vm_page.c revision 298790
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 298790 2016-04-29 17:35:28Z jhb $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/linker.h>
95#include <sys/malloc.h>
96#include <sys/mman.h>
97#include <sys/msgbuf.h>
98#include <sys/mutex.h>
99#include <sys/proc.h>
100#include <sys/rwlock.h>
101#include <sys/sbuf.h>
102#include <sys/sysctl.h>
103#include <sys/vmmeter.h>
104#include <sys/vnode.h>
105
106#include <vm/vm.h>
107#include <vm/pmap.h>
108#include <vm/vm_param.h>
109#include <vm/vm_kern.h>
110#include <vm/vm_object.h>
111#include <vm/vm_page.h>
112#include <vm/vm_pageout.h>
113#include <vm/vm_pager.h>
114#include <vm/vm_phys.h>
115#include <vm/vm_radix.h>
116#include <vm/vm_reserv.h>
117#include <vm/vm_extern.h>
118#include <vm/uma.h>
119#include <vm/uma_int.h>
120
121#include <machine/md_var.h>
122
123/*
124 *	Associated with page of user-allocatable memory is a
125 *	page structure.
126 */
127
128struct vm_domain vm_dom[MAXMEMDOM];
129struct mtx_padalign vm_page_queue_free_mtx;
130
131struct mtx_padalign pa_lock[PA_LOCK_COUNT];
132
133vm_page_t vm_page_array;
134long vm_page_array_size;
135long first_page;
136int vm_page_zero_count;
137
138static int boot_pages = UMA_BOOT_PAGES;
139SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
140    &boot_pages, 0,
141    "number of pages allocated for bootstrapping the VM system");
142
143static int pa_tryrelock_restart;
144SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
145    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
146
147static TAILQ_HEAD(, vm_page) blacklist_head;
148static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
149SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
150    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
151
152/* Is the page daemon waiting for free pages? */
153static int vm_pageout_pages_needed;
154
155static uma_zone_t fakepg_zone;
156
157static struct vnode *vm_page_alloc_init(vm_page_t m);
158static void vm_page_cache_turn_free(vm_page_t m);
159static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
160static void vm_page_enqueue(uint8_t queue, vm_page_t m);
161static void vm_page_free_wakeup(void);
162static void vm_page_init_fakepg(void *dummy);
163static int vm_page_insert_after(vm_page_t m, vm_object_t object,
164    vm_pindex_t pindex, vm_page_t mpred);
165static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
166    vm_page_t mpred);
167static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
168    vm_paddr_t high);
169
170SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
171
172static void
173vm_page_init_fakepg(void *dummy)
174{
175
176	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
177	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
178}
179
180/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
181#if PAGE_SIZE == 32768
182#ifdef CTASSERT
183CTASSERT(sizeof(u_long) >= 8);
184#endif
185#endif
186
187/*
188 * Try to acquire a physical address lock while a pmap is locked.  If we
189 * fail to trylock we unlock and lock the pmap directly and cache the
190 * locked pa in *locked.  The caller should then restart their loop in case
191 * the virtual to physical mapping has changed.
192 */
193int
194vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
195{
196	vm_paddr_t lockpa;
197
198	lockpa = *locked;
199	*locked = pa;
200	if (lockpa) {
201		PA_LOCK_ASSERT(lockpa, MA_OWNED);
202		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
203			return (0);
204		PA_UNLOCK(lockpa);
205	}
206	if (PA_TRYLOCK(pa))
207		return (0);
208	PMAP_UNLOCK(pmap);
209	atomic_add_int(&pa_tryrelock_restart, 1);
210	PA_LOCK(pa);
211	PMAP_LOCK(pmap);
212	return (EAGAIN);
213}
214
215/*
216 *	vm_set_page_size:
217 *
218 *	Sets the page size, perhaps based upon the memory
219 *	size.  Must be called before any use of page-size
220 *	dependent functions.
221 */
222void
223vm_set_page_size(void)
224{
225	if (vm_cnt.v_page_size == 0)
226		vm_cnt.v_page_size = PAGE_SIZE;
227	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
228		panic("vm_set_page_size: page size not a power of two");
229}
230
231/*
232 *	vm_page_blacklist_next:
233 *
234 *	Find the next entry in the provided string of blacklist
235 *	addresses.  Entries are separated by space, comma, or newline.
236 *	If an invalid integer is encountered then the rest of the
237 *	string is skipped.  Updates the list pointer to the next
238 *	character, or NULL if the string is exhausted or invalid.
239 */
240static vm_paddr_t
241vm_page_blacklist_next(char **list, char *end)
242{
243	vm_paddr_t bad;
244	char *cp, *pos;
245
246	if (list == NULL || *list == NULL)
247		return (0);
248	if (**list =='\0') {
249		*list = NULL;
250		return (0);
251	}
252
253	/*
254	 * If there's no end pointer then the buffer is coming from
255	 * the kenv and we know it's null-terminated.
256	 */
257	if (end == NULL)
258		end = *list + strlen(*list);
259
260	/* Ensure that strtoq() won't walk off the end */
261	if (*end != '\0') {
262		if (*end == '\n' || *end == ' ' || *end  == ',')
263			*end = '\0';
264		else {
265			printf("Blacklist not terminated, skipping\n");
266			*list = NULL;
267			return (0);
268		}
269	}
270
271	for (pos = *list; *pos != '\0'; pos = cp) {
272		bad = strtoq(pos, &cp, 0);
273		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
274			if (bad == 0) {
275				if (++cp < end)
276					continue;
277				else
278					break;
279			}
280		} else
281			break;
282		if (*cp == '\0' || ++cp >= end)
283			*list = NULL;
284		else
285			*list = cp;
286		return (trunc_page(bad));
287	}
288	printf("Garbage in RAM blacklist, skipping\n");
289	*list = NULL;
290	return (0);
291}
292
293/*
294 *	vm_page_blacklist_check:
295 *
296 *	Iterate through the provided string of blacklist addresses, pulling
297 *	each entry out of the physical allocator free list and putting it
298 *	onto a list for reporting via the vm.page_blacklist sysctl.
299 */
300static void
301vm_page_blacklist_check(char *list, char *end)
302{
303	vm_paddr_t pa;
304	vm_page_t m;
305	char *next;
306	int ret;
307
308	next = list;
309	while (next != NULL) {
310		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
311			continue;
312		m = vm_phys_paddr_to_vm_page(pa);
313		if (m == NULL)
314			continue;
315		mtx_lock(&vm_page_queue_free_mtx);
316		ret = vm_phys_unfree_page(m);
317		mtx_unlock(&vm_page_queue_free_mtx);
318		if (ret == TRUE) {
319			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
320			if (bootverbose)
321				printf("Skipping page with pa 0x%jx\n",
322				    (uintmax_t)pa);
323		}
324	}
325}
326
327/*
328 *	vm_page_blacklist_load:
329 *
330 *	Search for a special module named "ram_blacklist".  It'll be a
331 *	plain text file provided by the user via the loader directive
332 *	of the same name.
333 */
334static void
335vm_page_blacklist_load(char **list, char **end)
336{
337	void *mod;
338	u_char *ptr;
339	u_int len;
340
341	mod = NULL;
342	ptr = NULL;
343
344	mod = preload_search_by_type("ram_blacklist");
345	if (mod != NULL) {
346		ptr = preload_fetch_addr(mod);
347		len = preload_fetch_size(mod);
348        }
349	*list = ptr;
350	if (ptr != NULL)
351		*end = ptr + len;
352	else
353		*end = NULL;
354	return;
355}
356
357static int
358sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
359{
360	vm_page_t m;
361	struct sbuf sbuf;
362	int error, first;
363
364	first = 1;
365	error = sysctl_wire_old_buffer(req, 0);
366	if (error != 0)
367		return (error);
368	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
369	TAILQ_FOREACH(m, &blacklist_head, listq) {
370		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
371		    (uintmax_t)m->phys_addr);
372		first = 0;
373	}
374	error = sbuf_finish(&sbuf);
375	sbuf_delete(&sbuf);
376	return (error);
377}
378
379static void
380vm_page_domain_init(struct vm_domain *vmd)
381{
382	struct vm_pagequeue *pq;
383	int i;
384
385	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
386	    "vm inactive pagequeue";
387	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
388	    &vm_cnt.v_inactive_count;
389	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
390	    "vm active pagequeue";
391	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
392	    &vm_cnt.v_active_count;
393	vmd->vmd_page_count = 0;
394	vmd->vmd_free_count = 0;
395	vmd->vmd_segs = 0;
396	vmd->vmd_oom = FALSE;
397	vmd->vmd_pass = 0;
398	for (i = 0; i < PQ_COUNT; i++) {
399		pq = &vmd->vmd_pagequeues[i];
400		TAILQ_INIT(&pq->pq_pl);
401		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
402		    MTX_DEF | MTX_DUPOK);
403	}
404}
405
406/*
407 *	vm_page_startup:
408 *
409 *	Initializes the resident memory module.
410 *
411 *	Allocates memory for the page cells, and
412 *	for the object/offset-to-page hash table headers.
413 *	Each page cell is initialized and placed on the free list.
414 */
415vm_offset_t
416vm_page_startup(vm_offset_t vaddr)
417{
418	vm_offset_t mapped;
419	vm_paddr_t page_range;
420	vm_paddr_t new_end;
421	int i;
422	vm_paddr_t pa;
423	vm_paddr_t last_pa;
424	char *list, *listend;
425	vm_paddr_t end;
426	vm_paddr_t biggestsize;
427	vm_paddr_t low_water, high_water;
428	int biggestone;
429
430	biggestsize = 0;
431	biggestone = 0;
432	vaddr = round_page(vaddr);
433
434	for (i = 0; phys_avail[i + 1]; i += 2) {
435		phys_avail[i] = round_page(phys_avail[i]);
436		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
437	}
438
439	low_water = phys_avail[0];
440	high_water = phys_avail[1];
441
442	for (i = 0; i < vm_phys_nsegs; i++) {
443		if (vm_phys_segs[i].start < low_water)
444			low_water = vm_phys_segs[i].start;
445		if (vm_phys_segs[i].end > high_water)
446			high_water = vm_phys_segs[i].end;
447	}
448	for (i = 0; phys_avail[i + 1]; i += 2) {
449		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
450
451		if (size > biggestsize) {
452			biggestone = i;
453			biggestsize = size;
454		}
455		if (phys_avail[i] < low_water)
456			low_water = phys_avail[i];
457		if (phys_avail[i + 1] > high_water)
458			high_water = phys_avail[i + 1];
459	}
460
461	end = phys_avail[biggestone+1];
462
463	/*
464	 * Initialize the page and queue locks.
465	 */
466	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
467	for (i = 0; i < PA_LOCK_COUNT; i++)
468		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
469	for (i = 0; i < vm_ndomains; i++)
470		vm_page_domain_init(&vm_dom[i]);
471
472	/*
473	 * Allocate memory for use when boot strapping the kernel memory
474	 * allocator.
475	 *
476	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
477	 * manually fetch the value.
478	 */
479	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
480	new_end = end - (boot_pages * UMA_SLAB_SIZE);
481	new_end = trunc_page(new_end);
482	mapped = pmap_map(&vaddr, new_end, end,
483	    VM_PROT_READ | VM_PROT_WRITE);
484	bzero((void *)mapped, end - new_end);
485	uma_startup((void *)mapped, boot_pages);
486
487#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
488    defined(__i386__) || defined(__mips__)
489	/*
490	 * Allocate a bitmap to indicate that a random physical page
491	 * needs to be included in a minidump.
492	 *
493	 * The amd64 port needs this to indicate which direct map pages
494	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
495	 *
496	 * However, i386 still needs this workspace internally within the
497	 * minidump code.  In theory, they are not needed on i386, but are
498	 * included should the sf_buf code decide to use them.
499	 */
500	last_pa = 0;
501	for (i = 0; dump_avail[i + 1] != 0; i += 2)
502		if (dump_avail[i + 1] > last_pa)
503			last_pa = dump_avail[i + 1];
504	page_range = last_pa / PAGE_SIZE;
505	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
506	new_end -= vm_page_dump_size;
507	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
508	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
509	bzero((void *)vm_page_dump, vm_page_dump_size);
510#endif
511#ifdef __amd64__
512	/*
513	 * Request that the physical pages underlying the message buffer be
514	 * included in a crash dump.  Since the message buffer is accessed
515	 * through the direct map, they are not automatically included.
516	 */
517	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
518	last_pa = pa + round_page(msgbufsize);
519	while (pa < last_pa) {
520		dump_add_page(pa);
521		pa += PAGE_SIZE;
522	}
523#endif
524	/*
525	 * Compute the number of pages of memory that will be available for
526	 * use (taking into account the overhead of a page structure per
527	 * page).
528	 */
529	first_page = low_water / PAGE_SIZE;
530#ifdef VM_PHYSSEG_SPARSE
531	page_range = 0;
532	for (i = 0; i < vm_phys_nsegs; i++) {
533		page_range += atop(vm_phys_segs[i].end -
534		    vm_phys_segs[i].start);
535	}
536	for (i = 0; phys_avail[i + 1] != 0; i += 2)
537		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
538#elif defined(VM_PHYSSEG_DENSE)
539	page_range = high_water / PAGE_SIZE - first_page;
540#else
541#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
542#endif
543	end = new_end;
544
545	/*
546	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
547	 */
548	vaddr += PAGE_SIZE;
549
550	/*
551	 * Initialize the mem entry structures now, and put them in the free
552	 * queue.
553	 */
554	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
555	mapped = pmap_map(&vaddr, new_end, end,
556	    VM_PROT_READ | VM_PROT_WRITE);
557	vm_page_array = (vm_page_t) mapped;
558#if VM_NRESERVLEVEL > 0
559	/*
560	 * Allocate memory for the reservation management system's data
561	 * structures.
562	 */
563	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
564#endif
565#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
566	/*
567	 * pmap_map on arm64, amd64, and mips can come out of the direct-map,
568	 * not kvm like i386, so the pages must be tracked for a crashdump to
569	 * include this data.  This includes the vm_page_array and the early
570	 * UMA bootstrap pages.
571	 */
572	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
573		dump_add_page(pa);
574#endif
575	phys_avail[biggestone + 1] = new_end;
576
577	/*
578	 * Add physical memory segments corresponding to the available
579	 * physical pages.
580	 */
581	for (i = 0; phys_avail[i + 1] != 0; i += 2)
582		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
583
584	/*
585	 * Clear all of the page structures
586	 */
587	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
588	for (i = 0; i < page_range; i++)
589		vm_page_array[i].order = VM_NFREEORDER;
590	vm_page_array_size = page_range;
591
592	/*
593	 * Initialize the physical memory allocator.
594	 */
595	vm_phys_init();
596
597	/*
598	 * Add every available physical page that is not blacklisted to
599	 * the free lists.
600	 */
601	vm_cnt.v_page_count = 0;
602	vm_cnt.v_free_count = 0;
603	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
604		pa = phys_avail[i];
605		last_pa = phys_avail[i + 1];
606		while (pa < last_pa) {
607			vm_phys_add_page(pa);
608			pa += PAGE_SIZE;
609		}
610	}
611
612	TAILQ_INIT(&blacklist_head);
613	vm_page_blacklist_load(&list, &listend);
614	vm_page_blacklist_check(list, listend);
615
616	list = kern_getenv("vm.blacklist");
617	vm_page_blacklist_check(list, NULL);
618
619	freeenv(list);
620#if VM_NRESERVLEVEL > 0
621	/*
622	 * Initialize the reservation management system.
623	 */
624	vm_reserv_init();
625#endif
626	return (vaddr);
627}
628
629void
630vm_page_reference(vm_page_t m)
631{
632
633	vm_page_aflag_set(m, PGA_REFERENCED);
634}
635
636/*
637 *	vm_page_busy_downgrade:
638 *
639 *	Downgrade an exclusive busy page into a single shared busy page.
640 */
641void
642vm_page_busy_downgrade(vm_page_t m)
643{
644	u_int x;
645
646	vm_page_assert_xbusied(m);
647
648	for (;;) {
649		x = m->busy_lock;
650		x &= VPB_BIT_WAITERS;
651		if (atomic_cmpset_rel_int(&m->busy_lock,
652		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
653			break;
654	}
655}
656
657/*
658 *	vm_page_sbusied:
659 *
660 *	Return a positive value if the page is shared busied, 0 otherwise.
661 */
662int
663vm_page_sbusied(vm_page_t m)
664{
665	u_int x;
666
667	x = m->busy_lock;
668	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
669}
670
671/*
672 *	vm_page_sunbusy:
673 *
674 *	Shared unbusy a page.
675 */
676void
677vm_page_sunbusy(vm_page_t m)
678{
679	u_int x;
680
681	vm_page_assert_sbusied(m);
682
683	for (;;) {
684		x = m->busy_lock;
685		if (VPB_SHARERS(x) > 1) {
686			if (atomic_cmpset_int(&m->busy_lock, x,
687			    x - VPB_ONE_SHARER))
688				break;
689			continue;
690		}
691		if ((x & VPB_BIT_WAITERS) == 0) {
692			KASSERT(x == VPB_SHARERS_WORD(1),
693			    ("vm_page_sunbusy: invalid lock state"));
694			if (atomic_cmpset_int(&m->busy_lock,
695			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
696				break;
697			continue;
698		}
699		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
700		    ("vm_page_sunbusy: invalid lock state for waiters"));
701
702		vm_page_lock(m);
703		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
704			vm_page_unlock(m);
705			continue;
706		}
707		wakeup(m);
708		vm_page_unlock(m);
709		break;
710	}
711}
712
713/*
714 *	vm_page_busy_sleep:
715 *
716 *	Sleep and release the page lock, using the page pointer as wchan.
717 *	This is used to implement the hard-path of busying mechanism.
718 *
719 *	The given page must be locked.
720 */
721void
722vm_page_busy_sleep(vm_page_t m, const char *wmesg)
723{
724	u_int x;
725
726	vm_page_lock_assert(m, MA_OWNED);
727
728	x = m->busy_lock;
729	if (x == VPB_UNBUSIED) {
730		vm_page_unlock(m);
731		return;
732	}
733	if ((x & VPB_BIT_WAITERS) == 0 &&
734	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
735		vm_page_unlock(m);
736		return;
737	}
738	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
739}
740
741/*
742 *	vm_page_trysbusy:
743 *
744 *	Try to shared busy a page.
745 *	If the operation succeeds 1 is returned otherwise 0.
746 *	The operation never sleeps.
747 */
748int
749vm_page_trysbusy(vm_page_t m)
750{
751	u_int x;
752
753	for (;;) {
754		x = m->busy_lock;
755		if ((x & VPB_BIT_SHARED) == 0)
756			return (0);
757		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
758			return (1);
759	}
760}
761
762/*
763 *	vm_page_xunbusy_hard:
764 *
765 *	Called after the first try the exclusive unbusy of a page failed.
766 *	It is assumed that the waiters bit is on.
767 */
768void
769vm_page_xunbusy_hard(vm_page_t m)
770{
771
772	vm_page_assert_xbusied(m);
773
774	vm_page_lock(m);
775	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
776	wakeup(m);
777	vm_page_unlock(m);
778}
779
780/*
781 *	vm_page_flash:
782 *
783 *	Wakeup anyone waiting for the page.
784 *	The ownership bits do not change.
785 *
786 *	The given page must be locked.
787 */
788void
789vm_page_flash(vm_page_t m)
790{
791	u_int x;
792
793	vm_page_lock_assert(m, MA_OWNED);
794
795	for (;;) {
796		x = m->busy_lock;
797		if ((x & VPB_BIT_WAITERS) == 0)
798			return;
799		if (atomic_cmpset_int(&m->busy_lock, x,
800		    x & (~VPB_BIT_WAITERS)))
801			break;
802	}
803	wakeup(m);
804}
805
806/*
807 * Keep page from being freed by the page daemon
808 * much of the same effect as wiring, except much lower
809 * overhead and should be used only for *very* temporary
810 * holding ("wiring").
811 */
812void
813vm_page_hold(vm_page_t mem)
814{
815
816	vm_page_lock_assert(mem, MA_OWNED);
817        mem->hold_count++;
818}
819
820void
821vm_page_unhold(vm_page_t mem)
822{
823
824	vm_page_lock_assert(mem, MA_OWNED);
825	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
826	--mem->hold_count;
827	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
828		vm_page_free_toq(mem);
829}
830
831/*
832 *	vm_page_unhold_pages:
833 *
834 *	Unhold each of the pages that is referenced by the given array.
835 */
836void
837vm_page_unhold_pages(vm_page_t *ma, int count)
838{
839	struct mtx *mtx, *new_mtx;
840
841	mtx = NULL;
842	for (; count != 0; count--) {
843		/*
844		 * Avoid releasing and reacquiring the same page lock.
845		 */
846		new_mtx = vm_page_lockptr(*ma);
847		if (mtx != new_mtx) {
848			if (mtx != NULL)
849				mtx_unlock(mtx);
850			mtx = new_mtx;
851			mtx_lock(mtx);
852		}
853		vm_page_unhold(*ma);
854		ma++;
855	}
856	if (mtx != NULL)
857		mtx_unlock(mtx);
858}
859
860vm_page_t
861PHYS_TO_VM_PAGE(vm_paddr_t pa)
862{
863	vm_page_t m;
864
865#ifdef VM_PHYSSEG_SPARSE
866	m = vm_phys_paddr_to_vm_page(pa);
867	if (m == NULL)
868		m = vm_phys_fictitious_to_vm_page(pa);
869	return (m);
870#elif defined(VM_PHYSSEG_DENSE)
871	long pi;
872
873	pi = atop(pa);
874	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
875		m = &vm_page_array[pi - first_page];
876		return (m);
877	}
878	return (vm_phys_fictitious_to_vm_page(pa));
879#else
880#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
881#endif
882}
883
884/*
885 *	vm_page_getfake:
886 *
887 *	Create a fictitious page with the specified physical address and
888 *	memory attribute.  The memory attribute is the only the machine-
889 *	dependent aspect of a fictitious page that must be initialized.
890 */
891vm_page_t
892vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
893{
894	vm_page_t m;
895
896	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
897	vm_page_initfake(m, paddr, memattr);
898	return (m);
899}
900
901void
902vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
903{
904
905	if ((m->flags & PG_FICTITIOUS) != 0) {
906		/*
907		 * The page's memattr might have changed since the
908		 * previous initialization.  Update the pmap to the
909		 * new memattr.
910		 */
911		goto memattr;
912	}
913	m->phys_addr = paddr;
914	m->queue = PQ_NONE;
915	/* Fictitious pages don't use "segind". */
916	m->flags = PG_FICTITIOUS;
917	/* Fictitious pages don't use "order" or "pool". */
918	m->oflags = VPO_UNMANAGED;
919	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
920	m->wire_count = 1;
921	pmap_page_init(m);
922memattr:
923	pmap_page_set_memattr(m, memattr);
924}
925
926/*
927 *	vm_page_putfake:
928 *
929 *	Release a fictitious page.
930 */
931void
932vm_page_putfake(vm_page_t m)
933{
934
935	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
936	KASSERT((m->flags & PG_FICTITIOUS) != 0,
937	    ("vm_page_putfake: bad page %p", m));
938	uma_zfree(fakepg_zone, m);
939}
940
941/*
942 *	vm_page_updatefake:
943 *
944 *	Update the given fictitious page to the specified physical address and
945 *	memory attribute.
946 */
947void
948vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
949{
950
951	KASSERT((m->flags & PG_FICTITIOUS) != 0,
952	    ("vm_page_updatefake: bad page %p", m));
953	m->phys_addr = paddr;
954	pmap_page_set_memattr(m, memattr);
955}
956
957/*
958 *	vm_page_free:
959 *
960 *	Free a page.
961 */
962void
963vm_page_free(vm_page_t m)
964{
965
966	m->flags &= ~PG_ZERO;
967	vm_page_free_toq(m);
968}
969
970/*
971 *	vm_page_free_zero:
972 *
973 *	Free a page to the zerod-pages queue
974 */
975void
976vm_page_free_zero(vm_page_t m)
977{
978
979	m->flags |= PG_ZERO;
980	vm_page_free_toq(m);
981}
982
983/*
984 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
985 * array which was optionally read ahead or behind.
986 */
987void
988vm_page_readahead_finish(vm_page_t m)
989{
990
991	/* We shouldn't put invalid pages on queues. */
992	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
993
994	/*
995	 * Since the page is not the actually needed one, whether it should
996	 * be activated or deactivated is not obvious.  Empirical results
997	 * have shown that deactivating the page is usually the best choice,
998	 * unless the page is wanted by another thread.
999	 */
1000	vm_page_lock(m);
1001	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1002		vm_page_activate(m);
1003	else
1004		vm_page_deactivate(m);
1005	vm_page_unlock(m);
1006	vm_page_xunbusy(m);
1007}
1008
1009/*
1010 *	vm_page_sleep_if_busy:
1011 *
1012 *	Sleep and release the page queues lock if the page is busied.
1013 *	Returns TRUE if the thread slept.
1014 *
1015 *	The given page must be unlocked and object containing it must
1016 *	be locked.
1017 */
1018int
1019vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1020{
1021	vm_object_t obj;
1022
1023	vm_page_lock_assert(m, MA_NOTOWNED);
1024	VM_OBJECT_ASSERT_WLOCKED(m->object);
1025
1026	if (vm_page_busied(m)) {
1027		/*
1028		 * The page-specific object must be cached because page
1029		 * identity can change during the sleep, causing the
1030		 * re-lock of a different object.
1031		 * It is assumed that a reference to the object is already
1032		 * held by the callers.
1033		 */
1034		obj = m->object;
1035		vm_page_lock(m);
1036		VM_OBJECT_WUNLOCK(obj);
1037		vm_page_busy_sleep(m, msg);
1038		VM_OBJECT_WLOCK(obj);
1039		return (TRUE);
1040	}
1041	return (FALSE);
1042}
1043
1044/*
1045 *	vm_page_dirty_KBI:		[ internal use only ]
1046 *
1047 *	Set all bits in the page's dirty field.
1048 *
1049 *	The object containing the specified page must be locked if the
1050 *	call is made from the machine-independent layer.
1051 *
1052 *	See vm_page_clear_dirty_mask().
1053 *
1054 *	This function should only be called by vm_page_dirty().
1055 */
1056void
1057vm_page_dirty_KBI(vm_page_t m)
1058{
1059
1060	/* These assertions refer to this operation by its public name. */
1061	KASSERT((m->flags & PG_CACHED) == 0,
1062	    ("vm_page_dirty: page in cache!"));
1063	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1064	    ("vm_page_dirty: page is invalid!"));
1065	m->dirty = VM_PAGE_BITS_ALL;
1066}
1067
1068/*
1069 *	vm_page_insert:		[ internal use only ]
1070 *
1071 *	Inserts the given mem entry into the object and object list.
1072 *
1073 *	The object must be locked.
1074 */
1075int
1076vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1077{
1078	vm_page_t mpred;
1079
1080	VM_OBJECT_ASSERT_WLOCKED(object);
1081	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1082	return (vm_page_insert_after(m, object, pindex, mpred));
1083}
1084
1085/*
1086 *	vm_page_insert_after:
1087 *
1088 *	Inserts the page "m" into the specified object at offset "pindex".
1089 *
1090 *	The page "mpred" must immediately precede the offset "pindex" within
1091 *	the specified object.
1092 *
1093 *	The object must be locked.
1094 */
1095static int
1096vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1097    vm_page_t mpred)
1098{
1099	vm_pindex_t sidx;
1100	vm_object_t sobj;
1101	vm_page_t msucc;
1102
1103	VM_OBJECT_ASSERT_WLOCKED(object);
1104	KASSERT(m->object == NULL,
1105	    ("vm_page_insert_after: page already inserted"));
1106	if (mpred != NULL) {
1107		KASSERT(mpred->object == object,
1108		    ("vm_page_insert_after: object doesn't contain mpred"));
1109		KASSERT(mpred->pindex < pindex,
1110		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1111		msucc = TAILQ_NEXT(mpred, listq);
1112	} else
1113		msucc = TAILQ_FIRST(&object->memq);
1114	if (msucc != NULL)
1115		KASSERT(msucc->pindex > pindex,
1116		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1117
1118	/*
1119	 * Record the object/offset pair in this page
1120	 */
1121	sobj = m->object;
1122	sidx = m->pindex;
1123	m->object = object;
1124	m->pindex = pindex;
1125
1126	/*
1127	 * Now link into the object's ordered list of backed pages.
1128	 */
1129	if (vm_radix_insert(&object->rtree, m)) {
1130		m->object = sobj;
1131		m->pindex = sidx;
1132		return (1);
1133	}
1134	vm_page_insert_radixdone(m, object, mpred);
1135	return (0);
1136}
1137
1138/*
1139 *	vm_page_insert_radixdone:
1140 *
1141 *	Complete page "m" insertion into the specified object after the
1142 *	radix trie hooking.
1143 *
1144 *	The page "mpred" must precede the offset "m->pindex" within the
1145 *	specified object.
1146 *
1147 *	The object must be locked.
1148 */
1149static void
1150vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1151{
1152
1153	VM_OBJECT_ASSERT_WLOCKED(object);
1154	KASSERT(object != NULL && m->object == object,
1155	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1156	if (mpred != NULL) {
1157		KASSERT(mpred->object == object,
1158		    ("vm_page_insert_after: object doesn't contain mpred"));
1159		KASSERT(mpred->pindex < m->pindex,
1160		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1161	}
1162
1163	if (mpred != NULL)
1164		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1165	else
1166		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1167
1168	/*
1169	 * Show that the object has one more resident page.
1170	 */
1171	object->resident_page_count++;
1172
1173	/*
1174	 * Hold the vnode until the last page is released.
1175	 */
1176	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1177		vhold(object->handle);
1178
1179	/*
1180	 * Since we are inserting a new and possibly dirty page,
1181	 * update the object's OBJ_MIGHTBEDIRTY flag.
1182	 */
1183	if (pmap_page_is_write_mapped(m))
1184		vm_object_set_writeable_dirty(object);
1185}
1186
1187/*
1188 *	vm_page_remove:
1189 *
1190 *	Removes the given mem entry from the object/offset-page
1191 *	table and the object page list, but do not invalidate/terminate
1192 *	the backing store.
1193 *
1194 *	The object must be locked.  The page must be locked if it is managed.
1195 */
1196void
1197vm_page_remove(vm_page_t m)
1198{
1199	vm_object_t object;
1200	boolean_t lockacq;
1201
1202	if ((m->oflags & VPO_UNMANAGED) == 0)
1203		vm_page_lock_assert(m, MA_OWNED);
1204	if ((object = m->object) == NULL)
1205		return;
1206	VM_OBJECT_ASSERT_WLOCKED(object);
1207	if (vm_page_xbusied(m)) {
1208		lockacq = FALSE;
1209		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1210		    !mtx_owned(vm_page_lockptr(m))) {
1211			lockacq = TRUE;
1212			vm_page_lock(m);
1213		}
1214		vm_page_flash(m);
1215		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1216		if (lockacq)
1217			vm_page_unlock(m);
1218	}
1219
1220	/*
1221	 * Now remove from the object's list of backed pages.
1222	 */
1223	vm_radix_remove(&object->rtree, m->pindex);
1224	TAILQ_REMOVE(&object->memq, m, listq);
1225
1226	/*
1227	 * And show that the object has one fewer resident page.
1228	 */
1229	object->resident_page_count--;
1230
1231	/*
1232	 * The vnode may now be recycled.
1233	 */
1234	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1235		vdrop(object->handle);
1236
1237	m->object = NULL;
1238}
1239
1240/*
1241 *	vm_page_lookup:
1242 *
1243 *	Returns the page associated with the object/offset
1244 *	pair specified; if none is found, NULL is returned.
1245 *
1246 *	The object must be locked.
1247 */
1248vm_page_t
1249vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1250{
1251
1252	VM_OBJECT_ASSERT_LOCKED(object);
1253	return (vm_radix_lookup(&object->rtree, pindex));
1254}
1255
1256/*
1257 *	vm_page_find_least:
1258 *
1259 *	Returns the page associated with the object with least pindex
1260 *	greater than or equal to the parameter pindex, or NULL.
1261 *
1262 *	The object must be locked.
1263 */
1264vm_page_t
1265vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1266{
1267	vm_page_t m;
1268
1269	VM_OBJECT_ASSERT_LOCKED(object);
1270	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1271		m = vm_radix_lookup_ge(&object->rtree, pindex);
1272	return (m);
1273}
1274
1275/*
1276 * Returns the given page's successor (by pindex) within the object if it is
1277 * resident; if none is found, NULL is returned.
1278 *
1279 * The object must be locked.
1280 */
1281vm_page_t
1282vm_page_next(vm_page_t m)
1283{
1284	vm_page_t next;
1285
1286	VM_OBJECT_ASSERT_LOCKED(m->object);
1287	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1288	    next->pindex != m->pindex + 1)
1289		next = NULL;
1290	return (next);
1291}
1292
1293/*
1294 * Returns the given page's predecessor (by pindex) within the object if it is
1295 * resident; if none is found, NULL is returned.
1296 *
1297 * The object must be locked.
1298 */
1299vm_page_t
1300vm_page_prev(vm_page_t m)
1301{
1302	vm_page_t prev;
1303
1304	VM_OBJECT_ASSERT_LOCKED(m->object);
1305	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1306	    prev->pindex != m->pindex - 1)
1307		prev = NULL;
1308	return (prev);
1309}
1310
1311/*
1312 * Uses the page mnew as a replacement for an existing page at index
1313 * pindex which must be already present in the object.
1314 *
1315 * The existing page must not be on a paging queue.
1316 */
1317vm_page_t
1318vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1319{
1320	vm_page_t mold;
1321
1322	VM_OBJECT_ASSERT_WLOCKED(object);
1323	KASSERT(mnew->object == NULL,
1324	    ("vm_page_replace: page already in object"));
1325
1326	/*
1327	 * This function mostly follows vm_page_insert() and
1328	 * vm_page_remove() without the radix, object count and vnode
1329	 * dance.  Double check such functions for more comments.
1330	 */
1331
1332	mnew->object = object;
1333	mnew->pindex = pindex;
1334	mold = vm_radix_replace(&object->rtree, mnew);
1335	KASSERT(mold->queue == PQ_NONE,
1336	    ("vm_page_replace: mold is on a paging queue"));
1337
1338	/* Keep the resident page list in sorted order. */
1339	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1340	TAILQ_REMOVE(&object->memq, mold, listq);
1341
1342	mold->object = NULL;
1343	vm_page_xunbusy(mold);
1344
1345	/*
1346	 * The object's resident_page_count does not change because we have
1347	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1348	 */
1349	if (pmap_page_is_write_mapped(mnew))
1350		vm_object_set_writeable_dirty(object);
1351	return (mold);
1352}
1353
1354/*
1355 *	vm_page_rename:
1356 *
1357 *	Move the given memory entry from its
1358 *	current object to the specified target object/offset.
1359 *
1360 *	Note: swap associated with the page must be invalidated by the move.  We
1361 *	      have to do this for several reasons:  (1) we aren't freeing the
1362 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1363 *	      moving the page from object A to B, and will then later move
1364 *	      the backing store from A to B and we can't have a conflict.
1365 *
1366 *	Note: we *always* dirty the page.  It is necessary both for the
1367 *	      fact that we moved it, and because we may be invalidating
1368 *	      swap.  If the page is on the cache, we have to deactivate it
1369 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1370 *	      on the cache.
1371 *
1372 *	The objects must be locked.
1373 */
1374int
1375vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1376{
1377	vm_page_t mpred;
1378	vm_pindex_t opidx;
1379
1380	VM_OBJECT_ASSERT_WLOCKED(new_object);
1381
1382	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1383	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1384	    ("vm_page_rename: pindex already renamed"));
1385
1386	/*
1387	 * Create a custom version of vm_page_insert() which does not depend
1388	 * by m_prev and can cheat on the implementation aspects of the
1389	 * function.
1390	 */
1391	opidx = m->pindex;
1392	m->pindex = new_pindex;
1393	if (vm_radix_insert(&new_object->rtree, m)) {
1394		m->pindex = opidx;
1395		return (1);
1396	}
1397
1398	/*
1399	 * The operation cannot fail anymore.  The removal must happen before
1400	 * the listq iterator is tainted.
1401	 */
1402	m->pindex = opidx;
1403	vm_page_lock(m);
1404	vm_page_remove(m);
1405
1406	/* Return back to the new pindex to complete vm_page_insert(). */
1407	m->pindex = new_pindex;
1408	m->object = new_object;
1409	vm_page_unlock(m);
1410	vm_page_insert_radixdone(m, new_object, mpred);
1411	vm_page_dirty(m);
1412	return (0);
1413}
1414
1415/*
1416 *	Convert all of the given object's cached pages that have a
1417 *	pindex within the given range into free pages.  If the value
1418 *	zero is given for "end", then the range's upper bound is
1419 *	infinity.  If the given object is backed by a vnode and it
1420 *	transitions from having one or more cached pages to none, the
1421 *	vnode's hold count is reduced.
1422 */
1423void
1424vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1425{
1426	vm_page_t m;
1427	boolean_t empty;
1428
1429	mtx_lock(&vm_page_queue_free_mtx);
1430	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1431		mtx_unlock(&vm_page_queue_free_mtx);
1432		return;
1433	}
1434	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1435		if (end != 0 && m->pindex >= end)
1436			break;
1437		vm_radix_remove(&object->cache, m->pindex);
1438		vm_page_cache_turn_free(m);
1439	}
1440	empty = vm_radix_is_empty(&object->cache);
1441	mtx_unlock(&vm_page_queue_free_mtx);
1442	if (object->type == OBJT_VNODE && empty)
1443		vdrop(object->handle);
1444}
1445
1446/*
1447 *	Returns the cached page that is associated with the given
1448 *	object and offset.  If, however, none exists, returns NULL.
1449 *
1450 *	The free page queue must be locked.
1451 */
1452static inline vm_page_t
1453vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1454{
1455
1456	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1457	return (vm_radix_lookup(&object->cache, pindex));
1458}
1459
1460/*
1461 *	Remove the given cached page from its containing object's
1462 *	collection of cached pages.
1463 *
1464 *	The free page queue must be locked.
1465 */
1466static void
1467vm_page_cache_remove(vm_page_t m)
1468{
1469
1470	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1471	KASSERT((m->flags & PG_CACHED) != 0,
1472	    ("vm_page_cache_remove: page %p is not cached", m));
1473	vm_radix_remove(&m->object->cache, m->pindex);
1474	m->object = NULL;
1475	vm_cnt.v_cache_count--;
1476}
1477
1478/*
1479 *	Transfer all of the cached pages with offset greater than or
1480 *	equal to 'offidxstart' from the original object's cache to the
1481 *	new object's cache.  However, any cached pages with offset
1482 *	greater than or equal to the new object's size are kept in the
1483 *	original object.  Initially, the new object's cache must be
1484 *	empty.  Offset 'offidxstart' in the original object must
1485 *	correspond to offset zero in the new object.
1486 *
1487 *	The new object must be locked.
1488 */
1489void
1490vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1491    vm_object_t new_object)
1492{
1493	vm_page_t m;
1494
1495	/*
1496	 * Insertion into an object's collection of cached pages
1497	 * requires the object to be locked.  In contrast, removal does
1498	 * not.
1499	 */
1500	VM_OBJECT_ASSERT_WLOCKED(new_object);
1501	KASSERT(vm_radix_is_empty(&new_object->cache),
1502	    ("vm_page_cache_transfer: object %p has cached pages",
1503	    new_object));
1504	mtx_lock(&vm_page_queue_free_mtx);
1505	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1506	    offidxstart)) != NULL) {
1507		/*
1508		 * Transfer all of the pages with offset greater than or
1509		 * equal to 'offidxstart' from the original object's
1510		 * cache to the new object's cache.
1511		 */
1512		if ((m->pindex - offidxstart) >= new_object->size)
1513			break;
1514		vm_radix_remove(&orig_object->cache, m->pindex);
1515		/* Update the page's object and offset. */
1516		m->object = new_object;
1517		m->pindex -= offidxstart;
1518		if (vm_radix_insert(&new_object->cache, m))
1519			vm_page_cache_turn_free(m);
1520	}
1521	mtx_unlock(&vm_page_queue_free_mtx);
1522}
1523
1524/*
1525 *	Returns TRUE if a cached page is associated with the given object and
1526 *	offset, and FALSE otherwise.
1527 *
1528 *	The object must be locked.
1529 */
1530boolean_t
1531vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1532{
1533	vm_page_t m;
1534
1535	/*
1536	 * Insertion into an object's collection of cached pages requires the
1537	 * object to be locked.  Therefore, if the object is locked and the
1538	 * object's collection is empty, there is no need to acquire the free
1539	 * page queues lock in order to prove that the specified page doesn't
1540	 * exist.
1541	 */
1542	VM_OBJECT_ASSERT_WLOCKED(object);
1543	if (__predict_true(vm_object_cache_is_empty(object)))
1544		return (FALSE);
1545	mtx_lock(&vm_page_queue_free_mtx);
1546	m = vm_page_cache_lookup(object, pindex);
1547	mtx_unlock(&vm_page_queue_free_mtx);
1548	return (m != NULL);
1549}
1550
1551/*
1552 *	vm_page_alloc:
1553 *
1554 *	Allocate and return a page that is associated with the specified
1555 *	object and offset pair.  By default, this page is exclusive busied.
1556 *
1557 *	The caller must always specify an allocation class.
1558 *
1559 *	allocation classes:
1560 *	VM_ALLOC_NORMAL		normal process request
1561 *	VM_ALLOC_SYSTEM		system *really* needs a page
1562 *	VM_ALLOC_INTERRUPT	interrupt time request
1563 *
1564 *	optional allocation flags:
1565 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1566 *				intends to allocate
1567 *	VM_ALLOC_IFCACHED	return page only if it is cached
1568 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1569 *				is cached
1570 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1571 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1572 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1573 *				should not be exclusive busy
1574 *	VM_ALLOC_SBUSY		shared busy the allocated page
1575 *	VM_ALLOC_WIRED		wire the allocated page
1576 *	VM_ALLOC_ZERO		prefer a zeroed page
1577 *
1578 *	This routine may not sleep.
1579 */
1580vm_page_t
1581vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1582{
1583	struct vnode *vp = NULL;
1584	vm_object_t m_object;
1585	vm_page_t m, mpred;
1586	int flags, req_class;
1587
1588	mpred = 0;	/* XXX: pacify gcc */
1589	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1590	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1591	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1592	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1593	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1594	    req));
1595	if (object != NULL)
1596		VM_OBJECT_ASSERT_WLOCKED(object);
1597
1598	req_class = req & VM_ALLOC_CLASS_MASK;
1599
1600	/*
1601	 * The page daemon is allowed to dig deeper into the free page list.
1602	 */
1603	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1604		req_class = VM_ALLOC_SYSTEM;
1605
1606	if (object != NULL) {
1607		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1608		KASSERT(mpred == NULL || mpred->pindex != pindex,
1609		   ("vm_page_alloc: pindex already allocated"));
1610	}
1611
1612	/*
1613	 * The page allocation request can came from consumers which already
1614	 * hold the free page queue mutex, like vm_page_insert() in
1615	 * vm_page_cache().
1616	 */
1617	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1618	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1619	    (req_class == VM_ALLOC_SYSTEM &&
1620	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1621	    (req_class == VM_ALLOC_INTERRUPT &&
1622	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1623		/*
1624		 * Allocate from the free queue if the number of free pages
1625		 * exceeds the minimum for the request class.
1626		 */
1627		if (object != NULL &&
1628		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1629			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1630				mtx_unlock(&vm_page_queue_free_mtx);
1631				return (NULL);
1632			}
1633			if (vm_phys_unfree_page(m))
1634				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1635#if VM_NRESERVLEVEL > 0
1636			else if (!vm_reserv_reactivate_page(m))
1637#else
1638			else
1639#endif
1640				panic("vm_page_alloc: cache page %p is missing"
1641				    " from the free queue", m);
1642		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1643			mtx_unlock(&vm_page_queue_free_mtx);
1644			return (NULL);
1645#if VM_NRESERVLEVEL > 0
1646		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1647		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1648		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1649#else
1650		} else {
1651#endif
1652			m = vm_phys_alloc_pages(object != NULL ?
1653			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1654#if VM_NRESERVLEVEL > 0
1655			if (m == NULL && vm_reserv_reclaim_inactive()) {
1656				m = vm_phys_alloc_pages(object != NULL ?
1657				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1658				    0);
1659			}
1660#endif
1661		}
1662	} else {
1663		/*
1664		 * Not allocatable, give up.
1665		 */
1666		mtx_unlock(&vm_page_queue_free_mtx);
1667		atomic_add_int(&vm_pageout_deficit,
1668		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1669		pagedaemon_wakeup();
1670		return (NULL);
1671	}
1672
1673	/*
1674	 *  At this point we had better have found a good page.
1675	 */
1676	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1677	KASSERT(m->queue == PQ_NONE,
1678	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1679	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1680	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1681	KASSERT(!vm_page_sbusied(m),
1682	    ("vm_page_alloc: page %p is busy", m));
1683	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1684	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1685	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1686	    pmap_page_get_memattr(m)));
1687	if ((m->flags & PG_CACHED) != 0) {
1688		KASSERT((m->flags & PG_ZERO) == 0,
1689		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1690		KASSERT(m->valid != 0,
1691		    ("vm_page_alloc: cached page %p is invalid", m));
1692		if (m->object == object && m->pindex == pindex)
1693			vm_cnt.v_reactivated++;
1694		else
1695			m->valid = 0;
1696		m_object = m->object;
1697		vm_page_cache_remove(m);
1698		if (m_object->type == OBJT_VNODE &&
1699		    vm_object_cache_is_empty(m_object))
1700			vp = m_object->handle;
1701	} else {
1702		KASSERT(m->valid == 0,
1703		    ("vm_page_alloc: free page %p is valid", m));
1704		vm_phys_freecnt_adj(m, -1);
1705		if ((m->flags & PG_ZERO) != 0)
1706			vm_page_zero_count--;
1707	}
1708	mtx_unlock(&vm_page_queue_free_mtx);
1709
1710	/*
1711	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1712	 */
1713	flags = 0;
1714	if ((req & VM_ALLOC_ZERO) != 0)
1715		flags = PG_ZERO;
1716	flags &= m->flags;
1717	if ((req & VM_ALLOC_NODUMP) != 0)
1718		flags |= PG_NODUMP;
1719	m->flags = flags;
1720	m->aflags = 0;
1721	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1722	    VPO_UNMANAGED : 0;
1723	m->busy_lock = VPB_UNBUSIED;
1724	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1725		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1726	if ((req & VM_ALLOC_SBUSY) != 0)
1727		m->busy_lock = VPB_SHARERS_WORD(1);
1728	if (req & VM_ALLOC_WIRED) {
1729		/*
1730		 * The page lock is not required for wiring a page until that
1731		 * page is inserted into the object.
1732		 */
1733		atomic_add_int(&vm_cnt.v_wire_count, 1);
1734		m->wire_count = 1;
1735	}
1736	m->act_count = 0;
1737
1738	if (object != NULL) {
1739		if (vm_page_insert_after(m, object, pindex, mpred)) {
1740			/* See the comment below about hold count. */
1741			if (vp != NULL)
1742				vdrop(vp);
1743			pagedaemon_wakeup();
1744			if (req & VM_ALLOC_WIRED) {
1745				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1746				m->wire_count = 0;
1747			}
1748			m->object = NULL;
1749			m->oflags = VPO_UNMANAGED;
1750			vm_page_free(m);
1751			return (NULL);
1752		}
1753
1754		/* Ignore device objects; the pager sets "memattr" for them. */
1755		if (object->memattr != VM_MEMATTR_DEFAULT &&
1756		    (object->flags & OBJ_FICTITIOUS) == 0)
1757			pmap_page_set_memattr(m, object->memattr);
1758	} else
1759		m->pindex = pindex;
1760
1761	/*
1762	 * The following call to vdrop() must come after the above call
1763	 * to vm_page_insert() in case both affect the same object and
1764	 * vnode.  Otherwise, the affected vnode's hold count could
1765	 * temporarily become zero.
1766	 */
1767	if (vp != NULL)
1768		vdrop(vp);
1769
1770	/*
1771	 * Don't wakeup too often - wakeup the pageout daemon when
1772	 * we would be nearly out of memory.
1773	 */
1774	if (vm_paging_needed())
1775		pagedaemon_wakeup();
1776
1777	return (m);
1778}
1779
1780static void
1781vm_page_alloc_contig_vdrop(struct spglist *lst)
1782{
1783
1784	while (!SLIST_EMPTY(lst)) {
1785		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1786		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1787	}
1788}
1789
1790/*
1791 *	vm_page_alloc_contig:
1792 *
1793 *	Allocate a contiguous set of physical pages of the given size "npages"
1794 *	from the free lists.  All of the physical pages must be at or above
1795 *	the given physical address "low" and below the given physical address
1796 *	"high".  The given value "alignment" determines the alignment of the
1797 *	first physical page in the set.  If the given value "boundary" is
1798 *	non-zero, then the set of physical pages cannot cross any physical
1799 *	address boundary that is a multiple of that value.  Both "alignment"
1800 *	and "boundary" must be a power of two.
1801 *
1802 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1803 *	then the memory attribute setting for the physical pages is configured
1804 *	to the object's memory attribute setting.  Otherwise, the memory
1805 *	attribute setting for the physical pages is configured to "memattr",
1806 *	overriding the object's memory attribute setting.  However, if the
1807 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1808 *	memory attribute setting for the physical pages cannot be configured
1809 *	to VM_MEMATTR_DEFAULT.
1810 *
1811 *	The caller must always specify an allocation class.
1812 *
1813 *	allocation classes:
1814 *	VM_ALLOC_NORMAL		normal process request
1815 *	VM_ALLOC_SYSTEM		system *really* needs a page
1816 *	VM_ALLOC_INTERRUPT	interrupt time request
1817 *
1818 *	optional allocation flags:
1819 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1820 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1821 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1822 *				should not be exclusive busy
1823 *	VM_ALLOC_SBUSY		shared busy the allocated page
1824 *	VM_ALLOC_WIRED		wire the allocated page
1825 *	VM_ALLOC_ZERO		prefer a zeroed page
1826 *
1827 *	This routine may not sleep.
1828 */
1829vm_page_t
1830vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1831    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1832    vm_paddr_t boundary, vm_memattr_t memattr)
1833{
1834	struct vnode *drop;
1835	struct spglist deferred_vdrop_list;
1836	vm_page_t m, m_tmp, m_ret;
1837	u_int flags;
1838	int req_class;
1839
1840	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1841	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1842	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1843	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1844	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1845	    req));
1846	if (object != NULL) {
1847		VM_OBJECT_ASSERT_WLOCKED(object);
1848		KASSERT(object->type == OBJT_PHYS,
1849		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1850		    object));
1851	}
1852	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1853	req_class = req & VM_ALLOC_CLASS_MASK;
1854
1855	/*
1856	 * The page daemon is allowed to dig deeper into the free page list.
1857	 */
1858	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1859		req_class = VM_ALLOC_SYSTEM;
1860
1861	SLIST_INIT(&deferred_vdrop_list);
1862	mtx_lock(&vm_page_queue_free_mtx);
1863	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1864	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1865	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1866	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1867	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1868#if VM_NRESERVLEVEL > 0
1869retry:
1870		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1871		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1872		    low, high, alignment, boundary)) == NULL)
1873#endif
1874			m_ret = vm_phys_alloc_contig(npages, low, high,
1875			    alignment, boundary);
1876	} else {
1877		mtx_unlock(&vm_page_queue_free_mtx);
1878		atomic_add_int(&vm_pageout_deficit, npages);
1879		pagedaemon_wakeup();
1880		return (NULL);
1881	}
1882	if (m_ret != NULL)
1883		for (m = m_ret; m < &m_ret[npages]; m++) {
1884			drop = vm_page_alloc_init(m);
1885			if (drop != NULL) {
1886				/*
1887				 * Enqueue the vnode for deferred vdrop().
1888				 */
1889				m->plinks.s.pv = drop;
1890				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1891				    plinks.s.ss);
1892			}
1893		}
1894	else {
1895#if VM_NRESERVLEVEL > 0
1896		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1897		    boundary))
1898			goto retry;
1899#endif
1900	}
1901	mtx_unlock(&vm_page_queue_free_mtx);
1902	if (m_ret == NULL)
1903		return (NULL);
1904
1905	/*
1906	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1907	 */
1908	flags = 0;
1909	if ((req & VM_ALLOC_ZERO) != 0)
1910		flags = PG_ZERO;
1911	if ((req & VM_ALLOC_NODUMP) != 0)
1912		flags |= PG_NODUMP;
1913	if ((req & VM_ALLOC_WIRED) != 0)
1914		atomic_add_int(&vm_cnt.v_wire_count, npages);
1915	if (object != NULL) {
1916		if (object->memattr != VM_MEMATTR_DEFAULT &&
1917		    memattr == VM_MEMATTR_DEFAULT)
1918			memattr = object->memattr;
1919	}
1920	for (m = m_ret; m < &m_ret[npages]; m++) {
1921		m->aflags = 0;
1922		m->flags = (m->flags | PG_NODUMP) & flags;
1923		m->busy_lock = VPB_UNBUSIED;
1924		if (object != NULL) {
1925			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1926				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1927			if ((req & VM_ALLOC_SBUSY) != 0)
1928				m->busy_lock = VPB_SHARERS_WORD(1);
1929		}
1930		if ((req & VM_ALLOC_WIRED) != 0)
1931			m->wire_count = 1;
1932		/* Unmanaged pages don't use "act_count". */
1933		m->oflags = VPO_UNMANAGED;
1934		if (object != NULL) {
1935			if (vm_page_insert(m, object, pindex)) {
1936				vm_page_alloc_contig_vdrop(
1937				    &deferred_vdrop_list);
1938				if (vm_paging_needed())
1939					pagedaemon_wakeup();
1940				if ((req & VM_ALLOC_WIRED) != 0)
1941					atomic_subtract_int(&vm_cnt.v_wire_count,
1942					    npages);
1943				for (m_tmp = m, m = m_ret;
1944				    m < &m_ret[npages]; m++) {
1945					if ((req & VM_ALLOC_WIRED) != 0)
1946						m->wire_count = 0;
1947					if (m >= m_tmp)
1948						m->object = NULL;
1949					vm_page_free(m);
1950				}
1951				return (NULL);
1952			}
1953		} else
1954			m->pindex = pindex;
1955		if (memattr != VM_MEMATTR_DEFAULT)
1956			pmap_page_set_memattr(m, memattr);
1957		pindex++;
1958	}
1959	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1960	if (vm_paging_needed())
1961		pagedaemon_wakeup();
1962	return (m_ret);
1963}
1964
1965/*
1966 * Initialize a page that has been freshly dequeued from a freelist.
1967 * The caller has to drop the vnode returned, if it is not NULL.
1968 *
1969 * This function may only be used to initialize unmanaged pages.
1970 *
1971 * To be called with vm_page_queue_free_mtx held.
1972 */
1973static struct vnode *
1974vm_page_alloc_init(vm_page_t m)
1975{
1976	struct vnode *drop;
1977	vm_object_t m_object;
1978
1979	KASSERT(m->queue == PQ_NONE,
1980	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1981	    m, m->queue));
1982	KASSERT(m->wire_count == 0,
1983	    ("vm_page_alloc_init: page %p is wired", m));
1984	KASSERT(m->hold_count == 0,
1985	    ("vm_page_alloc_init: page %p is held", m));
1986	KASSERT(!vm_page_sbusied(m),
1987	    ("vm_page_alloc_init: page %p is busy", m));
1988	KASSERT(m->dirty == 0,
1989	    ("vm_page_alloc_init: page %p is dirty", m));
1990	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1991	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1992	    m, pmap_page_get_memattr(m)));
1993	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1994	drop = NULL;
1995	if ((m->flags & PG_CACHED) != 0) {
1996		KASSERT((m->flags & PG_ZERO) == 0,
1997		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1998		m->valid = 0;
1999		m_object = m->object;
2000		vm_page_cache_remove(m);
2001		if (m_object->type == OBJT_VNODE &&
2002		    vm_object_cache_is_empty(m_object))
2003			drop = m_object->handle;
2004	} else {
2005		KASSERT(m->valid == 0,
2006		    ("vm_page_alloc_init: free page %p is valid", m));
2007		vm_phys_freecnt_adj(m, -1);
2008		if ((m->flags & PG_ZERO) != 0)
2009			vm_page_zero_count--;
2010	}
2011	return (drop);
2012}
2013
2014/*
2015 * 	vm_page_alloc_freelist:
2016 *
2017 *	Allocate a physical page from the specified free page list.
2018 *
2019 *	The caller must always specify an allocation class.
2020 *
2021 *	allocation classes:
2022 *	VM_ALLOC_NORMAL		normal process request
2023 *	VM_ALLOC_SYSTEM		system *really* needs a page
2024 *	VM_ALLOC_INTERRUPT	interrupt time request
2025 *
2026 *	optional allocation flags:
2027 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2028 *				intends to allocate
2029 *	VM_ALLOC_WIRED		wire the allocated page
2030 *	VM_ALLOC_ZERO		prefer a zeroed page
2031 *
2032 *	This routine may not sleep.
2033 */
2034vm_page_t
2035vm_page_alloc_freelist(int flind, int req)
2036{
2037	struct vnode *drop;
2038	vm_page_t m;
2039	u_int flags;
2040	int req_class;
2041
2042	req_class = req & VM_ALLOC_CLASS_MASK;
2043
2044	/*
2045	 * The page daemon is allowed to dig deeper into the free page list.
2046	 */
2047	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2048		req_class = VM_ALLOC_SYSTEM;
2049
2050	/*
2051	 * Do not allocate reserved pages unless the req has asked for it.
2052	 */
2053	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
2054	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
2055	    (req_class == VM_ALLOC_SYSTEM &&
2056	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
2057	    (req_class == VM_ALLOC_INTERRUPT &&
2058	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
2059		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2060	else {
2061		mtx_unlock(&vm_page_queue_free_mtx);
2062		atomic_add_int(&vm_pageout_deficit,
2063		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2064		pagedaemon_wakeup();
2065		return (NULL);
2066	}
2067	if (m == NULL) {
2068		mtx_unlock(&vm_page_queue_free_mtx);
2069		return (NULL);
2070	}
2071	drop = vm_page_alloc_init(m);
2072	mtx_unlock(&vm_page_queue_free_mtx);
2073
2074	/*
2075	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2076	 */
2077	m->aflags = 0;
2078	flags = 0;
2079	if ((req & VM_ALLOC_ZERO) != 0)
2080		flags = PG_ZERO;
2081	m->flags &= flags;
2082	if ((req & VM_ALLOC_WIRED) != 0) {
2083		/*
2084		 * The page lock is not required for wiring a page that does
2085		 * not belong to an object.
2086		 */
2087		atomic_add_int(&vm_cnt.v_wire_count, 1);
2088		m->wire_count = 1;
2089	}
2090	/* Unmanaged pages don't use "act_count". */
2091	m->oflags = VPO_UNMANAGED;
2092	if (drop != NULL)
2093		vdrop(drop);
2094	if (vm_paging_needed())
2095		pagedaemon_wakeup();
2096	return (m);
2097}
2098
2099#define	VPSC_ANY	0	/* No restrictions. */
2100#define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2101#define	VPSC_NOSUPER	2	/* Skip superpages. */
2102
2103/*
2104 *	vm_page_scan_contig:
2105 *
2106 *	Scan vm_page_array[] between the specified entries "m_start" and
2107 *	"m_end" for a run of contiguous physical pages that satisfy the
2108 *	specified conditions, and return the lowest page in the run.  The
2109 *	specified "alignment" determines the alignment of the lowest physical
2110 *	page in the run.  If the specified "boundary" is non-zero, then the
2111 *	run of physical pages cannot span a physical address that is a
2112 *	multiple of "boundary".
2113 *
2114 *	"m_end" is never dereferenced, so it need not point to a vm_page
2115 *	structure within vm_page_array[].
2116 *
2117 *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2118 *	span a hole (or discontiguity) in the physical address space.  Both
2119 *	"alignment" and "boundary" must be a power of two.
2120 */
2121vm_page_t
2122vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2123    u_long alignment, vm_paddr_t boundary, int options)
2124{
2125	struct mtx *m_mtx, *new_mtx;
2126	vm_object_t object;
2127	vm_paddr_t pa;
2128	vm_page_t m, m_run;
2129#if VM_NRESERVLEVEL > 0
2130	int level;
2131#endif
2132	int m_inc, order, run_ext, run_len;
2133
2134	KASSERT(npages > 0, ("npages is 0"));
2135	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2136	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2137	m_run = NULL;
2138	run_len = 0;
2139	m_mtx = NULL;
2140	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2141		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2142		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2143
2144		/*
2145		 * If the current page would be the start of a run, check its
2146		 * physical address against the end, alignment, and boundary
2147		 * conditions.  If it doesn't satisfy these conditions, either
2148		 * terminate the scan or advance to the next page that
2149		 * satisfies the failed condition.
2150		 */
2151		if (run_len == 0) {
2152			KASSERT(m_run == NULL, ("m_run != NULL"));
2153			if (m + npages > m_end)
2154				break;
2155			pa = VM_PAGE_TO_PHYS(m);
2156			if ((pa & (alignment - 1)) != 0) {
2157				m_inc = atop(roundup2(pa, alignment) - pa);
2158				continue;
2159			}
2160			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2161			    boundary) != 0) {
2162				m_inc = atop(roundup2(pa, boundary) - pa);
2163				continue;
2164			}
2165		} else
2166			KASSERT(m_run != NULL, ("m_run == NULL"));
2167
2168		/*
2169		 * Avoid releasing and reacquiring the same page lock.
2170		 */
2171		new_mtx = vm_page_lockptr(m);
2172		if (m_mtx != new_mtx) {
2173			if (m_mtx != NULL)
2174				mtx_unlock(m_mtx);
2175			m_mtx = new_mtx;
2176			mtx_lock(m_mtx);
2177		}
2178		m_inc = 1;
2179retry:
2180		if (m->wire_count != 0 || m->hold_count != 0)
2181			run_ext = 0;
2182#if VM_NRESERVLEVEL > 0
2183		else if ((level = vm_reserv_level(m)) >= 0 &&
2184		    (options & VPSC_NORESERV) != 0) {
2185			run_ext = 0;
2186			/* Advance to the end of the reservation. */
2187			pa = VM_PAGE_TO_PHYS(m);
2188			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2189			    pa);
2190		}
2191#endif
2192		else if ((object = m->object) != NULL) {
2193			/*
2194			 * The page is considered eligible for relocation if
2195			 * and only if it could be laundered or reclaimed by
2196			 * the page daemon.
2197			 */
2198			if (!VM_OBJECT_TRYRLOCK(object)) {
2199				mtx_unlock(m_mtx);
2200				VM_OBJECT_RLOCK(object);
2201				mtx_lock(m_mtx);
2202				if (m->object != object) {
2203					/*
2204					 * The page may have been freed.
2205					 */
2206					VM_OBJECT_RUNLOCK(object);
2207					goto retry;
2208				} else if (m->wire_count != 0 ||
2209				    m->hold_count != 0) {
2210					run_ext = 0;
2211					goto unlock;
2212				}
2213			}
2214			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2215			    ("page %p is PG_UNHOLDFREE", m));
2216			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2217			if (object->type != OBJT_DEFAULT &&
2218			    object->type != OBJT_SWAP &&
2219			    object->type != OBJT_VNODE)
2220				run_ext = 0;
2221			else if ((m->flags & PG_CACHED) != 0 ||
2222			    m != vm_page_lookup(object, m->pindex)) {
2223				/*
2224				 * The page is cached or recently converted
2225				 * from cached to free.
2226				 */
2227#if VM_NRESERVLEVEL > 0
2228				if (level >= 0) {
2229					/*
2230					 * The page is reserved.  Extend the
2231					 * current run by one page.
2232					 */
2233					run_ext = 1;
2234				} else
2235#endif
2236				if ((order = m->order) < VM_NFREEORDER) {
2237					/*
2238					 * The page is enqueued in the
2239					 * physical memory allocator's cache/
2240					 * free page queues.  Moreover, it is
2241					 * the first page in a power-of-two-
2242					 * sized run of contiguous cache/free
2243					 * pages.  Add these pages to the end
2244					 * of the current run, and jump
2245					 * ahead.
2246					 */
2247					run_ext = 1 << order;
2248					m_inc = 1 << order;
2249				} else
2250					run_ext = 0;
2251#if VM_NRESERVLEVEL > 0
2252			} else if ((options & VPSC_NOSUPER) != 0 &&
2253			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2254				run_ext = 0;
2255				/* Advance to the end of the superpage. */
2256				pa = VM_PAGE_TO_PHYS(m);
2257				m_inc = atop(roundup2(pa + 1,
2258				    vm_reserv_size(level)) - pa);
2259#endif
2260			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2261			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2262				/*
2263				 * The page is allocated but eligible for
2264				 * relocation.  Extend the current run by one
2265				 * page.
2266				 */
2267				KASSERT(pmap_page_get_memattr(m) ==
2268				    VM_MEMATTR_DEFAULT,
2269				    ("page %p has an unexpected memattr", m));
2270				KASSERT((m->oflags & (VPO_SWAPINPROG |
2271				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2272				    ("page %p has unexpected oflags", m));
2273				/* Don't care: VPO_NOSYNC. */
2274				run_ext = 1;
2275			} else
2276				run_ext = 0;
2277unlock:
2278			VM_OBJECT_RUNLOCK(object);
2279#if VM_NRESERVLEVEL > 0
2280		} else if (level >= 0) {
2281			/*
2282			 * The page is reserved but not yet allocated.  In
2283			 * other words, it is still cached or free.  Extend
2284			 * the current run by one page.
2285			 */
2286			run_ext = 1;
2287#endif
2288		} else if ((order = m->order) < VM_NFREEORDER) {
2289			/*
2290			 * The page is enqueued in the physical memory
2291			 * allocator's cache/free page queues.  Moreover, it
2292			 * is the first page in a power-of-two-sized run of
2293			 * contiguous cache/free pages.  Add these pages to
2294			 * the end of the current run, and jump ahead.
2295			 */
2296			run_ext = 1 << order;
2297			m_inc = 1 << order;
2298		} else {
2299			/*
2300			 * Skip the page for one of the following reasons: (1)
2301			 * It is enqueued in the physical memory allocator's
2302			 * cache/free page queues.  However, it is not the
2303			 * first page in a run of contiguous cache/free pages.
2304			 * (This case rarely occurs because the scan is
2305			 * performed in ascending order.) (2) It is not
2306			 * reserved, and it is transitioning from free to
2307			 * allocated.  (Conversely, the transition from
2308			 * allocated to free for managed pages is blocked by
2309			 * the page lock.) (3) It is allocated but not
2310			 * contained by an object and not wired, e.g.,
2311			 * allocated by Xen's balloon driver.
2312			 */
2313			run_ext = 0;
2314		}
2315
2316		/*
2317		 * Extend or reset the current run of pages.
2318		 */
2319		if (run_ext > 0) {
2320			if (run_len == 0)
2321				m_run = m;
2322			run_len += run_ext;
2323		} else {
2324			if (run_len > 0) {
2325				m_run = NULL;
2326				run_len = 0;
2327			}
2328		}
2329	}
2330	if (m_mtx != NULL)
2331		mtx_unlock(m_mtx);
2332	if (run_len >= npages)
2333		return (m_run);
2334	return (NULL);
2335}
2336
2337/*
2338 *	vm_page_reclaim_run:
2339 *
2340 *	Try to relocate each of the allocated virtual pages within the
2341 *	specified run of physical pages to a new physical address.  Free the
2342 *	physical pages underlying the relocated virtual pages.  A virtual page
2343 *	is relocatable if and only if it could be laundered or reclaimed by
2344 *	the page daemon.  Whenever possible, a virtual page is relocated to a
2345 *	physical address above "high".
2346 *
2347 *	Returns 0 if every physical page within the run was already free or
2348 *	just freed by a successful relocation.  Otherwise, returns a non-zero
2349 *	value indicating why the last attempt to relocate a virtual page was
2350 *	unsuccessful.
2351 *
2352 *	"req_class" must be an allocation class.
2353 */
2354static int
2355vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2356    vm_paddr_t high)
2357{
2358	struct mtx *m_mtx, *new_mtx;
2359	struct spglist free;
2360	vm_object_t object;
2361	vm_paddr_t pa;
2362	vm_page_t m, m_end, m_new;
2363	int error, order, req;
2364
2365	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2366	    ("req_class is not an allocation class"));
2367	SLIST_INIT(&free);
2368	error = 0;
2369	m = m_run;
2370	m_end = m_run + npages;
2371	m_mtx = NULL;
2372	for (; error == 0 && m < m_end; m++) {
2373		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2374		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2375
2376		/*
2377		 * Avoid releasing and reacquiring the same page lock.
2378		 */
2379		new_mtx = vm_page_lockptr(m);
2380		if (m_mtx != new_mtx) {
2381			if (m_mtx != NULL)
2382				mtx_unlock(m_mtx);
2383			m_mtx = new_mtx;
2384			mtx_lock(m_mtx);
2385		}
2386retry:
2387		if (m->wire_count != 0 || m->hold_count != 0)
2388			error = EBUSY;
2389		else if ((object = m->object) != NULL) {
2390			/*
2391			 * The page is relocated if and only if it could be
2392			 * laundered or reclaimed by the page daemon.
2393			 */
2394			if (!VM_OBJECT_TRYWLOCK(object)) {
2395				mtx_unlock(m_mtx);
2396				VM_OBJECT_WLOCK(object);
2397				mtx_lock(m_mtx);
2398				if (m->object != object) {
2399					/*
2400					 * The page may have been freed.
2401					 */
2402					VM_OBJECT_WUNLOCK(object);
2403					goto retry;
2404				} else if (m->wire_count != 0 ||
2405				    m->hold_count != 0) {
2406					error = EBUSY;
2407					goto unlock;
2408				}
2409			}
2410			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2411			    ("page %p is PG_UNHOLDFREE", m));
2412			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2413			if (object->type != OBJT_DEFAULT &&
2414			    object->type != OBJT_SWAP &&
2415			    object->type != OBJT_VNODE)
2416				error = EINVAL;
2417			else if ((m->flags & PG_CACHED) != 0 ||
2418			    m != vm_page_lookup(object, m->pindex)) {
2419				/*
2420				 * The page is cached or recently converted
2421				 * from cached to free.
2422				 */
2423				VM_OBJECT_WUNLOCK(object);
2424				goto cached;
2425			} else if (object->memattr != VM_MEMATTR_DEFAULT)
2426				error = EINVAL;
2427			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2428				KASSERT(pmap_page_get_memattr(m) ==
2429				    VM_MEMATTR_DEFAULT,
2430				    ("page %p has an unexpected memattr", m));
2431				KASSERT((m->oflags & (VPO_SWAPINPROG |
2432				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2433				    ("page %p has unexpected oflags", m));
2434				/* Don't care: VPO_NOSYNC. */
2435				if (m->valid != 0) {
2436					/*
2437					 * First, try to allocate a new page
2438					 * that is above "high".  Failing
2439					 * that, try to allocate a new page
2440					 * that is below "m_run".  Allocate
2441					 * the new page between the end of
2442					 * "m_run" and "high" only as a last
2443					 * resort.
2444					 */
2445					req = req_class | VM_ALLOC_NOOBJ;
2446					if ((m->flags & PG_NODUMP) != 0)
2447						req |= VM_ALLOC_NODUMP;
2448					if (trunc_page(high) !=
2449					    ~(vm_paddr_t)PAGE_MASK) {
2450						m_new = vm_page_alloc_contig(
2451						    NULL, 0, req, 1,
2452						    round_page(high),
2453						    ~(vm_paddr_t)0,
2454						    PAGE_SIZE, 0,
2455						    VM_MEMATTR_DEFAULT);
2456					} else
2457						m_new = NULL;
2458					if (m_new == NULL) {
2459						pa = VM_PAGE_TO_PHYS(m_run);
2460						m_new = vm_page_alloc_contig(
2461						    NULL, 0, req, 1,
2462						    0, pa - 1, PAGE_SIZE, 0,
2463						    VM_MEMATTR_DEFAULT);
2464					}
2465					if (m_new == NULL) {
2466						pa += ptoa(npages);
2467						m_new = vm_page_alloc_contig(
2468						    NULL, 0, req, 1,
2469						    pa, high, PAGE_SIZE, 0,
2470						    VM_MEMATTR_DEFAULT);
2471					}
2472					if (m_new == NULL) {
2473						error = ENOMEM;
2474						goto unlock;
2475					}
2476					KASSERT(m_new->wire_count == 0,
2477					    ("page %p is wired", m));
2478
2479					/*
2480					 * Replace "m" with the new page.  For
2481					 * vm_page_replace(), "m" must be busy
2482					 * and dequeued.  Finally, change "m"
2483					 * as if vm_page_free() was called.
2484					 */
2485					if (object->ref_count != 0)
2486						pmap_remove_all(m);
2487					m_new->aflags = m->aflags;
2488					KASSERT(m_new->oflags == VPO_UNMANAGED,
2489					    ("page %p is managed", m));
2490					m_new->oflags = m->oflags & VPO_NOSYNC;
2491					pmap_copy_page(m, m_new);
2492					m_new->valid = m->valid;
2493					m_new->dirty = m->dirty;
2494					m->flags &= ~PG_ZERO;
2495					vm_page_xbusy(m);
2496					vm_page_remque(m);
2497					vm_page_replace_checked(m_new, object,
2498					    m->pindex, m);
2499					m->valid = 0;
2500					vm_page_undirty(m);
2501
2502					/*
2503					 * The new page must be deactivated
2504					 * before the object is unlocked.
2505					 */
2506					new_mtx = vm_page_lockptr(m_new);
2507					if (m_mtx != new_mtx) {
2508						mtx_unlock(m_mtx);
2509						m_mtx = new_mtx;
2510						mtx_lock(m_mtx);
2511					}
2512					vm_page_deactivate(m_new);
2513				} else {
2514					m->flags &= ~PG_ZERO;
2515					vm_page_remque(m);
2516					vm_page_remove(m);
2517					KASSERT(m->dirty == 0,
2518					    ("page %p is dirty", m));
2519				}
2520				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2521			} else
2522				error = EBUSY;
2523unlock:
2524			VM_OBJECT_WUNLOCK(object);
2525		} else {
2526cached:
2527			mtx_lock(&vm_page_queue_free_mtx);
2528			order = m->order;
2529			if (order < VM_NFREEORDER) {
2530				/*
2531				 * The page is enqueued in the physical memory
2532				 * allocator's cache/free page queues.
2533				 * Moreover, it is the first page in a power-
2534				 * of-two-sized run of contiguous cache/free
2535				 * pages.  Jump ahead to the last page within
2536				 * that run, and continue from there.
2537				 */
2538				m += (1 << order) - 1;
2539			}
2540#if VM_NRESERVLEVEL > 0
2541			else if (vm_reserv_is_page_free(m))
2542				order = 0;
2543#endif
2544			mtx_unlock(&vm_page_queue_free_mtx);
2545			if (order == VM_NFREEORDER)
2546				error = EINVAL;
2547		}
2548	}
2549	if (m_mtx != NULL)
2550		mtx_unlock(m_mtx);
2551	if ((m = SLIST_FIRST(&free)) != NULL) {
2552		mtx_lock(&vm_page_queue_free_mtx);
2553		do {
2554			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2555			vm_phys_freecnt_adj(m, 1);
2556#if VM_NRESERVLEVEL > 0
2557			if (!vm_reserv_free_page(m))
2558#else
2559			if (true)
2560#endif
2561				vm_phys_free_pages(m, 0);
2562		} while ((m = SLIST_FIRST(&free)) != NULL);
2563		vm_page_zero_idle_wakeup();
2564		vm_page_free_wakeup();
2565		mtx_unlock(&vm_page_queue_free_mtx);
2566	}
2567	return (error);
2568}
2569
2570#define	NRUNS	16
2571
2572CTASSERT(powerof2(NRUNS));
2573
2574#define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2575
2576#define	MIN_RECLAIM	8
2577
2578/*
2579 *	vm_page_reclaim_contig:
2580 *
2581 *	Reclaim allocated, contiguous physical memory satisfying the specified
2582 *	conditions by relocating the virtual pages using that physical memory.
2583 *	Returns true if reclamation is successful and false otherwise.  Since
2584 *	relocation requires the allocation of physical pages, reclamation may
2585 *	fail due to a shortage of cache/free pages.  When reclamation fails,
2586 *	callers are expected to perform VM_WAIT before retrying a failed
2587 *	allocation operation, e.g., vm_page_alloc_contig().
2588 *
2589 *	The caller must always specify an allocation class through "req".
2590 *
2591 *	allocation classes:
2592 *	VM_ALLOC_NORMAL		normal process request
2593 *	VM_ALLOC_SYSTEM		system *really* needs a page
2594 *	VM_ALLOC_INTERRUPT	interrupt time request
2595 *
2596 *	The optional allocation flags are ignored.
2597 *
2598 *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2599 *	must be a power of two.
2600 */
2601bool
2602vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2603    u_long alignment, vm_paddr_t boundary)
2604{
2605	vm_paddr_t curr_low;
2606	vm_page_t m_run, m_runs[NRUNS];
2607	u_long count, reclaimed;
2608	int error, i, options, req_class;
2609
2610	KASSERT(npages > 0, ("npages is 0"));
2611	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2612	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2613	req_class = req & VM_ALLOC_CLASS_MASK;
2614
2615	/*
2616	 * The page daemon is allowed to dig deeper into the free page list.
2617	 */
2618	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2619		req_class = VM_ALLOC_SYSTEM;
2620
2621	/*
2622	 * Return if the number of cached and free pages cannot satisfy the
2623	 * requested allocation.
2624	 */
2625	count = vm_cnt.v_free_count + vm_cnt.v_cache_count;
2626	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2627	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2628	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2629		return (false);
2630
2631	/*
2632	 * Scan up to three times, relaxing the restrictions ("options") on
2633	 * the reclamation of reservations and superpages each time.
2634	 */
2635	for (options = VPSC_NORESERV;;) {
2636		/*
2637		 * Find the highest runs that satisfy the given constraints
2638		 * and restrictions, and record them in "m_runs".
2639		 */
2640		curr_low = low;
2641		count = 0;
2642		for (;;) {
2643			m_run = vm_phys_scan_contig(npages, curr_low, high,
2644			    alignment, boundary, options);
2645			if (m_run == NULL)
2646				break;
2647			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2648			m_runs[RUN_INDEX(count)] = m_run;
2649			count++;
2650		}
2651
2652		/*
2653		 * Reclaim the highest runs in LIFO (descending) order until
2654		 * the number of reclaimed pages, "reclaimed", is at least
2655		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2656		 * reclamation is idempotent, and runs will (likely) recur
2657		 * from one scan to the next as restrictions are relaxed.
2658		 */
2659		reclaimed = 0;
2660		for (i = 0; count > 0 && i < NRUNS; i++) {
2661			count--;
2662			m_run = m_runs[RUN_INDEX(count)];
2663			error = vm_page_reclaim_run(req_class, npages, m_run,
2664			    high);
2665			if (error == 0) {
2666				reclaimed += npages;
2667				if (reclaimed >= MIN_RECLAIM)
2668					return (true);
2669			}
2670		}
2671
2672		/*
2673		 * Either relax the restrictions on the next scan or return if
2674		 * the last scan had no restrictions.
2675		 */
2676		if (options == VPSC_NORESERV)
2677			options = VPSC_NOSUPER;
2678		else if (options == VPSC_NOSUPER)
2679			options = VPSC_ANY;
2680		else if (options == VPSC_ANY)
2681			return (reclaimed != 0);
2682	}
2683}
2684
2685/*
2686 *	vm_wait:	(also see VM_WAIT macro)
2687 *
2688 *	Sleep until free pages are available for allocation.
2689 *	- Called in various places before memory allocations.
2690 */
2691void
2692vm_wait(void)
2693{
2694
2695	mtx_lock(&vm_page_queue_free_mtx);
2696	if (curproc == pageproc) {
2697		vm_pageout_pages_needed = 1;
2698		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2699		    PDROP | PSWP, "VMWait", 0);
2700	} else {
2701		if (!vm_pages_needed) {
2702			vm_pages_needed = 1;
2703			wakeup(&vm_pages_needed);
2704		}
2705		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2706		    "vmwait", 0);
2707	}
2708}
2709
2710/*
2711 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2712 *
2713 *	Sleep until free pages are available for allocation.
2714 *	- Called only in vm_fault so that processes page faulting
2715 *	  can be easily tracked.
2716 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2717 *	  processes will be able to grab memory first.  Do not change
2718 *	  this balance without careful testing first.
2719 */
2720void
2721vm_waitpfault(void)
2722{
2723
2724	mtx_lock(&vm_page_queue_free_mtx);
2725	if (!vm_pages_needed) {
2726		vm_pages_needed = 1;
2727		wakeup(&vm_pages_needed);
2728	}
2729	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2730	    "pfault", 0);
2731}
2732
2733struct vm_pagequeue *
2734vm_page_pagequeue(vm_page_t m)
2735{
2736
2737	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2738}
2739
2740/*
2741 *	vm_page_dequeue:
2742 *
2743 *	Remove the given page from its current page queue.
2744 *
2745 *	The page must be locked.
2746 */
2747void
2748vm_page_dequeue(vm_page_t m)
2749{
2750	struct vm_pagequeue *pq;
2751
2752	vm_page_assert_locked(m);
2753	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2754	    m));
2755	pq = vm_page_pagequeue(m);
2756	vm_pagequeue_lock(pq);
2757	m->queue = PQ_NONE;
2758	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2759	vm_pagequeue_cnt_dec(pq);
2760	vm_pagequeue_unlock(pq);
2761}
2762
2763/*
2764 *	vm_page_dequeue_locked:
2765 *
2766 *	Remove the given page from its current page queue.
2767 *
2768 *	The page and page queue must be locked.
2769 */
2770void
2771vm_page_dequeue_locked(vm_page_t m)
2772{
2773	struct vm_pagequeue *pq;
2774
2775	vm_page_lock_assert(m, MA_OWNED);
2776	pq = vm_page_pagequeue(m);
2777	vm_pagequeue_assert_locked(pq);
2778	m->queue = PQ_NONE;
2779	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2780	vm_pagequeue_cnt_dec(pq);
2781}
2782
2783/*
2784 *	vm_page_enqueue:
2785 *
2786 *	Add the given page to the specified page queue.
2787 *
2788 *	The page must be locked.
2789 */
2790static void
2791vm_page_enqueue(uint8_t queue, vm_page_t m)
2792{
2793	struct vm_pagequeue *pq;
2794
2795	vm_page_lock_assert(m, MA_OWNED);
2796	KASSERT(queue < PQ_COUNT,
2797	    ("vm_page_enqueue: invalid queue %u request for page %p",
2798	    queue, m));
2799	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2800	vm_pagequeue_lock(pq);
2801	m->queue = queue;
2802	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2803	vm_pagequeue_cnt_inc(pq);
2804	vm_pagequeue_unlock(pq);
2805}
2806
2807/*
2808 *	vm_page_requeue:
2809 *
2810 *	Move the given page to the tail of its current page queue.
2811 *
2812 *	The page must be locked.
2813 */
2814void
2815vm_page_requeue(vm_page_t m)
2816{
2817	struct vm_pagequeue *pq;
2818
2819	vm_page_lock_assert(m, MA_OWNED);
2820	KASSERT(m->queue != PQ_NONE,
2821	    ("vm_page_requeue: page %p is not queued", m));
2822	pq = vm_page_pagequeue(m);
2823	vm_pagequeue_lock(pq);
2824	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2825	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2826	vm_pagequeue_unlock(pq);
2827}
2828
2829/*
2830 *	vm_page_requeue_locked:
2831 *
2832 *	Move the given page to the tail of its current page queue.
2833 *
2834 *	The page queue must be locked.
2835 */
2836void
2837vm_page_requeue_locked(vm_page_t m)
2838{
2839	struct vm_pagequeue *pq;
2840
2841	KASSERT(m->queue != PQ_NONE,
2842	    ("vm_page_requeue_locked: page %p is not queued", m));
2843	pq = vm_page_pagequeue(m);
2844	vm_pagequeue_assert_locked(pq);
2845	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2846	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2847}
2848
2849/*
2850 *	vm_page_activate:
2851 *
2852 *	Put the specified page on the active list (if appropriate).
2853 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2854 *	mess with it.
2855 *
2856 *	The page must be locked.
2857 */
2858void
2859vm_page_activate(vm_page_t m)
2860{
2861	int queue;
2862
2863	vm_page_lock_assert(m, MA_OWNED);
2864	if ((queue = m->queue) != PQ_ACTIVE) {
2865		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2866			if (m->act_count < ACT_INIT)
2867				m->act_count = ACT_INIT;
2868			if (queue != PQ_NONE)
2869				vm_page_dequeue(m);
2870			vm_page_enqueue(PQ_ACTIVE, m);
2871		} else
2872			KASSERT(queue == PQ_NONE,
2873			    ("vm_page_activate: wired page %p is queued", m));
2874	} else {
2875		if (m->act_count < ACT_INIT)
2876			m->act_count = ACT_INIT;
2877	}
2878}
2879
2880/*
2881 *	vm_page_free_wakeup:
2882 *
2883 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2884 *	routine is called when a page has been added to the cache or free
2885 *	queues.
2886 *
2887 *	The page queues must be locked.
2888 */
2889static inline void
2890vm_page_free_wakeup(void)
2891{
2892
2893	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2894	/*
2895	 * if pageout daemon needs pages, then tell it that there are
2896	 * some free.
2897	 */
2898	if (vm_pageout_pages_needed &&
2899	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2900		wakeup(&vm_pageout_pages_needed);
2901		vm_pageout_pages_needed = 0;
2902	}
2903	/*
2904	 * wakeup processes that are waiting on memory if we hit a
2905	 * high water mark. And wakeup scheduler process if we have
2906	 * lots of memory. this process will swapin processes.
2907	 */
2908	if (vm_pages_needed && !vm_page_count_min()) {
2909		vm_pages_needed = 0;
2910		wakeup(&vm_cnt.v_free_count);
2911	}
2912}
2913
2914/*
2915 *	Turn a cached page into a free page, by changing its attributes.
2916 *	Keep the statistics up-to-date.
2917 *
2918 *	The free page queue must be locked.
2919 */
2920static void
2921vm_page_cache_turn_free(vm_page_t m)
2922{
2923
2924	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2925
2926	m->object = NULL;
2927	m->valid = 0;
2928	KASSERT((m->flags & PG_CACHED) != 0,
2929	    ("vm_page_cache_turn_free: page %p is not cached", m));
2930	m->flags &= ~PG_CACHED;
2931	vm_cnt.v_cache_count--;
2932	vm_phys_freecnt_adj(m, 1);
2933}
2934
2935/*
2936 *	vm_page_free_toq:
2937 *
2938 *	Returns the given page to the free list,
2939 *	disassociating it with any VM object.
2940 *
2941 *	The object must be locked.  The page must be locked if it is managed.
2942 */
2943void
2944vm_page_free_toq(vm_page_t m)
2945{
2946
2947	if ((m->oflags & VPO_UNMANAGED) == 0) {
2948		vm_page_lock_assert(m, MA_OWNED);
2949		KASSERT(!pmap_page_is_mapped(m),
2950		    ("vm_page_free_toq: freeing mapped page %p", m));
2951	} else
2952		KASSERT(m->queue == PQ_NONE,
2953		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2954	PCPU_INC(cnt.v_tfree);
2955
2956	if (vm_page_sbusied(m))
2957		panic("vm_page_free: freeing busy page %p", m);
2958
2959	/*
2960	 * Unqueue, then remove page.  Note that we cannot destroy
2961	 * the page here because we do not want to call the pager's
2962	 * callback routine until after we've put the page on the
2963	 * appropriate free queue.
2964	 */
2965	vm_page_remque(m);
2966	vm_page_remove(m);
2967
2968	/*
2969	 * If fictitious remove object association and
2970	 * return, otherwise delay object association removal.
2971	 */
2972	if ((m->flags & PG_FICTITIOUS) != 0) {
2973		return;
2974	}
2975
2976	m->valid = 0;
2977	vm_page_undirty(m);
2978
2979	if (m->wire_count != 0)
2980		panic("vm_page_free: freeing wired page %p", m);
2981	if (m->hold_count != 0) {
2982		m->flags &= ~PG_ZERO;
2983		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2984		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2985		m->flags |= PG_UNHOLDFREE;
2986	} else {
2987		/*
2988		 * Restore the default memory attribute to the page.
2989		 */
2990		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2991			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2992
2993		/*
2994		 * Insert the page into the physical memory allocator's
2995		 * cache/free page queues.
2996		 */
2997		mtx_lock(&vm_page_queue_free_mtx);
2998		vm_phys_freecnt_adj(m, 1);
2999#if VM_NRESERVLEVEL > 0
3000		if (!vm_reserv_free_page(m))
3001#else
3002		if (TRUE)
3003#endif
3004			vm_phys_free_pages(m, 0);
3005		if ((m->flags & PG_ZERO) != 0)
3006			++vm_page_zero_count;
3007		else
3008			vm_page_zero_idle_wakeup();
3009		vm_page_free_wakeup();
3010		mtx_unlock(&vm_page_queue_free_mtx);
3011	}
3012}
3013
3014/*
3015 *	vm_page_wire:
3016 *
3017 *	Mark this page as wired down by yet
3018 *	another map, removing it from paging queues
3019 *	as necessary.
3020 *
3021 *	If the page is fictitious, then its wire count must remain one.
3022 *
3023 *	The page must be locked.
3024 */
3025void
3026vm_page_wire(vm_page_t m)
3027{
3028
3029	/*
3030	 * Only bump the wire statistics if the page is not already wired,
3031	 * and only unqueue the page if it is on some queue (if it is unmanaged
3032	 * it is already off the queues).
3033	 */
3034	vm_page_lock_assert(m, MA_OWNED);
3035	if ((m->flags & PG_FICTITIOUS) != 0) {
3036		KASSERT(m->wire_count == 1,
3037		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3038		    m));
3039		return;
3040	}
3041	if (m->wire_count == 0) {
3042		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3043		    m->queue == PQ_NONE,
3044		    ("vm_page_wire: unmanaged page %p is queued", m));
3045		vm_page_remque(m);
3046		atomic_add_int(&vm_cnt.v_wire_count, 1);
3047	}
3048	m->wire_count++;
3049	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3050}
3051
3052/*
3053 * vm_page_unwire:
3054 *
3055 * Release one wiring of the specified page, potentially allowing it to be
3056 * paged out.  Returns TRUE if the number of wirings transitions to zero and
3057 * FALSE otherwise.
3058 *
3059 * Only managed pages belonging to an object can be paged out.  If the number
3060 * of wirings transitions to zero and the page is eligible for page out, then
3061 * the page is added to the specified paging queue (unless PQ_NONE is
3062 * specified).
3063 *
3064 * If a page is fictitious, then its wire count must always be one.
3065 *
3066 * A managed page must be locked.
3067 */
3068boolean_t
3069vm_page_unwire(vm_page_t m, uint8_t queue)
3070{
3071
3072	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3073	    ("vm_page_unwire: invalid queue %u request for page %p",
3074	    queue, m));
3075	if ((m->oflags & VPO_UNMANAGED) == 0)
3076		vm_page_assert_locked(m);
3077	if ((m->flags & PG_FICTITIOUS) != 0) {
3078		KASSERT(m->wire_count == 1,
3079	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3080		return (FALSE);
3081	}
3082	if (m->wire_count > 0) {
3083		m->wire_count--;
3084		if (m->wire_count == 0) {
3085			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
3086			if ((m->oflags & VPO_UNMANAGED) == 0 &&
3087			    m->object != NULL && queue != PQ_NONE) {
3088				if (queue == PQ_INACTIVE)
3089					m->flags &= ~PG_WINATCFLS;
3090				vm_page_enqueue(queue, m);
3091			}
3092			return (TRUE);
3093		} else
3094			return (FALSE);
3095	} else
3096		panic("vm_page_unwire: page %p's wire count is zero", m);
3097}
3098
3099/*
3100 * Move the specified page to the inactive queue.
3101 *
3102 * Many pages placed on the inactive queue should actually go
3103 * into the cache, but it is difficult to figure out which.  What
3104 * we do instead, if the inactive target is well met, is to put
3105 * clean pages at the head of the inactive queue instead of the tail.
3106 * This will cause them to be moved to the cache more quickly and
3107 * if not actively re-referenced, reclaimed more quickly.  If we just
3108 * stick these pages at the end of the inactive queue, heavy filesystem
3109 * meta-data accesses can cause an unnecessary paging load on memory bound
3110 * processes.  This optimization causes one-time-use metadata to be
3111 * reused more quickly.
3112 *
3113 * Normally noreuse is FALSE, resulting in LRU operation.  noreuse is set
3114 * to TRUE if we want this page to be 'as if it were placed in the cache',
3115 * except without unmapping it from the process address space.  In
3116 * practice this is implemented by inserting the page at the head of the
3117 * queue, using a marker page to guide FIFO insertion ordering.
3118 *
3119 * The page must be locked.
3120 */
3121static inline void
3122_vm_page_deactivate(vm_page_t m, boolean_t noreuse)
3123{
3124	struct vm_pagequeue *pq;
3125	int queue;
3126
3127	vm_page_assert_locked(m);
3128
3129	/*
3130	 * Ignore if the page is already inactive, unless it is unlikely to be
3131	 * reactivated.
3132	 */
3133	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
3134		return;
3135	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3136		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
3137		/* Avoid multiple acquisitions of the inactive queue lock. */
3138		if (queue == PQ_INACTIVE) {
3139			vm_pagequeue_lock(pq);
3140			vm_page_dequeue_locked(m);
3141		} else {
3142			if (queue != PQ_NONE)
3143				vm_page_dequeue(m);
3144			m->flags &= ~PG_WINATCFLS;
3145			vm_pagequeue_lock(pq);
3146		}
3147		m->queue = PQ_INACTIVE;
3148		if (noreuse)
3149			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
3150			    m, plinks.q);
3151		else
3152			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3153		vm_pagequeue_cnt_inc(pq);
3154		vm_pagequeue_unlock(pq);
3155	}
3156}
3157
3158/*
3159 * Move the specified page to the inactive queue.
3160 *
3161 * The page must be locked.
3162 */
3163void
3164vm_page_deactivate(vm_page_t m)
3165{
3166
3167	_vm_page_deactivate(m, FALSE);
3168}
3169
3170/*
3171 * Move the specified page to the inactive queue with the expectation
3172 * that it is unlikely to be reused.
3173 *
3174 * The page must be locked.
3175 */
3176void
3177vm_page_deactivate_noreuse(vm_page_t m)
3178{
3179
3180	_vm_page_deactivate(m, TRUE);
3181}
3182
3183/*
3184 * vm_page_try_to_cache:
3185 *
3186 * Returns 0 on failure, 1 on success
3187 */
3188int
3189vm_page_try_to_cache(vm_page_t m)
3190{
3191
3192	vm_page_lock_assert(m, MA_OWNED);
3193	VM_OBJECT_ASSERT_WLOCKED(m->object);
3194	if (m->dirty || m->hold_count || m->wire_count ||
3195	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3196		return (0);
3197	pmap_remove_all(m);
3198	if (m->dirty)
3199		return (0);
3200	vm_page_cache(m);
3201	return (1);
3202}
3203
3204/*
3205 * vm_page_try_to_free()
3206 *
3207 *	Attempt to free the page.  If we cannot free it, we do nothing.
3208 *	1 is returned on success, 0 on failure.
3209 */
3210int
3211vm_page_try_to_free(vm_page_t m)
3212{
3213
3214	vm_page_lock_assert(m, MA_OWNED);
3215	if (m->object != NULL)
3216		VM_OBJECT_ASSERT_WLOCKED(m->object);
3217	if (m->dirty || m->hold_count || m->wire_count ||
3218	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3219		return (0);
3220	pmap_remove_all(m);
3221	if (m->dirty)
3222		return (0);
3223	vm_page_free(m);
3224	return (1);
3225}
3226
3227/*
3228 * vm_page_cache
3229 *
3230 * Put the specified page onto the page cache queue (if appropriate).
3231 *
3232 * The object and page must be locked.
3233 */
3234void
3235vm_page_cache(vm_page_t m)
3236{
3237	vm_object_t object;
3238	boolean_t cache_was_empty;
3239
3240	vm_page_lock_assert(m, MA_OWNED);
3241	object = m->object;
3242	VM_OBJECT_ASSERT_WLOCKED(object);
3243	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
3244	    m->hold_count || m->wire_count)
3245		panic("vm_page_cache: attempting to cache busy page");
3246	KASSERT(!pmap_page_is_mapped(m),
3247	    ("vm_page_cache: page %p is mapped", m));
3248	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
3249	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
3250	    (object->type == OBJT_SWAP &&
3251	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
3252		/*
3253		 * Hypothesis: A cache-eligible page belonging to a
3254		 * default object or swap object but without a backing
3255		 * store must be zero filled.
3256		 */
3257		vm_page_free(m);
3258		return;
3259	}
3260	KASSERT((m->flags & PG_CACHED) == 0,
3261	    ("vm_page_cache: page %p is already cached", m));
3262
3263	/*
3264	 * Remove the page from the paging queues.
3265	 */
3266	vm_page_remque(m);
3267
3268	/*
3269	 * Remove the page from the object's collection of resident
3270	 * pages.
3271	 */
3272	vm_radix_remove(&object->rtree, m->pindex);
3273	TAILQ_REMOVE(&object->memq, m, listq);
3274	object->resident_page_count--;
3275
3276	/*
3277	 * Restore the default memory attribute to the page.
3278	 */
3279	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3280		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3281
3282	/*
3283	 * Insert the page into the object's collection of cached pages
3284	 * and the physical memory allocator's cache/free page queues.
3285	 */
3286	m->flags &= ~PG_ZERO;
3287	mtx_lock(&vm_page_queue_free_mtx);
3288	cache_was_empty = vm_radix_is_empty(&object->cache);
3289	if (vm_radix_insert(&object->cache, m)) {
3290		mtx_unlock(&vm_page_queue_free_mtx);
3291		if (object->resident_page_count == 0)
3292			vdrop(object->handle);
3293		m->object = NULL;
3294		vm_page_free(m);
3295		return;
3296	}
3297
3298	/*
3299	 * The above call to vm_radix_insert() could reclaim the one pre-
3300	 * existing cached page from this object, resulting in a call to
3301	 * vdrop().
3302	 */
3303	if (!cache_was_empty)
3304		cache_was_empty = vm_radix_is_singleton(&object->cache);
3305
3306	m->flags |= PG_CACHED;
3307	vm_cnt.v_cache_count++;
3308	PCPU_INC(cnt.v_tcached);
3309#if VM_NRESERVLEVEL > 0
3310	if (!vm_reserv_free_page(m)) {
3311#else
3312	if (TRUE) {
3313#endif
3314		vm_phys_free_pages(m, 0);
3315	}
3316	vm_page_free_wakeup();
3317	mtx_unlock(&vm_page_queue_free_mtx);
3318
3319	/*
3320	 * Increment the vnode's hold count if this is the object's only
3321	 * cached page.  Decrement the vnode's hold count if this was
3322	 * the object's only resident page.
3323	 */
3324	if (object->type == OBJT_VNODE) {
3325		if (cache_was_empty && object->resident_page_count != 0)
3326			vhold(object->handle);
3327		else if (!cache_was_empty && object->resident_page_count == 0)
3328			vdrop(object->handle);
3329	}
3330}
3331
3332/*
3333 * vm_page_advise
3334 *
3335 * 	Deactivate or do nothing, as appropriate.
3336 *
3337 *	The object and page must be locked.
3338 */
3339void
3340vm_page_advise(vm_page_t m, int advice)
3341{
3342
3343	vm_page_assert_locked(m);
3344	VM_OBJECT_ASSERT_WLOCKED(m->object);
3345	if (advice == MADV_FREE)
3346		/*
3347		 * Mark the page clean.  This will allow the page to be freed
3348		 * up by the system.  However, such pages are often reused
3349		 * quickly by malloc() so we do not do anything that would
3350		 * cause a page fault if we can help it.
3351		 *
3352		 * Specifically, we do not try to actually free the page now
3353		 * nor do we try to put it in the cache (which would cause a
3354		 * page fault on reuse).
3355		 *
3356		 * But we do make the page as freeable as we can without
3357		 * actually taking the step of unmapping it.
3358		 */
3359		m->dirty = 0;
3360	else if (advice != MADV_DONTNEED)
3361		return;
3362
3363	/*
3364	 * Clear any references to the page.  Otherwise, the page daemon will
3365	 * immediately reactivate the page.
3366	 */
3367	vm_page_aflag_clear(m, PGA_REFERENCED);
3368
3369	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3370		vm_page_dirty(m);
3371
3372	/*
3373	 * Place clean pages at the head of the inactive queue rather than the
3374	 * tail, thus defeating the queue's LRU operation and ensuring that the
3375	 * page will be reused quickly.
3376	 */
3377	_vm_page_deactivate(m, m->dirty == 0);
3378}
3379
3380/*
3381 * Grab a page, waiting until we are waken up due to the page
3382 * changing state.  We keep on waiting, if the page continues
3383 * to be in the object.  If the page doesn't exist, first allocate it
3384 * and then conditionally zero it.
3385 *
3386 * This routine may sleep.
3387 *
3388 * The object must be locked on entry.  The lock will, however, be released
3389 * and reacquired if the routine sleeps.
3390 */
3391vm_page_t
3392vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3393{
3394	vm_page_t m;
3395	int sleep;
3396
3397	VM_OBJECT_ASSERT_WLOCKED(object);
3398	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3399	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3400	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3401retrylookup:
3402	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3403		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3404		    vm_page_xbusied(m) : vm_page_busied(m);
3405		if (sleep) {
3406			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3407				return (NULL);
3408			/*
3409			 * Reference the page before unlocking and
3410			 * sleeping so that the page daemon is less
3411			 * likely to reclaim it.
3412			 */
3413			vm_page_aflag_set(m, PGA_REFERENCED);
3414			vm_page_lock(m);
3415			VM_OBJECT_WUNLOCK(object);
3416			vm_page_busy_sleep(m, "pgrbwt");
3417			VM_OBJECT_WLOCK(object);
3418			goto retrylookup;
3419		} else {
3420			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3421				vm_page_lock(m);
3422				vm_page_wire(m);
3423				vm_page_unlock(m);
3424			}
3425			if ((allocflags &
3426			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3427				vm_page_xbusy(m);
3428			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3429				vm_page_sbusy(m);
3430			return (m);
3431		}
3432	}
3433	m = vm_page_alloc(object, pindex, allocflags);
3434	if (m == NULL) {
3435		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3436			return (NULL);
3437		VM_OBJECT_WUNLOCK(object);
3438		VM_WAIT;
3439		VM_OBJECT_WLOCK(object);
3440		goto retrylookup;
3441	} else if (m->valid != 0)
3442		return (m);
3443	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3444		pmap_zero_page(m);
3445	return (m);
3446}
3447
3448/*
3449 * Mapping function for valid or dirty bits in a page.
3450 *
3451 * Inputs are required to range within a page.
3452 */
3453vm_page_bits_t
3454vm_page_bits(int base, int size)
3455{
3456	int first_bit;
3457	int last_bit;
3458
3459	KASSERT(
3460	    base + size <= PAGE_SIZE,
3461	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3462	);
3463
3464	if (size == 0)		/* handle degenerate case */
3465		return (0);
3466
3467	first_bit = base >> DEV_BSHIFT;
3468	last_bit = (base + size - 1) >> DEV_BSHIFT;
3469
3470	return (((vm_page_bits_t)2 << last_bit) -
3471	    ((vm_page_bits_t)1 << first_bit));
3472}
3473
3474/*
3475 *	vm_page_set_valid_range:
3476 *
3477 *	Sets portions of a page valid.  The arguments are expected
3478 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3479 *	of any partial chunks touched by the range.  The invalid portion of
3480 *	such chunks will be zeroed.
3481 *
3482 *	(base + size) must be less then or equal to PAGE_SIZE.
3483 */
3484void
3485vm_page_set_valid_range(vm_page_t m, int base, int size)
3486{
3487	int endoff, frag;
3488
3489	VM_OBJECT_ASSERT_WLOCKED(m->object);
3490	if (size == 0)	/* handle degenerate case */
3491		return;
3492
3493	/*
3494	 * If the base is not DEV_BSIZE aligned and the valid
3495	 * bit is clear, we have to zero out a portion of the
3496	 * first block.
3497	 */
3498	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3499	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3500		pmap_zero_page_area(m, frag, base - frag);
3501
3502	/*
3503	 * If the ending offset is not DEV_BSIZE aligned and the
3504	 * valid bit is clear, we have to zero out a portion of
3505	 * the last block.
3506	 */
3507	endoff = base + size;
3508	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3509	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3510		pmap_zero_page_area(m, endoff,
3511		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3512
3513	/*
3514	 * Assert that no previously invalid block that is now being validated
3515	 * is already dirty.
3516	 */
3517	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3518	    ("vm_page_set_valid_range: page %p is dirty", m));
3519
3520	/*
3521	 * Set valid bits inclusive of any overlap.
3522	 */
3523	m->valid |= vm_page_bits(base, size);
3524}
3525
3526/*
3527 * Clear the given bits from the specified page's dirty field.
3528 */
3529static __inline void
3530vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3531{
3532	uintptr_t addr;
3533#if PAGE_SIZE < 16384
3534	int shift;
3535#endif
3536
3537	/*
3538	 * If the object is locked and the page is neither exclusive busy nor
3539	 * write mapped, then the page's dirty field cannot possibly be
3540	 * set by a concurrent pmap operation.
3541	 */
3542	VM_OBJECT_ASSERT_WLOCKED(m->object);
3543	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3544		m->dirty &= ~pagebits;
3545	else {
3546		/*
3547		 * The pmap layer can call vm_page_dirty() without
3548		 * holding a distinguished lock.  The combination of
3549		 * the object's lock and an atomic operation suffice
3550		 * to guarantee consistency of the page dirty field.
3551		 *
3552		 * For PAGE_SIZE == 32768 case, compiler already
3553		 * properly aligns the dirty field, so no forcible
3554		 * alignment is needed. Only require existence of
3555		 * atomic_clear_64 when page size is 32768.
3556		 */
3557		addr = (uintptr_t)&m->dirty;
3558#if PAGE_SIZE == 32768
3559		atomic_clear_64((uint64_t *)addr, pagebits);
3560#elif PAGE_SIZE == 16384
3561		atomic_clear_32((uint32_t *)addr, pagebits);
3562#else		/* PAGE_SIZE <= 8192 */
3563		/*
3564		 * Use a trick to perform a 32-bit atomic on the
3565		 * containing aligned word, to not depend on the existence
3566		 * of atomic_clear_{8, 16}.
3567		 */
3568		shift = addr & (sizeof(uint32_t) - 1);
3569#if BYTE_ORDER == BIG_ENDIAN
3570		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3571#else
3572		shift *= NBBY;
3573#endif
3574		addr &= ~(sizeof(uint32_t) - 1);
3575		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3576#endif		/* PAGE_SIZE */
3577	}
3578}
3579
3580/*
3581 *	vm_page_set_validclean:
3582 *
3583 *	Sets portions of a page valid and clean.  The arguments are expected
3584 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3585 *	of any partial chunks touched by the range.  The invalid portion of
3586 *	such chunks will be zero'd.
3587 *
3588 *	(base + size) must be less then or equal to PAGE_SIZE.
3589 */
3590void
3591vm_page_set_validclean(vm_page_t m, int base, int size)
3592{
3593	vm_page_bits_t oldvalid, pagebits;
3594	int endoff, frag;
3595
3596	VM_OBJECT_ASSERT_WLOCKED(m->object);
3597	if (size == 0)	/* handle degenerate case */
3598		return;
3599
3600	/*
3601	 * If the base is not DEV_BSIZE aligned and the valid
3602	 * bit is clear, we have to zero out a portion of the
3603	 * first block.
3604	 */
3605	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3606	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3607		pmap_zero_page_area(m, frag, base - frag);
3608
3609	/*
3610	 * If the ending offset is not DEV_BSIZE aligned and the
3611	 * valid bit is clear, we have to zero out a portion of
3612	 * the last block.
3613	 */
3614	endoff = base + size;
3615	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3616	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3617		pmap_zero_page_area(m, endoff,
3618		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3619
3620	/*
3621	 * Set valid, clear dirty bits.  If validating the entire
3622	 * page we can safely clear the pmap modify bit.  We also
3623	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3624	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3625	 * be set again.
3626	 *
3627	 * We set valid bits inclusive of any overlap, but we can only
3628	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3629	 * the range.
3630	 */
3631	oldvalid = m->valid;
3632	pagebits = vm_page_bits(base, size);
3633	m->valid |= pagebits;
3634#if 0	/* NOT YET */
3635	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3636		frag = DEV_BSIZE - frag;
3637		base += frag;
3638		size -= frag;
3639		if (size < 0)
3640			size = 0;
3641	}
3642	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3643#endif
3644	if (base == 0 && size == PAGE_SIZE) {
3645		/*
3646		 * The page can only be modified within the pmap if it is
3647		 * mapped, and it can only be mapped if it was previously
3648		 * fully valid.
3649		 */
3650		if (oldvalid == VM_PAGE_BITS_ALL)
3651			/*
3652			 * Perform the pmap_clear_modify() first.  Otherwise,
3653			 * a concurrent pmap operation, such as
3654			 * pmap_protect(), could clear a modification in the
3655			 * pmap and set the dirty field on the page before
3656			 * pmap_clear_modify() had begun and after the dirty
3657			 * field was cleared here.
3658			 */
3659			pmap_clear_modify(m);
3660		m->dirty = 0;
3661		m->oflags &= ~VPO_NOSYNC;
3662	} else if (oldvalid != VM_PAGE_BITS_ALL)
3663		m->dirty &= ~pagebits;
3664	else
3665		vm_page_clear_dirty_mask(m, pagebits);
3666}
3667
3668void
3669vm_page_clear_dirty(vm_page_t m, int base, int size)
3670{
3671
3672	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3673}
3674
3675/*
3676 *	vm_page_set_invalid:
3677 *
3678 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3679 *	valid and dirty bits for the effected areas are cleared.
3680 */
3681void
3682vm_page_set_invalid(vm_page_t m, int base, int size)
3683{
3684	vm_page_bits_t bits;
3685	vm_object_t object;
3686
3687	object = m->object;
3688	VM_OBJECT_ASSERT_WLOCKED(object);
3689	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3690	    size >= object->un_pager.vnp.vnp_size)
3691		bits = VM_PAGE_BITS_ALL;
3692	else
3693		bits = vm_page_bits(base, size);
3694	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3695	    bits != 0)
3696		pmap_remove_all(m);
3697	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3698	    !pmap_page_is_mapped(m),
3699	    ("vm_page_set_invalid: page %p is mapped", m));
3700	m->valid &= ~bits;
3701	m->dirty &= ~bits;
3702}
3703
3704/*
3705 * vm_page_zero_invalid()
3706 *
3707 *	The kernel assumes that the invalid portions of a page contain
3708 *	garbage, but such pages can be mapped into memory by user code.
3709 *	When this occurs, we must zero out the non-valid portions of the
3710 *	page so user code sees what it expects.
3711 *
3712 *	Pages are most often semi-valid when the end of a file is mapped
3713 *	into memory and the file's size is not page aligned.
3714 */
3715void
3716vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3717{
3718	int b;
3719	int i;
3720
3721	VM_OBJECT_ASSERT_WLOCKED(m->object);
3722	/*
3723	 * Scan the valid bits looking for invalid sections that
3724	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3725	 * valid bit may be set ) have already been zeroed by
3726	 * vm_page_set_validclean().
3727	 */
3728	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3729		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3730		    (m->valid & ((vm_page_bits_t)1 << i))) {
3731			if (i > b) {
3732				pmap_zero_page_area(m,
3733				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3734			}
3735			b = i + 1;
3736		}
3737	}
3738
3739	/*
3740	 * setvalid is TRUE when we can safely set the zero'd areas
3741	 * as being valid.  We can do this if there are no cache consistancy
3742	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3743	 */
3744	if (setvalid)
3745		m->valid = VM_PAGE_BITS_ALL;
3746}
3747
3748/*
3749 *	vm_page_is_valid:
3750 *
3751 *	Is (partial) page valid?  Note that the case where size == 0
3752 *	will return FALSE in the degenerate case where the page is
3753 *	entirely invalid, and TRUE otherwise.
3754 */
3755int
3756vm_page_is_valid(vm_page_t m, int base, int size)
3757{
3758	vm_page_bits_t bits;
3759
3760	VM_OBJECT_ASSERT_LOCKED(m->object);
3761	bits = vm_page_bits(base, size);
3762	return (m->valid != 0 && (m->valid & bits) == bits);
3763}
3764
3765/*
3766 *	vm_page_ps_is_valid:
3767 *
3768 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3769 */
3770boolean_t
3771vm_page_ps_is_valid(vm_page_t m)
3772{
3773	int i, npages;
3774
3775	VM_OBJECT_ASSERT_LOCKED(m->object);
3776	npages = atop(pagesizes[m->psind]);
3777
3778	/*
3779	 * The physically contiguous pages that make up a superpage, i.e., a
3780	 * page with a page size index ("psind") greater than zero, will
3781	 * occupy adjacent entries in vm_page_array[].
3782	 */
3783	for (i = 0; i < npages; i++) {
3784		if (m[i].valid != VM_PAGE_BITS_ALL)
3785			return (FALSE);
3786	}
3787	return (TRUE);
3788}
3789
3790/*
3791 * Set the page's dirty bits if the page is modified.
3792 */
3793void
3794vm_page_test_dirty(vm_page_t m)
3795{
3796
3797	VM_OBJECT_ASSERT_WLOCKED(m->object);
3798	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3799		vm_page_dirty(m);
3800}
3801
3802void
3803vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3804{
3805
3806	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3807}
3808
3809void
3810vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3811{
3812
3813	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3814}
3815
3816int
3817vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3818{
3819
3820	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3821}
3822
3823#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3824void
3825vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3826{
3827
3828	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3829}
3830
3831void
3832vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3833{
3834
3835	mtx_assert_(vm_page_lockptr(m), a, file, line);
3836}
3837#endif
3838
3839#ifdef INVARIANTS
3840void
3841vm_page_object_lock_assert(vm_page_t m)
3842{
3843
3844	/*
3845	 * Certain of the page's fields may only be modified by the
3846	 * holder of the containing object's lock or the exclusive busy.
3847	 * holder.  Unfortunately, the holder of the write busy is
3848	 * not recorded, and thus cannot be checked here.
3849	 */
3850	if (m->object != NULL && !vm_page_xbusied(m))
3851		VM_OBJECT_ASSERT_WLOCKED(m->object);
3852}
3853
3854void
3855vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3856{
3857
3858	if ((bits & PGA_WRITEABLE) == 0)
3859		return;
3860
3861	/*
3862	 * The PGA_WRITEABLE flag can only be set if the page is
3863	 * managed, is exclusively busied or the object is locked.
3864	 * Currently, this flag is only set by pmap_enter().
3865	 */
3866	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3867	    ("PGA_WRITEABLE on unmanaged page"));
3868	if (!vm_page_xbusied(m))
3869		VM_OBJECT_ASSERT_LOCKED(m->object);
3870}
3871#endif
3872
3873#include "opt_ddb.h"
3874#ifdef DDB
3875#include <sys/kernel.h>
3876
3877#include <ddb/ddb.h>
3878
3879DB_SHOW_COMMAND(page, vm_page_print_page_info)
3880{
3881	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3882	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3883	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3884	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3885	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3886	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3887	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3888	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3889	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3890}
3891
3892DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3893{
3894	int dom;
3895
3896	db_printf("pq_free %d pq_cache %d\n",
3897	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3898	for (dom = 0; dom < vm_ndomains; dom++) {
3899		db_printf(
3900	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3901		    dom,
3902		    vm_dom[dom].vmd_page_count,
3903		    vm_dom[dom].vmd_free_count,
3904		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3905		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3906		    vm_dom[dom].vmd_pass);
3907	}
3908}
3909
3910DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3911{
3912	vm_page_t m;
3913	boolean_t phys;
3914
3915	if (!have_addr) {
3916		db_printf("show pginfo addr\n");
3917		return;
3918	}
3919
3920	phys = strchr(modif, 'p') != NULL;
3921	if (phys)
3922		m = PHYS_TO_VM_PAGE(addr);
3923	else
3924		m = (vm_page_t)addr;
3925	db_printf(
3926    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3927    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3928	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3929	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3930	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3931}
3932#endif /* DDB */
3933