vm_page.c revision 270827
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 270827 2014-08-29 21:20:36Z jhb $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/malloc.h>
95#include <sys/mman.h>
96#include <sys/msgbuf.h>
97#include <sys/mutex.h>
98#include <sys/proc.h>
99#include <sys/rwlock.h>
100#include <sys/sysctl.h>
101#include <sys/vmmeter.h>
102#include <sys/vnode.h>
103
104#include <vm/vm.h>
105#include <vm/pmap.h>
106#include <vm/vm_param.h>
107#include <vm/vm_kern.h>
108#include <vm/vm_object.h>
109#include <vm/vm_page.h>
110#include <vm/vm_pageout.h>
111#include <vm/vm_pager.h>
112#include <vm/vm_phys.h>
113#include <vm/vm_radix.h>
114#include <vm/vm_reserv.h>
115#include <vm/vm_extern.h>
116#include <vm/uma.h>
117#include <vm/uma_int.h>
118
119#include <machine/md_var.h>
120
121/*
122 *	Associated with page of user-allocatable memory is a
123 *	page structure.
124 */
125
126struct vm_domain vm_dom[MAXMEMDOM];
127struct mtx_padalign vm_page_queue_free_mtx;
128
129struct mtx_padalign pa_lock[PA_LOCK_COUNT];
130
131vm_page_t vm_page_array;
132long vm_page_array_size;
133long first_page;
134int vm_page_zero_count;
135
136static int boot_pages = UMA_BOOT_PAGES;
137SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN, &boot_pages, 0,
138	"number of pages allocated for bootstrapping the VM system");
139
140static int pa_tryrelock_restart;
141SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
142    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
143
144static uma_zone_t fakepg_zone;
145
146static struct vnode *vm_page_alloc_init(vm_page_t m);
147static void vm_page_cache_turn_free(vm_page_t m);
148static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
149static void vm_page_enqueue(uint8_t queue, vm_page_t m);
150static void vm_page_init_fakepg(void *dummy);
151static int vm_page_insert_after(vm_page_t m, vm_object_t object,
152    vm_pindex_t pindex, vm_page_t mpred);
153static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
154    vm_page_t mpred);
155
156SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
157
158static void
159vm_page_init_fakepg(void *dummy)
160{
161
162	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
163	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
164}
165
166/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
167#if PAGE_SIZE == 32768
168#ifdef CTASSERT
169CTASSERT(sizeof(u_long) >= 8);
170#endif
171#endif
172
173/*
174 * Try to acquire a physical address lock while a pmap is locked.  If we
175 * fail to trylock we unlock and lock the pmap directly and cache the
176 * locked pa in *locked.  The caller should then restart their loop in case
177 * the virtual to physical mapping has changed.
178 */
179int
180vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
181{
182	vm_paddr_t lockpa;
183
184	lockpa = *locked;
185	*locked = pa;
186	if (lockpa) {
187		PA_LOCK_ASSERT(lockpa, MA_OWNED);
188		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
189			return (0);
190		PA_UNLOCK(lockpa);
191	}
192	if (PA_TRYLOCK(pa))
193		return (0);
194	PMAP_UNLOCK(pmap);
195	atomic_add_int(&pa_tryrelock_restart, 1);
196	PA_LOCK(pa);
197	PMAP_LOCK(pmap);
198	return (EAGAIN);
199}
200
201/*
202 *	vm_set_page_size:
203 *
204 *	Sets the page size, perhaps based upon the memory
205 *	size.  Must be called before any use of page-size
206 *	dependent functions.
207 */
208void
209vm_set_page_size(void)
210{
211	if (vm_cnt.v_page_size == 0)
212		vm_cnt.v_page_size = PAGE_SIZE;
213	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
214		panic("vm_set_page_size: page size not a power of two");
215}
216
217/*
218 *	vm_page_blacklist_lookup:
219 *
220 *	See if a physical address in this page has been listed
221 *	in the blacklist tunable.  Entries in the tunable are
222 *	separated by spaces or commas.  If an invalid integer is
223 *	encountered then the rest of the string is skipped.
224 */
225static int
226vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
227{
228	vm_paddr_t bad;
229	char *cp, *pos;
230
231	for (pos = list; *pos != '\0'; pos = cp) {
232		bad = strtoq(pos, &cp, 0);
233		if (*cp != '\0') {
234			if (*cp == ' ' || *cp == ',') {
235				cp++;
236				if (cp == pos)
237					continue;
238			} else
239				break;
240		}
241		if (pa == trunc_page(bad))
242			return (1);
243	}
244	return (0);
245}
246
247static void
248vm_page_domain_init(struct vm_domain *vmd)
249{
250	struct vm_pagequeue *pq;
251	int i;
252
253	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
254	    "vm inactive pagequeue";
255	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
256	    &vm_cnt.v_inactive_count;
257	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
258	    "vm active pagequeue";
259	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
260	    &vm_cnt.v_active_count;
261	vmd->vmd_page_count = 0;
262	vmd->vmd_free_count = 0;
263	vmd->vmd_segs = 0;
264	vmd->vmd_oom = FALSE;
265	vmd->vmd_pass = 0;
266	for (i = 0; i < PQ_COUNT; i++) {
267		pq = &vmd->vmd_pagequeues[i];
268		TAILQ_INIT(&pq->pq_pl);
269		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
270		    MTX_DEF | MTX_DUPOK);
271	}
272}
273
274/*
275 *	vm_page_startup:
276 *
277 *	Initializes the resident memory module.
278 *
279 *	Allocates memory for the page cells, and
280 *	for the object/offset-to-page hash table headers.
281 *	Each page cell is initialized and placed on the free list.
282 */
283vm_offset_t
284vm_page_startup(vm_offset_t vaddr)
285{
286	vm_offset_t mapped;
287	vm_paddr_t page_range;
288	vm_paddr_t new_end;
289	int i;
290	vm_paddr_t pa;
291	vm_paddr_t last_pa;
292	char *list;
293
294	/* the biggest memory array is the second group of pages */
295	vm_paddr_t end;
296	vm_paddr_t biggestsize;
297	vm_paddr_t low_water, high_water;
298	int biggestone;
299
300	biggestsize = 0;
301	biggestone = 0;
302	vaddr = round_page(vaddr);
303
304	for (i = 0; phys_avail[i + 1]; i += 2) {
305		phys_avail[i] = round_page(phys_avail[i]);
306		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
307	}
308
309	low_water = phys_avail[0];
310	high_water = phys_avail[1];
311
312	for (i = 0; phys_avail[i + 1]; i += 2) {
313		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
314
315		if (size > biggestsize) {
316			biggestone = i;
317			biggestsize = size;
318		}
319		if (phys_avail[i] < low_water)
320			low_water = phys_avail[i];
321		if (phys_avail[i + 1] > high_water)
322			high_water = phys_avail[i + 1];
323	}
324
325#ifdef XEN
326	low_water = 0;
327#endif
328
329	end = phys_avail[biggestone+1];
330
331	/*
332	 * Initialize the page and queue locks.
333	 */
334	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
335	for (i = 0; i < PA_LOCK_COUNT; i++)
336		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
337	for (i = 0; i < vm_ndomains; i++)
338		vm_page_domain_init(&vm_dom[i]);
339
340	/*
341	 * Allocate memory for use when boot strapping the kernel memory
342	 * allocator.
343	 */
344	new_end = end - (boot_pages * UMA_SLAB_SIZE);
345	new_end = trunc_page(new_end);
346	mapped = pmap_map(&vaddr, new_end, end,
347	    VM_PROT_READ | VM_PROT_WRITE);
348	bzero((void *)mapped, end - new_end);
349	uma_startup((void *)mapped, boot_pages);
350
351#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
352    defined(__mips__)
353	/*
354	 * Allocate a bitmap to indicate that a random physical page
355	 * needs to be included in a minidump.
356	 *
357	 * The amd64 port needs this to indicate which direct map pages
358	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
359	 *
360	 * However, i386 still needs this workspace internally within the
361	 * minidump code.  In theory, they are not needed on i386, but are
362	 * included should the sf_buf code decide to use them.
363	 */
364	last_pa = 0;
365	for (i = 0; dump_avail[i + 1] != 0; i += 2)
366		if (dump_avail[i + 1] > last_pa)
367			last_pa = dump_avail[i + 1];
368	page_range = last_pa / PAGE_SIZE;
369	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
370	new_end -= vm_page_dump_size;
371	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
372	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
373	bzero((void *)vm_page_dump, vm_page_dump_size);
374#endif
375#ifdef __amd64__
376	/*
377	 * Request that the physical pages underlying the message buffer be
378	 * included in a crash dump.  Since the message buffer is accessed
379	 * through the direct map, they are not automatically included.
380	 */
381	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
382	last_pa = pa + round_page(msgbufsize);
383	while (pa < last_pa) {
384		dump_add_page(pa);
385		pa += PAGE_SIZE;
386	}
387#endif
388	/*
389	 * Compute the number of pages of memory that will be available for
390	 * use (taking into account the overhead of a page structure per
391	 * page).
392	 */
393	first_page = low_water / PAGE_SIZE;
394#ifdef VM_PHYSSEG_SPARSE
395	page_range = 0;
396	for (i = 0; phys_avail[i + 1] != 0; i += 2)
397		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
398#elif defined(VM_PHYSSEG_DENSE)
399	page_range = high_water / PAGE_SIZE - first_page;
400#else
401#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
402#endif
403	end = new_end;
404
405	/*
406	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
407	 */
408	vaddr += PAGE_SIZE;
409
410	/*
411	 * Initialize the mem entry structures now, and put them in the free
412	 * queue.
413	 */
414	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
415	mapped = pmap_map(&vaddr, new_end, end,
416	    VM_PROT_READ | VM_PROT_WRITE);
417	vm_page_array = (vm_page_t) mapped;
418#if VM_NRESERVLEVEL > 0
419	/*
420	 * Allocate memory for the reservation management system's data
421	 * structures.
422	 */
423	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
424#endif
425#if defined(__amd64__) || defined(__mips__)
426	/*
427	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
428	 * like i386, so the pages must be tracked for a crashdump to include
429	 * this data.  This includes the vm_page_array and the early UMA
430	 * bootstrap pages.
431	 */
432	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
433		dump_add_page(pa);
434#endif
435	phys_avail[biggestone + 1] = new_end;
436
437	/*
438	 * Clear all of the page structures
439	 */
440	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
441	for (i = 0; i < page_range; i++)
442		vm_page_array[i].order = VM_NFREEORDER;
443	vm_page_array_size = page_range;
444
445	/*
446	 * Initialize the physical memory allocator.
447	 */
448	vm_phys_init();
449
450	/*
451	 * Add every available physical page that is not blacklisted to
452	 * the free lists.
453	 */
454	vm_cnt.v_page_count = 0;
455	vm_cnt.v_free_count = 0;
456	list = getenv("vm.blacklist");
457	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
458		pa = phys_avail[i];
459		last_pa = phys_avail[i + 1];
460		while (pa < last_pa) {
461			if (list != NULL &&
462			    vm_page_blacklist_lookup(list, pa))
463				printf("Skipping page with pa 0x%jx\n",
464				    (uintmax_t)pa);
465			else
466				vm_phys_add_page(pa);
467			pa += PAGE_SIZE;
468		}
469	}
470	freeenv(list);
471#if VM_NRESERVLEVEL > 0
472	/*
473	 * Initialize the reservation management system.
474	 */
475	vm_reserv_init();
476#endif
477	return (vaddr);
478}
479
480void
481vm_page_reference(vm_page_t m)
482{
483
484	vm_page_aflag_set(m, PGA_REFERENCED);
485}
486
487/*
488 *	vm_page_busy_downgrade:
489 *
490 *	Downgrade an exclusive busy page into a single shared busy page.
491 */
492void
493vm_page_busy_downgrade(vm_page_t m)
494{
495	u_int x;
496
497	vm_page_assert_xbusied(m);
498
499	for (;;) {
500		x = m->busy_lock;
501		x &= VPB_BIT_WAITERS;
502		if (atomic_cmpset_rel_int(&m->busy_lock,
503		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
504			break;
505	}
506}
507
508/*
509 *	vm_page_sbusied:
510 *
511 *	Return a positive value if the page is shared busied, 0 otherwise.
512 */
513int
514vm_page_sbusied(vm_page_t m)
515{
516	u_int x;
517
518	x = m->busy_lock;
519	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
520}
521
522/*
523 *	vm_page_sunbusy:
524 *
525 *	Shared unbusy a page.
526 */
527void
528vm_page_sunbusy(vm_page_t m)
529{
530	u_int x;
531
532	vm_page_assert_sbusied(m);
533
534	for (;;) {
535		x = m->busy_lock;
536		if (VPB_SHARERS(x) > 1) {
537			if (atomic_cmpset_int(&m->busy_lock, x,
538			    x - VPB_ONE_SHARER))
539				break;
540			continue;
541		}
542		if ((x & VPB_BIT_WAITERS) == 0) {
543			KASSERT(x == VPB_SHARERS_WORD(1),
544			    ("vm_page_sunbusy: invalid lock state"));
545			if (atomic_cmpset_int(&m->busy_lock,
546			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
547				break;
548			continue;
549		}
550		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
551		    ("vm_page_sunbusy: invalid lock state for waiters"));
552
553		vm_page_lock(m);
554		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
555			vm_page_unlock(m);
556			continue;
557		}
558		wakeup(m);
559		vm_page_unlock(m);
560		break;
561	}
562}
563
564/*
565 *	vm_page_busy_sleep:
566 *
567 *	Sleep and release the page lock, using the page pointer as wchan.
568 *	This is used to implement the hard-path of busying mechanism.
569 *
570 *	The given page must be locked.
571 */
572void
573vm_page_busy_sleep(vm_page_t m, const char *wmesg)
574{
575	u_int x;
576
577	vm_page_lock_assert(m, MA_OWNED);
578
579	x = m->busy_lock;
580	if (x == VPB_UNBUSIED) {
581		vm_page_unlock(m);
582		return;
583	}
584	if ((x & VPB_BIT_WAITERS) == 0 &&
585	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
586		vm_page_unlock(m);
587		return;
588	}
589	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
590}
591
592/*
593 *	vm_page_trysbusy:
594 *
595 *	Try to shared busy a page.
596 *	If the operation succeeds 1 is returned otherwise 0.
597 *	The operation never sleeps.
598 */
599int
600vm_page_trysbusy(vm_page_t m)
601{
602	u_int x;
603
604	for (;;) {
605		x = m->busy_lock;
606		if ((x & VPB_BIT_SHARED) == 0)
607			return (0);
608		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
609			return (1);
610	}
611}
612
613/*
614 *	vm_page_xunbusy_hard:
615 *
616 *	Called after the first try the exclusive unbusy of a page failed.
617 *	It is assumed that the waiters bit is on.
618 */
619void
620vm_page_xunbusy_hard(vm_page_t m)
621{
622
623	vm_page_assert_xbusied(m);
624
625	vm_page_lock(m);
626	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
627	wakeup(m);
628	vm_page_unlock(m);
629}
630
631/*
632 *	vm_page_flash:
633 *
634 *	Wakeup anyone waiting for the page.
635 *	The ownership bits do not change.
636 *
637 *	The given page must be locked.
638 */
639void
640vm_page_flash(vm_page_t m)
641{
642	u_int x;
643
644	vm_page_lock_assert(m, MA_OWNED);
645
646	for (;;) {
647		x = m->busy_lock;
648		if ((x & VPB_BIT_WAITERS) == 0)
649			return;
650		if (atomic_cmpset_int(&m->busy_lock, x,
651		    x & (~VPB_BIT_WAITERS)))
652			break;
653	}
654	wakeup(m);
655}
656
657/*
658 * Keep page from being freed by the page daemon
659 * much of the same effect as wiring, except much lower
660 * overhead and should be used only for *very* temporary
661 * holding ("wiring").
662 */
663void
664vm_page_hold(vm_page_t mem)
665{
666
667	vm_page_lock_assert(mem, MA_OWNED);
668        mem->hold_count++;
669}
670
671void
672vm_page_unhold(vm_page_t mem)
673{
674
675	vm_page_lock_assert(mem, MA_OWNED);
676	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
677	--mem->hold_count;
678	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
679		vm_page_free_toq(mem);
680}
681
682/*
683 *	vm_page_unhold_pages:
684 *
685 *	Unhold each of the pages that is referenced by the given array.
686 */
687void
688vm_page_unhold_pages(vm_page_t *ma, int count)
689{
690	struct mtx *mtx, *new_mtx;
691
692	mtx = NULL;
693	for (; count != 0; count--) {
694		/*
695		 * Avoid releasing and reacquiring the same page lock.
696		 */
697		new_mtx = vm_page_lockptr(*ma);
698		if (mtx != new_mtx) {
699			if (mtx != NULL)
700				mtx_unlock(mtx);
701			mtx = new_mtx;
702			mtx_lock(mtx);
703		}
704		vm_page_unhold(*ma);
705		ma++;
706	}
707	if (mtx != NULL)
708		mtx_unlock(mtx);
709}
710
711vm_page_t
712PHYS_TO_VM_PAGE(vm_paddr_t pa)
713{
714	vm_page_t m;
715
716#ifdef VM_PHYSSEG_SPARSE
717	m = vm_phys_paddr_to_vm_page(pa);
718	if (m == NULL)
719		m = vm_phys_fictitious_to_vm_page(pa);
720	return (m);
721#elif defined(VM_PHYSSEG_DENSE)
722	long pi;
723
724	pi = atop(pa);
725	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
726		m = &vm_page_array[pi - first_page];
727		return (m);
728	}
729	return (vm_phys_fictitious_to_vm_page(pa));
730#else
731#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
732#endif
733}
734
735/*
736 *	vm_page_getfake:
737 *
738 *	Create a fictitious page with the specified physical address and
739 *	memory attribute.  The memory attribute is the only the machine-
740 *	dependent aspect of a fictitious page that must be initialized.
741 */
742vm_page_t
743vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
744{
745	vm_page_t m;
746
747	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
748	vm_page_initfake(m, paddr, memattr);
749	return (m);
750}
751
752void
753vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
754{
755
756	if ((m->flags & PG_FICTITIOUS) != 0) {
757		/*
758		 * The page's memattr might have changed since the
759		 * previous initialization.  Update the pmap to the
760		 * new memattr.
761		 */
762		goto memattr;
763	}
764	m->phys_addr = paddr;
765	m->queue = PQ_NONE;
766	/* Fictitious pages don't use "segind". */
767	m->flags = PG_FICTITIOUS;
768	/* Fictitious pages don't use "order" or "pool". */
769	m->oflags = VPO_UNMANAGED;
770	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
771	m->wire_count = 1;
772	pmap_page_init(m);
773memattr:
774	pmap_page_set_memattr(m, memattr);
775}
776
777/*
778 *	vm_page_putfake:
779 *
780 *	Release a fictitious page.
781 */
782void
783vm_page_putfake(vm_page_t m)
784{
785
786	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
787	KASSERT((m->flags & PG_FICTITIOUS) != 0,
788	    ("vm_page_putfake: bad page %p", m));
789	uma_zfree(fakepg_zone, m);
790}
791
792/*
793 *	vm_page_updatefake:
794 *
795 *	Update the given fictitious page to the specified physical address and
796 *	memory attribute.
797 */
798void
799vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
800{
801
802	KASSERT((m->flags & PG_FICTITIOUS) != 0,
803	    ("vm_page_updatefake: bad page %p", m));
804	m->phys_addr = paddr;
805	pmap_page_set_memattr(m, memattr);
806}
807
808/*
809 *	vm_page_free:
810 *
811 *	Free a page.
812 */
813void
814vm_page_free(vm_page_t m)
815{
816
817	m->flags &= ~PG_ZERO;
818	vm_page_free_toq(m);
819}
820
821/*
822 *	vm_page_free_zero:
823 *
824 *	Free a page to the zerod-pages queue
825 */
826void
827vm_page_free_zero(vm_page_t m)
828{
829
830	m->flags |= PG_ZERO;
831	vm_page_free_toq(m);
832}
833
834/*
835 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
836 * array which is not the request page.
837 */
838void
839vm_page_readahead_finish(vm_page_t m)
840{
841
842	if (m->valid != 0) {
843		/*
844		 * Since the page is not the requested page, whether
845		 * it should be activated or deactivated is not
846		 * obvious.  Empirical results have shown that
847		 * deactivating the page is usually the best choice,
848		 * unless the page is wanted by another thread.
849		 */
850		vm_page_lock(m);
851		if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
852			vm_page_activate(m);
853		else
854			vm_page_deactivate(m);
855		vm_page_unlock(m);
856		vm_page_xunbusy(m);
857	} else {
858		/*
859		 * Free the completely invalid page.  Such page state
860		 * occurs due to the short read operation which did
861		 * not covered our page at all, or in case when a read
862		 * error happens.
863		 */
864		vm_page_lock(m);
865		vm_page_free(m);
866		vm_page_unlock(m);
867	}
868}
869
870/*
871 *	vm_page_sleep_if_busy:
872 *
873 *	Sleep and release the page queues lock if the page is busied.
874 *	Returns TRUE if the thread slept.
875 *
876 *	The given page must be unlocked and object containing it must
877 *	be locked.
878 */
879int
880vm_page_sleep_if_busy(vm_page_t m, const char *msg)
881{
882	vm_object_t obj;
883
884	vm_page_lock_assert(m, MA_NOTOWNED);
885	VM_OBJECT_ASSERT_WLOCKED(m->object);
886
887	if (vm_page_busied(m)) {
888		/*
889		 * The page-specific object must be cached because page
890		 * identity can change during the sleep, causing the
891		 * re-lock of a different object.
892		 * It is assumed that a reference to the object is already
893		 * held by the callers.
894		 */
895		obj = m->object;
896		vm_page_lock(m);
897		VM_OBJECT_WUNLOCK(obj);
898		vm_page_busy_sleep(m, msg);
899		VM_OBJECT_WLOCK(obj);
900		return (TRUE);
901	}
902	return (FALSE);
903}
904
905/*
906 *	vm_page_dirty_KBI:		[ internal use only ]
907 *
908 *	Set all bits in the page's dirty field.
909 *
910 *	The object containing the specified page must be locked if the
911 *	call is made from the machine-independent layer.
912 *
913 *	See vm_page_clear_dirty_mask().
914 *
915 *	This function should only be called by vm_page_dirty().
916 */
917void
918vm_page_dirty_KBI(vm_page_t m)
919{
920
921	/* These assertions refer to this operation by its public name. */
922	KASSERT((m->flags & PG_CACHED) == 0,
923	    ("vm_page_dirty: page in cache!"));
924	KASSERT(m->valid == VM_PAGE_BITS_ALL,
925	    ("vm_page_dirty: page is invalid!"));
926	m->dirty = VM_PAGE_BITS_ALL;
927}
928
929/*
930 *	vm_page_insert:		[ internal use only ]
931 *
932 *	Inserts the given mem entry into the object and object list.
933 *
934 *	The object must be locked.
935 */
936int
937vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
938{
939	vm_page_t mpred;
940
941	VM_OBJECT_ASSERT_WLOCKED(object);
942	mpred = vm_radix_lookup_le(&object->rtree, pindex);
943	return (vm_page_insert_after(m, object, pindex, mpred));
944}
945
946/*
947 *	vm_page_insert_after:
948 *
949 *	Inserts the page "m" into the specified object at offset "pindex".
950 *
951 *	The page "mpred" must immediately precede the offset "pindex" within
952 *	the specified object.
953 *
954 *	The object must be locked.
955 */
956static int
957vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
958    vm_page_t mpred)
959{
960	vm_pindex_t sidx;
961	vm_object_t sobj;
962	vm_page_t msucc;
963
964	VM_OBJECT_ASSERT_WLOCKED(object);
965	KASSERT(m->object == NULL,
966	    ("vm_page_insert_after: page already inserted"));
967	if (mpred != NULL) {
968		KASSERT(mpred->object == object,
969		    ("vm_page_insert_after: object doesn't contain mpred"));
970		KASSERT(mpred->pindex < pindex,
971		    ("vm_page_insert_after: mpred doesn't precede pindex"));
972		msucc = TAILQ_NEXT(mpred, listq);
973	} else
974		msucc = TAILQ_FIRST(&object->memq);
975	if (msucc != NULL)
976		KASSERT(msucc->pindex > pindex,
977		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
978
979	/*
980	 * Record the object/offset pair in this page
981	 */
982	sobj = m->object;
983	sidx = m->pindex;
984	m->object = object;
985	m->pindex = pindex;
986
987	/*
988	 * Now link into the object's ordered list of backed pages.
989	 */
990	if (vm_radix_insert(&object->rtree, m)) {
991		m->object = sobj;
992		m->pindex = sidx;
993		return (1);
994	}
995	vm_page_insert_radixdone(m, object, mpred);
996	return (0);
997}
998
999/*
1000 *	vm_page_insert_radixdone:
1001 *
1002 *	Complete page "m" insertion into the specified object after the
1003 *	radix trie hooking.
1004 *
1005 *	The page "mpred" must precede the offset "m->pindex" within the
1006 *	specified object.
1007 *
1008 *	The object must be locked.
1009 */
1010static void
1011vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1012{
1013
1014	VM_OBJECT_ASSERT_WLOCKED(object);
1015	KASSERT(object != NULL && m->object == object,
1016	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1017	if (mpred != NULL) {
1018		KASSERT(mpred->object == object,
1019		    ("vm_page_insert_after: object doesn't contain mpred"));
1020		KASSERT(mpred->pindex < m->pindex,
1021		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1022	}
1023
1024	if (mpred != NULL)
1025		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1026	else
1027		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1028
1029	/*
1030	 * Show that the object has one more resident page.
1031	 */
1032	object->resident_page_count++;
1033
1034	/*
1035	 * Hold the vnode until the last page is released.
1036	 */
1037	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1038		vhold(object->handle);
1039
1040	/*
1041	 * Since we are inserting a new and possibly dirty page,
1042	 * update the object's OBJ_MIGHTBEDIRTY flag.
1043	 */
1044	if (pmap_page_is_write_mapped(m))
1045		vm_object_set_writeable_dirty(object);
1046}
1047
1048/*
1049 *	vm_page_remove:
1050 *
1051 *	Removes the given mem entry from the object/offset-page
1052 *	table and the object page list, but do not invalidate/terminate
1053 *	the backing store.
1054 *
1055 *	The object must be locked.  The page must be locked if it is managed.
1056 */
1057void
1058vm_page_remove(vm_page_t m)
1059{
1060	vm_object_t object;
1061	boolean_t lockacq;
1062
1063	if ((m->oflags & VPO_UNMANAGED) == 0)
1064		vm_page_lock_assert(m, MA_OWNED);
1065	if ((object = m->object) == NULL)
1066		return;
1067	VM_OBJECT_ASSERT_WLOCKED(object);
1068	if (vm_page_xbusied(m)) {
1069		lockacq = FALSE;
1070		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1071		    !mtx_owned(vm_page_lockptr(m))) {
1072			lockacq = TRUE;
1073			vm_page_lock(m);
1074		}
1075		vm_page_flash(m);
1076		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1077		if (lockacq)
1078			vm_page_unlock(m);
1079	}
1080
1081	/*
1082	 * Now remove from the object's list of backed pages.
1083	 */
1084	vm_radix_remove(&object->rtree, m->pindex);
1085	TAILQ_REMOVE(&object->memq, m, listq);
1086
1087	/*
1088	 * And show that the object has one fewer resident page.
1089	 */
1090	object->resident_page_count--;
1091
1092	/*
1093	 * The vnode may now be recycled.
1094	 */
1095	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1096		vdrop(object->handle);
1097
1098	m->object = NULL;
1099}
1100
1101/*
1102 *	vm_page_lookup:
1103 *
1104 *	Returns the page associated with the object/offset
1105 *	pair specified; if none is found, NULL is returned.
1106 *
1107 *	The object must be locked.
1108 */
1109vm_page_t
1110vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1111{
1112
1113	VM_OBJECT_ASSERT_LOCKED(object);
1114	return (vm_radix_lookup(&object->rtree, pindex));
1115}
1116
1117/*
1118 *	vm_page_find_least:
1119 *
1120 *	Returns the page associated with the object with least pindex
1121 *	greater than or equal to the parameter pindex, or NULL.
1122 *
1123 *	The object must be locked.
1124 */
1125vm_page_t
1126vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1127{
1128	vm_page_t m;
1129
1130	VM_OBJECT_ASSERT_LOCKED(object);
1131	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1132		m = vm_radix_lookup_ge(&object->rtree, pindex);
1133	return (m);
1134}
1135
1136/*
1137 * Returns the given page's successor (by pindex) within the object if it is
1138 * resident; if none is found, NULL is returned.
1139 *
1140 * The object must be locked.
1141 */
1142vm_page_t
1143vm_page_next(vm_page_t m)
1144{
1145	vm_page_t next;
1146
1147	VM_OBJECT_ASSERT_WLOCKED(m->object);
1148	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1149	    next->pindex != m->pindex + 1)
1150		next = NULL;
1151	return (next);
1152}
1153
1154/*
1155 * Returns the given page's predecessor (by pindex) within the object if it is
1156 * resident; if none is found, NULL is returned.
1157 *
1158 * The object must be locked.
1159 */
1160vm_page_t
1161vm_page_prev(vm_page_t m)
1162{
1163	vm_page_t prev;
1164
1165	VM_OBJECT_ASSERT_WLOCKED(m->object);
1166	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1167	    prev->pindex != m->pindex - 1)
1168		prev = NULL;
1169	return (prev);
1170}
1171
1172/*
1173 * Uses the page mnew as a replacement for an existing page at index
1174 * pindex which must be already present in the object.
1175 *
1176 * The existing page must not be on a paging queue.
1177 */
1178vm_page_t
1179vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1180{
1181	vm_page_t mold, mpred;
1182
1183	VM_OBJECT_ASSERT_WLOCKED(object);
1184
1185	/*
1186	 * This function mostly follows vm_page_insert() and
1187	 * vm_page_remove() without the radix, object count and vnode
1188	 * dance.  Double check such functions for more comments.
1189	 */
1190	mpred = vm_radix_lookup(&object->rtree, pindex);
1191	KASSERT(mpred != NULL,
1192	    ("vm_page_replace: replacing page not present with pindex"));
1193	mpred = TAILQ_PREV(mpred, respgs, listq);
1194	if (mpred != NULL)
1195		KASSERT(mpred->pindex < pindex,
1196		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1197
1198	mnew->object = object;
1199	mnew->pindex = pindex;
1200	mold = vm_radix_replace(&object->rtree, mnew);
1201	KASSERT(mold->queue == PQ_NONE,
1202	    ("vm_page_replace: mold is on a paging queue"));
1203
1204	/* Detach the old page from the resident tailq. */
1205	TAILQ_REMOVE(&object->memq, mold, listq);
1206
1207	mold->object = NULL;
1208	vm_page_xunbusy(mold);
1209
1210	/* Insert the new page in the resident tailq. */
1211	if (mpred != NULL)
1212		TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1213	else
1214		TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1215	if (pmap_page_is_write_mapped(mnew))
1216		vm_object_set_writeable_dirty(object);
1217	return (mold);
1218}
1219
1220/*
1221 *	vm_page_rename:
1222 *
1223 *	Move the given memory entry from its
1224 *	current object to the specified target object/offset.
1225 *
1226 *	Note: swap associated with the page must be invalidated by the move.  We
1227 *	      have to do this for several reasons:  (1) we aren't freeing the
1228 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1229 *	      moving the page from object A to B, and will then later move
1230 *	      the backing store from A to B and we can't have a conflict.
1231 *
1232 *	Note: we *always* dirty the page.  It is necessary both for the
1233 *	      fact that we moved it, and because we may be invalidating
1234 *	      swap.  If the page is on the cache, we have to deactivate it
1235 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1236 *	      on the cache.
1237 *
1238 *	The objects must be locked.
1239 */
1240int
1241vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1242{
1243	vm_page_t mpred;
1244	vm_pindex_t opidx;
1245
1246	VM_OBJECT_ASSERT_WLOCKED(new_object);
1247
1248	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1249	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1250	    ("vm_page_rename: pindex already renamed"));
1251
1252	/*
1253	 * Create a custom version of vm_page_insert() which does not depend
1254	 * by m_prev and can cheat on the implementation aspects of the
1255	 * function.
1256	 */
1257	opidx = m->pindex;
1258	m->pindex = new_pindex;
1259	if (vm_radix_insert(&new_object->rtree, m)) {
1260		m->pindex = opidx;
1261		return (1);
1262	}
1263
1264	/*
1265	 * The operation cannot fail anymore.  The removal must happen before
1266	 * the listq iterator is tainted.
1267	 */
1268	m->pindex = opidx;
1269	vm_page_lock(m);
1270	vm_page_remove(m);
1271
1272	/* Return back to the new pindex to complete vm_page_insert(). */
1273	m->pindex = new_pindex;
1274	m->object = new_object;
1275	vm_page_unlock(m);
1276	vm_page_insert_radixdone(m, new_object, mpred);
1277	vm_page_dirty(m);
1278	return (0);
1279}
1280
1281/*
1282 *	Convert all of the given object's cached pages that have a
1283 *	pindex within the given range into free pages.  If the value
1284 *	zero is given for "end", then the range's upper bound is
1285 *	infinity.  If the given object is backed by a vnode and it
1286 *	transitions from having one or more cached pages to none, the
1287 *	vnode's hold count is reduced.
1288 */
1289void
1290vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1291{
1292	vm_page_t m;
1293	boolean_t empty;
1294
1295	mtx_lock(&vm_page_queue_free_mtx);
1296	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1297		mtx_unlock(&vm_page_queue_free_mtx);
1298		return;
1299	}
1300	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1301		if (end != 0 && m->pindex >= end)
1302			break;
1303		vm_radix_remove(&object->cache, m->pindex);
1304		vm_page_cache_turn_free(m);
1305	}
1306	empty = vm_radix_is_empty(&object->cache);
1307	mtx_unlock(&vm_page_queue_free_mtx);
1308	if (object->type == OBJT_VNODE && empty)
1309		vdrop(object->handle);
1310}
1311
1312/*
1313 *	Returns the cached page that is associated with the given
1314 *	object and offset.  If, however, none exists, returns NULL.
1315 *
1316 *	The free page queue must be locked.
1317 */
1318static inline vm_page_t
1319vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1320{
1321
1322	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1323	return (vm_radix_lookup(&object->cache, pindex));
1324}
1325
1326/*
1327 *	Remove the given cached page from its containing object's
1328 *	collection of cached pages.
1329 *
1330 *	The free page queue must be locked.
1331 */
1332static void
1333vm_page_cache_remove(vm_page_t m)
1334{
1335
1336	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1337	KASSERT((m->flags & PG_CACHED) != 0,
1338	    ("vm_page_cache_remove: page %p is not cached", m));
1339	vm_radix_remove(&m->object->cache, m->pindex);
1340	m->object = NULL;
1341	vm_cnt.v_cache_count--;
1342}
1343
1344/*
1345 *	Transfer all of the cached pages with offset greater than or
1346 *	equal to 'offidxstart' from the original object's cache to the
1347 *	new object's cache.  However, any cached pages with offset
1348 *	greater than or equal to the new object's size are kept in the
1349 *	original object.  Initially, the new object's cache must be
1350 *	empty.  Offset 'offidxstart' in the original object must
1351 *	correspond to offset zero in the new object.
1352 *
1353 *	The new object must be locked.
1354 */
1355void
1356vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1357    vm_object_t new_object)
1358{
1359	vm_page_t m;
1360
1361	/*
1362	 * Insertion into an object's collection of cached pages
1363	 * requires the object to be locked.  In contrast, removal does
1364	 * not.
1365	 */
1366	VM_OBJECT_ASSERT_WLOCKED(new_object);
1367	KASSERT(vm_radix_is_empty(&new_object->cache),
1368	    ("vm_page_cache_transfer: object %p has cached pages",
1369	    new_object));
1370	mtx_lock(&vm_page_queue_free_mtx);
1371	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1372	    offidxstart)) != NULL) {
1373		/*
1374		 * Transfer all of the pages with offset greater than or
1375		 * equal to 'offidxstart' from the original object's
1376		 * cache to the new object's cache.
1377		 */
1378		if ((m->pindex - offidxstart) >= new_object->size)
1379			break;
1380		vm_radix_remove(&orig_object->cache, m->pindex);
1381		/* Update the page's object and offset. */
1382		m->object = new_object;
1383		m->pindex -= offidxstart;
1384		if (vm_radix_insert(&new_object->cache, m))
1385			vm_page_cache_turn_free(m);
1386	}
1387	mtx_unlock(&vm_page_queue_free_mtx);
1388}
1389
1390/*
1391 *	Returns TRUE if a cached page is associated with the given object and
1392 *	offset, and FALSE otherwise.
1393 *
1394 *	The object must be locked.
1395 */
1396boolean_t
1397vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1398{
1399	vm_page_t m;
1400
1401	/*
1402	 * Insertion into an object's collection of cached pages requires the
1403	 * object to be locked.  Therefore, if the object is locked and the
1404	 * object's collection is empty, there is no need to acquire the free
1405	 * page queues lock in order to prove that the specified page doesn't
1406	 * exist.
1407	 */
1408	VM_OBJECT_ASSERT_WLOCKED(object);
1409	if (__predict_true(vm_object_cache_is_empty(object)))
1410		return (FALSE);
1411	mtx_lock(&vm_page_queue_free_mtx);
1412	m = vm_page_cache_lookup(object, pindex);
1413	mtx_unlock(&vm_page_queue_free_mtx);
1414	return (m != NULL);
1415}
1416
1417/*
1418 *	vm_page_alloc:
1419 *
1420 *	Allocate and return a page that is associated with the specified
1421 *	object and offset pair.  By default, this page is exclusive busied.
1422 *
1423 *	The caller must always specify an allocation class.
1424 *
1425 *	allocation classes:
1426 *	VM_ALLOC_NORMAL		normal process request
1427 *	VM_ALLOC_SYSTEM		system *really* needs a page
1428 *	VM_ALLOC_INTERRUPT	interrupt time request
1429 *
1430 *	optional allocation flags:
1431 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1432 *				intends to allocate
1433 *	VM_ALLOC_IFCACHED	return page only if it is cached
1434 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1435 *				is cached
1436 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1437 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1438 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1439 *				should not be exclusive busy
1440 *	VM_ALLOC_SBUSY		shared busy the allocated page
1441 *	VM_ALLOC_WIRED		wire the allocated page
1442 *	VM_ALLOC_ZERO		prefer a zeroed page
1443 *
1444 *	This routine may not sleep.
1445 */
1446vm_page_t
1447vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1448{
1449	struct vnode *vp = NULL;
1450	vm_object_t m_object;
1451	vm_page_t m, mpred;
1452	int flags, req_class;
1453
1454	mpred = 0;	/* XXX: pacify gcc */
1455	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1456	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1457	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1458	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1459	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1460	    req));
1461	if (object != NULL)
1462		VM_OBJECT_ASSERT_WLOCKED(object);
1463
1464	req_class = req & VM_ALLOC_CLASS_MASK;
1465
1466	/*
1467	 * The page daemon is allowed to dig deeper into the free page list.
1468	 */
1469	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1470		req_class = VM_ALLOC_SYSTEM;
1471
1472	if (object != NULL) {
1473		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1474		KASSERT(mpred == NULL || mpred->pindex != pindex,
1475		   ("vm_page_alloc: pindex already allocated"));
1476	}
1477
1478	/*
1479	 * The page allocation request can came from consumers which already
1480	 * hold the free page queue mutex, like vm_page_insert() in
1481	 * vm_page_cache().
1482	 */
1483	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1484	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1485	    (req_class == VM_ALLOC_SYSTEM &&
1486	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1487	    (req_class == VM_ALLOC_INTERRUPT &&
1488	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1489		/*
1490		 * Allocate from the free queue if the number of free pages
1491		 * exceeds the minimum for the request class.
1492		 */
1493		if (object != NULL &&
1494		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1495			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1496				mtx_unlock(&vm_page_queue_free_mtx);
1497				return (NULL);
1498			}
1499			if (vm_phys_unfree_page(m))
1500				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1501#if VM_NRESERVLEVEL > 0
1502			else if (!vm_reserv_reactivate_page(m))
1503#else
1504			else
1505#endif
1506				panic("vm_page_alloc: cache page %p is missing"
1507				    " from the free queue", m);
1508		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1509			mtx_unlock(&vm_page_queue_free_mtx);
1510			return (NULL);
1511#if VM_NRESERVLEVEL > 0
1512		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1513		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1514		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1515#else
1516		} else {
1517#endif
1518			m = vm_phys_alloc_pages(object != NULL ?
1519			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1520#if VM_NRESERVLEVEL > 0
1521			if (m == NULL && vm_reserv_reclaim_inactive()) {
1522				m = vm_phys_alloc_pages(object != NULL ?
1523				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1524				    0);
1525			}
1526#endif
1527		}
1528	} else {
1529		/*
1530		 * Not allocatable, give up.
1531		 */
1532		mtx_unlock(&vm_page_queue_free_mtx);
1533		atomic_add_int(&vm_pageout_deficit,
1534		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1535		pagedaemon_wakeup();
1536		return (NULL);
1537	}
1538
1539	/*
1540	 *  At this point we had better have found a good page.
1541	 */
1542	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1543	KASSERT(m->queue == PQ_NONE,
1544	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1545	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1546	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1547	KASSERT(!vm_page_sbusied(m),
1548	    ("vm_page_alloc: page %p is busy", m));
1549	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1550	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1551	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1552	    pmap_page_get_memattr(m)));
1553	if ((m->flags & PG_CACHED) != 0) {
1554		KASSERT((m->flags & PG_ZERO) == 0,
1555		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1556		KASSERT(m->valid != 0,
1557		    ("vm_page_alloc: cached page %p is invalid", m));
1558		if (m->object == object && m->pindex == pindex)
1559			vm_cnt.v_reactivated++;
1560		else
1561			m->valid = 0;
1562		m_object = m->object;
1563		vm_page_cache_remove(m);
1564		if (m_object->type == OBJT_VNODE &&
1565		    vm_object_cache_is_empty(m_object))
1566			vp = m_object->handle;
1567	} else {
1568		KASSERT(m->valid == 0,
1569		    ("vm_page_alloc: free page %p is valid", m));
1570		vm_phys_freecnt_adj(m, -1);
1571		if ((m->flags & PG_ZERO) != 0)
1572			vm_page_zero_count--;
1573	}
1574	mtx_unlock(&vm_page_queue_free_mtx);
1575
1576	/*
1577	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1578	 */
1579	flags = 0;
1580	if ((req & VM_ALLOC_ZERO) != 0)
1581		flags = PG_ZERO;
1582	flags &= m->flags;
1583	if ((req & VM_ALLOC_NODUMP) != 0)
1584		flags |= PG_NODUMP;
1585	m->flags = flags;
1586	m->aflags = 0;
1587	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1588	    VPO_UNMANAGED : 0;
1589	m->busy_lock = VPB_UNBUSIED;
1590	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1591		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1592	if ((req & VM_ALLOC_SBUSY) != 0)
1593		m->busy_lock = VPB_SHARERS_WORD(1);
1594	if (req & VM_ALLOC_WIRED) {
1595		/*
1596		 * The page lock is not required for wiring a page until that
1597		 * page is inserted into the object.
1598		 */
1599		atomic_add_int(&vm_cnt.v_wire_count, 1);
1600		m->wire_count = 1;
1601	}
1602	m->act_count = 0;
1603
1604	if (object != NULL) {
1605		if (vm_page_insert_after(m, object, pindex, mpred)) {
1606			/* See the comment below about hold count. */
1607			if (vp != NULL)
1608				vdrop(vp);
1609			pagedaemon_wakeup();
1610			if (req & VM_ALLOC_WIRED) {
1611				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1612				m->wire_count = 0;
1613			}
1614			m->object = NULL;
1615			vm_page_free(m);
1616			return (NULL);
1617		}
1618
1619		/* Ignore device objects; the pager sets "memattr" for them. */
1620		if (object->memattr != VM_MEMATTR_DEFAULT &&
1621		    (object->flags & OBJ_FICTITIOUS) == 0)
1622			pmap_page_set_memattr(m, object->memattr);
1623	} else
1624		m->pindex = pindex;
1625
1626	/*
1627	 * The following call to vdrop() must come after the above call
1628	 * to vm_page_insert() in case both affect the same object and
1629	 * vnode.  Otherwise, the affected vnode's hold count could
1630	 * temporarily become zero.
1631	 */
1632	if (vp != NULL)
1633		vdrop(vp);
1634
1635	/*
1636	 * Don't wakeup too often - wakeup the pageout daemon when
1637	 * we would be nearly out of memory.
1638	 */
1639	if (vm_paging_needed())
1640		pagedaemon_wakeup();
1641
1642	return (m);
1643}
1644
1645static void
1646vm_page_alloc_contig_vdrop(struct spglist *lst)
1647{
1648
1649	while (!SLIST_EMPTY(lst)) {
1650		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1651		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1652	}
1653}
1654
1655/*
1656 *	vm_page_alloc_contig:
1657 *
1658 *	Allocate a contiguous set of physical pages of the given size "npages"
1659 *	from the free lists.  All of the physical pages must be at or above
1660 *	the given physical address "low" and below the given physical address
1661 *	"high".  The given value "alignment" determines the alignment of the
1662 *	first physical page in the set.  If the given value "boundary" is
1663 *	non-zero, then the set of physical pages cannot cross any physical
1664 *	address boundary that is a multiple of that value.  Both "alignment"
1665 *	and "boundary" must be a power of two.
1666 *
1667 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1668 *	then the memory attribute setting for the physical pages is configured
1669 *	to the object's memory attribute setting.  Otherwise, the memory
1670 *	attribute setting for the physical pages is configured to "memattr",
1671 *	overriding the object's memory attribute setting.  However, if the
1672 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1673 *	memory attribute setting for the physical pages cannot be configured
1674 *	to VM_MEMATTR_DEFAULT.
1675 *
1676 *	The caller must always specify an allocation class.
1677 *
1678 *	allocation classes:
1679 *	VM_ALLOC_NORMAL		normal process request
1680 *	VM_ALLOC_SYSTEM		system *really* needs a page
1681 *	VM_ALLOC_INTERRUPT	interrupt time request
1682 *
1683 *	optional allocation flags:
1684 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1685 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1686 *				should not be exclusive busy
1687 *	VM_ALLOC_SBUSY		shared busy the allocated page
1688 *	VM_ALLOC_WIRED		wire the allocated page
1689 *	VM_ALLOC_ZERO		prefer a zeroed page
1690 *
1691 *	This routine may not sleep.
1692 */
1693vm_page_t
1694vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1695    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1696    vm_paddr_t boundary, vm_memattr_t memattr)
1697{
1698	struct vnode *drop;
1699	struct spglist deferred_vdrop_list;
1700	vm_page_t m, m_tmp, m_ret;
1701	u_int flags;
1702	int req_class;
1703
1704	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1705	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1706	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1707	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1708	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1709	    req));
1710	if (object != NULL) {
1711		VM_OBJECT_ASSERT_WLOCKED(object);
1712		KASSERT(object->type == OBJT_PHYS,
1713		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1714		    object));
1715	}
1716	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1717	req_class = req & VM_ALLOC_CLASS_MASK;
1718
1719	/*
1720	 * The page daemon is allowed to dig deeper into the free page list.
1721	 */
1722	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1723		req_class = VM_ALLOC_SYSTEM;
1724
1725	SLIST_INIT(&deferred_vdrop_list);
1726	mtx_lock(&vm_page_queue_free_mtx);
1727	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1728	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1729	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1730	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1731	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1732#if VM_NRESERVLEVEL > 0
1733retry:
1734		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1735		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1736		    low, high, alignment, boundary)) == NULL)
1737#endif
1738			m_ret = vm_phys_alloc_contig(npages, low, high,
1739			    alignment, boundary);
1740	} else {
1741		mtx_unlock(&vm_page_queue_free_mtx);
1742		atomic_add_int(&vm_pageout_deficit, npages);
1743		pagedaemon_wakeup();
1744		return (NULL);
1745	}
1746	if (m_ret != NULL)
1747		for (m = m_ret; m < &m_ret[npages]; m++) {
1748			drop = vm_page_alloc_init(m);
1749			if (drop != NULL) {
1750				/*
1751				 * Enqueue the vnode for deferred vdrop().
1752				 */
1753				m->plinks.s.pv = drop;
1754				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1755				    plinks.s.ss);
1756			}
1757		}
1758	else {
1759#if VM_NRESERVLEVEL > 0
1760		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1761		    boundary))
1762			goto retry;
1763#endif
1764	}
1765	mtx_unlock(&vm_page_queue_free_mtx);
1766	if (m_ret == NULL)
1767		return (NULL);
1768
1769	/*
1770	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1771	 */
1772	flags = 0;
1773	if ((req & VM_ALLOC_ZERO) != 0)
1774		flags = PG_ZERO;
1775	if ((req & VM_ALLOC_NODUMP) != 0)
1776		flags |= PG_NODUMP;
1777	if ((req & VM_ALLOC_WIRED) != 0)
1778		atomic_add_int(&vm_cnt.v_wire_count, npages);
1779	if (object != NULL) {
1780		if (object->memattr != VM_MEMATTR_DEFAULT &&
1781		    memattr == VM_MEMATTR_DEFAULT)
1782			memattr = object->memattr;
1783	}
1784	for (m = m_ret; m < &m_ret[npages]; m++) {
1785		m->aflags = 0;
1786		m->flags = (m->flags | PG_NODUMP) & flags;
1787		m->busy_lock = VPB_UNBUSIED;
1788		if (object != NULL) {
1789			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1790				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1791			if ((req & VM_ALLOC_SBUSY) != 0)
1792				m->busy_lock = VPB_SHARERS_WORD(1);
1793		}
1794		if ((req & VM_ALLOC_WIRED) != 0)
1795			m->wire_count = 1;
1796		/* Unmanaged pages don't use "act_count". */
1797		m->oflags = VPO_UNMANAGED;
1798		if (object != NULL) {
1799			if (vm_page_insert(m, object, pindex)) {
1800				vm_page_alloc_contig_vdrop(
1801				    &deferred_vdrop_list);
1802				if (vm_paging_needed())
1803					pagedaemon_wakeup();
1804				if ((req & VM_ALLOC_WIRED) != 0)
1805					atomic_subtract_int(&vm_cnt.v_wire_count,
1806					    npages);
1807				for (m_tmp = m, m = m_ret;
1808				    m < &m_ret[npages]; m++) {
1809					if ((req & VM_ALLOC_WIRED) != 0)
1810						m->wire_count = 0;
1811					if (m >= m_tmp)
1812						m->object = NULL;
1813					vm_page_free(m);
1814				}
1815				return (NULL);
1816			}
1817		} else
1818			m->pindex = pindex;
1819		if (memattr != VM_MEMATTR_DEFAULT)
1820			pmap_page_set_memattr(m, memattr);
1821		pindex++;
1822	}
1823	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1824	if (vm_paging_needed())
1825		pagedaemon_wakeup();
1826	return (m_ret);
1827}
1828
1829/*
1830 * Initialize a page that has been freshly dequeued from a freelist.
1831 * The caller has to drop the vnode returned, if it is not NULL.
1832 *
1833 * This function may only be used to initialize unmanaged pages.
1834 *
1835 * To be called with vm_page_queue_free_mtx held.
1836 */
1837static struct vnode *
1838vm_page_alloc_init(vm_page_t m)
1839{
1840	struct vnode *drop;
1841	vm_object_t m_object;
1842
1843	KASSERT(m->queue == PQ_NONE,
1844	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1845	    m, m->queue));
1846	KASSERT(m->wire_count == 0,
1847	    ("vm_page_alloc_init: page %p is wired", m));
1848	KASSERT(m->hold_count == 0,
1849	    ("vm_page_alloc_init: page %p is held", m));
1850	KASSERT(!vm_page_sbusied(m),
1851	    ("vm_page_alloc_init: page %p is busy", m));
1852	KASSERT(m->dirty == 0,
1853	    ("vm_page_alloc_init: page %p is dirty", m));
1854	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1855	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1856	    m, pmap_page_get_memattr(m)));
1857	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1858	drop = NULL;
1859	if ((m->flags & PG_CACHED) != 0) {
1860		KASSERT((m->flags & PG_ZERO) == 0,
1861		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1862		m->valid = 0;
1863		m_object = m->object;
1864		vm_page_cache_remove(m);
1865		if (m_object->type == OBJT_VNODE &&
1866		    vm_object_cache_is_empty(m_object))
1867			drop = m_object->handle;
1868	} else {
1869		KASSERT(m->valid == 0,
1870		    ("vm_page_alloc_init: free page %p is valid", m));
1871		vm_phys_freecnt_adj(m, -1);
1872		if ((m->flags & PG_ZERO) != 0)
1873			vm_page_zero_count--;
1874	}
1875	return (drop);
1876}
1877
1878/*
1879 * 	vm_page_alloc_freelist:
1880 *
1881 *	Allocate a physical page from the specified free page list.
1882 *
1883 *	The caller must always specify an allocation class.
1884 *
1885 *	allocation classes:
1886 *	VM_ALLOC_NORMAL		normal process request
1887 *	VM_ALLOC_SYSTEM		system *really* needs a page
1888 *	VM_ALLOC_INTERRUPT	interrupt time request
1889 *
1890 *	optional allocation flags:
1891 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1892 *				intends to allocate
1893 *	VM_ALLOC_WIRED		wire the allocated page
1894 *	VM_ALLOC_ZERO		prefer a zeroed page
1895 *
1896 *	This routine may not sleep.
1897 */
1898vm_page_t
1899vm_page_alloc_freelist(int flind, int req)
1900{
1901	struct vnode *drop;
1902	vm_page_t m;
1903	u_int flags;
1904	int req_class;
1905
1906	req_class = req & VM_ALLOC_CLASS_MASK;
1907
1908	/*
1909	 * The page daemon is allowed to dig deeper into the free page list.
1910	 */
1911	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1912		req_class = VM_ALLOC_SYSTEM;
1913
1914	/*
1915	 * Do not allocate reserved pages unless the req has asked for it.
1916	 */
1917	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1918	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1919	    (req_class == VM_ALLOC_SYSTEM &&
1920	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1921	    (req_class == VM_ALLOC_INTERRUPT &&
1922	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
1923		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1924	else {
1925		mtx_unlock(&vm_page_queue_free_mtx);
1926		atomic_add_int(&vm_pageout_deficit,
1927		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1928		pagedaemon_wakeup();
1929		return (NULL);
1930	}
1931	if (m == NULL) {
1932		mtx_unlock(&vm_page_queue_free_mtx);
1933		return (NULL);
1934	}
1935	drop = vm_page_alloc_init(m);
1936	mtx_unlock(&vm_page_queue_free_mtx);
1937
1938	/*
1939	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1940	 */
1941	m->aflags = 0;
1942	flags = 0;
1943	if ((req & VM_ALLOC_ZERO) != 0)
1944		flags = PG_ZERO;
1945	m->flags &= flags;
1946	if ((req & VM_ALLOC_WIRED) != 0) {
1947		/*
1948		 * The page lock is not required for wiring a page that does
1949		 * not belong to an object.
1950		 */
1951		atomic_add_int(&vm_cnt.v_wire_count, 1);
1952		m->wire_count = 1;
1953	}
1954	/* Unmanaged pages don't use "act_count". */
1955	m->oflags = VPO_UNMANAGED;
1956	if (drop != NULL)
1957		vdrop(drop);
1958	if (vm_paging_needed())
1959		pagedaemon_wakeup();
1960	return (m);
1961}
1962
1963/*
1964 *	vm_wait:	(also see VM_WAIT macro)
1965 *
1966 *	Sleep until free pages are available for allocation.
1967 *	- Called in various places before memory allocations.
1968 */
1969void
1970vm_wait(void)
1971{
1972
1973	mtx_lock(&vm_page_queue_free_mtx);
1974	if (curproc == pageproc) {
1975		vm_pageout_pages_needed = 1;
1976		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1977		    PDROP | PSWP, "VMWait", 0);
1978	} else {
1979		if (!vm_pages_needed) {
1980			vm_pages_needed = 1;
1981			wakeup(&vm_pages_needed);
1982		}
1983		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1984		    "vmwait", 0);
1985	}
1986}
1987
1988/*
1989 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1990 *
1991 *	Sleep until free pages are available for allocation.
1992 *	- Called only in vm_fault so that processes page faulting
1993 *	  can be easily tracked.
1994 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1995 *	  processes will be able to grab memory first.  Do not change
1996 *	  this balance without careful testing first.
1997 */
1998void
1999vm_waitpfault(void)
2000{
2001
2002	mtx_lock(&vm_page_queue_free_mtx);
2003	if (!vm_pages_needed) {
2004		vm_pages_needed = 1;
2005		wakeup(&vm_pages_needed);
2006	}
2007	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2008	    "pfault", 0);
2009}
2010
2011struct vm_pagequeue *
2012vm_page_pagequeue(vm_page_t m)
2013{
2014
2015	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2016}
2017
2018/*
2019 *	vm_page_dequeue:
2020 *
2021 *	Remove the given page from its current page queue.
2022 *
2023 *	The page must be locked.
2024 */
2025void
2026vm_page_dequeue(vm_page_t m)
2027{
2028	struct vm_pagequeue *pq;
2029
2030	vm_page_assert_locked(m);
2031	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2032	    m));
2033	pq = vm_page_pagequeue(m);
2034	vm_pagequeue_lock(pq);
2035	m->queue = PQ_NONE;
2036	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2037	vm_pagequeue_cnt_dec(pq);
2038	vm_pagequeue_unlock(pq);
2039}
2040
2041/*
2042 *	vm_page_dequeue_locked:
2043 *
2044 *	Remove the given page from its current page queue.
2045 *
2046 *	The page and page queue must be locked.
2047 */
2048void
2049vm_page_dequeue_locked(vm_page_t m)
2050{
2051	struct vm_pagequeue *pq;
2052
2053	vm_page_lock_assert(m, MA_OWNED);
2054	pq = vm_page_pagequeue(m);
2055	vm_pagequeue_assert_locked(pq);
2056	m->queue = PQ_NONE;
2057	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2058	vm_pagequeue_cnt_dec(pq);
2059}
2060
2061/*
2062 *	vm_page_enqueue:
2063 *
2064 *	Add the given page to the specified page queue.
2065 *
2066 *	The page must be locked.
2067 */
2068static void
2069vm_page_enqueue(uint8_t queue, vm_page_t m)
2070{
2071	struct vm_pagequeue *pq;
2072
2073	vm_page_lock_assert(m, MA_OWNED);
2074	KASSERT(queue < PQ_COUNT,
2075	    ("vm_page_enqueue: invalid queue %u request for page %p",
2076	    queue, m));
2077	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2078	vm_pagequeue_lock(pq);
2079	m->queue = queue;
2080	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2081	vm_pagequeue_cnt_inc(pq);
2082	vm_pagequeue_unlock(pq);
2083}
2084
2085/*
2086 *	vm_page_requeue:
2087 *
2088 *	Move the given page to the tail of its current page queue.
2089 *
2090 *	The page must be locked.
2091 */
2092void
2093vm_page_requeue(vm_page_t m)
2094{
2095	struct vm_pagequeue *pq;
2096
2097	vm_page_lock_assert(m, MA_OWNED);
2098	KASSERT(m->queue != PQ_NONE,
2099	    ("vm_page_requeue: page %p is not queued", m));
2100	pq = vm_page_pagequeue(m);
2101	vm_pagequeue_lock(pq);
2102	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2103	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2104	vm_pagequeue_unlock(pq);
2105}
2106
2107/*
2108 *	vm_page_requeue_locked:
2109 *
2110 *	Move the given page to the tail of its current page queue.
2111 *
2112 *	The page queue must be locked.
2113 */
2114void
2115vm_page_requeue_locked(vm_page_t m)
2116{
2117	struct vm_pagequeue *pq;
2118
2119	KASSERT(m->queue != PQ_NONE,
2120	    ("vm_page_requeue_locked: page %p is not queued", m));
2121	pq = vm_page_pagequeue(m);
2122	vm_pagequeue_assert_locked(pq);
2123	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2124	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2125}
2126
2127/*
2128 *	vm_page_activate:
2129 *
2130 *	Put the specified page on the active list (if appropriate).
2131 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2132 *	mess with it.
2133 *
2134 *	The page must be locked.
2135 */
2136void
2137vm_page_activate(vm_page_t m)
2138{
2139	int queue;
2140
2141	vm_page_lock_assert(m, MA_OWNED);
2142	if ((queue = m->queue) != PQ_ACTIVE) {
2143		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2144			if (m->act_count < ACT_INIT)
2145				m->act_count = ACT_INIT;
2146			if (queue != PQ_NONE)
2147				vm_page_dequeue(m);
2148			vm_page_enqueue(PQ_ACTIVE, m);
2149		} else
2150			KASSERT(queue == PQ_NONE,
2151			    ("vm_page_activate: wired page %p is queued", m));
2152	} else {
2153		if (m->act_count < ACT_INIT)
2154			m->act_count = ACT_INIT;
2155	}
2156}
2157
2158/*
2159 *	vm_page_free_wakeup:
2160 *
2161 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2162 *	routine is called when a page has been added to the cache or free
2163 *	queues.
2164 *
2165 *	The page queues must be locked.
2166 */
2167static inline void
2168vm_page_free_wakeup(void)
2169{
2170
2171	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2172	/*
2173	 * if pageout daemon needs pages, then tell it that there are
2174	 * some free.
2175	 */
2176	if (vm_pageout_pages_needed &&
2177	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2178		wakeup(&vm_pageout_pages_needed);
2179		vm_pageout_pages_needed = 0;
2180	}
2181	/*
2182	 * wakeup processes that are waiting on memory if we hit a
2183	 * high water mark. And wakeup scheduler process if we have
2184	 * lots of memory. this process will swapin processes.
2185	 */
2186	if (vm_pages_needed && !vm_page_count_min()) {
2187		vm_pages_needed = 0;
2188		wakeup(&vm_cnt.v_free_count);
2189	}
2190}
2191
2192/*
2193 *	Turn a cached page into a free page, by changing its attributes.
2194 *	Keep the statistics up-to-date.
2195 *
2196 *	The free page queue must be locked.
2197 */
2198static void
2199vm_page_cache_turn_free(vm_page_t m)
2200{
2201
2202	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2203
2204	m->object = NULL;
2205	m->valid = 0;
2206	KASSERT((m->flags & PG_CACHED) != 0,
2207	    ("vm_page_cache_turn_free: page %p is not cached", m));
2208	m->flags &= ~PG_CACHED;
2209	vm_cnt.v_cache_count--;
2210	vm_phys_freecnt_adj(m, 1);
2211}
2212
2213/*
2214 *	vm_page_free_toq:
2215 *
2216 *	Returns the given page to the free list,
2217 *	disassociating it with any VM object.
2218 *
2219 *	The object must be locked.  The page must be locked if it is managed.
2220 */
2221void
2222vm_page_free_toq(vm_page_t m)
2223{
2224
2225	if ((m->oflags & VPO_UNMANAGED) == 0) {
2226		vm_page_lock_assert(m, MA_OWNED);
2227		KASSERT(!pmap_page_is_mapped(m),
2228		    ("vm_page_free_toq: freeing mapped page %p", m));
2229	} else
2230		KASSERT(m->queue == PQ_NONE,
2231		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2232	PCPU_INC(cnt.v_tfree);
2233
2234	if (vm_page_sbusied(m))
2235		panic("vm_page_free: freeing busy page %p", m);
2236
2237	/*
2238	 * Unqueue, then remove page.  Note that we cannot destroy
2239	 * the page here because we do not want to call the pager's
2240	 * callback routine until after we've put the page on the
2241	 * appropriate free queue.
2242	 */
2243	vm_page_remque(m);
2244	vm_page_remove(m);
2245
2246	/*
2247	 * If fictitious remove object association and
2248	 * return, otherwise delay object association removal.
2249	 */
2250	if ((m->flags & PG_FICTITIOUS) != 0) {
2251		return;
2252	}
2253
2254	m->valid = 0;
2255	vm_page_undirty(m);
2256
2257	if (m->wire_count != 0)
2258		panic("vm_page_free: freeing wired page %p", m);
2259	if (m->hold_count != 0) {
2260		m->flags &= ~PG_ZERO;
2261		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2262		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2263		m->flags |= PG_UNHOLDFREE;
2264	} else {
2265		/*
2266		 * Restore the default memory attribute to the page.
2267		 */
2268		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2269			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2270
2271		/*
2272		 * Insert the page into the physical memory allocator's
2273		 * cache/free page queues.
2274		 */
2275		mtx_lock(&vm_page_queue_free_mtx);
2276		vm_phys_freecnt_adj(m, 1);
2277#if VM_NRESERVLEVEL > 0
2278		if (!vm_reserv_free_page(m))
2279#else
2280		if (TRUE)
2281#endif
2282			vm_phys_free_pages(m, 0);
2283		if ((m->flags & PG_ZERO) != 0)
2284			++vm_page_zero_count;
2285		else
2286			vm_page_zero_idle_wakeup();
2287		vm_page_free_wakeup();
2288		mtx_unlock(&vm_page_queue_free_mtx);
2289	}
2290}
2291
2292/*
2293 *	vm_page_wire:
2294 *
2295 *	Mark this page as wired down by yet
2296 *	another map, removing it from paging queues
2297 *	as necessary.
2298 *
2299 *	If the page is fictitious, then its wire count must remain one.
2300 *
2301 *	The page must be locked.
2302 */
2303void
2304vm_page_wire(vm_page_t m)
2305{
2306
2307	/*
2308	 * Only bump the wire statistics if the page is not already wired,
2309	 * and only unqueue the page if it is on some queue (if it is unmanaged
2310	 * it is already off the queues).
2311	 */
2312	vm_page_lock_assert(m, MA_OWNED);
2313	if ((m->flags & PG_FICTITIOUS) != 0) {
2314		KASSERT(m->wire_count == 1,
2315		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2316		    m));
2317		return;
2318	}
2319	if (m->wire_count == 0) {
2320		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2321		    m->queue == PQ_NONE,
2322		    ("vm_page_wire: unmanaged page %p is queued", m));
2323		vm_page_remque(m);
2324		atomic_add_int(&vm_cnt.v_wire_count, 1);
2325	}
2326	m->wire_count++;
2327	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2328}
2329
2330/*
2331 * vm_page_unwire:
2332 *
2333 * Release one wiring of the specified page, potentially enabling it to be
2334 * paged again.  If paging is enabled, then the value of the parameter
2335 * "queue" determines the queue to which the page is added.
2336 *
2337 * However, unless the page belongs to an object, it is not enqueued because
2338 * it cannot be paged out.
2339 *
2340 * If a page is fictitious, then its wire count must always be one.
2341 *
2342 * A managed page must be locked.
2343 */
2344void
2345vm_page_unwire(vm_page_t m, uint8_t queue)
2346{
2347
2348	KASSERT(queue < PQ_COUNT,
2349	    ("vm_page_unwire: invalid queue %u request for page %p",
2350	    queue, m));
2351	if ((m->oflags & VPO_UNMANAGED) == 0)
2352		vm_page_lock_assert(m, MA_OWNED);
2353	if ((m->flags & PG_FICTITIOUS) != 0) {
2354		KASSERT(m->wire_count == 1,
2355	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2356		return;
2357	}
2358	if (m->wire_count > 0) {
2359		m->wire_count--;
2360		if (m->wire_count == 0) {
2361			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2362			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2363			    m->object == NULL)
2364				return;
2365			if (queue == PQ_INACTIVE)
2366				m->flags &= ~PG_WINATCFLS;
2367			vm_page_enqueue(queue, m);
2368		}
2369	} else
2370		panic("vm_page_unwire: page %p's wire count is zero", m);
2371}
2372
2373/*
2374 * Move the specified page to the inactive queue.
2375 *
2376 * Many pages placed on the inactive queue should actually go
2377 * into the cache, but it is difficult to figure out which.  What
2378 * we do instead, if the inactive target is well met, is to put
2379 * clean pages at the head of the inactive queue instead of the tail.
2380 * This will cause them to be moved to the cache more quickly and
2381 * if not actively re-referenced, reclaimed more quickly.  If we just
2382 * stick these pages at the end of the inactive queue, heavy filesystem
2383 * meta-data accesses can cause an unnecessary paging load on memory bound
2384 * processes.  This optimization causes one-time-use metadata to be
2385 * reused more quickly.
2386 *
2387 * Normally athead is 0 resulting in LRU operation.  athead is set
2388 * to 1 if we want this page to be 'as if it were placed in the cache',
2389 * except without unmapping it from the process address space.
2390 *
2391 * The page must be locked.
2392 */
2393static inline void
2394_vm_page_deactivate(vm_page_t m, int athead)
2395{
2396	struct vm_pagequeue *pq;
2397	int queue;
2398
2399	vm_page_lock_assert(m, MA_OWNED);
2400
2401	/*
2402	 * Ignore if already inactive.
2403	 */
2404	if ((queue = m->queue) == PQ_INACTIVE)
2405		return;
2406	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2407		if (queue != PQ_NONE)
2408			vm_page_dequeue(m);
2409		m->flags &= ~PG_WINATCFLS;
2410		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2411		vm_pagequeue_lock(pq);
2412		m->queue = PQ_INACTIVE;
2413		if (athead)
2414			TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
2415		else
2416			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2417		vm_pagequeue_cnt_inc(pq);
2418		vm_pagequeue_unlock(pq);
2419	}
2420}
2421
2422/*
2423 * Move the specified page to the inactive queue.
2424 *
2425 * The page must be locked.
2426 */
2427void
2428vm_page_deactivate(vm_page_t m)
2429{
2430
2431	_vm_page_deactivate(m, 0);
2432}
2433
2434/*
2435 * vm_page_try_to_cache:
2436 *
2437 * Returns 0 on failure, 1 on success
2438 */
2439int
2440vm_page_try_to_cache(vm_page_t m)
2441{
2442
2443	vm_page_lock_assert(m, MA_OWNED);
2444	VM_OBJECT_ASSERT_WLOCKED(m->object);
2445	if (m->dirty || m->hold_count || m->wire_count ||
2446	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2447		return (0);
2448	pmap_remove_all(m);
2449	if (m->dirty)
2450		return (0);
2451	vm_page_cache(m);
2452	return (1);
2453}
2454
2455/*
2456 * vm_page_try_to_free()
2457 *
2458 *	Attempt to free the page.  If we cannot free it, we do nothing.
2459 *	1 is returned on success, 0 on failure.
2460 */
2461int
2462vm_page_try_to_free(vm_page_t m)
2463{
2464
2465	vm_page_lock_assert(m, MA_OWNED);
2466	if (m->object != NULL)
2467		VM_OBJECT_ASSERT_WLOCKED(m->object);
2468	if (m->dirty || m->hold_count || m->wire_count ||
2469	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2470		return (0);
2471	pmap_remove_all(m);
2472	if (m->dirty)
2473		return (0);
2474	vm_page_free(m);
2475	return (1);
2476}
2477
2478/*
2479 * vm_page_cache
2480 *
2481 * Put the specified page onto the page cache queue (if appropriate).
2482 *
2483 * The object and page must be locked.
2484 */
2485void
2486vm_page_cache(vm_page_t m)
2487{
2488	vm_object_t object;
2489	boolean_t cache_was_empty;
2490
2491	vm_page_lock_assert(m, MA_OWNED);
2492	object = m->object;
2493	VM_OBJECT_ASSERT_WLOCKED(object);
2494	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2495	    m->hold_count || m->wire_count)
2496		panic("vm_page_cache: attempting to cache busy page");
2497	KASSERT(!pmap_page_is_mapped(m),
2498	    ("vm_page_cache: page %p is mapped", m));
2499	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2500	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2501	    (object->type == OBJT_SWAP &&
2502	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2503		/*
2504		 * Hypothesis: A cache-eligible page belonging to a
2505		 * default object or swap object but without a backing
2506		 * store must be zero filled.
2507		 */
2508		vm_page_free(m);
2509		return;
2510	}
2511	KASSERT((m->flags & PG_CACHED) == 0,
2512	    ("vm_page_cache: page %p is already cached", m));
2513
2514	/*
2515	 * Remove the page from the paging queues.
2516	 */
2517	vm_page_remque(m);
2518
2519	/*
2520	 * Remove the page from the object's collection of resident
2521	 * pages.
2522	 */
2523	vm_radix_remove(&object->rtree, m->pindex);
2524	TAILQ_REMOVE(&object->memq, m, listq);
2525	object->resident_page_count--;
2526
2527	/*
2528	 * Restore the default memory attribute to the page.
2529	 */
2530	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2531		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2532
2533	/*
2534	 * Insert the page into the object's collection of cached pages
2535	 * and the physical memory allocator's cache/free page queues.
2536	 */
2537	m->flags &= ~PG_ZERO;
2538	mtx_lock(&vm_page_queue_free_mtx);
2539	cache_was_empty = vm_radix_is_empty(&object->cache);
2540	if (vm_radix_insert(&object->cache, m)) {
2541		mtx_unlock(&vm_page_queue_free_mtx);
2542		if (object->resident_page_count == 0)
2543			vdrop(object->handle);
2544		m->object = NULL;
2545		vm_page_free(m);
2546		return;
2547	}
2548
2549	/*
2550	 * The above call to vm_radix_insert() could reclaim the one pre-
2551	 * existing cached page from this object, resulting in a call to
2552	 * vdrop().
2553	 */
2554	if (!cache_was_empty)
2555		cache_was_empty = vm_radix_is_singleton(&object->cache);
2556
2557	m->flags |= PG_CACHED;
2558	vm_cnt.v_cache_count++;
2559	PCPU_INC(cnt.v_tcached);
2560#if VM_NRESERVLEVEL > 0
2561	if (!vm_reserv_free_page(m)) {
2562#else
2563	if (TRUE) {
2564#endif
2565		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2566		vm_phys_free_pages(m, 0);
2567	}
2568	vm_page_free_wakeup();
2569	mtx_unlock(&vm_page_queue_free_mtx);
2570
2571	/*
2572	 * Increment the vnode's hold count if this is the object's only
2573	 * cached page.  Decrement the vnode's hold count if this was
2574	 * the object's only resident page.
2575	 */
2576	if (object->type == OBJT_VNODE) {
2577		if (cache_was_empty && object->resident_page_count != 0)
2578			vhold(object->handle);
2579		else if (!cache_was_empty && object->resident_page_count == 0)
2580			vdrop(object->handle);
2581	}
2582}
2583
2584/*
2585 * vm_page_advise
2586 *
2587 *	Cache, deactivate, or do nothing as appropriate.  This routine
2588 *	is used by madvise().
2589 *
2590 *	Generally speaking we want to move the page into the cache so
2591 *	it gets reused quickly.  However, this can result in a silly syndrome
2592 *	due to the page recycling too quickly.  Small objects will not be
2593 *	fully cached.  On the other hand, if we move the page to the inactive
2594 *	queue we wind up with a problem whereby very large objects
2595 *	unnecessarily blow away our inactive and cache queues.
2596 *
2597 *	The solution is to move the pages based on a fixed weighting.  We
2598 *	either leave them alone, deactivate them, or move them to the cache,
2599 *	where moving them to the cache has the highest weighting.
2600 *	By forcing some pages into other queues we eventually force the
2601 *	system to balance the queues, potentially recovering other unrelated
2602 *	space from active.  The idea is to not force this to happen too
2603 *	often.
2604 *
2605 *	The object and page must be locked.
2606 */
2607void
2608vm_page_advise(vm_page_t m, int advice)
2609{
2610	int dnw, head;
2611
2612	vm_page_assert_locked(m);
2613	VM_OBJECT_ASSERT_WLOCKED(m->object);
2614	if (advice == MADV_FREE) {
2615		/*
2616		 * Mark the page clean.  This will allow the page to be freed
2617		 * up by the system.  However, such pages are often reused
2618		 * quickly by malloc() so we do not do anything that would
2619		 * cause a page fault if we can help it.
2620		 *
2621		 * Specifically, we do not try to actually free the page now
2622		 * nor do we try to put it in the cache (which would cause a
2623		 * page fault on reuse).
2624		 *
2625		 * But we do make the page is freeable as we can without
2626		 * actually taking the step of unmapping it.
2627		 */
2628		m->dirty = 0;
2629		m->act_count = 0;
2630	} else if (advice != MADV_DONTNEED)
2631		return;
2632	dnw = PCPU_GET(dnweight);
2633	PCPU_INC(dnweight);
2634
2635	/*
2636	 * Occasionally leave the page alone.
2637	 */
2638	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2639		if (m->act_count >= ACT_INIT)
2640			--m->act_count;
2641		return;
2642	}
2643
2644	/*
2645	 * Clear any references to the page.  Otherwise, the page daemon will
2646	 * immediately reactivate the page.
2647	 */
2648	vm_page_aflag_clear(m, PGA_REFERENCED);
2649
2650	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2651		vm_page_dirty(m);
2652
2653	if (m->dirty || (dnw & 0x0070) == 0) {
2654		/*
2655		 * Deactivate the page 3 times out of 32.
2656		 */
2657		head = 0;
2658	} else {
2659		/*
2660		 * Cache the page 28 times out of every 32.  Note that
2661		 * the page is deactivated instead of cached, but placed
2662		 * at the head of the queue instead of the tail.
2663		 */
2664		head = 1;
2665	}
2666	_vm_page_deactivate(m, head);
2667}
2668
2669/*
2670 * Grab a page, waiting until we are waken up due to the page
2671 * changing state.  We keep on waiting, if the page continues
2672 * to be in the object.  If the page doesn't exist, first allocate it
2673 * and then conditionally zero it.
2674 *
2675 * This routine may sleep.
2676 *
2677 * The object must be locked on entry.  The lock will, however, be released
2678 * and reacquired if the routine sleeps.
2679 */
2680vm_page_t
2681vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2682{
2683	vm_page_t m;
2684	int sleep;
2685
2686	VM_OBJECT_ASSERT_WLOCKED(object);
2687	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2688	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2689	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2690retrylookup:
2691	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2692		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2693		    vm_page_xbusied(m) : vm_page_busied(m);
2694		if (sleep) {
2695			/*
2696			 * Reference the page before unlocking and
2697			 * sleeping so that the page daemon is less
2698			 * likely to reclaim it.
2699			 */
2700			vm_page_aflag_set(m, PGA_REFERENCED);
2701			vm_page_lock(m);
2702			VM_OBJECT_WUNLOCK(object);
2703			vm_page_busy_sleep(m, "pgrbwt");
2704			VM_OBJECT_WLOCK(object);
2705			goto retrylookup;
2706		} else {
2707			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2708				vm_page_lock(m);
2709				vm_page_wire(m);
2710				vm_page_unlock(m);
2711			}
2712			if ((allocflags &
2713			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2714				vm_page_xbusy(m);
2715			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2716				vm_page_sbusy(m);
2717			return (m);
2718		}
2719	}
2720	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_IGN_SBUSY);
2721	if (m == NULL) {
2722		VM_OBJECT_WUNLOCK(object);
2723		VM_WAIT;
2724		VM_OBJECT_WLOCK(object);
2725		goto retrylookup;
2726	} else if (m->valid != 0)
2727		return (m);
2728	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2729		pmap_zero_page(m);
2730	return (m);
2731}
2732
2733/*
2734 * Mapping function for valid or dirty bits in a page.
2735 *
2736 * Inputs are required to range within a page.
2737 */
2738vm_page_bits_t
2739vm_page_bits(int base, int size)
2740{
2741	int first_bit;
2742	int last_bit;
2743
2744	KASSERT(
2745	    base + size <= PAGE_SIZE,
2746	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2747	);
2748
2749	if (size == 0)		/* handle degenerate case */
2750		return (0);
2751
2752	first_bit = base >> DEV_BSHIFT;
2753	last_bit = (base + size - 1) >> DEV_BSHIFT;
2754
2755	return (((vm_page_bits_t)2 << last_bit) -
2756	    ((vm_page_bits_t)1 << first_bit));
2757}
2758
2759/*
2760 *	vm_page_set_valid_range:
2761 *
2762 *	Sets portions of a page valid.  The arguments are expected
2763 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2764 *	of any partial chunks touched by the range.  The invalid portion of
2765 *	such chunks will be zeroed.
2766 *
2767 *	(base + size) must be less then or equal to PAGE_SIZE.
2768 */
2769void
2770vm_page_set_valid_range(vm_page_t m, int base, int size)
2771{
2772	int endoff, frag;
2773
2774	VM_OBJECT_ASSERT_WLOCKED(m->object);
2775	if (size == 0)	/* handle degenerate case */
2776		return;
2777
2778	/*
2779	 * If the base is not DEV_BSIZE aligned and the valid
2780	 * bit is clear, we have to zero out a portion of the
2781	 * first block.
2782	 */
2783	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2784	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2785		pmap_zero_page_area(m, frag, base - frag);
2786
2787	/*
2788	 * If the ending offset is not DEV_BSIZE aligned and the
2789	 * valid bit is clear, we have to zero out a portion of
2790	 * the last block.
2791	 */
2792	endoff = base + size;
2793	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2794	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2795		pmap_zero_page_area(m, endoff,
2796		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2797
2798	/*
2799	 * Assert that no previously invalid block that is now being validated
2800	 * is already dirty.
2801	 */
2802	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2803	    ("vm_page_set_valid_range: page %p is dirty", m));
2804
2805	/*
2806	 * Set valid bits inclusive of any overlap.
2807	 */
2808	m->valid |= vm_page_bits(base, size);
2809}
2810
2811/*
2812 * Clear the given bits from the specified page's dirty field.
2813 */
2814static __inline void
2815vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2816{
2817	uintptr_t addr;
2818#if PAGE_SIZE < 16384
2819	int shift;
2820#endif
2821
2822	/*
2823	 * If the object is locked and the page is neither exclusive busy nor
2824	 * write mapped, then the page's dirty field cannot possibly be
2825	 * set by a concurrent pmap operation.
2826	 */
2827	VM_OBJECT_ASSERT_WLOCKED(m->object);
2828	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2829		m->dirty &= ~pagebits;
2830	else {
2831		/*
2832		 * The pmap layer can call vm_page_dirty() without
2833		 * holding a distinguished lock.  The combination of
2834		 * the object's lock and an atomic operation suffice
2835		 * to guarantee consistency of the page dirty field.
2836		 *
2837		 * For PAGE_SIZE == 32768 case, compiler already
2838		 * properly aligns the dirty field, so no forcible
2839		 * alignment is needed. Only require existence of
2840		 * atomic_clear_64 when page size is 32768.
2841		 */
2842		addr = (uintptr_t)&m->dirty;
2843#if PAGE_SIZE == 32768
2844		atomic_clear_64((uint64_t *)addr, pagebits);
2845#elif PAGE_SIZE == 16384
2846		atomic_clear_32((uint32_t *)addr, pagebits);
2847#else		/* PAGE_SIZE <= 8192 */
2848		/*
2849		 * Use a trick to perform a 32-bit atomic on the
2850		 * containing aligned word, to not depend on the existence
2851		 * of atomic_clear_{8, 16}.
2852		 */
2853		shift = addr & (sizeof(uint32_t) - 1);
2854#if BYTE_ORDER == BIG_ENDIAN
2855		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2856#else
2857		shift *= NBBY;
2858#endif
2859		addr &= ~(sizeof(uint32_t) - 1);
2860		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2861#endif		/* PAGE_SIZE */
2862	}
2863}
2864
2865/*
2866 *	vm_page_set_validclean:
2867 *
2868 *	Sets portions of a page valid and clean.  The arguments are expected
2869 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2870 *	of any partial chunks touched by the range.  The invalid portion of
2871 *	such chunks will be zero'd.
2872 *
2873 *	(base + size) must be less then or equal to PAGE_SIZE.
2874 */
2875void
2876vm_page_set_validclean(vm_page_t m, int base, int size)
2877{
2878	vm_page_bits_t oldvalid, pagebits;
2879	int endoff, frag;
2880
2881	VM_OBJECT_ASSERT_WLOCKED(m->object);
2882	if (size == 0)	/* handle degenerate case */
2883		return;
2884
2885	/*
2886	 * If the base is not DEV_BSIZE aligned and the valid
2887	 * bit is clear, we have to zero out a portion of the
2888	 * first block.
2889	 */
2890	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2891	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2892		pmap_zero_page_area(m, frag, base - frag);
2893
2894	/*
2895	 * If the ending offset is not DEV_BSIZE aligned and the
2896	 * valid bit is clear, we have to zero out a portion of
2897	 * the last block.
2898	 */
2899	endoff = base + size;
2900	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2901	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2902		pmap_zero_page_area(m, endoff,
2903		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2904
2905	/*
2906	 * Set valid, clear dirty bits.  If validating the entire
2907	 * page we can safely clear the pmap modify bit.  We also
2908	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2909	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2910	 * be set again.
2911	 *
2912	 * We set valid bits inclusive of any overlap, but we can only
2913	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2914	 * the range.
2915	 */
2916	oldvalid = m->valid;
2917	pagebits = vm_page_bits(base, size);
2918	m->valid |= pagebits;
2919#if 0	/* NOT YET */
2920	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2921		frag = DEV_BSIZE - frag;
2922		base += frag;
2923		size -= frag;
2924		if (size < 0)
2925			size = 0;
2926	}
2927	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2928#endif
2929	if (base == 0 && size == PAGE_SIZE) {
2930		/*
2931		 * The page can only be modified within the pmap if it is
2932		 * mapped, and it can only be mapped if it was previously
2933		 * fully valid.
2934		 */
2935		if (oldvalid == VM_PAGE_BITS_ALL)
2936			/*
2937			 * Perform the pmap_clear_modify() first.  Otherwise,
2938			 * a concurrent pmap operation, such as
2939			 * pmap_protect(), could clear a modification in the
2940			 * pmap and set the dirty field on the page before
2941			 * pmap_clear_modify() had begun and after the dirty
2942			 * field was cleared here.
2943			 */
2944			pmap_clear_modify(m);
2945		m->dirty = 0;
2946		m->oflags &= ~VPO_NOSYNC;
2947	} else if (oldvalid != VM_PAGE_BITS_ALL)
2948		m->dirty &= ~pagebits;
2949	else
2950		vm_page_clear_dirty_mask(m, pagebits);
2951}
2952
2953void
2954vm_page_clear_dirty(vm_page_t m, int base, int size)
2955{
2956
2957	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2958}
2959
2960/*
2961 *	vm_page_set_invalid:
2962 *
2963 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2964 *	valid and dirty bits for the effected areas are cleared.
2965 */
2966void
2967vm_page_set_invalid(vm_page_t m, int base, int size)
2968{
2969	vm_page_bits_t bits;
2970	vm_object_t object;
2971
2972	object = m->object;
2973	VM_OBJECT_ASSERT_WLOCKED(object);
2974	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
2975	    size >= object->un_pager.vnp.vnp_size)
2976		bits = VM_PAGE_BITS_ALL;
2977	else
2978		bits = vm_page_bits(base, size);
2979	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2980		pmap_remove_all(m);
2981	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
2982	    !pmap_page_is_mapped(m),
2983	    ("vm_page_set_invalid: page %p is mapped", m));
2984	m->valid &= ~bits;
2985	m->dirty &= ~bits;
2986}
2987
2988/*
2989 * vm_page_zero_invalid()
2990 *
2991 *	The kernel assumes that the invalid portions of a page contain
2992 *	garbage, but such pages can be mapped into memory by user code.
2993 *	When this occurs, we must zero out the non-valid portions of the
2994 *	page so user code sees what it expects.
2995 *
2996 *	Pages are most often semi-valid when the end of a file is mapped
2997 *	into memory and the file's size is not page aligned.
2998 */
2999void
3000vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3001{
3002	int b;
3003	int i;
3004
3005	VM_OBJECT_ASSERT_WLOCKED(m->object);
3006	/*
3007	 * Scan the valid bits looking for invalid sections that
3008	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3009	 * valid bit may be set ) have already been zerod by
3010	 * vm_page_set_validclean().
3011	 */
3012	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3013		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3014		    (m->valid & ((vm_page_bits_t)1 << i))) {
3015			if (i > b) {
3016				pmap_zero_page_area(m,
3017				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3018			}
3019			b = i + 1;
3020		}
3021	}
3022
3023	/*
3024	 * setvalid is TRUE when we can safely set the zero'd areas
3025	 * as being valid.  We can do this if there are no cache consistancy
3026	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3027	 */
3028	if (setvalid)
3029		m->valid = VM_PAGE_BITS_ALL;
3030}
3031
3032/*
3033 *	vm_page_is_valid:
3034 *
3035 *	Is (partial) page valid?  Note that the case where size == 0
3036 *	will return FALSE in the degenerate case where the page is
3037 *	entirely invalid, and TRUE otherwise.
3038 */
3039int
3040vm_page_is_valid(vm_page_t m, int base, int size)
3041{
3042	vm_page_bits_t bits;
3043
3044	VM_OBJECT_ASSERT_LOCKED(m->object);
3045	bits = vm_page_bits(base, size);
3046	return (m->valid != 0 && (m->valid & bits) == bits);
3047}
3048
3049/*
3050 *	vm_page_ps_is_valid:
3051 *
3052 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3053 */
3054boolean_t
3055vm_page_ps_is_valid(vm_page_t m)
3056{
3057	int i, npages;
3058
3059	VM_OBJECT_ASSERT_LOCKED(m->object);
3060	npages = atop(pagesizes[m->psind]);
3061
3062	/*
3063	 * The physically contiguous pages that make up a superpage, i.e., a
3064	 * page with a page size index ("psind") greater than zero, will
3065	 * occupy adjacent entries in vm_page_array[].
3066	 */
3067	for (i = 0; i < npages; i++) {
3068		if (m[i].valid != VM_PAGE_BITS_ALL)
3069			return (FALSE);
3070	}
3071	return (TRUE);
3072}
3073
3074/*
3075 * Set the page's dirty bits if the page is modified.
3076 */
3077void
3078vm_page_test_dirty(vm_page_t m)
3079{
3080
3081	VM_OBJECT_ASSERT_WLOCKED(m->object);
3082	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3083		vm_page_dirty(m);
3084}
3085
3086void
3087vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3088{
3089
3090	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3091}
3092
3093void
3094vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3095{
3096
3097	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3098}
3099
3100int
3101vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3102{
3103
3104	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3105}
3106
3107#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3108void
3109vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3110{
3111
3112	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3113}
3114
3115void
3116vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3117{
3118
3119	mtx_assert_(vm_page_lockptr(m), a, file, line);
3120}
3121#endif
3122
3123#ifdef INVARIANTS
3124void
3125vm_page_object_lock_assert(vm_page_t m)
3126{
3127
3128	/*
3129	 * Certain of the page's fields may only be modified by the
3130	 * holder of the containing object's lock or the exclusive busy.
3131	 * holder.  Unfortunately, the holder of the write busy is
3132	 * not recorded, and thus cannot be checked here.
3133	 */
3134	if (m->object != NULL && !vm_page_xbusied(m))
3135		VM_OBJECT_ASSERT_WLOCKED(m->object);
3136}
3137
3138void
3139vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3140{
3141
3142	if ((bits & PGA_WRITEABLE) == 0)
3143		return;
3144
3145	/*
3146	 * The PGA_WRITEABLE flag can only be set if the page is
3147	 * managed, is exclusively busied or the object is locked.
3148	 * Currently, this flag is only set by pmap_enter().
3149	 */
3150	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3151	    ("PGA_WRITEABLE on unmanaged page"));
3152	if (!vm_page_xbusied(m))
3153		VM_OBJECT_ASSERT_LOCKED(m->object);
3154}
3155#endif
3156
3157#include "opt_ddb.h"
3158#ifdef DDB
3159#include <sys/kernel.h>
3160
3161#include <ddb/ddb.h>
3162
3163DB_SHOW_COMMAND(page, vm_page_print_page_info)
3164{
3165	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3166	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3167	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3168	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3169	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3170	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3171	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3172	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3173	db_printf("vm_cnt.v_cache_min: %d\n", vm_cnt.v_cache_min);
3174	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3175}
3176
3177DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3178{
3179	int dom;
3180
3181	db_printf("pq_free %d pq_cache %d\n",
3182	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3183	for (dom = 0; dom < vm_ndomains; dom++) {
3184		db_printf(
3185	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3186		    dom,
3187		    vm_dom[dom].vmd_page_count,
3188		    vm_dom[dom].vmd_free_count,
3189		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3190		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3191		    vm_dom[dom].vmd_pass);
3192	}
3193}
3194
3195DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3196{
3197	vm_page_t m;
3198	boolean_t phys;
3199
3200	if (!have_addr) {
3201		db_printf("show pginfo addr\n");
3202		return;
3203	}
3204
3205	phys = strchr(modif, 'p') != NULL;
3206	if (phys)
3207		m = PHYS_TO_VM_PAGE(addr);
3208	else
3209		m = (vm_page_t)addr;
3210	db_printf(
3211    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3212    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3213	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3214	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3215	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3216}
3217#endif /* DDB */
3218