vm_page.c revision 273174
1117845Ssam/*-
2117845Ssam * Copyright (c) 1991 Regents of the University of California.
3117845Ssam * All rights reserved.
4117845Ssam * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5117845Ssam *
6117845Ssam * This code is derived from software contributed to Berkeley by
7117845Ssam * The Mach Operating System project at Carnegie-Mellon University.
8117845Ssam *
9117845Ssam * Redistribution and use in source and binary forms, with or without
10117845Ssam * modification, are permitted provided that the following conditions
11117845Ssam * are met:
12117845Ssam * 1. Redistributions of source code must retain the above copyright
13117845Ssam *    notice, this list of conditions and the following disclaimer.
14117845Ssam * 2. Redistributions in binary form must reproduce the above copyright
15117845Ssam *    notice, this list of conditions and the following disclaimer in the
16117845Ssam *    documentation and/or other materials provided with the distribution.
17117845Ssam * 4. Neither the name of the University nor the names of its contributors
18117845Ssam *    may be used to endorse or promote products derived from this software
19117845Ssam *    without specific prior written permission.
20117845Ssam *
21117845Ssam * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22117845Ssam * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23117845Ssam * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24117845Ssam * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25117845Ssam * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26117845Ssam * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27117845Ssam * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28117845Ssam * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29117845Ssam * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30117845Ssam * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31117845Ssam * SUCH DAMAGE.
32117845Ssam *
33117845Ssam *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34117845Ssam */
35117845Ssam
36117845Ssam/*-
37117845Ssam * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38117845Ssam * All rights reserved.
39117845Ssam *
40117845Ssam * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41117845Ssam *
42117845Ssam * Permission to use, copy, modify and distribute this software and
43129879Sphk * its documentation is hereby granted, provided that both the copyright
44117845Ssam * notice and this permission notice appear in all copies of the
45117845Ssam * software, derivative works or modified versions, and any portions
46117845Ssam * thereof, and that both notices appear in supporting documentation.
47117845Ssam *
48117845Ssam * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49117845Ssam * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50117845Ssam * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51117845Ssam *
52117845Ssam * Carnegie Mellon requests users of this software to return to
53117845Ssam *
54117845Ssam *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55117845Ssam *  School of Computer Science
56117845Ssam *  Carnegie Mellon University
57117845Ssam *  Pittsburgh PA 15213-3890
58117845Ssam *
59117845Ssam * any improvements or extensions that they make and grant Carnegie the
60117845Ssam * rights to redistribute these changes.
61117845Ssam */
62117845Ssam
63119287Simp/*
64119287Simp *			GENERAL RULES ON VM_PAGE MANIPULATION
65117845Ssam *
66117845Ssam *	- A page queue lock is required when adding or removing a page from a
67117845Ssam *	  page queue regardless of other locks or the busy state of a page.
68117845Ssam *
69117845Ssam *		* In general, no thread besides the page daemon can acquire or
70117845Ssam *		  hold more than one page queue lock at a time.
71117845Ssam *
72117845Ssam *		* The page daemon can acquire and hold any pair of page queue
73117845Ssam *		  locks in any order.
74117845Ssam *
75117845Ssam *	- The object lock is required when inserting or removing
76117845Ssam *	  pages from an object (vm_page_insert() or vm_page_remove()).
77117845Ssam *
78117845Ssam */
79117845Ssam
80117845Ssam/*
81117845Ssam *	Resident memory management module.
82117845Ssam */
83117845Ssam
84117845Ssam#include <sys/cdefs.h>
85117845Ssam__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 273174 2014-10-16 18:04:43Z davide $");
86117845Ssam
87117845Ssam#include "opt_vm.h"
88117845Ssam
89117845Ssam#include <sys/param.h>
90117845Ssam#include <sys/systm.h>
91117845Ssam#include <sys/lock.h>
92117845Ssam#include <sys/kernel.h>
93117845Ssam#include <sys/limits.h>
94117845Ssam#include <sys/malloc.h>
95117845Ssam#include <sys/mman.h>
96117845Ssam#include <sys/msgbuf.h>
97117845Ssam#include <sys/mutex.h>
98117845Ssam#include <sys/proc.h>
99117845Ssam#include <sys/rwlock.h>
100117845Ssam#include <sys/sysctl.h>
101117845Ssam#include <sys/vmmeter.h>
102117845Ssam#include <sys/vnode.h>
103117845Ssam
104117845Ssam#include <vm/vm.h>
105117845Ssam#include <vm/pmap.h>
106117845Ssam#include <vm/vm_param.h>
107117845Ssam#include <vm/vm_kern.h>
108117845Ssam#include <vm/vm_object.h>
109117845Ssam#include <vm/vm_page.h>
110117845Ssam#include <vm/vm_pageout.h>
111117845Ssam#include <vm/vm_pager.h>
112117845Ssam#include <vm/vm_phys.h>
113117845Ssam#include <vm/vm_radix.h>
114117845Ssam#include <vm/vm_reserv.h>
115117845Ssam#include <vm/vm_extern.h>
116117845Ssam#include <vm/uma.h>
117117845Ssam#include <vm/uma_int.h>
118117845Ssam
119117845Ssam#include <machine/md_var.h>
120117845Ssam
121117845Ssam/*
122117845Ssam *	Associated with page of user-allocatable memory is a
123117845Ssam *	page structure.
124117845Ssam */
125117845Ssam
126117845Ssamstruct vm_domain vm_dom[MAXMEMDOM];
127117845Ssamstruct mtx_padalign vm_page_queue_free_mtx;
128117845Ssam
129117845Ssamstruct mtx_padalign pa_lock[PA_LOCK_COUNT];
130117845Ssam
131117845Ssamvm_page_t vm_page_array;
132117845Ssamlong vm_page_array_size;
133117845Ssamlong first_page;
134117845Ssamint vm_page_zero_count;
135117845Ssam
136117845Ssamstatic int boot_pages = UMA_BOOT_PAGES;
137117845SsamSYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN, &boot_pages, 0,
138117845Ssam	"number of pages allocated for bootstrapping the VM system");
139117845Ssam
140117845Ssamstatic int pa_tryrelock_restart;
141117845SsamSYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
142117845Ssam    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
143117845Ssam
144117845Ssamstatic uma_zone_t fakepg_zone;
145117845Ssam
146117845Ssamstatic struct vnode *vm_page_alloc_init(vm_page_t m);
147117845Ssamstatic void vm_page_cache_turn_free(vm_page_t m);
148117845Ssamstatic void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
149117845Ssamstatic void vm_page_enqueue(uint8_t queue, vm_page_t m);
150117845Ssamstatic void vm_page_init_fakepg(void *dummy);
151117845Ssamstatic int vm_page_insert_after(vm_page_t m, vm_object_t object,
152117845Ssam    vm_pindex_t pindex, vm_page_t mpred);
153117845Ssamstatic void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
154117845Ssam    vm_page_t mpred);
155117845Ssam
156117845SsamSYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
157117845Ssam
158117845Ssamstatic void
159117845Ssamvm_page_init_fakepg(void *dummy)
160117845Ssam{
161117845Ssam
162117845Ssam	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
163117845Ssam	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
164117845Ssam}
165117845Ssam
166117845Ssam/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
167117845Ssam#if PAGE_SIZE == 32768
168117845Ssam#ifdef CTASSERT
169117845SsamCTASSERT(sizeof(u_long) >= 8);
170117845Ssam#endif
171117845Ssam#endif
172117845Ssam
173117845Ssam/*
174117845Ssam * Try to acquire a physical address lock while a pmap is locked.  If we
175117845Ssam * fail to trylock we unlock and lock the pmap directly and cache the
176117845Ssam * locked pa in *locked.  The caller should then restart their loop in case
177117845Ssam * the virtual to physical mapping has changed.
178117845Ssam */
179117845Ssamint
180117845Ssamvm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
181117845Ssam{
182117845Ssam	vm_paddr_t lockpa;
183117845Ssam
184117845Ssam	lockpa = *locked;
185117845Ssam	*locked = pa;
186142890Simp	if (lockpa) {
187117845Ssam		PA_LOCK_ASSERT(lockpa, MA_OWNED);
188117845Ssam		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
189117845Ssam			return (0);
190117845Ssam		PA_UNLOCK(lockpa);
191117845Ssam	}
192117845Ssam	if (PA_TRYLOCK(pa))
193117845Ssam		return (0);
194117845Ssam	PMAP_UNLOCK(pmap);
195117845Ssam	atomic_add_int(&pa_tryrelock_restart, 1);
196117845Ssam	PA_LOCK(pa);
197117845Ssam	PMAP_LOCK(pmap);
198117845Ssam	return (EAGAIN);
199117845Ssam}
200117845Ssam
201117845Ssam/*
202117845Ssam *	vm_set_page_size:
203117845Ssam *
204117845Ssam *	Sets the page size, perhaps based upon the memory
205117845Ssam *	size.  Must be called before any use of page-size
206117845Ssam *	dependent functions.
207117845Ssam */
208117845Ssamvoid
209117845Ssamvm_set_page_size(void)
210117845Ssam{
211117845Ssam	if (vm_cnt.v_page_size == 0)
212117845Ssam		vm_cnt.v_page_size = PAGE_SIZE;
213117845Ssam	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
214117845Ssam		panic("vm_set_page_size: page size not a power of two");
215117845Ssam}
216117845Ssam
217117845Ssam/*
218117845Ssam *	vm_page_blacklist_lookup:
219117845Ssam *
220117845Ssam *	See if a physical address in this page has been listed
221117845Ssam *	in the blacklist tunable.  Entries in the tunable are
222117845Ssam *	separated by spaces or commas.  If an invalid integer is
223117845Ssam *	encountered then the rest of the string is skipped.
224117845Ssam */
225117845Ssamstatic int
226117845Ssamvm_page_blacklist_lookup(char *list, vm_paddr_t pa)
227117845Ssam{
228117845Ssam	vm_paddr_t bad;
229117845Ssam	char *cp, *pos;
230117845Ssam
231117845Ssam	for (pos = list; *pos != '\0'; pos = cp) {
232117845Ssam		bad = strtoq(pos, &cp, 0);
233117845Ssam		if (*cp != '\0') {
234117845Ssam			if (*cp == ' ' || *cp == ',') {
235117845Ssam				cp++;
236117845Ssam				if (cp == pos)
237117845Ssam					continue;
238117845Ssam			} else
239117845Ssam				break;
240117845Ssam		}
241117845Ssam		if (pa == trunc_page(bad))
242117845Ssam			return (1);
243117845Ssam	}
244127135Snjl	return (0);
245127135Snjl}
246117845Ssam
247117845Ssamstatic void
248117845Ssamvm_page_domain_init(struct vm_domain *vmd)
249117845Ssam{
250117845Ssam	struct vm_pagequeue *pq;
251117845Ssam	int i;
252117845Ssam
253117845Ssam	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
254117845Ssam	    "vm inactive pagequeue";
255117845Ssam	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
256117845Ssam	    &vm_cnt.v_inactive_count;
257127135Snjl	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
258127135Snjl	    "vm active pagequeue";
259117845Ssam	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
260117845Ssam	    &vm_cnt.v_active_count;
261117845Ssam	vmd->vmd_page_count = 0;
262117845Ssam	vmd->vmd_free_count = 0;
263117845Ssam	vmd->vmd_segs = 0;
264117845Ssam	vmd->vmd_oom = FALSE;
265117845Ssam	vmd->vmd_pass = 0;
266117845Ssam	for (i = 0; i < PQ_COUNT; i++) {
267117845Ssam		pq = &vmd->vmd_pagequeues[i];
268117845Ssam		TAILQ_INIT(&pq->pq_pl);
269117845Ssam		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
270117845Ssam		    MTX_DEF | MTX_DUPOK);
271117845Ssam	}
272117845Ssam}
273117845Ssam
274117845Ssam/*
275117845Ssam *	vm_page_startup:
276117845Ssam *
277117845Ssam *	Initializes the resident memory module.
278117845Ssam *
279117845Ssam *	Allocates memory for the page cells, and
280117845Ssam *	for the object/offset-to-page hash table headers.
281117845Ssam *	Each page cell is initialized and placed on the free list.
282117845Ssam */
283117845Ssamvm_offset_t
284117845Ssamvm_page_startup(vm_offset_t vaddr)
285117845Ssam{
286117845Ssam	vm_offset_t mapped;
287117845Ssam	vm_paddr_t page_range;
288117845Ssam	vm_paddr_t new_end;
289117845Ssam	int i;
290117845Ssam	vm_paddr_t pa;
291117845Ssam	vm_paddr_t last_pa;
292117845Ssam	char *list;
293117845Ssam
294117845Ssam	/* the biggest memory array is the second group of pages */
295117845Ssam	vm_paddr_t end;
296117845Ssam	vm_paddr_t biggestsize;
297117845Ssam	vm_paddr_t low_water, high_water;
298117845Ssam	int biggestone;
299117845Ssam
300117845Ssam	biggestsize = 0;
301117845Ssam	biggestone = 0;
302117845Ssam	vaddr = round_page(vaddr);
303117845Ssam
304117845Ssam	for (i = 0; phys_avail[i + 1]; i += 2) {
305117845Ssam		phys_avail[i] = round_page(phys_avail[i]);
306117845Ssam		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
307117845Ssam	}
308117845Ssam
309117845Ssam	low_water = phys_avail[0];
310117845Ssam	high_water = phys_avail[1];
311117845Ssam
312117845Ssam	for (i = 0; phys_avail[i + 1]; i += 2) {
313117845Ssam		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
314117845Ssam
315117845Ssam		if (size > biggestsize) {
316117845Ssam			biggestone = i;
317117845Ssam			biggestsize = size;
318117845Ssam		}
319117845Ssam		if (phys_avail[i] < low_water)
320117845Ssam			low_water = phys_avail[i];
321117845Ssam		if (phys_avail[i + 1] > high_water)
322117845Ssam			high_water = phys_avail[i + 1];
323117845Ssam	}
324117845Ssam
325117845Ssam#ifdef XEN
326117845Ssam	low_water = 0;
327117845Ssam#endif
328117845Ssam
329117845Ssam	end = phys_avail[biggestone+1];
330117845Ssam
331117845Ssam	/*
332117845Ssam	 * Initialize the page and queue locks.
333117845Ssam	 */
334117845Ssam	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
335117845Ssam	for (i = 0; i < PA_LOCK_COUNT; i++)
336117845Ssam		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
337117845Ssam	for (i = 0; i < vm_ndomains; i++)
338117845Ssam		vm_page_domain_init(&vm_dom[i]);
339117845Ssam
340117845Ssam	/*
341117845Ssam	 * Allocate memory for use when boot strapping the kernel memory
342117845Ssam	 * allocator.
343117845Ssam	 */
344117845Ssam	new_end = end - (boot_pages * UMA_SLAB_SIZE);
345117845Ssam	new_end = trunc_page(new_end);
346117845Ssam	mapped = pmap_map(&vaddr, new_end, end,
347117845Ssam	    VM_PROT_READ | VM_PROT_WRITE);
348117845Ssam	bzero((void *)mapped, end - new_end);
349117845Ssam	uma_startup((void *)mapped, boot_pages);
350117845Ssam
351117845Ssam#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
352117845Ssam    defined(__mips__)
353117845Ssam	/*
354117845Ssam	 * Allocate a bitmap to indicate that a random physical page
355117845Ssam	 * needs to be included in a minidump.
356117845Ssam	 *
357117845Ssam	 * The amd64 port needs this to indicate which direct map pages
358117845Ssam	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
359117845Ssam	 *
360117845Ssam	 * However, i386 still needs this workspace internally within the
361117845Ssam	 * minidump code.  In theory, they are not needed on i386, but are
362117845Ssam	 * included should the sf_buf code decide to use them.
363117845Ssam	 */
364117845Ssam	last_pa = 0;
365117845Ssam	for (i = 0; dump_avail[i + 1] != 0; i += 2)
366117845Ssam		if (dump_avail[i + 1] > last_pa)
367117845Ssam			last_pa = dump_avail[i + 1];
368117845Ssam	page_range = last_pa / PAGE_SIZE;
369117845Ssam	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
370117845Ssam	new_end -= vm_page_dump_size;
371117845Ssam	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
372117845Ssam	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
373117845Ssam	bzero((void *)vm_page_dump, vm_page_dump_size);
374117845Ssam#endif
375117845Ssam#ifdef __amd64__
376117845Ssam	/*
377117845Ssam	 * Request that the physical pages underlying the message buffer be
378117845Ssam	 * included in a crash dump.  Since the message buffer is accessed
379117845Ssam	 * through the direct map, they are not automatically included.
380117845Ssam	 */
381117845Ssam	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
382117845Ssam	last_pa = pa + round_page(msgbufsize);
383117845Ssam	while (pa < last_pa) {
384117845Ssam		dump_add_page(pa);
385117845Ssam		pa += PAGE_SIZE;
386117845Ssam	}
387117845Ssam#endif
388117845Ssam	/*
389117845Ssam	 * Compute the number of pages of memory that will be available for
390117845Ssam	 * use (taking into account the overhead of a page structure per
391117845Ssam	 * page).
392117845Ssam	 */
393117845Ssam	first_page = low_water / PAGE_SIZE;
394117845Ssam#ifdef VM_PHYSSEG_SPARSE
395117845Ssam	page_range = 0;
396117845Ssam	for (i = 0; phys_avail[i + 1] != 0; i += 2)
397117845Ssam		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
398117845Ssam#elif defined(VM_PHYSSEG_DENSE)
399117845Ssam	page_range = high_water / PAGE_SIZE - first_page;
400117845Ssam#else
401117845Ssam#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
402117845Ssam#endif
403117845Ssam	end = new_end;
404117845Ssam
405117845Ssam	/*
406117845Ssam	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
407117845Ssam	 */
408117845Ssam	vaddr += PAGE_SIZE;
409117845Ssam
410117845Ssam	/*
411117845Ssam	 * Initialize the mem entry structures now, and put them in the free
412117845Ssam	 * queue.
413117845Ssam	 */
414117845Ssam	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
415117845Ssam	mapped = pmap_map(&vaddr, new_end, end,
416117845Ssam	    VM_PROT_READ | VM_PROT_WRITE);
417117845Ssam	vm_page_array = (vm_page_t) mapped;
418117845Ssam#if VM_NRESERVLEVEL > 0
419117845Ssam	/*
420117845Ssam	 * Allocate memory for the reservation management system's data
421117845Ssam	 * structures.
422117845Ssam	 */
423117845Ssam	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
424117845Ssam#endif
425117845Ssam#if defined(__amd64__) || defined(__mips__)
426117845Ssam	/*
427117845Ssam	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
428117845Ssam	 * like i386, so the pages must be tracked for a crashdump to include
429117845Ssam	 * this data.  This includes the vm_page_array and the early UMA
430117845Ssam	 * bootstrap pages.
431117845Ssam	 */
432117845Ssam	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
433117845Ssam		dump_add_page(pa);
434117845Ssam#endif
435117845Ssam	phys_avail[biggestone + 1] = new_end;
436117845Ssam
437117845Ssam	/*
438117845Ssam	 * Clear all of the page structures
439117845Ssam	 */
440117845Ssam	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
441117845Ssam	for (i = 0; i < page_range; i++)
442117845Ssam		vm_page_array[i].order = VM_NFREEORDER;
443117845Ssam	vm_page_array_size = page_range;
444119137Ssam
445117845Ssam	/*
446117845Ssam	 * Initialize the physical memory allocator.
447117845Ssam	 */
448117845Ssam	vm_phys_init();
449117845Ssam
450117845Ssam	/*
451117845Ssam	 * Add every available physical page that is not blacklisted to
452117845Ssam	 * the free lists.
453117845Ssam	 */
454117845Ssam	vm_cnt.v_page_count = 0;
455117845Ssam	vm_cnt.v_free_count = 0;
456117845Ssam	list = kern_getenv("vm.blacklist");
457117845Ssam	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
458117845Ssam		pa = phys_avail[i];
459117845Ssam		last_pa = phys_avail[i + 1];
460117845Ssam		while (pa < last_pa) {
461117845Ssam			if (list != NULL &&
462117845Ssam			    vm_page_blacklist_lookup(list, pa))
463117845Ssam				printf("Skipping page with pa 0x%jx\n",
464117845Ssam				    (uintmax_t)pa);
465117845Ssam			else
466117845Ssam				vm_phys_add_page(pa);
467117845Ssam			pa += PAGE_SIZE;
468117845Ssam		}
469117845Ssam	}
470117845Ssam	freeenv(list);
471117845Ssam#if VM_NRESERVLEVEL > 0
472117845Ssam	/*
473117845Ssam	 * Initialize the reservation management system.
474117845Ssam	 */
475117845Ssam	vm_reserv_init();
476117845Ssam#endif
477117845Ssam	return (vaddr);
478117845Ssam}
479117845Ssam
480117845Ssamvoid
481117845Ssamvm_page_reference(vm_page_t m)
482117845Ssam{
483117845Ssam
484117845Ssam	vm_page_aflag_set(m, PGA_REFERENCED);
485117845Ssam}
486117845Ssam
487117845Ssam/*
488117845Ssam *	vm_page_busy_downgrade:
489117845Ssam *
490117845Ssam *	Downgrade an exclusive busy page into a single shared busy page.
491117845Ssam */
492117845Ssamvoid
493117845Ssamvm_page_busy_downgrade(vm_page_t m)
494117845Ssam{
495117845Ssam	u_int x;
496117845Ssam
497117845Ssam	vm_page_assert_xbusied(m);
498117845Ssam
499117845Ssam	for (;;) {
500117845Ssam		x = m->busy_lock;
501117845Ssam		x &= VPB_BIT_WAITERS;
502117845Ssam		if (atomic_cmpset_rel_int(&m->busy_lock,
503117845Ssam		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
504117845Ssam			break;
505117845Ssam	}
506117845Ssam}
507117845Ssam
508117845Ssam/*
509117845Ssam *	vm_page_sbusied:
510117845Ssam *
511117845Ssam *	Return a positive value if the page is shared busied, 0 otherwise.
512117845Ssam */
513117845Ssamint
514117845Ssamvm_page_sbusied(vm_page_t m)
515117845Ssam{
516117845Ssam	u_int x;
517117845Ssam
518117845Ssam	x = m->busy_lock;
519117845Ssam	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
520117845Ssam}
521117845Ssam
522117845Ssam/*
523117845Ssam *	vm_page_sunbusy:
524117845Ssam *
525117845Ssam *	Shared unbusy a page.
526117845Ssam */
527117845Ssamvoid
528117845Ssamvm_page_sunbusy(vm_page_t m)
529117845Ssam{
530117845Ssam	u_int x;
531117845Ssam
532117845Ssam	vm_page_assert_sbusied(m);
533117845Ssam
534117845Ssam	for (;;) {
535117845Ssam		x = m->busy_lock;
536117845Ssam		if (VPB_SHARERS(x) > 1) {
537117845Ssam			if (atomic_cmpset_int(&m->busy_lock, x,
538117845Ssam			    x - VPB_ONE_SHARER))
539117845Ssam				break;
540117845Ssam			continue;
541117845Ssam		}
542117845Ssam		if ((x & VPB_BIT_WAITERS) == 0) {
543117845Ssam			KASSERT(x == VPB_SHARERS_WORD(1),
544117845Ssam			    ("vm_page_sunbusy: invalid lock state"));
545117845Ssam			if (atomic_cmpset_int(&m->busy_lock,
546117845Ssam			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
547117845Ssam				break;
548117845Ssam			continue;
549117845Ssam		}
550117845Ssam		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
551117845Ssam		    ("vm_page_sunbusy: invalid lock state for waiters"));
552117845Ssam
553117845Ssam		vm_page_lock(m);
554117845Ssam		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
555117845Ssam			vm_page_unlock(m);
556117845Ssam			continue;
557117845Ssam		}
558117845Ssam		wakeup(m);
559117845Ssam		vm_page_unlock(m);
560117845Ssam		break;
561117845Ssam	}
562117845Ssam}
563117845Ssam
564117845Ssam/*
565117845Ssam *	vm_page_busy_sleep:
566117845Ssam *
567117845Ssam *	Sleep and release the page lock, using the page pointer as wchan.
568117845Ssam *	This is used to implement the hard-path of busying mechanism.
569117845Ssam *
570117845Ssam *	The given page must be locked.
571117845Ssam */
572117845Ssamvoid
573117845Ssamvm_page_busy_sleep(vm_page_t m, const char *wmesg)
574117845Ssam{
575117845Ssam	u_int x;
576117845Ssam
577117845Ssam	vm_page_lock_assert(m, MA_OWNED);
578117845Ssam
579117845Ssam	x = m->busy_lock;
580117845Ssam	if (x == VPB_UNBUSIED) {
581117845Ssam		vm_page_unlock(m);
582117845Ssam		return;
583117845Ssam	}
584117845Ssam	if ((x & VPB_BIT_WAITERS) == 0 &&
585117845Ssam	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
586117845Ssam		vm_page_unlock(m);
587117845Ssam		return;
588117845Ssam	}
589117845Ssam	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
590117845Ssam}
591117845Ssam
592117845Ssam/*
593117845Ssam *	vm_page_trysbusy:
594117845Ssam *
595117845Ssam *	Try to shared busy a page.
596117845Ssam *	If the operation succeeds 1 is returned otherwise 0.
597117845Ssam *	The operation never sleeps.
598117845Ssam */
599117845Ssamint
600117845Ssamvm_page_trysbusy(vm_page_t m)
601117845Ssam{
602117845Ssam	u_int x;
603117845Ssam
604117845Ssam	for (;;) {
605117845Ssam		x = m->busy_lock;
606117845Ssam		if ((x & VPB_BIT_SHARED) == 0)
607117845Ssam			return (0);
608117845Ssam		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
609117845Ssam			return (1);
610117845Ssam	}
611117845Ssam}
612117845Ssam
613117845Ssam/*
614117845Ssam *	vm_page_xunbusy_hard:
615117845Ssam *
616117845Ssam *	Called after the first try the exclusive unbusy of a page failed.
617117845Ssam *	It is assumed that the waiters bit is on.
618117845Ssam */
619117845Ssamvoid
620117845Ssamvm_page_xunbusy_hard(vm_page_t m)
621117845Ssam{
622117845Ssam
623117845Ssam	vm_page_assert_xbusied(m);
624117845Ssam
625117845Ssam	vm_page_lock(m);
626117845Ssam	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
627117845Ssam	wakeup(m);
628117845Ssam	vm_page_unlock(m);
629117845Ssam}
630117845Ssam
631117845Ssam/*
632117845Ssam *	vm_page_flash:
633117845Ssam *
634117845Ssam *	Wakeup anyone waiting for the page.
635117845Ssam *	The ownership bits do not change.
636117845Ssam *
637117845Ssam *	The given page must be locked.
638117845Ssam */
639117845Ssamvoid
640117845Ssamvm_page_flash(vm_page_t m)
641117845Ssam{
642117845Ssam	u_int x;
643159226Spjd
644159226Spjd	vm_page_lock_assert(m, MA_OWNED);
645159226Spjd
646159226Spjd	for (;;) {
647159226Spjd		x = m->busy_lock;
648159226Spjd		if ((x & VPB_BIT_WAITERS) == 0)
649159226Spjd			return;
650159226Spjd		if (atomic_cmpset_int(&m->busy_lock, x,
651159226Spjd		    x & (~VPB_BIT_WAITERS)))
652159226Spjd			break;
653159226Spjd	}
654159226Spjd	wakeup(m);
655159226Spjd}
656159226Spjd
657159226Spjd/*
658159226Spjd * Keep page from being freed by the page daemon
659159226Spjd * much of the same effect as wiring, except much lower
660159226Spjd * overhead and should be used only for *very* temporary
661159226Spjd * holding ("wiring").
662159226Spjd */
663159226Spjdvoid
664159226Spjdvm_page_hold(vm_page_t mem)
665159226Spjd{
666159226Spjd
667159226Spjd	vm_page_lock_assert(mem, MA_OWNED);
668159226Spjd        mem->hold_count++;
669159226Spjd}
670159232Spjd
671159226Spjdvoid
672159226Spjdvm_page_unhold(vm_page_t mem)
673159226Spjd{
674159226Spjd
675159232Spjd	vm_page_lock_assert(mem, MA_OWNED);
676159232Spjd	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
677159226Spjd	--mem->hold_count;
678159226Spjd	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
679159226Spjd		vm_page_free_toq(mem);
680159226Spjd}
681159226Spjd
682159226Spjd/*
683159226Spjd *	vm_page_unhold_pages:
684159226Spjd *
685159226Spjd *	Unhold each of the pages that is referenced by the given array.
686159232Spjd */
687159226Spjdvoid
688159226Spjdvm_page_unhold_pages(vm_page_t *ma, int count)
689159226Spjd{
690159226Spjd	struct mtx *mtx, *new_mtx;
691159232Spjd
692159232Spjd	mtx = NULL;
693159226Spjd	for (; count != 0; count--) {
694159226Spjd		/*
695159226Spjd		 * Avoid releasing and reacquiring the same page lock.
696159226Spjd		 */
697159226Spjd		new_mtx = vm_page_lockptr(*ma);
698159226Spjd		if (mtx != new_mtx) {
699159226Spjd			if (mtx != NULL)
700159226Spjd				mtx_unlock(mtx);
701159226Spjd			mtx = new_mtx;
702159226Spjd			mtx_lock(mtx);
703159226Spjd		}
704159226Spjd		vm_page_unhold(*ma);
705159226Spjd		ma++;
706159226Spjd	}
707117845Ssam	if (mtx != NULL)
708117845Ssam		mtx_unlock(mtx);
709117845Ssam}
710117845Ssam
711117845Ssamvm_page_t
712117845SsamPHYS_TO_VM_PAGE(vm_paddr_t pa)
713117845Ssam{
714117845Ssam	vm_page_t m;
715117845Ssam
716117845Ssam#ifdef VM_PHYSSEG_SPARSE
717117845Ssam	m = vm_phys_paddr_to_vm_page(pa);
718159226Spjd	if (m == NULL)
719117845Ssam		m = vm_phys_fictitious_to_vm_page(pa);
720117845Ssam	return (m);
721117845Ssam#elif defined(VM_PHYSSEG_DENSE)
722117845Ssam	long pi;
723117845Ssam
724117845Ssam	pi = atop(pa);
725117845Ssam	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
726117845Ssam		m = &vm_page_array[pi - first_page];
727117845Ssam		return (m);
728117845Ssam	}
729117845Ssam	return (vm_phys_fictitious_to_vm_page(pa));
730117845Ssam#else
731117845Ssam#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
732117845Ssam#endif
733117845Ssam}
734117845Ssam
735117845Ssam/*
736117845Ssam *	vm_page_getfake:
737117845Ssam *
738117845Ssam *	Create a fictitious page with the specified physical address and
739117845Ssam *	memory attribute.  The memory attribute is the only the machine-
740117845Ssam *	dependent aspect of a fictitious page that must be initialized.
741117845Ssam */
742117845Ssamvm_page_t
743117845Ssamvm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
744117845Ssam{
745117845Ssam	vm_page_t m;
746117845Ssam
747117845Ssam	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
748117845Ssam	vm_page_initfake(m, paddr, memattr);
749117845Ssam	return (m);
750117845Ssam}
751117845Ssam
752117845Ssamvoid
753117845Ssamvm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
754117845Ssam{
755117845Ssam
756117845Ssam	if ((m->flags & PG_FICTITIOUS) != 0) {
757117845Ssam		/*
758117845Ssam		 * The page's memattr might have changed since the
759117845Ssam		 * previous initialization.  Update the pmap to the
760117845Ssam		 * new memattr.
761117845Ssam		 */
762117845Ssam		goto memattr;
763117845Ssam	}
764117845Ssam	m->phys_addr = paddr;
765117845Ssam	m->queue = PQ_NONE;
766117845Ssam	/* Fictitious pages don't use "segind". */
767117845Ssam	m->flags = PG_FICTITIOUS;
768117845Ssam	/* Fictitious pages don't use "order" or "pool". */
769117845Ssam	m->oflags = VPO_UNMANAGED;
770117845Ssam	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
771117845Ssam	m->wire_count = 1;
772117845Ssam	pmap_page_init(m);
773117845Ssammemattr:
774117845Ssam	pmap_page_set_memattr(m, memattr);
775117845Ssam}
776117845Ssam
777117845Ssam/*
778117845Ssam *	vm_page_putfake:
779117845Ssam *
780117845Ssam *	Release a fictitious page.
781117845Ssam */
782117845Ssamvoid
783117845Ssamvm_page_putfake(vm_page_t m)
784117845Ssam{
785117845Ssam
786117845Ssam	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
787117845Ssam	KASSERT((m->flags & PG_FICTITIOUS) != 0,
788117845Ssam	    ("vm_page_putfake: bad page %p", m));
789117845Ssam	uma_zfree(fakepg_zone, m);
790117845Ssam}
791117845Ssam
792117845Ssam/*
793117845Ssam *	vm_page_updatefake:
794117845Ssam *
795117845Ssam *	Update the given fictitious page to the specified physical address and
796117845Ssam *	memory attribute.
797117845Ssam */
798117845Ssamvoid
799117845Ssamvm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
800117845Ssam{
801117845Ssam
802159226Spjd	KASSERT((m->flags & PG_FICTITIOUS) != 0,
803159226Spjd	    ("vm_page_updatefake: bad page %p", m));
804117845Ssam	m->phys_addr = paddr;
805117845Ssam	pmap_page_set_memattr(m, memattr);
806117845Ssam}
807158705Spjd
808158705Spjd/*
809158705Spjd *	vm_page_free:
810159233Spjd *
811158705Spjd *	Free a page.
812159233Spjd */
813158705Spjdvoid
814158705Spjdvm_page_free(vm_page_t m)
815159226Spjd{
816159226Spjd
817117845Ssam	m->flags &= ~PG_ZERO;
818117845Ssam	vm_page_free_toq(m);
819117845Ssam}
820117845Ssam
821117845Ssam/*
822117845Ssam *	vm_page_free_zero:
823117845Ssam *
824117845Ssam *	Free a page to the zerod-pages queue
825117845Ssam */
826117845Ssamvoid
827117845Ssamvm_page_free_zero(vm_page_t m)
828117845Ssam{
829117845Ssam
830117845Ssam	m->flags |= PG_ZERO;
831117845Ssam	vm_page_free_toq(m);
832117845Ssam}
833117845Ssam
834117845Ssam/*
835117845Ssam * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
836117845Ssam * array which is not the request page.
837117845Ssam */
838117845Ssamvoid
839117845Ssamvm_page_readahead_finish(vm_page_t m)
840117845Ssam{
841117845Ssam
842117845Ssam	if (m->valid != 0) {
843117845Ssam		/*
844117845Ssam		 * Since the page is not the requested page, whether
845117845Ssam		 * it should be activated or deactivated is not
846117845Ssam		 * obvious.  Empirical results have shown that
847117845Ssam		 * deactivating the page is usually the best choice,
848117845Ssam		 * unless the page is wanted by another thread.
849117845Ssam		 */
850117845Ssam		vm_page_lock(m);
851117845Ssam		if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
852117845Ssam			vm_page_activate(m);
853117845Ssam		else
854117845Ssam			vm_page_deactivate(m);
855117845Ssam		vm_page_unlock(m);
856117845Ssam		vm_page_xunbusy(m);
857117845Ssam	} else {
858117845Ssam		/*
859117845Ssam		 * Free the completely invalid page.  Such page state
860117845Ssam		 * occurs due to the short read operation which did
861117845Ssam		 * not covered our page at all, or in case when a read
862117845Ssam		 * error happens.
863117845Ssam		 */
864117845Ssam		vm_page_lock(m);
865117845Ssam		vm_page_free(m);
866117845Ssam		vm_page_unlock(m);
867117845Ssam	}
868117845Ssam}
869117845Ssam
870117845Ssam/*
871117845Ssam *	vm_page_sleep_if_busy:
872117845Ssam *
873117845Ssam *	Sleep and release the page queues lock if the page is busied.
874117845Ssam *	Returns TRUE if the thread slept.
875117845Ssam *
876117845Ssam *	The given page must be unlocked and object containing it must
877117845Ssam *	be locked.
878117845Ssam */
879117845Ssamint
880117845Ssamvm_page_sleep_if_busy(vm_page_t m, const char *msg)
881117845Ssam{
882117845Ssam	vm_object_t obj;
883117845Ssam
884117845Ssam	vm_page_lock_assert(m, MA_NOTOWNED);
885117845Ssam	VM_OBJECT_ASSERT_WLOCKED(m->object);
886117845Ssam
887117845Ssam	if (vm_page_busied(m)) {
888117845Ssam		/*
889117845Ssam		 * The page-specific object must be cached because page
890117845Ssam		 * identity can change during the sleep, causing the
891117845Ssam		 * re-lock of a different object.
892117845Ssam		 * It is assumed that a reference to the object is already
893117845Ssam		 * held by the callers.
894117845Ssam		 */
895117845Ssam		obj = m->object;
896117845Ssam		vm_page_lock(m);
897117845Ssam		VM_OBJECT_WUNLOCK(obj);
898117845Ssam		vm_page_busy_sleep(m, msg);
899117845Ssam		VM_OBJECT_WLOCK(obj);
900117845Ssam		return (TRUE);
901117845Ssam	}
902117845Ssam	return (FALSE);
903117845Ssam}
904117845Ssam
905117845Ssam/*
906117845Ssam *	vm_page_dirty_KBI:		[ internal use only ]
907117845Ssam *
908117845Ssam *	Set all bits in the page's dirty field.
909117845Ssam *
910117845Ssam *	The object containing the specified page must be locked if the
911117845Ssam *	call is made from the machine-independent layer.
912117845Ssam *
913117845Ssam *	See vm_page_clear_dirty_mask().
914117845Ssam *
915117845Ssam *	This function should only be called by vm_page_dirty().
916117845Ssam */
917117845Ssamvoid
918117845Ssamvm_page_dirty_KBI(vm_page_t m)
919117845Ssam{
920117845Ssam
921117845Ssam	/* These assertions refer to this operation by its public name. */
922117845Ssam	KASSERT((m->flags & PG_CACHED) == 0,
923117845Ssam	    ("vm_page_dirty: page in cache!"));
924117845Ssam	KASSERT(m->valid == VM_PAGE_BITS_ALL,
925117845Ssam	    ("vm_page_dirty: page is invalid!"));
926117845Ssam	m->dirty = VM_PAGE_BITS_ALL;
927117845Ssam}
928117845Ssam
929117845Ssam/*
930117845Ssam *	vm_page_insert:		[ internal use only ]
931117845Ssam *
932117845Ssam *	Inserts the given mem entry into the object and object list.
933117845Ssam *
934117845Ssam *	The object must be locked.
935117845Ssam */
936117845Ssamint
937117845Ssamvm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
938117845Ssam{
939117845Ssam	vm_page_t mpred;
940117845Ssam
941117845Ssam	VM_OBJECT_ASSERT_WLOCKED(object);
942117845Ssam	mpred = vm_radix_lookup_le(&object->rtree, pindex);
943117845Ssam	return (vm_page_insert_after(m, object, pindex, mpred));
944117845Ssam}
945117845Ssam
946117845Ssam/*
947117845Ssam *	vm_page_insert_after:
948117845Ssam *
949117845Ssam *	Inserts the page "m" into the specified object at offset "pindex".
950117845Ssam *
951117845Ssam *	The page "mpred" must immediately precede the offset "pindex" within
952117845Ssam *	the specified object.
953117845Ssam *
954117845Ssam *	The object must be locked.
955117845Ssam */
956117845Ssamstatic int
957117845Ssamvm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
958117845Ssam    vm_page_t mpred)
959117845Ssam{
960117845Ssam	vm_pindex_t sidx;
961117845Ssam	vm_object_t sobj;
962117845Ssam	vm_page_t msucc;
963117845Ssam
964117845Ssam	VM_OBJECT_ASSERT_WLOCKED(object);
965117845Ssam	KASSERT(m->object == NULL,
966117845Ssam	    ("vm_page_insert_after: page already inserted"));
967117845Ssam	if (mpred != NULL) {
968117845Ssam		KASSERT(mpred->object == object,
969117845Ssam		    ("vm_page_insert_after: object doesn't contain mpred"));
970117845Ssam		KASSERT(mpred->pindex < pindex,
971117845Ssam		    ("vm_page_insert_after: mpred doesn't precede pindex"));
972117845Ssam		msucc = TAILQ_NEXT(mpred, listq);
973117845Ssam	} else
974117845Ssam		msucc = TAILQ_FIRST(&object->memq);
975117845Ssam	if (msucc != NULL)
976159226Spjd		KASSERT(msucc->pindex > pindex,
977159226Spjd		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
978159226Spjd
979117845Ssam	/*
980117845Ssam	 * Record the object/offset pair in this page
981117845Ssam	 */
982117845Ssam	sobj = m->object;
983117845Ssam	sidx = m->pindex;
984117845Ssam	m->object = object;
985117845Ssam	m->pindex = pindex;
986117845Ssam
987117845Ssam	/*
988117845Ssam	 * Now link into the object's ordered list of backed pages.
989117845Ssam	 */
990117845Ssam	if (vm_radix_insert(&object->rtree, m)) {
991117845Ssam		m->object = sobj;
992117845Ssam		m->pindex = sidx;
993117845Ssam		return (1);
994117845Ssam	}
995117845Ssam	vm_page_insert_radixdone(m, object, mpred);
996117845Ssam	return (0);
997117845Ssam}
998117845Ssam
999117845Ssam/*
1000117845Ssam *	vm_page_insert_radixdone:
1001117845Ssam *
1002117845Ssam *	Complete page "m" insertion into the specified object after the
1003117845Ssam *	radix trie hooking.
1004117845Ssam *
1005117845Ssam *	The page "mpred" must precede the offset "m->pindex" within the
1006117845Ssam *	specified object.
1007117845Ssam *
1008117845Ssam *	The object must be locked.
1009117845Ssam */
1010117845Ssamstatic void
1011117845Ssamvm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1012117845Ssam{
1013117845Ssam
1014117845Ssam	VM_OBJECT_ASSERT_WLOCKED(object);
1015117845Ssam	KASSERT(object != NULL && m->object == object,
1016117845Ssam	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1017117845Ssam	if (mpred != NULL) {
1018117845Ssam		KASSERT(mpred->object == object,
1019159242Spjd		    ("vm_page_insert_after: object doesn't contain mpred"));
1020159242Spjd		KASSERT(mpred->pindex < m->pindex,
1021117845Ssam		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1022117845Ssam	}
1023117845Ssam
1024117845Ssam	if (mpred != NULL)
1025117845Ssam		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1026117845Ssam	else
1027117845Ssam		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1028159242Spjd
1029117845Ssam	/*
1030117845Ssam	 * Show that the object has one more resident page.
1031159242Spjd	 */
1032159242Spjd	object->resident_page_count++;
1033159242Spjd
1034159242Spjd	/*
1035159242Spjd	 * Hold the vnode until the last page is released.
1036117845Ssam	 */
1037117845Ssam	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1038117845Ssam		vhold(object->handle);
1039117845Ssam
1040117845Ssam	/*
1041117845Ssam	 * Since we are inserting a new and possibly dirty page,
1042117845Ssam	 * update the object's OBJ_MIGHTBEDIRTY flag.
1043117845Ssam	 */
1044117845Ssam	if (pmap_page_is_write_mapped(m))
1045117845Ssam		vm_object_set_writeable_dirty(object);
1046117845Ssam}
1047117845Ssam
1048117845Ssam/*
1049117845Ssam *	vm_page_remove:
1050117845Ssam *
1051117845Ssam *	Removes the given mem entry from the object/offset-page
1052117845Ssam *	table and the object page list, but do not invalidate/terminate
1053159226Spjd *	the backing store.
1054159226Spjd *
1055159226Spjd *	The object must be locked.  The page must be locked if it is managed.
1056159226Spjd */
1057159226Spjdvoid
1058117845Ssamvm_page_remove(vm_page_t m)
1059117845Ssam{
1060117845Ssam	vm_object_t object;
1061117845Ssam	boolean_t lockacq;
1062117845Ssam
1063117845Ssam	if ((m->oflags & VPO_UNMANAGED) == 0)
1064117845Ssam		vm_page_lock_assert(m, MA_OWNED);
1065117845Ssam	if ((object = m->object) == NULL)
1066117845Ssam		return;
1067117845Ssam	VM_OBJECT_ASSERT_WLOCKED(object);
1068117845Ssam	if (vm_page_xbusied(m)) {
1069117845Ssam		lockacq = FALSE;
1070117845Ssam		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1071117845Ssam		    !mtx_owned(vm_page_lockptr(m))) {
1072117845Ssam			lockacq = TRUE;
1073117845Ssam			vm_page_lock(m);
1074117845Ssam		}
1075117845Ssam		vm_page_flash(m);
1076117845Ssam		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1077117845Ssam		if (lockacq)
1078117845Ssam			vm_page_unlock(m);
1079117845Ssam	}
1080117845Ssam
1081117845Ssam	/*
1082117845Ssam	 * Now remove from the object's list of backed pages.
1083117845Ssam	 */
1084117845Ssam	vm_radix_remove(&object->rtree, m->pindex);
1085117845Ssam	TAILQ_REMOVE(&object->memq, m, listq);
1086117845Ssam
1087117845Ssam	/*
1088117845Ssam	 * And show that the object has one fewer resident page.
1089117845Ssam	 */
1090117845Ssam	object->resident_page_count--;
1091117845Ssam
1092117845Ssam	/*
1093117845Ssam	 * The vnode may now be recycled.
1094117845Ssam	 */
1095117845Ssam	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1096117845Ssam		vdrop(object->handle);
1097117845Ssam
1098117845Ssam	m->object = NULL;
1099117845Ssam}
1100117845Ssam
1101117845Ssam/*
1102117845Ssam *	vm_page_lookup:
1103117845Ssam *
1104117845Ssam *	Returns the page associated with the object/offset
1105117845Ssam *	pair specified; if none is found, NULL is returned.
1106117845Ssam *
1107117845Ssam *	The object must be locked.
1108117845Ssam */
1109117845Ssamvm_page_t
1110117845Ssamvm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1111117845Ssam{
1112117845Ssam
1113117845Ssam	VM_OBJECT_ASSERT_LOCKED(object);
1114117845Ssam	return (vm_radix_lookup(&object->rtree, pindex));
1115117845Ssam}
1116117845Ssam
1117117845Ssam/*
1118117845Ssam *	vm_page_find_least:
1119117845Ssam *
1120117845Ssam *	Returns the page associated with the object with least pindex
1121117845Ssam *	greater than or equal to the parameter pindex, or NULL.
1122117845Ssam *
1123117845Ssam *	The object must be locked.
1124117845Ssam */
1125117845Ssamvm_page_t
1126117845Ssamvm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1127117845Ssam{
1128117845Ssam	vm_page_t m;
1129117845Ssam
1130117845Ssam	VM_OBJECT_ASSERT_LOCKED(object);
1131117845Ssam	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1132117845Ssam		m = vm_radix_lookup_ge(&object->rtree, pindex);
1133117845Ssam	return (m);
1134117845Ssam}
1135117845Ssam
1136117845Ssam/*
1137117845Ssam * Returns the given page's successor (by pindex) within the object if it is
1138117845Ssam * resident; if none is found, NULL is returned.
1139117845Ssam *
1140117845Ssam * The object must be locked.
1141117845Ssam */
1142117845Ssamvm_page_t
1143117845Ssamvm_page_next(vm_page_t m)
1144117845Ssam{
1145117845Ssam	vm_page_t next;
1146117845Ssam
1147117845Ssam	VM_OBJECT_ASSERT_WLOCKED(m->object);
1148117845Ssam	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1149117845Ssam	    next->pindex != m->pindex + 1)
1150117845Ssam		next = NULL;
1151117845Ssam	return (next);
1152117845Ssam}
1153117845Ssam
1154117845Ssam/*
1155117845Ssam * Returns the given page's predecessor (by pindex) within the object if it is
1156117845Ssam * resident; if none is found, NULL is returned.
1157117845Ssam *
1158117845Ssam * The object must be locked.
1159117845Ssam */
1160117845Ssamvm_page_t
1161117845Ssamvm_page_prev(vm_page_t m)
1162117845Ssam{
1163117845Ssam	vm_page_t prev;
1164117845Ssam
1165117845Ssam	VM_OBJECT_ASSERT_WLOCKED(m->object);
1166117845Ssam	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1167117845Ssam	    prev->pindex != m->pindex - 1)
1168117845Ssam		prev = NULL;
1169117845Ssam	return (prev);
1170117845Ssam}
1171117845Ssam
1172117845Ssam/*
1173117845Ssam * Uses the page mnew as a replacement for an existing page at index
1174117845Ssam * pindex which must be already present in the object.
1175117845Ssam *
1176117845Ssam * The existing page must not be on a paging queue.
1177117845Ssam */
1178117845Ssamvm_page_t
1179117845Ssamvm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1180117845Ssam{
1181117845Ssam	vm_page_t mold, mpred;
1182117845Ssam
1183117845Ssam	VM_OBJECT_ASSERT_WLOCKED(object);
1184117845Ssam
1185117845Ssam	/*
1186117845Ssam	 * This function mostly follows vm_page_insert() and
1187117845Ssam	 * vm_page_remove() without the radix, object count and vnode
1188117845Ssam	 * dance.  Double check such functions for more comments.
1189117845Ssam	 */
1190117845Ssam	mpred = vm_radix_lookup(&object->rtree, pindex);
1191117845Ssam	KASSERT(mpred != NULL,
1192117845Ssam	    ("vm_page_replace: replacing page not present with pindex"));
1193117845Ssam	mpred = TAILQ_PREV(mpred, respgs, listq);
1194117845Ssam	if (mpred != NULL)
1195117845Ssam		KASSERT(mpred->pindex < pindex,
1196117845Ssam		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1197117845Ssam
1198117845Ssam	mnew->object = object;
1199117845Ssam	mnew->pindex = pindex;
1200117845Ssam	mold = vm_radix_replace(&object->rtree, mnew);
1201117845Ssam	KASSERT(mold->queue == PQ_NONE,
1202117845Ssam	    ("vm_page_replace: mold is on a paging queue"));
1203117845Ssam
1204117845Ssam	/* Detach the old page from the resident tailq. */
1205117845Ssam	TAILQ_REMOVE(&object->memq, mold, listq);
1206117845Ssam
1207117845Ssam	mold->object = NULL;
1208117845Ssam	vm_page_xunbusy(mold);
1209117845Ssam
1210117845Ssam	/* Insert the new page in the resident tailq. */
1211117845Ssam	if (mpred != NULL)
1212117845Ssam		TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1213117845Ssam	else
1214117845Ssam		TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1215117845Ssam	if (pmap_page_is_write_mapped(mnew))
1216117845Ssam		vm_object_set_writeable_dirty(object);
1217117845Ssam	return (mold);
1218117845Ssam}
1219117845Ssam
1220117845Ssam/*
1221117845Ssam *	vm_page_rename:
1222117845Ssam *
1223117845Ssam *	Move the given memory entry from its
1224117845Ssam *	current object to the specified target object/offset.
1225117845Ssam *
1226117845Ssam *	Note: swap associated with the page must be invalidated by the move.  We
1227117845Ssam *	      have to do this for several reasons:  (1) we aren't freeing the
1228117845Ssam *	      page, (2) we are dirtying the page, (3) the VM system is probably
1229117845Ssam *	      moving the page from object A to B, and will then later move
1230117845Ssam *	      the backing store from A to B and we can't have a conflict.
1231117845Ssam *
1232117845Ssam *	Note: we *always* dirty the page.  It is necessary both for the
1233117845Ssam *	      fact that we moved it, and because we may be invalidating
1234117845Ssam *	      swap.  If the page is on the cache, we have to deactivate it
1235117845Ssam *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1236117845Ssam *	      on the cache.
1237117845Ssam *
1238117845Ssam *	The objects must be locked.
1239117845Ssam */
1240117845Ssamint
1241117845Ssamvm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1242117845Ssam{
1243117845Ssam	vm_page_t mpred;
1244117845Ssam	vm_pindex_t opidx;
1245117845Ssam
1246117845Ssam	VM_OBJECT_ASSERT_WLOCKED(new_object);
1247117845Ssam
1248117845Ssam	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1249117845Ssam	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1250117845Ssam	    ("vm_page_rename: pindex already renamed"));
1251117845Ssam
1252117845Ssam	/*
1253117845Ssam	 * Create a custom version of vm_page_insert() which does not depend
1254117845Ssam	 * by m_prev and can cheat on the implementation aspects of the
1255117845Ssam	 * function.
1256117845Ssam	 */
1257117845Ssam	opidx = m->pindex;
1258117845Ssam	m->pindex = new_pindex;
1259117845Ssam	if (vm_radix_insert(&new_object->rtree, m)) {
1260117845Ssam		m->pindex = opidx;
1261117845Ssam		return (1);
1262117845Ssam	}
1263117845Ssam
1264117845Ssam	/*
1265117845Ssam	 * The operation cannot fail anymore.  The removal must happen before
1266117845Ssam	 * the listq iterator is tainted.
1267117845Ssam	 */
1268117845Ssam	m->pindex = opidx;
1269117845Ssam	vm_page_lock(m);
1270117845Ssam	vm_page_remove(m);
1271117845Ssam
1272117845Ssam	/* Return back to the new pindex to complete vm_page_insert(). */
1273117845Ssam	m->pindex = new_pindex;
1274117845Ssam	m->object = new_object;
1275117845Ssam	vm_page_unlock(m);
1276118882Ssam	vm_page_insert_radixdone(m, new_object, mpred);
1277118882Ssam	vm_page_dirty(m);
1278117845Ssam	return (0);
1279117845Ssam}
1280117845Ssam
1281117845Ssam/*
1282117845Ssam *	Convert all of the given object's cached pages that have a
1283117845Ssam *	pindex within the given range into free pages.  If the value
1284117845Ssam *	zero is given for "end", then the range's upper bound is
1285117845Ssam *	infinity.  If the given object is backed by a vnode and it
1286117845Ssam *	transitions from having one or more cached pages to none, the
1287117845Ssam *	vnode's hold count is reduced.
1288117845Ssam */
1289117845Ssamvoid
1290117845Ssamvm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1291117845Ssam{
1292117845Ssam	vm_page_t m;
1293117845Ssam	boolean_t empty;
1294117845Ssam
1295117845Ssam	mtx_lock(&vm_page_queue_free_mtx);
1296117845Ssam	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1297117845Ssam		mtx_unlock(&vm_page_queue_free_mtx);
1298117845Ssam		return;
1299117845Ssam	}
1300117845Ssam	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1301117845Ssam		if (end != 0 && m->pindex >= end)
1302117845Ssam			break;
1303117845Ssam		vm_radix_remove(&object->cache, m->pindex);
1304117845Ssam		vm_page_cache_turn_free(m);
1305117845Ssam	}
1306117845Ssam	empty = vm_radix_is_empty(&object->cache);
1307117845Ssam	mtx_unlock(&vm_page_queue_free_mtx);
1308117845Ssam	if (object->type == OBJT_VNODE && empty)
1309117845Ssam		vdrop(object->handle);
1310117845Ssam}
1311117845Ssam
1312117845Ssam/*
1313117845Ssam *	Returns the cached page that is associated with the given
1314117845Ssam *	object and offset.  If, however, none exists, returns NULL.
1315117845Ssam *
1316117845Ssam *	The free page queue must be locked.
1317117845Ssam */
1318117845Ssamstatic inline vm_page_t
1319117845Ssamvm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1320117845Ssam{
1321117845Ssam
1322117845Ssam	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1323117845Ssam	return (vm_radix_lookup(&object->cache, pindex));
1324117845Ssam}
1325117845Ssam
1326117845Ssam/*
1327117845Ssam *	Remove the given cached page from its containing object's
1328117845Ssam *	collection of cached pages.
1329117845Ssam *
1330117845Ssam *	The free page queue must be locked.
1331117845Ssam */
1332117845Ssamstatic void
1333117845Ssamvm_page_cache_remove(vm_page_t m)
1334117845Ssam{
1335117845Ssam
1336117845Ssam	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1337117845Ssam	KASSERT((m->flags & PG_CACHED) != 0,
1338117845Ssam	    ("vm_page_cache_remove: page %p is not cached", m));
1339117845Ssam	vm_radix_remove(&m->object->cache, m->pindex);
1340117845Ssam	m->object = NULL;
1341117845Ssam	vm_cnt.v_cache_count--;
1342117845Ssam}
1343117845Ssam
1344117845Ssam/*
1345117845Ssam *	Transfer all of the cached pages with offset greater than or
1346117845Ssam *	equal to 'offidxstart' from the original object's cache to the
1347117845Ssam *	new object's cache.  However, any cached pages with offset
1348117845Ssam *	greater than or equal to the new object's size are kept in the
1349117845Ssam *	original object.  Initially, the new object's cache must be
1350117845Ssam *	empty.  Offset 'offidxstart' in the original object must
1351117845Ssam *	correspond to offset zero in the new object.
1352117845Ssam *
1353117845Ssam *	The new object must be locked.
1354117845Ssam */
1355117845Ssamvoid
1356117845Ssamvm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1357117845Ssam    vm_object_t new_object)
1358117845Ssam{
1359117845Ssam	vm_page_t m;
1360117845Ssam
1361117845Ssam	/*
1362117845Ssam	 * Insertion into an object's collection of cached pages
1363117845Ssam	 * requires the object to be locked.  In contrast, removal does
1364117845Ssam	 * not.
1365117845Ssam	 */
1366117845Ssam	VM_OBJECT_ASSERT_WLOCKED(new_object);
1367117845Ssam	KASSERT(vm_radix_is_empty(&new_object->cache),
1368117845Ssam	    ("vm_page_cache_transfer: object %p has cached pages",
1369117845Ssam	    new_object));
1370117845Ssam	mtx_lock(&vm_page_queue_free_mtx);
1371117845Ssam	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1372117845Ssam	    offidxstart)) != NULL) {
1373117845Ssam		/*
1374117845Ssam		 * Transfer all of the pages with offset greater than or
1375117845Ssam		 * equal to 'offidxstart' from the original object's
1376117845Ssam		 * cache to the new object's cache.
1377117845Ssam		 */
1378117845Ssam		if ((m->pindex - offidxstart) >= new_object->size)
1379117845Ssam			break;
1380117845Ssam		vm_radix_remove(&orig_object->cache, m->pindex);
1381117845Ssam		/* Update the page's object and offset. */
1382117845Ssam		m->object = new_object;
1383117845Ssam		m->pindex -= offidxstart;
1384117845Ssam		if (vm_radix_insert(&new_object->cache, m))
1385117845Ssam			vm_page_cache_turn_free(m);
1386117845Ssam	}
1387117845Ssam	mtx_unlock(&vm_page_queue_free_mtx);
1388117845Ssam}
1389117845Ssam
1390117845Ssam/*
1391117845Ssam *	Returns TRUE if a cached page is associated with the given object and
1392117845Ssam *	offset, and FALSE otherwise.
1393117845Ssam *
1394117845Ssam *	The object must be locked.
1395117845Ssam */
1396117845Ssamboolean_t
1397117845Ssamvm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1398117845Ssam{
1399117845Ssam	vm_page_t m;
1400117845Ssam
1401117845Ssam	/*
1402117845Ssam	 * Insertion into an object's collection of cached pages requires the
1403117845Ssam	 * object to be locked.  Therefore, if the object is locked and the
1404117845Ssam	 * object's collection is empty, there is no need to acquire the free
1405117845Ssam	 * page queues lock in order to prove that the specified page doesn't
1406117845Ssam	 * exist.
1407117845Ssam	 */
1408117845Ssam	VM_OBJECT_ASSERT_WLOCKED(object);
1409117845Ssam	if (__predict_true(vm_object_cache_is_empty(object)))
1410117845Ssam		return (FALSE);
1411117845Ssam	mtx_lock(&vm_page_queue_free_mtx);
1412117845Ssam	m = vm_page_cache_lookup(object, pindex);
1413117845Ssam	mtx_unlock(&vm_page_queue_free_mtx);
1414117845Ssam	return (m != NULL);
1415117845Ssam}
1416117845Ssam
1417117845Ssam/*
1418117845Ssam *	vm_page_alloc:
1419117845Ssam *
1420117845Ssam *	Allocate and return a page that is associated with the specified
1421117845Ssam *	object and offset pair.  By default, this page is exclusive busied.
1422117845Ssam *
1423117845Ssam *	The caller must always specify an allocation class.
1424117845Ssam *
1425117845Ssam *	allocation classes:
1426117845Ssam *	VM_ALLOC_NORMAL		normal process request
1427117845Ssam *	VM_ALLOC_SYSTEM		system *really* needs a page
1428117845Ssam *	VM_ALLOC_INTERRUPT	interrupt time request
1429117845Ssam *
1430117845Ssam *	optional allocation flags:
1431117845Ssam *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1432117845Ssam *				intends to allocate
1433117845Ssam *	VM_ALLOC_IFCACHED	return page only if it is cached
1434117845Ssam *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1435117845Ssam *				is cached
1436117845Ssam *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1437117845Ssam *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1438117845Ssam *	VM_ALLOC_NOOBJ		page is not associated with an object and
1439117845Ssam *				should not be exclusive busy
1440117845Ssam *	VM_ALLOC_SBUSY		shared busy the allocated page
1441117845Ssam *	VM_ALLOC_WIRED		wire the allocated page
1442117845Ssam *	VM_ALLOC_ZERO		prefer a zeroed page
1443117845Ssam *
1444117845Ssam *	This routine may not sleep.
1445117845Ssam */
1446117845Ssamvm_page_t
1447117845Ssamvm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1448117845Ssam{
1449117845Ssam	struct vnode *vp = NULL;
1450117845Ssam	vm_object_t m_object;
1451117845Ssam	vm_page_t m, mpred;
1452117845Ssam	int flags, req_class;
1453117845Ssam
1454117845Ssam	mpred = 0;	/* XXX: pacify gcc */
1455117845Ssam	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1456117845Ssam	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1457117845Ssam	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1458117845Ssam	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1459117845Ssam	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1460117845Ssam	    req));
1461117845Ssam	if (object != NULL)
1462117845Ssam		VM_OBJECT_ASSERT_WLOCKED(object);
1463117845Ssam
1464117845Ssam	req_class = req & VM_ALLOC_CLASS_MASK;
1465117845Ssam
1466117845Ssam	/*
1467117845Ssam	 * The page daemon is allowed to dig deeper into the free page list.
1468117845Ssam	 */
1469117845Ssam	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1470117845Ssam		req_class = VM_ALLOC_SYSTEM;
1471117845Ssam
1472117845Ssam	if (object != NULL) {
1473117845Ssam		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1474117845Ssam		KASSERT(mpred == NULL || mpred->pindex != pindex,
1475117845Ssam		   ("vm_page_alloc: pindex already allocated"));
1476117845Ssam	}
1477117845Ssam
1478117845Ssam	/*
1479117845Ssam	 * The page allocation request can came from consumers which already
1480117845Ssam	 * hold the free page queue mutex, like vm_page_insert() in
1481117845Ssam	 * vm_page_cache().
1482117845Ssam	 */
1483117845Ssam	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1484117845Ssam	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1485117845Ssam	    (req_class == VM_ALLOC_SYSTEM &&
1486117845Ssam	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1487117845Ssam	    (req_class == VM_ALLOC_INTERRUPT &&
1488117845Ssam	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1489117845Ssam		/*
1490117845Ssam		 * Allocate from the free queue if the number of free pages
1491117845Ssam		 * exceeds the minimum for the request class.
1492117845Ssam		 */
1493117845Ssam		if (object != NULL &&
1494117845Ssam		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1495117845Ssam			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1496117845Ssam				mtx_unlock(&vm_page_queue_free_mtx);
1497117845Ssam				return (NULL);
1498117845Ssam			}
1499117845Ssam			if (vm_phys_unfree_page(m))
1500117845Ssam				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1501117845Ssam#if VM_NRESERVLEVEL > 0
1502117845Ssam			else if (!vm_reserv_reactivate_page(m))
1503117845Ssam#else
1504117845Ssam			else
1505117845Ssam#endif
1506117845Ssam				panic("vm_page_alloc: cache page %p is missing"
1507117845Ssam				    " from the free queue", m);
1508117845Ssam		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1509117845Ssam			mtx_unlock(&vm_page_queue_free_mtx);
1510117845Ssam			return (NULL);
1511117845Ssam#if VM_NRESERVLEVEL > 0
1512117845Ssam		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1513117845Ssam		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1514117845Ssam		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1515117845Ssam#else
1516117845Ssam		} else {
1517117845Ssam#endif
1518117845Ssam			m = vm_phys_alloc_pages(object != NULL ?
1519117845Ssam			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1520117845Ssam#if VM_NRESERVLEVEL > 0
1521117845Ssam			if (m == NULL && vm_reserv_reclaim_inactive()) {
1522117845Ssam				m = vm_phys_alloc_pages(object != NULL ?
1523117845Ssam				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1524117845Ssam				    0);
1525117845Ssam			}
1526117845Ssam#endif
1527117845Ssam		}
1528117845Ssam	} else {
1529117845Ssam		/*
1530117845Ssam		 * Not allocatable, give up.
1531117845Ssam		 */
1532117845Ssam		mtx_unlock(&vm_page_queue_free_mtx);
1533117845Ssam		atomic_add_int(&vm_pageout_deficit,
1534117845Ssam		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1535117845Ssam		pagedaemon_wakeup();
1536117845Ssam		return (NULL);
1537117845Ssam	}
1538117845Ssam
1539117845Ssam	/*
1540117845Ssam	 *  At this point we had better have found a good page.
1541117845Ssam	 */
1542117845Ssam	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1543117845Ssam	KASSERT(m->queue == PQ_NONE,
1544117845Ssam	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1545117845Ssam	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1546117845Ssam	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1547117845Ssam	KASSERT(!vm_page_sbusied(m),
1548117845Ssam	    ("vm_page_alloc: page %p is busy", m));
1549117845Ssam	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1550117845Ssam	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1551117845Ssam	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1552117845Ssam	    pmap_page_get_memattr(m)));
1553117845Ssam	if ((m->flags & PG_CACHED) != 0) {
1554117845Ssam		KASSERT((m->flags & PG_ZERO) == 0,
1555117845Ssam		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1556117845Ssam		KASSERT(m->valid != 0,
1557117845Ssam		    ("vm_page_alloc: cached page %p is invalid", m));
1558117845Ssam		if (m->object == object && m->pindex == pindex)
1559117845Ssam			vm_cnt.v_reactivated++;
1560117845Ssam		else
1561117845Ssam			m->valid = 0;
1562117845Ssam		m_object = m->object;
1563159242Spjd		vm_page_cache_remove(m);
1564159242Spjd		if (m_object->type == OBJT_VNODE &&
1565159242Spjd		    vm_object_cache_is_empty(m_object))
1566117845Ssam			vp = m_object->handle;
1567117845Ssam	} else {
1568117845Ssam		KASSERT(m->valid == 0,
1569117845Ssam		    ("vm_page_alloc: free page %p is valid", m));
1570117845Ssam		vm_phys_freecnt_adj(m, -1);
1571117845Ssam		if ((m->flags & PG_ZERO) != 0)
1572117845Ssam			vm_page_zero_count--;
1573117845Ssam	}
1574117845Ssam	mtx_unlock(&vm_page_queue_free_mtx);
1575117845Ssam
1576117845Ssam	/*
1577117845Ssam	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1578117845Ssam	 */
1579117845Ssam	flags = 0;
1580117845Ssam	if ((req & VM_ALLOC_ZERO) != 0)
1581117845Ssam		flags = PG_ZERO;
1582117845Ssam	flags &= m->flags;
1583117845Ssam	if ((req & VM_ALLOC_NODUMP) != 0)
1584117845Ssam		flags |= PG_NODUMP;
1585117845Ssam	m->flags = flags;
1586159242Spjd	m->aflags = 0;
1587159242Spjd	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1588159242Spjd	    VPO_UNMANAGED : 0;
1589159242Spjd	m->busy_lock = VPB_UNBUSIED;
1590117845Ssam	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1591117845Ssam		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1592117845Ssam	if ((req & VM_ALLOC_SBUSY) != 0)
1593117845Ssam		m->busy_lock = VPB_SHARERS_WORD(1);
1594117845Ssam	if (req & VM_ALLOC_WIRED) {
1595117845Ssam		/*
1596117845Ssam		 * The page lock is not required for wiring a page until that
1597117845Ssam		 * page is inserted into the object.
1598117845Ssam		 */
1599117845Ssam		atomic_add_int(&vm_cnt.v_wire_count, 1);
1600117845Ssam		m->wire_count = 1;
1601117845Ssam	}
1602117845Ssam	m->act_count = 0;
1603117845Ssam
1604117845Ssam	if (object != NULL) {
1605117845Ssam		if (vm_page_insert_after(m, object, pindex, mpred)) {
1606117845Ssam			/* See the comment below about hold count. */
1607117845Ssam			if (vp != NULL)
1608117845Ssam				vdrop(vp);
1609117845Ssam			pagedaemon_wakeup();
1610117845Ssam			if (req & VM_ALLOC_WIRED) {
1611117845Ssam				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1612117845Ssam				m->wire_count = 0;
1613117845Ssam			}
1614117845Ssam			m->object = NULL;
1615117845Ssam			vm_page_free(m);
1616117845Ssam			return (NULL);
1617117845Ssam		}
1618117845Ssam
1619117845Ssam		/* Ignore device objects; the pager sets "memattr" for them. */
1620117845Ssam		if (object->memattr != VM_MEMATTR_DEFAULT &&
1621117845Ssam		    (object->flags & OBJ_FICTITIOUS) == 0)
1622117845Ssam			pmap_page_set_memattr(m, object->memattr);
1623117845Ssam	} else
1624117845Ssam		m->pindex = pindex;
1625117845Ssam
1626117845Ssam	/*
1627117845Ssam	 * The following call to vdrop() must come after the above call
1628117845Ssam	 * to vm_page_insert() in case both affect the same object and
1629117845Ssam	 * vnode.  Otherwise, the affected vnode's hold count could
1630117845Ssam	 * temporarily become zero.
1631117845Ssam	 */
1632117845Ssam	if (vp != NULL)
1633117845Ssam		vdrop(vp);
1634117845Ssam
1635117845Ssam	/*
1636117845Ssam	 * Don't wakeup too often - wakeup the pageout daemon when
1637117845Ssam	 * we would be nearly out of memory.
1638117845Ssam	 */
1639117845Ssam	if (vm_paging_needed())
1640117845Ssam		pagedaemon_wakeup();
1641117845Ssam
1642117845Ssam	return (m);
1643117845Ssam}
1644117845Ssam
1645117845Ssamstatic void
1646117845Ssamvm_page_alloc_contig_vdrop(struct spglist *lst)
1647117845Ssam{
1648117845Ssam
1649117845Ssam	while (!SLIST_EMPTY(lst)) {
1650117845Ssam		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1651117845Ssam		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1652117845Ssam	}
1653117845Ssam}
1654117845Ssam
1655117845Ssam/*
1656117845Ssam *	vm_page_alloc_contig:
1657117845Ssam *
1658117845Ssam *	Allocate a contiguous set of physical pages of the given size "npages"
1659117845Ssam *	from the free lists.  All of the physical pages must be at or above
1660117845Ssam *	the given physical address "low" and below the given physical address
1661117845Ssam *	"high".  The given value "alignment" determines the alignment of the
1662117845Ssam *	first physical page in the set.  If the given value "boundary" is
1663117845Ssam *	non-zero, then the set of physical pages cannot cross any physical
1664117845Ssam *	address boundary that is a multiple of that value.  Both "alignment"
1665117845Ssam *	and "boundary" must be a power of two.
1666117845Ssam *
1667117845Ssam *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1668117845Ssam *	then the memory attribute setting for the physical pages is configured
1669117845Ssam *	to the object's memory attribute setting.  Otherwise, the memory
1670117845Ssam *	attribute setting for the physical pages is configured to "memattr",
1671117845Ssam *	overriding the object's memory attribute setting.  However, if the
1672117845Ssam *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1673117845Ssam *	memory attribute setting for the physical pages cannot be configured
1674117845Ssam *	to VM_MEMATTR_DEFAULT.
1675117845Ssam *
1676117845Ssam *	The caller must always specify an allocation class.
1677117845Ssam *
1678117845Ssam *	allocation classes:
1679117845Ssam *	VM_ALLOC_NORMAL		normal process request
1680117845Ssam *	VM_ALLOC_SYSTEM		system *really* needs a page
1681117845Ssam *	VM_ALLOC_INTERRUPT	interrupt time request
1682117845Ssam *
1683117845Ssam *	optional allocation flags:
1684117845Ssam *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1685117845Ssam *	VM_ALLOC_NOOBJ		page is not associated with an object and
1686117845Ssam *				should not be exclusive busy
1687117845Ssam *	VM_ALLOC_SBUSY		shared busy the allocated page
1688117845Ssam *	VM_ALLOC_WIRED		wire the allocated page
1689117845Ssam *	VM_ALLOC_ZERO		prefer a zeroed page
1690117845Ssam *
1691117845Ssam *	This routine may not sleep.
1692117845Ssam */
1693117845Ssamvm_page_t
1694117845Ssamvm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1695117845Ssam    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1696117845Ssam    vm_paddr_t boundary, vm_memattr_t memattr)
1697117845Ssam{
1698117845Ssam	struct vnode *drop;
1699117845Ssam	struct spglist deferred_vdrop_list;
1700117845Ssam	vm_page_t m, m_tmp, m_ret;
1701117845Ssam	u_int flags;
1702117845Ssam	int req_class;
1703117845Ssam
1704117845Ssam	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1705117845Ssam	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1706117845Ssam	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1707117845Ssam	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1708117845Ssam	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1709117845Ssam	    req));
1710117845Ssam	if (object != NULL) {
1711117845Ssam		VM_OBJECT_ASSERT_WLOCKED(object);
1712117845Ssam		KASSERT(object->type == OBJT_PHYS,
1713117845Ssam		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1714117845Ssam		    object));
1715117845Ssam	}
1716117845Ssam	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1717117845Ssam	req_class = req & VM_ALLOC_CLASS_MASK;
1718117845Ssam
1719117845Ssam	/*
1720117845Ssam	 * The page daemon is allowed to dig deeper into the free page list.
1721117845Ssam	 */
1722117845Ssam	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1723117845Ssam		req_class = VM_ALLOC_SYSTEM;
1724117845Ssam
1725117845Ssam	SLIST_INIT(&deferred_vdrop_list);
1726117845Ssam	mtx_lock(&vm_page_queue_free_mtx);
1727117845Ssam	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1728117845Ssam	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1729117845Ssam	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1730117845Ssam	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1731117845Ssam	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1732117845Ssam#if VM_NRESERVLEVEL > 0
1733117845Ssamretry:
1734117845Ssam		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1735117845Ssam		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1736117845Ssam		    low, high, alignment, boundary)) == NULL)
1737117845Ssam#endif
1738117845Ssam			m_ret = vm_phys_alloc_contig(npages, low, high,
1739117845Ssam			    alignment, boundary);
1740117845Ssam	} else {
1741117845Ssam		mtx_unlock(&vm_page_queue_free_mtx);
1742117845Ssam		atomic_add_int(&vm_pageout_deficit, npages);
1743117845Ssam		pagedaemon_wakeup();
1744117845Ssam		return (NULL);
1745117845Ssam	}
1746117845Ssam	if (m_ret != NULL)
1747117845Ssam		for (m = m_ret; m < &m_ret[npages]; m++) {
1748117845Ssam			drop = vm_page_alloc_init(m);
1749117845Ssam			if (drop != NULL) {
1750117845Ssam				/*
1751117845Ssam				 * Enqueue the vnode for deferred vdrop().
1752117845Ssam				 */
1753117845Ssam				m->plinks.s.pv = drop;
1754117845Ssam				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1755117845Ssam				    plinks.s.ss);
1756117845Ssam			}
1757117845Ssam		}
1758117845Ssam	else {
1759117845Ssam#if VM_NRESERVLEVEL > 0
1760117845Ssam		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1761117845Ssam		    boundary))
1762117845Ssam			goto retry;
1763117845Ssam#endif
1764117845Ssam	}
1765117845Ssam	mtx_unlock(&vm_page_queue_free_mtx);
1766117845Ssam	if (m_ret == NULL)
1767117845Ssam		return (NULL);
1768117845Ssam
1769117845Ssam	/*
1770117845Ssam	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1771117845Ssam	 */
1772117845Ssam	flags = 0;
1773117845Ssam	if ((req & VM_ALLOC_ZERO) != 0)
1774117845Ssam		flags = PG_ZERO;
1775117845Ssam	if ((req & VM_ALLOC_NODUMP) != 0)
1776117845Ssam		flags |= PG_NODUMP;
1777117845Ssam	if ((req & VM_ALLOC_WIRED) != 0)
1778117845Ssam		atomic_add_int(&vm_cnt.v_wire_count, npages);
1779117845Ssam	if (object != NULL) {
1780117845Ssam		if (object->memattr != VM_MEMATTR_DEFAULT &&
1781117845Ssam		    memattr == VM_MEMATTR_DEFAULT)
1782117845Ssam			memattr = object->memattr;
1783117845Ssam	}
1784117845Ssam	for (m = m_ret; m < &m_ret[npages]; m++) {
1785117845Ssam		m->aflags = 0;
1786117845Ssam		m->flags = (m->flags | PG_NODUMP) & flags;
1787117845Ssam		m->busy_lock = VPB_UNBUSIED;
1788117845Ssam		if (object != NULL) {
1789117845Ssam			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1790117845Ssam				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1791117845Ssam			if ((req & VM_ALLOC_SBUSY) != 0)
1792117845Ssam				m->busy_lock = VPB_SHARERS_WORD(1);
1793117845Ssam		}
1794117845Ssam		if ((req & VM_ALLOC_WIRED) != 0)
1795117845Ssam			m->wire_count = 1;
1796117845Ssam		/* Unmanaged pages don't use "act_count". */
1797117845Ssam		m->oflags = VPO_UNMANAGED;
1798117845Ssam		if (object != NULL) {
1799117845Ssam			if (vm_page_insert(m, object, pindex)) {
1800117845Ssam				vm_page_alloc_contig_vdrop(
1801117845Ssam				    &deferred_vdrop_list);
1802117845Ssam				if (vm_paging_needed())
1803117845Ssam					pagedaemon_wakeup();
1804117845Ssam				if ((req & VM_ALLOC_WIRED) != 0)
1805117845Ssam					atomic_subtract_int(&vm_cnt.v_wire_count,
1806117845Ssam					    npages);
1807117845Ssam				for (m_tmp = m, m = m_ret;
1808117845Ssam				    m < &m_ret[npages]; m++) {
1809117845Ssam					if ((req & VM_ALLOC_WIRED) != 0)
1810117845Ssam						m->wire_count = 0;
1811117845Ssam					if (m >= m_tmp)
1812117845Ssam						m->object = NULL;
1813117845Ssam					vm_page_free(m);
1814117845Ssam				}
1815117845Ssam				return (NULL);
1816117845Ssam			}
1817117845Ssam		} else
1818117845Ssam			m->pindex = pindex;
1819117845Ssam		if (memattr != VM_MEMATTR_DEFAULT)
1820117845Ssam			pmap_page_set_memattr(m, memattr);
1821117845Ssam		pindex++;
1822117845Ssam	}
1823117845Ssam	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1824117845Ssam	if (vm_paging_needed())
1825117845Ssam		pagedaemon_wakeup();
1826117845Ssam	return (m_ret);
1827117845Ssam}
1828117845Ssam
1829117845Ssam/*
1830117845Ssam * Initialize a page that has been freshly dequeued from a freelist.
1831117845Ssam * The caller has to drop the vnode returned, if it is not NULL.
1832117845Ssam *
1833117845Ssam * This function may only be used to initialize unmanaged pages.
1834117845Ssam *
1835117845Ssam * To be called with vm_page_queue_free_mtx held.
1836117845Ssam */
1837117845Ssamstatic struct vnode *
1838117845Ssamvm_page_alloc_init(vm_page_t m)
1839117845Ssam{
1840117845Ssam	struct vnode *drop;
1841117845Ssam	vm_object_t m_object;
1842117845Ssam
1843117845Ssam	KASSERT(m->queue == PQ_NONE,
1844117845Ssam	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1845117845Ssam	    m, m->queue));
1846117845Ssam	KASSERT(m->wire_count == 0,
1847117845Ssam	    ("vm_page_alloc_init: page %p is wired", m));
1848117845Ssam	KASSERT(m->hold_count == 0,
1849117845Ssam	    ("vm_page_alloc_init: page %p is held", m));
1850117845Ssam	KASSERT(!vm_page_sbusied(m),
1851117845Ssam	    ("vm_page_alloc_init: page %p is busy", m));
1852117845Ssam	KASSERT(m->dirty == 0,
1853117845Ssam	    ("vm_page_alloc_init: page %p is dirty", m));
1854117845Ssam	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1855117845Ssam	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1856117845Ssam	    m, pmap_page_get_memattr(m)));
1857117845Ssam	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1858117845Ssam	drop = NULL;
1859117845Ssam	if ((m->flags & PG_CACHED) != 0) {
1860117845Ssam		KASSERT((m->flags & PG_ZERO) == 0,
1861117845Ssam		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1862117845Ssam		m->valid = 0;
1863117845Ssam		m_object = m->object;
1864117845Ssam		vm_page_cache_remove(m);
1865117845Ssam		if (m_object->type == OBJT_VNODE &&
1866117845Ssam		    vm_object_cache_is_empty(m_object))
1867117845Ssam			drop = m_object->handle;
1868117845Ssam	} else {
1869117845Ssam		KASSERT(m->valid == 0,
1870117845Ssam		    ("vm_page_alloc_init: free page %p is valid", m));
1871117845Ssam		vm_phys_freecnt_adj(m, -1);
1872117845Ssam		if ((m->flags & PG_ZERO) != 0)
1873117845Ssam			vm_page_zero_count--;
1874117845Ssam	}
1875117845Ssam	return (drop);
1876117845Ssam}
1877117845Ssam
1878117845Ssam/*
1879117845Ssam * 	vm_page_alloc_freelist:
1880117845Ssam *
1881117845Ssam *	Allocate a physical page from the specified free page list.
1882117845Ssam *
1883117845Ssam *	The caller must always specify an allocation class.
1884117845Ssam *
1885117845Ssam *	allocation classes:
1886117845Ssam *	VM_ALLOC_NORMAL		normal process request
1887117845Ssam *	VM_ALLOC_SYSTEM		system *really* needs a page
1888117845Ssam *	VM_ALLOC_INTERRUPT	interrupt time request
1889117845Ssam *
1890117845Ssam *	optional allocation flags:
1891117845Ssam *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1892117845Ssam *				intends to allocate
1893117845Ssam *	VM_ALLOC_WIRED		wire the allocated page
1894117845Ssam *	VM_ALLOC_ZERO		prefer a zeroed page
1895117845Ssam *
1896117845Ssam *	This routine may not sleep.
1897117845Ssam */
1898117845Ssamvm_page_t
1899117845Ssamvm_page_alloc_freelist(int flind, int req)
1900117845Ssam{
1901117845Ssam	struct vnode *drop;
1902117845Ssam	vm_page_t m;
1903117845Ssam	u_int flags;
1904117845Ssam	int req_class;
1905117845Ssam
1906117845Ssam	req_class = req & VM_ALLOC_CLASS_MASK;
1907117845Ssam
1908117845Ssam	/*
1909117845Ssam	 * The page daemon is allowed to dig deeper into the free page list.
1910117845Ssam	 */
1911117845Ssam	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1912117845Ssam		req_class = VM_ALLOC_SYSTEM;
1913117845Ssam
1914117845Ssam	/*
1915117845Ssam	 * Do not allocate reserved pages unless the req has asked for it.
1916117845Ssam	 */
1917117845Ssam	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1918117845Ssam	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1919117845Ssam	    (req_class == VM_ALLOC_SYSTEM &&
1920117845Ssam	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1921117845Ssam	    (req_class == VM_ALLOC_INTERRUPT &&
1922117845Ssam	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
1923117845Ssam		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1924117845Ssam	else {
1925117845Ssam		mtx_unlock(&vm_page_queue_free_mtx);
1926117845Ssam		atomic_add_int(&vm_pageout_deficit,
1927117845Ssam		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1928117845Ssam		pagedaemon_wakeup();
1929117845Ssam		return (NULL);
1930117845Ssam	}
1931117845Ssam	if (m == NULL) {
1932117845Ssam		mtx_unlock(&vm_page_queue_free_mtx);
1933117845Ssam		return (NULL);
1934117845Ssam	}
1935117845Ssam	drop = vm_page_alloc_init(m);
1936117845Ssam	mtx_unlock(&vm_page_queue_free_mtx);
1937117845Ssam
1938117845Ssam	/*
1939117845Ssam	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1940117845Ssam	 */
1941117845Ssam	m->aflags = 0;
1942117845Ssam	flags = 0;
1943117845Ssam	if ((req & VM_ALLOC_ZERO) != 0)
1944117845Ssam		flags = PG_ZERO;
1945117845Ssam	m->flags &= flags;
1946117845Ssam	if ((req & VM_ALLOC_WIRED) != 0) {
1947117845Ssam		/*
1948117845Ssam		 * The page lock is not required for wiring a page that does
1949117845Ssam		 * not belong to an object.
1950117845Ssam		 */
1951117845Ssam		atomic_add_int(&vm_cnt.v_wire_count, 1);
1952117845Ssam		m->wire_count = 1;
1953117845Ssam	}
1954117845Ssam	/* Unmanaged pages don't use "act_count". */
1955117845Ssam	m->oflags = VPO_UNMANAGED;
1956117845Ssam	if (drop != NULL)
1957117845Ssam		vdrop(drop);
1958117845Ssam	if (vm_paging_needed())
1959117845Ssam		pagedaemon_wakeup();
1960117845Ssam	return (m);
1961117845Ssam}
1962117845Ssam
1963117845Ssam/*
1964117845Ssam *	vm_wait:	(also see VM_WAIT macro)
1965117845Ssam *
1966117845Ssam *	Sleep until free pages are available for allocation.
1967117845Ssam *	- Called in various places before memory allocations.
1968117845Ssam */
1969117845Ssamvoid
1970117845Ssamvm_wait(void)
1971117845Ssam{
1972117845Ssam
1973117845Ssam	mtx_lock(&vm_page_queue_free_mtx);
1974117845Ssam	if (curproc == pageproc) {
1975117845Ssam		vm_pageout_pages_needed = 1;
1976117845Ssam		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1977117845Ssam		    PDROP | PSWP, "VMWait", 0);
1978117845Ssam	} else {
1979117845Ssam		if (!vm_pages_needed) {
1980117845Ssam			vm_pages_needed = 1;
1981117845Ssam			wakeup(&vm_pages_needed);
1982117845Ssam		}
1983117845Ssam		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1984117845Ssam		    "vmwait", 0);
1985117845Ssam	}
1986117845Ssam}
1987117845Ssam
1988117845Ssam/*
1989117845Ssam *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1990117845Ssam *
1991117845Ssam *	Sleep until free pages are available for allocation.
1992117845Ssam *	- Called only in vm_fault so that processes page faulting
1993117845Ssam *	  can be easily tracked.
1994117845Ssam *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1995117845Ssam *	  processes will be able to grab memory first.  Do not change
1996117845Ssam *	  this balance without careful testing first.
1997117845Ssam */
1998117845Ssamvoid
1999117845Ssamvm_waitpfault(void)
2000117845Ssam{
2001117845Ssam
2002117845Ssam	mtx_lock(&vm_page_queue_free_mtx);
2003117845Ssam	if (!vm_pages_needed) {
2004117845Ssam		vm_pages_needed = 1;
2005117845Ssam		wakeup(&vm_pages_needed);
2006117845Ssam	}
2007117845Ssam	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2008117845Ssam	    "pfault", 0);
2009117845Ssam}
2010117845Ssam
2011117845Ssamstruct vm_pagequeue *
2012117845Ssamvm_page_pagequeue(vm_page_t m)
2013117845Ssam{
2014117845Ssam
2015117845Ssam	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2016117845Ssam}
2017117845Ssam
2018117845Ssam/*
2019117845Ssam *	vm_page_dequeue:
2020117845Ssam *
2021117845Ssam *	Remove the given page from its current page queue.
2022117845Ssam *
2023117845Ssam *	The page must be locked.
2024117845Ssam */
2025117845Ssamvoid
2026117845Ssamvm_page_dequeue(vm_page_t m)
2027117845Ssam{
2028117845Ssam	struct vm_pagequeue *pq;
2029117845Ssam
2030117845Ssam	vm_page_assert_locked(m);
2031117845Ssam	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2032117845Ssam	    m));
2033117845Ssam	pq = vm_page_pagequeue(m);
2034117845Ssam	vm_pagequeue_lock(pq);
2035117845Ssam	m->queue = PQ_NONE;
2036117845Ssam	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2037117845Ssam	vm_pagequeue_cnt_dec(pq);
2038117845Ssam	vm_pagequeue_unlock(pq);
2039117845Ssam}
2040117845Ssam
2041117845Ssam/*
2042117845Ssam *	vm_page_dequeue_locked:
2043117845Ssam *
2044117845Ssam *	Remove the given page from its current page queue.
2045117845Ssam *
2046117845Ssam *	The page and page queue must be locked.
2047117845Ssam */
2048117845Ssamvoid
2049117845Ssamvm_page_dequeue_locked(vm_page_t m)
2050117845Ssam{
2051117845Ssam	struct vm_pagequeue *pq;
2052117845Ssam
2053117845Ssam	vm_page_lock_assert(m, MA_OWNED);
2054117845Ssam	pq = vm_page_pagequeue(m);
2055117845Ssam	vm_pagequeue_assert_locked(pq);
2056117845Ssam	m->queue = PQ_NONE;
2057117845Ssam	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2058117845Ssam	vm_pagequeue_cnt_dec(pq);
2059117845Ssam}
2060117845Ssam
2061117845Ssam/*
2062117845Ssam *	vm_page_enqueue:
2063117845Ssam *
2064117845Ssam *	Add the given page to the specified page queue.
2065117845Ssam *
2066117845Ssam *	The page must be locked.
2067117845Ssam */
2068117845Ssamstatic void
2069117845Ssamvm_page_enqueue(uint8_t queue, vm_page_t m)
2070117845Ssam{
2071117845Ssam	struct vm_pagequeue *pq;
2072118882Ssam
2073117845Ssam	vm_page_lock_assert(m, MA_OWNED);
2074117845Ssam	KASSERT(queue < PQ_COUNT,
2075117845Ssam	    ("vm_page_enqueue: invalid queue %u request for page %p",
2076117845Ssam	    queue, m));
2077118882Ssam	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2078117845Ssam	vm_pagequeue_lock(pq);
2079117845Ssam	m->queue = queue;
2080117845Ssam	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2081117845Ssam	vm_pagequeue_cnt_inc(pq);
2082117845Ssam	vm_pagequeue_unlock(pq);
2083117845Ssam}
2084117845Ssam
2085117845Ssam/*
2086117845Ssam *	vm_page_requeue:
2087117845Ssam *
2088117845Ssam *	Move the given page to the tail of its current page queue.
2089117845Ssam *
2090117845Ssam *	The page must be locked.
2091117845Ssam */
2092117845Ssamvoid
2093117845Ssamvm_page_requeue(vm_page_t m)
2094117845Ssam{
2095117845Ssam	struct vm_pagequeue *pq;
2096117845Ssam
2097117845Ssam	vm_page_lock_assert(m, MA_OWNED);
2098117845Ssam	KASSERT(m->queue != PQ_NONE,
2099117845Ssam	    ("vm_page_requeue: page %p is not queued", m));
2100117845Ssam	pq = vm_page_pagequeue(m);
2101117845Ssam	vm_pagequeue_lock(pq);
2102117845Ssam	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2103117845Ssam	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2104117845Ssam	vm_pagequeue_unlock(pq);
2105117845Ssam}
2106117845Ssam
2107117845Ssam/*
2108117845Ssam *	vm_page_requeue_locked:
2109117845Ssam *
2110117845Ssam *	Move the given page to the tail of its current page queue.
2111117845Ssam *
2112117845Ssam *	The page queue must be locked.
2113117845Ssam */
2114125466Spetervoid
2115117845Ssamvm_page_requeue_locked(vm_page_t m)
2116117845Ssam{
2117125466Speter	struct vm_pagequeue *pq;
2118125466Speter
2119117845Ssam	KASSERT(m->queue != PQ_NONE,
2120117845Ssam	    ("vm_page_requeue_locked: page %p is not queued", m));
2121117845Ssam	pq = vm_page_pagequeue(m);
2122117845Ssam	vm_pagequeue_assert_locked(pq);
2123117845Ssam	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2124117845Ssam	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2125117845Ssam}
2126117845Ssam
2127117845Ssam/*
2128117845Ssam *	vm_page_activate:
2129117845Ssam *
2130117845Ssam *	Put the specified page on the active list (if appropriate).
2131117845Ssam *	Ensure that act_count is at least ACT_INIT but do not otherwise
2132117845Ssam *	mess with it.
2133117845Ssam *
2134117845Ssam *	The page must be locked.
2135117845Ssam */
2136117845Ssamvoid
2137117845Ssamvm_page_activate(vm_page_t m)
2138117845Ssam{
2139117845Ssam	int queue;
2140117845Ssam
2141117845Ssam	vm_page_lock_assert(m, MA_OWNED);
2142125466Speter	if ((queue = m->queue) != PQ_ACTIVE) {
2143117845Ssam		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2144117845Ssam			if (m->act_count < ACT_INIT)
2145117845Ssam				m->act_count = ACT_INIT;
2146117845Ssam			if (queue != PQ_NONE)
2147117845Ssam				vm_page_dequeue(m);
2148117845Ssam			vm_page_enqueue(PQ_ACTIVE, m);
2149117845Ssam		} else
2150117845Ssam			KASSERT(queue == PQ_NONE,
2151117845Ssam			    ("vm_page_activate: wired page %p is queued", m));
2152117845Ssam	} else {
2153117845Ssam		if (m->act_count < ACT_INIT)
2154117845Ssam			m->act_count = ACT_INIT;
2155117845Ssam	}
2156117845Ssam}
2157117845Ssam
2158117845Ssam/*
2159125466Speter *	vm_page_free_wakeup:
2160117845Ssam *
2161117845Ssam *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2162117845Ssam *	routine is called when a page has been added to the cache or free
2163117845Ssam *	queues.
2164117845Ssam *
2165117845Ssam *	The page queues must be locked.
2166117845Ssam */
2167117845Ssamstatic inline void
2168117845Ssamvm_page_free_wakeup(void)
2169117845Ssam{
2170117845Ssam
2171117845Ssam	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2172117845Ssam	/*
2173117845Ssam	 * if pageout daemon needs pages, then tell it that there are
2174117845Ssam	 * some free.
2175117845Ssam	 */
2176117845Ssam	if (vm_pageout_pages_needed &&
2177117845Ssam	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2178117845Ssam		wakeup(&vm_pageout_pages_needed);
2179117845Ssam		vm_pageout_pages_needed = 0;
2180117845Ssam	}
2181117845Ssam	/*
2182117845Ssam	 * wakeup processes that are waiting on memory if we hit a
2183117845Ssam	 * high water mark. And wakeup scheduler process if we have
2184117845Ssam	 * lots of memory. this process will swapin processes.
2185117845Ssam	 */
2186117845Ssam	if (vm_pages_needed && !vm_page_count_min()) {
2187117845Ssam		vm_pages_needed = 0;
2188117845Ssam		wakeup(&vm_cnt.v_free_count);
2189117845Ssam	}
2190117845Ssam}
2191117845Ssam
2192117845Ssam/*
2193117845Ssam *	Turn a cached page into a free page, by changing its attributes.
2194117845Ssam *	Keep the statistics up-to-date.
2195117845Ssam *
2196117845Ssam *	The free page queue must be locked.
2197117845Ssam */
2198117845Ssamstatic void
2199117845Ssamvm_page_cache_turn_free(vm_page_t m)
2200117845Ssam{
2201117845Ssam
2202117845Ssam	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2203117845Ssam
2204117845Ssam	m->object = NULL;
2205117845Ssam	m->valid = 0;
2206117845Ssam	KASSERT((m->flags & PG_CACHED) != 0,
2207117845Ssam	    ("vm_page_cache_turn_free: page %p is not cached", m));
2208117845Ssam	m->flags &= ~PG_CACHED;
2209117845Ssam	vm_cnt.v_cache_count--;
2210117845Ssam	vm_phys_freecnt_adj(m, 1);
2211117845Ssam}
2212117845Ssam
2213117845Ssam/*
2214117845Ssam *	vm_page_free_toq:
2215117845Ssam *
2216117845Ssam *	Returns the given page to the free list,
2217117845Ssam *	disassociating it with any VM object.
2218117845Ssam *
2219117845Ssam *	The object must be locked.  The page must be locked if it is managed.
2220117845Ssam */
2221117845Ssamvoid
2222117845Ssamvm_page_free_toq(vm_page_t m)
2223117845Ssam{
2224117845Ssam
2225117845Ssam	if ((m->oflags & VPO_UNMANAGED) == 0) {
2226117845Ssam		vm_page_lock_assert(m, MA_OWNED);
2227117845Ssam		KASSERT(!pmap_page_is_mapped(m),
2228117845Ssam		    ("vm_page_free_toq: freeing mapped page %p", m));
2229117845Ssam	} else
2230117845Ssam		KASSERT(m->queue == PQ_NONE,
2231117845Ssam		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2232117845Ssam	PCPU_INC(cnt.v_tfree);
2233117845Ssam
2234117845Ssam	if (vm_page_sbusied(m))
2235117845Ssam		panic("vm_page_free: freeing busy page %p", m);
2236117845Ssam
2237117845Ssam	/*
2238117845Ssam	 * Unqueue, then remove page.  Note that we cannot destroy
2239117845Ssam	 * the page here because we do not want to call the pager's
2240117845Ssam	 * callback routine until after we've put the page on the
2241117845Ssam	 * appropriate free queue.
2242117845Ssam	 */
2243117845Ssam	vm_page_remque(m);
2244117845Ssam	vm_page_remove(m);
2245117845Ssam
2246117845Ssam	/*
2247117845Ssam	 * If fictitious remove object association and
2248117845Ssam	 * return, otherwise delay object association removal.
2249117845Ssam	 */
2250117845Ssam	if ((m->flags & PG_FICTITIOUS) != 0) {
2251117845Ssam		return;
2252117845Ssam	}
2253117845Ssam
2254117845Ssam	m->valid = 0;
2255117845Ssam	vm_page_undirty(m);
2256
2257	if (m->wire_count != 0)
2258		panic("vm_page_free: freeing wired page %p", m);
2259	if (m->hold_count != 0) {
2260		m->flags &= ~PG_ZERO;
2261		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2262		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2263		m->flags |= PG_UNHOLDFREE;
2264	} else {
2265		/*
2266		 * Restore the default memory attribute to the page.
2267		 */
2268		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2269			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2270
2271		/*
2272		 * Insert the page into the physical memory allocator's
2273		 * cache/free page queues.
2274		 */
2275		mtx_lock(&vm_page_queue_free_mtx);
2276		vm_phys_freecnt_adj(m, 1);
2277#if VM_NRESERVLEVEL > 0
2278		if (!vm_reserv_free_page(m))
2279#else
2280		if (TRUE)
2281#endif
2282			vm_phys_free_pages(m, 0);
2283		if ((m->flags & PG_ZERO) != 0)
2284			++vm_page_zero_count;
2285		else
2286			vm_page_zero_idle_wakeup();
2287		vm_page_free_wakeup();
2288		mtx_unlock(&vm_page_queue_free_mtx);
2289	}
2290}
2291
2292/*
2293 *	vm_page_wire:
2294 *
2295 *	Mark this page as wired down by yet
2296 *	another map, removing it from paging queues
2297 *	as necessary.
2298 *
2299 *	If the page is fictitious, then its wire count must remain one.
2300 *
2301 *	The page must be locked.
2302 */
2303void
2304vm_page_wire(vm_page_t m)
2305{
2306
2307	/*
2308	 * Only bump the wire statistics if the page is not already wired,
2309	 * and only unqueue the page if it is on some queue (if it is unmanaged
2310	 * it is already off the queues).
2311	 */
2312	vm_page_lock_assert(m, MA_OWNED);
2313	if ((m->flags & PG_FICTITIOUS) != 0) {
2314		KASSERT(m->wire_count == 1,
2315		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2316		    m));
2317		return;
2318	}
2319	if (m->wire_count == 0) {
2320		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2321		    m->queue == PQ_NONE,
2322		    ("vm_page_wire: unmanaged page %p is queued", m));
2323		vm_page_remque(m);
2324		atomic_add_int(&vm_cnt.v_wire_count, 1);
2325	}
2326	m->wire_count++;
2327	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2328}
2329
2330/*
2331 * vm_page_unwire:
2332 *
2333 * Release one wiring of the specified page, potentially enabling it to be
2334 * paged again.  If paging is enabled, then the value of the parameter
2335 * "queue" determines the queue to which the page is added.
2336 *
2337 * However, unless the page belongs to an object, it is not enqueued because
2338 * it cannot be paged out.
2339 *
2340 * If a page is fictitious, then its wire count must always be one.
2341 *
2342 * A managed page must be locked.
2343 */
2344void
2345vm_page_unwire(vm_page_t m, uint8_t queue)
2346{
2347
2348	KASSERT(queue < PQ_COUNT,
2349	    ("vm_page_unwire: invalid queue %u request for page %p",
2350	    queue, m));
2351	if ((m->oflags & VPO_UNMANAGED) == 0)
2352		vm_page_lock_assert(m, MA_OWNED);
2353	if ((m->flags & PG_FICTITIOUS) != 0) {
2354		KASSERT(m->wire_count == 1,
2355	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2356		return;
2357	}
2358	if (m->wire_count > 0) {
2359		m->wire_count--;
2360		if (m->wire_count == 0) {
2361			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2362			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2363			    m->object == NULL)
2364				return;
2365			if (queue == PQ_INACTIVE)
2366				m->flags &= ~PG_WINATCFLS;
2367			vm_page_enqueue(queue, m);
2368		}
2369	} else
2370		panic("vm_page_unwire: page %p's wire count is zero", m);
2371}
2372
2373/*
2374 * Move the specified page to the inactive queue.
2375 *
2376 * Many pages placed on the inactive queue should actually go
2377 * into the cache, but it is difficult to figure out which.  What
2378 * we do instead, if the inactive target is well met, is to put
2379 * clean pages at the head of the inactive queue instead of the tail.
2380 * This will cause them to be moved to the cache more quickly and
2381 * if not actively re-referenced, reclaimed more quickly.  If we just
2382 * stick these pages at the end of the inactive queue, heavy filesystem
2383 * meta-data accesses can cause an unnecessary paging load on memory bound
2384 * processes.  This optimization causes one-time-use metadata to be
2385 * reused more quickly.
2386 *
2387 * Normally athead is 0 resulting in LRU operation.  athead is set
2388 * to 1 if we want this page to be 'as if it were placed in the cache',
2389 * except without unmapping it from the process address space.
2390 *
2391 * The page must be locked.
2392 */
2393static inline void
2394_vm_page_deactivate(vm_page_t m, int athead)
2395{
2396	struct vm_pagequeue *pq;
2397	int queue;
2398
2399	vm_page_lock_assert(m, MA_OWNED);
2400
2401	/*
2402	 * Ignore if already inactive.
2403	 */
2404	if ((queue = m->queue) == PQ_INACTIVE)
2405		return;
2406	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2407		if (queue != PQ_NONE)
2408			vm_page_dequeue(m);
2409		m->flags &= ~PG_WINATCFLS;
2410		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2411		vm_pagequeue_lock(pq);
2412		m->queue = PQ_INACTIVE;
2413		if (athead)
2414			TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
2415		else
2416			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2417		vm_pagequeue_cnt_inc(pq);
2418		vm_pagequeue_unlock(pq);
2419	}
2420}
2421
2422/*
2423 * Move the specified page to the inactive queue.
2424 *
2425 * The page must be locked.
2426 */
2427void
2428vm_page_deactivate(vm_page_t m)
2429{
2430
2431	_vm_page_deactivate(m, 0);
2432}
2433
2434/*
2435 * vm_page_try_to_cache:
2436 *
2437 * Returns 0 on failure, 1 on success
2438 */
2439int
2440vm_page_try_to_cache(vm_page_t m)
2441{
2442
2443	vm_page_lock_assert(m, MA_OWNED);
2444	VM_OBJECT_ASSERT_WLOCKED(m->object);
2445	if (m->dirty || m->hold_count || m->wire_count ||
2446	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2447		return (0);
2448	pmap_remove_all(m);
2449	if (m->dirty)
2450		return (0);
2451	vm_page_cache(m);
2452	return (1);
2453}
2454
2455/*
2456 * vm_page_try_to_free()
2457 *
2458 *	Attempt to free the page.  If we cannot free it, we do nothing.
2459 *	1 is returned on success, 0 on failure.
2460 */
2461int
2462vm_page_try_to_free(vm_page_t m)
2463{
2464
2465	vm_page_lock_assert(m, MA_OWNED);
2466	if (m->object != NULL)
2467		VM_OBJECT_ASSERT_WLOCKED(m->object);
2468	if (m->dirty || m->hold_count || m->wire_count ||
2469	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2470		return (0);
2471	pmap_remove_all(m);
2472	if (m->dirty)
2473		return (0);
2474	vm_page_free(m);
2475	return (1);
2476}
2477
2478/*
2479 * vm_page_cache
2480 *
2481 * Put the specified page onto the page cache queue (if appropriate).
2482 *
2483 * The object and page must be locked.
2484 */
2485void
2486vm_page_cache(vm_page_t m)
2487{
2488	vm_object_t object;
2489	boolean_t cache_was_empty;
2490
2491	vm_page_lock_assert(m, MA_OWNED);
2492	object = m->object;
2493	VM_OBJECT_ASSERT_WLOCKED(object);
2494	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2495	    m->hold_count || m->wire_count)
2496		panic("vm_page_cache: attempting to cache busy page");
2497	KASSERT(!pmap_page_is_mapped(m),
2498	    ("vm_page_cache: page %p is mapped", m));
2499	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2500	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2501	    (object->type == OBJT_SWAP &&
2502	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2503		/*
2504		 * Hypothesis: A cache-eligible page belonging to a
2505		 * default object or swap object but without a backing
2506		 * store must be zero filled.
2507		 */
2508		vm_page_free(m);
2509		return;
2510	}
2511	KASSERT((m->flags & PG_CACHED) == 0,
2512	    ("vm_page_cache: page %p is already cached", m));
2513
2514	/*
2515	 * Remove the page from the paging queues.
2516	 */
2517	vm_page_remque(m);
2518
2519	/*
2520	 * Remove the page from the object's collection of resident
2521	 * pages.
2522	 */
2523	vm_radix_remove(&object->rtree, m->pindex);
2524	TAILQ_REMOVE(&object->memq, m, listq);
2525	object->resident_page_count--;
2526
2527	/*
2528	 * Restore the default memory attribute to the page.
2529	 */
2530	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2531		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2532
2533	/*
2534	 * Insert the page into the object's collection of cached pages
2535	 * and the physical memory allocator's cache/free page queues.
2536	 */
2537	m->flags &= ~PG_ZERO;
2538	mtx_lock(&vm_page_queue_free_mtx);
2539	cache_was_empty = vm_radix_is_empty(&object->cache);
2540	if (vm_radix_insert(&object->cache, m)) {
2541		mtx_unlock(&vm_page_queue_free_mtx);
2542		if (object->resident_page_count == 0)
2543			vdrop(object->handle);
2544		m->object = NULL;
2545		vm_page_free(m);
2546		return;
2547	}
2548
2549	/*
2550	 * The above call to vm_radix_insert() could reclaim the one pre-
2551	 * existing cached page from this object, resulting in a call to
2552	 * vdrop().
2553	 */
2554	if (!cache_was_empty)
2555		cache_was_empty = vm_radix_is_singleton(&object->cache);
2556
2557	m->flags |= PG_CACHED;
2558	vm_cnt.v_cache_count++;
2559	PCPU_INC(cnt.v_tcached);
2560#if VM_NRESERVLEVEL > 0
2561	if (!vm_reserv_free_page(m)) {
2562#else
2563	if (TRUE) {
2564#endif
2565		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2566		vm_phys_free_pages(m, 0);
2567	}
2568	vm_page_free_wakeup();
2569	mtx_unlock(&vm_page_queue_free_mtx);
2570
2571	/*
2572	 * Increment the vnode's hold count if this is the object's only
2573	 * cached page.  Decrement the vnode's hold count if this was
2574	 * the object's only resident page.
2575	 */
2576	if (object->type == OBJT_VNODE) {
2577		if (cache_was_empty && object->resident_page_count != 0)
2578			vhold(object->handle);
2579		else if (!cache_was_empty && object->resident_page_count == 0)
2580			vdrop(object->handle);
2581	}
2582}
2583
2584/*
2585 * vm_page_advise
2586 *
2587 *	Cache, deactivate, or do nothing as appropriate.  This routine
2588 *	is used by madvise().
2589 *
2590 *	Generally speaking we want to move the page into the cache so
2591 *	it gets reused quickly.  However, this can result in a silly syndrome
2592 *	due to the page recycling too quickly.  Small objects will not be
2593 *	fully cached.  On the other hand, if we move the page to the inactive
2594 *	queue we wind up with a problem whereby very large objects
2595 *	unnecessarily blow away our inactive and cache queues.
2596 *
2597 *	The solution is to move the pages based on a fixed weighting.  We
2598 *	either leave them alone, deactivate them, or move them to the cache,
2599 *	where moving them to the cache has the highest weighting.
2600 *	By forcing some pages into other queues we eventually force the
2601 *	system to balance the queues, potentially recovering other unrelated
2602 *	space from active.  The idea is to not force this to happen too
2603 *	often.
2604 *
2605 *	The object and page must be locked.
2606 */
2607void
2608vm_page_advise(vm_page_t m, int advice)
2609{
2610	int dnw, head;
2611
2612	vm_page_assert_locked(m);
2613	VM_OBJECT_ASSERT_WLOCKED(m->object);
2614	if (advice == MADV_FREE) {
2615		/*
2616		 * Mark the page clean.  This will allow the page to be freed
2617		 * up by the system.  However, such pages are often reused
2618		 * quickly by malloc() so we do not do anything that would
2619		 * cause a page fault if we can help it.
2620		 *
2621		 * Specifically, we do not try to actually free the page now
2622		 * nor do we try to put it in the cache (which would cause a
2623		 * page fault on reuse).
2624		 *
2625		 * But we do make the page is freeable as we can without
2626		 * actually taking the step of unmapping it.
2627		 */
2628		m->dirty = 0;
2629		m->act_count = 0;
2630	} else if (advice != MADV_DONTNEED)
2631		return;
2632	dnw = PCPU_GET(dnweight);
2633	PCPU_INC(dnweight);
2634
2635	/*
2636	 * Occasionally leave the page alone.
2637	 */
2638	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2639		if (m->act_count >= ACT_INIT)
2640			--m->act_count;
2641		return;
2642	}
2643
2644	/*
2645	 * Clear any references to the page.  Otherwise, the page daemon will
2646	 * immediately reactivate the page.
2647	 */
2648	vm_page_aflag_clear(m, PGA_REFERENCED);
2649
2650	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2651		vm_page_dirty(m);
2652
2653	if (m->dirty || (dnw & 0x0070) == 0) {
2654		/*
2655		 * Deactivate the page 3 times out of 32.
2656		 */
2657		head = 0;
2658	} else {
2659		/*
2660		 * Cache the page 28 times out of every 32.  Note that
2661		 * the page is deactivated instead of cached, but placed
2662		 * at the head of the queue instead of the tail.
2663		 */
2664		head = 1;
2665	}
2666	_vm_page_deactivate(m, head);
2667}
2668
2669/*
2670 * Grab a page, waiting until we are waken up due to the page
2671 * changing state.  We keep on waiting, if the page continues
2672 * to be in the object.  If the page doesn't exist, first allocate it
2673 * and then conditionally zero it.
2674 *
2675 * This routine may sleep.
2676 *
2677 * The object must be locked on entry.  The lock will, however, be released
2678 * and reacquired if the routine sleeps.
2679 */
2680vm_page_t
2681vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2682{
2683	vm_page_t m;
2684	int sleep;
2685
2686	VM_OBJECT_ASSERT_WLOCKED(object);
2687	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2688	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2689	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2690retrylookup:
2691	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2692		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2693		    vm_page_xbusied(m) : vm_page_busied(m);
2694		if (sleep) {
2695			/*
2696			 * Reference the page before unlocking and
2697			 * sleeping so that the page daemon is less
2698			 * likely to reclaim it.
2699			 */
2700			vm_page_aflag_set(m, PGA_REFERENCED);
2701			vm_page_lock(m);
2702			VM_OBJECT_WUNLOCK(object);
2703			vm_page_busy_sleep(m, "pgrbwt");
2704			VM_OBJECT_WLOCK(object);
2705			goto retrylookup;
2706		} else {
2707			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2708				vm_page_lock(m);
2709				vm_page_wire(m);
2710				vm_page_unlock(m);
2711			}
2712			if ((allocflags &
2713			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2714				vm_page_xbusy(m);
2715			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2716				vm_page_sbusy(m);
2717			return (m);
2718		}
2719	}
2720	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_IGN_SBUSY);
2721	if (m == NULL) {
2722		VM_OBJECT_WUNLOCK(object);
2723		VM_WAIT;
2724		VM_OBJECT_WLOCK(object);
2725		goto retrylookup;
2726	} else if (m->valid != 0)
2727		return (m);
2728	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2729		pmap_zero_page(m);
2730	return (m);
2731}
2732
2733/*
2734 * Mapping function for valid or dirty bits in a page.
2735 *
2736 * Inputs are required to range within a page.
2737 */
2738vm_page_bits_t
2739vm_page_bits(int base, int size)
2740{
2741	int first_bit;
2742	int last_bit;
2743
2744	KASSERT(
2745	    base + size <= PAGE_SIZE,
2746	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2747	);
2748
2749	if (size == 0)		/* handle degenerate case */
2750		return (0);
2751
2752	first_bit = base >> DEV_BSHIFT;
2753	last_bit = (base + size - 1) >> DEV_BSHIFT;
2754
2755	return (((vm_page_bits_t)2 << last_bit) -
2756	    ((vm_page_bits_t)1 << first_bit));
2757}
2758
2759/*
2760 *	vm_page_set_valid_range:
2761 *
2762 *	Sets portions of a page valid.  The arguments are expected
2763 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2764 *	of any partial chunks touched by the range.  The invalid portion of
2765 *	such chunks will be zeroed.
2766 *
2767 *	(base + size) must be less then or equal to PAGE_SIZE.
2768 */
2769void
2770vm_page_set_valid_range(vm_page_t m, int base, int size)
2771{
2772	int endoff, frag;
2773
2774	VM_OBJECT_ASSERT_WLOCKED(m->object);
2775	if (size == 0)	/* handle degenerate case */
2776		return;
2777
2778	/*
2779	 * If the base is not DEV_BSIZE aligned and the valid
2780	 * bit is clear, we have to zero out a portion of the
2781	 * first block.
2782	 */
2783	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2784	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2785		pmap_zero_page_area(m, frag, base - frag);
2786
2787	/*
2788	 * If the ending offset is not DEV_BSIZE aligned and the
2789	 * valid bit is clear, we have to zero out a portion of
2790	 * the last block.
2791	 */
2792	endoff = base + size;
2793	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2794	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2795		pmap_zero_page_area(m, endoff,
2796		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2797
2798	/*
2799	 * Assert that no previously invalid block that is now being validated
2800	 * is already dirty.
2801	 */
2802	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2803	    ("vm_page_set_valid_range: page %p is dirty", m));
2804
2805	/*
2806	 * Set valid bits inclusive of any overlap.
2807	 */
2808	m->valid |= vm_page_bits(base, size);
2809}
2810
2811/*
2812 * Clear the given bits from the specified page's dirty field.
2813 */
2814static __inline void
2815vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2816{
2817	uintptr_t addr;
2818#if PAGE_SIZE < 16384
2819	int shift;
2820#endif
2821
2822	/*
2823	 * If the object is locked and the page is neither exclusive busy nor
2824	 * write mapped, then the page's dirty field cannot possibly be
2825	 * set by a concurrent pmap operation.
2826	 */
2827	VM_OBJECT_ASSERT_WLOCKED(m->object);
2828	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2829		m->dirty &= ~pagebits;
2830	else {
2831		/*
2832		 * The pmap layer can call vm_page_dirty() without
2833		 * holding a distinguished lock.  The combination of
2834		 * the object's lock and an atomic operation suffice
2835		 * to guarantee consistency of the page dirty field.
2836		 *
2837		 * For PAGE_SIZE == 32768 case, compiler already
2838		 * properly aligns the dirty field, so no forcible
2839		 * alignment is needed. Only require existence of
2840		 * atomic_clear_64 when page size is 32768.
2841		 */
2842		addr = (uintptr_t)&m->dirty;
2843#if PAGE_SIZE == 32768
2844		atomic_clear_64((uint64_t *)addr, pagebits);
2845#elif PAGE_SIZE == 16384
2846		atomic_clear_32((uint32_t *)addr, pagebits);
2847#else		/* PAGE_SIZE <= 8192 */
2848		/*
2849		 * Use a trick to perform a 32-bit atomic on the
2850		 * containing aligned word, to not depend on the existence
2851		 * of atomic_clear_{8, 16}.
2852		 */
2853		shift = addr & (sizeof(uint32_t) - 1);
2854#if BYTE_ORDER == BIG_ENDIAN
2855		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2856#else
2857		shift *= NBBY;
2858#endif
2859		addr &= ~(sizeof(uint32_t) - 1);
2860		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2861#endif		/* PAGE_SIZE */
2862	}
2863}
2864
2865/*
2866 *	vm_page_set_validclean:
2867 *
2868 *	Sets portions of a page valid and clean.  The arguments are expected
2869 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2870 *	of any partial chunks touched by the range.  The invalid portion of
2871 *	such chunks will be zero'd.
2872 *
2873 *	(base + size) must be less then or equal to PAGE_SIZE.
2874 */
2875void
2876vm_page_set_validclean(vm_page_t m, int base, int size)
2877{
2878	vm_page_bits_t oldvalid, pagebits;
2879	int endoff, frag;
2880
2881	VM_OBJECT_ASSERT_WLOCKED(m->object);
2882	if (size == 0)	/* handle degenerate case */
2883		return;
2884
2885	/*
2886	 * If the base is not DEV_BSIZE aligned and the valid
2887	 * bit is clear, we have to zero out a portion of the
2888	 * first block.
2889	 */
2890	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2891	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2892		pmap_zero_page_area(m, frag, base - frag);
2893
2894	/*
2895	 * If the ending offset is not DEV_BSIZE aligned and the
2896	 * valid bit is clear, we have to zero out a portion of
2897	 * the last block.
2898	 */
2899	endoff = base + size;
2900	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2901	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2902		pmap_zero_page_area(m, endoff,
2903		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2904
2905	/*
2906	 * Set valid, clear dirty bits.  If validating the entire
2907	 * page we can safely clear the pmap modify bit.  We also
2908	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2909	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2910	 * be set again.
2911	 *
2912	 * We set valid bits inclusive of any overlap, but we can only
2913	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2914	 * the range.
2915	 */
2916	oldvalid = m->valid;
2917	pagebits = vm_page_bits(base, size);
2918	m->valid |= pagebits;
2919#if 0	/* NOT YET */
2920	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2921		frag = DEV_BSIZE - frag;
2922		base += frag;
2923		size -= frag;
2924		if (size < 0)
2925			size = 0;
2926	}
2927	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2928#endif
2929	if (base == 0 && size == PAGE_SIZE) {
2930		/*
2931		 * The page can only be modified within the pmap if it is
2932		 * mapped, and it can only be mapped if it was previously
2933		 * fully valid.
2934		 */
2935		if (oldvalid == VM_PAGE_BITS_ALL)
2936			/*
2937			 * Perform the pmap_clear_modify() first.  Otherwise,
2938			 * a concurrent pmap operation, such as
2939			 * pmap_protect(), could clear a modification in the
2940			 * pmap and set the dirty field on the page before
2941			 * pmap_clear_modify() had begun and after the dirty
2942			 * field was cleared here.
2943			 */
2944			pmap_clear_modify(m);
2945		m->dirty = 0;
2946		m->oflags &= ~VPO_NOSYNC;
2947	} else if (oldvalid != VM_PAGE_BITS_ALL)
2948		m->dirty &= ~pagebits;
2949	else
2950		vm_page_clear_dirty_mask(m, pagebits);
2951}
2952
2953void
2954vm_page_clear_dirty(vm_page_t m, int base, int size)
2955{
2956
2957	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2958}
2959
2960/*
2961 *	vm_page_set_invalid:
2962 *
2963 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2964 *	valid and dirty bits for the effected areas are cleared.
2965 */
2966void
2967vm_page_set_invalid(vm_page_t m, int base, int size)
2968{
2969	vm_page_bits_t bits;
2970	vm_object_t object;
2971
2972	object = m->object;
2973	VM_OBJECT_ASSERT_WLOCKED(object);
2974	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
2975	    size >= object->un_pager.vnp.vnp_size)
2976		bits = VM_PAGE_BITS_ALL;
2977	else
2978		bits = vm_page_bits(base, size);
2979	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2980		pmap_remove_all(m);
2981	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
2982	    !pmap_page_is_mapped(m),
2983	    ("vm_page_set_invalid: page %p is mapped", m));
2984	m->valid &= ~bits;
2985	m->dirty &= ~bits;
2986}
2987
2988/*
2989 * vm_page_zero_invalid()
2990 *
2991 *	The kernel assumes that the invalid portions of a page contain
2992 *	garbage, but such pages can be mapped into memory by user code.
2993 *	When this occurs, we must zero out the non-valid portions of the
2994 *	page so user code sees what it expects.
2995 *
2996 *	Pages are most often semi-valid when the end of a file is mapped
2997 *	into memory and the file's size is not page aligned.
2998 */
2999void
3000vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3001{
3002	int b;
3003	int i;
3004
3005	VM_OBJECT_ASSERT_WLOCKED(m->object);
3006	/*
3007	 * Scan the valid bits looking for invalid sections that
3008	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3009	 * valid bit may be set ) have already been zerod by
3010	 * vm_page_set_validclean().
3011	 */
3012	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3013		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3014		    (m->valid & ((vm_page_bits_t)1 << i))) {
3015			if (i > b) {
3016				pmap_zero_page_area(m,
3017				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3018			}
3019			b = i + 1;
3020		}
3021	}
3022
3023	/*
3024	 * setvalid is TRUE when we can safely set the zero'd areas
3025	 * as being valid.  We can do this if there are no cache consistancy
3026	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3027	 */
3028	if (setvalid)
3029		m->valid = VM_PAGE_BITS_ALL;
3030}
3031
3032/*
3033 *	vm_page_is_valid:
3034 *
3035 *	Is (partial) page valid?  Note that the case where size == 0
3036 *	will return FALSE in the degenerate case where the page is
3037 *	entirely invalid, and TRUE otherwise.
3038 */
3039int
3040vm_page_is_valid(vm_page_t m, int base, int size)
3041{
3042	vm_page_bits_t bits;
3043
3044	VM_OBJECT_ASSERT_LOCKED(m->object);
3045	bits = vm_page_bits(base, size);
3046	return (m->valid != 0 && (m->valid & bits) == bits);
3047}
3048
3049/*
3050 *	vm_page_ps_is_valid:
3051 *
3052 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3053 */
3054boolean_t
3055vm_page_ps_is_valid(vm_page_t m)
3056{
3057	int i, npages;
3058
3059	VM_OBJECT_ASSERT_LOCKED(m->object);
3060	npages = atop(pagesizes[m->psind]);
3061
3062	/*
3063	 * The physically contiguous pages that make up a superpage, i.e., a
3064	 * page with a page size index ("psind") greater than zero, will
3065	 * occupy adjacent entries in vm_page_array[].
3066	 */
3067	for (i = 0; i < npages; i++) {
3068		if (m[i].valid != VM_PAGE_BITS_ALL)
3069			return (FALSE);
3070	}
3071	return (TRUE);
3072}
3073
3074/*
3075 * Set the page's dirty bits if the page is modified.
3076 */
3077void
3078vm_page_test_dirty(vm_page_t m)
3079{
3080
3081	VM_OBJECT_ASSERT_WLOCKED(m->object);
3082	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3083		vm_page_dirty(m);
3084}
3085
3086void
3087vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3088{
3089
3090	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3091}
3092
3093void
3094vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3095{
3096
3097	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3098}
3099
3100int
3101vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3102{
3103
3104	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3105}
3106
3107#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3108void
3109vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3110{
3111
3112	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3113}
3114
3115void
3116vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3117{
3118
3119	mtx_assert_(vm_page_lockptr(m), a, file, line);
3120}
3121#endif
3122
3123#ifdef INVARIANTS
3124void
3125vm_page_object_lock_assert(vm_page_t m)
3126{
3127
3128	/*
3129	 * Certain of the page's fields may only be modified by the
3130	 * holder of the containing object's lock or the exclusive busy.
3131	 * holder.  Unfortunately, the holder of the write busy is
3132	 * not recorded, and thus cannot be checked here.
3133	 */
3134	if (m->object != NULL && !vm_page_xbusied(m))
3135		VM_OBJECT_ASSERT_WLOCKED(m->object);
3136}
3137
3138void
3139vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3140{
3141
3142	if ((bits & PGA_WRITEABLE) == 0)
3143		return;
3144
3145	/*
3146	 * The PGA_WRITEABLE flag can only be set if the page is
3147	 * managed, is exclusively busied or the object is locked.
3148	 * Currently, this flag is only set by pmap_enter().
3149	 */
3150	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3151	    ("PGA_WRITEABLE on unmanaged page"));
3152	if (!vm_page_xbusied(m))
3153		VM_OBJECT_ASSERT_LOCKED(m->object);
3154}
3155#endif
3156
3157#include "opt_ddb.h"
3158#ifdef DDB
3159#include <sys/kernel.h>
3160
3161#include <ddb/ddb.h>
3162
3163DB_SHOW_COMMAND(page, vm_page_print_page_info)
3164{
3165	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3166	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3167	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3168	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3169	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3170	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3171	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3172	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3173	db_printf("vm_cnt.v_cache_min: %d\n", vm_cnt.v_cache_min);
3174	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3175}
3176
3177DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3178{
3179	int dom;
3180
3181	db_printf("pq_free %d pq_cache %d\n",
3182	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3183	for (dom = 0; dom < vm_ndomains; dom++) {
3184		db_printf(
3185	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3186		    dom,
3187		    vm_dom[dom].vmd_page_count,
3188		    vm_dom[dom].vmd_free_count,
3189		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3190		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3191		    vm_dom[dom].vmd_pass);
3192	}
3193}
3194
3195DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3196{
3197	vm_page_t m;
3198	boolean_t phys;
3199
3200	if (!have_addr) {
3201		db_printf("show pginfo addr\n");
3202		return;
3203	}
3204
3205	phys = strchr(modif, 'p') != NULL;
3206	if (phys)
3207		m = PHYS_TO_VM_PAGE(addr);
3208	else
3209		m = (vm_page_t)addr;
3210	db_printf(
3211    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3212    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3213	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3214	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3215	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3216}
3217#endif /* DDB */
3218