vm_page.c revision 290529
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 290529 2015-11-08 01:36:18Z markj $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/linker.h>
95#include <sys/malloc.h>
96#include <sys/mman.h>
97#include <sys/msgbuf.h>
98#include <sys/mutex.h>
99#include <sys/proc.h>
100#include <sys/rwlock.h>
101#include <sys/sbuf.h>
102#include <sys/sysctl.h>
103#include <sys/vmmeter.h>
104#include <sys/vnode.h>
105
106#include <vm/vm.h>
107#include <vm/pmap.h>
108#include <vm/vm_param.h>
109#include <vm/vm_kern.h>
110#include <vm/vm_object.h>
111#include <vm/vm_page.h>
112#include <vm/vm_pageout.h>
113#include <vm/vm_pager.h>
114#include <vm/vm_phys.h>
115#include <vm/vm_radix.h>
116#include <vm/vm_reserv.h>
117#include <vm/vm_extern.h>
118#include <vm/uma.h>
119#include <vm/uma_int.h>
120
121#include <machine/md_var.h>
122
123/*
124 *	Associated with page of user-allocatable memory is a
125 *	page structure.
126 */
127
128struct vm_domain vm_dom[MAXMEMDOM];
129struct mtx_padalign vm_page_queue_free_mtx;
130
131struct mtx_padalign pa_lock[PA_LOCK_COUNT];
132
133vm_page_t vm_page_array;
134long vm_page_array_size;
135long first_page;
136int vm_page_zero_count;
137
138static int boot_pages = UMA_BOOT_PAGES;
139SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
140    &boot_pages, 0,
141    "number of pages allocated for bootstrapping the VM system");
142
143static int pa_tryrelock_restart;
144SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
145    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
146
147static TAILQ_HEAD(, vm_page) blacklist_head;
148static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
149SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
150    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
151
152/* Is the page daemon waiting for free pages? */
153static int vm_pageout_pages_needed;
154
155static uma_zone_t fakepg_zone;
156
157static struct vnode *vm_page_alloc_init(vm_page_t m);
158static void vm_page_cache_turn_free(vm_page_t m);
159static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
160static void vm_page_enqueue(uint8_t queue, vm_page_t m);
161static void vm_page_init_fakepg(void *dummy);
162static int vm_page_insert_after(vm_page_t m, vm_object_t object,
163    vm_pindex_t pindex, vm_page_t mpred);
164static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
165    vm_page_t mpred);
166
167SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
168
169static void
170vm_page_init_fakepg(void *dummy)
171{
172
173	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
174	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
175}
176
177/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
178#if PAGE_SIZE == 32768
179#ifdef CTASSERT
180CTASSERT(sizeof(u_long) >= 8);
181#endif
182#endif
183
184/*
185 * Try to acquire a physical address lock while a pmap is locked.  If we
186 * fail to trylock we unlock and lock the pmap directly and cache the
187 * locked pa in *locked.  The caller should then restart their loop in case
188 * the virtual to physical mapping has changed.
189 */
190int
191vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
192{
193	vm_paddr_t lockpa;
194
195	lockpa = *locked;
196	*locked = pa;
197	if (lockpa) {
198		PA_LOCK_ASSERT(lockpa, MA_OWNED);
199		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
200			return (0);
201		PA_UNLOCK(lockpa);
202	}
203	if (PA_TRYLOCK(pa))
204		return (0);
205	PMAP_UNLOCK(pmap);
206	atomic_add_int(&pa_tryrelock_restart, 1);
207	PA_LOCK(pa);
208	PMAP_LOCK(pmap);
209	return (EAGAIN);
210}
211
212/*
213 *	vm_set_page_size:
214 *
215 *	Sets the page size, perhaps based upon the memory
216 *	size.  Must be called before any use of page-size
217 *	dependent functions.
218 */
219void
220vm_set_page_size(void)
221{
222	if (vm_cnt.v_page_size == 0)
223		vm_cnt.v_page_size = PAGE_SIZE;
224	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
225		panic("vm_set_page_size: page size not a power of two");
226}
227
228/*
229 *	vm_page_blacklist_next:
230 *
231 *	Find the next entry in the provided string of blacklist
232 *	addresses.  Entries are separated by space, comma, or newline.
233 *	If an invalid integer is encountered then the rest of the
234 *	string is skipped.  Updates the list pointer to the next
235 *	character, or NULL if the string is exhausted or invalid.
236 */
237static vm_paddr_t
238vm_page_blacklist_next(char **list, char *end)
239{
240	vm_paddr_t bad;
241	char *cp, *pos;
242
243	if (list == NULL || *list == NULL)
244		return (0);
245	if (**list =='\0') {
246		*list = NULL;
247		return (0);
248	}
249
250	/*
251	 * If there's no end pointer then the buffer is coming from
252	 * the kenv and we know it's null-terminated.
253	 */
254	if (end == NULL)
255		end = *list + strlen(*list);
256
257	/* Ensure that strtoq() won't walk off the end */
258	if (*end != '\0') {
259		if (*end == '\n' || *end == ' ' || *end  == ',')
260			*end = '\0';
261		else {
262			printf("Blacklist not terminated, skipping\n");
263			*list = NULL;
264			return (0);
265		}
266	}
267
268	for (pos = *list; *pos != '\0'; pos = cp) {
269		bad = strtoq(pos, &cp, 0);
270		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
271			if (bad == 0) {
272				if (++cp < end)
273					continue;
274				else
275					break;
276			}
277		} else
278			break;
279		if (*cp == '\0' || ++cp >= end)
280			*list = NULL;
281		else
282			*list = cp;
283		return (trunc_page(bad));
284	}
285	printf("Garbage in RAM blacklist, skipping\n");
286	*list = NULL;
287	return (0);
288}
289
290/*
291 *	vm_page_blacklist_check:
292 *
293 *	Iterate through the provided string of blacklist addresses, pulling
294 *	each entry out of the physical allocator free list and putting it
295 *	onto a list for reporting via the vm.page_blacklist sysctl.
296 */
297static void
298vm_page_blacklist_check(char *list, char *end)
299{
300	vm_paddr_t pa;
301	vm_page_t m;
302	char *next;
303	int ret;
304
305	next = list;
306	while (next != NULL) {
307		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
308			continue;
309		m = vm_phys_paddr_to_vm_page(pa);
310		if (m == NULL)
311			continue;
312		mtx_lock(&vm_page_queue_free_mtx);
313		ret = vm_phys_unfree_page(m);
314		mtx_unlock(&vm_page_queue_free_mtx);
315		if (ret == TRUE) {
316			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
317			if (bootverbose)
318				printf("Skipping page with pa 0x%jx\n",
319				    (uintmax_t)pa);
320		}
321	}
322}
323
324/*
325 *	vm_page_blacklist_load:
326 *
327 *	Search for a special module named "ram_blacklist".  It'll be a
328 *	plain text file provided by the user via the loader directive
329 *	of the same name.
330 */
331static void
332vm_page_blacklist_load(char **list, char **end)
333{
334	void *mod;
335	u_char *ptr;
336	u_int len;
337
338	mod = NULL;
339	ptr = NULL;
340
341	mod = preload_search_by_type("ram_blacklist");
342	if (mod != NULL) {
343		ptr = preload_fetch_addr(mod);
344		len = preload_fetch_size(mod);
345        }
346	*list = ptr;
347	if (ptr != NULL)
348		*end = ptr + len;
349	else
350		*end = NULL;
351	return;
352}
353
354static int
355sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
356{
357	vm_page_t m;
358	struct sbuf sbuf;
359	int error, first;
360
361	first = 1;
362	error = sysctl_wire_old_buffer(req, 0);
363	if (error != 0)
364		return (error);
365	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
366	TAILQ_FOREACH(m, &blacklist_head, listq) {
367		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
368		    (uintmax_t)m->phys_addr);
369		first = 0;
370	}
371	error = sbuf_finish(&sbuf);
372	sbuf_delete(&sbuf);
373	return (error);
374}
375
376static void
377vm_page_domain_init(struct vm_domain *vmd)
378{
379	struct vm_pagequeue *pq;
380	int i;
381
382	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
383	    "vm inactive pagequeue";
384	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
385	    &vm_cnt.v_inactive_count;
386	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
387	    "vm active pagequeue";
388	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
389	    &vm_cnt.v_active_count;
390	vmd->vmd_page_count = 0;
391	vmd->vmd_free_count = 0;
392	vmd->vmd_segs = 0;
393	vmd->vmd_oom = FALSE;
394	vmd->vmd_pass = 0;
395	for (i = 0; i < PQ_COUNT; i++) {
396		pq = &vmd->vmd_pagequeues[i];
397		TAILQ_INIT(&pq->pq_pl);
398		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
399		    MTX_DEF | MTX_DUPOK);
400	}
401}
402
403/*
404 *	vm_page_startup:
405 *
406 *	Initializes the resident memory module.
407 *
408 *	Allocates memory for the page cells, and
409 *	for the object/offset-to-page hash table headers.
410 *	Each page cell is initialized and placed on the free list.
411 */
412vm_offset_t
413vm_page_startup(vm_offset_t vaddr)
414{
415	vm_offset_t mapped;
416	vm_paddr_t page_range;
417	vm_paddr_t new_end;
418	int i;
419	vm_paddr_t pa;
420	vm_paddr_t last_pa;
421	char *list, *listend;
422	vm_paddr_t end;
423	vm_paddr_t biggestsize;
424	vm_paddr_t low_water, high_water;
425	int biggestone;
426
427	biggestsize = 0;
428	biggestone = 0;
429	vaddr = round_page(vaddr);
430
431	for (i = 0; phys_avail[i + 1]; i += 2) {
432		phys_avail[i] = round_page(phys_avail[i]);
433		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
434	}
435
436	low_water = phys_avail[0];
437	high_water = phys_avail[1];
438
439	for (i = 0; i < vm_phys_nsegs; i++) {
440		if (vm_phys_segs[i].start < low_water)
441			low_water = vm_phys_segs[i].start;
442		if (vm_phys_segs[i].end > high_water)
443			high_water = vm_phys_segs[i].end;
444	}
445	for (i = 0; phys_avail[i + 1]; i += 2) {
446		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
447
448		if (size > biggestsize) {
449			biggestone = i;
450			biggestsize = size;
451		}
452		if (phys_avail[i] < low_water)
453			low_water = phys_avail[i];
454		if (phys_avail[i + 1] > high_water)
455			high_water = phys_avail[i + 1];
456	}
457
458	end = phys_avail[biggestone+1];
459
460	/*
461	 * Initialize the page and queue locks.
462	 */
463	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
464	for (i = 0; i < PA_LOCK_COUNT; i++)
465		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
466	for (i = 0; i < vm_ndomains; i++)
467		vm_page_domain_init(&vm_dom[i]);
468
469	/*
470	 * Allocate memory for use when boot strapping the kernel memory
471	 * allocator.
472	 *
473	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
474	 * manually fetch the value.
475	 */
476	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
477	new_end = end - (boot_pages * UMA_SLAB_SIZE);
478	new_end = trunc_page(new_end);
479	mapped = pmap_map(&vaddr, new_end, end,
480	    VM_PROT_READ | VM_PROT_WRITE);
481	bzero((void *)mapped, end - new_end);
482	uma_startup((void *)mapped, boot_pages);
483
484#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
485    defined(__i386__) || defined(__mips__)
486	/*
487	 * Allocate a bitmap to indicate that a random physical page
488	 * needs to be included in a minidump.
489	 *
490	 * The amd64 port needs this to indicate which direct map pages
491	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
492	 *
493	 * However, i386 still needs this workspace internally within the
494	 * minidump code.  In theory, they are not needed on i386, but are
495	 * included should the sf_buf code decide to use them.
496	 */
497	last_pa = 0;
498	for (i = 0; dump_avail[i + 1] != 0; i += 2)
499		if (dump_avail[i + 1] > last_pa)
500			last_pa = dump_avail[i + 1];
501	page_range = last_pa / PAGE_SIZE;
502	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
503	new_end -= vm_page_dump_size;
504	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
505	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
506	bzero((void *)vm_page_dump, vm_page_dump_size);
507#endif
508#ifdef __amd64__
509	/*
510	 * Request that the physical pages underlying the message buffer be
511	 * included in a crash dump.  Since the message buffer is accessed
512	 * through the direct map, they are not automatically included.
513	 */
514	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
515	last_pa = pa + round_page(msgbufsize);
516	while (pa < last_pa) {
517		dump_add_page(pa);
518		pa += PAGE_SIZE;
519	}
520#endif
521	/*
522	 * Compute the number of pages of memory that will be available for
523	 * use (taking into account the overhead of a page structure per
524	 * page).
525	 */
526	first_page = low_water / PAGE_SIZE;
527#ifdef VM_PHYSSEG_SPARSE
528	page_range = 0;
529	for (i = 0; i < vm_phys_nsegs; i++) {
530		page_range += atop(vm_phys_segs[i].end -
531		    vm_phys_segs[i].start);
532	}
533	for (i = 0; phys_avail[i + 1] != 0; i += 2)
534		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
535#elif defined(VM_PHYSSEG_DENSE)
536	page_range = high_water / PAGE_SIZE - first_page;
537#else
538#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
539#endif
540	end = new_end;
541
542	/*
543	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
544	 */
545	vaddr += PAGE_SIZE;
546
547	/*
548	 * Initialize the mem entry structures now, and put them in the free
549	 * queue.
550	 */
551	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
552	mapped = pmap_map(&vaddr, new_end, end,
553	    VM_PROT_READ | VM_PROT_WRITE);
554	vm_page_array = (vm_page_t) mapped;
555#if VM_NRESERVLEVEL > 0
556	/*
557	 * Allocate memory for the reservation management system's data
558	 * structures.
559	 */
560	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
561#endif
562#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
563	/*
564	 * pmap_map on arm64, amd64, and mips can come out of the direct-map,
565	 * not kvm like i386, so the pages must be tracked for a crashdump to
566	 * include this data.  This includes the vm_page_array and the early
567	 * UMA bootstrap pages.
568	 */
569	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
570		dump_add_page(pa);
571#endif
572	phys_avail[biggestone + 1] = new_end;
573
574	/*
575	 * Add physical memory segments corresponding to the available
576	 * physical pages.
577	 */
578	for (i = 0; phys_avail[i + 1] != 0; i += 2)
579		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
580
581	/*
582	 * Clear all of the page structures
583	 */
584	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
585	for (i = 0; i < page_range; i++)
586		vm_page_array[i].order = VM_NFREEORDER;
587	vm_page_array_size = page_range;
588
589	/*
590	 * Initialize the physical memory allocator.
591	 */
592	vm_phys_init();
593
594	/*
595	 * Add every available physical page that is not blacklisted to
596	 * the free lists.
597	 */
598	vm_cnt.v_page_count = 0;
599	vm_cnt.v_free_count = 0;
600	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
601		pa = phys_avail[i];
602		last_pa = phys_avail[i + 1];
603		while (pa < last_pa) {
604			vm_phys_add_page(pa);
605			pa += PAGE_SIZE;
606		}
607	}
608
609	TAILQ_INIT(&blacklist_head);
610	vm_page_blacklist_load(&list, &listend);
611	vm_page_blacklist_check(list, listend);
612
613	list = kern_getenv("vm.blacklist");
614	vm_page_blacklist_check(list, NULL);
615
616	freeenv(list);
617#if VM_NRESERVLEVEL > 0
618	/*
619	 * Initialize the reservation management system.
620	 */
621	vm_reserv_init();
622#endif
623	return (vaddr);
624}
625
626void
627vm_page_reference(vm_page_t m)
628{
629
630	vm_page_aflag_set(m, PGA_REFERENCED);
631}
632
633/*
634 *	vm_page_busy_downgrade:
635 *
636 *	Downgrade an exclusive busy page into a single shared busy page.
637 */
638void
639vm_page_busy_downgrade(vm_page_t m)
640{
641	u_int x;
642
643	vm_page_assert_xbusied(m);
644
645	for (;;) {
646		x = m->busy_lock;
647		x &= VPB_BIT_WAITERS;
648		if (atomic_cmpset_rel_int(&m->busy_lock,
649		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
650			break;
651	}
652}
653
654/*
655 *	vm_page_sbusied:
656 *
657 *	Return a positive value if the page is shared busied, 0 otherwise.
658 */
659int
660vm_page_sbusied(vm_page_t m)
661{
662	u_int x;
663
664	x = m->busy_lock;
665	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
666}
667
668/*
669 *	vm_page_sunbusy:
670 *
671 *	Shared unbusy a page.
672 */
673void
674vm_page_sunbusy(vm_page_t m)
675{
676	u_int x;
677
678	vm_page_assert_sbusied(m);
679
680	for (;;) {
681		x = m->busy_lock;
682		if (VPB_SHARERS(x) > 1) {
683			if (atomic_cmpset_int(&m->busy_lock, x,
684			    x - VPB_ONE_SHARER))
685				break;
686			continue;
687		}
688		if ((x & VPB_BIT_WAITERS) == 0) {
689			KASSERT(x == VPB_SHARERS_WORD(1),
690			    ("vm_page_sunbusy: invalid lock state"));
691			if (atomic_cmpset_int(&m->busy_lock,
692			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
693				break;
694			continue;
695		}
696		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
697		    ("vm_page_sunbusy: invalid lock state for waiters"));
698
699		vm_page_lock(m);
700		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
701			vm_page_unlock(m);
702			continue;
703		}
704		wakeup(m);
705		vm_page_unlock(m);
706		break;
707	}
708}
709
710/*
711 *	vm_page_busy_sleep:
712 *
713 *	Sleep and release the page lock, using the page pointer as wchan.
714 *	This is used to implement the hard-path of busying mechanism.
715 *
716 *	The given page must be locked.
717 */
718void
719vm_page_busy_sleep(vm_page_t m, const char *wmesg)
720{
721	u_int x;
722
723	vm_page_lock_assert(m, MA_OWNED);
724
725	x = m->busy_lock;
726	if (x == VPB_UNBUSIED) {
727		vm_page_unlock(m);
728		return;
729	}
730	if ((x & VPB_BIT_WAITERS) == 0 &&
731	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
732		vm_page_unlock(m);
733		return;
734	}
735	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
736}
737
738/*
739 *	vm_page_trysbusy:
740 *
741 *	Try to shared busy a page.
742 *	If the operation succeeds 1 is returned otherwise 0.
743 *	The operation never sleeps.
744 */
745int
746vm_page_trysbusy(vm_page_t m)
747{
748	u_int x;
749
750	for (;;) {
751		x = m->busy_lock;
752		if ((x & VPB_BIT_SHARED) == 0)
753			return (0);
754		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
755			return (1);
756	}
757}
758
759/*
760 *	vm_page_xunbusy_hard:
761 *
762 *	Called after the first try the exclusive unbusy of a page failed.
763 *	It is assumed that the waiters bit is on.
764 */
765void
766vm_page_xunbusy_hard(vm_page_t m)
767{
768
769	vm_page_assert_xbusied(m);
770
771	vm_page_lock(m);
772	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
773	wakeup(m);
774	vm_page_unlock(m);
775}
776
777/*
778 *	vm_page_flash:
779 *
780 *	Wakeup anyone waiting for the page.
781 *	The ownership bits do not change.
782 *
783 *	The given page must be locked.
784 */
785void
786vm_page_flash(vm_page_t m)
787{
788	u_int x;
789
790	vm_page_lock_assert(m, MA_OWNED);
791
792	for (;;) {
793		x = m->busy_lock;
794		if ((x & VPB_BIT_WAITERS) == 0)
795			return;
796		if (atomic_cmpset_int(&m->busy_lock, x,
797		    x & (~VPB_BIT_WAITERS)))
798			break;
799	}
800	wakeup(m);
801}
802
803/*
804 * Keep page from being freed by the page daemon
805 * much of the same effect as wiring, except much lower
806 * overhead and should be used only for *very* temporary
807 * holding ("wiring").
808 */
809void
810vm_page_hold(vm_page_t mem)
811{
812
813	vm_page_lock_assert(mem, MA_OWNED);
814        mem->hold_count++;
815}
816
817void
818vm_page_unhold(vm_page_t mem)
819{
820
821	vm_page_lock_assert(mem, MA_OWNED);
822	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
823	--mem->hold_count;
824	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
825		vm_page_free_toq(mem);
826}
827
828/*
829 *	vm_page_unhold_pages:
830 *
831 *	Unhold each of the pages that is referenced by the given array.
832 */
833void
834vm_page_unhold_pages(vm_page_t *ma, int count)
835{
836	struct mtx *mtx, *new_mtx;
837
838	mtx = NULL;
839	for (; count != 0; count--) {
840		/*
841		 * Avoid releasing and reacquiring the same page lock.
842		 */
843		new_mtx = vm_page_lockptr(*ma);
844		if (mtx != new_mtx) {
845			if (mtx != NULL)
846				mtx_unlock(mtx);
847			mtx = new_mtx;
848			mtx_lock(mtx);
849		}
850		vm_page_unhold(*ma);
851		ma++;
852	}
853	if (mtx != NULL)
854		mtx_unlock(mtx);
855}
856
857vm_page_t
858PHYS_TO_VM_PAGE(vm_paddr_t pa)
859{
860	vm_page_t m;
861
862#ifdef VM_PHYSSEG_SPARSE
863	m = vm_phys_paddr_to_vm_page(pa);
864	if (m == NULL)
865		m = vm_phys_fictitious_to_vm_page(pa);
866	return (m);
867#elif defined(VM_PHYSSEG_DENSE)
868	long pi;
869
870	pi = atop(pa);
871	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
872		m = &vm_page_array[pi - first_page];
873		return (m);
874	}
875	return (vm_phys_fictitious_to_vm_page(pa));
876#else
877#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
878#endif
879}
880
881/*
882 *	vm_page_getfake:
883 *
884 *	Create a fictitious page with the specified physical address and
885 *	memory attribute.  The memory attribute is the only the machine-
886 *	dependent aspect of a fictitious page that must be initialized.
887 */
888vm_page_t
889vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
890{
891	vm_page_t m;
892
893	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
894	vm_page_initfake(m, paddr, memattr);
895	return (m);
896}
897
898void
899vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
900{
901
902	if ((m->flags & PG_FICTITIOUS) != 0) {
903		/*
904		 * The page's memattr might have changed since the
905		 * previous initialization.  Update the pmap to the
906		 * new memattr.
907		 */
908		goto memattr;
909	}
910	m->phys_addr = paddr;
911	m->queue = PQ_NONE;
912	/* Fictitious pages don't use "segind". */
913	m->flags = PG_FICTITIOUS;
914	/* Fictitious pages don't use "order" or "pool". */
915	m->oflags = VPO_UNMANAGED;
916	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
917	m->wire_count = 1;
918	pmap_page_init(m);
919memattr:
920	pmap_page_set_memattr(m, memattr);
921}
922
923/*
924 *	vm_page_putfake:
925 *
926 *	Release a fictitious page.
927 */
928void
929vm_page_putfake(vm_page_t m)
930{
931
932	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
933	KASSERT((m->flags & PG_FICTITIOUS) != 0,
934	    ("vm_page_putfake: bad page %p", m));
935	uma_zfree(fakepg_zone, m);
936}
937
938/*
939 *	vm_page_updatefake:
940 *
941 *	Update the given fictitious page to the specified physical address and
942 *	memory attribute.
943 */
944void
945vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
946{
947
948	KASSERT((m->flags & PG_FICTITIOUS) != 0,
949	    ("vm_page_updatefake: bad page %p", m));
950	m->phys_addr = paddr;
951	pmap_page_set_memattr(m, memattr);
952}
953
954/*
955 *	vm_page_free:
956 *
957 *	Free a page.
958 */
959void
960vm_page_free(vm_page_t m)
961{
962
963	m->flags &= ~PG_ZERO;
964	vm_page_free_toq(m);
965}
966
967/*
968 *	vm_page_free_zero:
969 *
970 *	Free a page to the zerod-pages queue
971 */
972void
973vm_page_free_zero(vm_page_t m)
974{
975
976	m->flags |= PG_ZERO;
977	vm_page_free_toq(m);
978}
979
980/*
981 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
982 * array which is not the request page.
983 */
984void
985vm_page_readahead_finish(vm_page_t m)
986{
987
988	if (m->valid != 0) {
989		/*
990		 * Since the page is not the requested page, whether
991		 * it should be activated or deactivated is not
992		 * obvious.  Empirical results have shown that
993		 * deactivating the page is usually the best choice,
994		 * unless the page is wanted by another thread.
995		 */
996		vm_page_lock(m);
997		if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
998			vm_page_activate(m);
999		else
1000			vm_page_deactivate(m);
1001		vm_page_unlock(m);
1002		vm_page_xunbusy(m);
1003	} else {
1004		/*
1005		 * Free the completely invalid page.  Such page state
1006		 * occurs due to the short read operation which did
1007		 * not covered our page at all, or in case when a read
1008		 * error happens.
1009		 */
1010		vm_page_lock(m);
1011		vm_page_free(m);
1012		vm_page_unlock(m);
1013	}
1014}
1015
1016/*
1017 *	vm_page_sleep_if_busy:
1018 *
1019 *	Sleep and release the page queues lock if the page is busied.
1020 *	Returns TRUE if the thread slept.
1021 *
1022 *	The given page must be unlocked and object containing it must
1023 *	be locked.
1024 */
1025int
1026vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1027{
1028	vm_object_t obj;
1029
1030	vm_page_lock_assert(m, MA_NOTOWNED);
1031	VM_OBJECT_ASSERT_WLOCKED(m->object);
1032
1033	if (vm_page_busied(m)) {
1034		/*
1035		 * The page-specific object must be cached because page
1036		 * identity can change during the sleep, causing the
1037		 * re-lock of a different object.
1038		 * It is assumed that a reference to the object is already
1039		 * held by the callers.
1040		 */
1041		obj = m->object;
1042		vm_page_lock(m);
1043		VM_OBJECT_WUNLOCK(obj);
1044		vm_page_busy_sleep(m, msg);
1045		VM_OBJECT_WLOCK(obj);
1046		return (TRUE);
1047	}
1048	return (FALSE);
1049}
1050
1051/*
1052 *	vm_page_dirty_KBI:		[ internal use only ]
1053 *
1054 *	Set all bits in the page's dirty field.
1055 *
1056 *	The object containing the specified page must be locked if the
1057 *	call is made from the machine-independent layer.
1058 *
1059 *	See vm_page_clear_dirty_mask().
1060 *
1061 *	This function should only be called by vm_page_dirty().
1062 */
1063void
1064vm_page_dirty_KBI(vm_page_t m)
1065{
1066
1067	/* These assertions refer to this operation by its public name. */
1068	KASSERT((m->flags & PG_CACHED) == 0,
1069	    ("vm_page_dirty: page in cache!"));
1070	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1071	    ("vm_page_dirty: page is invalid!"));
1072	m->dirty = VM_PAGE_BITS_ALL;
1073}
1074
1075/*
1076 *	vm_page_insert:		[ internal use only ]
1077 *
1078 *	Inserts the given mem entry into the object and object list.
1079 *
1080 *	The object must be locked.
1081 */
1082int
1083vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1084{
1085	vm_page_t mpred;
1086
1087	VM_OBJECT_ASSERT_WLOCKED(object);
1088	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1089	return (vm_page_insert_after(m, object, pindex, mpred));
1090}
1091
1092/*
1093 *	vm_page_insert_after:
1094 *
1095 *	Inserts the page "m" into the specified object at offset "pindex".
1096 *
1097 *	The page "mpred" must immediately precede the offset "pindex" within
1098 *	the specified object.
1099 *
1100 *	The object must be locked.
1101 */
1102static int
1103vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1104    vm_page_t mpred)
1105{
1106	vm_pindex_t sidx;
1107	vm_object_t sobj;
1108	vm_page_t msucc;
1109
1110	VM_OBJECT_ASSERT_WLOCKED(object);
1111	KASSERT(m->object == NULL,
1112	    ("vm_page_insert_after: page already inserted"));
1113	if (mpred != NULL) {
1114		KASSERT(mpred->object == object,
1115		    ("vm_page_insert_after: object doesn't contain mpred"));
1116		KASSERT(mpred->pindex < pindex,
1117		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1118		msucc = TAILQ_NEXT(mpred, listq);
1119	} else
1120		msucc = TAILQ_FIRST(&object->memq);
1121	if (msucc != NULL)
1122		KASSERT(msucc->pindex > pindex,
1123		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1124
1125	/*
1126	 * Record the object/offset pair in this page
1127	 */
1128	sobj = m->object;
1129	sidx = m->pindex;
1130	m->object = object;
1131	m->pindex = pindex;
1132
1133	/*
1134	 * Now link into the object's ordered list of backed pages.
1135	 */
1136	if (vm_radix_insert(&object->rtree, m)) {
1137		m->object = sobj;
1138		m->pindex = sidx;
1139		return (1);
1140	}
1141	vm_page_insert_radixdone(m, object, mpred);
1142	return (0);
1143}
1144
1145/*
1146 *	vm_page_insert_radixdone:
1147 *
1148 *	Complete page "m" insertion into the specified object after the
1149 *	radix trie hooking.
1150 *
1151 *	The page "mpred" must precede the offset "m->pindex" within the
1152 *	specified object.
1153 *
1154 *	The object must be locked.
1155 */
1156static void
1157vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1158{
1159
1160	VM_OBJECT_ASSERT_WLOCKED(object);
1161	KASSERT(object != NULL && m->object == object,
1162	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1163	if (mpred != NULL) {
1164		KASSERT(mpred->object == object,
1165		    ("vm_page_insert_after: object doesn't contain mpred"));
1166		KASSERT(mpred->pindex < m->pindex,
1167		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1168	}
1169
1170	if (mpred != NULL)
1171		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1172	else
1173		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1174
1175	/*
1176	 * Show that the object has one more resident page.
1177	 */
1178	object->resident_page_count++;
1179
1180	/*
1181	 * Hold the vnode until the last page is released.
1182	 */
1183	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1184		vhold(object->handle);
1185
1186	/*
1187	 * Since we are inserting a new and possibly dirty page,
1188	 * update the object's OBJ_MIGHTBEDIRTY flag.
1189	 */
1190	if (pmap_page_is_write_mapped(m))
1191		vm_object_set_writeable_dirty(object);
1192}
1193
1194/*
1195 *	vm_page_remove:
1196 *
1197 *	Removes the given mem entry from the object/offset-page
1198 *	table and the object page list, but do not invalidate/terminate
1199 *	the backing store.
1200 *
1201 *	The object must be locked.  The page must be locked if it is managed.
1202 */
1203void
1204vm_page_remove(vm_page_t m)
1205{
1206	vm_object_t object;
1207	boolean_t lockacq;
1208
1209	if ((m->oflags & VPO_UNMANAGED) == 0)
1210		vm_page_lock_assert(m, MA_OWNED);
1211	if ((object = m->object) == NULL)
1212		return;
1213	VM_OBJECT_ASSERT_WLOCKED(object);
1214	if (vm_page_xbusied(m)) {
1215		lockacq = FALSE;
1216		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1217		    !mtx_owned(vm_page_lockptr(m))) {
1218			lockacq = TRUE;
1219			vm_page_lock(m);
1220		}
1221		vm_page_flash(m);
1222		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1223		if (lockacq)
1224			vm_page_unlock(m);
1225	}
1226
1227	/*
1228	 * Now remove from the object's list of backed pages.
1229	 */
1230	vm_radix_remove(&object->rtree, m->pindex);
1231	TAILQ_REMOVE(&object->memq, m, listq);
1232
1233	/*
1234	 * And show that the object has one fewer resident page.
1235	 */
1236	object->resident_page_count--;
1237
1238	/*
1239	 * The vnode may now be recycled.
1240	 */
1241	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1242		vdrop(object->handle);
1243
1244	m->object = NULL;
1245}
1246
1247/*
1248 *	vm_page_lookup:
1249 *
1250 *	Returns the page associated with the object/offset
1251 *	pair specified; if none is found, NULL is returned.
1252 *
1253 *	The object must be locked.
1254 */
1255vm_page_t
1256vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1257{
1258
1259	VM_OBJECT_ASSERT_LOCKED(object);
1260	return (vm_radix_lookup(&object->rtree, pindex));
1261}
1262
1263/*
1264 *	vm_page_find_least:
1265 *
1266 *	Returns the page associated with the object with least pindex
1267 *	greater than or equal to the parameter pindex, or NULL.
1268 *
1269 *	The object must be locked.
1270 */
1271vm_page_t
1272vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1273{
1274	vm_page_t m;
1275
1276	VM_OBJECT_ASSERT_LOCKED(object);
1277	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1278		m = vm_radix_lookup_ge(&object->rtree, pindex);
1279	return (m);
1280}
1281
1282/*
1283 * Returns the given page's successor (by pindex) within the object if it is
1284 * resident; if none is found, NULL is returned.
1285 *
1286 * The object must be locked.
1287 */
1288vm_page_t
1289vm_page_next(vm_page_t m)
1290{
1291	vm_page_t next;
1292
1293	VM_OBJECT_ASSERT_WLOCKED(m->object);
1294	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1295	    next->pindex != m->pindex + 1)
1296		next = NULL;
1297	return (next);
1298}
1299
1300/*
1301 * Returns the given page's predecessor (by pindex) within the object if it is
1302 * resident; if none is found, NULL is returned.
1303 *
1304 * The object must be locked.
1305 */
1306vm_page_t
1307vm_page_prev(vm_page_t m)
1308{
1309	vm_page_t prev;
1310
1311	VM_OBJECT_ASSERT_WLOCKED(m->object);
1312	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1313	    prev->pindex != m->pindex - 1)
1314		prev = NULL;
1315	return (prev);
1316}
1317
1318/*
1319 * Uses the page mnew as a replacement for an existing page at index
1320 * pindex which must be already present in the object.
1321 *
1322 * The existing page must not be on a paging queue.
1323 */
1324vm_page_t
1325vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1326{
1327	vm_page_t mold, mpred;
1328
1329	VM_OBJECT_ASSERT_WLOCKED(object);
1330
1331	/*
1332	 * This function mostly follows vm_page_insert() and
1333	 * vm_page_remove() without the radix, object count and vnode
1334	 * dance.  Double check such functions for more comments.
1335	 */
1336	mpred = vm_radix_lookup(&object->rtree, pindex);
1337	KASSERT(mpred != NULL,
1338	    ("vm_page_replace: replacing page not present with pindex"));
1339	mpred = TAILQ_PREV(mpred, respgs, listq);
1340	if (mpred != NULL)
1341		KASSERT(mpred->pindex < pindex,
1342		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1343
1344	mnew->object = object;
1345	mnew->pindex = pindex;
1346	mold = vm_radix_replace(&object->rtree, mnew);
1347	KASSERT(mold->queue == PQ_NONE,
1348	    ("vm_page_replace: mold is on a paging queue"));
1349
1350	/* Detach the old page from the resident tailq. */
1351	TAILQ_REMOVE(&object->memq, mold, listq);
1352
1353	mold->object = NULL;
1354	vm_page_xunbusy(mold);
1355
1356	/* Insert the new page in the resident tailq. */
1357	if (mpred != NULL)
1358		TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1359	else
1360		TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1361	if (pmap_page_is_write_mapped(mnew))
1362		vm_object_set_writeable_dirty(object);
1363	return (mold);
1364}
1365
1366/*
1367 *	vm_page_rename:
1368 *
1369 *	Move the given memory entry from its
1370 *	current object to the specified target object/offset.
1371 *
1372 *	Note: swap associated with the page must be invalidated by the move.  We
1373 *	      have to do this for several reasons:  (1) we aren't freeing the
1374 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1375 *	      moving the page from object A to B, and will then later move
1376 *	      the backing store from A to B and we can't have a conflict.
1377 *
1378 *	Note: we *always* dirty the page.  It is necessary both for the
1379 *	      fact that we moved it, and because we may be invalidating
1380 *	      swap.  If the page is on the cache, we have to deactivate it
1381 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1382 *	      on the cache.
1383 *
1384 *	The objects must be locked.
1385 */
1386int
1387vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1388{
1389	vm_page_t mpred;
1390	vm_pindex_t opidx;
1391
1392	VM_OBJECT_ASSERT_WLOCKED(new_object);
1393
1394	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1395	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1396	    ("vm_page_rename: pindex already renamed"));
1397
1398	/*
1399	 * Create a custom version of vm_page_insert() which does not depend
1400	 * by m_prev and can cheat on the implementation aspects of the
1401	 * function.
1402	 */
1403	opidx = m->pindex;
1404	m->pindex = new_pindex;
1405	if (vm_radix_insert(&new_object->rtree, m)) {
1406		m->pindex = opidx;
1407		return (1);
1408	}
1409
1410	/*
1411	 * The operation cannot fail anymore.  The removal must happen before
1412	 * the listq iterator is tainted.
1413	 */
1414	m->pindex = opidx;
1415	vm_page_lock(m);
1416	vm_page_remove(m);
1417
1418	/* Return back to the new pindex to complete vm_page_insert(). */
1419	m->pindex = new_pindex;
1420	m->object = new_object;
1421	vm_page_unlock(m);
1422	vm_page_insert_radixdone(m, new_object, mpred);
1423	vm_page_dirty(m);
1424	return (0);
1425}
1426
1427/*
1428 *	Convert all of the given object's cached pages that have a
1429 *	pindex within the given range into free pages.  If the value
1430 *	zero is given for "end", then the range's upper bound is
1431 *	infinity.  If the given object is backed by a vnode and it
1432 *	transitions from having one or more cached pages to none, the
1433 *	vnode's hold count is reduced.
1434 */
1435void
1436vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1437{
1438	vm_page_t m;
1439	boolean_t empty;
1440
1441	mtx_lock(&vm_page_queue_free_mtx);
1442	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1443		mtx_unlock(&vm_page_queue_free_mtx);
1444		return;
1445	}
1446	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1447		if (end != 0 && m->pindex >= end)
1448			break;
1449		vm_radix_remove(&object->cache, m->pindex);
1450		vm_page_cache_turn_free(m);
1451	}
1452	empty = vm_radix_is_empty(&object->cache);
1453	mtx_unlock(&vm_page_queue_free_mtx);
1454	if (object->type == OBJT_VNODE && empty)
1455		vdrop(object->handle);
1456}
1457
1458/*
1459 *	Returns the cached page that is associated with the given
1460 *	object and offset.  If, however, none exists, returns NULL.
1461 *
1462 *	The free page queue must be locked.
1463 */
1464static inline vm_page_t
1465vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1466{
1467
1468	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1469	return (vm_radix_lookup(&object->cache, pindex));
1470}
1471
1472/*
1473 *	Remove the given cached page from its containing object's
1474 *	collection of cached pages.
1475 *
1476 *	The free page queue must be locked.
1477 */
1478static void
1479vm_page_cache_remove(vm_page_t m)
1480{
1481
1482	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1483	KASSERT((m->flags & PG_CACHED) != 0,
1484	    ("vm_page_cache_remove: page %p is not cached", m));
1485	vm_radix_remove(&m->object->cache, m->pindex);
1486	m->object = NULL;
1487	vm_cnt.v_cache_count--;
1488}
1489
1490/*
1491 *	Transfer all of the cached pages with offset greater than or
1492 *	equal to 'offidxstart' from the original object's cache to the
1493 *	new object's cache.  However, any cached pages with offset
1494 *	greater than or equal to the new object's size are kept in the
1495 *	original object.  Initially, the new object's cache must be
1496 *	empty.  Offset 'offidxstart' in the original object must
1497 *	correspond to offset zero in the new object.
1498 *
1499 *	The new object must be locked.
1500 */
1501void
1502vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1503    vm_object_t new_object)
1504{
1505	vm_page_t m;
1506
1507	/*
1508	 * Insertion into an object's collection of cached pages
1509	 * requires the object to be locked.  In contrast, removal does
1510	 * not.
1511	 */
1512	VM_OBJECT_ASSERT_WLOCKED(new_object);
1513	KASSERT(vm_radix_is_empty(&new_object->cache),
1514	    ("vm_page_cache_transfer: object %p has cached pages",
1515	    new_object));
1516	mtx_lock(&vm_page_queue_free_mtx);
1517	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1518	    offidxstart)) != NULL) {
1519		/*
1520		 * Transfer all of the pages with offset greater than or
1521		 * equal to 'offidxstart' from the original object's
1522		 * cache to the new object's cache.
1523		 */
1524		if ((m->pindex - offidxstart) >= new_object->size)
1525			break;
1526		vm_radix_remove(&orig_object->cache, m->pindex);
1527		/* Update the page's object and offset. */
1528		m->object = new_object;
1529		m->pindex -= offidxstart;
1530		if (vm_radix_insert(&new_object->cache, m))
1531			vm_page_cache_turn_free(m);
1532	}
1533	mtx_unlock(&vm_page_queue_free_mtx);
1534}
1535
1536/*
1537 *	Returns TRUE if a cached page is associated with the given object and
1538 *	offset, and FALSE otherwise.
1539 *
1540 *	The object must be locked.
1541 */
1542boolean_t
1543vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1544{
1545	vm_page_t m;
1546
1547	/*
1548	 * Insertion into an object's collection of cached pages requires the
1549	 * object to be locked.  Therefore, if the object is locked and the
1550	 * object's collection is empty, there is no need to acquire the free
1551	 * page queues lock in order to prove that the specified page doesn't
1552	 * exist.
1553	 */
1554	VM_OBJECT_ASSERT_WLOCKED(object);
1555	if (__predict_true(vm_object_cache_is_empty(object)))
1556		return (FALSE);
1557	mtx_lock(&vm_page_queue_free_mtx);
1558	m = vm_page_cache_lookup(object, pindex);
1559	mtx_unlock(&vm_page_queue_free_mtx);
1560	return (m != NULL);
1561}
1562
1563/*
1564 *	vm_page_alloc:
1565 *
1566 *	Allocate and return a page that is associated with the specified
1567 *	object and offset pair.  By default, this page is exclusive busied.
1568 *
1569 *	The caller must always specify an allocation class.
1570 *
1571 *	allocation classes:
1572 *	VM_ALLOC_NORMAL		normal process request
1573 *	VM_ALLOC_SYSTEM		system *really* needs a page
1574 *	VM_ALLOC_INTERRUPT	interrupt time request
1575 *
1576 *	optional allocation flags:
1577 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1578 *				intends to allocate
1579 *	VM_ALLOC_IFCACHED	return page only if it is cached
1580 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1581 *				is cached
1582 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1583 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1584 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1585 *				should not be exclusive busy
1586 *	VM_ALLOC_SBUSY		shared busy the allocated page
1587 *	VM_ALLOC_WIRED		wire the allocated page
1588 *	VM_ALLOC_ZERO		prefer a zeroed page
1589 *
1590 *	This routine may not sleep.
1591 */
1592vm_page_t
1593vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1594{
1595	struct vnode *vp = NULL;
1596	vm_object_t m_object;
1597	vm_page_t m, mpred;
1598	int flags, req_class;
1599
1600	mpred = 0;	/* XXX: pacify gcc */
1601	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1602	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1603	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1604	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1605	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1606	    req));
1607	if (object != NULL)
1608		VM_OBJECT_ASSERT_WLOCKED(object);
1609
1610	req_class = req & VM_ALLOC_CLASS_MASK;
1611
1612	/*
1613	 * The page daemon is allowed to dig deeper into the free page list.
1614	 */
1615	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1616		req_class = VM_ALLOC_SYSTEM;
1617
1618	if (object != NULL) {
1619		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1620		KASSERT(mpred == NULL || mpred->pindex != pindex,
1621		   ("vm_page_alloc: pindex already allocated"));
1622	}
1623
1624	/*
1625	 * The page allocation request can came from consumers which already
1626	 * hold the free page queue mutex, like vm_page_insert() in
1627	 * vm_page_cache().
1628	 */
1629	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1630	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1631	    (req_class == VM_ALLOC_SYSTEM &&
1632	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1633	    (req_class == VM_ALLOC_INTERRUPT &&
1634	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1635		/*
1636		 * Allocate from the free queue if the number of free pages
1637		 * exceeds the minimum for the request class.
1638		 */
1639		if (object != NULL &&
1640		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1641			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1642				mtx_unlock(&vm_page_queue_free_mtx);
1643				return (NULL);
1644			}
1645			if (vm_phys_unfree_page(m))
1646				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1647#if VM_NRESERVLEVEL > 0
1648			else if (!vm_reserv_reactivate_page(m))
1649#else
1650			else
1651#endif
1652				panic("vm_page_alloc: cache page %p is missing"
1653				    " from the free queue", m);
1654		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1655			mtx_unlock(&vm_page_queue_free_mtx);
1656			return (NULL);
1657#if VM_NRESERVLEVEL > 0
1658		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1659		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1660		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1661#else
1662		} else {
1663#endif
1664			m = vm_phys_alloc_pages(object != NULL ?
1665			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1666#if VM_NRESERVLEVEL > 0
1667			if (m == NULL && vm_reserv_reclaim_inactive()) {
1668				m = vm_phys_alloc_pages(object != NULL ?
1669				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1670				    0);
1671			}
1672#endif
1673		}
1674	} else {
1675		/*
1676		 * Not allocatable, give up.
1677		 */
1678		mtx_unlock(&vm_page_queue_free_mtx);
1679		atomic_add_int(&vm_pageout_deficit,
1680		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1681		pagedaemon_wakeup();
1682		return (NULL);
1683	}
1684
1685	/*
1686	 *  At this point we had better have found a good page.
1687	 */
1688	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1689	KASSERT(m->queue == PQ_NONE,
1690	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1691	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1692	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1693	KASSERT(!vm_page_sbusied(m),
1694	    ("vm_page_alloc: page %p is busy", m));
1695	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1696	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1697	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1698	    pmap_page_get_memattr(m)));
1699	if ((m->flags & PG_CACHED) != 0) {
1700		KASSERT((m->flags & PG_ZERO) == 0,
1701		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1702		KASSERT(m->valid != 0,
1703		    ("vm_page_alloc: cached page %p is invalid", m));
1704		if (m->object == object && m->pindex == pindex)
1705			vm_cnt.v_reactivated++;
1706		else
1707			m->valid = 0;
1708		m_object = m->object;
1709		vm_page_cache_remove(m);
1710		if (m_object->type == OBJT_VNODE &&
1711		    vm_object_cache_is_empty(m_object))
1712			vp = m_object->handle;
1713	} else {
1714		KASSERT(m->valid == 0,
1715		    ("vm_page_alloc: free page %p is valid", m));
1716		vm_phys_freecnt_adj(m, -1);
1717		if ((m->flags & PG_ZERO) != 0)
1718			vm_page_zero_count--;
1719	}
1720	mtx_unlock(&vm_page_queue_free_mtx);
1721
1722	/*
1723	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1724	 */
1725	flags = 0;
1726	if ((req & VM_ALLOC_ZERO) != 0)
1727		flags = PG_ZERO;
1728	flags &= m->flags;
1729	if ((req & VM_ALLOC_NODUMP) != 0)
1730		flags |= PG_NODUMP;
1731	m->flags = flags;
1732	m->aflags = 0;
1733	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1734	    VPO_UNMANAGED : 0;
1735	m->busy_lock = VPB_UNBUSIED;
1736	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1737		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1738	if ((req & VM_ALLOC_SBUSY) != 0)
1739		m->busy_lock = VPB_SHARERS_WORD(1);
1740	if (req & VM_ALLOC_WIRED) {
1741		/*
1742		 * The page lock is not required for wiring a page until that
1743		 * page is inserted into the object.
1744		 */
1745		atomic_add_int(&vm_cnt.v_wire_count, 1);
1746		m->wire_count = 1;
1747	}
1748	m->act_count = 0;
1749
1750	if (object != NULL) {
1751		if (vm_page_insert_after(m, object, pindex, mpred)) {
1752			/* See the comment below about hold count. */
1753			if (vp != NULL)
1754				vdrop(vp);
1755			pagedaemon_wakeup();
1756			if (req & VM_ALLOC_WIRED) {
1757				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1758				m->wire_count = 0;
1759			}
1760			m->object = NULL;
1761			m->oflags = VPO_UNMANAGED;
1762			vm_page_free(m);
1763			return (NULL);
1764		}
1765
1766		/* Ignore device objects; the pager sets "memattr" for them. */
1767		if (object->memattr != VM_MEMATTR_DEFAULT &&
1768		    (object->flags & OBJ_FICTITIOUS) == 0)
1769			pmap_page_set_memattr(m, object->memattr);
1770	} else
1771		m->pindex = pindex;
1772
1773	/*
1774	 * The following call to vdrop() must come after the above call
1775	 * to vm_page_insert() in case both affect the same object and
1776	 * vnode.  Otherwise, the affected vnode's hold count could
1777	 * temporarily become zero.
1778	 */
1779	if (vp != NULL)
1780		vdrop(vp);
1781
1782	/*
1783	 * Don't wakeup too often - wakeup the pageout daemon when
1784	 * we would be nearly out of memory.
1785	 */
1786	if (vm_paging_needed())
1787		pagedaemon_wakeup();
1788
1789	return (m);
1790}
1791
1792static void
1793vm_page_alloc_contig_vdrop(struct spglist *lst)
1794{
1795
1796	while (!SLIST_EMPTY(lst)) {
1797		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1798		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1799	}
1800}
1801
1802/*
1803 *	vm_page_alloc_contig:
1804 *
1805 *	Allocate a contiguous set of physical pages of the given size "npages"
1806 *	from the free lists.  All of the physical pages must be at or above
1807 *	the given physical address "low" and below the given physical address
1808 *	"high".  The given value "alignment" determines the alignment of the
1809 *	first physical page in the set.  If the given value "boundary" is
1810 *	non-zero, then the set of physical pages cannot cross any physical
1811 *	address boundary that is a multiple of that value.  Both "alignment"
1812 *	and "boundary" must be a power of two.
1813 *
1814 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1815 *	then the memory attribute setting for the physical pages is configured
1816 *	to the object's memory attribute setting.  Otherwise, the memory
1817 *	attribute setting for the physical pages is configured to "memattr",
1818 *	overriding the object's memory attribute setting.  However, if the
1819 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1820 *	memory attribute setting for the physical pages cannot be configured
1821 *	to VM_MEMATTR_DEFAULT.
1822 *
1823 *	The caller must always specify an allocation class.
1824 *
1825 *	allocation classes:
1826 *	VM_ALLOC_NORMAL		normal process request
1827 *	VM_ALLOC_SYSTEM		system *really* needs a page
1828 *	VM_ALLOC_INTERRUPT	interrupt time request
1829 *
1830 *	optional allocation flags:
1831 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1832 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1833 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1834 *				should not be exclusive busy
1835 *	VM_ALLOC_SBUSY		shared busy the allocated page
1836 *	VM_ALLOC_WIRED		wire the allocated page
1837 *	VM_ALLOC_ZERO		prefer a zeroed page
1838 *
1839 *	This routine may not sleep.
1840 */
1841vm_page_t
1842vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1843    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1844    vm_paddr_t boundary, vm_memattr_t memattr)
1845{
1846	struct vnode *drop;
1847	struct spglist deferred_vdrop_list;
1848	vm_page_t m, m_tmp, m_ret;
1849	u_int flags;
1850	int req_class;
1851
1852	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1853	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1854	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1855	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1856	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1857	    req));
1858	if (object != NULL) {
1859		VM_OBJECT_ASSERT_WLOCKED(object);
1860		KASSERT(object->type == OBJT_PHYS,
1861		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1862		    object));
1863	}
1864	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1865	req_class = req & VM_ALLOC_CLASS_MASK;
1866
1867	/*
1868	 * The page daemon is allowed to dig deeper into the free page list.
1869	 */
1870	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1871		req_class = VM_ALLOC_SYSTEM;
1872
1873	SLIST_INIT(&deferred_vdrop_list);
1874	mtx_lock(&vm_page_queue_free_mtx);
1875	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1876	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1877	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1878	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1879	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1880#if VM_NRESERVLEVEL > 0
1881retry:
1882		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1883		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1884		    low, high, alignment, boundary)) == NULL)
1885#endif
1886			m_ret = vm_phys_alloc_contig(npages, low, high,
1887			    alignment, boundary);
1888	} else {
1889		mtx_unlock(&vm_page_queue_free_mtx);
1890		atomic_add_int(&vm_pageout_deficit, npages);
1891		pagedaemon_wakeup();
1892		return (NULL);
1893	}
1894	if (m_ret != NULL)
1895		for (m = m_ret; m < &m_ret[npages]; m++) {
1896			drop = vm_page_alloc_init(m);
1897			if (drop != NULL) {
1898				/*
1899				 * Enqueue the vnode for deferred vdrop().
1900				 */
1901				m->plinks.s.pv = drop;
1902				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1903				    plinks.s.ss);
1904			}
1905		}
1906	else {
1907#if VM_NRESERVLEVEL > 0
1908		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1909		    boundary))
1910			goto retry;
1911#endif
1912	}
1913	mtx_unlock(&vm_page_queue_free_mtx);
1914	if (m_ret == NULL)
1915		return (NULL);
1916
1917	/*
1918	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1919	 */
1920	flags = 0;
1921	if ((req & VM_ALLOC_ZERO) != 0)
1922		flags = PG_ZERO;
1923	if ((req & VM_ALLOC_NODUMP) != 0)
1924		flags |= PG_NODUMP;
1925	if ((req & VM_ALLOC_WIRED) != 0)
1926		atomic_add_int(&vm_cnt.v_wire_count, npages);
1927	if (object != NULL) {
1928		if (object->memattr != VM_MEMATTR_DEFAULT &&
1929		    memattr == VM_MEMATTR_DEFAULT)
1930			memattr = object->memattr;
1931	}
1932	for (m = m_ret; m < &m_ret[npages]; m++) {
1933		m->aflags = 0;
1934		m->flags = (m->flags | PG_NODUMP) & flags;
1935		m->busy_lock = VPB_UNBUSIED;
1936		if (object != NULL) {
1937			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1938				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1939			if ((req & VM_ALLOC_SBUSY) != 0)
1940				m->busy_lock = VPB_SHARERS_WORD(1);
1941		}
1942		if ((req & VM_ALLOC_WIRED) != 0)
1943			m->wire_count = 1;
1944		/* Unmanaged pages don't use "act_count". */
1945		m->oflags = VPO_UNMANAGED;
1946		if (object != NULL) {
1947			if (vm_page_insert(m, object, pindex)) {
1948				vm_page_alloc_contig_vdrop(
1949				    &deferred_vdrop_list);
1950				if (vm_paging_needed())
1951					pagedaemon_wakeup();
1952				if ((req & VM_ALLOC_WIRED) != 0)
1953					atomic_subtract_int(&vm_cnt.v_wire_count,
1954					    npages);
1955				for (m_tmp = m, m = m_ret;
1956				    m < &m_ret[npages]; m++) {
1957					if ((req & VM_ALLOC_WIRED) != 0)
1958						m->wire_count = 0;
1959					if (m >= m_tmp)
1960						m->object = NULL;
1961					vm_page_free(m);
1962				}
1963				return (NULL);
1964			}
1965		} else
1966			m->pindex = pindex;
1967		if (memattr != VM_MEMATTR_DEFAULT)
1968			pmap_page_set_memattr(m, memattr);
1969		pindex++;
1970	}
1971	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1972	if (vm_paging_needed())
1973		pagedaemon_wakeup();
1974	return (m_ret);
1975}
1976
1977/*
1978 * Initialize a page that has been freshly dequeued from a freelist.
1979 * The caller has to drop the vnode returned, if it is not NULL.
1980 *
1981 * This function may only be used to initialize unmanaged pages.
1982 *
1983 * To be called with vm_page_queue_free_mtx held.
1984 */
1985static struct vnode *
1986vm_page_alloc_init(vm_page_t m)
1987{
1988	struct vnode *drop;
1989	vm_object_t m_object;
1990
1991	KASSERT(m->queue == PQ_NONE,
1992	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1993	    m, m->queue));
1994	KASSERT(m->wire_count == 0,
1995	    ("vm_page_alloc_init: page %p is wired", m));
1996	KASSERT(m->hold_count == 0,
1997	    ("vm_page_alloc_init: page %p is held", m));
1998	KASSERT(!vm_page_sbusied(m),
1999	    ("vm_page_alloc_init: page %p is busy", m));
2000	KASSERT(m->dirty == 0,
2001	    ("vm_page_alloc_init: page %p is dirty", m));
2002	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2003	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
2004	    m, pmap_page_get_memattr(m)));
2005	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2006	drop = NULL;
2007	if ((m->flags & PG_CACHED) != 0) {
2008		KASSERT((m->flags & PG_ZERO) == 0,
2009		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
2010		m->valid = 0;
2011		m_object = m->object;
2012		vm_page_cache_remove(m);
2013		if (m_object->type == OBJT_VNODE &&
2014		    vm_object_cache_is_empty(m_object))
2015			drop = m_object->handle;
2016	} else {
2017		KASSERT(m->valid == 0,
2018		    ("vm_page_alloc_init: free page %p is valid", m));
2019		vm_phys_freecnt_adj(m, -1);
2020		if ((m->flags & PG_ZERO) != 0)
2021			vm_page_zero_count--;
2022	}
2023	return (drop);
2024}
2025
2026/*
2027 * 	vm_page_alloc_freelist:
2028 *
2029 *	Allocate a physical page from the specified free page list.
2030 *
2031 *	The caller must always specify an allocation class.
2032 *
2033 *	allocation classes:
2034 *	VM_ALLOC_NORMAL		normal process request
2035 *	VM_ALLOC_SYSTEM		system *really* needs a page
2036 *	VM_ALLOC_INTERRUPT	interrupt time request
2037 *
2038 *	optional allocation flags:
2039 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2040 *				intends to allocate
2041 *	VM_ALLOC_WIRED		wire the allocated page
2042 *	VM_ALLOC_ZERO		prefer a zeroed page
2043 *
2044 *	This routine may not sleep.
2045 */
2046vm_page_t
2047vm_page_alloc_freelist(int flind, int req)
2048{
2049	struct vnode *drop;
2050	vm_page_t m;
2051	u_int flags;
2052	int req_class;
2053
2054	req_class = req & VM_ALLOC_CLASS_MASK;
2055
2056	/*
2057	 * The page daemon is allowed to dig deeper into the free page list.
2058	 */
2059	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2060		req_class = VM_ALLOC_SYSTEM;
2061
2062	/*
2063	 * Do not allocate reserved pages unless the req has asked for it.
2064	 */
2065	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
2066	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
2067	    (req_class == VM_ALLOC_SYSTEM &&
2068	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
2069	    (req_class == VM_ALLOC_INTERRUPT &&
2070	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
2071		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2072	else {
2073		mtx_unlock(&vm_page_queue_free_mtx);
2074		atomic_add_int(&vm_pageout_deficit,
2075		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2076		pagedaemon_wakeup();
2077		return (NULL);
2078	}
2079	if (m == NULL) {
2080		mtx_unlock(&vm_page_queue_free_mtx);
2081		return (NULL);
2082	}
2083	drop = vm_page_alloc_init(m);
2084	mtx_unlock(&vm_page_queue_free_mtx);
2085
2086	/*
2087	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2088	 */
2089	m->aflags = 0;
2090	flags = 0;
2091	if ((req & VM_ALLOC_ZERO) != 0)
2092		flags = PG_ZERO;
2093	m->flags &= flags;
2094	if ((req & VM_ALLOC_WIRED) != 0) {
2095		/*
2096		 * The page lock is not required for wiring a page that does
2097		 * not belong to an object.
2098		 */
2099		atomic_add_int(&vm_cnt.v_wire_count, 1);
2100		m->wire_count = 1;
2101	}
2102	/* Unmanaged pages don't use "act_count". */
2103	m->oflags = VPO_UNMANAGED;
2104	if (drop != NULL)
2105		vdrop(drop);
2106	if (vm_paging_needed())
2107		pagedaemon_wakeup();
2108	return (m);
2109}
2110
2111/*
2112 *	vm_wait:	(also see VM_WAIT macro)
2113 *
2114 *	Sleep until free pages are available for allocation.
2115 *	- Called in various places before memory allocations.
2116 */
2117void
2118vm_wait(void)
2119{
2120
2121	mtx_lock(&vm_page_queue_free_mtx);
2122	if (curproc == pageproc) {
2123		vm_pageout_pages_needed = 1;
2124		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2125		    PDROP | PSWP, "VMWait", 0);
2126	} else {
2127		if (!vm_pages_needed) {
2128			vm_pages_needed = 1;
2129			wakeup(&vm_pages_needed);
2130		}
2131		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2132		    "vmwait", 0);
2133	}
2134}
2135
2136/*
2137 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2138 *
2139 *	Sleep until free pages are available for allocation.
2140 *	- Called only in vm_fault so that processes page faulting
2141 *	  can be easily tracked.
2142 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2143 *	  processes will be able to grab memory first.  Do not change
2144 *	  this balance without careful testing first.
2145 */
2146void
2147vm_waitpfault(void)
2148{
2149
2150	mtx_lock(&vm_page_queue_free_mtx);
2151	if (!vm_pages_needed) {
2152		vm_pages_needed = 1;
2153		wakeup(&vm_pages_needed);
2154	}
2155	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2156	    "pfault", 0);
2157}
2158
2159struct vm_pagequeue *
2160vm_page_pagequeue(vm_page_t m)
2161{
2162
2163	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2164}
2165
2166/*
2167 *	vm_page_dequeue:
2168 *
2169 *	Remove the given page from its current page queue.
2170 *
2171 *	The page must be locked.
2172 */
2173void
2174vm_page_dequeue(vm_page_t m)
2175{
2176	struct vm_pagequeue *pq;
2177
2178	vm_page_assert_locked(m);
2179	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2180	    m));
2181	pq = vm_page_pagequeue(m);
2182	vm_pagequeue_lock(pq);
2183	m->queue = PQ_NONE;
2184	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2185	vm_pagequeue_cnt_dec(pq);
2186	vm_pagequeue_unlock(pq);
2187}
2188
2189/*
2190 *	vm_page_dequeue_locked:
2191 *
2192 *	Remove the given page from its current page queue.
2193 *
2194 *	The page and page queue must be locked.
2195 */
2196void
2197vm_page_dequeue_locked(vm_page_t m)
2198{
2199	struct vm_pagequeue *pq;
2200
2201	vm_page_lock_assert(m, MA_OWNED);
2202	pq = vm_page_pagequeue(m);
2203	vm_pagequeue_assert_locked(pq);
2204	m->queue = PQ_NONE;
2205	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2206	vm_pagequeue_cnt_dec(pq);
2207}
2208
2209/*
2210 *	vm_page_enqueue:
2211 *
2212 *	Add the given page to the specified page queue.
2213 *
2214 *	The page must be locked.
2215 */
2216static void
2217vm_page_enqueue(uint8_t queue, vm_page_t m)
2218{
2219	struct vm_pagequeue *pq;
2220
2221	vm_page_lock_assert(m, MA_OWNED);
2222	KASSERT(queue < PQ_COUNT,
2223	    ("vm_page_enqueue: invalid queue %u request for page %p",
2224	    queue, m));
2225	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2226	vm_pagequeue_lock(pq);
2227	m->queue = queue;
2228	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2229	vm_pagequeue_cnt_inc(pq);
2230	vm_pagequeue_unlock(pq);
2231}
2232
2233/*
2234 *	vm_page_requeue:
2235 *
2236 *	Move the given page to the tail of its current page queue.
2237 *
2238 *	The page must be locked.
2239 */
2240void
2241vm_page_requeue(vm_page_t m)
2242{
2243	struct vm_pagequeue *pq;
2244
2245	vm_page_lock_assert(m, MA_OWNED);
2246	KASSERT(m->queue != PQ_NONE,
2247	    ("vm_page_requeue: page %p is not queued", m));
2248	pq = vm_page_pagequeue(m);
2249	vm_pagequeue_lock(pq);
2250	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2251	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2252	vm_pagequeue_unlock(pq);
2253}
2254
2255/*
2256 *	vm_page_requeue_locked:
2257 *
2258 *	Move the given page to the tail of its current page queue.
2259 *
2260 *	The page queue must be locked.
2261 */
2262void
2263vm_page_requeue_locked(vm_page_t m)
2264{
2265	struct vm_pagequeue *pq;
2266
2267	KASSERT(m->queue != PQ_NONE,
2268	    ("vm_page_requeue_locked: page %p is not queued", m));
2269	pq = vm_page_pagequeue(m);
2270	vm_pagequeue_assert_locked(pq);
2271	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2272	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2273}
2274
2275/*
2276 *	vm_page_activate:
2277 *
2278 *	Put the specified page on the active list (if appropriate).
2279 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2280 *	mess with it.
2281 *
2282 *	The page must be locked.
2283 */
2284void
2285vm_page_activate(vm_page_t m)
2286{
2287	int queue;
2288
2289	vm_page_lock_assert(m, MA_OWNED);
2290	if ((queue = m->queue) != PQ_ACTIVE) {
2291		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2292			if (m->act_count < ACT_INIT)
2293				m->act_count = ACT_INIT;
2294			if (queue != PQ_NONE)
2295				vm_page_dequeue(m);
2296			vm_page_enqueue(PQ_ACTIVE, m);
2297		} else
2298			KASSERT(queue == PQ_NONE,
2299			    ("vm_page_activate: wired page %p is queued", m));
2300	} else {
2301		if (m->act_count < ACT_INIT)
2302			m->act_count = ACT_INIT;
2303	}
2304}
2305
2306/*
2307 *	vm_page_free_wakeup:
2308 *
2309 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2310 *	routine is called when a page has been added to the cache or free
2311 *	queues.
2312 *
2313 *	The page queues must be locked.
2314 */
2315static inline void
2316vm_page_free_wakeup(void)
2317{
2318
2319	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2320	/*
2321	 * if pageout daemon needs pages, then tell it that there are
2322	 * some free.
2323	 */
2324	if (vm_pageout_pages_needed &&
2325	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2326		wakeup(&vm_pageout_pages_needed);
2327		vm_pageout_pages_needed = 0;
2328	}
2329	/*
2330	 * wakeup processes that are waiting on memory if we hit a
2331	 * high water mark. And wakeup scheduler process if we have
2332	 * lots of memory. this process will swapin processes.
2333	 */
2334	if (vm_pages_needed && !vm_page_count_min()) {
2335		vm_pages_needed = 0;
2336		wakeup(&vm_cnt.v_free_count);
2337	}
2338}
2339
2340/*
2341 *	Turn a cached page into a free page, by changing its attributes.
2342 *	Keep the statistics up-to-date.
2343 *
2344 *	The free page queue must be locked.
2345 */
2346static void
2347vm_page_cache_turn_free(vm_page_t m)
2348{
2349
2350	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2351
2352	m->object = NULL;
2353	m->valid = 0;
2354	KASSERT((m->flags & PG_CACHED) != 0,
2355	    ("vm_page_cache_turn_free: page %p is not cached", m));
2356	m->flags &= ~PG_CACHED;
2357	vm_cnt.v_cache_count--;
2358	vm_phys_freecnt_adj(m, 1);
2359}
2360
2361/*
2362 *	vm_page_free_toq:
2363 *
2364 *	Returns the given page to the free list,
2365 *	disassociating it with any VM object.
2366 *
2367 *	The object must be locked.  The page must be locked if it is managed.
2368 */
2369void
2370vm_page_free_toq(vm_page_t m)
2371{
2372
2373	if ((m->oflags & VPO_UNMANAGED) == 0) {
2374		vm_page_lock_assert(m, MA_OWNED);
2375		KASSERT(!pmap_page_is_mapped(m),
2376		    ("vm_page_free_toq: freeing mapped page %p", m));
2377	} else
2378		KASSERT(m->queue == PQ_NONE,
2379		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2380	PCPU_INC(cnt.v_tfree);
2381
2382	if (vm_page_sbusied(m))
2383		panic("vm_page_free: freeing busy page %p", m);
2384
2385	/*
2386	 * Unqueue, then remove page.  Note that we cannot destroy
2387	 * the page here because we do not want to call the pager's
2388	 * callback routine until after we've put the page on the
2389	 * appropriate free queue.
2390	 */
2391	vm_page_remque(m);
2392	vm_page_remove(m);
2393
2394	/*
2395	 * If fictitious remove object association and
2396	 * return, otherwise delay object association removal.
2397	 */
2398	if ((m->flags & PG_FICTITIOUS) != 0) {
2399		return;
2400	}
2401
2402	m->valid = 0;
2403	vm_page_undirty(m);
2404
2405	if (m->wire_count != 0)
2406		panic("vm_page_free: freeing wired page %p", m);
2407	if (m->hold_count != 0) {
2408		m->flags &= ~PG_ZERO;
2409		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2410		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2411		m->flags |= PG_UNHOLDFREE;
2412	} else {
2413		/*
2414		 * Restore the default memory attribute to the page.
2415		 */
2416		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2417			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2418
2419		/*
2420		 * Insert the page into the physical memory allocator's
2421		 * cache/free page queues.
2422		 */
2423		mtx_lock(&vm_page_queue_free_mtx);
2424		vm_phys_freecnt_adj(m, 1);
2425#if VM_NRESERVLEVEL > 0
2426		if (!vm_reserv_free_page(m))
2427#else
2428		if (TRUE)
2429#endif
2430			vm_phys_free_pages(m, 0);
2431		if ((m->flags & PG_ZERO) != 0)
2432			++vm_page_zero_count;
2433		else
2434			vm_page_zero_idle_wakeup();
2435		vm_page_free_wakeup();
2436		mtx_unlock(&vm_page_queue_free_mtx);
2437	}
2438}
2439
2440/*
2441 *	vm_page_wire:
2442 *
2443 *	Mark this page as wired down by yet
2444 *	another map, removing it from paging queues
2445 *	as necessary.
2446 *
2447 *	If the page is fictitious, then its wire count must remain one.
2448 *
2449 *	The page must be locked.
2450 */
2451void
2452vm_page_wire(vm_page_t m)
2453{
2454
2455	/*
2456	 * Only bump the wire statistics if the page is not already wired,
2457	 * and only unqueue the page if it is on some queue (if it is unmanaged
2458	 * it is already off the queues).
2459	 */
2460	vm_page_lock_assert(m, MA_OWNED);
2461	if ((m->flags & PG_FICTITIOUS) != 0) {
2462		KASSERT(m->wire_count == 1,
2463		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2464		    m));
2465		return;
2466	}
2467	if (m->wire_count == 0) {
2468		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2469		    m->queue == PQ_NONE,
2470		    ("vm_page_wire: unmanaged page %p is queued", m));
2471		vm_page_remque(m);
2472		atomic_add_int(&vm_cnt.v_wire_count, 1);
2473	}
2474	m->wire_count++;
2475	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2476}
2477
2478/*
2479 * vm_page_unwire:
2480 *
2481 * Release one wiring of the specified page, potentially allowing it to be
2482 * paged out.  Returns TRUE if the number of wirings transitions to zero and
2483 * FALSE otherwise.
2484 *
2485 * Only managed pages belonging to an object can be paged out.  If the number
2486 * of wirings transitions to zero and the page is eligible for page out, then
2487 * the page is added to the specified paging queue (unless PQ_NONE is
2488 * specified).
2489 *
2490 * If a page is fictitious, then its wire count must always be one.
2491 *
2492 * A managed page must be locked.
2493 */
2494boolean_t
2495vm_page_unwire(vm_page_t m, uint8_t queue)
2496{
2497
2498	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
2499	    ("vm_page_unwire: invalid queue %u request for page %p",
2500	    queue, m));
2501	if ((m->oflags & VPO_UNMANAGED) == 0)
2502		vm_page_assert_locked(m);
2503	if ((m->flags & PG_FICTITIOUS) != 0) {
2504		KASSERT(m->wire_count == 1,
2505	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2506		return (FALSE);
2507	}
2508	if (m->wire_count > 0) {
2509		m->wire_count--;
2510		if (m->wire_count == 0) {
2511			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2512			if ((m->oflags & VPO_UNMANAGED) == 0 &&
2513			    m->object != NULL && queue != PQ_NONE) {
2514				if (queue == PQ_INACTIVE)
2515					m->flags &= ~PG_WINATCFLS;
2516				vm_page_enqueue(queue, m);
2517			}
2518			return (TRUE);
2519		} else
2520			return (FALSE);
2521	} else
2522		panic("vm_page_unwire: page %p's wire count is zero", m);
2523}
2524
2525/*
2526 * Move the specified page to the inactive queue.
2527 *
2528 * Many pages placed on the inactive queue should actually go
2529 * into the cache, but it is difficult to figure out which.  What
2530 * we do instead, if the inactive target is well met, is to put
2531 * clean pages at the head of the inactive queue instead of the tail.
2532 * This will cause them to be moved to the cache more quickly and
2533 * if not actively re-referenced, reclaimed more quickly.  If we just
2534 * stick these pages at the end of the inactive queue, heavy filesystem
2535 * meta-data accesses can cause an unnecessary paging load on memory bound
2536 * processes.  This optimization causes one-time-use metadata to be
2537 * reused more quickly.
2538 *
2539 * Normally noreuse is FALSE, resulting in LRU operation.  noreuse is set
2540 * to TRUE if we want this page to be 'as if it were placed in the cache',
2541 * except without unmapping it from the process address space.  In
2542 * practice this is implemented by inserting the page at the head of the
2543 * queue, using a marker page to guide FIFO insertion ordering.
2544 *
2545 * The page must be locked.
2546 */
2547static inline void
2548_vm_page_deactivate(vm_page_t m, boolean_t noreuse)
2549{
2550	struct vm_pagequeue *pq;
2551	int queue;
2552
2553	vm_page_assert_locked(m);
2554
2555	/*
2556	 * Ignore if the page is already inactive, unless it is unlikely to be
2557	 * reactivated.
2558	 */
2559	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
2560		return;
2561	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2562		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2563		/* Avoid multiple acquisitions of the inactive queue lock. */
2564		if (queue == PQ_INACTIVE) {
2565			vm_pagequeue_lock(pq);
2566			vm_page_dequeue_locked(m);
2567		} else {
2568			if (queue != PQ_NONE)
2569				vm_page_dequeue(m);
2570			m->flags &= ~PG_WINATCFLS;
2571			vm_pagequeue_lock(pq);
2572		}
2573		m->queue = PQ_INACTIVE;
2574		if (noreuse)
2575			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
2576			    m, plinks.q);
2577		else
2578			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2579		vm_pagequeue_cnt_inc(pq);
2580		vm_pagequeue_unlock(pq);
2581	}
2582}
2583
2584/*
2585 * Move the specified page to the inactive queue.
2586 *
2587 * The page must be locked.
2588 */
2589void
2590vm_page_deactivate(vm_page_t m)
2591{
2592
2593	_vm_page_deactivate(m, FALSE);
2594}
2595
2596/*
2597 * Move the specified page to the inactive queue with the expectation
2598 * that it is unlikely to be reused.
2599 *
2600 * The page must be locked.
2601 */
2602void
2603vm_page_deactivate_noreuse(vm_page_t m)
2604{
2605
2606	_vm_page_deactivate(m, TRUE);
2607}
2608
2609/*
2610 * vm_page_try_to_cache:
2611 *
2612 * Returns 0 on failure, 1 on success
2613 */
2614int
2615vm_page_try_to_cache(vm_page_t m)
2616{
2617
2618	vm_page_lock_assert(m, MA_OWNED);
2619	VM_OBJECT_ASSERT_WLOCKED(m->object);
2620	if (m->dirty || m->hold_count || m->wire_count ||
2621	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2622		return (0);
2623	pmap_remove_all(m);
2624	if (m->dirty)
2625		return (0);
2626	vm_page_cache(m);
2627	return (1);
2628}
2629
2630/*
2631 * vm_page_try_to_free()
2632 *
2633 *	Attempt to free the page.  If we cannot free it, we do nothing.
2634 *	1 is returned on success, 0 on failure.
2635 */
2636int
2637vm_page_try_to_free(vm_page_t m)
2638{
2639
2640	vm_page_lock_assert(m, MA_OWNED);
2641	if (m->object != NULL)
2642		VM_OBJECT_ASSERT_WLOCKED(m->object);
2643	if (m->dirty || m->hold_count || m->wire_count ||
2644	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2645		return (0);
2646	pmap_remove_all(m);
2647	if (m->dirty)
2648		return (0);
2649	vm_page_free(m);
2650	return (1);
2651}
2652
2653/*
2654 * vm_page_cache
2655 *
2656 * Put the specified page onto the page cache queue (if appropriate).
2657 *
2658 * The object and page must be locked.
2659 */
2660void
2661vm_page_cache(vm_page_t m)
2662{
2663	vm_object_t object;
2664	boolean_t cache_was_empty;
2665
2666	vm_page_lock_assert(m, MA_OWNED);
2667	object = m->object;
2668	VM_OBJECT_ASSERT_WLOCKED(object);
2669	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2670	    m->hold_count || m->wire_count)
2671		panic("vm_page_cache: attempting to cache busy page");
2672	KASSERT(!pmap_page_is_mapped(m),
2673	    ("vm_page_cache: page %p is mapped", m));
2674	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2675	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2676	    (object->type == OBJT_SWAP &&
2677	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2678		/*
2679		 * Hypothesis: A cache-eligible page belonging to a
2680		 * default object or swap object but without a backing
2681		 * store must be zero filled.
2682		 */
2683		vm_page_free(m);
2684		return;
2685	}
2686	KASSERT((m->flags & PG_CACHED) == 0,
2687	    ("vm_page_cache: page %p is already cached", m));
2688
2689	/*
2690	 * Remove the page from the paging queues.
2691	 */
2692	vm_page_remque(m);
2693
2694	/*
2695	 * Remove the page from the object's collection of resident
2696	 * pages.
2697	 */
2698	vm_radix_remove(&object->rtree, m->pindex);
2699	TAILQ_REMOVE(&object->memq, m, listq);
2700	object->resident_page_count--;
2701
2702	/*
2703	 * Restore the default memory attribute to the page.
2704	 */
2705	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2706		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2707
2708	/*
2709	 * Insert the page into the object's collection of cached pages
2710	 * and the physical memory allocator's cache/free page queues.
2711	 */
2712	m->flags &= ~PG_ZERO;
2713	mtx_lock(&vm_page_queue_free_mtx);
2714	cache_was_empty = vm_radix_is_empty(&object->cache);
2715	if (vm_radix_insert(&object->cache, m)) {
2716		mtx_unlock(&vm_page_queue_free_mtx);
2717		if (object->resident_page_count == 0)
2718			vdrop(object->handle);
2719		m->object = NULL;
2720		vm_page_free(m);
2721		return;
2722	}
2723
2724	/*
2725	 * The above call to vm_radix_insert() could reclaim the one pre-
2726	 * existing cached page from this object, resulting in a call to
2727	 * vdrop().
2728	 */
2729	if (!cache_was_empty)
2730		cache_was_empty = vm_radix_is_singleton(&object->cache);
2731
2732	m->flags |= PG_CACHED;
2733	vm_cnt.v_cache_count++;
2734	PCPU_INC(cnt.v_tcached);
2735#if VM_NRESERVLEVEL > 0
2736	if (!vm_reserv_free_page(m)) {
2737#else
2738	if (TRUE) {
2739#endif
2740		vm_phys_free_pages(m, 0);
2741	}
2742	vm_page_free_wakeup();
2743	mtx_unlock(&vm_page_queue_free_mtx);
2744
2745	/*
2746	 * Increment the vnode's hold count if this is the object's only
2747	 * cached page.  Decrement the vnode's hold count if this was
2748	 * the object's only resident page.
2749	 */
2750	if (object->type == OBJT_VNODE) {
2751		if (cache_was_empty && object->resident_page_count != 0)
2752			vhold(object->handle);
2753		else if (!cache_was_empty && object->resident_page_count == 0)
2754			vdrop(object->handle);
2755	}
2756}
2757
2758/*
2759 * vm_page_advise
2760 *
2761 * 	Deactivate or do nothing, as appropriate.
2762 *
2763 *	The object and page must be locked.
2764 */
2765void
2766vm_page_advise(vm_page_t m, int advice)
2767{
2768
2769	vm_page_assert_locked(m);
2770	VM_OBJECT_ASSERT_WLOCKED(m->object);
2771	if (advice == MADV_FREE)
2772		/*
2773		 * Mark the page clean.  This will allow the page to be freed
2774		 * up by the system.  However, such pages are often reused
2775		 * quickly by malloc() so we do not do anything that would
2776		 * cause a page fault if we can help it.
2777		 *
2778		 * Specifically, we do not try to actually free the page now
2779		 * nor do we try to put it in the cache (which would cause a
2780		 * page fault on reuse).
2781		 *
2782		 * But we do make the page as freeable as we can without
2783		 * actually taking the step of unmapping it.
2784		 */
2785		m->dirty = 0;
2786	else if (advice != MADV_DONTNEED)
2787		return;
2788
2789	/*
2790	 * Clear any references to the page.  Otherwise, the page daemon will
2791	 * immediately reactivate the page.
2792	 */
2793	vm_page_aflag_clear(m, PGA_REFERENCED);
2794
2795	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2796		vm_page_dirty(m);
2797
2798	/*
2799	 * Place clean pages at the head of the inactive queue rather than the
2800	 * tail, thus defeating the queue's LRU operation and ensuring that the
2801	 * page will be reused quickly.
2802	 */
2803	_vm_page_deactivate(m, m->dirty == 0);
2804}
2805
2806/*
2807 * Grab a page, waiting until we are waken up due to the page
2808 * changing state.  We keep on waiting, if the page continues
2809 * to be in the object.  If the page doesn't exist, first allocate it
2810 * and then conditionally zero it.
2811 *
2812 * This routine may sleep.
2813 *
2814 * The object must be locked on entry.  The lock will, however, be released
2815 * and reacquired if the routine sleeps.
2816 */
2817vm_page_t
2818vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2819{
2820	vm_page_t m;
2821	int sleep;
2822
2823	VM_OBJECT_ASSERT_WLOCKED(object);
2824	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2825	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2826	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2827retrylookup:
2828	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2829		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2830		    vm_page_xbusied(m) : vm_page_busied(m);
2831		if (sleep) {
2832			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
2833				return (NULL);
2834			/*
2835			 * Reference the page before unlocking and
2836			 * sleeping so that the page daemon is less
2837			 * likely to reclaim it.
2838			 */
2839			vm_page_aflag_set(m, PGA_REFERENCED);
2840			vm_page_lock(m);
2841			VM_OBJECT_WUNLOCK(object);
2842			vm_page_busy_sleep(m, "pgrbwt");
2843			VM_OBJECT_WLOCK(object);
2844			goto retrylookup;
2845		} else {
2846			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2847				vm_page_lock(m);
2848				vm_page_wire(m);
2849				vm_page_unlock(m);
2850			}
2851			if ((allocflags &
2852			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2853				vm_page_xbusy(m);
2854			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2855				vm_page_sbusy(m);
2856			return (m);
2857		}
2858	}
2859	m = vm_page_alloc(object, pindex, allocflags);
2860	if (m == NULL) {
2861		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
2862			return (NULL);
2863		VM_OBJECT_WUNLOCK(object);
2864		VM_WAIT;
2865		VM_OBJECT_WLOCK(object);
2866		goto retrylookup;
2867	} else if (m->valid != 0)
2868		return (m);
2869	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2870		pmap_zero_page(m);
2871	return (m);
2872}
2873
2874/*
2875 * Mapping function for valid or dirty bits in a page.
2876 *
2877 * Inputs are required to range within a page.
2878 */
2879vm_page_bits_t
2880vm_page_bits(int base, int size)
2881{
2882	int first_bit;
2883	int last_bit;
2884
2885	KASSERT(
2886	    base + size <= PAGE_SIZE,
2887	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2888	);
2889
2890	if (size == 0)		/* handle degenerate case */
2891		return (0);
2892
2893	first_bit = base >> DEV_BSHIFT;
2894	last_bit = (base + size - 1) >> DEV_BSHIFT;
2895
2896	return (((vm_page_bits_t)2 << last_bit) -
2897	    ((vm_page_bits_t)1 << first_bit));
2898}
2899
2900/*
2901 *	vm_page_set_valid_range:
2902 *
2903 *	Sets portions of a page valid.  The arguments are expected
2904 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2905 *	of any partial chunks touched by the range.  The invalid portion of
2906 *	such chunks will be zeroed.
2907 *
2908 *	(base + size) must be less then or equal to PAGE_SIZE.
2909 */
2910void
2911vm_page_set_valid_range(vm_page_t m, int base, int size)
2912{
2913	int endoff, frag;
2914
2915	VM_OBJECT_ASSERT_WLOCKED(m->object);
2916	if (size == 0)	/* handle degenerate case */
2917		return;
2918
2919	/*
2920	 * If the base is not DEV_BSIZE aligned and the valid
2921	 * bit is clear, we have to zero out a portion of the
2922	 * first block.
2923	 */
2924	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2925	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2926		pmap_zero_page_area(m, frag, base - frag);
2927
2928	/*
2929	 * If the ending offset is not DEV_BSIZE aligned and the
2930	 * valid bit is clear, we have to zero out a portion of
2931	 * the last block.
2932	 */
2933	endoff = base + size;
2934	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2935	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2936		pmap_zero_page_area(m, endoff,
2937		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2938
2939	/*
2940	 * Assert that no previously invalid block that is now being validated
2941	 * is already dirty.
2942	 */
2943	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2944	    ("vm_page_set_valid_range: page %p is dirty", m));
2945
2946	/*
2947	 * Set valid bits inclusive of any overlap.
2948	 */
2949	m->valid |= vm_page_bits(base, size);
2950}
2951
2952/*
2953 * Clear the given bits from the specified page's dirty field.
2954 */
2955static __inline void
2956vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2957{
2958	uintptr_t addr;
2959#if PAGE_SIZE < 16384
2960	int shift;
2961#endif
2962
2963	/*
2964	 * If the object is locked and the page is neither exclusive busy nor
2965	 * write mapped, then the page's dirty field cannot possibly be
2966	 * set by a concurrent pmap operation.
2967	 */
2968	VM_OBJECT_ASSERT_WLOCKED(m->object);
2969	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2970		m->dirty &= ~pagebits;
2971	else {
2972		/*
2973		 * The pmap layer can call vm_page_dirty() without
2974		 * holding a distinguished lock.  The combination of
2975		 * the object's lock and an atomic operation suffice
2976		 * to guarantee consistency of the page dirty field.
2977		 *
2978		 * For PAGE_SIZE == 32768 case, compiler already
2979		 * properly aligns the dirty field, so no forcible
2980		 * alignment is needed. Only require existence of
2981		 * atomic_clear_64 when page size is 32768.
2982		 */
2983		addr = (uintptr_t)&m->dirty;
2984#if PAGE_SIZE == 32768
2985		atomic_clear_64((uint64_t *)addr, pagebits);
2986#elif PAGE_SIZE == 16384
2987		atomic_clear_32((uint32_t *)addr, pagebits);
2988#else		/* PAGE_SIZE <= 8192 */
2989		/*
2990		 * Use a trick to perform a 32-bit atomic on the
2991		 * containing aligned word, to not depend on the existence
2992		 * of atomic_clear_{8, 16}.
2993		 */
2994		shift = addr & (sizeof(uint32_t) - 1);
2995#if BYTE_ORDER == BIG_ENDIAN
2996		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2997#else
2998		shift *= NBBY;
2999#endif
3000		addr &= ~(sizeof(uint32_t) - 1);
3001		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3002#endif		/* PAGE_SIZE */
3003	}
3004}
3005
3006/*
3007 *	vm_page_set_validclean:
3008 *
3009 *	Sets portions of a page valid and clean.  The arguments are expected
3010 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3011 *	of any partial chunks touched by the range.  The invalid portion of
3012 *	such chunks will be zero'd.
3013 *
3014 *	(base + size) must be less then or equal to PAGE_SIZE.
3015 */
3016void
3017vm_page_set_validclean(vm_page_t m, int base, int size)
3018{
3019	vm_page_bits_t oldvalid, pagebits;
3020	int endoff, frag;
3021
3022	VM_OBJECT_ASSERT_WLOCKED(m->object);
3023	if (size == 0)	/* handle degenerate case */
3024		return;
3025
3026	/*
3027	 * If the base is not DEV_BSIZE aligned and the valid
3028	 * bit is clear, we have to zero out a portion of the
3029	 * first block.
3030	 */
3031	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3032	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3033		pmap_zero_page_area(m, frag, base - frag);
3034
3035	/*
3036	 * If the ending offset is not DEV_BSIZE aligned and the
3037	 * valid bit is clear, we have to zero out a portion of
3038	 * the last block.
3039	 */
3040	endoff = base + size;
3041	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3042	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3043		pmap_zero_page_area(m, endoff,
3044		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3045
3046	/*
3047	 * Set valid, clear dirty bits.  If validating the entire
3048	 * page we can safely clear the pmap modify bit.  We also
3049	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3050	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3051	 * be set again.
3052	 *
3053	 * We set valid bits inclusive of any overlap, but we can only
3054	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3055	 * the range.
3056	 */
3057	oldvalid = m->valid;
3058	pagebits = vm_page_bits(base, size);
3059	m->valid |= pagebits;
3060#if 0	/* NOT YET */
3061	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3062		frag = DEV_BSIZE - frag;
3063		base += frag;
3064		size -= frag;
3065		if (size < 0)
3066			size = 0;
3067	}
3068	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3069#endif
3070	if (base == 0 && size == PAGE_SIZE) {
3071		/*
3072		 * The page can only be modified within the pmap if it is
3073		 * mapped, and it can only be mapped if it was previously
3074		 * fully valid.
3075		 */
3076		if (oldvalid == VM_PAGE_BITS_ALL)
3077			/*
3078			 * Perform the pmap_clear_modify() first.  Otherwise,
3079			 * a concurrent pmap operation, such as
3080			 * pmap_protect(), could clear a modification in the
3081			 * pmap and set the dirty field on the page before
3082			 * pmap_clear_modify() had begun and after the dirty
3083			 * field was cleared here.
3084			 */
3085			pmap_clear_modify(m);
3086		m->dirty = 0;
3087		m->oflags &= ~VPO_NOSYNC;
3088	} else if (oldvalid != VM_PAGE_BITS_ALL)
3089		m->dirty &= ~pagebits;
3090	else
3091		vm_page_clear_dirty_mask(m, pagebits);
3092}
3093
3094void
3095vm_page_clear_dirty(vm_page_t m, int base, int size)
3096{
3097
3098	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3099}
3100
3101/*
3102 *	vm_page_set_invalid:
3103 *
3104 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3105 *	valid and dirty bits for the effected areas are cleared.
3106 */
3107void
3108vm_page_set_invalid(vm_page_t m, int base, int size)
3109{
3110	vm_page_bits_t bits;
3111	vm_object_t object;
3112
3113	object = m->object;
3114	VM_OBJECT_ASSERT_WLOCKED(object);
3115	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3116	    size >= object->un_pager.vnp.vnp_size)
3117		bits = VM_PAGE_BITS_ALL;
3118	else
3119		bits = vm_page_bits(base, size);
3120	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3121	    bits != 0)
3122		pmap_remove_all(m);
3123	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3124	    !pmap_page_is_mapped(m),
3125	    ("vm_page_set_invalid: page %p is mapped", m));
3126	m->valid &= ~bits;
3127	m->dirty &= ~bits;
3128}
3129
3130/*
3131 * vm_page_zero_invalid()
3132 *
3133 *	The kernel assumes that the invalid portions of a page contain
3134 *	garbage, but such pages can be mapped into memory by user code.
3135 *	When this occurs, we must zero out the non-valid portions of the
3136 *	page so user code sees what it expects.
3137 *
3138 *	Pages are most often semi-valid when the end of a file is mapped
3139 *	into memory and the file's size is not page aligned.
3140 */
3141void
3142vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3143{
3144	int b;
3145	int i;
3146
3147	VM_OBJECT_ASSERT_WLOCKED(m->object);
3148	/*
3149	 * Scan the valid bits looking for invalid sections that
3150	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3151	 * valid bit may be set ) have already been zeroed by
3152	 * vm_page_set_validclean().
3153	 */
3154	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3155		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3156		    (m->valid & ((vm_page_bits_t)1 << i))) {
3157			if (i > b) {
3158				pmap_zero_page_area(m,
3159				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3160			}
3161			b = i + 1;
3162		}
3163	}
3164
3165	/*
3166	 * setvalid is TRUE when we can safely set the zero'd areas
3167	 * as being valid.  We can do this if there are no cache consistancy
3168	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3169	 */
3170	if (setvalid)
3171		m->valid = VM_PAGE_BITS_ALL;
3172}
3173
3174/*
3175 *	vm_page_is_valid:
3176 *
3177 *	Is (partial) page valid?  Note that the case where size == 0
3178 *	will return FALSE in the degenerate case where the page is
3179 *	entirely invalid, and TRUE otherwise.
3180 */
3181int
3182vm_page_is_valid(vm_page_t m, int base, int size)
3183{
3184	vm_page_bits_t bits;
3185
3186	VM_OBJECT_ASSERT_LOCKED(m->object);
3187	bits = vm_page_bits(base, size);
3188	return (m->valid != 0 && (m->valid & bits) == bits);
3189}
3190
3191/*
3192 *	vm_page_ps_is_valid:
3193 *
3194 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3195 */
3196boolean_t
3197vm_page_ps_is_valid(vm_page_t m)
3198{
3199	int i, npages;
3200
3201	VM_OBJECT_ASSERT_LOCKED(m->object);
3202	npages = atop(pagesizes[m->psind]);
3203
3204	/*
3205	 * The physically contiguous pages that make up a superpage, i.e., a
3206	 * page with a page size index ("psind") greater than zero, will
3207	 * occupy adjacent entries in vm_page_array[].
3208	 */
3209	for (i = 0; i < npages; i++) {
3210		if (m[i].valid != VM_PAGE_BITS_ALL)
3211			return (FALSE);
3212	}
3213	return (TRUE);
3214}
3215
3216/*
3217 * Set the page's dirty bits if the page is modified.
3218 */
3219void
3220vm_page_test_dirty(vm_page_t m)
3221{
3222
3223	VM_OBJECT_ASSERT_WLOCKED(m->object);
3224	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3225		vm_page_dirty(m);
3226}
3227
3228void
3229vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3230{
3231
3232	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3233}
3234
3235void
3236vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3237{
3238
3239	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3240}
3241
3242int
3243vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3244{
3245
3246	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3247}
3248
3249#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3250void
3251vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3252{
3253
3254	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3255}
3256
3257void
3258vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3259{
3260
3261	mtx_assert_(vm_page_lockptr(m), a, file, line);
3262}
3263#endif
3264
3265#ifdef INVARIANTS
3266void
3267vm_page_object_lock_assert(vm_page_t m)
3268{
3269
3270	/*
3271	 * Certain of the page's fields may only be modified by the
3272	 * holder of the containing object's lock or the exclusive busy.
3273	 * holder.  Unfortunately, the holder of the write busy is
3274	 * not recorded, and thus cannot be checked here.
3275	 */
3276	if (m->object != NULL && !vm_page_xbusied(m))
3277		VM_OBJECT_ASSERT_WLOCKED(m->object);
3278}
3279
3280void
3281vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3282{
3283
3284	if ((bits & PGA_WRITEABLE) == 0)
3285		return;
3286
3287	/*
3288	 * The PGA_WRITEABLE flag can only be set if the page is
3289	 * managed, is exclusively busied or the object is locked.
3290	 * Currently, this flag is only set by pmap_enter().
3291	 */
3292	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3293	    ("PGA_WRITEABLE on unmanaged page"));
3294	if (!vm_page_xbusied(m))
3295		VM_OBJECT_ASSERT_LOCKED(m->object);
3296}
3297#endif
3298
3299#include "opt_ddb.h"
3300#ifdef DDB
3301#include <sys/kernel.h>
3302
3303#include <ddb/ddb.h>
3304
3305DB_SHOW_COMMAND(page, vm_page_print_page_info)
3306{
3307	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3308	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3309	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3310	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3311	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3312	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3313	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3314	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3315	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3316}
3317
3318DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3319{
3320	int dom;
3321
3322	db_printf("pq_free %d pq_cache %d\n",
3323	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3324	for (dom = 0; dom < vm_ndomains; dom++) {
3325		db_printf(
3326	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3327		    dom,
3328		    vm_dom[dom].vmd_page_count,
3329		    vm_dom[dom].vmd_free_count,
3330		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3331		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3332		    vm_dom[dom].vmd_pass);
3333	}
3334}
3335
3336DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3337{
3338	vm_page_t m;
3339	boolean_t phys;
3340
3341	if (!have_addr) {
3342		db_printf("show pginfo addr\n");
3343		return;
3344	}
3345
3346	phys = strchr(modif, 'p') != NULL;
3347	if (phys)
3348		m = PHYS_TO_VM_PAGE(addr);
3349	else
3350		m = (vm_page_t)addr;
3351	db_printf(
3352    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3353    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3354	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3355	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3356	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3357}
3358#endif /* DDB */
3359