vm_page.c revision 288431
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 288431 2015-09-30 23:06:29Z markj $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/linker.h>
95#include <sys/malloc.h>
96#include <sys/mman.h>
97#include <sys/msgbuf.h>
98#include <sys/mutex.h>
99#include <sys/proc.h>
100#include <sys/rwlock.h>
101#include <sys/sbuf.h>
102#include <sys/sysctl.h>
103#include <sys/vmmeter.h>
104#include <sys/vnode.h>
105
106#include <vm/vm.h>
107#include <vm/pmap.h>
108#include <vm/vm_param.h>
109#include <vm/vm_kern.h>
110#include <vm/vm_object.h>
111#include <vm/vm_page.h>
112#include <vm/vm_pageout.h>
113#include <vm/vm_pager.h>
114#include <vm/vm_phys.h>
115#include <vm/vm_radix.h>
116#include <vm/vm_reserv.h>
117#include <vm/vm_extern.h>
118#include <vm/uma.h>
119#include <vm/uma_int.h>
120
121#include <machine/md_var.h>
122
123/*
124 *	Associated with page of user-allocatable memory is a
125 *	page structure.
126 */
127
128struct vm_domain vm_dom[MAXMEMDOM];
129struct mtx_padalign vm_page_queue_free_mtx;
130
131struct mtx_padalign pa_lock[PA_LOCK_COUNT];
132
133vm_page_t vm_page_array;
134long vm_page_array_size;
135long first_page;
136int vm_page_zero_count;
137
138static int boot_pages = UMA_BOOT_PAGES;
139SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
140    &boot_pages, 0,
141    "number of pages allocated for bootstrapping the VM system");
142
143static int pa_tryrelock_restart;
144SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
145    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
146
147static TAILQ_HEAD(, vm_page) blacklist_head;
148static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
149SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
150    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
151
152
153static uma_zone_t fakepg_zone;
154
155static struct vnode *vm_page_alloc_init(vm_page_t m);
156static void vm_page_cache_turn_free(vm_page_t m);
157static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
158static void vm_page_enqueue(uint8_t queue, vm_page_t m);
159static void vm_page_init_fakepg(void *dummy);
160static int vm_page_insert_after(vm_page_t m, vm_object_t object,
161    vm_pindex_t pindex, vm_page_t mpred);
162static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
163    vm_page_t mpred);
164
165SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
166
167static void
168vm_page_init_fakepg(void *dummy)
169{
170
171	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
172	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
173}
174
175/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
176#if PAGE_SIZE == 32768
177#ifdef CTASSERT
178CTASSERT(sizeof(u_long) >= 8);
179#endif
180#endif
181
182/*
183 * Try to acquire a physical address lock while a pmap is locked.  If we
184 * fail to trylock we unlock and lock the pmap directly and cache the
185 * locked pa in *locked.  The caller should then restart their loop in case
186 * the virtual to physical mapping has changed.
187 */
188int
189vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
190{
191	vm_paddr_t lockpa;
192
193	lockpa = *locked;
194	*locked = pa;
195	if (lockpa) {
196		PA_LOCK_ASSERT(lockpa, MA_OWNED);
197		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
198			return (0);
199		PA_UNLOCK(lockpa);
200	}
201	if (PA_TRYLOCK(pa))
202		return (0);
203	PMAP_UNLOCK(pmap);
204	atomic_add_int(&pa_tryrelock_restart, 1);
205	PA_LOCK(pa);
206	PMAP_LOCK(pmap);
207	return (EAGAIN);
208}
209
210/*
211 *	vm_set_page_size:
212 *
213 *	Sets the page size, perhaps based upon the memory
214 *	size.  Must be called before any use of page-size
215 *	dependent functions.
216 */
217void
218vm_set_page_size(void)
219{
220	if (vm_cnt.v_page_size == 0)
221		vm_cnt.v_page_size = PAGE_SIZE;
222	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
223		panic("vm_set_page_size: page size not a power of two");
224}
225
226/*
227 *	vm_page_blacklist_next:
228 *
229 *	Find the next entry in the provided string of blacklist
230 *	addresses.  Entries are separated by space, comma, or newline.
231 *	If an invalid integer is encountered then the rest of the
232 *	string is skipped.  Updates the list pointer to the next
233 *	character, or NULL if the string is exhausted or invalid.
234 */
235static vm_paddr_t
236vm_page_blacklist_next(char **list, char *end)
237{
238	vm_paddr_t bad;
239	char *cp, *pos;
240
241	if (list == NULL || *list == NULL)
242		return (0);
243	if (**list =='\0') {
244		*list = NULL;
245		return (0);
246	}
247
248	/*
249	 * If there's no end pointer then the buffer is coming from
250	 * the kenv and we know it's null-terminated.
251	 */
252	if (end == NULL)
253		end = *list + strlen(*list);
254
255	/* Ensure that strtoq() won't walk off the end */
256	if (*end != '\0') {
257		if (*end == '\n' || *end == ' ' || *end  == ',')
258			*end = '\0';
259		else {
260			printf("Blacklist not terminated, skipping\n");
261			*list = NULL;
262			return (0);
263		}
264	}
265
266	for (pos = *list; *pos != '\0'; pos = cp) {
267		bad = strtoq(pos, &cp, 0);
268		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
269			if (bad == 0) {
270				if (++cp < end)
271					continue;
272				else
273					break;
274			}
275		} else
276			break;
277		if (*cp == '\0' || ++cp >= end)
278			*list = NULL;
279		else
280			*list = cp;
281		return (trunc_page(bad));
282	}
283	printf("Garbage in RAM blacklist, skipping\n");
284	*list = NULL;
285	return (0);
286}
287
288/*
289 *	vm_page_blacklist_check:
290 *
291 *	Iterate through the provided string of blacklist addresses, pulling
292 *	each entry out of the physical allocator free list and putting it
293 *	onto a list for reporting via the vm.page_blacklist sysctl.
294 */
295static void
296vm_page_blacklist_check(char *list, char *end)
297{
298	vm_paddr_t pa;
299	vm_page_t m;
300	char *next;
301	int ret;
302
303	next = list;
304	while (next != NULL) {
305		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
306			continue;
307		m = vm_phys_paddr_to_vm_page(pa);
308		if (m == NULL)
309			continue;
310		mtx_lock(&vm_page_queue_free_mtx);
311		ret = vm_phys_unfree_page(m);
312		mtx_unlock(&vm_page_queue_free_mtx);
313		if (ret == TRUE) {
314			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
315			if (bootverbose)
316				printf("Skipping page with pa 0x%jx\n",
317				    (uintmax_t)pa);
318		}
319	}
320}
321
322/*
323 *	vm_page_blacklist_load:
324 *
325 *	Search for a special module named "ram_blacklist".  It'll be a
326 *	plain text file provided by the user via the loader directive
327 *	of the same name.
328 */
329static void
330vm_page_blacklist_load(char **list, char **end)
331{
332	void *mod;
333	u_char *ptr;
334	u_int len;
335
336	mod = NULL;
337	ptr = NULL;
338
339	mod = preload_search_by_type("ram_blacklist");
340	if (mod != NULL) {
341		ptr = preload_fetch_addr(mod);
342		len = preload_fetch_size(mod);
343        }
344	*list = ptr;
345	if (ptr != NULL)
346		*end = ptr + len;
347	else
348		*end = NULL;
349	return;
350}
351
352static int
353sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
354{
355	vm_page_t m;
356	struct sbuf sbuf;
357	int error, first;
358
359	first = 1;
360	error = sysctl_wire_old_buffer(req, 0);
361	if (error != 0)
362		return (error);
363	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
364	TAILQ_FOREACH(m, &blacklist_head, listq) {
365		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
366		    (uintmax_t)m->phys_addr);
367		first = 0;
368	}
369	error = sbuf_finish(&sbuf);
370	sbuf_delete(&sbuf);
371	return (error);
372}
373
374static void
375vm_page_domain_init(struct vm_domain *vmd)
376{
377	struct vm_pagequeue *pq;
378	int i;
379
380	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
381	    "vm inactive pagequeue";
382	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
383	    &vm_cnt.v_inactive_count;
384	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
385	    "vm active pagequeue";
386	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
387	    &vm_cnt.v_active_count;
388	vmd->vmd_page_count = 0;
389	vmd->vmd_free_count = 0;
390	vmd->vmd_segs = 0;
391	vmd->vmd_oom = FALSE;
392	vmd->vmd_pass = 0;
393	for (i = 0; i < PQ_COUNT; i++) {
394		pq = &vmd->vmd_pagequeues[i];
395		TAILQ_INIT(&pq->pq_pl);
396		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
397		    MTX_DEF | MTX_DUPOK);
398	}
399}
400
401/*
402 *	vm_page_startup:
403 *
404 *	Initializes the resident memory module.
405 *
406 *	Allocates memory for the page cells, and
407 *	for the object/offset-to-page hash table headers.
408 *	Each page cell is initialized and placed on the free list.
409 */
410vm_offset_t
411vm_page_startup(vm_offset_t vaddr)
412{
413	vm_offset_t mapped;
414	vm_paddr_t page_range;
415	vm_paddr_t new_end;
416	int i;
417	vm_paddr_t pa;
418	vm_paddr_t last_pa;
419	char *list, *listend;
420	vm_paddr_t end;
421	vm_paddr_t biggestsize;
422	vm_paddr_t low_water, high_water;
423	int biggestone;
424
425	biggestsize = 0;
426	biggestone = 0;
427	vaddr = round_page(vaddr);
428
429	for (i = 0; phys_avail[i + 1]; i += 2) {
430		phys_avail[i] = round_page(phys_avail[i]);
431		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
432	}
433
434	low_water = phys_avail[0];
435	high_water = phys_avail[1];
436
437	for (i = 0; i < vm_phys_nsegs; i++) {
438		if (vm_phys_segs[i].start < low_water)
439			low_water = vm_phys_segs[i].start;
440		if (vm_phys_segs[i].end > high_water)
441			high_water = vm_phys_segs[i].end;
442	}
443	for (i = 0; phys_avail[i + 1]; i += 2) {
444		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
445
446		if (size > biggestsize) {
447			biggestone = i;
448			biggestsize = size;
449		}
450		if (phys_avail[i] < low_water)
451			low_water = phys_avail[i];
452		if (phys_avail[i + 1] > high_water)
453			high_water = phys_avail[i + 1];
454	}
455
456	end = phys_avail[biggestone+1];
457
458	/*
459	 * Initialize the page and queue locks.
460	 */
461	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
462	for (i = 0; i < PA_LOCK_COUNT; i++)
463		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
464	for (i = 0; i < vm_ndomains; i++)
465		vm_page_domain_init(&vm_dom[i]);
466
467	/*
468	 * Allocate memory for use when boot strapping the kernel memory
469	 * allocator.
470	 *
471	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
472	 * manually fetch the value.
473	 */
474	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
475	new_end = end - (boot_pages * UMA_SLAB_SIZE);
476	new_end = trunc_page(new_end);
477	mapped = pmap_map(&vaddr, new_end, end,
478	    VM_PROT_READ | VM_PROT_WRITE);
479	bzero((void *)mapped, end - new_end);
480	uma_startup((void *)mapped, boot_pages);
481
482#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
483    defined(__i386__) || defined(__mips__)
484	/*
485	 * Allocate a bitmap to indicate that a random physical page
486	 * needs to be included in a minidump.
487	 *
488	 * The amd64 port needs this to indicate which direct map pages
489	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
490	 *
491	 * However, i386 still needs this workspace internally within the
492	 * minidump code.  In theory, they are not needed on i386, but are
493	 * included should the sf_buf code decide to use them.
494	 */
495	last_pa = 0;
496	for (i = 0; dump_avail[i + 1] != 0; i += 2)
497		if (dump_avail[i + 1] > last_pa)
498			last_pa = dump_avail[i + 1];
499	page_range = last_pa / PAGE_SIZE;
500	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
501	new_end -= vm_page_dump_size;
502	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
503	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
504	bzero((void *)vm_page_dump, vm_page_dump_size);
505#endif
506#ifdef __amd64__
507	/*
508	 * Request that the physical pages underlying the message buffer be
509	 * included in a crash dump.  Since the message buffer is accessed
510	 * through the direct map, they are not automatically included.
511	 */
512	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
513	last_pa = pa + round_page(msgbufsize);
514	while (pa < last_pa) {
515		dump_add_page(pa);
516		pa += PAGE_SIZE;
517	}
518#endif
519	/*
520	 * Compute the number of pages of memory that will be available for
521	 * use (taking into account the overhead of a page structure per
522	 * page).
523	 */
524	first_page = low_water / PAGE_SIZE;
525#ifdef VM_PHYSSEG_SPARSE
526	page_range = 0;
527	for (i = 0; i < vm_phys_nsegs; i++) {
528		page_range += atop(vm_phys_segs[i].end -
529		    vm_phys_segs[i].start);
530	}
531	for (i = 0; phys_avail[i + 1] != 0; i += 2)
532		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
533#elif defined(VM_PHYSSEG_DENSE)
534	page_range = high_water / PAGE_SIZE - first_page;
535#else
536#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
537#endif
538	end = new_end;
539
540	/*
541	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
542	 */
543	vaddr += PAGE_SIZE;
544
545	/*
546	 * Initialize the mem entry structures now, and put them in the free
547	 * queue.
548	 */
549	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
550	mapped = pmap_map(&vaddr, new_end, end,
551	    VM_PROT_READ | VM_PROT_WRITE);
552	vm_page_array = (vm_page_t) mapped;
553#if VM_NRESERVLEVEL > 0
554	/*
555	 * Allocate memory for the reservation management system's data
556	 * structures.
557	 */
558	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
559#endif
560#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
561	/*
562	 * pmap_map on arm64, amd64, and mips can come out of the direct-map,
563	 * not kvm like i386, so the pages must be tracked for a crashdump to
564	 * include this data.  This includes the vm_page_array and the early
565	 * UMA bootstrap pages.
566	 */
567	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
568		dump_add_page(pa);
569#endif
570	phys_avail[biggestone + 1] = new_end;
571
572	/*
573	 * Add physical memory segments corresponding to the available
574	 * physical pages.
575	 */
576	for (i = 0; phys_avail[i + 1] != 0; i += 2)
577		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
578
579	/*
580	 * Clear all of the page structures
581	 */
582	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
583	for (i = 0; i < page_range; i++)
584		vm_page_array[i].order = VM_NFREEORDER;
585	vm_page_array_size = page_range;
586
587	/*
588	 * Initialize the physical memory allocator.
589	 */
590	vm_phys_init();
591
592	/*
593	 * Add every available physical page that is not blacklisted to
594	 * the free lists.
595	 */
596	vm_cnt.v_page_count = 0;
597	vm_cnt.v_free_count = 0;
598	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
599		pa = phys_avail[i];
600		last_pa = phys_avail[i + 1];
601		while (pa < last_pa) {
602			vm_phys_add_page(pa);
603			pa += PAGE_SIZE;
604		}
605	}
606
607	TAILQ_INIT(&blacklist_head);
608	vm_page_blacklist_load(&list, &listend);
609	vm_page_blacklist_check(list, listend);
610
611	list = kern_getenv("vm.blacklist");
612	vm_page_blacklist_check(list, NULL);
613
614	freeenv(list);
615#if VM_NRESERVLEVEL > 0
616	/*
617	 * Initialize the reservation management system.
618	 */
619	vm_reserv_init();
620#endif
621	return (vaddr);
622}
623
624void
625vm_page_reference(vm_page_t m)
626{
627
628	vm_page_aflag_set(m, PGA_REFERENCED);
629}
630
631/*
632 *	vm_page_busy_downgrade:
633 *
634 *	Downgrade an exclusive busy page into a single shared busy page.
635 */
636void
637vm_page_busy_downgrade(vm_page_t m)
638{
639	u_int x;
640
641	vm_page_assert_xbusied(m);
642
643	for (;;) {
644		x = m->busy_lock;
645		x &= VPB_BIT_WAITERS;
646		if (atomic_cmpset_rel_int(&m->busy_lock,
647		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
648			break;
649	}
650}
651
652/*
653 *	vm_page_sbusied:
654 *
655 *	Return a positive value if the page is shared busied, 0 otherwise.
656 */
657int
658vm_page_sbusied(vm_page_t m)
659{
660	u_int x;
661
662	x = m->busy_lock;
663	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
664}
665
666/*
667 *	vm_page_sunbusy:
668 *
669 *	Shared unbusy a page.
670 */
671void
672vm_page_sunbusy(vm_page_t m)
673{
674	u_int x;
675
676	vm_page_assert_sbusied(m);
677
678	for (;;) {
679		x = m->busy_lock;
680		if (VPB_SHARERS(x) > 1) {
681			if (atomic_cmpset_int(&m->busy_lock, x,
682			    x - VPB_ONE_SHARER))
683				break;
684			continue;
685		}
686		if ((x & VPB_BIT_WAITERS) == 0) {
687			KASSERT(x == VPB_SHARERS_WORD(1),
688			    ("vm_page_sunbusy: invalid lock state"));
689			if (atomic_cmpset_int(&m->busy_lock,
690			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
691				break;
692			continue;
693		}
694		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
695		    ("vm_page_sunbusy: invalid lock state for waiters"));
696
697		vm_page_lock(m);
698		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
699			vm_page_unlock(m);
700			continue;
701		}
702		wakeup(m);
703		vm_page_unlock(m);
704		break;
705	}
706}
707
708/*
709 *	vm_page_busy_sleep:
710 *
711 *	Sleep and release the page lock, using the page pointer as wchan.
712 *	This is used to implement the hard-path of busying mechanism.
713 *
714 *	The given page must be locked.
715 */
716void
717vm_page_busy_sleep(vm_page_t m, const char *wmesg)
718{
719	u_int x;
720
721	vm_page_lock_assert(m, MA_OWNED);
722
723	x = m->busy_lock;
724	if (x == VPB_UNBUSIED) {
725		vm_page_unlock(m);
726		return;
727	}
728	if ((x & VPB_BIT_WAITERS) == 0 &&
729	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
730		vm_page_unlock(m);
731		return;
732	}
733	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
734}
735
736/*
737 *	vm_page_trysbusy:
738 *
739 *	Try to shared busy a page.
740 *	If the operation succeeds 1 is returned otherwise 0.
741 *	The operation never sleeps.
742 */
743int
744vm_page_trysbusy(vm_page_t m)
745{
746	u_int x;
747
748	for (;;) {
749		x = m->busy_lock;
750		if ((x & VPB_BIT_SHARED) == 0)
751			return (0);
752		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
753			return (1);
754	}
755}
756
757/*
758 *	vm_page_xunbusy_hard:
759 *
760 *	Called after the first try the exclusive unbusy of a page failed.
761 *	It is assumed that the waiters bit is on.
762 */
763void
764vm_page_xunbusy_hard(vm_page_t m)
765{
766
767	vm_page_assert_xbusied(m);
768
769	vm_page_lock(m);
770	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
771	wakeup(m);
772	vm_page_unlock(m);
773}
774
775/*
776 *	vm_page_flash:
777 *
778 *	Wakeup anyone waiting for the page.
779 *	The ownership bits do not change.
780 *
781 *	The given page must be locked.
782 */
783void
784vm_page_flash(vm_page_t m)
785{
786	u_int x;
787
788	vm_page_lock_assert(m, MA_OWNED);
789
790	for (;;) {
791		x = m->busy_lock;
792		if ((x & VPB_BIT_WAITERS) == 0)
793			return;
794		if (atomic_cmpset_int(&m->busy_lock, x,
795		    x & (~VPB_BIT_WAITERS)))
796			break;
797	}
798	wakeup(m);
799}
800
801/*
802 * Keep page from being freed by the page daemon
803 * much of the same effect as wiring, except much lower
804 * overhead and should be used only for *very* temporary
805 * holding ("wiring").
806 */
807void
808vm_page_hold(vm_page_t mem)
809{
810
811	vm_page_lock_assert(mem, MA_OWNED);
812        mem->hold_count++;
813}
814
815void
816vm_page_unhold(vm_page_t mem)
817{
818
819	vm_page_lock_assert(mem, MA_OWNED);
820	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
821	--mem->hold_count;
822	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
823		vm_page_free_toq(mem);
824}
825
826/*
827 *	vm_page_unhold_pages:
828 *
829 *	Unhold each of the pages that is referenced by the given array.
830 */
831void
832vm_page_unhold_pages(vm_page_t *ma, int count)
833{
834	struct mtx *mtx, *new_mtx;
835
836	mtx = NULL;
837	for (; count != 0; count--) {
838		/*
839		 * Avoid releasing and reacquiring the same page lock.
840		 */
841		new_mtx = vm_page_lockptr(*ma);
842		if (mtx != new_mtx) {
843			if (mtx != NULL)
844				mtx_unlock(mtx);
845			mtx = new_mtx;
846			mtx_lock(mtx);
847		}
848		vm_page_unhold(*ma);
849		ma++;
850	}
851	if (mtx != NULL)
852		mtx_unlock(mtx);
853}
854
855vm_page_t
856PHYS_TO_VM_PAGE(vm_paddr_t pa)
857{
858	vm_page_t m;
859
860#ifdef VM_PHYSSEG_SPARSE
861	m = vm_phys_paddr_to_vm_page(pa);
862	if (m == NULL)
863		m = vm_phys_fictitious_to_vm_page(pa);
864	return (m);
865#elif defined(VM_PHYSSEG_DENSE)
866	long pi;
867
868	pi = atop(pa);
869	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
870		m = &vm_page_array[pi - first_page];
871		return (m);
872	}
873	return (vm_phys_fictitious_to_vm_page(pa));
874#else
875#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
876#endif
877}
878
879/*
880 *	vm_page_getfake:
881 *
882 *	Create a fictitious page with the specified physical address and
883 *	memory attribute.  The memory attribute is the only the machine-
884 *	dependent aspect of a fictitious page that must be initialized.
885 */
886vm_page_t
887vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
888{
889	vm_page_t m;
890
891	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
892	vm_page_initfake(m, paddr, memattr);
893	return (m);
894}
895
896void
897vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
898{
899
900	if ((m->flags & PG_FICTITIOUS) != 0) {
901		/*
902		 * The page's memattr might have changed since the
903		 * previous initialization.  Update the pmap to the
904		 * new memattr.
905		 */
906		goto memattr;
907	}
908	m->phys_addr = paddr;
909	m->queue = PQ_NONE;
910	/* Fictitious pages don't use "segind". */
911	m->flags = PG_FICTITIOUS;
912	/* Fictitious pages don't use "order" or "pool". */
913	m->oflags = VPO_UNMANAGED;
914	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
915	m->wire_count = 1;
916	pmap_page_init(m);
917memattr:
918	pmap_page_set_memattr(m, memattr);
919}
920
921/*
922 *	vm_page_putfake:
923 *
924 *	Release a fictitious page.
925 */
926void
927vm_page_putfake(vm_page_t m)
928{
929
930	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
931	KASSERT((m->flags & PG_FICTITIOUS) != 0,
932	    ("vm_page_putfake: bad page %p", m));
933	uma_zfree(fakepg_zone, m);
934}
935
936/*
937 *	vm_page_updatefake:
938 *
939 *	Update the given fictitious page to the specified physical address and
940 *	memory attribute.
941 */
942void
943vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
944{
945
946	KASSERT((m->flags & PG_FICTITIOUS) != 0,
947	    ("vm_page_updatefake: bad page %p", m));
948	m->phys_addr = paddr;
949	pmap_page_set_memattr(m, memattr);
950}
951
952/*
953 *	vm_page_free:
954 *
955 *	Free a page.
956 */
957void
958vm_page_free(vm_page_t m)
959{
960
961	m->flags &= ~PG_ZERO;
962	vm_page_free_toq(m);
963}
964
965/*
966 *	vm_page_free_zero:
967 *
968 *	Free a page to the zerod-pages queue
969 */
970void
971vm_page_free_zero(vm_page_t m)
972{
973
974	m->flags |= PG_ZERO;
975	vm_page_free_toq(m);
976}
977
978/*
979 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
980 * array which is not the request page.
981 */
982void
983vm_page_readahead_finish(vm_page_t m)
984{
985
986	if (m->valid != 0) {
987		/*
988		 * Since the page is not the requested page, whether
989		 * it should be activated or deactivated is not
990		 * obvious.  Empirical results have shown that
991		 * deactivating the page is usually the best choice,
992		 * unless the page is wanted by another thread.
993		 */
994		vm_page_lock(m);
995		if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
996			vm_page_activate(m);
997		else
998			vm_page_deactivate(m);
999		vm_page_unlock(m);
1000		vm_page_xunbusy(m);
1001	} else {
1002		/*
1003		 * Free the completely invalid page.  Such page state
1004		 * occurs due to the short read operation which did
1005		 * not covered our page at all, or in case when a read
1006		 * error happens.
1007		 */
1008		vm_page_lock(m);
1009		vm_page_free(m);
1010		vm_page_unlock(m);
1011	}
1012}
1013
1014/*
1015 *	vm_page_sleep_if_busy:
1016 *
1017 *	Sleep and release the page queues lock if the page is busied.
1018 *	Returns TRUE if the thread slept.
1019 *
1020 *	The given page must be unlocked and object containing it must
1021 *	be locked.
1022 */
1023int
1024vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1025{
1026	vm_object_t obj;
1027
1028	vm_page_lock_assert(m, MA_NOTOWNED);
1029	VM_OBJECT_ASSERT_WLOCKED(m->object);
1030
1031	if (vm_page_busied(m)) {
1032		/*
1033		 * The page-specific object must be cached because page
1034		 * identity can change during the sleep, causing the
1035		 * re-lock of a different object.
1036		 * It is assumed that a reference to the object is already
1037		 * held by the callers.
1038		 */
1039		obj = m->object;
1040		vm_page_lock(m);
1041		VM_OBJECT_WUNLOCK(obj);
1042		vm_page_busy_sleep(m, msg);
1043		VM_OBJECT_WLOCK(obj);
1044		return (TRUE);
1045	}
1046	return (FALSE);
1047}
1048
1049/*
1050 *	vm_page_dirty_KBI:		[ internal use only ]
1051 *
1052 *	Set all bits in the page's dirty field.
1053 *
1054 *	The object containing the specified page must be locked if the
1055 *	call is made from the machine-independent layer.
1056 *
1057 *	See vm_page_clear_dirty_mask().
1058 *
1059 *	This function should only be called by vm_page_dirty().
1060 */
1061void
1062vm_page_dirty_KBI(vm_page_t m)
1063{
1064
1065	/* These assertions refer to this operation by its public name. */
1066	KASSERT((m->flags & PG_CACHED) == 0,
1067	    ("vm_page_dirty: page in cache!"));
1068	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1069	    ("vm_page_dirty: page is invalid!"));
1070	m->dirty = VM_PAGE_BITS_ALL;
1071}
1072
1073/*
1074 *	vm_page_insert:		[ internal use only ]
1075 *
1076 *	Inserts the given mem entry into the object and object list.
1077 *
1078 *	The object must be locked.
1079 */
1080int
1081vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1082{
1083	vm_page_t mpred;
1084
1085	VM_OBJECT_ASSERT_WLOCKED(object);
1086	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1087	return (vm_page_insert_after(m, object, pindex, mpred));
1088}
1089
1090/*
1091 *	vm_page_insert_after:
1092 *
1093 *	Inserts the page "m" into the specified object at offset "pindex".
1094 *
1095 *	The page "mpred" must immediately precede the offset "pindex" within
1096 *	the specified object.
1097 *
1098 *	The object must be locked.
1099 */
1100static int
1101vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1102    vm_page_t mpred)
1103{
1104	vm_pindex_t sidx;
1105	vm_object_t sobj;
1106	vm_page_t msucc;
1107
1108	VM_OBJECT_ASSERT_WLOCKED(object);
1109	KASSERT(m->object == NULL,
1110	    ("vm_page_insert_after: page already inserted"));
1111	if (mpred != NULL) {
1112		KASSERT(mpred->object == object,
1113		    ("vm_page_insert_after: object doesn't contain mpred"));
1114		KASSERT(mpred->pindex < pindex,
1115		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1116		msucc = TAILQ_NEXT(mpred, listq);
1117	} else
1118		msucc = TAILQ_FIRST(&object->memq);
1119	if (msucc != NULL)
1120		KASSERT(msucc->pindex > pindex,
1121		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1122
1123	/*
1124	 * Record the object/offset pair in this page
1125	 */
1126	sobj = m->object;
1127	sidx = m->pindex;
1128	m->object = object;
1129	m->pindex = pindex;
1130
1131	/*
1132	 * Now link into the object's ordered list of backed pages.
1133	 */
1134	if (vm_radix_insert(&object->rtree, m)) {
1135		m->object = sobj;
1136		m->pindex = sidx;
1137		return (1);
1138	}
1139	vm_page_insert_radixdone(m, object, mpred);
1140	return (0);
1141}
1142
1143/*
1144 *	vm_page_insert_radixdone:
1145 *
1146 *	Complete page "m" insertion into the specified object after the
1147 *	radix trie hooking.
1148 *
1149 *	The page "mpred" must precede the offset "m->pindex" within the
1150 *	specified object.
1151 *
1152 *	The object must be locked.
1153 */
1154static void
1155vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1156{
1157
1158	VM_OBJECT_ASSERT_WLOCKED(object);
1159	KASSERT(object != NULL && m->object == object,
1160	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1161	if (mpred != NULL) {
1162		KASSERT(mpred->object == object,
1163		    ("vm_page_insert_after: object doesn't contain mpred"));
1164		KASSERT(mpred->pindex < m->pindex,
1165		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1166	}
1167
1168	if (mpred != NULL)
1169		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1170	else
1171		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1172
1173	/*
1174	 * Show that the object has one more resident page.
1175	 */
1176	object->resident_page_count++;
1177
1178	/*
1179	 * Hold the vnode until the last page is released.
1180	 */
1181	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1182		vhold(object->handle);
1183
1184	/*
1185	 * Since we are inserting a new and possibly dirty page,
1186	 * update the object's OBJ_MIGHTBEDIRTY flag.
1187	 */
1188	if (pmap_page_is_write_mapped(m))
1189		vm_object_set_writeable_dirty(object);
1190}
1191
1192/*
1193 *	vm_page_remove:
1194 *
1195 *	Removes the given mem entry from the object/offset-page
1196 *	table and the object page list, but do not invalidate/terminate
1197 *	the backing store.
1198 *
1199 *	The object must be locked.  The page must be locked if it is managed.
1200 */
1201void
1202vm_page_remove(vm_page_t m)
1203{
1204	vm_object_t object;
1205	boolean_t lockacq;
1206
1207	if ((m->oflags & VPO_UNMANAGED) == 0)
1208		vm_page_lock_assert(m, MA_OWNED);
1209	if ((object = m->object) == NULL)
1210		return;
1211	VM_OBJECT_ASSERT_WLOCKED(object);
1212	if (vm_page_xbusied(m)) {
1213		lockacq = FALSE;
1214		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1215		    !mtx_owned(vm_page_lockptr(m))) {
1216			lockacq = TRUE;
1217			vm_page_lock(m);
1218		}
1219		vm_page_flash(m);
1220		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1221		if (lockacq)
1222			vm_page_unlock(m);
1223	}
1224
1225	/*
1226	 * Now remove from the object's list of backed pages.
1227	 */
1228	vm_radix_remove(&object->rtree, m->pindex);
1229	TAILQ_REMOVE(&object->memq, m, listq);
1230
1231	/*
1232	 * And show that the object has one fewer resident page.
1233	 */
1234	object->resident_page_count--;
1235
1236	/*
1237	 * The vnode may now be recycled.
1238	 */
1239	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1240		vdrop(object->handle);
1241
1242	m->object = NULL;
1243}
1244
1245/*
1246 *	vm_page_lookup:
1247 *
1248 *	Returns the page associated with the object/offset
1249 *	pair specified; if none is found, NULL is returned.
1250 *
1251 *	The object must be locked.
1252 */
1253vm_page_t
1254vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1255{
1256
1257	VM_OBJECT_ASSERT_LOCKED(object);
1258	return (vm_radix_lookup(&object->rtree, pindex));
1259}
1260
1261/*
1262 *	vm_page_find_least:
1263 *
1264 *	Returns the page associated with the object with least pindex
1265 *	greater than or equal to the parameter pindex, or NULL.
1266 *
1267 *	The object must be locked.
1268 */
1269vm_page_t
1270vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1271{
1272	vm_page_t m;
1273
1274	VM_OBJECT_ASSERT_LOCKED(object);
1275	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1276		m = vm_radix_lookup_ge(&object->rtree, pindex);
1277	return (m);
1278}
1279
1280/*
1281 * Returns the given page's successor (by pindex) within the object if it is
1282 * resident; if none is found, NULL is returned.
1283 *
1284 * The object must be locked.
1285 */
1286vm_page_t
1287vm_page_next(vm_page_t m)
1288{
1289	vm_page_t next;
1290
1291	VM_OBJECT_ASSERT_WLOCKED(m->object);
1292	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1293	    next->pindex != m->pindex + 1)
1294		next = NULL;
1295	return (next);
1296}
1297
1298/*
1299 * Returns the given page's predecessor (by pindex) within the object if it is
1300 * resident; if none is found, NULL is returned.
1301 *
1302 * The object must be locked.
1303 */
1304vm_page_t
1305vm_page_prev(vm_page_t m)
1306{
1307	vm_page_t prev;
1308
1309	VM_OBJECT_ASSERT_WLOCKED(m->object);
1310	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1311	    prev->pindex != m->pindex - 1)
1312		prev = NULL;
1313	return (prev);
1314}
1315
1316/*
1317 * Uses the page mnew as a replacement for an existing page at index
1318 * pindex which must be already present in the object.
1319 *
1320 * The existing page must not be on a paging queue.
1321 */
1322vm_page_t
1323vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1324{
1325	vm_page_t mold, mpred;
1326
1327	VM_OBJECT_ASSERT_WLOCKED(object);
1328
1329	/*
1330	 * This function mostly follows vm_page_insert() and
1331	 * vm_page_remove() without the radix, object count and vnode
1332	 * dance.  Double check such functions for more comments.
1333	 */
1334	mpred = vm_radix_lookup(&object->rtree, pindex);
1335	KASSERT(mpred != NULL,
1336	    ("vm_page_replace: replacing page not present with pindex"));
1337	mpred = TAILQ_PREV(mpred, respgs, listq);
1338	if (mpred != NULL)
1339		KASSERT(mpred->pindex < pindex,
1340		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1341
1342	mnew->object = object;
1343	mnew->pindex = pindex;
1344	mold = vm_radix_replace(&object->rtree, mnew);
1345	KASSERT(mold->queue == PQ_NONE,
1346	    ("vm_page_replace: mold is on a paging queue"));
1347
1348	/* Detach the old page from the resident tailq. */
1349	TAILQ_REMOVE(&object->memq, mold, listq);
1350
1351	mold->object = NULL;
1352	vm_page_xunbusy(mold);
1353
1354	/* Insert the new page in the resident tailq. */
1355	if (mpred != NULL)
1356		TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1357	else
1358		TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1359	if (pmap_page_is_write_mapped(mnew))
1360		vm_object_set_writeable_dirty(object);
1361	return (mold);
1362}
1363
1364/*
1365 *	vm_page_rename:
1366 *
1367 *	Move the given memory entry from its
1368 *	current object to the specified target object/offset.
1369 *
1370 *	Note: swap associated with the page must be invalidated by the move.  We
1371 *	      have to do this for several reasons:  (1) we aren't freeing the
1372 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1373 *	      moving the page from object A to B, and will then later move
1374 *	      the backing store from A to B and we can't have a conflict.
1375 *
1376 *	Note: we *always* dirty the page.  It is necessary both for the
1377 *	      fact that we moved it, and because we may be invalidating
1378 *	      swap.  If the page is on the cache, we have to deactivate it
1379 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1380 *	      on the cache.
1381 *
1382 *	The objects must be locked.
1383 */
1384int
1385vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1386{
1387	vm_page_t mpred;
1388	vm_pindex_t opidx;
1389
1390	VM_OBJECT_ASSERT_WLOCKED(new_object);
1391
1392	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1393	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1394	    ("vm_page_rename: pindex already renamed"));
1395
1396	/*
1397	 * Create a custom version of vm_page_insert() which does not depend
1398	 * by m_prev and can cheat on the implementation aspects of the
1399	 * function.
1400	 */
1401	opidx = m->pindex;
1402	m->pindex = new_pindex;
1403	if (vm_radix_insert(&new_object->rtree, m)) {
1404		m->pindex = opidx;
1405		return (1);
1406	}
1407
1408	/*
1409	 * The operation cannot fail anymore.  The removal must happen before
1410	 * the listq iterator is tainted.
1411	 */
1412	m->pindex = opidx;
1413	vm_page_lock(m);
1414	vm_page_remove(m);
1415
1416	/* Return back to the new pindex to complete vm_page_insert(). */
1417	m->pindex = new_pindex;
1418	m->object = new_object;
1419	vm_page_unlock(m);
1420	vm_page_insert_radixdone(m, new_object, mpred);
1421	vm_page_dirty(m);
1422	return (0);
1423}
1424
1425/*
1426 *	Convert all of the given object's cached pages that have a
1427 *	pindex within the given range into free pages.  If the value
1428 *	zero is given for "end", then the range's upper bound is
1429 *	infinity.  If the given object is backed by a vnode and it
1430 *	transitions from having one or more cached pages to none, the
1431 *	vnode's hold count is reduced.
1432 */
1433void
1434vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1435{
1436	vm_page_t m;
1437	boolean_t empty;
1438
1439	mtx_lock(&vm_page_queue_free_mtx);
1440	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1441		mtx_unlock(&vm_page_queue_free_mtx);
1442		return;
1443	}
1444	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1445		if (end != 0 && m->pindex >= end)
1446			break;
1447		vm_radix_remove(&object->cache, m->pindex);
1448		vm_page_cache_turn_free(m);
1449	}
1450	empty = vm_radix_is_empty(&object->cache);
1451	mtx_unlock(&vm_page_queue_free_mtx);
1452	if (object->type == OBJT_VNODE && empty)
1453		vdrop(object->handle);
1454}
1455
1456/*
1457 *	Returns the cached page that is associated with the given
1458 *	object and offset.  If, however, none exists, returns NULL.
1459 *
1460 *	The free page queue must be locked.
1461 */
1462static inline vm_page_t
1463vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1464{
1465
1466	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1467	return (vm_radix_lookup(&object->cache, pindex));
1468}
1469
1470/*
1471 *	Remove the given cached page from its containing object's
1472 *	collection of cached pages.
1473 *
1474 *	The free page queue must be locked.
1475 */
1476static void
1477vm_page_cache_remove(vm_page_t m)
1478{
1479
1480	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1481	KASSERT((m->flags & PG_CACHED) != 0,
1482	    ("vm_page_cache_remove: page %p is not cached", m));
1483	vm_radix_remove(&m->object->cache, m->pindex);
1484	m->object = NULL;
1485	vm_cnt.v_cache_count--;
1486}
1487
1488/*
1489 *	Transfer all of the cached pages with offset greater than or
1490 *	equal to 'offidxstart' from the original object's cache to the
1491 *	new object's cache.  However, any cached pages with offset
1492 *	greater than or equal to the new object's size are kept in the
1493 *	original object.  Initially, the new object's cache must be
1494 *	empty.  Offset 'offidxstart' in the original object must
1495 *	correspond to offset zero in the new object.
1496 *
1497 *	The new object must be locked.
1498 */
1499void
1500vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1501    vm_object_t new_object)
1502{
1503	vm_page_t m;
1504
1505	/*
1506	 * Insertion into an object's collection of cached pages
1507	 * requires the object to be locked.  In contrast, removal does
1508	 * not.
1509	 */
1510	VM_OBJECT_ASSERT_WLOCKED(new_object);
1511	KASSERT(vm_radix_is_empty(&new_object->cache),
1512	    ("vm_page_cache_transfer: object %p has cached pages",
1513	    new_object));
1514	mtx_lock(&vm_page_queue_free_mtx);
1515	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1516	    offidxstart)) != NULL) {
1517		/*
1518		 * Transfer all of the pages with offset greater than or
1519		 * equal to 'offidxstart' from the original object's
1520		 * cache to the new object's cache.
1521		 */
1522		if ((m->pindex - offidxstart) >= new_object->size)
1523			break;
1524		vm_radix_remove(&orig_object->cache, m->pindex);
1525		/* Update the page's object and offset. */
1526		m->object = new_object;
1527		m->pindex -= offidxstart;
1528		if (vm_radix_insert(&new_object->cache, m))
1529			vm_page_cache_turn_free(m);
1530	}
1531	mtx_unlock(&vm_page_queue_free_mtx);
1532}
1533
1534/*
1535 *	Returns TRUE if a cached page is associated with the given object and
1536 *	offset, and FALSE otherwise.
1537 *
1538 *	The object must be locked.
1539 */
1540boolean_t
1541vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1542{
1543	vm_page_t m;
1544
1545	/*
1546	 * Insertion into an object's collection of cached pages requires the
1547	 * object to be locked.  Therefore, if the object is locked and the
1548	 * object's collection is empty, there is no need to acquire the free
1549	 * page queues lock in order to prove that the specified page doesn't
1550	 * exist.
1551	 */
1552	VM_OBJECT_ASSERT_WLOCKED(object);
1553	if (__predict_true(vm_object_cache_is_empty(object)))
1554		return (FALSE);
1555	mtx_lock(&vm_page_queue_free_mtx);
1556	m = vm_page_cache_lookup(object, pindex);
1557	mtx_unlock(&vm_page_queue_free_mtx);
1558	return (m != NULL);
1559}
1560
1561/*
1562 *	vm_page_alloc:
1563 *
1564 *	Allocate and return a page that is associated with the specified
1565 *	object and offset pair.  By default, this page is exclusive busied.
1566 *
1567 *	The caller must always specify an allocation class.
1568 *
1569 *	allocation classes:
1570 *	VM_ALLOC_NORMAL		normal process request
1571 *	VM_ALLOC_SYSTEM		system *really* needs a page
1572 *	VM_ALLOC_INTERRUPT	interrupt time request
1573 *
1574 *	optional allocation flags:
1575 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1576 *				intends to allocate
1577 *	VM_ALLOC_IFCACHED	return page only if it is cached
1578 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1579 *				is cached
1580 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1581 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1582 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1583 *				should not be exclusive busy
1584 *	VM_ALLOC_SBUSY		shared busy the allocated page
1585 *	VM_ALLOC_WIRED		wire the allocated page
1586 *	VM_ALLOC_ZERO		prefer a zeroed page
1587 *
1588 *	This routine may not sleep.
1589 */
1590vm_page_t
1591vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1592{
1593	struct vnode *vp = NULL;
1594	vm_object_t m_object;
1595	vm_page_t m, mpred;
1596	int flags, req_class;
1597
1598	mpred = 0;	/* XXX: pacify gcc */
1599	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1600	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1601	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1602	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1603	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1604	    req));
1605	if (object != NULL)
1606		VM_OBJECT_ASSERT_WLOCKED(object);
1607
1608	req_class = req & VM_ALLOC_CLASS_MASK;
1609
1610	/*
1611	 * The page daemon is allowed to dig deeper into the free page list.
1612	 */
1613	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1614		req_class = VM_ALLOC_SYSTEM;
1615
1616	if (object != NULL) {
1617		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1618		KASSERT(mpred == NULL || mpred->pindex != pindex,
1619		   ("vm_page_alloc: pindex already allocated"));
1620	}
1621
1622	/*
1623	 * The page allocation request can came from consumers which already
1624	 * hold the free page queue mutex, like vm_page_insert() in
1625	 * vm_page_cache().
1626	 */
1627	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1628	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1629	    (req_class == VM_ALLOC_SYSTEM &&
1630	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1631	    (req_class == VM_ALLOC_INTERRUPT &&
1632	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1633		/*
1634		 * Allocate from the free queue if the number of free pages
1635		 * exceeds the minimum for the request class.
1636		 */
1637		if (object != NULL &&
1638		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1639			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1640				mtx_unlock(&vm_page_queue_free_mtx);
1641				return (NULL);
1642			}
1643			if (vm_phys_unfree_page(m))
1644				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1645#if VM_NRESERVLEVEL > 0
1646			else if (!vm_reserv_reactivate_page(m))
1647#else
1648			else
1649#endif
1650				panic("vm_page_alloc: cache page %p is missing"
1651				    " from the free queue", m);
1652		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1653			mtx_unlock(&vm_page_queue_free_mtx);
1654			return (NULL);
1655#if VM_NRESERVLEVEL > 0
1656		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1657		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1658		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1659#else
1660		} else {
1661#endif
1662			m = vm_phys_alloc_pages(object != NULL ?
1663			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1664#if VM_NRESERVLEVEL > 0
1665			if (m == NULL && vm_reserv_reclaim_inactive()) {
1666				m = vm_phys_alloc_pages(object != NULL ?
1667				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1668				    0);
1669			}
1670#endif
1671		}
1672	} else {
1673		/*
1674		 * Not allocatable, give up.
1675		 */
1676		mtx_unlock(&vm_page_queue_free_mtx);
1677		atomic_add_int(&vm_pageout_deficit,
1678		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1679		pagedaemon_wakeup();
1680		return (NULL);
1681	}
1682
1683	/*
1684	 *  At this point we had better have found a good page.
1685	 */
1686	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1687	KASSERT(m->queue == PQ_NONE,
1688	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1689	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1690	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1691	KASSERT(!vm_page_sbusied(m),
1692	    ("vm_page_alloc: page %p is busy", m));
1693	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1694	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1695	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1696	    pmap_page_get_memattr(m)));
1697	if ((m->flags & PG_CACHED) != 0) {
1698		KASSERT((m->flags & PG_ZERO) == 0,
1699		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1700		KASSERT(m->valid != 0,
1701		    ("vm_page_alloc: cached page %p is invalid", m));
1702		if (m->object == object && m->pindex == pindex)
1703			vm_cnt.v_reactivated++;
1704		else
1705			m->valid = 0;
1706		m_object = m->object;
1707		vm_page_cache_remove(m);
1708		if (m_object->type == OBJT_VNODE &&
1709		    vm_object_cache_is_empty(m_object))
1710			vp = m_object->handle;
1711	} else {
1712		KASSERT(m->valid == 0,
1713		    ("vm_page_alloc: free page %p is valid", m));
1714		vm_phys_freecnt_adj(m, -1);
1715		if ((m->flags & PG_ZERO) != 0)
1716			vm_page_zero_count--;
1717	}
1718	mtx_unlock(&vm_page_queue_free_mtx);
1719
1720	/*
1721	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1722	 */
1723	flags = 0;
1724	if ((req & VM_ALLOC_ZERO) != 0)
1725		flags = PG_ZERO;
1726	flags &= m->flags;
1727	if ((req & VM_ALLOC_NODUMP) != 0)
1728		flags |= PG_NODUMP;
1729	m->flags = flags;
1730	m->aflags = 0;
1731	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1732	    VPO_UNMANAGED : 0;
1733	m->busy_lock = VPB_UNBUSIED;
1734	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1735		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1736	if ((req & VM_ALLOC_SBUSY) != 0)
1737		m->busy_lock = VPB_SHARERS_WORD(1);
1738	if (req & VM_ALLOC_WIRED) {
1739		/*
1740		 * The page lock is not required for wiring a page until that
1741		 * page is inserted into the object.
1742		 */
1743		atomic_add_int(&vm_cnt.v_wire_count, 1);
1744		m->wire_count = 1;
1745	}
1746	m->act_count = 0;
1747
1748	if (object != NULL) {
1749		if (vm_page_insert_after(m, object, pindex, mpred)) {
1750			/* See the comment below about hold count. */
1751			if (vp != NULL)
1752				vdrop(vp);
1753			pagedaemon_wakeup();
1754			if (req & VM_ALLOC_WIRED) {
1755				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1756				m->wire_count = 0;
1757			}
1758			m->object = NULL;
1759			m->oflags = VPO_UNMANAGED;
1760			vm_page_free(m);
1761			return (NULL);
1762		}
1763
1764		/* Ignore device objects; the pager sets "memattr" for them. */
1765		if (object->memattr != VM_MEMATTR_DEFAULT &&
1766		    (object->flags & OBJ_FICTITIOUS) == 0)
1767			pmap_page_set_memattr(m, object->memattr);
1768	} else
1769		m->pindex = pindex;
1770
1771	/*
1772	 * The following call to vdrop() must come after the above call
1773	 * to vm_page_insert() in case both affect the same object and
1774	 * vnode.  Otherwise, the affected vnode's hold count could
1775	 * temporarily become zero.
1776	 */
1777	if (vp != NULL)
1778		vdrop(vp);
1779
1780	/*
1781	 * Don't wakeup too often - wakeup the pageout daemon when
1782	 * we would be nearly out of memory.
1783	 */
1784	if (vm_paging_needed())
1785		pagedaemon_wakeup();
1786
1787	return (m);
1788}
1789
1790static void
1791vm_page_alloc_contig_vdrop(struct spglist *lst)
1792{
1793
1794	while (!SLIST_EMPTY(lst)) {
1795		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1796		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1797	}
1798}
1799
1800/*
1801 *	vm_page_alloc_contig:
1802 *
1803 *	Allocate a contiguous set of physical pages of the given size "npages"
1804 *	from the free lists.  All of the physical pages must be at or above
1805 *	the given physical address "low" and below the given physical address
1806 *	"high".  The given value "alignment" determines the alignment of the
1807 *	first physical page in the set.  If the given value "boundary" is
1808 *	non-zero, then the set of physical pages cannot cross any physical
1809 *	address boundary that is a multiple of that value.  Both "alignment"
1810 *	and "boundary" must be a power of two.
1811 *
1812 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1813 *	then the memory attribute setting for the physical pages is configured
1814 *	to the object's memory attribute setting.  Otherwise, the memory
1815 *	attribute setting for the physical pages is configured to "memattr",
1816 *	overriding the object's memory attribute setting.  However, if the
1817 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1818 *	memory attribute setting for the physical pages cannot be configured
1819 *	to VM_MEMATTR_DEFAULT.
1820 *
1821 *	The caller must always specify an allocation class.
1822 *
1823 *	allocation classes:
1824 *	VM_ALLOC_NORMAL		normal process request
1825 *	VM_ALLOC_SYSTEM		system *really* needs a page
1826 *	VM_ALLOC_INTERRUPT	interrupt time request
1827 *
1828 *	optional allocation flags:
1829 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1830 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1831 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1832 *				should not be exclusive busy
1833 *	VM_ALLOC_SBUSY		shared busy the allocated page
1834 *	VM_ALLOC_WIRED		wire the allocated page
1835 *	VM_ALLOC_ZERO		prefer a zeroed page
1836 *
1837 *	This routine may not sleep.
1838 */
1839vm_page_t
1840vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1841    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1842    vm_paddr_t boundary, vm_memattr_t memattr)
1843{
1844	struct vnode *drop;
1845	struct spglist deferred_vdrop_list;
1846	vm_page_t m, m_tmp, m_ret;
1847	u_int flags;
1848	int req_class;
1849
1850	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1851	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1852	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1853	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1854	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1855	    req));
1856	if (object != NULL) {
1857		VM_OBJECT_ASSERT_WLOCKED(object);
1858		KASSERT(object->type == OBJT_PHYS,
1859		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1860		    object));
1861	}
1862	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1863	req_class = req & VM_ALLOC_CLASS_MASK;
1864
1865	/*
1866	 * The page daemon is allowed to dig deeper into the free page list.
1867	 */
1868	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1869		req_class = VM_ALLOC_SYSTEM;
1870
1871	SLIST_INIT(&deferred_vdrop_list);
1872	mtx_lock(&vm_page_queue_free_mtx);
1873	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1874	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1875	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1876	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1877	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1878#if VM_NRESERVLEVEL > 0
1879retry:
1880		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1881		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1882		    low, high, alignment, boundary)) == NULL)
1883#endif
1884			m_ret = vm_phys_alloc_contig(npages, low, high,
1885			    alignment, boundary);
1886	} else {
1887		mtx_unlock(&vm_page_queue_free_mtx);
1888		atomic_add_int(&vm_pageout_deficit, npages);
1889		pagedaemon_wakeup();
1890		return (NULL);
1891	}
1892	if (m_ret != NULL)
1893		for (m = m_ret; m < &m_ret[npages]; m++) {
1894			drop = vm_page_alloc_init(m);
1895			if (drop != NULL) {
1896				/*
1897				 * Enqueue the vnode for deferred vdrop().
1898				 */
1899				m->plinks.s.pv = drop;
1900				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1901				    plinks.s.ss);
1902			}
1903		}
1904	else {
1905#if VM_NRESERVLEVEL > 0
1906		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1907		    boundary))
1908			goto retry;
1909#endif
1910	}
1911	mtx_unlock(&vm_page_queue_free_mtx);
1912	if (m_ret == NULL)
1913		return (NULL);
1914
1915	/*
1916	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1917	 */
1918	flags = 0;
1919	if ((req & VM_ALLOC_ZERO) != 0)
1920		flags = PG_ZERO;
1921	if ((req & VM_ALLOC_NODUMP) != 0)
1922		flags |= PG_NODUMP;
1923	if ((req & VM_ALLOC_WIRED) != 0)
1924		atomic_add_int(&vm_cnt.v_wire_count, npages);
1925	if (object != NULL) {
1926		if (object->memattr != VM_MEMATTR_DEFAULT &&
1927		    memattr == VM_MEMATTR_DEFAULT)
1928			memattr = object->memattr;
1929	}
1930	for (m = m_ret; m < &m_ret[npages]; m++) {
1931		m->aflags = 0;
1932		m->flags = (m->flags | PG_NODUMP) & flags;
1933		m->busy_lock = VPB_UNBUSIED;
1934		if (object != NULL) {
1935			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1936				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1937			if ((req & VM_ALLOC_SBUSY) != 0)
1938				m->busy_lock = VPB_SHARERS_WORD(1);
1939		}
1940		if ((req & VM_ALLOC_WIRED) != 0)
1941			m->wire_count = 1;
1942		/* Unmanaged pages don't use "act_count". */
1943		m->oflags = VPO_UNMANAGED;
1944		if (object != NULL) {
1945			if (vm_page_insert(m, object, pindex)) {
1946				vm_page_alloc_contig_vdrop(
1947				    &deferred_vdrop_list);
1948				if (vm_paging_needed())
1949					pagedaemon_wakeup();
1950				if ((req & VM_ALLOC_WIRED) != 0)
1951					atomic_subtract_int(&vm_cnt.v_wire_count,
1952					    npages);
1953				for (m_tmp = m, m = m_ret;
1954				    m < &m_ret[npages]; m++) {
1955					if ((req & VM_ALLOC_WIRED) != 0)
1956						m->wire_count = 0;
1957					if (m >= m_tmp)
1958						m->object = NULL;
1959					vm_page_free(m);
1960				}
1961				return (NULL);
1962			}
1963		} else
1964			m->pindex = pindex;
1965		if (memattr != VM_MEMATTR_DEFAULT)
1966			pmap_page_set_memattr(m, memattr);
1967		pindex++;
1968	}
1969	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1970	if (vm_paging_needed())
1971		pagedaemon_wakeup();
1972	return (m_ret);
1973}
1974
1975/*
1976 * Initialize a page that has been freshly dequeued from a freelist.
1977 * The caller has to drop the vnode returned, if it is not NULL.
1978 *
1979 * This function may only be used to initialize unmanaged pages.
1980 *
1981 * To be called with vm_page_queue_free_mtx held.
1982 */
1983static struct vnode *
1984vm_page_alloc_init(vm_page_t m)
1985{
1986	struct vnode *drop;
1987	vm_object_t m_object;
1988
1989	KASSERT(m->queue == PQ_NONE,
1990	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1991	    m, m->queue));
1992	KASSERT(m->wire_count == 0,
1993	    ("vm_page_alloc_init: page %p is wired", m));
1994	KASSERT(m->hold_count == 0,
1995	    ("vm_page_alloc_init: page %p is held", m));
1996	KASSERT(!vm_page_sbusied(m),
1997	    ("vm_page_alloc_init: page %p is busy", m));
1998	KASSERT(m->dirty == 0,
1999	    ("vm_page_alloc_init: page %p is dirty", m));
2000	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2001	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
2002	    m, pmap_page_get_memattr(m)));
2003	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2004	drop = NULL;
2005	if ((m->flags & PG_CACHED) != 0) {
2006		KASSERT((m->flags & PG_ZERO) == 0,
2007		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
2008		m->valid = 0;
2009		m_object = m->object;
2010		vm_page_cache_remove(m);
2011		if (m_object->type == OBJT_VNODE &&
2012		    vm_object_cache_is_empty(m_object))
2013			drop = m_object->handle;
2014	} else {
2015		KASSERT(m->valid == 0,
2016		    ("vm_page_alloc_init: free page %p is valid", m));
2017		vm_phys_freecnt_adj(m, -1);
2018		if ((m->flags & PG_ZERO) != 0)
2019			vm_page_zero_count--;
2020	}
2021	return (drop);
2022}
2023
2024/*
2025 * 	vm_page_alloc_freelist:
2026 *
2027 *	Allocate a physical page from the specified free page list.
2028 *
2029 *	The caller must always specify an allocation class.
2030 *
2031 *	allocation classes:
2032 *	VM_ALLOC_NORMAL		normal process request
2033 *	VM_ALLOC_SYSTEM		system *really* needs a page
2034 *	VM_ALLOC_INTERRUPT	interrupt time request
2035 *
2036 *	optional allocation flags:
2037 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2038 *				intends to allocate
2039 *	VM_ALLOC_WIRED		wire the allocated page
2040 *	VM_ALLOC_ZERO		prefer a zeroed page
2041 *
2042 *	This routine may not sleep.
2043 */
2044vm_page_t
2045vm_page_alloc_freelist(int flind, int req)
2046{
2047	struct vnode *drop;
2048	vm_page_t m;
2049	u_int flags;
2050	int req_class;
2051
2052	req_class = req & VM_ALLOC_CLASS_MASK;
2053
2054	/*
2055	 * The page daemon is allowed to dig deeper into the free page list.
2056	 */
2057	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2058		req_class = VM_ALLOC_SYSTEM;
2059
2060	/*
2061	 * Do not allocate reserved pages unless the req has asked for it.
2062	 */
2063	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
2064	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
2065	    (req_class == VM_ALLOC_SYSTEM &&
2066	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
2067	    (req_class == VM_ALLOC_INTERRUPT &&
2068	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
2069		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2070	else {
2071		mtx_unlock(&vm_page_queue_free_mtx);
2072		atomic_add_int(&vm_pageout_deficit,
2073		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2074		pagedaemon_wakeup();
2075		return (NULL);
2076	}
2077	if (m == NULL) {
2078		mtx_unlock(&vm_page_queue_free_mtx);
2079		return (NULL);
2080	}
2081	drop = vm_page_alloc_init(m);
2082	mtx_unlock(&vm_page_queue_free_mtx);
2083
2084	/*
2085	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2086	 */
2087	m->aflags = 0;
2088	flags = 0;
2089	if ((req & VM_ALLOC_ZERO) != 0)
2090		flags = PG_ZERO;
2091	m->flags &= flags;
2092	if ((req & VM_ALLOC_WIRED) != 0) {
2093		/*
2094		 * The page lock is not required for wiring a page that does
2095		 * not belong to an object.
2096		 */
2097		atomic_add_int(&vm_cnt.v_wire_count, 1);
2098		m->wire_count = 1;
2099	}
2100	/* Unmanaged pages don't use "act_count". */
2101	m->oflags = VPO_UNMANAGED;
2102	if (drop != NULL)
2103		vdrop(drop);
2104	if (vm_paging_needed())
2105		pagedaemon_wakeup();
2106	return (m);
2107}
2108
2109/*
2110 *	vm_wait:	(also see VM_WAIT macro)
2111 *
2112 *	Sleep until free pages are available for allocation.
2113 *	- Called in various places before memory allocations.
2114 */
2115void
2116vm_wait(void)
2117{
2118
2119	mtx_lock(&vm_page_queue_free_mtx);
2120	if (curproc == pageproc) {
2121		vm_pageout_pages_needed = 1;
2122		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2123		    PDROP | PSWP, "VMWait", 0);
2124	} else {
2125		if (!vm_pages_needed) {
2126			vm_pages_needed = 1;
2127			wakeup(&vm_pages_needed);
2128		}
2129		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2130		    "vmwait", 0);
2131	}
2132}
2133
2134/*
2135 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2136 *
2137 *	Sleep until free pages are available for allocation.
2138 *	- Called only in vm_fault so that processes page faulting
2139 *	  can be easily tracked.
2140 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2141 *	  processes will be able to grab memory first.  Do not change
2142 *	  this balance without careful testing first.
2143 */
2144void
2145vm_waitpfault(void)
2146{
2147
2148	mtx_lock(&vm_page_queue_free_mtx);
2149	if (!vm_pages_needed) {
2150		vm_pages_needed = 1;
2151		wakeup(&vm_pages_needed);
2152	}
2153	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2154	    "pfault", 0);
2155}
2156
2157struct vm_pagequeue *
2158vm_page_pagequeue(vm_page_t m)
2159{
2160
2161	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2162}
2163
2164/*
2165 *	vm_page_dequeue:
2166 *
2167 *	Remove the given page from its current page queue.
2168 *
2169 *	The page must be locked.
2170 */
2171void
2172vm_page_dequeue(vm_page_t m)
2173{
2174	struct vm_pagequeue *pq;
2175
2176	vm_page_assert_locked(m);
2177	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2178	    m));
2179	pq = vm_page_pagequeue(m);
2180	vm_pagequeue_lock(pq);
2181	m->queue = PQ_NONE;
2182	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2183	vm_pagequeue_cnt_dec(pq);
2184	vm_pagequeue_unlock(pq);
2185}
2186
2187/*
2188 *	vm_page_dequeue_locked:
2189 *
2190 *	Remove the given page from its current page queue.
2191 *
2192 *	The page and page queue must be locked.
2193 */
2194void
2195vm_page_dequeue_locked(vm_page_t m)
2196{
2197	struct vm_pagequeue *pq;
2198
2199	vm_page_lock_assert(m, MA_OWNED);
2200	pq = vm_page_pagequeue(m);
2201	vm_pagequeue_assert_locked(pq);
2202	m->queue = PQ_NONE;
2203	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2204	vm_pagequeue_cnt_dec(pq);
2205}
2206
2207/*
2208 *	vm_page_enqueue:
2209 *
2210 *	Add the given page to the specified page queue.
2211 *
2212 *	The page must be locked.
2213 */
2214static void
2215vm_page_enqueue(uint8_t queue, vm_page_t m)
2216{
2217	struct vm_pagequeue *pq;
2218
2219	vm_page_lock_assert(m, MA_OWNED);
2220	KASSERT(queue < PQ_COUNT,
2221	    ("vm_page_enqueue: invalid queue %u request for page %p",
2222	    queue, m));
2223	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2224	vm_pagequeue_lock(pq);
2225	m->queue = queue;
2226	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2227	vm_pagequeue_cnt_inc(pq);
2228	vm_pagequeue_unlock(pq);
2229}
2230
2231/*
2232 *	vm_page_requeue:
2233 *
2234 *	Move the given page to the tail of its current page queue.
2235 *
2236 *	The page must be locked.
2237 */
2238void
2239vm_page_requeue(vm_page_t m)
2240{
2241	struct vm_pagequeue *pq;
2242
2243	vm_page_lock_assert(m, MA_OWNED);
2244	KASSERT(m->queue != PQ_NONE,
2245	    ("vm_page_requeue: page %p is not queued", m));
2246	pq = vm_page_pagequeue(m);
2247	vm_pagequeue_lock(pq);
2248	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2249	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2250	vm_pagequeue_unlock(pq);
2251}
2252
2253/*
2254 *	vm_page_requeue_locked:
2255 *
2256 *	Move the given page to the tail of its current page queue.
2257 *
2258 *	The page queue must be locked.
2259 */
2260void
2261vm_page_requeue_locked(vm_page_t m)
2262{
2263	struct vm_pagequeue *pq;
2264
2265	KASSERT(m->queue != PQ_NONE,
2266	    ("vm_page_requeue_locked: page %p is not queued", m));
2267	pq = vm_page_pagequeue(m);
2268	vm_pagequeue_assert_locked(pq);
2269	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2270	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2271}
2272
2273/*
2274 *	vm_page_activate:
2275 *
2276 *	Put the specified page on the active list (if appropriate).
2277 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2278 *	mess with it.
2279 *
2280 *	The page must be locked.
2281 */
2282void
2283vm_page_activate(vm_page_t m)
2284{
2285	int queue;
2286
2287	vm_page_lock_assert(m, MA_OWNED);
2288	if ((queue = m->queue) != PQ_ACTIVE) {
2289		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2290			if (m->act_count < ACT_INIT)
2291				m->act_count = ACT_INIT;
2292			if (queue != PQ_NONE)
2293				vm_page_dequeue(m);
2294			vm_page_enqueue(PQ_ACTIVE, m);
2295		} else
2296			KASSERT(queue == PQ_NONE,
2297			    ("vm_page_activate: wired page %p is queued", m));
2298	} else {
2299		if (m->act_count < ACT_INIT)
2300			m->act_count = ACT_INIT;
2301	}
2302}
2303
2304/*
2305 *	vm_page_free_wakeup:
2306 *
2307 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2308 *	routine is called when a page has been added to the cache or free
2309 *	queues.
2310 *
2311 *	The page queues must be locked.
2312 */
2313static inline void
2314vm_page_free_wakeup(void)
2315{
2316
2317	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2318	/*
2319	 * if pageout daemon needs pages, then tell it that there are
2320	 * some free.
2321	 */
2322	if (vm_pageout_pages_needed &&
2323	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2324		wakeup(&vm_pageout_pages_needed);
2325		vm_pageout_pages_needed = 0;
2326	}
2327	/*
2328	 * wakeup processes that are waiting on memory if we hit a
2329	 * high water mark. And wakeup scheduler process if we have
2330	 * lots of memory. this process will swapin processes.
2331	 */
2332	if (vm_pages_needed && !vm_page_count_min()) {
2333		vm_pages_needed = 0;
2334		wakeup(&vm_cnt.v_free_count);
2335	}
2336}
2337
2338/*
2339 *	Turn a cached page into a free page, by changing its attributes.
2340 *	Keep the statistics up-to-date.
2341 *
2342 *	The free page queue must be locked.
2343 */
2344static void
2345vm_page_cache_turn_free(vm_page_t m)
2346{
2347
2348	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2349
2350	m->object = NULL;
2351	m->valid = 0;
2352	KASSERT((m->flags & PG_CACHED) != 0,
2353	    ("vm_page_cache_turn_free: page %p is not cached", m));
2354	m->flags &= ~PG_CACHED;
2355	vm_cnt.v_cache_count--;
2356	vm_phys_freecnt_adj(m, 1);
2357}
2358
2359/*
2360 *	vm_page_free_toq:
2361 *
2362 *	Returns the given page to the free list,
2363 *	disassociating it with any VM object.
2364 *
2365 *	The object must be locked.  The page must be locked if it is managed.
2366 */
2367void
2368vm_page_free_toq(vm_page_t m)
2369{
2370
2371	if ((m->oflags & VPO_UNMANAGED) == 0) {
2372		vm_page_lock_assert(m, MA_OWNED);
2373		KASSERT(!pmap_page_is_mapped(m),
2374		    ("vm_page_free_toq: freeing mapped page %p", m));
2375	} else
2376		KASSERT(m->queue == PQ_NONE,
2377		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2378	PCPU_INC(cnt.v_tfree);
2379
2380	if (vm_page_sbusied(m))
2381		panic("vm_page_free: freeing busy page %p", m);
2382
2383	/*
2384	 * Unqueue, then remove page.  Note that we cannot destroy
2385	 * the page here because we do not want to call the pager's
2386	 * callback routine until after we've put the page on the
2387	 * appropriate free queue.
2388	 */
2389	vm_page_remque(m);
2390	vm_page_remove(m);
2391
2392	/*
2393	 * If fictitious remove object association and
2394	 * return, otherwise delay object association removal.
2395	 */
2396	if ((m->flags & PG_FICTITIOUS) != 0) {
2397		return;
2398	}
2399
2400	m->valid = 0;
2401	vm_page_undirty(m);
2402
2403	if (m->wire_count != 0)
2404		panic("vm_page_free: freeing wired page %p", m);
2405	if (m->hold_count != 0) {
2406		m->flags &= ~PG_ZERO;
2407		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2408		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2409		m->flags |= PG_UNHOLDFREE;
2410	} else {
2411		/*
2412		 * Restore the default memory attribute to the page.
2413		 */
2414		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2415			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2416
2417		/*
2418		 * Insert the page into the physical memory allocator's
2419		 * cache/free page queues.
2420		 */
2421		mtx_lock(&vm_page_queue_free_mtx);
2422		vm_phys_freecnt_adj(m, 1);
2423#if VM_NRESERVLEVEL > 0
2424		if (!vm_reserv_free_page(m))
2425#else
2426		if (TRUE)
2427#endif
2428			vm_phys_free_pages(m, 0);
2429		if ((m->flags & PG_ZERO) != 0)
2430			++vm_page_zero_count;
2431		else
2432			vm_page_zero_idle_wakeup();
2433		vm_page_free_wakeup();
2434		mtx_unlock(&vm_page_queue_free_mtx);
2435	}
2436}
2437
2438/*
2439 *	vm_page_wire:
2440 *
2441 *	Mark this page as wired down by yet
2442 *	another map, removing it from paging queues
2443 *	as necessary.
2444 *
2445 *	If the page is fictitious, then its wire count must remain one.
2446 *
2447 *	The page must be locked.
2448 */
2449void
2450vm_page_wire(vm_page_t m)
2451{
2452
2453	/*
2454	 * Only bump the wire statistics if the page is not already wired,
2455	 * and only unqueue the page if it is on some queue (if it is unmanaged
2456	 * it is already off the queues).
2457	 */
2458	vm_page_lock_assert(m, MA_OWNED);
2459	if ((m->flags & PG_FICTITIOUS) != 0) {
2460		KASSERT(m->wire_count == 1,
2461		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2462		    m));
2463		return;
2464	}
2465	if (m->wire_count == 0) {
2466		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2467		    m->queue == PQ_NONE,
2468		    ("vm_page_wire: unmanaged page %p is queued", m));
2469		vm_page_remque(m);
2470		atomic_add_int(&vm_cnt.v_wire_count, 1);
2471	}
2472	m->wire_count++;
2473	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2474}
2475
2476/*
2477 * vm_page_unwire:
2478 *
2479 * Release one wiring of the specified page, potentially allowing it to be
2480 * paged out.  Returns TRUE if the number of wirings transitions to zero and
2481 * FALSE otherwise.
2482 *
2483 * Only managed pages belonging to an object can be paged out.  If the number
2484 * of wirings transitions to zero and the page is eligible for page out, then
2485 * the page is added to the specified paging queue (unless PQ_NONE is
2486 * specified).
2487 *
2488 * If a page is fictitious, then its wire count must always be one.
2489 *
2490 * A managed page must be locked.
2491 */
2492boolean_t
2493vm_page_unwire(vm_page_t m, uint8_t queue)
2494{
2495
2496	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
2497	    ("vm_page_unwire: invalid queue %u request for page %p",
2498	    queue, m));
2499	if ((m->oflags & VPO_UNMANAGED) == 0)
2500		vm_page_assert_locked(m);
2501	if ((m->flags & PG_FICTITIOUS) != 0) {
2502		KASSERT(m->wire_count == 1,
2503	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2504		return (FALSE);
2505	}
2506	if (m->wire_count > 0) {
2507		m->wire_count--;
2508		if (m->wire_count == 0) {
2509			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2510			if ((m->oflags & VPO_UNMANAGED) == 0 &&
2511			    m->object != NULL && queue != PQ_NONE) {
2512				if (queue == PQ_INACTIVE)
2513					m->flags &= ~PG_WINATCFLS;
2514				vm_page_enqueue(queue, m);
2515			}
2516			return (TRUE);
2517		} else
2518			return (FALSE);
2519	} else
2520		panic("vm_page_unwire: page %p's wire count is zero", m);
2521}
2522
2523/*
2524 * Move the specified page to the inactive queue.
2525 *
2526 * Many pages placed on the inactive queue should actually go
2527 * into the cache, but it is difficult to figure out which.  What
2528 * we do instead, if the inactive target is well met, is to put
2529 * clean pages at the head of the inactive queue instead of the tail.
2530 * This will cause them to be moved to the cache more quickly and
2531 * if not actively re-referenced, reclaimed more quickly.  If we just
2532 * stick these pages at the end of the inactive queue, heavy filesystem
2533 * meta-data accesses can cause an unnecessary paging load on memory bound
2534 * processes.  This optimization causes one-time-use metadata to be
2535 * reused more quickly.
2536 *
2537 * Normally athead is 0 resulting in LRU operation.  athead is set
2538 * to 1 if we want this page to be 'as if it were placed in the cache',
2539 * except without unmapping it from the process address space.
2540 *
2541 * The page must be locked.
2542 */
2543static inline void
2544_vm_page_deactivate(vm_page_t m, int athead)
2545{
2546	struct vm_pagequeue *pq;
2547	int queue;
2548
2549	vm_page_assert_locked(m);
2550
2551	/*
2552	 * Ignore if the page is already inactive, unless it is unlikely to be
2553	 * reactivated.
2554	 */
2555	if ((queue = m->queue) == PQ_INACTIVE && !athead)
2556		return;
2557	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2558		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2559		/* Avoid multiple acquisitions of the inactive queue lock. */
2560		if (queue == PQ_INACTIVE) {
2561			vm_pagequeue_lock(pq);
2562			vm_page_dequeue_locked(m);
2563		} else {
2564			if (queue != PQ_NONE)
2565				vm_page_dequeue(m);
2566			m->flags &= ~PG_WINATCFLS;
2567			vm_pagequeue_lock(pq);
2568		}
2569		m->queue = PQ_INACTIVE;
2570		if (athead)
2571			TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
2572		else
2573			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2574		vm_pagequeue_cnt_inc(pq);
2575		vm_pagequeue_unlock(pq);
2576	}
2577}
2578
2579/*
2580 * Move the specified page to the inactive queue.
2581 *
2582 * The page must be locked.
2583 */
2584void
2585vm_page_deactivate(vm_page_t m)
2586{
2587
2588	_vm_page_deactivate(m, 0);
2589}
2590
2591/*
2592 * Move the specified page to the inactive queue with the expectation
2593 * that it is unlikely to be reused.
2594 *
2595 * The page must be locked.
2596 */
2597void
2598vm_page_deactivate_noreuse(vm_page_t m)
2599{
2600
2601	_vm_page_deactivate(m, 1);
2602}
2603
2604/*
2605 * vm_page_try_to_cache:
2606 *
2607 * Returns 0 on failure, 1 on success
2608 */
2609int
2610vm_page_try_to_cache(vm_page_t m)
2611{
2612
2613	vm_page_lock_assert(m, MA_OWNED);
2614	VM_OBJECT_ASSERT_WLOCKED(m->object);
2615	if (m->dirty || m->hold_count || m->wire_count ||
2616	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2617		return (0);
2618	pmap_remove_all(m);
2619	if (m->dirty)
2620		return (0);
2621	vm_page_cache(m);
2622	return (1);
2623}
2624
2625/*
2626 * vm_page_try_to_free()
2627 *
2628 *	Attempt to free the page.  If we cannot free it, we do nothing.
2629 *	1 is returned on success, 0 on failure.
2630 */
2631int
2632vm_page_try_to_free(vm_page_t m)
2633{
2634
2635	vm_page_lock_assert(m, MA_OWNED);
2636	if (m->object != NULL)
2637		VM_OBJECT_ASSERT_WLOCKED(m->object);
2638	if (m->dirty || m->hold_count || m->wire_count ||
2639	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2640		return (0);
2641	pmap_remove_all(m);
2642	if (m->dirty)
2643		return (0);
2644	vm_page_free(m);
2645	return (1);
2646}
2647
2648/*
2649 * vm_page_cache
2650 *
2651 * Put the specified page onto the page cache queue (if appropriate).
2652 *
2653 * The object and page must be locked.
2654 */
2655void
2656vm_page_cache(vm_page_t m)
2657{
2658	vm_object_t object;
2659	boolean_t cache_was_empty;
2660
2661	vm_page_lock_assert(m, MA_OWNED);
2662	object = m->object;
2663	VM_OBJECT_ASSERT_WLOCKED(object);
2664	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2665	    m->hold_count || m->wire_count)
2666		panic("vm_page_cache: attempting to cache busy page");
2667	KASSERT(!pmap_page_is_mapped(m),
2668	    ("vm_page_cache: page %p is mapped", m));
2669	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2670	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2671	    (object->type == OBJT_SWAP &&
2672	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2673		/*
2674		 * Hypothesis: A cache-eligible page belonging to a
2675		 * default object or swap object but without a backing
2676		 * store must be zero filled.
2677		 */
2678		vm_page_free(m);
2679		return;
2680	}
2681	KASSERT((m->flags & PG_CACHED) == 0,
2682	    ("vm_page_cache: page %p is already cached", m));
2683
2684	/*
2685	 * Remove the page from the paging queues.
2686	 */
2687	vm_page_remque(m);
2688
2689	/*
2690	 * Remove the page from the object's collection of resident
2691	 * pages.
2692	 */
2693	vm_radix_remove(&object->rtree, m->pindex);
2694	TAILQ_REMOVE(&object->memq, m, listq);
2695	object->resident_page_count--;
2696
2697	/*
2698	 * Restore the default memory attribute to the page.
2699	 */
2700	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2701		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2702
2703	/*
2704	 * Insert the page into the object's collection of cached pages
2705	 * and the physical memory allocator's cache/free page queues.
2706	 */
2707	m->flags &= ~PG_ZERO;
2708	mtx_lock(&vm_page_queue_free_mtx);
2709	cache_was_empty = vm_radix_is_empty(&object->cache);
2710	if (vm_radix_insert(&object->cache, m)) {
2711		mtx_unlock(&vm_page_queue_free_mtx);
2712		if (object->resident_page_count == 0)
2713			vdrop(object->handle);
2714		m->object = NULL;
2715		vm_page_free(m);
2716		return;
2717	}
2718
2719	/*
2720	 * The above call to vm_radix_insert() could reclaim the one pre-
2721	 * existing cached page from this object, resulting in a call to
2722	 * vdrop().
2723	 */
2724	if (!cache_was_empty)
2725		cache_was_empty = vm_radix_is_singleton(&object->cache);
2726
2727	m->flags |= PG_CACHED;
2728	vm_cnt.v_cache_count++;
2729	PCPU_INC(cnt.v_tcached);
2730#if VM_NRESERVLEVEL > 0
2731	if (!vm_reserv_free_page(m)) {
2732#else
2733	if (TRUE) {
2734#endif
2735		vm_phys_free_pages(m, 0);
2736	}
2737	vm_page_free_wakeup();
2738	mtx_unlock(&vm_page_queue_free_mtx);
2739
2740	/*
2741	 * Increment the vnode's hold count if this is the object's only
2742	 * cached page.  Decrement the vnode's hold count if this was
2743	 * the object's only resident page.
2744	 */
2745	if (object->type == OBJT_VNODE) {
2746		if (cache_was_empty && object->resident_page_count != 0)
2747			vhold(object->handle);
2748		else if (!cache_was_empty && object->resident_page_count == 0)
2749			vdrop(object->handle);
2750	}
2751}
2752
2753/*
2754 * vm_page_advise
2755 *
2756 * 	Deactivate or do nothing, as appropriate.
2757 *
2758 *	The object and page must be locked.
2759 */
2760void
2761vm_page_advise(vm_page_t m, int advice)
2762{
2763
2764	vm_page_assert_locked(m);
2765	VM_OBJECT_ASSERT_WLOCKED(m->object);
2766	if (advice == MADV_FREE)
2767		/*
2768		 * Mark the page clean.  This will allow the page to be freed
2769		 * up by the system.  However, such pages are often reused
2770		 * quickly by malloc() so we do not do anything that would
2771		 * cause a page fault if we can help it.
2772		 *
2773		 * Specifically, we do not try to actually free the page now
2774		 * nor do we try to put it in the cache (which would cause a
2775		 * page fault on reuse).
2776		 *
2777		 * But we do make the page as freeable as we can without
2778		 * actually taking the step of unmapping it.
2779		 */
2780		m->dirty = 0;
2781	else if (advice != MADV_DONTNEED)
2782		return;
2783
2784	/*
2785	 * Clear any references to the page.  Otherwise, the page daemon will
2786	 * immediately reactivate the page.
2787	 */
2788	vm_page_aflag_clear(m, PGA_REFERENCED);
2789
2790	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2791		vm_page_dirty(m);
2792
2793	/*
2794	 * Place clean pages at the head of the inactive queue rather than the
2795	 * tail, thus defeating the queue's LRU operation and ensuring that the
2796	 * page will be reused quickly.
2797	 */
2798	_vm_page_deactivate(m, m->dirty == 0);
2799}
2800
2801/*
2802 * Grab a page, waiting until we are waken up due to the page
2803 * changing state.  We keep on waiting, if the page continues
2804 * to be in the object.  If the page doesn't exist, first allocate it
2805 * and then conditionally zero it.
2806 *
2807 * This routine may sleep.
2808 *
2809 * The object must be locked on entry.  The lock will, however, be released
2810 * and reacquired if the routine sleeps.
2811 */
2812vm_page_t
2813vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2814{
2815	vm_page_t m;
2816	int sleep;
2817
2818	VM_OBJECT_ASSERT_WLOCKED(object);
2819	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2820	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2821	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2822retrylookup:
2823	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2824		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2825		    vm_page_xbusied(m) : vm_page_busied(m);
2826		if (sleep) {
2827			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
2828				return (NULL);
2829			/*
2830			 * Reference the page before unlocking and
2831			 * sleeping so that the page daemon is less
2832			 * likely to reclaim it.
2833			 */
2834			vm_page_aflag_set(m, PGA_REFERENCED);
2835			vm_page_lock(m);
2836			VM_OBJECT_WUNLOCK(object);
2837			vm_page_busy_sleep(m, "pgrbwt");
2838			VM_OBJECT_WLOCK(object);
2839			goto retrylookup;
2840		} else {
2841			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2842				vm_page_lock(m);
2843				vm_page_wire(m);
2844				vm_page_unlock(m);
2845			}
2846			if ((allocflags &
2847			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2848				vm_page_xbusy(m);
2849			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2850				vm_page_sbusy(m);
2851			return (m);
2852		}
2853	}
2854	m = vm_page_alloc(object, pindex, allocflags);
2855	if (m == NULL) {
2856		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
2857			return (NULL);
2858		VM_OBJECT_WUNLOCK(object);
2859		VM_WAIT;
2860		VM_OBJECT_WLOCK(object);
2861		goto retrylookup;
2862	} else if (m->valid != 0)
2863		return (m);
2864	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2865		pmap_zero_page(m);
2866	return (m);
2867}
2868
2869/*
2870 * Mapping function for valid or dirty bits in a page.
2871 *
2872 * Inputs are required to range within a page.
2873 */
2874vm_page_bits_t
2875vm_page_bits(int base, int size)
2876{
2877	int first_bit;
2878	int last_bit;
2879
2880	KASSERT(
2881	    base + size <= PAGE_SIZE,
2882	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2883	);
2884
2885	if (size == 0)		/* handle degenerate case */
2886		return (0);
2887
2888	first_bit = base >> DEV_BSHIFT;
2889	last_bit = (base + size - 1) >> DEV_BSHIFT;
2890
2891	return (((vm_page_bits_t)2 << last_bit) -
2892	    ((vm_page_bits_t)1 << first_bit));
2893}
2894
2895/*
2896 *	vm_page_set_valid_range:
2897 *
2898 *	Sets portions of a page valid.  The arguments are expected
2899 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2900 *	of any partial chunks touched by the range.  The invalid portion of
2901 *	such chunks will be zeroed.
2902 *
2903 *	(base + size) must be less then or equal to PAGE_SIZE.
2904 */
2905void
2906vm_page_set_valid_range(vm_page_t m, int base, int size)
2907{
2908	int endoff, frag;
2909
2910	VM_OBJECT_ASSERT_WLOCKED(m->object);
2911	if (size == 0)	/* handle degenerate case */
2912		return;
2913
2914	/*
2915	 * If the base is not DEV_BSIZE aligned and the valid
2916	 * bit is clear, we have to zero out a portion of the
2917	 * first block.
2918	 */
2919	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2920	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2921		pmap_zero_page_area(m, frag, base - frag);
2922
2923	/*
2924	 * If the ending offset is not DEV_BSIZE aligned and the
2925	 * valid bit is clear, we have to zero out a portion of
2926	 * the last block.
2927	 */
2928	endoff = base + size;
2929	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2930	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2931		pmap_zero_page_area(m, endoff,
2932		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2933
2934	/*
2935	 * Assert that no previously invalid block that is now being validated
2936	 * is already dirty.
2937	 */
2938	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2939	    ("vm_page_set_valid_range: page %p is dirty", m));
2940
2941	/*
2942	 * Set valid bits inclusive of any overlap.
2943	 */
2944	m->valid |= vm_page_bits(base, size);
2945}
2946
2947/*
2948 * Clear the given bits from the specified page's dirty field.
2949 */
2950static __inline void
2951vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2952{
2953	uintptr_t addr;
2954#if PAGE_SIZE < 16384
2955	int shift;
2956#endif
2957
2958	/*
2959	 * If the object is locked and the page is neither exclusive busy nor
2960	 * write mapped, then the page's dirty field cannot possibly be
2961	 * set by a concurrent pmap operation.
2962	 */
2963	VM_OBJECT_ASSERT_WLOCKED(m->object);
2964	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2965		m->dirty &= ~pagebits;
2966	else {
2967		/*
2968		 * The pmap layer can call vm_page_dirty() without
2969		 * holding a distinguished lock.  The combination of
2970		 * the object's lock and an atomic operation suffice
2971		 * to guarantee consistency of the page dirty field.
2972		 *
2973		 * For PAGE_SIZE == 32768 case, compiler already
2974		 * properly aligns the dirty field, so no forcible
2975		 * alignment is needed. Only require existence of
2976		 * atomic_clear_64 when page size is 32768.
2977		 */
2978		addr = (uintptr_t)&m->dirty;
2979#if PAGE_SIZE == 32768
2980		atomic_clear_64((uint64_t *)addr, pagebits);
2981#elif PAGE_SIZE == 16384
2982		atomic_clear_32((uint32_t *)addr, pagebits);
2983#else		/* PAGE_SIZE <= 8192 */
2984		/*
2985		 * Use a trick to perform a 32-bit atomic on the
2986		 * containing aligned word, to not depend on the existence
2987		 * of atomic_clear_{8, 16}.
2988		 */
2989		shift = addr & (sizeof(uint32_t) - 1);
2990#if BYTE_ORDER == BIG_ENDIAN
2991		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2992#else
2993		shift *= NBBY;
2994#endif
2995		addr &= ~(sizeof(uint32_t) - 1);
2996		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2997#endif		/* PAGE_SIZE */
2998	}
2999}
3000
3001/*
3002 *	vm_page_set_validclean:
3003 *
3004 *	Sets portions of a page valid and clean.  The arguments are expected
3005 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3006 *	of any partial chunks touched by the range.  The invalid portion of
3007 *	such chunks will be zero'd.
3008 *
3009 *	(base + size) must be less then or equal to PAGE_SIZE.
3010 */
3011void
3012vm_page_set_validclean(vm_page_t m, int base, int size)
3013{
3014	vm_page_bits_t oldvalid, pagebits;
3015	int endoff, frag;
3016
3017	VM_OBJECT_ASSERT_WLOCKED(m->object);
3018	if (size == 0)	/* handle degenerate case */
3019		return;
3020
3021	/*
3022	 * If the base is not DEV_BSIZE aligned and the valid
3023	 * bit is clear, we have to zero out a portion of the
3024	 * first block.
3025	 */
3026	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3027	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3028		pmap_zero_page_area(m, frag, base - frag);
3029
3030	/*
3031	 * If the ending offset is not DEV_BSIZE aligned and the
3032	 * valid bit is clear, we have to zero out a portion of
3033	 * the last block.
3034	 */
3035	endoff = base + size;
3036	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3037	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3038		pmap_zero_page_area(m, endoff,
3039		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3040
3041	/*
3042	 * Set valid, clear dirty bits.  If validating the entire
3043	 * page we can safely clear the pmap modify bit.  We also
3044	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3045	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3046	 * be set again.
3047	 *
3048	 * We set valid bits inclusive of any overlap, but we can only
3049	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3050	 * the range.
3051	 */
3052	oldvalid = m->valid;
3053	pagebits = vm_page_bits(base, size);
3054	m->valid |= pagebits;
3055#if 0	/* NOT YET */
3056	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3057		frag = DEV_BSIZE - frag;
3058		base += frag;
3059		size -= frag;
3060		if (size < 0)
3061			size = 0;
3062	}
3063	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3064#endif
3065	if (base == 0 && size == PAGE_SIZE) {
3066		/*
3067		 * The page can only be modified within the pmap if it is
3068		 * mapped, and it can only be mapped if it was previously
3069		 * fully valid.
3070		 */
3071		if (oldvalid == VM_PAGE_BITS_ALL)
3072			/*
3073			 * Perform the pmap_clear_modify() first.  Otherwise,
3074			 * a concurrent pmap operation, such as
3075			 * pmap_protect(), could clear a modification in the
3076			 * pmap and set the dirty field on the page before
3077			 * pmap_clear_modify() had begun and after the dirty
3078			 * field was cleared here.
3079			 */
3080			pmap_clear_modify(m);
3081		m->dirty = 0;
3082		m->oflags &= ~VPO_NOSYNC;
3083	} else if (oldvalid != VM_PAGE_BITS_ALL)
3084		m->dirty &= ~pagebits;
3085	else
3086		vm_page_clear_dirty_mask(m, pagebits);
3087}
3088
3089void
3090vm_page_clear_dirty(vm_page_t m, int base, int size)
3091{
3092
3093	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3094}
3095
3096/*
3097 *	vm_page_set_invalid:
3098 *
3099 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3100 *	valid and dirty bits for the effected areas are cleared.
3101 */
3102void
3103vm_page_set_invalid(vm_page_t m, int base, int size)
3104{
3105	vm_page_bits_t bits;
3106	vm_object_t object;
3107
3108	object = m->object;
3109	VM_OBJECT_ASSERT_WLOCKED(object);
3110	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3111	    size >= object->un_pager.vnp.vnp_size)
3112		bits = VM_PAGE_BITS_ALL;
3113	else
3114		bits = vm_page_bits(base, size);
3115	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3116	    bits != 0)
3117		pmap_remove_all(m);
3118	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3119	    !pmap_page_is_mapped(m),
3120	    ("vm_page_set_invalid: page %p is mapped", m));
3121	m->valid &= ~bits;
3122	m->dirty &= ~bits;
3123}
3124
3125/*
3126 * vm_page_zero_invalid()
3127 *
3128 *	The kernel assumes that the invalid portions of a page contain
3129 *	garbage, but such pages can be mapped into memory by user code.
3130 *	When this occurs, we must zero out the non-valid portions of the
3131 *	page so user code sees what it expects.
3132 *
3133 *	Pages are most often semi-valid when the end of a file is mapped
3134 *	into memory and the file's size is not page aligned.
3135 */
3136void
3137vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3138{
3139	int b;
3140	int i;
3141
3142	VM_OBJECT_ASSERT_WLOCKED(m->object);
3143	/*
3144	 * Scan the valid bits looking for invalid sections that
3145	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3146	 * valid bit may be set ) have already been zeroed by
3147	 * vm_page_set_validclean().
3148	 */
3149	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3150		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3151		    (m->valid & ((vm_page_bits_t)1 << i))) {
3152			if (i > b) {
3153				pmap_zero_page_area(m,
3154				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3155			}
3156			b = i + 1;
3157		}
3158	}
3159
3160	/*
3161	 * setvalid is TRUE when we can safely set the zero'd areas
3162	 * as being valid.  We can do this if there are no cache consistancy
3163	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3164	 */
3165	if (setvalid)
3166		m->valid = VM_PAGE_BITS_ALL;
3167}
3168
3169/*
3170 *	vm_page_is_valid:
3171 *
3172 *	Is (partial) page valid?  Note that the case where size == 0
3173 *	will return FALSE in the degenerate case where the page is
3174 *	entirely invalid, and TRUE otherwise.
3175 */
3176int
3177vm_page_is_valid(vm_page_t m, int base, int size)
3178{
3179	vm_page_bits_t bits;
3180
3181	VM_OBJECT_ASSERT_LOCKED(m->object);
3182	bits = vm_page_bits(base, size);
3183	return (m->valid != 0 && (m->valid & bits) == bits);
3184}
3185
3186/*
3187 *	vm_page_ps_is_valid:
3188 *
3189 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3190 */
3191boolean_t
3192vm_page_ps_is_valid(vm_page_t m)
3193{
3194	int i, npages;
3195
3196	VM_OBJECT_ASSERT_LOCKED(m->object);
3197	npages = atop(pagesizes[m->psind]);
3198
3199	/*
3200	 * The physically contiguous pages that make up a superpage, i.e., a
3201	 * page with a page size index ("psind") greater than zero, will
3202	 * occupy adjacent entries in vm_page_array[].
3203	 */
3204	for (i = 0; i < npages; i++) {
3205		if (m[i].valid != VM_PAGE_BITS_ALL)
3206			return (FALSE);
3207	}
3208	return (TRUE);
3209}
3210
3211/*
3212 * Set the page's dirty bits if the page is modified.
3213 */
3214void
3215vm_page_test_dirty(vm_page_t m)
3216{
3217
3218	VM_OBJECT_ASSERT_WLOCKED(m->object);
3219	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3220		vm_page_dirty(m);
3221}
3222
3223void
3224vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3225{
3226
3227	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3228}
3229
3230void
3231vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3232{
3233
3234	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3235}
3236
3237int
3238vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3239{
3240
3241	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3242}
3243
3244#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3245void
3246vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3247{
3248
3249	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3250}
3251
3252void
3253vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3254{
3255
3256	mtx_assert_(vm_page_lockptr(m), a, file, line);
3257}
3258#endif
3259
3260#ifdef INVARIANTS
3261void
3262vm_page_object_lock_assert(vm_page_t m)
3263{
3264
3265	/*
3266	 * Certain of the page's fields may only be modified by the
3267	 * holder of the containing object's lock or the exclusive busy.
3268	 * holder.  Unfortunately, the holder of the write busy is
3269	 * not recorded, and thus cannot be checked here.
3270	 */
3271	if (m->object != NULL && !vm_page_xbusied(m))
3272		VM_OBJECT_ASSERT_WLOCKED(m->object);
3273}
3274
3275void
3276vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3277{
3278
3279	if ((bits & PGA_WRITEABLE) == 0)
3280		return;
3281
3282	/*
3283	 * The PGA_WRITEABLE flag can only be set if the page is
3284	 * managed, is exclusively busied or the object is locked.
3285	 * Currently, this flag is only set by pmap_enter().
3286	 */
3287	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3288	    ("PGA_WRITEABLE on unmanaged page"));
3289	if (!vm_page_xbusied(m))
3290		VM_OBJECT_ASSERT_LOCKED(m->object);
3291}
3292#endif
3293
3294#include "opt_ddb.h"
3295#ifdef DDB
3296#include <sys/kernel.h>
3297
3298#include <ddb/ddb.h>
3299
3300DB_SHOW_COMMAND(page, vm_page_print_page_info)
3301{
3302	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3303	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3304	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3305	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3306	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3307	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3308	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3309	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3310	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3311}
3312
3313DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3314{
3315	int dom;
3316
3317	db_printf("pq_free %d pq_cache %d\n",
3318	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3319	for (dom = 0; dom < vm_ndomains; dom++) {
3320		db_printf(
3321	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3322		    dom,
3323		    vm_dom[dom].vmd_page_count,
3324		    vm_dom[dom].vmd_free_count,
3325		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3326		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3327		    vm_dom[dom].vmd_pass);
3328	}
3329}
3330
3331DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3332{
3333	vm_page_t m;
3334	boolean_t phys;
3335
3336	if (!have_addr) {
3337		db_printf("show pginfo addr\n");
3338		return;
3339	}
3340
3341	phys = strchr(modif, 'p') != NULL;
3342	if (phys)
3343		m = PHYS_TO_VM_PAGE(addr);
3344	else
3345		m = (vm_page_t)addr;
3346	db_printf(
3347    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3348    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3349	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3350	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3351	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3352}
3353#endif /* DDB */
3354