx_unlock(m_mtx);
2203				VM_OBJECT_RLOCK(object);
2204				mtx_lock(m_mtx);
2205				if (m->object != object) {
2206					/*
2207					 * The page may have been freed.
2208					 */
2209					VM_OBJECT_RUNLOCK(object);
2210					goto retry;
2211				} else if (m->wire_count != 0 ||
2212				    m->hold_count != 0) {
2213					run_ext = 0;
2214					goto unlock;
2215				}
2216			}
2217			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2218			    ("page %p is PG_UNHOLDFREE", m));
2219			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2220			if (object->type != OBJT_DEFAULT &&
2221			    object->type != OBJT_SWAP &&
2222			    object->type != OBJT_VNODE)
2223				run_ext = 0;
2224			else if ((m->flags & PG_CACHED) != 0 ||
2225			    m != vm_page_lookup(object, m->pindex)) {
2226				/*
2227				 * The page is cached or recently converted
2228				 * from cached to free.
2229				 */
2230#if VM_NRESERVLEVEL > 0
2231				if (level >= 0) {
2232					/*
2233					 * The page is reserved.  Extend the
2234					 * current run by one page.
2235					 */
2236					run_ext = 1;
2237				} else
2238#endif
2239				if ((order = m->order) < VM_NFREEORDER) {
2240					/*
2241					 * The page is enqueued in the
2242					 * physical memory allocator's cache/
2243					 * free page queues.  Moreover, it is
2244					 * the first page in a power-of-two-
2245					 * sized run of contiguous cache/free
2246					 * pages.  Add these pages to the end
2247					 * of the current run, and jump
2248					 * ahead.
2249					 */
2250					run_ext = 1 << order;
2251					m_inc = 1 << order;
2252				} else
2253					run_ext = 0;
2254#if VM_NRESERVLEVEL > 0
2255			} else if ((options & VPSC_NOSUPER) != 0 &&
2256			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2257				run_ext = 0;
2258				/* Advance to the end of the superpage. */
2259				pa = VM_PAGE_TO_PHYS(m);
2260				m_inc = atop(roundup2(pa + 1,
2261				    vm_reserv_size(level)) - pa);
2262#endif
2263			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2264			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2265				/*
2266				 * The page is allocated but eligible for
2267				 * relocation.  Extend the current run by one
2268				 * page.
2269				 */
2270				KASSERT(pmap_page_get_memattr(m) ==
2271				    VM_MEMATTR_DEFAULT,
2272				    ("page %p has an unexpected memattr", m));
2273				KASSERT((m->oflags & (VPO_SWAPINPROG |
2274				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2275				    ("page %p has unexpected oflags", m));
2276				/* Don't care: VPO_NOSYNC. */
2277				run_ext = 1;
2278			} else
2279				run_ext = 0;
2280unlock:
2281			VM_OBJECT_RUNLOCK(object);
2282#if VM_NRESERVLEVEL > 0
2283		} else if (level >= 0) {
2284			/*
2285			 * The page is reserved but not yet allocated.  In
2286			 * other words, it is still cached or free.  Extend
2287			 * the current run by one page.
2288			 */
2289			run_ext = 1;
2290#endif
2291		} else if ((order = m->order) < VM_NFREEORDER) {
2292			/*
2293			 * The page is enqueued in the physical memory
2294			 * allocator's cache/free page queues.  Moreover, it
2295			 * is the first page in a power-of-two-sized run of
2296			 * contiguous cache/free pages.  Add these pages to
2297			 * the end of the current run, and jump ahead.
2298			 */
2299			run_ext = 1 << order;
2300			m_inc = 1 << order;
2301		} else {
2302			/*
2303			 * Skip the page for one of the following reasons: (1)
2304			 * It is enqueued in the physical memory allocator's
2305			 * cache/free page queues.  However, it is not the
2306			 * first page in a run of contiguous cache/free pages.
2307			 * (This case rarely occurs because the scan is
2308			 * performed in ascending order.) (2) It is not
2309			 * reserved, and it is transitioning from free to
2310			 * allocated.  (Conversely, the transition from
2311			 * allocated to free for managed pages is blocked by
2312			 * the page lock.) (3) It is allocated but not
2313			 * contained by an object and not wired, e.g.,
2314			 * allocated by Xen's balloon driver.
2315			 */
2316			run_ext = 0;
2317		}
2318
2319		/*
2320		 * Extend or reset the current run of pages.
2321		 */
2322		if (run_ext > 0) {
2323			if (run_len == 0)
2324				m_run = m;
2325			run_len += run_ext;
2326		} else {
2327			if (run_len > 0) {
2328				m_run = NULL;
2329				run_len = 0;
2330			}
2331		}
2332	}
2333	if (m_mtx != NULL)
2334		mtx_unlock(m_mtx);
2335	if (run_len >= npages)
2336		return (m_run);
2337	return (NULL);
2338}
2339
2340/*
2341 *	vm_page_reclaim_run:
2342 *
2343 *	Try to relocate each of the allocated virtual pages within the
2344 *	specified run of physical pages to a new physical address.  Free the
2345 *	physical pages underlying the relocated virtual pages.  A virtual page
2346 *	is relocatable if and only if it could be laundered or reclaimed by
2347 *	the page daemon.  Whenever possible, a virtual page is relocated to a
2348 *	physical address above "high".
2349 *
2350 *	Returns 0 if every physical page within the run was already free or
2351 *	just freed by a successful relocation.  Otherwise, returns a non-zero
2352 *	value indicating why the last attempt to relocate a virtual page was
2353 *	unsuccessful.
2354 *
2355 *	"req_class" must be an allocation class.
2356 */
2357static int
2358vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2359    vm_paddr_t high)
2360{
2361	struct mtx *m_mtx, *new_mtx;
2362	struct spglist free;
2363	vm_object_t object;
2364	vm_paddr_t pa;
2365	vm_page_t m, m_end, m_new;
2366	int error, order, req;
2367
2368	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2369	    ("req_class is not an allocation class"));
2370	SLIST_INIT(&free);
2371	error = 0;
2372	m = m_run;
2373	m_end = m_run + npages;
2374	m_mtx = NULL;
2375	for (; error == 0 && m < m_end; m++) {
2376		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2377		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2378
2379		/*
2380		 * Avoid releasing and reacquiring the same page lock.
2381		 */
2382		new_mtx = vm_page_lockptr(m);
2383		if (m_mtx != new_mtx) {
2384			if (m_mtx != NULL)
2385				mtx_unlock(m_mtx);
2386			m_mtx = new_mtx;
2387			mtx_lock(m_mtx);
2388		}
2389retry:
2390		if (m->wire_count != 0 || m->hold_count != 0)
2391			error = EBUSY;
2392		else if ((object = m->object) != NULL) {
2393			/*
2394			 * The page is relocated if and only if it could be
2395			 * laundered or reclaimed by the page daemon.
2396			 */
2397			if (!VM_OBJECT_TRYWLOCK(object)) {
2398				mtx_unlock(m_mtx);
2399				VM_OBJECT_WLOCK(object);
2400				mtx_lock(m_mtx);
2401				if (m->object != object) {
2402					/*
2403					 * The page may have been freed.
2404					 */
2405					VM_OBJECT_WUNLOCK(object);
2406					goto retry;
2407				} else if (m->wire_count != 0 ||
2408				    m->hold_count != 0) {
2409					error = EBUSY;
2410					goto unlock;
2411				}
2412			}
2413			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2414			    ("page %p is PG_UNHOLDFREE", m));
2415			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2416			if (object->type != OBJT_DEFAULT &&
2417			    object->type != OBJT_SWAP &&
2418			    object->type != OBJT_VNODE)
2419				error = EINVAL;
2420			else if ((m->flags & PG_CACHED) != 0 ||
2421			    m != vm_page_lookup(object, m->pindex)) {
2422				/*
2423				 * The page is cached or recently converted
2424				 * from cached to free.
2425				 */
2426				VM_OBJECT_WUNLOCK(object);
2427				goto cached;
2428			} else if (object->memattr != VM_MEMATTR_DEFAULT)
2429				error = EINVAL;
2430			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2431				KASSERT(pmap_page_get_memattr(m) ==
2432				    VM_MEMATTR_DEFAULT,
2433				    ("page %p has an unexpected memattr", m));
2434				KASSERT((m->oflags & (VPO_SWAPINPROG |
2435				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2436				    ("page %p has unexpected oflags", m));
2437				/* Don't care: VPO_NOSYNC. */
2438				if (m->valid != 0) {
2439					/*
2440					 * First, try to allocate a new page
2441					 * that is above "high".  Failing
2442					 * that, try to allocate a new page
2443					 * that is below "m_run".  Allocate
2444					 * the new page between the end of
2445					 * "m_run" and "high" only as a last
2446					 * resort.
2447					 */
2448					req = req_class | VM_ALLOC_NOOBJ;
2449					if ((m->flags & PG_NODUMP) != 0)
2450						req |= VM_ALLOC_NODUMP;
2451					if (trunc_page(high) !=
2452					    ~(vm_paddr_t)PAGE_MASK) {
2453						m_new = vm_page_alloc_contig(
2454						    NULL, 0, req, 1,
2455						    round_page(high),
2456						    ~(vm_paddr_t)0,
2457						    PAGE_SIZE, 0,
2458						    VM_MEMATTR_DEFAULT);
2459					} else
2460						m_new = NULL;
2461					if (m_new == NULL) {
2462						pa = VM_PAGE_TO_PHYS(m_run);
2463						m_new = vm_page_alloc_contig(
2464						    NULL, 0, req, 1,
2465						    0, pa - 1, PAGE_SIZE, 0,
2466						    VM_MEMATTR_DEFAULT);
2467					}
2468					if (m_new == NULL) {
2469						pa += ptoa(npages);
2470						m_new = vm_page_alloc_contig(
2471						    NULL, 0, req, 1,
2472						    pa, high, PAGE_SIZE, 0,
2473						    VM_MEMATTR_DEFAULT);
2474					}
2475					if (m_new == NULL) {
2476						error = ENOMEM;
2477						goto unlock;
2478					}
2479					KASSERT(m_new->wire_count == 0,
2480					    ("page %p is wired", m));
2481
2482					/*
2483					 * Replace "m" with the new page.  For
2484					 * vm_page_replace(), "m" must be busy
2485					 * and dequeued.  Finally, change "m"
2486					 * as if vm_page_free() was called.
2487					 */
2488					if (object->ref_count != 0)
2489						pmap_remove_all(m);
2490					m_new->aflags = m->aflags;
2491					KASSERT(m_new->oflags == VPO_UNMANAGED,
2492					    ("page %p is managed", m));
2493					m_new->oflags = m->oflags & VPO_NOSYNC;
2494					pmap_copy_page(m, m_new);
2495					m_new->valid = m->valid;
2496					m_new->dirty = m->dirty;
2497					m->flags &= ~PG_ZERO;
2498					vm_page_xbusy(m);
2499					vm_page_remque(m);
2500					vm_page_replace_checked(m_new, object,
2501					    m->pindex, m);
2502					m->valid = 0;
2503					vm_page_undirty(m);
2504
2505					/*
2506					 * The new page must be deactivated
2507					 * before the object is unlocked.
2508					 */
2509					new_mtx = vm_page_lockptr(m_new);
2510					if (m_mtx != new_mtx) {
2511						mtx_unlock(m_mtx);
2512						m_mtx = new_mtx;
2513						mtx_lock(m_mtx);
2514					}
2515					vm_page_deactivate(m_new);
2516				} else {
2517					m->flags &= ~PG_ZERO;
2518					vm_page_remque(m);
2519					vm_page_remove(m);
2520					KASSERT(m->dirty == 0,
2521					    ("page %p is dirty", m));
2522				}
2523				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2524			} else
2525				error = EBUSY;
2526unlock:
2527			VM_OBJECT_WUNLOCK(object);
2528		} else {
2529cached:
2530			mtx_lock(&vm_page_queue_free_mtx);
2531			order = m->order;
2532			if (order < VM_NFREEORDER) {
2533				/*
2534				 * The page is enqueued in the physical memory
2535				 * allocator's cache/free page queues.
2536				 * Moreover, it is the first page in a power-
2537				 * of-two-sized run of contiguous cache/free
2538				 * pages.  Jump ahead to the last page within
2539				 * that run, and continue from there.
2540				 */
2541				m += (1 << order) - 1;
2542			}
2543#if VM_NRESERVLEVEL > 0
2544			else if (vm_reserv_is_page_free(m))
2545				order = 0;
2546#endif
2547			mtx_unlock(&vm_page_queue_free_mtx);
2548			if (order == VM_NFREEORDER)
2549				error = EINVAL;
2550		}
2551	}
2552	if (m_mtx != NULL)
2553		mtx_unlock(m_mtx);
2554	if ((m = SLIST_FIRST(&free)) != NULL) {
2555		mtx_lock(&vm_page_queue_free_mtx);
2556		do {
2557			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2558			vm_phys_freecnt_adj(m, 1);
2559#if VM_NRESERVLEVEL > 0
2560			if (!vm_reserv_free_page(m))
2561#else
2562			if (true)
2563#endif
2564				vm_phys_free_pages(m, 0);
2565		} while ((m = SLIST_FIRST(&free)) != NULL);
2566		vm_page_zero_idle_wakeup();
2567		vm_page_free_wakeup();
2568		mtx_unlock(&vm_page_queue_free_mtx);
2569	}
2570	return (error);
2571}
2572
2573#define	NRUNS	16
2574
2575CTASSERT(powerof2(NRUNS));
2576
2577#define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2578
2579#define	MIN_RECLAIM	8
2580
2581/*
2582 *	vm_page_reclaim_contig:
2583 *
2584 *	Reclaim allocated, contiguous physical memory satisfying the specified
2585 *	conditions by relocating the virtual pages using that physical memory.
2586 *	Returns true if reclamation is successful and false otherwise.  Since
2587 *	relocation requires the allocation of physical pages, reclamation may
2588 *	fail due to a shortage of cache/free pages.  When reclamation fails,
2589 *	callers are expected to perform VM_WAIT before retrying a failed
2590 *	allocation operation, e.g., vm_page_alloc_contig().
2591 *
2592 *	The caller must always specify an allocation class through "req".
2593 *
2594 *	allocation classes:
2595 *	VM_ALLOC_NORMAL		normal process request
2596 *	VM_ALLOC_SYSTEM		system *really* needs a page
2597 *	VM_ALLOC_INTERRUPT	interrupt time request
2598 *
2599 *	The optional allocation flags are ignored.
2600 *
2601 *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2602 *	must be a power of two.
2603 */
2604bool
2605vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2606    u_long alignment, vm_paddr_t boundary)
2607{
2608	vm_paddr_t curr_low;
2609	vm_page_t m_run, m_runs[NRUNS];
2610	u_long count, reclaimed;
2611	int error, i, options, req_class;
2612
2613	KASSERT(npages > 0, ("npages is 0"));
2614	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2615	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2616	req_class = req & VM_ALLOC_CLASS_MASK;
2617
2618	/*
2619	 * The page daemon is allowed to dig deeper into the free page list.
2620	 */
2621	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2622		req_class = VM_ALLOC_SYSTEM;
2623
2624	/*
2625	 * Return if the number of cached and free pages cannot satisfy the
2626	 * requested allocation.
2627	 */
2628	count = vm_cnt.v_free_count + vm_cnt.v_cache_count;
2629	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2630	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2631	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2632		return (false);
2633
2634	/*
2635	 * Scan up to three times, relaxing the restrictions ("options") on
2636	 * the reclamation of reservations and superpages each time.
2637	 */
2638	for (options = VPSC_NORESERV;;) {
2639		/*
2640		 * Find the highest runs that satisfy the given constraints
2641		 * and restrictions, and record them in "m_runs".
2642		 */
2643		curr_low = low;
2644		count = 0;
2645		for (;;) {
2646			m_run = vm_phys_scan_contig(npages, curr_low, high,
2647			    alignment, boundary, options);
2648			if (m_run == NULL)
2649				break;
2650			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2651			m_runs[RUN_INDEX(count)] = m_run;
2652			count++;
2653		}
2654
2655		/*
2656		 * Reclaim the highest runs in LIFO (descending) order until
2657		 * the number of reclaimed pages, "reclaimed", is at least
2658		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2659		 * reclamation is idempotent, and runs will (likely) recur
2660		 * from one scan to the next as restrictions are relaxed.
2661		 */
2662		reclaimed = 0;
2663		for (i = 0; count > 0 && i < NRUNS; i++) {
2664			count--;
2665			m_run = m_runs[RUN_INDEX(count)];
2666			error = vm_page_reclaim_run(req_class, npages, m_run,
2667			    high);
2668			if (error == 0) {
2669				reclaimed += npages;
2670				if (reclaimed >= MIN_RECLAIM)
2671					return (true);
2672			}
2673		}
2674
2675		/*
2676		 * Either relax the restrictions on the next scan or return if
2677		 * the last scan had no restrictions.
2678		 */
2679		if (options == VPSC_NORESERV)
2680			options = VPSC_NOSUPER;
2681		else if (options == VPSC_NOSUPER)
2682			options = VPSC_ANY;
2683		else if (options == VPSC_ANY)
2684			return (reclaimed != 0);
2685	}
2686}
2687
2688/*
2689 *	vm_wait:	(also see VM_WAIT macro)
2690 *
2691 *	Sleep until free pages are available for allocation.
2692 *	- Called in various places before memory allocations.
2693 */
2694void
2695vm_wait(void)
2696{
2697
2698	mtx_lock(&vm_page_queue_free_mtx);
2699	if (curproc == pageproc) {
2700		vm_pageout_pages_needed = 1;
2701		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2702		    PDROP | PSWP, "VMWait", 0);
2703	} else {
2704		if (!vm_pageout_wanted) {
2705			vm_pageout_wanted = true;
2706			wakeup(&vm_pageout_wanted);
2707		}
2708		vm_pages_needed = true;
2709		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2710		    "vmwait", 0);
2711	}
2712}
2713
2714/*
2715 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2716 *
2717 *	Sleep until free pages are available for allocation.
2718 *	- Called only in vm_fault so that processes page faulting
2719 *	  can be easily tracked.
2720 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2721 *	  processes will be able to grab memory first.  Do not change
2722 *	  this balance without careful testing first.
2723 */
2724void
2725vm_waitpfault(void)
2726{
2727
2728	mtx_lock(&vm_page_queue_free_mtx);
2729	if (!vm_pageout_wanted) {
2730		vm_pageout_wanted = true;
2731		wakeup(&vm_pageout_wanted);
2732	}
2733	vm_pages_needed = true;
2734	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2735	    "pfault", 0);
2736}
2737
2738struct vm_pagequeue *
2739vm_page_pagequeue(vm_page_t m)
2740{
2741
2742	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2743}
2744
2745/*
2746 *	vm_page_dequeue:
2747 *
2748 *	Remove the given page from its current page queue.
2749 *
2750 *	The page must be locked.
2751 */
2752void
2753vm_page_dequeue(vm_page_t m)
2754{
2755	struct vm_pagequeue *pq;
2756
2757	vm_page_assert_locked(m);
2758	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2759	    m));
2760	pq = vm_page_pagequeue(m);
2761	vm_pagequeue_lock(pq);
2762	m->queue = PQ_NONE;
2763	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2764	vm_pagequeue_cnt_dec(pq);
2765	vm_pagequeue_unlock(pq);
2766}
2767
2768/*
2769 *	vm_page_dequeue_locked:
2770 *
2771 *	Remove the given page from its current page queue.
2772 *
2773 *	The page and page queue must be locked.
2774 */
2775void
2776vm_page_dequeue_locked(vm_page_t m)
2777{
2778	struct vm_pagequeue *pq;
2779
2780	vm_page_lock_assert(m, MA_OWNED);
2781	pq = vm_page_pagequeue(m);
2782	vm_pagequeue_assert_locked(pq);
2783	m->queue = PQ_NONE;
2784	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2785	vm_pagequeue_cnt_dec(pq);
2786}
2787
2788/*
2789 *	vm_page_enqueue:
2790 *
2791 *	Add the given page to the specified page queue.
2792 *
2793 *	The page must be locked.
2794 */
2795static void
2796vm_page_enqueue(uint8_t queue, vm_page_t m)
2797{
2798	struct vm_pagequeue *pq;
2799
2800	vm_page_lock_assert(m, MA_OWNED);
2801	KASSERT(queue < PQ_COUNT,
2802	    ("vm_page_enqueue: invalid queue %u request for page %p",
2803	    queue, m));
2804	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2805	vm_pagequeue_lock(pq);
2806	m->queue = queue;
2807	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2808	vm_pagequeue_cnt_inc(pq);
2809	vm_pagequeue_unlock(pq);
2810}
2811
2812/*
2813 *	vm_page_requeue:
2814 *
2815 *	Move the given page to the tail of its current page queue.
2816 *
2817 *	The page must be locked.
2818 */
2819void
2820vm_page_requeue(vm_page_t m)
2821{
2822	struct vm_pagequeue *pq;
2823
2824	vm_page_lock_assert(m, MA_OWNED);
2825	KASSERT(m->queue != PQ_NONE,
2826	    ("vm_page_requeue: page %p is not queued", m));
2827	pq = vm_page_pagequeue(m);
2828	vm_pagequeue_lock(pq);
2829	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2830	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2831	vm_pagequeue_unlock(pq);
2832}
2833
2834/*
2835 *	vm_page_requeue_locked:
2836 *
2837 *	Move the given page to the tail of its current page queue.
2838 *
2839 *	The page queue must be locked.
2840 */
2841void
2842vm_page_requeue_locked(vm_page_t m)
2843{
2844	struct vm_pagequeue *pq;
2845
2846	KASSERT(m->queue != PQ_NONE,
2847	    ("vm_page_requeue_locked: page %p is not queued", m));
2848	pq = vm_page_pagequeue(m);
2849	vm_pagequeue_assert_locked(pq);
2850	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2851	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2852}
2853
2854/*
2855 *	vm_page_activate:
2856 *
2857 *	Put the specified page on the active list (if appropriate).
2858 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2859 *	mess with it.
2860 *
2861 *	The page must be locked.
2862 */
2863void
2864vm_page_activate(vm_page_t m)
2865{
2866	int queue;
2867
2868	vm_page_lock_assert(m, MA_OWNED);
2869	if ((queue = m->queue) != PQ_ACTIVE) {
2870		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2871			if (m->act_count < ACT_INIT)
2872				m->act_count = ACT_INIT;
2873			if (queue != PQ_NONE)
2874				vm_page_dequeue(m);
2875			vm_page_enqueue(PQ_ACTIVE, m);
2876		} else
2877			KASSERT(queue == PQ_NONE,
2878			    ("vm_page_activate: wired page %p is queued", m));
2879	} else {
2880		if (m->act_count < ACT_INIT)
2881			m->act_count = ACT_INIT;
2882	}
2883}
2884
2885/*
2886 *	vm_page_free_wakeup:
2887 *
2888 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2889 *	routine is called when a page has been added to the cache or free
2890 *	queues.
2891 *
2892 *	The page queues must be locked.
2893 */
2894static inline void
2895vm_page_free_wakeup(void)
2896{
2897
2898	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2899	/*
2900	 * if pageout daemon needs pages, then tell it that there are
2901	 * some free.
2902	 */
2903	if (vm_pageout_pages_needed &&
2904	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2905		wakeup(&vm_pageout_pages_needed);
2906		vm_pageout_pages_needed = 0;
2907	}
2908	/*
2909	 * wakeup processes that are waiting on memory if we hit a
2910	 * high water mark. And wakeup scheduler process if we have
2911	 * lots of memory. this process will swapin processes.
2912	 */
2913	if (vm_pages_needed && !vm_page_count_min()) {
2914		vm_pages_needed = false;
2915		wakeup(&vm_cnt.v_free_count);
2916	}
2917}
2918
2919/*
2920 *	Turn a cached page into a free page, by changing its attributes.
2921 *	Keep the statistics up-to-date.
2922 *
2923 *	The free page queue must be locked.
2924 */
2925static void
2926vm_page_cache_turn_free(vm_page_t m)
2927{
2928
2929	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2930
2931	m->object = NULL;
2932	m->valid = 0;
2933	KASSERT((m->flags & PG_CACHED) != 0,
2934	    ("vm_page_cache_turn_free: page %p is not cached", m));
2935	m->flags &= ~PG_CACHED;
2936	vm_cnt.v_cache_count--;
2937	vm_phys_freecnt_adj(m, 1);
2938}
2939
2940/*
2941 *	vm_page_free_toq:
2942 *
2943 *	Returns the given page to the free list,
2944 *	disassociating it with any VM object.
2945 *
2946 *	The object must be locked.  The page must be locked if it is managed.
2947 */
2948void
2949vm_page_free_toq(vm_page_t m)
2950{
2951
2952	if ((m->oflags & VPO_UNMANAGED) == 0) {
2953		vm_page_lock_assert(m, MA_OWNED);
2954		KASSERT(!pmap_page_is_mapped(m),
2955		    ("vm_page_free_toq: freeing mapped page %p", m));
2956	} else
2957		KASSERT(m->queue == PQ_NONE,
2958		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2959	PCPU_INC(cnt.v_tfree);
2960
2961	if (vm_page_sbusied(m))
2962		panic("vm_page_free: freeing busy page %p", m);
2963
2964	/*
2965	 * Unqueue, then remove page.  Note that we cannot destroy
2966	 * the page here because we do not want to call the pager's
2967	 * callback routine until after we've put the page on the
2968	 * appropriate free queue.
2969	 */
2970	vm_page_remque(m);
2971	vm_page_remove(m);
2972
2973	/*
2974	 * If fictitious remove object association and
2975	 * return, otherwise delay object association removal.
2976	 */
2977	if ((m->flags & PG_FICTITIOUS) != 0) {
2978		return;
2979	}
2980
2981	m->valid = 0;
2982	vm_page_undirty(m);
2983
2984	if (m->wire_count != 0)
2985		panic("vm_page_free: freeing wired page %p", m);
2986	if (m->hold_count != 0) {
2987		m->flags &= ~PG_ZERO;
2988		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2989		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2990		m->flags |= PG_UNHOLDFREE;
2991	} else {
2992		/*
2993		 * Restore the default memory attribute to the page.
2994		 */
2995		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2996			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2997
2998		/*
2999		 * Insert the page into the physical memory allocator's
3000		 * cache/free page queues.
3001		 */
3002		mtx_lock(&vm_page_queue_free_mtx);
3003		vm_phys_freecnt_adj(m, 1);
3004#if VM_NRESERVLEVEL > 0
3005		if (!vm_reserv_free_page(m))
3006#else
3007		if (TRUE)
3008#endif
3009			vm_phys_free_pages(m, 0);
3010		if ((m->flags & PG_ZERO) != 0)
3011			++vm_page_zero_count;
3012		else
3013			vm_page_zero_idle_wakeup();
3014		vm_page_free_wakeup();
3015		mtx_unlock(&vm_page_queue_free_mtx);
3016	}
3017}
3018
3019/*
3020 *	vm_page_wire:
3021 *
3022 *	Mark this page as wired down by yet
3023 *	another map, removing it from paging queues
3024 *	as necessary.
3025 *
3026 *	If the page is fictitious, then its wire count must remain one.
3027 *
3028 *	The page must be locked.
3029 */
3030void
3031vm_page_wire(vm_page_t m)
3032{
3033
3034	/*
3035	 * Only bump the wire statistics if the page is not already wired,
3036	 * and only unqueue the page if it is on some queue (if it is unmanaged
3037	 * it is already off the queues).
3038	 */
3039	vm_page_lock_assert(m, MA_OWNED);
3040	if ((m->flags & PG_FICTITIOUS) != 0) {
3041		KASSERT(m->wire_count == 1,
3042		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3043		    m));
3044		return;
3045	}
3046	if (m->wire_count == 0) {
3047		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3048		    m->queue == PQ_NONE,
3049		    ("vm_page_wire: unmanaged page %p is queued", m));
3050		vm_page_remque(m);
3051		atomic_add_int(&vm_cnt.v_wire_count, 1);
3052	}
3053	m->wire_count++;
3054	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3055}
3056
3057/*
3058 * vm_page_unwire:
3059 *
3060 * Release one wiring of the specified page, potentially allowing it to be
3061 * paged out.  Returns TRUE if the number of wirings transitions to zero and
3062 * FALSE otherwise.
3063 *
3064 * Only managed pages belonging to an object can be paged out.  If the number
3065 * of wirings transitions to zero and the page is eligible for page out, then
3066 * the page is added to the specified paging queue (unless PQ_NONE is
3067 * specified).
3068 *
3069 * If a page is fictitious, then its wire count must always be one.
3070 *
3071 * A managed page must be locked.
3072 */
3073boolean_t
3074vm_page_unwire(vm_page_t m, uint8_t queue)
3075{
3076
3077	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3078	    ("vm_page_unwire: invalid queue %u request for page %p",
3079	    queue, m));
3080	if ((m->oflags & VPO_UNMANAGED) == 0)
3081		vm_page_assert_locked(m);
3082	if ((m->flags & PG_FICTITIOUS) != 0) {
3083		KASSERT(m->wire_count == 1,
3084	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3085		return (FALSE);
3086	}
3087	if (m->wire_count > 0) {
3088		m->wire_count--;
3089		if (m->wire_count == 0) {
3090			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
3091			if ((m->oflags & VPO_UNMANAGED) == 0 &&
3092			    m->object != NULL && queue != PQ_NONE) {
3093				if (queue == PQ_INACTIVE)
3094					m->flags &= ~PG_WINATCFLS;
3095				vm_page_enqueue(queue, m);
3096			}
3097			return (TRUE);
3098		} else
3099			return (FALSE);
3100	} else
3101		panic("vm_page_unwire: page %p's wire count is zero", m);
3102}
3103
3104/*
3105 * Move the specified page to the inactive queue.
3106 *
3107 * Many pages placed on the inactive queue should actually go
3108 * into the cache, but it is difficult to figure out which.  What
3109 * we do instead, if the inactive target is well met, is to put
3110 * clean pages at the head of the inactive queue instead of the tail.
3111 * This will cause them to be moved to the cache more quickly and
3112 * if not actively re-referenced, reclaimed more quickly.  If we just
3113 * stick these pages at the end of the inactive queue, heavy filesystem
3114 * meta-data accesses can cause an unnecessary paging load on memory bound
3115 * processes.  This optimization causes one-time-use metadata to be
3116 * reused more quickly.
3117 *
3118 * Normally noreuse is FALSE, resulting in LRU operation.  noreuse is set
3119 * to TRUE if we want this page to be 'as if it were placed in the cache',
3120 * except without unmapping it from the process address space.  In
3121 * practice this is implemented by inserting the page at the head of the
3122 * queue, using a marker page to guide FIFO insertion ordering.
3123 *
3124 * The page must be locked.
3125 */
3126static inline void
3127_vm_page_deactivate(vm_page_t m, boolean_t noreuse)
3128{
3129	struct vm_pagequeue *pq;
3130	int queue;
3131
3132	vm_page_assert_locked(m);
3133
3134	/*
3135	 * Ignore if the page is already inactive, unless it is unlikely to be
3136	 * reactivated.
3137	 */
3138	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
3139		return;
3140	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3141		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
3142		/* Avoid multiple acquisitions of the inactive queue lock. */
3143		if (queue == PQ_INACTIVE) {
3144			vm_pagequeue_lock(pq);
3145			vm_page_dequeue_locked(m);
3146		} else {
3147			if (queue != PQ_NONE)
3148				vm_page_dequeue(m);
3149			m->flags &= ~PG_WINATCFLS;
3150			vm_pagequeue_lock(pq);
3151		}
3152		m->queue = PQ_INACTIVE;
3153		if (noreuse)
3154			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
3155			    m, plinks.q);
3156		else
3157			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3158		vm_pagequeue_cnt_inc(pq);
3159		vm_pagequeue_unlock(pq);
3160	}
3161}
3162
3163/*
3164 * Move the specified page to the inactive queue.
3165 *
3166 * The page must be locked.
3167 */
3168void
3169vm_page_deactivate(vm_page_t m)
3170{
3171
3172	_vm_page_deactivate(m, FALSE);
3173}
3174
3175/*
3176 * Move the specified page to the inactive queue with the expectation
3177 * that it is unlikely to be reused.
3178 *
3179 * The page must be locked.
3180 */
3181void
3182vm_page_deactivate_noreuse(vm_page_t m)
3183{
3184
3185	_vm_page_deactivate(m, TRUE);
3186}
3187
3188/*
3189 * vm_page_try_to_cache:
3190 *
3191 * Returns 0 on failure, 1 on success
3192 */
3193int
3194vm_page_try_to_cache(vm_page_t m)
3195{
3196
3197	vm_page_lock_assert(m, MA_OWNED);
3198	VM_OBJECT_ASSERT_WLOCKED(m->object);
3199	if (m->dirty || m->hold_count || m->wire_count ||
3200	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3201		return (0);
3202	pmap_remove_all(m);
3203	if (m->dirty)
3204		return (0);
3205	vm_page_cache(m);
3206	return (1);
3207}
3208
3209/*
3210 * vm_page_try_to_free()
3211 *
3212 *	Attempt to free the page.  If we cannot free it, we do nothing.
3213 *	1 is returned on success, 0 on failure.
3214 */
3215int
3216vm_page_try_to_free(vm_page_t m)
3217{
3218
3219	vm_page_lock_assert(m, MA_OWNED);
3220	if (m->object != NULL)
3221		VM_OBJECT_ASSERT_WLOCKED(m->object);
3222	if (m->dirty || m->hold_count || m->wire_count ||
3223	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3224		return (0);
3225	pmap_remove_all(m);
3226	if (m->dirty)
3227		return (0);
3228	vm_page_free(m);
3229	return (1);
3230}
3231
3232/*
3233 * vm_page_cache
3234 *
3235 * Put the specified page onto the page cache queue (if appropriate).
3236 *
3237 * The object and page must be locked.
3238 */
3239void
3240vm_page_cache(vm_page_t m)
3241{
3242	vm_object_t object;
3243	boolean_t cache_was_empty;
3244
3245	vm_page_lock_assert(m, MA_OWNED);
3246	object = m->object;
3247	VM_OBJECT_ASSERT_WLOCKED(object);
3248	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
3249	    m->hold_count || m->wire_count)
3250		panic("vm_page_cache: attempting to cache busy page");
3251	KASSERT(!pmap_page_is_mapped(m),
3252	    ("vm_page_cache: page %p is mapped", m));
3253	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
3254	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
3255	    (object->type == OBJT_SWAP &&
3256	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
3257		/*
3258		 * Hypothesis: A cache-eligible page belonging to a
3259		 * default object or swap object but without a backing
3260		 * store must be zero filled.
3261		 */
3262		vm_page_free(m);
3263		return;
3264	}
3265	KASSERT((m->flags & PG_CACHED) == 0,
3266	    ("vm_page_cache: page %p is already cached", m));
3267
3268	/*
3269	 * Remove the page from the paging queues.
3270	 */
3271	vm_page_remque(m);
3272
3273	/*
3274	 * Remove the page from the object's collection of resident
3275	 * pages.
3276	 */
3277	vm_radix_remove(&object->rtree, m->pindex);
3278	TAILQ_REMOVE(&object->memq, m, listq);
3279	object->resident_page_count--;
3280
3281	/*
3282	 * Restore the default memory attribute to the page.
3283	 */
3284	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3285		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3286
3287	/*
3288	 * Insert the page into the object's collection of cached pages
3289	 * and the physical memory allocator's cache/free page queues.
3290	 */
3291	m->flags &= ~PG_ZERO;
3292	mtx_lock(&vm_page_queue_free_mtx);
3293	cache_was_empty = vm_radix_is_empty(&object->cache);
3294	if (vm_radix_insert(&object->cache, m)) {
3295		mtx_unlock(&vm_page_queue_free_mtx);
3296		if (object->type == OBJT_VNODE &&
3297		    object->resident_page_count == 0)
3298			vdrop(object->handle);
3299		m->object = NULL;
3300		vm_page_free(m);
3301		return;
3302	}
3303
3304	/*
3305	 * The above call to vm_radix_insert() could reclaim the one pre-
3306	 * existing cached page from this object, resulting in a call to
3307	 * vdrop().
3308	 */
3309	if (!cache_was_empty)
3310		cache_was_empty = vm_radix_is_singleton(&object->cache);
3311
3312	m->flags |= PG_CACHED;
3313	vm_cnt.v_cache_count++;
3314	PCPU_INC(cnt.v_tcached);
3315#if VM_NRESERVLEVEL > 0
3316	if (!vm_reserv_free_page(m)) {
3317#else
3318	if (TRUE) {
3319#endif
3320		vm_phys_free_pages(m, 0);
3321	}
3322	vm_page_free_wakeup();
3323	mtx_unlock(&vm_page_queue_free_mtx);
3324
3325	/*
3326	 * Increment the vnode's hold count if this is the object's only
3327	 * cached page.  Decrement the vnode's hold count if this was
3328	 * the object's only resident page.
3329	 */
3330	if (object->type == OBJT_VNODE) {
3331		if (cache_was_empty && object->resident_page_count != 0)
3332			vhold(object->handle);
3333		else if (!cache_was_empty && object->resident_page_count == 0)
3334			vdrop(object->handle);
3335	}
3336}
3337
3338/*
3339 * vm_page_advise
3340 *
3341 * 	Deactivate or do nothing, as appropriate.
3342 *
3343 *	The object and page must be locked.
3344 */
3345void
3346vm_page_advise(vm_page_t m, int advice)
3347{
3348
3349	vm_page_assert_locked(m);
3350	VM_OBJECT_ASSERT_WLOCKED(m->object);
3351	if (advice == MADV_FREE)
3352		/*
3353		 * Mark the page clean.  This will allow the page to be freed
3354		 * up by the system.  However, such pages are often reused
3355		 * quickly by malloc() so we do not do anything that would
3356		 * cause a page fault if we can help it.
3357		 *
3358		 * Specifically, we do not try to actually free the page now
3359		 * nor do we try to put it in the cache (which would cause a
3360		 * page fault on reuse).
3361		 *
3362		 * But we do make the page as freeable as we can without
3363		 * actually taking the step of unmapping it.
3364		 */
3365		m->dirty = 0;
3366	else if (advice != MADV_DONTNEED)
3367		return;
3368
3369	/*
3370	 * Clear any references to the page.  Otherwise, the page daemon will
3371	 * immediately reactivate the page.
3372	 */
3373	vm_page_aflag_clear(m, PGA_REFERENCED);
3374
3375	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3376		vm_page_dirty(m);
3377
3378	/*
3379	 * Place clean pages at the head of the inactive queue rather than the
3380	 * tail, thus defeating the queue's LRU operation and ensuring that the
3381	 * page will be reused quickly.
3382	 */
3383	_vm_page_deactivate(m, m->dirty == 0);
3384}
3385
3386/*
3387 * Grab a page, waiting until we are waken up due to the page
3388 * changing state.  We keep on waiting, if the page continues
3389 * to be in the object.  If the page doesn't exist, first allocate it
3390 * and then conditionally zero it.
3391 *
3392 * This routine may sleep.
3393 *
3394 * The object must be locked on entry.  The lock will, however, be released
3395 * and reacquired if the routine sleeps.
3396 */
3397vm_page_t
3398vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3399{
3400	vm_page_t m;
3401	int sleep;
3402
3403	VM_OBJECT_ASSERT_WLOCKED(object);
3404	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3405	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3406	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3407retrylookup:
3408	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3409		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3410		    vm_page_xbusied(m) : vm_page_busied(m);
3411		if (sleep) {
3412			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3413				return (NULL);
3414			/*
3415			 * Reference the page before unlocking and
3416			 * sleeping so that the page daemon is less
3417			 * likely to reclaim it.
3418			 */
3419			vm_page_aflag_set(m, PGA_REFERENCED);
3420			vm_page_lock(m);
3421			VM_OBJECT_WUNLOCK(object);
3422			vm_page_busy_sleep(m, "pgrbwt");
3423			VM_OBJECT_WLOCK(object);
3424			goto retrylookup;
3425		} else {
3426			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3427				vm_page_lock(m);
3428				vm_page_wire(m);
3429				vm_page_unlock(m);
3430			}
3431			if ((allocflags &
3432			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3433				vm_page_xbusy(m);
3434			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3435				vm_page_sbusy(m);
3436			return (m);
3437		}
3438	}
3439	m = vm_page_alloc(object, pindex, allocflags);
3440	if (m == NULL) {
3441		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3442			return (NULL);
3443		VM_OBJECT_WUNLOCK(object);
3444		VM_WAIT;
3445		VM_OBJECT_WLOCK(object);
3446		goto retrylookup;
3447	} else if (m->valid != 0)
3448		return (m);
3449	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3450		pmap_zero_page(m);
3451	return (m);
3452}
3453
3454/*
3455 * Mapping function for valid or dirty bits in a page.
3456 *
3457 * Inputs are required to range within a page.
3458 */
3459vm_page_bits_t
3460vm_page_bits(int base, int size)
3461{
3462	int first_bit;
3463	int last_bit;
3464
3465	KASSERT(
3466	    base + size <= PAGE_SIZE,
3467	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3468	);
3469
3470	if (size == 0)		/* handle degenerate case */
3471		return (0);
3472
3473	first_bit = base >> DEV_BSHIFT;
3474	last_bit = (base + size - 1) >> DEV_BSHIFT;
3475
3476	return (((vm_page_bits_t)2 << last_bit) -
3477	    ((vm_page_bits_t)1 << first_bit));
3478}
3479
3480/*
3481 *	vm_page_set_valid_range:
3482 *
3483 *	Sets portions of a page valid.  The arguments are expected
3484 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3485 *	of any partial chunks touched by the range.  The invalid portion of
3486 *	such chunks will be zeroed.
3487 *
3488 *	(base + size) must be less then or equal to PAGE_SIZE.
3489 */
3490void
3491vm_page_set_valid_range(vm_page_t m, int base, int size)
3492{
3493	int endoff, frag;
3494
3495	VM_OBJECT_ASSERT_WLOCKED(m->object);
3496	if (size == 0)	/* handle degenerate case */
3497		return;
3498
3499	/*
3500	 * If the base is not DEV_BSIZE aligned and the valid
3501	 * bit is clear, we have to zero out a portion of the
3502	 * first block.
3503	 */
3504	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3505	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3506		pmap_zero_page_area(m, frag, base - frag);
3507
3508	/*
3509	 * If the ending offset is not DEV_BSIZE aligned and the
3510	 * valid bit is clear, we have to zero out a portion of
3511	 * the last block.
3512	 */
3513	endoff = base + size;
3514	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3515	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3516		pmap_zero_page_area(m, endoff,
3517		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3518
3519	/*
3520	 * Assert that no previously invalid block that is now being validated
3521	 * is already dirty.
3522	 */
3523	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3524	    ("vm_page_set_valid_range: page %p is dirty", m));
3525
3526	/*
3527	 * Set valid bits inclusive of any overlap.
3528	 */
3529	m->valid |= vm_page_bits(base, size);
3530}
3531
3532/*
3533 * Clear the given bits from the specified page's dirty field.
3534 */
3535static __inline void
3536vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3537{
3538	uintptr_t addr;
3539#if PAGE_SIZE < 16384
3540	int shift;
3541#endif
3542
3543	/*
3544	 * If the object is locked and the page is neither exclusive busy nor
3545	 * write mapped, then the page's dirty field cannot possibly be
3546	 * set by a concurrent pmap operation.
3547	 */
3548	VM_OBJECT_ASSERT_WLOCKED(m->object);
3549	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3550		m->dirty &= ~pagebits;
3551	else {
3552		/*
3553		 * The pmap layer can call vm_page_dirty() without
3554		 * holding a distinguished lock.  The combination of
3555		 * the object's lock and an atomic operation suffice
3556		 * to guarantee consistency of the page dirty field.
3557		 *
3558		 * For PAGE_SIZE == 32768 case, compiler already
3559		 * properly aligns the dirty field, so no forcible
3560		 * alignment is needed. Only require existence of
3561		 * atomic_clear_64 when page size is 32768.
3562		 */
3563		addr = (uintptr_t)&m->dirty;
3564#if PAGE_SIZE == 32768
3565		atomic_clear_64((uint64_t *)addr, pagebits);
3566#elif PAGE_SIZE == 16384
3567		atomic_clear_32((uint32_t *)addr, pagebits);
3568#else		/* PAGE_SIZE <= 8192 */
3569		/*
3570		 * Use a trick to perform a 32-bit atomic on the
3571		 * containing aligned word, to not depend on the existence
3572		 * of atomic_clear_{8, 16}.
3573		 */
3574		shift = addr & (sizeof(uint32_t) - 1);
3575#if BYTE_ORDER == BIG_ENDIAN
3576		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3577#else
3578		shift *= NBBY;
3579#endif
3580		addr &= ~(sizeof(uint32_t) - 1);
3581		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3582#endif		/* PAGE_SIZE */
3583	}
3584}
3585
3586/*
3587 *	vm_page_set_validclean:
3588 *
3589 *	Sets portions of a page valid and clean.  The arguments are expected
3590 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3591 *	of any partial chunks touched by the range.  The invalid portion of
3592 *	such chunks will be zero'd.
3593 *
3594 *	(base + size) must be less then or equal to PAGE_SIZE.
3595 */
3596void
3597vm_page_set_validclean(vm_page_t m, int base, int size)
3598{
3599	vm_page_bits_t oldvalid, pagebits;
3600	int endoff, frag;
3601
3602	VM_OBJECT_ASSERT_WLOCKED(m->object);
3603	if (size == 0)	/* handle degenerate case */
3604		return;
3605
3606	/*
3607	 * If the base is not DEV_BSIZE aligned and the valid
3608	 * bit is clear, we have to zero out a portion of the
3609	 * first block.
3610	 */
3611	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3612	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3613		pmap_zero_page_area(m, frag, base - frag);
3614
3615	/*
3616	 * If the ending offset is not DEV_BSIZE aligned and the
3617	 * valid bit is clear, we have to zero out a portion of
3618	 * the last block.
3619	 */
3620	endoff = base + size;
3621	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3622	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3623		pmap_zero_page_area(m, endoff,
3624		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3625
3626	/*
3627	 * Set valid, clear dirty bits.  If validating the entire
3628	 * page we can safely clear the pmap modify bit.  We also
3629	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3630	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3631	 * be set again.
3632	 *
3633	 * We set valid bits inclusive of any overlap, but we can only
3634	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3635	 * the range.
3636	 */
3637	oldvalid = m->valid;
3638	pagebits = vm_page_bits(base, size);
3639	m->valid |= pagebits;
3640#if 0	/* NOT YET */
3641	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3642		frag = DEV_BSIZE - frag;
3643		base += frag;
3644		size -= frag;
3645		if (size < 0)
3646			size = 0;
3647	}
3648	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3649#endif
3650	if (base == 0 && size == PAGE_SIZE) {
3651		/*
3652		 * The page can only be modified within the pmap if it is
3653		 * mapped, and it can only be mapped if it was previously
3654		 * fully valid.
3655		 */
3656		if (oldvalid == VM_PAGE_BITS_ALL)
3657			/*
3658			 * Perform the pmap_clear_modify() first.  Otherwise,
3659			 * a concurrent pmap operation, such as
3660			 * pmap_protect(), could clear a modification in the
3661			 * pmap and set the dirty field on the page before
3662			 * pmap_clear_modify() had begun and after the dirty
3663			 * field was cleared here.
3664			 */
3665			pmap_clear_modify(m);
3666		m->dirty = 0;
3667		m->oflags &= ~VPO_NOSYNC;
3668	} else if (oldvalid != VM_PAGE_BITS_ALL)
3669		m->dirty &= ~pagebits;
3670	else
3671		vm_page_clear_dirty_mask(m, pagebits);
3672}
3673
3674void
3675vm_page_clear_dirty(vm_page_t m, int base, int size)
3676{
3677
3678	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3679}
3680
3681/*
3682 *	vm_page_set_invalid:
3683 *
3684 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3685 *	valid and dirty bits for the effected areas are cleared.
3686 */
3687void
3688vm_page_set_invalid(vm_page_t m, int base, int size)
3689{
3690	vm_page_bits_t bits;
3691	vm_object_t object;
3692
3693	object = m->object;
3694	VM_OBJECT_ASSERT_WLOCKED(object);
3695	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3696	    size >= object->un_pager.vnp.vnp_size)
3697		bits = VM_PAGE_BITS_ALL;
3698	else
3699		bits = vm_page_bits(base, size);
3700	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3701	    bits != 0)
3702		pmap_remove_all(m);
3703	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3704	    !pmap_page_is_mapped(m),
3705	    ("vm_page_set_invalid: page %p is mapped", m));
3706	m->valid &= ~bits;
3707	m->dirty &= ~bits;
3708}
3709
3710/*
3711 * vm_page_zero_invalid()
3712 *
3713 *	The kernel assumes that the invalid portions of a page contain
3714 *	garbage, but such pages can be mapped into memory by user code.
3715 *	When this occurs, we must zero out the non-valid portions of the
3716 *	page so user code sees what it expects.
3717 *
3718 *	Pages are most often semi-valid when the end of a file is mapped
3719 *	into memory and the file's size is not page aligned.
3720 */
3721void
3722vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3723{
3724	int b;
3725	int i;
3726
3727	VM_OBJECT_ASSERT_WLOCKED(m->object);
3728	/*
3729	 * Scan the valid bits looking for invalid sections that
3730	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3731	 * valid bit may be set ) have already been zeroed by
3732	 * vm_page_set_validclean().
3733	 */
3734	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3735		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3736		    (m->valid & ((vm_page_bits_t)1 << i))) {
3737			if (i > b) {
3738				pmap_zero_page_area(m,
3739				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3740			}
3741			b = i + 1;
3742		}
3743	}
3744
3745	/*
3746	 * setvalid is TRUE when we can safely set the zero'd areas
3747	 * as being valid.  We can do this if there are no cache consistancy
3748	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3749	 */
3750	if (setvalid)
3751		m->valid = VM_PAGE_BITS_ALL;
3752}
3753
3754/*
3755 *	vm_page_is_valid:
3756 *
3757 *	Is (partial) page valid?  Note that the case where size == 0
3758 *	will return FALSE in the degenerate case where the page is
3759 *	entirely invalid, and TRUE otherwise.
3760 */
3761int
3762vm_page_is_valid(vm_page_t m, int base, int size)
3763{
3764	vm_page_bits_t bits;
3765
3766	VM_OBJECT_ASSERT_LOCKED(m->object);
3767	bits = vm_page_bits(base, size);
3768	return (m->valid != 0 && (m->valid & bits) == bits);
3769}
3770
3771/*
3772 *	vm_page_ps_is_valid:
3773 *
3774 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3775 */
3776boolean_t
3777vm_page_ps_is_valid(vm_page_t m)
3778{
3779	int i, npages;
3780
3781	VM_OBJECT_ASSERT_LOCKED(m->object);
3782	npages = atop(pagesizes[m->psind]);
3783
3784	/*
3785	 * The physically contiguous pages that make up a superpage, i.e., a
3786	 * page with a page size index ("psind") greater than zero, will
3787	 * occupy adjacent entries in vm_page_array[].
3788	 */
3789	for (i = 0; i < npages; i++) {
3790		if (m[i].valid != VM_PAGE_BITS_ALL)
3791			return (FALSE);
3792	}
3793	return (TRUE);
3794}
3795
3796/*
3797 * Set the page's dirty bits if the page is modified.
3798 */
3799void
3800vm_page_test_dirty(vm_page_t m)
3801{
3802
3803	VM_OBJECT_ASSERT_WLOCKED(m->object);
3804	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3805		vm_page_dirty(m);
3806}
3807
3808void
3809vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3810{
3811
3812	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3813}
3814
3815void
3816vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3817{
3818
3819	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3820}
3821
3822int
3823vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3824{
3825
3826	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3827}
3828
3829#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3830void
3831vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3832{
3833
3834	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3835}
3836
3837void
3838vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3839{
3840
3841	mtx_assert_(vm_page_lockptr(m), a, file, line);
3842}
3843#endif
3844
3845#ifdef INVARIANTS
3846void
3847vm_page_object_lock_assert(vm_page_t m)
3848{
3849
3850	/*
3851	 * Certain of the page's fields may only be modified by the
3852	 * holder of the containing object's lock or the exclusive busy.
3853	 * holder.  Unfortunately, the holder of the write busy is
3854	 * not recorded, and thus cannot be checked here.
3855	 */
3856	if (m->object != NULL && !vm_page_xbusied(m))
3857		VM_OBJECT_ASSERT_WLOCKED(m->object);
3858}
3859
3860void
3861vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3862{
3863
3864	if ((bits & PGA_WRITEABLE) == 0)
3865		return;
3866
3867	/*
3868	 * The PGA_WRITEABLE flag can only be set if the page is
3869	 * managed, is exclusively busied or the object is locked.
3870	 * Currently, this flag is only set by pmap_enter().
3871	 */
3872	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3873	    ("PGA_WRITEABLE on unmanaged page"));
3874	if (!vm_page_xbusied(m))
3875		VM_OBJECT_ASSERT_LOCKED(m->object);
3876}
3877#endif
3878
3879#include "opt_ddb.h"
3880#ifdef DDB
3881#include <sys/kernel.h>
3882
3883#include <ddb/ddb.h>
3884
3885DB_SHOW_COMMAND(page, vm_page_print_page_info)
3886{
3887	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3888	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3889	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3890	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3891	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3892	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3893	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3894	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3895	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3896}
3897
3898DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3899{
3900	int dom;
3901
3902	db_printf("pq_free %d pq_cache %d\n",
3903	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3904	for (dom = 0; dom < vm_ndomains; dom++) {
3905		db_printf(
3906	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3907		    dom,
3908		    vm_dom[dom].vmd_page_count,
3909		    vm_dom[dom].vmd_free_count,
3910		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3911		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3912		    vm_dom[dom].vmd_pass);
3913	}
3914}
3915
3916DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3917{
3918	vm_page_t m;
3919	boolean_t phys;
3920
3921	if (!have_addr) {
3922		db_printf("show pginfo addr\n");
3923		return;
3924	}
3925
3926	phys = strchr(modif, 'p') != NULL;
3927	if (phys)
3928		m = PHYS_TO_VM_PAGE(addr);
3929	else
3930		m = (vm_page_t)addr;
3931	db_printf(
3932    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3933    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3934	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3935	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3936	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3937}
3938#endif /* DDB */
3939