vm_page.c revision 292373
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 292373 2015-12-16 21:30:45Z glebius $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/linker.h>
95#include <sys/malloc.h>
96#include <sys/mman.h>
97#include <sys/msgbuf.h>
98#include <sys/mutex.h>
99#include <sys/proc.h>
100#include <sys/rwlock.h>
101#include <sys/sbuf.h>
102#include <sys/sysctl.h>
103#include <sys/vmmeter.h>
104#include <sys/vnode.h>
105
106#include <vm/vm.h>
107#include <vm/pmap.h>
108#include <vm/vm_param.h>
109#include <vm/vm_kern.h>
110#include <vm/vm_object.h>
111#include <vm/vm_page.h>
112#include <vm/vm_pageout.h>
113#include <vm/vm_pager.h>
114#include <vm/vm_phys.h>
115#include <vm/vm_radix.h>
116#include <vm/vm_reserv.h>
117#include <vm/vm_extern.h>
118#include <vm/uma.h>
119#include <vm/uma_int.h>
120
121#include <machine/md_var.h>
122
123/*
124 *	Associated with page of user-allocatable memory is a
125 *	page structure.
126 */
127
128struct vm_domain vm_dom[MAXMEMDOM];
129struct mtx_padalign vm_page_queue_free_mtx;
130
131struct mtx_padalign pa_lock[PA_LOCK_COUNT];
132
133vm_page_t vm_page_array;
134long vm_page_array_size;
135long first_page;
136int vm_page_zero_count;
137
138static int boot_pages = UMA_BOOT_PAGES;
139SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
140    &boot_pages, 0,
141    "number of pages allocated for bootstrapping the VM system");
142
143static int pa_tryrelock_restart;
144SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
145    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
146
147static TAILQ_HEAD(, vm_page) blacklist_head;
148static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
149SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
150    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
151
152/* Is the page daemon waiting for free pages? */
153static int vm_pageout_pages_needed;
154
155static uma_zone_t fakepg_zone;
156
157static struct vnode *vm_page_alloc_init(vm_page_t m);
158static void vm_page_cache_turn_free(vm_page_t m);
159static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
160static void vm_page_enqueue(uint8_t queue, vm_page_t m);
161static void vm_page_init_fakepg(void *dummy);
162static int vm_page_insert_after(vm_page_t m, vm_object_t object,
163    vm_pindex_t pindex, vm_page_t mpred);
164static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
165    vm_page_t mpred);
166
167SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
168
169static void
170vm_page_init_fakepg(void *dummy)
171{
172
173	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
174	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
175}
176
177/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
178#if PAGE_SIZE == 32768
179#ifdef CTASSERT
180CTASSERT(sizeof(u_long) >= 8);
181#endif
182#endif
183
184/*
185 * Try to acquire a physical address lock while a pmap is locked.  If we
186 * fail to trylock we unlock and lock the pmap directly and cache the
187 * locked pa in *locked.  The caller should then restart their loop in case
188 * the virtual to physical mapping has changed.
189 */
190int
191vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
192{
193	vm_paddr_t lockpa;
194
195	lockpa = *locked;
196	*locked = pa;
197	if (lockpa) {
198		PA_LOCK_ASSERT(lockpa, MA_OWNED);
199		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
200			return (0);
201		PA_UNLOCK(lockpa);
202	}
203	if (PA_TRYLOCK(pa))
204		return (0);
205	PMAP_UNLOCK(pmap);
206	atomic_add_int(&pa_tryrelock_restart, 1);
207	PA_LOCK(pa);
208	PMAP_LOCK(pmap);
209	return (EAGAIN);
210}
211
212/*
213 *	vm_set_page_size:
214 *
215 *	Sets the page size, perhaps based upon the memory
216 *	size.  Must be called before any use of page-size
217 *	dependent functions.
218 */
219void
220vm_set_page_size(void)
221{
222	if (vm_cnt.v_page_size == 0)
223		vm_cnt.v_page_size = PAGE_SIZE;
224	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
225		panic("vm_set_page_size: page size not a power of two");
226}
227
228/*
229 *	vm_page_blacklist_next:
230 *
231 *	Find the next entry in the provided string of blacklist
232 *	addresses.  Entries are separated by space, comma, or newline.
233 *	If an invalid integer is encountered then the rest of the
234 *	string is skipped.  Updates the list pointer to the next
235 *	character, or NULL if the string is exhausted or invalid.
236 */
237static vm_paddr_t
238vm_page_blacklist_next(char **list, char *end)
239{
240	vm_paddr_t bad;
241	char *cp, *pos;
242
243	if (list == NULL || *list == NULL)
244		return (0);
245	if (**list =='\0') {
246		*list = NULL;
247		return (0);
248	}
249
250	/*
251	 * If there's no end pointer then the buffer is coming from
252	 * the kenv and we know it's null-terminated.
253	 */
254	if (end == NULL)
255		end = *list + strlen(*list);
256
257	/* Ensure that strtoq() won't walk off the end */
258	if (*end != '\0') {
259		if (*end == '\n' || *end == ' ' || *end  == ',')
260			*end = '\0';
261		else {
262			printf("Blacklist not terminated, skipping\n");
263			*list = NULL;
264			return (0);
265		}
266	}
267
268	for (pos = *list; *pos != '\0'; pos = cp) {
269		bad = strtoq(pos, &cp, 0);
270		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
271			if (bad == 0) {
272				if (++cp < end)
273					continue;
274				else
275					break;
276			}
277		} else
278			break;
279		if (*cp == '\0' || ++cp >= end)
280			*list = NULL;
281		else
282			*list = cp;
283		return (trunc_page(bad));
284	}
285	printf("Garbage in RAM blacklist, skipping\n");
286	*list = NULL;
287	return (0);
288}
289
290/*
291 *	vm_page_blacklist_check:
292 *
293 *	Iterate through the provided string of blacklist addresses, pulling
294 *	each entry out of the physical allocator free list and putting it
295 *	onto a list for reporting via the vm.page_blacklist sysctl.
296 */
297static void
298vm_page_blacklist_check(char *list, char *end)
299{
300	vm_paddr_t pa;
301	vm_page_t m;
302	char *next;
303	int ret;
304
305	next = list;
306	while (next != NULL) {
307		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
308			continue;
309		m = vm_phys_paddr_to_vm_page(pa);
310		if (m == NULL)
311			continue;
312		mtx_lock(&vm_page_queue_free_mtx);
313		ret = vm_phys_unfree_page(m);
314		mtx_unlock(&vm_page_queue_free_mtx);
315		if (ret == TRUE) {
316			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
317			if (bootverbose)
318				printf("Skipping page with pa 0x%jx\n",
319				    (uintmax_t)pa);
320		}
321	}
322}
323
324/*
325 *	vm_page_blacklist_load:
326 *
327 *	Search for a special module named "ram_blacklist".  It'll be a
328 *	plain text file provided by the user via the loader directive
329 *	of the same name.
330 */
331static void
332vm_page_blacklist_load(char **list, char **end)
333{
334	void *mod;
335	u_char *ptr;
336	u_int len;
337
338	mod = NULL;
339	ptr = NULL;
340
341	mod = preload_search_by_type("ram_blacklist");
342	if (mod != NULL) {
343		ptr = preload_fetch_addr(mod);
344		len = preload_fetch_size(mod);
345        }
346	*list = ptr;
347	if (ptr != NULL)
348		*end = ptr + len;
349	else
350		*end = NULL;
351	return;
352}
353
354static int
355sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
356{
357	vm_page_t m;
358	struct sbuf sbuf;
359	int error, first;
360
361	first = 1;
362	error = sysctl_wire_old_buffer(req, 0);
363	if (error != 0)
364		return (error);
365	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
366	TAILQ_FOREACH(m, &blacklist_head, listq) {
367		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
368		    (uintmax_t)m->phys_addr);
369		first = 0;
370	}
371	error = sbuf_finish(&sbuf);
372	sbuf_delete(&sbuf);
373	return (error);
374}
375
376static void
377vm_page_domain_init(struct vm_domain *vmd)
378{
379	struct vm_pagequeue *pq;
380	int i;
381
382	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
383	    "vm inactive pagequeue";
384	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
385	    &vm_cnt.v_inactive_count;
386	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
387	    "vm active pagequeue";
388	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
389	    &vm_cnt.v_active_count;
390	vmd->vmd_page_count = 0;
391	vmd->vmd_free_count = 0;
392	vmd->vmd_segs = 0;
393	vmd->vmd_oom = FALSE;
394	vmd->vmd_pass = 0;
395	for (i = 0; i < PQ_COUNT; i++) {
396		pq = &vmd->vmd_pagequeues[i];
397		TAILQ_INIT(&pq->pq_pl);
398		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
399		    MTX_DEF | MTX_DUPOK);
400	}
401}
402
403/*
404 *	vm_page_startup:
405 *
406 *	Initializes the resident memory module.
407 *
408 *	Allocates memory for the page cells, and
409 *	for the object/offset-to-page hash table headers.
410 *	Each page cell is initialized and placed on the free list.
411 */
412vm_offset_t
413vm_page_startup(vm_offset_t vaddr)
414{
415	vm_offset_t mapped;
416	vm_paddr_t page_range;
417	vm_paddr_t new_end;
418	int i;
419	vm_paddr_t pa;
420	vm_paddr_t last_pa;
421	char *list, *listend;
422	vm_paddr_t end;
423	vm_paddr_t biggestsize;
424	vm_paddr_t low_water, high_water;
425	int biggestone;
426
427	biggestsize = 0;
428	biggestone = 0;
429	vaddr = round_page(vaddr);
430
431	for (i = 0; phys_avail[i + 1]; i += 2) {
432		phys_avail[i] = round_page(phys_avail[i]);
433		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
434	}
435
436	low_water = phys_avail[0];
437	high_water = phys_avail[1];
438
439	for (i = 0; i < vm_phys_nsegs; i++) {
440		if (vm_phys_segs[i].start < low_water)
441			low_water = vm_phys_segs[i].start;
442		if (vm_phys_segs[i].end > high_water)
443			high_water = vm_phys_segs[i].end;
444	}
445	for (i = 0; phys_avail[i + 1]; i += 2) {
446		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
447
448		if (size > biggestsize) {
449			biggestone = i;
450			biggestsize = size;
451		}
452		if (phys_avail[i] < low_water)
453			low_water = phys_avail[i];
454		if (phys_avail[i + 1] > high_water)
455			high_water = phys_avail[i + 1];
456	}
457
458	end = phys_avail[biggestone+1];
459
460	/*
461	 * Initialize the page and queue locks.
462	 */
463	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
464	for (i = 0; i < PA_LOCK_COUNT; i++)
465		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
466	for (i = 0; i < vm_ndomains; i++)
467		vm_page_domain_init(&vm_dom[i]);
468
469	/*
470	 * Allocate memory for use when boot strapping the kernel memory
471	 * allocator.
472	 *
473	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
474	 * manually fetch the value.
475	 */
476	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
477	new_end = end - (boot_pages * UMA_SLAB_SIZE);
478	new_end = trunc_page(new_end);
479	mapped = pmap_map(&vaddr, new_end, end,
480	    VM_PROT_READ | VM_PROT_WRITE);
481	bzero((void *)mapped, end - new_end);
482	uma_startup((void *)mapped, boot_pages);
483
484#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
485    defined(__i386__) || defined(__mips__)
486	/*
487	 * Allocate a bitmap to indicate that a random physical page
488	 * needs to be included in a minidump.
489	 *
490	 * The amd64 port needs this to indicate which direct map pages
491	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
492	 *
493	 * However, i386 still needs this workspace internally within the
494	 * minidump code.  In theory, they are not needed on i386, but are
495	 * included should the sf_buf code decide to use them.
496	 */
497	last_pa = 0;
498	for (i = 0; dump_avail[i + 1] != 0; i += 2)
499		if (dump_avail[i + 1] > last_pa)
500			last_pa = dump_avail[i + 1];
501	page_range = last_pa / PAGE_SIZE;
502	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
503	new_end -= vm_page_dump_size;
504	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
505	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
506	bzero((void *)vm_page_dump, vm_page_dump_size);
507#endif
508#ifdef __amd64__
509	/*
510	 * Request that the physical pages underlying the message buffer be
511	 * included in a crash dump.  Since the message buffer is accessed
512	 * through the direct map, they are not automatically included.
513	 */
514	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
515	last_pa = pa + round_page(msgbufsize);
516	while (pa < last_pa) {
517		dump_add_page(pa);
518		pa += PAGE_SIZE;
519	}
520#endif
521	/*
522	 * Compute the number of pages of memory that will be available for
523	 * use (taking into account the overhead of a page structure per
524	 * page).
525	 */
526	first_page = low_water / PAGE_SIZE;
527#ifdef VM_PHYSSEG_SPARSE
528	page_range = 0;
529	for (i = 0; i < vm_phys_nsegs; i++) {
530		page_range += atop(vm_phys_segs[i].end -
531		    vm_phys_segs[i].start);
532	}
533	for (i = 0; phys_avail[i + 1] != 0; i += 2)
534		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
535#elif defined(VM_PHYSSEG_DENSE)
536	page_range = high_water / PAGE_SIZE - first_page;
537#else
538#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
539#endif
540	end = new_end;
541
542	/*
543	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
544	 */
545	vaddr += PAGE_SIZE;
546
547	/*
548	 * Initialize the mem entry structures now, and put them in the free
549	 * queue.
550	 */
551	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
552	mapped = pmap_map(&vaddr, new_end, end,
553	    VM_PROT_READ | VM_PROT_WRITE);
554	vm_page_array = (vm_page_t) mapped;
555#if VM_NRESERVLEVEL > 0
556	/*
557	 * Allocate memory for the reservation management system's data
558	 * structures.
559	 */
560	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
561#endif
562#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
563	/*
564	 * pmap_map on arm64, amd64, and mips can come out of the direct-map,
565	 * not kvm like i386, so the pages must be tracked for a crashdump to
566	 * include this data.  This includes the vm_page_array and the early
567	 * UMA bootstrap pages.
568	 */
569	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
570		dump_add_page(pa);
571#endif
572	phys_avail[biggestone + 1] = new_end;
573
574	/*
575	 * Add physical memory segments corresponding to the available
576	 * physical pages.
577	 */
578	for (i = 0; phys_avail[i + 1] != 0; i += 2)
579		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
580
581	/*
582	 * Clear all of the page structures
583	 */
584	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
585	for (i = 0; i < page_range; i++)
586		vm_page_array[i].order = VM_NFREEORDER;
587	vm_page_array_size = page_range;
588
589	/*
590	 * Initialize the physical memory allocator.
591	 */
592	vm_phys_init();
593
594	/*
595	 * Add every available physical page that is not blacklisted to
596	 * the free lists.
597	 */
598	vm_cnt.v_page_count = 0;
599	vm_cnt.v_free_count = 0;
600	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
601		pa = phys_avail[i];
602		last_pa = phys_avail[i + 1];
603		while (pa < last_pa) {
604			vm_phys_add_page(pa);
605			pa += PAGE_SIZE;
606		}
607	}
608
609	TAILQ_INIT(&blacklist_head);
610	vm_page_blacklist_load(&list, &listend);
611	vm_page_blacklist_check(list, listend);
612
613	list = kern_getenv("vm.blacklist");
614	vm_page_blacklist_check(list, NULL);
615
616	freeenv(list);
617#if VM_NRESERVLEVEL > 0
618	/*
619	 * Initialize the reservation management system.
620	 */
621	vm_reserv_init();
622#endif
623	return (vaddr);
624}
625
626void
627vm_page_reference(vm_page_t m)
628{
629
630	vm_page_aflag_set(m, PGA_REFERENCED);
631}
632
633/*
634 *	vm_page_busy_downgrade:
635 *
636 *	Downgrade an exclusive busy page into a single shared busy page.
637 */
638void
639vm_page_busy_downgrade(vm_page_t m)
640{
641	u_int x;
642
643	vm_page_assert_xbusied(m);
644
645	for (;;) {
646		x = m->busy_lock;
647		x &= VPB_BIT_WAITERS;
648		if (atomic_cmpset_rel_int(&m->busy_lock,
649		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
650			break;
651	}
652}
653
654/*
655 *	vm_page_sbusied:
656 *
657 *	Return a positive value if the page is shared busied, 0 otherwise.
658 */
659int
660vm_page_sbusied(vm_page_t m)
661{
662	u_int x;
663
664	x = m->busy_lock;
665	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
666}
667
668/*
669 *	vm_page_sunbusy:
670 *
671 *	Shared unbusy a page.
672 */
673void
674vm_page_sunbusy(vm_page_t m)
675{
676	u_int x;
677
678	vm_page_assert_sbusied(m);
679
680	for (;;) {
681		x = m->busy_lock;
682		if (VPB_SHARERS(x) > 1) {
683			if (atomic_cmpset_int(&m->busy_lock, x,
684			    x - VPB_ONE_SHARER))
685				break;
686			continue;
687		}
688		if ((x & VPB_BIT_WAITERS) == 0) {
689			KASSERT(x == VPB_SHARERS_WORD(1),
690			    ("vm_page_sunbusy: invalid lock state"));
691			if (atomic_cmpset_int(&m->busy_lock,
692			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
693				break;
694			continue;
695		}
696		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
697		    ("vm_page_sunbusy: invalid lock state for waiters"));
698
699		vm_page_lock(m);
700		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
701			vm_page_unlock(m);
702			continue;
703		}
704		wakeup(m);
705		vm_page_unlock(m);
706		break;
707	}
708}
709
710/*
711 *	vm_page_busy_sleep:
712 *
713 *	Sleep and release the page lock, using the page pointer as wchan.
714 *	This is used to implement the hard-path of busying mechanism.
715 *
716 *	The given page must be locked.
717 */
718void
719vm_page_busy_sleep(vm_page_t m, const char *wmesg)
720{
721	u_int x;
722
723	vm_page_lock_assert(m, MA_OWNED);
724
725	x = m->busy_lock;
726	if (x == VPB_UNBUSIED) {
727		vm_page_unlock(m);
728		return;
729	}
730	if ((x & VPB_BIT_WAITERS) == 0 &&
731	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
732		vm_page_unlock(m);
733		return;
734	}
735	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
736}
737
738/*
739 *	vm_page_trysbusy:
740 *
741 *	Try to shared busy a page.
742 *	If the operation succeeds 1 is returned otherwise 0.
743 *	The operation never sleeps.
744 */
745int
746vm_page_trysbusy(vm_page_t m)
747{
748	u_int x;
749
750	for (;;) {
751		x = m->busy_lock;
752		if ((x & VPB_BIT_SHARED) == 0)
753			return (0);
754		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
755			return (1);
756	}
757}
758
759/*
760 *	vm_page_xunbusy_hard:
761 *
762 *	Called after the first try the exclusive unbusy of a page failed.
763 *	It is assumed that the waiters bit is on.
764 */
765void
766vm_page_xunbusy_hard(vm_page_t m)
767{
768
769	vm_page_assert_xbusied(m);
770
771	vm_page_lock(m);
772	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
773	wakeup(m);
774	vm_page_unlock(m);
775}
776
777/*
778 *	vm_page_flash:
779 *
780 *	Wakeup anyone waiting for the page.
781 *	The ownership bits do not change.
782 *
783 *	The given page must be locked.
784 */
785void
786vm_page_flash(vm_page_t m)
787{
788	u_int x;
789
790	vm_page_lock_assert(m, MA_OWNED);
791
792	for (;;) {
793		x = m->busy_lock;
794		if ((x & VPB_BIT_WAITERS) == 0)
795			return;
796		if (atomic_cmpset_int(&m->busy_lock, x,
797		    x & (~VPB_BIT_WAITERS)))
798			break;
799	}
800	wakeup(m);
801}
802
803/*
804 * Keep page from being freed by the page daemon
805 * much of the same effect as wiring, except much lower
806 * overhead and should be used only for *very* temporary
807 * holding ("wiring").
808 */
809void
810vm_page_hold(vm_page_t mem)
811{
812
813	vm_page_lock_assert(mem, MA_OWNED);
814        mem->hold_count++;
815}
816
817void
818vm_page_unhold(vm_page_t mem)
819{
820
821	vm_page_lock_assert(mem, MA_OWNED);
822	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
823	--mem->hold_count;
824	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
825		vm_page_free_toq(mem);
826}
827
828/*
829 *	vm_page_unhold_pages:
830 *
831 *	Unhold each of the pages that is referenced by the given array.
832 */
833void
834vm_page_unhold_pages(vm_page_t *ma, int count)
835{
836	struct mtx *mtx, *new_mtx;
837
838	mtx = NULL;
839	for (; count != 0; count--) {
840		/*
841		 * Avoid releasing and reacquiring the same page lock.
842		 */
843		new_mtx = vm_page_lockptr(*ma);
844		if (mtx != new_mtx) {
845			if (mtx != NULL)
846				mtx_unlock(mtx);
847			mtx = new_mtx;
848			mtx_lock(mtx);
849		}
850		vm_page_unhold(*ma);
851		ma++;
852	}
853	if (mtx != NULL)
854		mtx_unlock(mtx);
855}
856
857vm_page_t
858PHYS_TO_VM_PAGE(vm_paddr_t pa)
859{
860	vm_page_t m;
861
862#ifdef VM_PHYSSEG_SPARSE
863	m = vm_phys_paddr_to_vm_page(pa);
864	if (m == NULL)
865		m = vm_phys_fictitious_to_vm_page(pa);
866	return (m);
867#elif defined(VM_PHYSSEG_DENSE)
868	long pi;
869
870	pi = atop(pa);
871	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
872		m = &vm_page_array[pi - first_page];
873		return (m);
874	}
875	return (vm_phys_fictitious_to_vm_page(pa));
876#else
877#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
878#endif
879}
880
881/*
882 *	vm_page_getfake:
883 *
884 *	Create a fictitious page with the specified physical address and
885 *	memory attribute.  The memory attribute is the only the machine-
886 *	dependent aspect of a fictitious page that must be initialized.
887 */
888vm_page_t
889vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
890{
891	vm_page_t m;
892
893	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
894	vm_page_initfake(m, paddr, memattr);
895	return (m);
896}
897
898void
899vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
900{
901
902	if ((m->flags & PG_FICTITIOUS) != 0) {
903		/*
904		 * The page's memattr might have changed since the
905		 * previous initialization.  Update the pmap to the
906		 * new memattr.
907		 */
908		goto memattr;
909	}
910	m->phys_addr = paddr;
911	m->queue = PQ_NONE;
912	/* Fictitious pages don't use "segind". */
913	m->flags = PG_FICTITIOUS;
914	/* Fictitious pages don't use "order" or "pool". */
915	m->oflags = VPO_UNMANAGED;
916	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
917	m->wire_count = 1;
918	pmap_page_init(m);
919memattr:
920	pmap_page_set_memattr(m, memattr);
921}
922
923/*
924 *	vm_page_putfake:
925 *
926 *	Release a fictitious page.
927 */
928void
929vm_page_putfake(vm_page_t m)
930{
931
932	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
933	KASSERT((m->flags & PG_FICTITIOUS) != 0,
934	    ("vm_page_putfake: bad page %p", m));
935	uma_zfree(fakepg_zone, m);
936}
937
938/*
939 *	vm_page_updatefake:
940 *
941 *	Update the given fictitious page to the specified physical address and
942 *	memory attribute.
943 */
944void
945vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
946{
947
948	KASSERT((m->flags & PG_FICTITIOUS) != 0,
949	    ("vm_page_updatefake: bad page %p", m));
950	m->phys_addr = paddr;
951	pmap_page_set_memattr(m, memattr);
952}
953
954/*
955 *	vm_page_free:
956 *
957 *	Free a page.
958 */
959void
960vm_page_free(vm_page_t m)
961{
962
963	m->flags &= ~PG_ZERO;
964	vm_page_free_toq(m);
965}
966
967/*
968 *	vm_page_free_zero:
969 *
970 *	Free a page to the zerod-pages queue
971 */
972void
973vm_page_free_zero(vm_page_t m)
974{
975
976	m->flags |= PG_ZERO;
977	vm_page_free_toq(m);
978}
979
980/*
981 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
982 * array which was optionally read ahead or behind.
983 */
984void
985vm_page_readahead_finish(vm_page_t m)
986{
987
988	/* We shouldn't put invalid pages on queues. */
989	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
990
991	/*
992	 * Since the page is not the actually needed one, whether it should
993	 * be activated or deactivated is not obvious.  Empirical results
994	 * have shown that deactivating the page is usually the best choice,
995	 * unless the page is wanted by another thread.
996	 */
997	vm_page_lock(m);
998	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
999		vm_page_activate(m);
1000	else
1001		vm_page_deactivate(m);
1002	vm_page_unlock(m);
1003	vm_page_xunbusy(m);
1004}
1005
1006/*
1007 *	vm_page_sleep_if_busy:
1008 *
1009 *	Sleep and release the page queues lock if the page is busied.
1010 *	Returns TRUE if the thread slept.
1011 *
1012 *	The given page must be unlocked and object containing it must
1013 *	be locked.
1014 */
1015int
1016vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1017{
1018	vm_object_t obj;
1019
1020	vm_page_lock_assert(m, MA_NOTOWNED);
1021	VM_OBJECT_ASSERT_WLOCKED(m->object);
1022
1023	if (vm_page_busied(m)) {
1024		/*
1025		 * The page-specific object must be cached because page
1026		 * identity can change during the sleep, causing the
1027		 * re-lock of a different object.
1028		 * It is assumed that a reference to the object is already
1029		 * held by the callers.
1030		 */
1031		obj = m->object;
1032		vm_page_lock(m);
1033		VM_OBJECT_WUNLOCK(obj);
1034		vm_page_busy_sleep(m, msg);
1035		VM_OBJECT_WLOCK(obj);
1036		return (TRUE);
1037	}
1038	return (FALSE);
1039}
1040
1041/*
1042 *	vm_page_dirty_KBI:		[ internal use only ]
1043 *
1044 *	Set all bits in the page's dirty field.
1045 *
1046 *	The object containing the specified page must be locked if the
1047 *	call is made from the machine-independent layer.
1048 *
1049 *	See vm_page_clear_dirty_mask().
1050 *
1051 *	This function should only be called by vm_page_dirty().
1052 */
1053void
1054vm_page_dirty_KBI(vm_page_t m)
1055{
1056
1057	/* These assertions refer to this operation by its public name. */
1058	KASSERT((m->flags & PG_CACHED) == 0,
1059	    ("vm_page_dirty: page in cache!"));
1060	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1061	    ("vm_page_dirty: page is invalid!"));
1062	m->dirty = VM_PAGE_BITS_ALL;
1063}
1064
1065/*
1066 *	vm_page_insert:		[ internal use only ]
1067 *
1068 *	Inserts the given mem entry into the object and object list.
1069 *
1070 *	The object must be locked.
1071 */
1072int
1073vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1074{
1075	vm_page_t mpred;
1076
1077	VM_OBJECT_ASSERT_WLOCKED(object);
1078	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1079	return (vm_page_insert_after(m, object, pindex, mpred));
1080}
1081
1082/*
1083 *	vm_page_insert_after:
1084 *
1085 *	Inserts the page "m" into the specified object at offset "pindex".
1086 *
1087 *	The page "mpred" must immediately precede the offset "pindex" within
1088 *	the specified object.
1089 *
1090 *	The object must be locked.
1091 */
1092static int
1093vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1094    vm_page_t mpred)
1095{
1096	vm_pindex_t sidx;
1097	vm_object_t sobj;
1098	vm_page_t msucc;
1099
1100	VM_OBJECT_ASSERT_WLOCKED(object);
1101	KASSERT(m->object == NULL,
1102	    ("vm_page_insert_after: page already inserted"));
1103	if (mpred != NULL) {
1104		KASSERT(mpred->object == object,
1105		    ("vm_page_insert_after: object doesn't contain mpred"));
1106		KASSERT(mpred->pindex < pindex,
1107		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1108		msucc = TAILQ_NEXT(mpred, listq);
1109	} else
1110		msucc = TAILQ_FIRST(&object->memq);
1111	if (msucc != NULL)
1112		KASSERT(msucc->pindex > pindex,
1113		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1114
1115	/*
1116	 * Record the object/offset pair in this page
1117	 */
1118	sobj = m->object;
1119	sidx = m->pindex;
1120	m->object = object;
1121	m->pindex = pindex;
1122
1123	/*
1124	 * Now link into the object's ordered list of backed pages.
1125	 */
1126	if (vm_radix_insert(&object->rtree, m)) {
1127		m->object = sobj;
1128		m->pindex = sidx;
1129		return (1);
1130	}
1131	vm_page_insert_radixdone(m, object, mpred);
1132	return (0);
1133}
1134
1135/*
1136 *	vm_page_insert_radixdone:
1137 *
1138 *	Complete page "m" insertion into the specified object after the
1139 *	radix trie hooking.
1140 *
1141 *	The page "mpred" must precede the offset "m->pindex" within the
1142 *	specified object.
1143 *
1144 *	The object must be locked.
1145 */
1146static void
1147vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1148{
1149
1150	VM_OBJECT_ASSERT_WLOCKED(object);
1151	KASSERT(object != NULL && m->object == object,
1152	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1153	if (mpred != NULL) {
1154		KASSERT(mpred->object == object,
1155		    ("vm_page_insert_after: object doesn't contain mpred"));
1156		KASSERT(mpred->pindex < m->pindex,
1157		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1158	}
1159
1160	if (mpred != NULL)
1161		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1162	else
1163		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1164
1165	/*
1166	 * Show that the object has one more resident page.
1167	 */
1168	object->resident_page_count++;
1169
1170	/*
1171	 * Hold the vnode until the last page is released.
1172	 */
1173	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1174		vhold(object->handle);
1175
1176	/*
1177	 * Since we are inserting a new and possibly dirty page,
1178	 * update the object's OBJ_MIGHTBEDIRTY flag.
1179	 */
1180	if (pmap_page_is_write_mapped(m))
1181		vm_object_set_writeable_dirty(object);
1182}
1183
1184/*
1185 *	vm_page_remove:
1186 *
1187 *	Removes the given mem entry from the object/offset-page
1188 *	table and the object page list, but do not invalidate/terminate
1189 *	the backing store.
1190 *
1191 *	The object must be locked.  The page must be locked if it is managed.
1192 */
1193void
1194vm_page_remove(vm_page_t m)
1195{
1196	vm_object_t object;
1197	boolean_t lockacq;
1198
1199	if ((m->oflags & VPO_UNMANAGED) == 0)
1200		vm_page_lock_assert(m, MA_OWNED);
1201	if ((object = m->object) == NULL)
1202		return;
1203	VM_OBJECT_ASSERT_WLOCKED(object);
1204	if (vm_page_xbusied(m)) {
1205		lockacq = FALSE;
1206		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1207		    !mtx_owned(vm_page_lockptr(m))) {
1208			lockacq = TRUE;
1209			vm_page_lock(m);
1210		}
1211		vm_page_flash(m);
1212		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1213		if (lockacq)
1214			vm_page_unlock(m);
1215	}
1216
1217	/*
1218	 * Now remove from the object's list of backed pages.
1219	 */
1220	vm_radix_remove(&object->rtree, m->pindex);
1221	TAILQ_REMOVE(&object->memq, m, listq);
1222
1223	/*
1224	 * And show that the object has one fewer resident page.
1225	 */
1226	object->resident_page_count--;
1227
1228	/*
1229	 * The vnode may now be recycled.
1230	 */
1231	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1232		vdrop(object->handle);
1233
1234	m->object = NULL;
1235}
1236
1237/*
1238 *	vm_page_lookup:
1239 *
1240 *	Returns the page associated with the object/offset
1241 *	pair specified; if none is found, NULL is returned.
1242 *
1243 *	The object must be locked.
1244 */
1245vm_page_t
1246vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1247{
1248
1249	VM_OBJECT_ASSERT_LOCKED(object);
1250	return (vm_radix_lookup(&object->rtree, pindex));
1251}
1252
1253/*
1254 *	vm_page_find_least:
1255 *
1256 *	Returns the page associated with the object with least pindex
1257 *	greater than or equal to the parameter pindex, or NULL.
1258 *
1259 *	The object must be locked.
1260 */
1261vm_page_t
1262vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1263{
1264	vm_page_t m;
1265
1266	VM_OBJECT_ASSERT_LOCKED(object);
1267	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1268		m = vm_radix_lookup_ge(&object->rtree, pindex);
1269	return (m);
1270}
1271
1272/*
1273 * Returns the given page's successor (by pindex) within the object if it is
1274 * resident; if none is found, NULL is returned.
1275 *
1276 * The object must be locked.
1277 */
1278vm_page_t
1279vm_page_next(vm_page_t m)
1280{
1281	vm_page_t next;
1282
1283	VM_OBJECT_ASSERT_WLOCKED(m->object);
1284	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1285	    next->pindex != m->pindex + 1)
1286		next = NULL;
1287	return (next);
1288}
1289
1290/*
1291 * Returns the given page's predecessor (by pindex) within the object if it is
1292 * resident; if none is found, NULL is returned.
1293 *
1294 * The object must be locked.
1295 */
1296vm_page_t
1297vm_page_prev(vm_page_t m)
1298{
1299	vm_page_t prev;
1300
1301	VM_OBJECT_ASSERT_WLOCKED(m->object);
1302	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1303	    prev->pindex != m->pindex - 1)
1304		prev = NULL;
1305	return (prev);
1306}
1307
1308/*
1309 * Uses the page mnew as a replacement for an existing page at index
1310 * pindex which must be already present in the object.
1311 *
1312 * The existing page must not be on a paging queue.
1313 */
1314vm_page_t
1315vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1316{
1317	vm_page_t mold;
1318
1319	VM_OBJECT_ASSERT_WLOCKED(object);
1320	KASSERT(mnew->object == NULL,
1321	    ("vm_page_replace: page already in object"));
1322
1323	/*
1324	 * This function mostly follows vm_page_insert() and
1325	 * vm_page_remove() without the radix, object count and vnode
1326	 * dance.  Double check such functions for more comments.
1327	 */
1328
1329	mnew->object = object;
1330	mnew->pindex = pindex;
1331	mold = vm_radix_replace(&object->rtree, mnew);
1332	KASSERT(mold->queue == PQ_NONE,
1333	    ("vm_page_replace: mold is on a paging queue"));
1334
1335	/* Keep the resident page list in sorted order. */
1336	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1337	TAILQ_REMOVE(&object->memq, mold, listq);
1338
1339	mold->object = NULL;
1340	vm_page_xunbusy(mold);
1341
1342	/*
1343	 * The object's resident_page_count does not change because we have
1344	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1345	 */
1346	if (pmap_page_is_write_mapped(mnew))
1347		vm_object_set_writeable_dirty(object);
1348	return (mold);
1349}
1350
1351/*
1352 *	vm_page_rename:
1353 *
1354 *	Move the given memory entry from its
1355 *	current object to the specified target object/offset.
1356 *
1357 *	Note: swap associated with the page must be invalidated by the move.  We
1358 *	      have to do this for several reasons:  (1) we aren't freeing the
1359 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1360 *	      moving the page from object A to B, and will then later move
1361 *	      the backing store from A to B and we can't have a conflict.
1362 *
1363 *	Note: we *always* dirty the page.  It is necessary both for the
1364 *	      fact that we moved it, and because we may be invalidating
1365 *	      swap.  If the page is on the cache, we have to deactivate it
1366 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1367 *	      on the cache.
1368 *
1369 *	The objects must be locked.
1370 */
1371int
1372vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1373{
1374	vm_page_t mpred;
1375	vm_pindex_t opidx;
1376
1377	VM_OBJECT_ASSERT_WLOCKED(new_object);
1378
1379	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1380	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1381	    ("vm_page_rename: pindex already renamed"));
1382
1383	/*
1384	 * Create a custom version of vm_page_insert() which does not depend
1385	 * by m_prev and can cheat on the implementation aspects of the
1386	 * function.
1387	 */
1388	opidx = m->pindex;
1389	m->pindex = new_pindex;
1390	if (vm_radix_insert(&new_object->rtree, m)) {
1391		m->pindex = opidx;
1392		return (1);
1393	}
1394
1395	/*
1396	 * The operation cannot fail anymore.  The removal must happen before
1397	 * the listq iterator is tainted.
1398	 */
1399	m->pindex = opidx;
1400	vm_page_lock(m);
1401	vm_page_remove(m);
1402
1403	/* Return back to the new pindex to complete vm_page_insert(). */
1404	m->pindex = new_pindex;
1405	m->object = new_object;
1406	vm_page_unlock(m);
1407	vm_page_insert_radixdone(m, new_object, mpred);
1408	vm_page_dirty(m);
1409	return (0);
1410}
1411
1412/*
1413 *	Convert all of the given object's cached pages that have a
1414 *	pindex within the given range into free pages.  If the value
1415 *	zero is given for "end", then the range's upper bound is
1416 *	infinity.  If the given object is backed by a vnode and it
1417 *	transitions from having one or more cached pages to none, the
1418 *	vnode's hold count is reduced.
1419 */
1420void
1421vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1422{
1423	vm_page_t m;
1424	boolean_t empty;
1425
1426	mtx_lock(&vm_page_queue_free_mtx);
1427	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1428		mtx_unlock(&vm_page_queue_free_mtx);
1429		return;
1430	}
1431	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1432		if (end != 0 && m->pindex >= end)
1433			break;
1434		vm_radix_remove(&object->cache, m->pindex);
1435		vm_page_cache_turn_free(m);
1436	}
1437	empty = vm_radix_is_empty(&object->cache);
1438	mtx_unlock(&vm_page_queue_free_mtx);
1439	if (object->type == OBJT_VNODE && empty)
1440		vdrop(object->handle);
1441}
1442
1443/*
1444 *	Returns the cached page that is associated with the given
1445 *	object and offset.  If, however, none exists, returns NULL.
1446 *
1447 *	The free page queue must be locked.
1448 */
1449static inline vm_page_t
1450vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1451{
1452
1453	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1454	return (vm_radix_lookup(&object->cache, pindex));
1455}
1456
1457/*
1458 *	Remove the given cached page from its containing object's
1459 *	collection of cached pages.
1460 *
1461 *	The free page queue must be locked.
1462 */
1463static void
1464vm_page_cache_remove(vm_page_t m)
1465{
1466
1467	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1468	KASSERT((m->flags & PG_CACHED) != 0,
1469	    ("vm_page_cache_remove: page %p is not cached", m));
1470	vm_radix_remove(&m->object->cache, m->pindex);
1471	m->object = NULL;
1472	vm_cnt.v_cache_count--;
1473}
1474
1475/*
1476 *	Transfer all of the cached pages with offset greater than or
1477 *	equal to 'offidxstart' from the original object's cache to the
1478 *	new object's cache.  However, any cached pages with offset
1479 *	greater than or equal to the new object's size are kept in the
1480 *	original object.  Initially, the new object's cache must be
1481 *	empty.  Offset 'offidxstart' in the original object must
1482 *	correspond to offset zero in the new object.
1483 *
1484 *	The new object must be locked.
1485 */
1486void
1487vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1488    vm_object_t new_object)
1489{
1490	vm_page_t m;
1491
1492	/*
1493	 * Insertion into an object's collection of cached pages
1494	 * requires the object to be locked.  In contrast, removal does
1495	 * not.
1496	 */
1497	VM_OBJECT_ASSERT_WLOCKED(new_object);
1498	KASSERT(vm_radix_is_empty(&new_object->cache),
1499	    ("vm_page_cache_transfer: object %p has cached pages",
1500	    new_object));
1501	mtx_lock(&vm_page_queue_free_mtx);
1502	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1503	    offidxstart)) != NULL) {
1504		/*
1505		 * Transfer all of the pages with offset greater than or
1506		 * equal to 'offidxstart' from the original object's
1507		 * cache to the new object's cache.
1508		 */
1509		if ((m->pindex - offidxstart) >= new_object->size)
1510			break;
1511		vm_radix_remove(&orig_object->cache, m->pindex);
1512		/* Update the page's object and offset. */
1513		m->object = new_object;
1514		m->pindex -= offidxstart;
1515		if (vm_radix_insert(&new_object->cache, m))
1516			vm_page_cache_turn_free(m);
1517	}
1518	mtx_unlock(&vm_page_queue_free_mtx);
1519}
1520
1521/*
1522 *	Returns TRUE if a cached page is associated with the given object and
1523 *	offset, and FALSE otherwise.
1524 *
1525 *	The object must be locked.
1526 */
1527boolean_t
1528vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1529{
1530	vm_page_t m;
1531
1532	/*
1533	 * Insertion into an object's collection of cached pages requires the
1534	 * object to be locked.  Therefore, if the object is locked and the
1535	 * object's collection is empty, there is no need to acquire the free
1536	 * page queues lock in order to prove that the specified page doesn't
1537	 * exist.
1538	 */
1539	VM_OBJECT_ASSERT_WLOCKED(object);
1540	if (__predict_true(vm_object_cache_is_empty(object)))
1541		return (FALSE);
1542	mtx_lock(&vm_page_queue_free_mtx);
1543	m = vm_page_cache_lookup(object, pindex);
1544	mtx_unlock(&vm_page_queue_free_mtx);
1545	return (m != NULL);
1546}
1547
1548/*
1549 *	vm_page_alloc:
1550 *
1551 *	Allocate and return a page that is associated with the specified
1552 *	object and offset pair.  By default, this page is exclusive busied.
1553 *
1554 *	The caller must always specify an allocation class.
1555 *
1556 *	allocation classes:
1557 *	VM_ALLOC_NORMAL		normal process request
1558 *	VM_ALLOC_SYSTEM		system *really* needs a page
1559 *	VM_ALLOC_INTERRUPT	interrupt time request
1560 *
1561 *	optional allocation flags:
1562 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1563 *				intends to allocate
1564 *	VM_ALLOC_IFCACHED	return page only if it is cached
1565 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1566 *				is cached
1567 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1568 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1569 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1570 *				should not be exclusive busy
1571 *	VM_ALLOC_SBUSY		shared busy the allocated page
1572 *	VM_ALLOC_WIRED		wire the allocated page
1573 *	VM_ALLOC_ZERO		prefer a zeroed page
1574 *
1575 *	This routine may not sleep.
1576 */
1577vm_page_t
1578vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1579{
1580	struct vnode *vp = NULL;
1581	vm_object_t m_object;
1582	vm_page_t m, mpred;
1583	int flags, req_class;
1584
1585	mpred = 0;	/* XXX: pacify gcc */
1586	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1587	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1588	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1589	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1590	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1591	    req));
1592	if (object != NULL)
1593		VM_OBJECT_ASSERT_WLOCKED(object);
1594
1595	req_class = req & VM_ALLOC_CLASS_MASK;
1596
1597	/*
1598	 * The page daemon is allowed to dig deeper into the free page list.
1599	 */
1600	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1601		req_class = VM_ALLOC_SYSTEM;
1602
1603	if (object != NULL) {
1604		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1605		KASSERT(mpred == NULL || mpred->pindex != pindex,
1606		   ("vm_page_alloc: pindex already allocated"));
1607	}
1608
1609	/*
1610	 * The page allocation request can came from consumers which already
1611	 * hold the free page queue mutex, like vm_page_insert() in
1612	 * vm_page_cache().
1613	 */
1614	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1615	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1616	    (req_class == VM_ALLOC_SYSTEM &&
1617	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1618	    (req_class == VM_ALLOC_INTERRUPT &&
1619	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1620		/*
1621		 * Allocate from the free queue if the number of free pages
1622		 * exceeds the minimum for the request class.
1623		 */
1624		if (object != NULL &&
1625		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1626			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1627				mtx_unlock(&vm_page_queue_free_mtx);
1628				return (NULL);
1629			}
1630			if (vm_phys_unfree_page(m))
1631				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1632#if VM_NRESERVLEVEL > 0
1633			else if (!vm_reserv_reactivate_page(m))
1634#else
1635			else
1636#endif
1637				panic("vm_page_alloc: cache page %p is missing"
1638				    " from the free queue", m);
1639		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1640			mtx_unlock(&vm_page_queue_free_mtx);
1641			return (NULL);
1642#if VM_NRESERVLEVEL > 0
1643		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1644		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1645		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1646#else
1647		} else {
1648#endif
1649			m = vm_phys_alloc_pages(object != NULL ?
1650			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1651#if VM_NRESERVLEVEL > 0
1652			if (m == NULL && vm_reserv_reclaim_inactive()) {
1653				m = vm_phys_alloc_pages(object != NULL ?
1654				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1655				    0);
1656			}
1657#endif
1658		}
1659	} else {
1660		/*
1661		 * Not allocatable, give up.
1662		 */
1663		mtx_unlock(&vm_page_queue_free_mtx);
1664		atomic_add_int(&vm_pageout_deficit,
1665		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1666		pagedaemon_wakeup();
1667		return (NULL);
1668	}
1669
1670	/*
1671	 *  At this point we had better have found a good page.
1672	 */
1673	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1674	KASSERT(m->queue == PQ_NONE,
1675	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1676	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1677	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1678	KASSERT(!vm_page_sbusied(m),
1679	    ("vm_page_alloc: page %p is busy", m));
1680	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1681	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1682	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1683	    pmap_page_get_memattr(m)));
1684	if ((m->flags & PG_CACHED) != 0) {
1685		KASSERT((m->flags & PG_ZERO) == 0,
1686		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1687		KASSERT(m->valid != 0,
1688		    ("vm_page_alloc: cached page %p is invalid", m));
1689		if (m->object == object && m->pindex == pindex)
1690			vm_cnt.v_reactivated++;
1691		else
1692			m->valid = 0;
1693		m_object = m->object;
1694		vm_page_cache_remove(m);
1695		if (m_object->type == OBJT_VNODE &&
1696		    vm_object_cache_is_empty(m_object))
1697			vp = m_object->handle;
1698	} else {
1699		KASSERT(m->valid == 0,
1700		    ("vm_page_alloc: free page %p is valid", m));
1701		vm_phys_freecnt_adj(m, -1);
1702		if ((m->flags & PG_ZERO) != 0)
1703			vm_page_zero_count--;
1704	}
1705	mtx_unlock(&vm_page_queue_free_mtx);
1706
1707	/*
1708	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1709	 */
1710	flags = 0;
1711	if ((req & VM_ALLOC_ZERO) != 0)
1712		flags = PG_ZERO;
1713	flags &= m->flags;
1714	if ((req & VM_ALLOC_NODUMP) != 0)
1715		flags |= PG_NODUMP;
1716	m->flags = flags;
1717	m->aflags = 0;
1718	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1719	    VPO_UNMANAGED : 0;
1720	m->busy_lock = VPB_UNBUSIED;
1721	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1722		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1723	if ((req & VM_ALLOC_SBUSY) != 0)
1724		m->busy_lock = VPB_SHARERS_WORD(1);
1725	if (req & VM_ALLOC_WIRED) {
1726		/*
1727		 * The page lock is not required for wiring a page until that
1728		 * page is inserted into the object.
1729		 */
1730		atomic_add_int(&vm_cnt.v_wire_count, 1);
1731		m->wire_count = 1;
1732	}
1733	m->act_count = 0;
1734
1735	if (object != NULL) {
1736		if (vm_page_insert_after(m, object, pindex, mpred)) {
1737			/* See the comment below about hold count. */
1738			if (vp != NULL)
1739				vdrop(vp);
1740			pagedaemon_wakeup();
1741			if (req & VM_ALLOC_WIRED) {
1742				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1743				m->wire_count = 0;
1744			}
1745			m->object = NULL;
1746			m->oflags = VPO_UNMANAGED;
1747			vm_page_free(m);
1748			return (NULL);
1749		}
1750
1751		/* Ignore device objects; the pager sets "memattr" for them. */
1752		if (object->memattr != VM_MEMATTR_DEFAULT &&
1753		    (object->flags & OBJ_FICTITIOUS) == 0)
1754			pmap_page_set_memattr(m, object->memattr);
1755	} else
1756		m->pindex = pindex;
1757
1758	/*
1759	 * The following call to vdrop() must come after the above call
1760	 * to vm_page_insert() in case both affect the same object and
1761	 * vnode.  Otherwise, the affected vnode's hold count could
1762	 * temporarily become zero.
1763	 */
1764	if (vp != NULL)
1765		vdrop(vp);
1766
1767	/*
1768	 * Don't wakeup too often - wakeup the pageout daemon when
1769	 * we would be nearly out of memory.
1770	 */
1771	if (vm_paging_needed())
1772		pagedaemon_wakeup();
1773
1774	return (m);
1775}
1776
1777static void
1778vm_page_alloc_contig_vdrop(struct spglist *lst)
1779{
1780
1781	while (!SLIST_EMPTY(lst)) {
1782		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1783		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1784	}
1785}
1786
1787/*
1788 *	vm_page_alloc_contig:
1789 *
1790 *	Allocate a contiguous set of physical pages of the given size "npages"
1791 *	from the free lists.  All of the physical pages must be at or above
1792 *	the given physical address "low" and below the given physical address
1793 *	"high".  The given value "alignment" determines the alignment of the
1794 *	first physical page in the set.  If the given value "boundary" is
1795 *	non-zero, then the set of physical pages cannot cross any physical
1796 *	address boundary that is a multiple of that value.  Both "alignment"
1797 *	and "boundary" must be a power of two.
1798 *
1799 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1800 *	then the memory attribute setting for the physical pages is configured
1801 *	to the object's memory attribute setting.  Otherwise, the memory
1802 *	attribute setting for the physical pages is configured to "memattr",
1803 *	overriding the object's memory attribute setting.  However, if the
1804 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1805 *	memory attribute setting for the physical pages cannot be configured
1806 *	to VM_MEMATTR_DEFAULT.
1807 *
1808 *	The caller must always specify an allocation class.
1809 *
1810 *	allocation classes:
1811 *	VM_ALLOC_NORMAL		normal process request
1812 *	VM_ALLOC_SYSTEM		system *really* needs a page
1813 *	VM_ALLOC_INTERRUPT	interrupt time request
1814 *
1815 *	optional allocation flags:
1816 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1817 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1818 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1819 *				should not be exclusive busy
1820 *	VM_ALLOC_SBUSY		shared busy the allocated page
1821 *	VM_ALLOC_WIRED		wire the allocated page
1822 *	VM_ALLOC_ZERO		prefer a zeroed page
1823 *
1824 *	This routine may not sleep.
1825 */
1826vm_page_t
1827vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1828    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1829    vm_paddr_t boundary, vm_memattr_t memattr)
1830{
1831	struct vnode *drop;
1832	struct spglist deferred_vdrop_list;
1833	vm_page_t m, m_tmp, m_ret;
1834	u_int flags;
1835	int req_class;
1836
1837	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1838	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1839	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1840	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1841	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1842	    req));
1843	if (object != NULL) {
1844		VM_OBJECT_ASSERT_WLOCKED(object);
1845		KASSERT(object->type == OBJT_PHYS,
1846		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1847		    object));
1848	}
1849	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1850	req_class = req & VM_ALLOC_CLASS_MASK;
1851
1852	/*
1853	 * The page daemon is allowed to dig deeper into the free page list.
1854	 */
1855	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1856		req_class = VM_ALLOC_SYSTEM;
1857
1858	SLIST_INIT(&deferred_vdrop_list);
1859	mtx_lock(&vm_page_queue_free_mtx);
1860	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1861	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1862	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1863	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1864	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1865#if VM_NRESERVLEVEL > 0
1866retry:
1867		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1868		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1869		    low, high, alignment, boundary)) == NULL)
1870#endif
1871			m_ret = vm_phys_alloc_contig(npages, low, high,
1872			    alignment, boundary);
1873	} else {
1874		mtx_unlock(&vm_page_queue_free_mtx);
1875		atomic_add_int(&vm_pageout_deficit, npages);
1876		pagedaemon_wakeup();
1877		return (NULL);
1878	}
1879	if (m_ret != NULL)
1880		for (m = m_ret; m < &m_ret[npages]; m++) {
1881			drop = vm_page_alloc_init(m);
1882			if (drop != NULL) {
1883				/*
1884				 * Enqueue the vnode for deferred vdrop().
1885				 */
1886				m->plinks.s.pv = drop;
1887				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1888				    plinks.s.ss);
1889			}
1890		}
1891	else {
1892#if VM_NRESERVLEVEL > 0
1893		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1894		    boundary))
1895			goto retry;
1896#endif
1897	}
1898	mtx_unlock(&vm_page_queue_free_mtx);
1899	if (m_ret == NULL)
1900		return (NULL);
1901
1902	/*
1903	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1904	 */
1905	flags = 0;
1906	if ((req & VM_ALLOC_ZERO) != 0)
1907		flags = PG_ZERO;
1908	if ((req & VM_ALLOC_NODUMP) != 0)
1909		flags |= PG_NODUMP;
1910	if ((req & VM_ALLOC_WIRED) != 0)
1911		atomic_add_int(&vm_cnt.v_wire_count, npages);
1912	if (object != NULL) {
1913		if (object->memattr != VM_MEMATTR_DEFAULT &&
1914		    memattr == VM_MEMATTR_DEFAULT)
1915			memattr = object->memattr;
1916	}
1917	for (m = m_ret; m < &m_ret[npages]; m++) {
1918		m->aflags = 0;
1919		m->flags = (m->flags | PG_NODUMP) & flags;
1920		m->busy_lock = VPB_UNBUSIED;
1921		if (object != NULL) {
1922			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1923				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1924			if ((req & VM_ALLOC_SBUSY) != 0)
1925				m->busy_lock = VPB_SHARERS_WORD(1);
1926		}
1927		if ((req & VM_ALLOC_WIRED) != 0)
1928			m->wire_count = 1;
1929		/* Unmanaged pages don't use "act_count". */
1930		m->oflags = VPO_UNMANAGED;
1931		if (object != NULL) {
1932			if (vm_page_insert(m, object, pindex)) {
1933				vm_page_alloc_contig_vdrop(
1934				    &deferred_vdrop_list);
1935				if (vm_paging_needed())
1936					pagedaemon_wakeup();
1937				if ((req & VM_ALLOC_WIRED) != 0)
1938					atomic_subtract_int(&vm_cnt.v_wire_count,
1939					    npages);
1940				for (m_tmp = m, m = m_ret;
1941				    m < &m_ret[npages]; m++) {
1942					if ((req & VM_ALLOC_WIRED) != 0)
1943						m->wire_count = 0;
1944					if (m >= m_tmp)
1945						m->object = NULL;
1946					vm_page_free(m);
1947				}
1948				return (NULL);
1949			}
1950		} else
1951			m->pindex = pindex;
1952		if (memattr != VM_MEMATTR_DEFAULT)
1953			pmap_page_set_memattr(m, memattr);
1954		pindex++;
1955	}
1956	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1957	if (vm_paging_needed())
1958		pagedaemon_wakeup();
1959	return (m_ret);
1960}
1961
1962/*
1963 * Initialize a page that has been freshly dequeued from a freelist.
1964 * The caller has to drop the vnode returned, if it is not NULL.
1965 *
1966 * This function may only be used to initialize unmanaged pages.
1967 *
1968 * To be called with vm_page_queue_free_mtx held.
1969 */
1970static struct vnode *
1971vm_page_alloc_init(vm_page_t m)
1972{
1973	struct vnode *drop;
1974	vm_object_t m_object;
1975
1976	KASSERT(m->queue == PQ_NONE,
1977	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1978	    m, m->queue));
1979	KASSERT(m->wire_count == 0,
1980	    ("vm_page_alloc_init: page %p is wired", m));
1981	KASSERT(m->hold_count == 0,
1982	    ("vm_page_alloc_init: page %p is held", m));
1983	KASSERT(!vm_page_sbusied(m),
1984	    ("vm_page_alloc_init: page %p is busy", m));
1985	KASSERT(m->dirty == 0,
1986	    ("vm_page_alloc_init: page %p is dirty", m));
1987	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1988	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1989	    m, pmap_page_get_memattr(m)));
1990	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1991	drop = NULL;
1992	if ((m->flags & PG_CACHED) != 0) {
1993		KASSERT((m->flags & PG_ZERO) == 0,
1994		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1995		m->valid = 0;
1996		m_object = m->object;
1997		vm_page_cache_remove(m);
1998		if (m_object->type == OBJT_VNODE &&
1999		    vm_object_cache_is_empty(m_object))
2000			drop = m_object->handle;
2001	} else {
2002		KASSERT(m->valid == 0,
2003		    ("vm_page_alloc_init: free page %p is valid", m));
2004		vm_phys_freecnt_adj(m, -1);
2005		if ((m->flags & PG_ZERO) != 0)
2006			vm_page_zero_count--;
2007	}
2008	return (drop);
2009}
2010
2011/*
2012 * 	vm_page_alloc_freelist:
2013 *
2014 *	Allocate a physical page from the specified free page list.
2015 *
2016 *	The caller must always specify an allocation class.
2017 *
2018 *	allocation classes:
2019 *	VM_ALLOC_NORMAL		normal process request
2020 *	VM_ALLOC_SYSTEM		system *really* needs a page
2021 *	VM_ALLOC_INTERRUPT	interrupt time request
2022 *
2023 *	optional allocation flags:
2024 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2025 *				intends to allocate
2026 *	VM_ALLOC_WIRED		wire the allocated page
2027 *	VM_ALLOC_ZERO		prefer a zeroed page
2028 *
2029 *	This routine may not sleep.
2030 */
2031vm_page_t
2032vm_page_alloc_freelist(int flind, int req)
2033{
2034	struct vnode *drop;
2035	vm_page_t m;
2036	u_int flags;
2037	int req_class;
2038
2039	req_class = req & VM_ALLOC_CLASS_MASK;
2040
2041	/*
2042	 * The page daemon is allowed to dig deeper into the free page list.
2043	 */
2044	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2045		req_class = VM_ALLOC_SYSTEM;
2046
2047	/*
2048	 * Do not allocate reserved pages unless the req has asked for it.
2049	 */
2050	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
2051	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
2052	    (req_class == VM_ALLOC_SYSTEM &&
2053	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
2054	    (req_class == VM_ALLOC_INTERRUPT &&
2055	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
2056		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2057	else {
2058		mtx_unlock(&vm_page_queue_free_mtx);
2059		atomic_add_int(&vm_pageout_deficit,
2060		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2061		pagedaemon_wakeup();
2062		return (NULL);
2063	}
2064	if (m == NULL) {
2065		mtx_unlock(&vm_page_queue_free_mtx);
2066		return (NULL);
2067	}
2068	drop = vm_page_alloc_init(m);
2069	mtx_unlock(&vm_page_queue_free_mtx);
2070
2071	/*
2072	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2073	 */
2074	m->aflags = 0;
2075	flags = 0;
2076	if ((req & VM_ALLOC_ZERO) != 0)
2077		flags = PG_ZERO;
2078	m->flags &= flags;
2079	if ((req & VM_ALLOC_WIRED) != 0) {
2080		/*
2081		 * The page lock is not required for wiring a page that does
2082		 * not belong to an object.
2083		 */
2084		atomic_add_int(&vm_cnt.v_wire_count, 1);
2085		m->wire_count = 1;
2086	}
2087	/* Unmanaged pages don't use "act_count". */
2088	m->oflags = VPO_UNMANAGED;
2089	if (drop != NULL)
2090		vdrop(drop);
2091	if (vm_paging_needed())
2092		pagedaemon_wakeup();
2093	return (m);
2094}
2095
2096/*
2097 *	vm_wait:	(also see VM_WAIT macro)
2098 *
2099 *	Sleep until free pages are available for allocation.
2100 *	- Called in various places before memory allocations.
2101 */
2102void
2103vm_wait(void)
2104{
2105
2106	mtx_lock(&vm_page_queue_free_mtx);
2107	if (curproc == pageproc) {
2108		vm_pageout_pages_needed = 1;
2109		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2110		    PDROP | PSWP, "VMWait", 0);
2111	} else {
2112		if (!vm_pages_needed) {
2113			vm_pages_needed = 1;
2114			wakeup(&vm_pages_needed);
2115		}
2116		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2117		    "vmwait", 0);
2118	}
2119}
2120
2121/*
2122 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2123 *
2124 *	Sleep until free pages are available for allocation.
2125 *	- Called only in vm_fault so that processes page faulting
2126 *	  can be easily tracked.
2127 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2128 *	  processes will be able to grab memory first.  Do not change
2129 *	  this balance without careful testing first.
2130 */
2131void
2132vm_waitpfault(void)
2133{
2134
2135	mtx_lock(&vm_page_queue_free_mtx);
2136	if (!vm_pages_needed) {
2137		vm_pages_needed = 1;
2138		wakeup(&vm_pages_needed);
2139	}
2140	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2141	    "pfault", 0);
2142}
2143
2144struct vm_pagequeue *
2145vm_page_pagequeue(vm_page_t m)
2146{
2147
2148	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2149}
2150
2151/*
2152 *	vm_page_dequeue:
2153 *
2154 *	Remove the given page from its current page queue.
2155 *
2156 *	The page must be locked.
2157 */
2158void
2159vm_page_dequeue(vm_page_t m)
2160{
2161	struct vm_pagequeue *pq;
2162
2163	vm_page_assert_locked(m);
2164	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2165	    m));
2166	pq = vm_page_pagequeue(m);
2167	vm_pagequeue_lock(pq);
2168	m->queue = PQ_NONE;
2169	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2170	vm_pagequeue_cnt_dec(pq);
2171	vm_pagequeue_unlock(pq);
2172}
2173
2174/*
2175 *	vm_page_dequeue_locked:
2176 *
2177 *	Remove the given page from its current page queue.
2178 *
2179 *	The page and page queue must be locked.
2180 */
2181void
2182vm_page_dequeue_locked(vm_page_t m)
2183{
2184	struct vm_pagequeue *pq;
2185
2186	vm_page_lock_assert(m, MA_OWNED);
2187	pq = vm_page_pagequeue(m);
2188	vm_pagequeue_assert_locked(pq);
2189	m->queue = PQ_NONE;
2190	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2191	vm_pagequeue_cnt_dec(pq);
2192}
2193
2194/*
2195 *	vm_page_enqueue:
2196 *
2197 *	Add the given page to the specified page queue.
2198 *
2199 *	The page must be locked.
2200 */
2201static void
2202vm_page_enqueue(uint8_t queue, vm_page_t m)
2203{
2204	struct vm_pagequeue *pq;
2205
2206	vm_page_lock_assert(m, MA_OWNED);
2207	KASSERT(queue < PQ_COUNT,
2208	    ("vm_page_enqueue: invalid queue %u request for page %p",
2209	    queue, m));
2210	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2211	vm_pagequeue_lock(pq);
2212	m->queue = queue;
2213	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2214	vm_pagequeue_cnt_inc(pq);
2215	vm_pagequeue_unlock(pq);
2216}
2217
2218/*
2219 *	vm_page_requeue:
2220 *
2221 *	Move the given page to the tail of its current page queue.
2222 *
2223 *	The page must be locked.
2224 */
2225void
2226vm_page_requeue(vm_page_t m)
2227{
2228	struct vm_pagequeue *pq;
2229
2230	vm_page_lock_assert(m, MA_OWNED);
2231	KASSERT(m->queue != PQ_NONE,
2232	    ("vm_page_requeue: page %p is not queued", m));
2233	pq = vm_page_pagequeue(m);
2234	vm_pagequeue_lock(pq);
2235	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2236	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2237	vm_pagequeue_unlock(pq);
2238}
2239
2240/*
2241 *	vm_page_requeue_locked:
2242 *
2243 *	Move the given page to the tail of its current page queue.
2244 *
2245 *	The page queue must be locked.
2246 */
2247void
2248vm_page_requeue_locked(vm_page_t m)
2249{
2250	struct vm_pagequeue *pq;
2251
2252	KASSERT(m->queue != PQ_NONE,
2253	    ("vm_page_requeue_locked: page %p is not queued", m));
2254	pq = vm_page_pagequeue(m);
2255	vm_pagequeue_assert_locked(pq);
2256	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2257	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2258}
2259
2260/*
2261 *	vm_page_activate:
2262 *
2263 *	Put the specified page on the active list (if appropriate).
2264 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2265 *	mess with it.
2266 *
2267 *	The page must be locked.
2268 */
2269void
2270vm_page_activate(vm_page_t m)
2271{
2272	int queue;
2273
2274	vm_page_lock_assert(m, MA_OWNED);
2275	if ((queue = m->queue) != PQ_ACTIVE) {
2276		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2277			if (m->act_count < ACT_INIT)
2278				m->act_count = ACT_INIT;
2279			if (queue != PQ_NONE)
2280				vm_page_dequeue(m);
2281			vm_page_enqueue(PQ_ACTIVE, m);
2282		} else
2283			KASSERT(queue == PQ_NONE,
2284			    ("vm_page_activate: wired page %p is queued", m));
2285	} else {
2286		if (m->act_count < ACT_INIT)
2287			m->act_count = ACT_INIT;
2288	}
2289}
2290
2291/*
2292 *	vm_page_free_wakeup:
2293 *
2294 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2295 *	routine is called when a page has been added to the cache or free
2296 *	queues.
2297 *
2298 *	The page queues must be locked.
2299 */
2300static inline void
2301vm_page_free_wakeup(void)
2302{
2303
2304	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2305	/*
2306	 * if pageout daemon needs pages, then tell it that there are
2307	 * some free.
2308	 */
2309	if (vm_pageout_pages_needed &&
2310	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2311		wakeup(&vm_pageout_pages_needed);
2312		vm_pageout_pages_needed = 0;
2313	}
2314	/*
2315	 * wakeup processes that are waiting on memory if we hit a
2316	 * high water mark. And wakeup scheduler process if we have
2317	 * lots of memory. this process will swapin processes.
2318	 */
2319	if (vm_pages_needed && !vm_page_count_min()) {
2320		vm_pages_needed = 0;
2321		wakeup(&vm_cnt.v_free_count);
2322	}
2323}
2324
2325/*
2326 *	Turn a cached page into a free page, by changing its attributes.
2327 *	Keep the statistics up-to-date.
2328 *
2329 *	The free page queue must be locked.
2330 */
2331static void
2332vm_page_cache_turn_free(vm_page_t m)
2333{
2334
2335	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2336
2337	m->object = NULL;
2338	m->valid = 0;
2339	KASSERT((m->flags & PG_CACHED) != 0,
2340	    ("vm_page_cache_turn_free: page %p is not cached", m));
2341	m->flags &= ~PG_CACHED;
2342	vm_cnt.v_cache_count--;
2343	vm_phys_freecnt_adj(m, 1);
2344}
2345
2346/*
2347 *	vm_page_free_toq:
2348 *
2349 *	Returns the given page to the free list,
2350 *	disassociating it with any VM object.
2351 *
2352 *	The object must be locked.  The page must be locked if it is managed.
2353 */
2354void
2355vm_page_free_toq(vm_page_t m)
2356{
2357
2358	if ((m->oflags & VPO_UNMANAGED) == 0) {
2359		vm_page_lock_assert(m, MA_OWNED);
2360		KASSERT(!pmap_page_is_mapped(m),
2361		    ("vm_page_free_toq: freeing mapped page %p", m));
2362	} else
2363		KASSERT(m->queue == PQ_NONE,
2364		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2365	PCPU_INC(cnt.v_tfree);
2366
2367	if (vm_page_sbusied(m))
2368		panic("vm_page_free: freeing busy page %p", m);
2369
2370	/*
2371	 * Unqueue, then remove page.  Note that we cannot destroy
2372	 * the page here because we do not want to call the pager's
2373	 * callback routine until after we've put the page on the
2374	 * appropriate free queue.
2375	 */
2376	vm_page_remque(m);
2377	vm_page_remove(m);
2378
2379	/*
2380	 * If fictitious remove object association and
2381	 * return, otherwise delay object association removal.
2382	 */
2383	if ((m->flags & PG_FICTITIOUS) != 0) {
2384		return;
2385	}
2386
2387	m->valid = 0;
2388	vm_page_undirty(m);
2389
2390	if (m->wire_count != 0)
2391		panic("vm_page_free: freeing wired page %p", m);
2392	if (m->hold_count != 0) {
2393		m->flags &= ~PG_ZERO;
2394		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2395		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2396		m->flags |= PG_UNHOLDFREE;
2397	} else {
2398		/*
2399		 * Restore the default memory attribute to the page.
2400		 */
2401		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2402			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2403
2404		/*
2405		 * Insert the page into the physical memory allocator's
2406		 * cache/free page queues.
2407		 */
2408		mtx_lock(&vm_page_queue_free_mtx);
2409		vm_phys_freecnt_adj(m, 1);
2410#if VM_NRESERVLEVEL > 0
2411		if (!vm_reserv_free_page(m))
2412#else
2413		if (TRUE)
2414#endif
2415			vm_phys_free_pages(m, 0);
2416		if ((m->flags & PG_ZERO) != 0)
2417			++vm_page_zero_count;
2418		else
2419			vm_page_zero_idle_wakeup();
2420		vm_page_free_wakeup();
2421		mtx_unlock(&vm_page_queue_free_mtx);
2422	}
2423}
2424
2425/*
2426 *	vm_page_wire:
2427 *
2428 *	Mark this page as wired down by yet
2429 *	another map, removing it from paging queues
2430 *	as necessary.
2431 *
2432 *	If the page is fictitious, then its wire count must remain one.
2433 *
2434 *	The page must be locked.
2435 */
2436void
2437vm_page_wire(vm_page_t m)
2438{
2439
2440	/*
2441	 * Only bump the wire statistics if the page is not already wired,
2442	 * and only unqueue the page if it is on some queue (if it is unmanaged
2443	 * it is already off the queues).
2444	 */
2445	vm_page_lock_assert(m, MA_OWNED);
2446	if ((m->flags & PG_FICTITIOUS) != 0) {
2447		KASSERT(m->wire_count == 1,
2448		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2449		    m));
2450		return;
2451	}
2452	if (m->wire_count == 0) {
2453		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2454		    m->queue == PQ_NONE,
2455		    ("vm_page_wire: unmanaged page %p is queued", m));
2456		vm_page_remque(m);
2457		atomic_add_int(&vm_cnt.v_wire_count, 1);
2458	}
2459	m->wire_count++;
2460	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2461}
2462
2463/*
2464 * vm_page_unwire:
2465 *
2466 * Release one wiring of the specified page, potentially allowing it to be
2467 * paged out.  Returns TRUE if the number of wirings transitions to zero and
2468 * FALSE otherwise.
2469 *
2470 * Only managed pages belonging to an object can be paged out.  If the number
2471 * of wirings transitions to zero and the page is eligible for page out, then
2472 * the page is added to the specified paging queue (unless PQ_NONE is
2473 * specified).
2474 *
2475 * If a page is fictitious, then its wire count must always be one.
2476 *
2477 * A managed page must be locked.
2478 */
2479boolean_t
2480vm_page_unwire(vm_page_t m, uint8_t queue)
2481{
2482
2483	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
2484	    ("vm_page_unwire: invalid queue %u request for page %p",
2485	    queue, m));
2486	if ((m->oflags & VPO_UNMANAGED) == 0)
2487		vm_page_assert_locked(m);
2488	if ((m->flags & PG_FICTITIOUS) != 0) {
2489		KASSERT(m->wire_count == 1,
2490	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2491		return (FALSE);
2492	}
2493	if (m->wire_count > 0) {
2494		m->wire_count--;
2495		if (m->wire_count == 0) {
2496			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2497			if ((m->oflags & VPO_UNMANAGED) == 0 &&
2498			    m->object != NULL && queue != PQ_NONE) {
2499				if (queue == PQ_INACTIVE)
2500					m->flags &= ~PG_WINATCFLS;
2501				vm_page_enqueue(queue, m);
2502			}
2503			return (TRUE);
2504		} else
2505			return (FALSE);
2506	} else
2507		panic("vm_page_unwire: page %p's wire count is zero", m);
2508}
2509
2510/*
2511 * Move the specified page to the inactive queue.
2512 *
2513 * Many pages placed on the inactive queue should actually go
2514 * into the cache, but it is difficult to figure out which.  What
2515 * we do instead, if the inactive target is well met, is to put
2516 * clean pages at the head of the inactive queue instead of the tail.
2517 * This will cause them to be moved to the cache more quickly and
2518 * if not actively re-referenced, reclaimed more quickly.  If we just
2519 * stick these pages at the end of the inactive queue, heavy filesystem
2520 * meta-data accesses can cause an unnecessary paging load on memory bound
2521 * processes.  This optimization causes one-time-use metadata to be
2522 * reused more quickly.
2523 *
2524 * Normally noreuse is FALSE, resulting in LRU operation.  noreuse is set
2525 * to TRUE if we want this page to be 'as if it were placed in the cache',
2526 * except without unmapping it from the process address space.  In
2527 * practice this is implemented by inserting the page at the head of the
2528 * queue, using a marker page to guide FIFO insertion ordering.
2529 *
2530 * The page must be locked.
2531 */
2532static inline void
2533_vm_page_deactivate(vm_page_t m, boolean_t noreuse)
2534{
2535	struct vm_pagequeue *pq;
2536	int queue;
2537
2538	vm_page_assert_locked(m);
2539
2540	/*
2541	 * Ignore if the page is already inactive, unless it is unlikely to be
2542	 * reactivated.
2543	 */
2544	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
2545		return;
2546	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2547		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2548		/* Avoid multiple acquisitions of the inactive queue lock. */
2549		if (queue == PQ_INACTIVE) {
2550			vm_pagequeue_lock(pq);
2551			vm_page_dequeue_locked(m);
2552		} else {
2553			if (queue != PQ_NONE)
2554				vm_page_dequeue(m);
2555			m->flags &= ~PG_WINATCFLS;
2556			vm_pagequeue_lock(pq);
2557		}
2558		m->queue = PQ_INACTIVE;
2559		if (noreuse)
2560			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
2561			    m, plinks.q);
2562		else
2563			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2564		vm_pagequeue_cnt_inc(pq);
2565		vm_pagequeue_unlock(pq);
2566	}
2567}
2568
2569/*
2570 * Move the specified page to the inactive queue.
2571 *
2572 * The page must be locked.
2573 */
2574void
2575vm_page_deactivate(vm_page_t m)
2576{
2577
2578	_vm_page_deactivate(m, FALSE);
2579}
2580
2581/*
2582 * Move the specified page to the inactive queue with the expectation
2583 * that it is unlikely to be reused.
2584 *
2585 * The page must be locked.
2586 */
2587void
2588vm_page_deactivate_noreuse(vm_page_t m)
2589{
2590
2591	_vm_page_deactivate(m, TRUE);
2592}
2593
2594/*
2595 * vm_page_try_to_cache:
2596 *
2597 * Returns 0 on failure, 1 on success
2598 */
2599int
2600vm_page_try_to_cache(vm_page_t m)
2601{
2602
2603	vm_page_lock_assert(m, MA_OWNED);
2604	VM_OBJECT_ASSERT_WLOCKED(m->object);
2605	if (m->dirty || m->hold_count || m->wire_count ||
2606	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2607		return (0);
2608	pmap_remove_all(m);
2609	if (m->dirty)
2610		return (0);
2611	vm_page_cache(m);
2612	return (1);
2613}
2614
2615/*
2616 * vm_page_try_to_free()
2617 *
2618 *	Attempt to free the page.  If we cannot free it, we do nothing.
2619 *	1 is returned on success, 0 on failure.
2620 */
2621int
2622vm_page_try_to_free(vm_page_t m)
2623{
2624
2625	vm_page_lock_assert(m, MA_OWNED);
2626	if (m->object != NULL)
2627		VM_OBJECT_ASSERT_WLOCKED(m->object);
2628	if (m->dirty || m->hold_count || m->wire_count ||
2629	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2630		return (0);
2631	pmap_remove_all(m);
2632	if (m->dirty)
2633		return (0);
2634	vm_page_free(m);
2635	return (1);
2636}
2637
2638/*
2639 * vm_page_cache
2640 *
2641 * Put the specified page onto the page cache queue (if appropriate).
2642 *
2643 * The object and page must be locked.
2644 */
2645void
2646vm_page_cache(vm_page_t m)
2647{
2648	vm_object_t object;
2649	boolean_t cache_was_empty;
2650
2651	vm_page_lock_assert(m, MA_OWNED);
2652	object = m->object;
2653	VM_OBJECT_ASSERT_WLOCKED(object);
2654	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2655	    m->hold_count || m->wire_count)
2656		panic("vm_page_cache: attempting to cache busy page");
2657	KASSERT(!pmap_page_is_mapped(m),
2658	    ("vm_page_cache: page %p is mapped", m));
2659	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2660	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2661	    (object->type == OBJT_SWAP &&
2662	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2663		/*
2664		 * Hypothesis: A cache-eligible page belonging to a
2665		 * default object or swap object but without a backing
2666		 * store must be zero filled.
2667		 */
2668		vm_page_free(m);
2669		return;
2670	}
2671	KASSERT((m->flags & PG_CACHED) == 0,
2672	    ("vm_page_cache: page %p is already cached", m));
2673
2674	/*
2675	 * Remove the page from the paging queues.
2676	 */
2677	vm_page_remque(m);
2678
2679	/*
2680	 * Remove the page from the object's collection of resident
2681	 * pages.
2682	 */
2683	vm_radix_remove(&object->rtree, m->pindex);
2684	TAILQ_REMOVE(&object->memq, m, listq);
2685	object->resident_page_count--;
2686
2687	/*
2688	 * Restore the default memory attribute to the page.
2689	 */
2690	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2691		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2692
2693	/*
2694	 * Insert the page into the object's collection of cached pages
2695	 * and the physical memory allocator's cache/free page queues.
2696	 */
2697	m->flags &= ~PG_ZERO;
2698	mtx_lock(&vm_page_queue_free_mtx);
2699	cache_was_empty = vm_radix_is_empty(&object->cache);
2700	if (vm_radix_insert(&object->cache, m)) {
2701		mtx_unlock(&vm_page_queue_free_mtx);
2702		if (object->resident_page_count == 0)
2703			vdrop(object->handle);
2704		m->object = NULL;
2705		vm_page_free(m);
2706		return;
2707	}
2708
2709	/*
2710	 * The above call to vm_radix_insert() could reclaim the one pre-
2711	 * existing cached page from this object, resulting in a call to
2712	 * vdrop().
2713	 */
2714	if (!cache_was_empty)
2715		cache_was_empty = vm_radix_is_singleton(&object->cache);
2716
2717	m->flags |= PG_CACHED;
2718	vm_cnt.v_cache_count++;
2719	PCPU_INC(cnt.v_tcached);
2720#if VM_NRESERVLEVEL > 0
2721	if (!vm_reserv_free_page(m)) {
2722#else
2723	if (TRUE) {
2724#endif
2725		vm_phys_free_pages(m, 0);
2726	}
2727	vm_page_free_wakeup();
2728	mtx_unlock(&vm_page_queue_free_mtx);
2729
2730	/*
2731	 * Increment the vnode's hold count if this is the object's only
2732	 * cached page.  Decrement the vnode's hold count if this was
2733	 * the object's only resident page.
2734	 */
2735	if (object->type == OBJT_VNODE) {
2736		if (cache_was_empty && object->resident_page_count != 0)
2737			vhold(object->handle);
2738		else if (!cache_was_empty && object->resident_page_count == 0)
2739			vdrop(object->handle);
2740	}
2741}
2742
2743/*
2744 * vm_page_advise
2745 *
2746 * 	Deactivate or do nothing, as appropriate.
2747 *
2748 *	The object and page must be locked.
2749 */
2750void
2751vm_page_advise(vm_page_t m, int advice)
2752{
2753
2754	vm_page_assert_locked(m);
2755	VM_OBJECT_ASSERT_WLOCKED(m->object);
2756	if (advice == MADV_FREE)
2757		/*
2758		 * Mark the page clean.  This will allow the page to be freed
2759		 * up by the system.  However, such pages are often reused
2760		 * quickly by malloc() so we do not do anything that would
2761		 * cause a page fault if we can help it.
2762		 *
2763		 * Specifically, we do not try to actually free the page now
2764		 * nor do we try to put it in the cache (which would cause a
2765		 * page fault on reuse).
2766		 *
2767		 * But we do make the page as freeable as we can without
2768		 * actually taking the step of unmapping it.
2769		 */
2770		m->dirty = 0;
2771	else if (advice != MADV_DONTNEED)
2772		return;
2773
2774	/*
2775	 * Clear any references to the page.  Otherwise, the page daemon will
2776	 * immediately reactivate the page.
2777	 */
2778	vm_page_aflag_clear(m, PGA_REFERENCED);
2779
2780	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2781		vm_page_dirty(m);
2782
2783	/*
2784	 * Place clean pages at the head of the inactive queue rather than the
2785	 * tail, thus defeating the queue's LRU operation and ensuring that the
2786	 * page will be reused quickly.
2787	 */
2788	_vm_page_deactivate(m, m->dirty == 0);
2789}
2790
2791/*
2792 * Grab a page, waiting until we are waken up due to the page
2793 * changing state.  We keep on waiting, if the page continues
2794 * to be in the object.  If the page doesn't exist, first allocate it
2795 * and then conditionally zero it.
2796 *
2797 * This routine may sleep.
2798 *
2799 * The object must be locked on entry.  The lock will, however, be released
2800 * and reacquired if the routine sleeps.
2801 */
2802vm_page_t
2803vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2804{
2805	vm_page_t m;
2806	int sleep;
2807
2808	VM_OBJECT_ASSERT_WLOCKED(object);
2809	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2810	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2811	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2812retrylookup:
2813	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2814		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2815		    vm_page_xbusied(m) : vm_page_busied(m);
2816		if (sleep) {
2817			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
2818				return (NULL);
2819			/*
2820			 * Reference the page before unlocking and
2821			 * sleeping so that the page daemon is less
2822			 * likely to reclaim it.
2823			 */
2824			vm_page_aflag_set(m, PGA_REFERENCED);
2825			vm_page_lock(m);
2826			VM_OBJECT_WUNLOCK(object);
2827			vm_page_busy_sleep(m, "pgrbwt");
2828			VM_OBJECT_WLOCK(object);
2829			goto retrylookup;
2830		} else {
2831			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2832				vm_page_lock(m);
2833				vm_page_wire(m);
2834				vm_page_unlock(m);
2835			}
2836			if ((allocflags &
2837			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2838				vm_page_xbusy(m);
2839			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2840				vm_page_sbusy(m);
2841			return (m);
2842		}
2843	}
2844	m = vm_page_alloc(object, pindex, allocflags);
2845	if (m == NULL) {
2846		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
2847			return (NULL);
2848		VM_OBJECT_WUNLOCK(object);
2849		VM_WAIT;
2850		VM_OBJECT_WLOCK(object);
2851		goto retrylookup;
2852	} else if (m->valid != 0)
2853		return (m);
2854	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2855		pmap_zero_page(m);
2856	return (m);
2857}
2858
2859/*
2860 * Mapping function for valid or dirty bits in a page.
2861 *
2862 * Inputs are required to range within a page.
2863 */
2864vm_page_bits_t
2865vm_page_bits(int base, int size)
2866{
2867	int first_bit;
2868	int last_bit;
2869
2870	KASSERT(
2871	    base + size <= PAGE_SIZE,
2872	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2873	);
2874
2875	if (size == 0)		/* handle degenerate case */
2876		return (0);
2877
2878	first_bit = base >> DEV_BSHIFT;
2879	last_bit = (base + size - 1) >> DEV_BSHIFT;
2880
2881	return (((vm_page_bits_t)2 << last_bit) -
2882	    ((vm_page_bits_t)1 << first_bit));
2883}
2884
2885/*
2886 *	vm_page_set_valid_range:
2887 *
2888 *	Sets portions of a page valid.  The arguments are expected
2889 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2890 *	of any partial chunks touched by the range.  The invalid portion of
2891 *	such chunks will be zeroed.
2892 *
2893 *	(base + size) must be less then or equal to PAGE_SIZE.
2894 */
2895void
2896vm_page_set_valid_range(vm_page_t m, int base, int size)
2897{
2898	int endoff, frag;
2899
2900	VM_OBJECT_ASSERT_WLOCKED(m->object);
2901	if (size == 0)	/* handle degenerate case */
2902		return;
2903
2904	/*
2905	 * If the base is not DEV_BSIZE aligned and the valid
2906	 * bit is clear, we have to zero out a portion of the
2907	 * first block.
2908	 */
2909	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2910	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2911		pmap_zero_page_area(m, frag, base - frag);
2912
2913	/*
2914	 * If the ending offset is not DEV_BSIZE aligned and the
2915	 * valid bit is clear, we have to zero out a portion of
2916	 * the last block.
2917	 */
2918	endoff = base + size;
2919	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2920	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2921		pmap_zero_page_area(m, endoff,
2922		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2923
2924	/*
2925	 * Assert that no previously invalid block that is now being validated
2926	 * is already dirty.
2927	 */
2928	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2929	    ("vm_page_set_valid_range: page %p is dirty", m));
2930
2931	/*
2932	 * Set valid bits inclusive of any overlap.
2933	 */
2934	m->valid |= vm_page_bits(base, size);
2935}
2936
2937/*
2938 * Clear the given bits from the specified page's dirty field.
2939 */
2940static __inline void
2941vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2942{
2943	uintptr_t addr;
2944#if PAGE_SIZE < 16384
2945	int shift;
2946#endif
2947
2948	/*
2949	 * If the object is locked and the page is neither exclusive busy nor
2950	 * write mapped, then the page's dirty field cannot possibly be
2951	 * set by a concurrent pmap operation.
2952	 */
2953	VM_OBJECT_ASSERT_WLOCKED(m->object);
2954	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2955		m->dirty &= ~pagebits;
2956	else {
2957		/*
2958		 * The pmap layer can call vm_page_dirty() without
2959		 * holding a distinguished lock.  The combination of
2960		 * the object's lock and an atomic operation suffice
2961		 * to guarantee consistency of the page dirty field.
2962		 *
2963		 * For PAGE_SIZE == 32768 case, compiler already
2964		 * properly aligns the dirty field, so no forcible
2965		 * alignment is needed. Only require existence of
2966		 * atomic_clear_64 when page size is 32768.
2967		 */
2968		addr = (uintptr_t)&m->dirty;
2969#if PAGE_SIZE == 32768
2970		atomic_clear_64((uint64_t *)addr, pagebits);
2971#elif PAGE_SIZE == 16384
2972		atomic_clear_32((uint32_t *)addr, pagebits);
2973#else		/* PAGE_SIZE <= 8192 */
2974		/*
2975		 * Use a trick to perform a 32-bit atomic on the
2976		 * containing aligned word, to not depend on the existence
2977		 * of atomic_clear_{8, 16}.
2978		 */
2979		shift = addr & (sizeof(uint32_t) - 1);
2980#if BYTE_ORDER == BIG_ENDIAN
2981		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2982#else
2983		shift *= NBBY;
2984#endif
2985		addr &= ~(sizeof(uint32_t) - 1);
2986		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2987#endif		/* PAGE_SIZE */
2988	}
2989}
2990
2991/*
2992 *	vm_page_set_validclean:
2993 *
2994 *	Sets portions of a page valid and clean.  The arguments are expected
2995 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2996 *	of any partial chunks touched by the range.  The invalid portion of
2997 *	such chunks will be zero'd.
2998 *
2999 *	(base + size) must be less then or equal to PAGE_SIZE.
3000 */
3001void
3002vm_page_set_validclean(vm_page_t m, int base, int size)
3003{
3004	vm_page_bits_t oldvalid, pagebits;
3005	int endoff, frag;
3006
3007	VM_OBJECT_ASSERT_WLOCKED(m->object);
3008	if (size == 0)	/* handle degenerate case */
3009		return;
3010
3011	/*
3012	 * If the base is not DEV_BSIZE aligned and the valid
3013	 * bit is clear, we have to zero out a portion of the
3014	 * first block.
3015	 */
3016	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3017	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3018		pmap_zero_page_area(m, frag, base - frag);
3019
3020	/*
3021	 * If the ending offset is not DEV_BSIZE aligned and the
3022	 * valid bit is clear, we have to zero out a portion of
3023	 * the last block.
3024	 */
3025	endoff = base + size;
3026	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3027	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3028		pmap_zero_page_area(m, endoff,
3029		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3030
3031	/*
3032	 * Set valid, clear dirty bits.  If validating the entire
3033	 * page we can safely clear the pmap modify bit.  We also
3034	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3035	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3036	 * be set again.
3037	 *
3038	 * We set valid bits inclusive of any overlap, but we can only
3039	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3040	 * the range.
3041	 */
3042	oldvalid = m->valid;
3043	pagebits = vm_page_bits(base, size);
3044	m->valid |= pagebits;
3045#if 0	/* NOT YET */
3046	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3047		frag = DEV_BSIZE - frag;
3048		base += frag;
3049		size -= frag;
3050		if (size < 0)
3051			size = 0;
3052	}
3053	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3054#endif
3055	if (base == 0 && size == PAGE_SIZE) {
3056		/*
3057		 * The page can only be modified within the pmap if it is
3058		 * mapped, and it can only be mapped if it was previously
3059		 * fully valid.
3060		 */
3061		if (oldvalid == VM_PAGE_BITS_ALL)
3062			/*
3063			 * Perform the pmap_clear_modify() first.  Otherwise,
3064			 * a concurrent pmap operation, such as
3065			 * pmap_protect(), could clear a modification in the
3066			 * pmap and set the dirty field on the page before
3067			 * pmap_clear_modify() had begun and after the dirty
3068			 * field was cleared here.
3069			 */
3070			pmap_clear_modify(m);
3071		m->dirty = 0;
3072		m->oflags &= ~VPO_NOSYNC;
3073	} else if (oldvalid != VM_PAGE_BITS_ALL)
3074		m->dirty &= ~pagebits;
3075	else
3076		vm_page_clear_dirty_mask(m, pagebits);
3077}
3078
3079void
3080vm_page_clear_dirty(vm_page_t m, int base, int size)
3081{
3082
3083	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3084}
3085
3086/*
3087 *	vm_page_set_invalid:
3088 *
3089 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3090 *	valid and dirty bits for the effected areas are cleared.
3091 */
3092void
3093vm_page_set_invalid(vm_page_t m, int base, int size)
3094{
3095	vm_page_bits_t bits;
3096	vm_object_t object;
3097
3098	object = m->object;
3099	VM_OBJECT_ASSERT_WLOCKED(object);
3100	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3101	    size >= object->un_pager.vnp.vnp_size)
3102		bits = VM_PAGE_BITS_ALL;
3103	else
3104		bits = vm_page_bits(base, size);
3105	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3106	    bits != 0)
3107		pmap_remove_all(m);
3108	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3109	    !pmap_page_is_mapped(m),
3110	    ("vm_page_set_invalid: page %p is mapped", m));
3111	m->valid &= ~bits;
3112	m->dirty &= ~bits;
3113}
3114
3115/*
3116 * vm_page_zero_invalid()
3117 *
3118 *	The kernel assumes that the invalid portions of a page contain
3119 *	garbage, but such pages can be mapped into memory by user code.
3120 *	When this occurs, we must zero out the non-valid portions of the
3121 *	page so user code sees what it expects.
3122 *
3123 *	Pages are most often semi-valid when the end of a file is mapped
3124 *	into memory and the file's size is not page aligned.
3125 */
3126void
3127vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3128{
3129	int b;
3130	int i;
3131
3132	VM_OBJECT_ASSERT_WLOCKED(m->object);
3133	/*
3134	 * Scan the valid bits looking for invalid sections that
3135	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3136	 * valid bit may be set ) have already been zeroed by
3137	 * vm_page_set_validclean().
3138	 */
3139	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3140		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3141		    (m->valid & ((vm_page_bits_t)1 << i))) {
3142			if (i > b) {
3143				pmap_zero_page_area(m,
3144				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3145			}
3146			b = i + 1;
3147		}
3148	}
3149
3150	/*
3151	 * setvalid is TRUE when we can safely set the zero'd areas
3152	 * as being valid.  We can do this if there are no cache consistancy
3153	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3154	 */
3155	if (setvalid)
3156		m->valid = VM_PAGE_BITS_ALL;
3157}
3158
3159/*
3160 *	vm_page_is_valid:
3161 *
3162 *	Is (partial) page valid?  Note that the case where size == 0
3163 *	will return FALSE in the degenerate case where the page is
3164 *	entirely invalid, and TRUE otherwise.
3165 */
3166int
3167vm_page_is_valid(vm_page_t m, int base, int size)
3168{
3169	vm_page_bits_t bits;
3170
3171	VM_OBJECT_ASSERT_LOCKED(m->object);
3172	bits = vm_page_bits(base, size);
3173	return (m->valid != 0 && (m->valid & bits) == bits);
3174}
3175
3176/*
3177 *	vm_page_ps_is_valid:
3178 *
3179 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3180 */
3181boolean_t
3182vm_page_ps_is_valid(vm_page_t m)
3183{
3184	int i, npages;
3185
3186	VM_OBJECT_ASSERT_LOCKED(m->object);
3187	npages = atop(pagesizes[m->psind]);
3188
3189	/*
3190	 * The physically contiguous pages that make up a superpage, i.e., a
3191	 * page with a page size index ("psind") greater than zero, will
3192	 * occupy adjacent entries in vm_page_array[].
3193	 */
3194	for (i = 0; i < npages; i++) {
3195		if (m[i].valid != VM_PAGE_BITS_ALL)
3196			return (FALSE);
3197	}
3198	return (TRUE);
3199}
3200
3201/*
3202 * Set the page's dirty bits if the page is modified.
3203 */
3204void
3205vm_page_test_dirty(vm_page_t m)
3206{
3207
3208	VM_OBJECT_ASSERT_WLOCKED(m->object);
3209	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3210		vm_page_dirty(m);
3211}
3212
3213void
3214vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3215{
3216
3217	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3218}
3219
3220void
3221vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3222{
3223
3224	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3225}
3226
3227int
3228vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3229{
3230
3231	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3232}
3233
3234#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3235void
3236vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3237{
3238
3239	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3240}
3241
3242void
3243vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3244{
3245
3246	mtx_assert_(vm_page_lockptr(m), a, file, line);
3247}
3248#endif
3249
3250#ifdef INVARIANTS
3251void
3252vm_page_object_lock_assert(vm_page_t m)
3253{
3254
3255	/*
3256	 * Certain of the page's fields may only be modified by the
3257	 * holder of the containing object's lock or the exclusive busy.
3258	 * holder.  Unfortunately, the holder of the write busy is
3259	 * not recorded, and thus cannot be checked here.
3260	 */
3261	if (m->object != NULL && !vm_page_xbusied(m))
3262		VM_OBJECT_ASSERT_WLOCKED(m->object);
3263}
3264
3265void
3266vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3267{
3268
3269	if ((bits & PGA_WRITEABLE) == 0)
3270		return;
3271
3272	/*
3273	 * The PGA_WRITEABLE flag can only be set if the page is
3274	 * managed, is exclusively busied or the object is locked.
3275	 * Currently, this flag is only set by pmap_enter().
3276	 */
3277	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3278	    ("PGA_WRITEABLE on unmanaged page"));
3279	if (!vm_page_xbusied(m))
3280		VM_OBJECT_ASSERT_LOCKED(m->object);
3281}
3282#endif
3283
3284#include "opt_ddb.h"
3285#ifdef DDB
3286#include <sys/kernel.h>
3287
3288#include <ddb/ddb.h>
3289
3290DB_SHOW_COMMAND(page, vm_page_print_page_info)
3291{
3292	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3293	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3294	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3295	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3296	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3297	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3298	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3299	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3300	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3301}
3302
3303DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3304{
3305	int dom;
3306
3307	db_printf("pq_free %d pq_cache %d\n",
3308	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3309	for (dom = 0; dom < vm_ndomains; dom++) {
3310		db_printf(
3311	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3312		    dom,
3313		    vm_dom[dom].vmd_page_count,
3314		    vm_dom[dom].vmd_free_count,
3315		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3316		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3317		    vm_dom[dom].vmd_pass);
3318	}
3319}
3320
3321DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3322{
3323	vm_page_t m;
3324	boolean_t phys;
3325
3326	if (!have_addr) {
3327		db_printf("show pginfo addr\n");
3328		return;
3329	}
3330
3331	phys = strchr(modif, 'p') != NULL;
3332	if (phys)
3333		m = PHYS_TO_VM_PAGE(addr);
3334	else
3335		m = (vm_page_t)addr;
3336	db_printf(
3337    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3338    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3339	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3340	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3341	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3342}
3343#endif /* DDB */
3344