vm_page.c revision 248449
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue (vm_pagequeues[]), regardless of other locks or the
68 *	  busy state of a page.
69 *
70 *		* In general, no thread besides the page daemon can acquire or
71 *		  hold more than one page queue lock at a time.
72 *
73 *		* The page daemon can acquire and hold any pair of page queue
74 *		  locks in any order.
75 *
76 *	- The object lock is required when inserting or removing
77 *	  pages from an object (vm_page_insert() or vm_page_remove()).
78 *
79 */
80
81/*
82 *	Resident memory management module.
83 */
84
85#include <sys/cdefs.h>
86__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 248449 2013-03-18 00:25:02Z attilio $");
87
88#include "opt_vm.h"
89
90#include <sys/param.h>
91#include <sys/systm.h>
92#include <sys/lock.h>
93#include <sys/kernel.h>
94#include <sys/limits.h>
95#include <sys/malloc.h>
96#include <sys/msgbuf.h>
97#include <sys/mutex.h>
98#include <sys/proc.h>
99#include <sys/rwlock.h>
100#include <sys/sysctl.h>
101#include <sys/vmmeter.h>
102#include <sys/vnode.h>
103
104#include <vm/vm.h>
105#include <vm/pmap.h>
106#include <vm/vm_param.h>
107#include <vm/vm_kern.h>
108#include <vm/vm_object.h>
109#include <vm/vm_page.h>
110#include <vm/vm_pageout.h>
111#include <vm/vm_pager.h>
112#include <vm/vm_phys.h>
113#include <vm/vm_radix.h>
114#include <vm/vm_reserv.h>
115#include <vm/vm_extern.h>
116#include <vm/uma.h>
117#include <vm/uma_int.h>
118
119#include <machine/md_var.h>
120
121/*
122 *	Associated with page of user-allocatable memory is a
123 *	page structure.
124 */
125
126struct vm_pagequeue vm_pagequeues[PQ_COUNT] = {
127	[PQ_INACTIVE] = {
128		.pq_pl = TAILQ_HEAD_INITIALIZER(
129		    vm_pagequeues[PQ_INACTIVE].pq_pl),
130		.pq_cnt = &cnt.v_inactive_count,
131		.pq_name = "vm inactive pagequeue"
132	},
133	[PQ_ACTIVE] = {
134		.pq_pl = TAILQ_HEAD_INITIALIZER(
135		    vm_pagequeues[PQ_ACTIVE].pq_pl),
136		.pq_cnt = &cnt.v_active_count,
137		.pq_name = "vm active pagequeue"
138	}
139};
140struct mtx_padalign vm_page_queue_free_mtx;
141
142struct mtx_padalign pa_lock[PA_LOCK_COUNT];
143
144vm_page_t vm_page_array;
145long vm_page_array_size;
146long first_page;
147int vm_page_zero_count;
148
149static int boot_pages = UMA_BOOT_PAGES;
150TUNABLE_INT("vm.boot_pages", &boot_pages);
151SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
152	"number of pages allocated for bootstrapping the VM system");
153
154static int pa_tryrelock_restart;
155SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
156    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
157
158static uma_zone_t fakepg_zone;
159
160static struct vnode *vm_page_alloc_init(vm_page_t m);
161static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
162static void vm_page_enqueue(int queue, vm_page_t m);
163static void vm_page_init_fakepg(void *dummy);
164
165SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
166
167static void
168vm_page_init_fakepg(void *dummy)
169{
170
171	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
172	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
173}
174
175/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
176#if PAGE_SIZE == 32768
177#ifdef CTASSERT
178CTASSERT(sizeof(u_long) >= 8);
179#endif
180#endif
181
182/*
183 * Try to acquire a physical address lock while a pmap is locked.  If we
184 * fail to trylock we unlock and lock the pmap directly and cache the
185 * locked pa in *locked.  The caller should then restart their loop in case
186 * the virtual to physical mapping has changed.
187 */
188int
189vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
190{
191	vm_paddr_t lockpa;
192
193	lockpa = *locked;
194	*locked = pa;
195	if (lockpa) {
196		PA_LOCK_ASSERT(lockpa, MA_OWNED);
197		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
198			return (0);
199		PA_UNLOCK(lockpa);
200	}
201	if (PA_TRYLOCK(pa))
202		return (0);
203	PMAP_UNLOCK(pmap);
204	atomic_add_int(&pa_tryrelock_restart, 1);
205	PA_LOCK(pa);
206	PMAP_LOCK(pmap);
207	return (EAGAIN);
208}
209
210/*
211 *	vm_set_page_size:
212 *
213 *	Sets the page size, perhaps based upon the memory
214 *	size.  Must be called before any use of page-size
215 *	dependent functions.
216 */
217void
218vm_set_page_size(void)
219{
220	if (cnt.v_page_size == 0)
221		cnt.v_page_size = PAGE_SIZE;
222	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
223		panic("vm_set_page_size: page size not a power of two");
224}
225
226/*
227 *	vm_page_blacklist_lookup:
228 *
229 *	See if a physical address in this page has been listed
230 *	in the blacklist tunable.  Entries in the tunable are
231 *	separated by spaces or commas.  If an invalid integer is
232 *	encountered then the rest of the string is skipped.
233 */
234static int
235vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
236{
237	vm_paddr_t bad;
238	char *cp, *pos;
239
240	for (pos = list; *pos != '\0'; pos = cp) {
241		bad = strtoq(pos, &cp, 0);
242		if (*cp != '\0') {
243			if (*cp == ' ' || *cp == ',') {
244				cp++;
245				if (cp == pos)
246					continue;
247			} else
248				break;
249		}
250		if (pa == trunc_page(bad))
251			return (1);
252	}
253	return (0);
254}
255
256/*
257 *	vm_page_startup:
258 *
259 *	Initializes the resident memory module.
260 *
261 *	Allocates memory for the page cells, and
262 *	for the object/offset-to-page hash table headers.
263 *	Each page cell is initialized and placed on the free list.
264 */
265vm_offset_t
266vm_page_startup(vm_offset_t vaddr)
267{
268	vm_offset_t mapped;
269	vm_paddr_t page_range;
270	vm_paddr_t new_end;
271	int i;
272	vm_paddr_t pa;
273	vm_paddr_t last_pa;
274	char *list;
275
276	/* the biggest memory array is the second group of pages */
277	vm_paddr_t end;
278	vm_paddr_t biggestsize;
279	vm_paddr_t low_water, high_water;
280	int biggestone;
281
282	biggestsize = 0;
283	biggestone = 0;
284	vaddr = round_page(vaddr);
285
286	for (i = 0; phys_avail[i + 1]; i += 2) {
287		phys_avail[i] = round_page(phys_avail[i]);
288		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
289	}
290
291	low_water = phys_avail[0];
292	high_water = phys_avail[1];
293
294	for (i = 0; phys_avail[i + 1]; i += 2) {
295		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
296
297		if (size > biggestsize) {
298			biggestone = i;
299			biggestsize = size;
300		}
301		if (phys_avail[i] < low_water)
302			low_water = phys_avail[i];
303		if (phys_avail[i + 1] > high_water)
304			high_water = phys_avail[i + 1];
305	}
306
307#ifdef XEN
308	low_water = 0;
309#endif
310
311	end = phys_avail[biggestone+1];
312
313	/*
314	 * Initialize the page and queue locks.
315	 */
316	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
317	for (i = 0; i < PA_LOCK_COUNT; i++)
318		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
319	for (i = 0; i < PQ_COUNT; i++)
320		vm_pagequeue_init_lock(&vm_pagequeues[i]);
321
322	/*
323	 * Allocate memory for use when boot strapping the kernel memory
324	 * allocator.
325	 */
326	new_end = end - (boot_pages * UMA_SLAB_SIZE);
327	new_end = trunc_page(new_end);
328	mapped = pmap_map(&vaddr, new_end, end,
329	    VM_PROT_READ | VM_PROT_WRITE);
330	bzero((void *)mapped, end - new_end);
331	uma_startup((void *)mapped, boot_pages);
332
333#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
334    defined(__mips__)
335	/*
336	 * Allocate a bitmap to indicate that a random physical page
337	 * needs to be included in a minidump.
338	 *
339	 * The amd64 port needs this to indicate which direct map pages
340	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
341	 *
342	 * However, i386 still needs this workspace internally within the
343	 * minidump code.  In theory, they are not needed on i386, but are
344	 * included should the sf_buf code decide to use them.
345	 */
346	last_pa = 0;
347	for (i = 0; dump_avail[i + 1] != 0; i += 2)
348		if (dump_avail[i + 1] > last_pa)
349			last_pa = dump_avail[i + 1];
350	page_range = last_pa / PAGE_SIZE;
351	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
352	new_end -= vm_page_dump_size;
353	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
354	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
355	bzero((void *)vm_page_dump, vm_page_dump_size);
356#endif
357#ifdef __amd64__
358	/*
359	 * Request that the physical pages underlying the message buffer be
360	 * included in a crash dump.  Since the message buffer is accessed
361	 * through the direct map, they are not automatically included.
362	 */
363	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
364	last_pa = pa + round_page(msgbufsize);
365	while (pa < last_pa) {
366		dump_add_page(pa);
367		pa += PAGE_SIZE;
368	}
369#endif
370	/*
371	 * Compute the number of pages of memory that will be available for
372	 * use (taking into account the overhead of a page structure per
373	 * page).
374	 */
375	first_page = low_water / PAGE_SIZE;
376#ifdef VM_PHYSSEG_SPARSE
377	page_range = 0;
378	for (i = 0; phys_avail[i + 1] != 0; i += 2)
379		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
380#elif defined(VM_PHYSSEG_DENSE)
381	page_range = high_water / PAGE_SIZE - first_page;
382#else
383#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
384#endif
385	end = new_end;
386
387	/*
388	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
389	 */
390	vaddr += PAGE_SIZE;
391
392	/*
393	 * Initialize the mem entry structures now, and put them in the free
394	 * queue.
395	 */
396	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
397	mapped = pmap_map(&vaddr, new_end, end,
398	    VM_PROT_READ | VM_PROT_WRITE);
399	vm_page_array = (vm_page_t) mapped;
400#if VM_NRESERVLEVEL > 0
401	/*
402	 * Allocate memory for the reservation management system's data
403	 * structures.
404	 */
405	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
406#endif
407#if defined(__amd64__) || defined(__mips__)
408	/*
409	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
410	 * like i386, so the pages must be tracked for a crashdump to include
411	 * this data.  This includes the vm_page_array and the early UMA
412	 * bootstrap pages.
413	 */
414	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
415		dump_add_page(pa);
416#endif
417	phys_avail[biggestone + 1] = new_end;
418
419	/*
420	 * Clear all of the page structures
421	 */
422	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
423	for (i = 0; i < page_range; i++)
424		vm_page_array[i].order = VM_NFREEORDER;
425	vm_page_array_size = page_range;
426
427	/*
428	 * Initialize the physical memory allocator.
429	 */
430	vm_phys_init();
431
432	/*
433	 * Add every available physical page that is not blacklisted to
434	 * the free lists.
435	 */
436	cnt.v_page_count = 0;
437	cnt.v_free_count = 0;
438	list = getenv("vm.blacklist");
439	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
440		pa = phys_avail[i];
441		last_pa = phys_avail[i + 1];
442		while (pa < last_pa) {
443			if (list != NULL &&
444			    vm_page_blacklist_lookup(list, pa))
445				printf("Skipping page with pa 0x%jx\n",
446				    (uintmax_t)pa);
447			else
448				vm_phys_add_page(pa);
449			pa += PAGE_SIZE;
450		}
451	}
452	freeenv(list);
453#if VM_NRESERVLEVEL > 0
454	/*
455	 * Initialize the reservation management system.
456	 */
457	vm_reserv_init();
458#endif
459	return (vaddr);
460}
461
462void
463vm_page_reference(vm_page_t m)
464{
465
466	vm_page_aflag_set(m, PGA_REFERENCED);
467}
468
469void
470vm_page_busy(vm_page_t m)
471{
472
473	VM_OBJECT_ASSERT_WLOCKED(m->object);
474	KASSERT((m->oflags & VPO_BUSY) == 0,
475	    ("vm_page_busy: page already busy!!!"));
476	m->oflags |= VPO_BUSY;
477}
478
479/*
480 *      vm_page_flash:
481 *
482 *      wakeup anyone waiting for the page.
483 */
484void
485vm_page_flash(vm_page_t m)
486{
487
488	VM_OBJECT_ASSERT_WLOCKED(m->object);
489	if (m->oflags & VPO_WANTED) {
490		m->oflags &= ~VPO_WANTED;
491		wakeup(m);
492	}
493}
494
495/*
496 *      vm_page_wakeup:
497 *
498 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
499 *      page.
500 *
501 */
502void
503vm_page_wakeup(vm_page_t m)
504{
505
506	VM_OBJECT_ASSERT_WLOCKED(m->object);
507	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
508	m->oflags &= ~VPO_BUSY;
509	vm_page_flash(m);
510}
511
512void
513vm_page_io_start(vm_page_t m)
514{
515
516	VM_OBJECT_ASSERT_WLOCKED(m->object);
517	m->busy++;
518}
519
520void
521vm_page_io_finish(vm_page_t m)
522{
523
524	VM_OBJECT_ASSERT_WLOCKED(m->object);
525	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
526	m->busy--;
527	if (m->busy == 0)
528		vm_page_flash(m);
529}
530
531/*
532 * Keep page from being freed by the page daemon
533 * much of the same effect as wiring, except much lower
534 * overhead and should be used only for *very* temporary
535 * holding ("wiring").
536 */
537void
538vm_page_hold(vm_page_t mem)
539{
540
541	vm_page_lock_assert(mem, MA_OWNED);
542        mem->hold_count++;
543}
544
545void
546vm_page_unhold(vm_page_t mem)
547{
548
549	vm_page_lock_assert(mem, MA_OWNED);
550	--mem->hold_count;
551	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
552	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
553		vm_page_free_toq(mem);
554}
555
556/*
557 *	vm_page_unhold_pages:
558 *
559 *	Unhold each of the pages that is referenced by the given array.
560 */
561void
562vm_page_unhold_pages(vm_page_t *ma, int count)
563{
564	struct mtx *mtx, *new_mtx;
565
566	mtx = NULL;
567	for (; count != 0; count--) {
568		/*
569		 * Avoid releasing and reacquiring the same page lock.
570		 */
571		new_mtx = vm_page_lockptr(*ma);
572		if (mtx != new_mtx) {
573			if (mtx != NULL)
574				mtx_unlock(mtx);
575			mtx = new_mtx;
576			mtx_lock(mtx);
577		}
578		vm_page_unhold(*ma);
579		ma++;
580	}
581	if (mtx != NULL)
582		mtx_unlock(mtx);
583}
584
585vm_page_t
586PHYS_TO_VM_PAGE(vm_paddr_t pa)
587{
588	vm_page_t m;
589
590#ifdef VM_PHYSSEG_SPARSE
591	m = vm_phys_paddr_to_vm_page(pa);
592	if (m == NULL)
593		m = vm_phys_fictitious_to_vm_page(pa);
594	return (m);
595#elif defined(VM_PHYSSEG_DENSE)
596	long pi;
597
598	pi = atop(pa);
599	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
600		m = &vm_page_array[pi - first_page];
601		return (m);
602	}
603	return (vm_phys_fictitious_to_vm_page(pa));
604#else
605#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
606#endif
607}
608
609/*
610 *	vm_page_getfake:
611 *
612 *	Create a fictitious page with the specified physical address and
613 *	memory attribute.  The memory attribute is the only the machine-
614 *	dependent aspect of a fictitious page that must be initialized.
615 */
616vm_page_t
617vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
618{
619	vm_page_t m;
620
621	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
622	vm_page_initfake(m, paddr, memattr);
623	return (m);
624}
625
626void
627vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
628{
629
630	if ((m->flags & PG_FICTITIOUS) != 0) {
631		/*
632		 * The page's memattr might have changed since the
633		 * previous initialization.  Update the pmap to the
634		 * new memattr.
635		 */
636		goto memattr;
637	}
638	m->phys_addr = paddr;
639	m->queue = PQ_NONE;
640	/* Fictitious pages don't use "segind". */
641	m->flags = PG_FICTITIOUS;
642	/* Fictitious pages don't use "order" or "pool". */
643	m->oflags = VPO_BUSY | VPO_UNMANAGED;
644	m->wire_count = 1;
645memattr:
646	pmap_page_set_memattr(m, memattr);
647}
648
649/*
650 *	vm_page_putfake:
651 *
652 *	Release a fictitious page.
653 */
654void
655vm_page_putfake(vm_page_t m)
656{
657
658	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
659	KASSERT((m->flags & PG_FICTITIOUS) != 0,
660	    ("vm_page_putfake: bad page %p", m));
661	uma_zfree(fakepg_zone, m);
662}
663
664/*
665 *	vm_page_updatefake:
666 *
667 *	Update the given fictitious page to the specified physical address and
668 *	memory attribute.
669 */
670void
671vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
672{
673
674	KASSERT((m->flags & PG_FICTITIOUS) != 0,
675	    ("vm_page_updatefake: bad page %p", m));
676	m->phys_addr = paddr;
677	pmap_page_set_memattr(m, memattr);
678}
679
680/*
681 *	vm_page_free:
682 *
683 *	Free a page.
684 */
685void
686vm_page_free(vm_page_t m)
687{
688
689	m->flags &= ~PG_ZERO;
690	vm_page_free_toq(m);
691}
692
693/*
694 *	vm_page_free_zero:
695 *
696 *	Free a page to the zerod-pages queue
697 */
698void
699vm_page_free_zero(vm_page_t m)
700{
701
702	m->flags |= PG_ZERO;
703	vm_page_free_toq(m);
704}
705
706/*
707 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
708 * array which is not the request page.
709 */
710void
711vm_page_readahead_finish(vm_page_t m)
712{
713
714	if (m->valid != 0) {
715		/*
716		 * Since the page is not the requested page, whether
717		 * it should be activated or deactivated is not
718		 * obvious.  Empirical results have shown that
719		 * deactivating the page is usually the best choice,
720		 * unless the page is wanted by another thread.
721		 */
722		if (m->oflags & VPO_WANTED) {
723			vm_page_lock(m);
724			vm_page_activate(m);
725			vm_page_unlock(m);
726		} else {
727			vm_page_lock(m);
728			vm_page_deactivate(m);
729			vm_page_unlock(m);
730		}
731		vm_page_wakeup(m);
732	} else {
733		/*
734		 * Free the completely invalid page.  Such page state
735		 * occurs due to the short read operation which did
736		 * not covered our page at all, or in case when a read
737		 * error happens.
738		 */
739		vm_page_lock(m);
740		vm_page_free(m);
741		vm_page_unlock(m);
742	}
743}
744
745/*
746 *	vm_page_sleep:
747 *
748 *	Sleep and release the page lock.
749 *
750 *	The object containing the given page must be locked.
751 */
752void
753vm_page_sleep(vm_page_t m, const char *msg)
754{
755
756	VM_OBJECT_ASSERT_WLOCKED(m->object);
757	if (mtx_owned(vm_page_lockptr(m)))
758		vm_page_unlock(m);
759
760	/*
761	 * It's possible that while we sleep, the page will get
762	 * unbusied and freed.  If we are holding the object
763	 * lock, we will assume we hold a reference to the object
764	 * such that even if m->object changes, we can re-lock
765	 * it.
766	 */
767	m->oflags |= VPO_WANTED;
768	VM_OBJECT_SLEEP(m->object, m, PVM, msg, 0);
769}
770
771/*
772 *	vm_page_dirty_KBI:		[ internal use only ]
773 *
774 *	Set all bits in the page's dirty field.
775 *
776 *	The object containing the specified page must be locked if the
777 *	call is made from the machine-independent layer.
778 *
779 *	See vm_page_clear_dirty_mask().
780 *
781 *	This function should only be called by vm_page_dirty().
782 */
783void
784vm_page_dirty_KBI(vm_page_t m)
785{
786
787	/* These assertions refer to this operation by its public name. */
788	KASSERT((m->flags & PG_CACHED) == 0,
789	    ("vm_page_dirty: page in cache!"));
790	KASSERT(!VM_PAGE_IS_FREE(m),
791	    ("vm_page_dirty: page is free!"));
792	KASSERT(m->valid == VM_PAGE_BITS_ALL,
793	    ("vm_page_dirty: page is invalid!"));
794	m->dirty = VM_PAGE_BITS_ALL;
795}
796
797/*
798 *	vm_page_insert:		[ internal use only ]
799 *
800 *	Inserts the given mem entry into the object and object list.
801 *
802 *	The pagetables are not updated but will presumably fault the page
803 *	in if necessary, or if a kernel page the caller will at some point
804 *	enter the page into the kernel's pmap.  We are not allowed to sleep
805 *	here so we *can't* do this anyway.
806 *
807 *	The object must be locked.
808 */
809void
810vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
811{
812	vm_page_t neighbor;
813
814	VM_OBJECT_ASSERT_WLOCKED(object);
815	if (m->object != NULL)
816		panic("vm_page_insert: page already inserted");
817
818	/*
819	 * Record the object/offset pair in this page
820	 */
821	m->object = object;
822	m->pindex = pindex;
823
824	/*
825	 * Now link into the object's ordered list of backed pages.
826	 */
827	if (object->resident_page_count == 0) {
828		TAILQ_INSERT_TAIL(&object->memq, m, listq);
829	} else {
830		neighbor = vm_radix_lookup_le(&object->rtree, pindex);
831		if (neighbor != NULL) {
832		    	KASSERT(pindex > neighbor->pindex,
833			    ("vm_page_insert: offset %ju less than %ju",
834			    (uintmax_t)pindex, (uintmax_t)neighbor->pindex));
835			TAILQ_INSERT_AFTER(&object->memq, neighbor, m, listq);
836		} else
837			TAILQ_INSERT_HEAD(&object->memq, m, listq);
838	}
839	vm_radix_insert(&object->rtree, m);
840
841	/*
842	 * Show that the object has one more resident page.
843	 */
844	object->resident_page_count++;
845
846	/*
847	 * Hold the vnode until the last page is released.
848	 */
849	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
850		vhold(object->handle);
851
852	/*
853	 * Since we are inserting a new and possibly dirty page,
854	 * update the object's OBJ_MIGHTBEDIRTY flag.
855	 */
856	if (pmap_page_is_write_mapped(m))
857		vm_object_set_writeable_dirty(object);
858}
859
860/*
861 *	vm_page_remove:
862 *
863 *	Removes the given mem entry from the object/offset-page
864 *	table and the object page list, but do not invalidate/terminate
865 *	the backing store.
866 *
867 *	The underlying pmap entry (if any) is NOT removed here.
868 *
869 *	The object must be locked.  The page must be locked if it is managed.
870 */
871void
872vm_page_remove(vm_page_t m)
873{
874	vm_object_t object;
875
876	if ((m->oflags & VPO_UNMANAGED) == 0)
877		vm_page_lock_assert(m, MA_OWNED);
878	if ((object = m->object) == NULL)
879		return;
880	VM_OBJECT_ASSERT_WLOCKED(object);
881	if (m->oflags & VPO_BUSY) {
882		m->oflags &= ~VPO_BUSY;
883		vm_page_flash(m);
884	}
885
886	/*
887	 * Now remove from the object's list of backed pages.
888	 */
889	vm_radix_remove(&object->rtree, m->pindex);
890	TAILQ_REMOVE(&object->memq, m, listq);
891
892	/*
893	 * And show that the object has one fewer resident page.
894	 */
895	object->resident_page_count--;
896
897	/*
898	 * The vnode may now be recycled.
899	 */
900	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
901		vdrop(object->handle);
902
903	m->object = NULL;
904}
905
906/*
907 *	vm_page_lookup:
908 *
909 *	Returns the page associated with the object/offset
910 *	pair specified; if none is found, NULL is returned.
911 *
912 *	The object must be locked.
913 */
914vm_page_t
915vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
916{
917
918	VM_OBJECT_ASSERT_WLOCKED(object);
919	return (vm_radix_lookup(&object->rtree, pindex));
920}
921
922/*
923 *	vm_page_find_least:
924 *
925 *	Returns the page associated with the object with least pindex
926 *	greater than or equal to the parameter pindex, or NULL.
927 *
928 *	The object must be locked.
929 */
930vm_page_t
931vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
932{
933	vm_page_t m;
934
935	VM_OBJECT_ASSERT_WLOCKED(object);
936	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
937		m = vm_radix_lookup_ge(&object->rtree, pindex);
938	return (m);
939}
940
941/*
942 * Returns the given page's successor (by pindex) within the object if it is
943 * resident; if none is found, NULL is returned.
944 *
945 * The object must be locked.
946 */
947vm_page_t
948vm_page_next(vm_page_t m)
949{
950	vm_page_t next;
951
952	VM_OBJECT_ASSERT_WLOCKED(m->object);
953	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
954	    next->pindex != m->pindex + 1)
955		next = NULL;
956	return (next);
957}
958
959/*
960 * Returns the given page's predecessor (by pindex) within the object if it is
961 * resident; if none is found, NULL is returned.
962 *
963 * The object must be locked.
964 */
965vm_page_t
966vm_page_prev(vm_page_t m)
967{
968	vm_page_t prev;
969
970	VM_OBJECT_ASSERT_WLOCKED(m->object);
971	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
972	    prev->pindex != m->pindex - 1)
973		prev = NULL;
974	return (prev);
975}
976
977/*
978 *	vm_page_rename:
979 *
980 *	Move the given memory entry from its
981 *	current object to the specified target object/offset.
982 *
983 *	Note: swap associated with the page must be invalidated by the move.  We
984 *	      have to do this for several reasons:  (1) we aren't freeing the
985 *	      page, (2) we are dirtying the page, (3) the VM system is probably
986 *	      moving the page from object A to B, and will then later move
987 *	      the backing store from A to B and we can't have a conflict.
988 *
989 *	Note: we *always* dirty the page.  It is necessary both for the
990 *	      fact that we moved it, and because we may be invalidating
991 *	      swap.  If the page is on the cache, we have to deactivate it
992 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
993 *	      on the cache.
994 *
995 *	The objects must be locked.  The page must be locked if it is managed.
996 */
997void
998vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
999{
1000
1001	vm_page_remove(m);
1002	vm_page_insert(m, new_object, new_pindex);
1003	vm_page_dirty(m);
1004}
1005
1006/*
1007 *	Convert all of the given object's cached pages that have a
1008 *	pindex within the given range into free pages.  If the value
1009 *	zero is given for "end", then the range's upper bound is
1010 *	infinity.  If the given object is backed by a vnode and it
1011 *	transitions from having one or more cached pages to none, the
1012 *	vnode's hold count is reduced.
1013 */
1014void
1015vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1016{
1017	vm_page_t m;
1018	boolean_t empty;
1019
1020	mtx_lock(&vm_page_queue_free_mtx);
1021	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1022		mtx_unlock(&vm_page_queue_free_mtx);
1023		return;
1024	}
1025	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1026		if (end != 0 && m->pindex >= end)
1027			break;
1028		vm_radix_remove(&object->cache, m->pindex);
1029		m->object = NULL;
1030		m->valid = 0;
1031		/* Clear PG_CACHED and set PG_FREE. */
1032		m->flags ^= PG_CACHED | PG_FREE;
1033		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1034		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1035		cnt.v_cache_count--;
1036		cnt.v_free_count++;
1037	}
1038	empty = vm_radix_is_empty(&object->cache);
1039	mtx_unlock(&vm_page_queue_free_mtx);
1040	if (object->type == OBJT_VNODE && empty)
1041		vdrop(object->handle);
1042}
1043
1044/*
1045 *	Returns the cached page that is associated with the given
1046 *	object and offset.  If, however, none exists, returns NULL.
1047 *
1048 *	The free page queue must be locked.
1049 */
1050static inline vm_page_t
1051vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1052{
1053
1054	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1055	return (vm_radix_lookup(&object->cache, pindex));
1056}
1057
1058/*
1059 *	Remove the given cached page from its containing object's
1060 *	collection of cached pages.
1061 *
1062 *	The free page queue must be locked.
1063 */
1064static void
1065vm_page_cache_remove(vm_page_t m)
1066{
1067
1068	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1069	KASSERT((m->flags & PG_CACHED) != 0,
1070	    ("vm_page_cache_remove: page %p is not cached", m));
1071	vm_radix_remove(&m->object->cache, m->pindex);
1072	m->object = NULL;
1073	cnt.v_cache_count--;
1074}
1075
1076/*
1077 *	Transfer all of the cached pages with offset greater than or
1078 *	equal to 'offidxstart' from the original object's cache to the
1079 *	new object's cache.  However, any cached pages with offset
1080 *	greater than or equal to the new object's size are kept in the
1081 *	original object.  Initially, the new object's cache must be
1082 *	empty.  Offset 'offidxstart' in the original object must
1083 *	correspond to offset zero in the new object.
1084 *
1085 *	The new object must be locked.
1086 */
1087void
1088vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1089    vm_object_t new_object)
1090{
1091	vm_page_t m;
1092
1093	/*
1094	 * Insertion into an object's collection of cached pages
1095	 * requires the object to be locked.  In contrast, removal does
1096	 * not.
1097	 */
1098	VM_OBJECT_ASSERT_WLOCKED(new_object);
1099	KASSERT(vm_radix_is_empty(&new_object->cache),
1100	    ("vm_page_cache_transfer: object %p has cached pages",
1101	    new_object));
1102	mtx_lock(&vm_page_queue_free_mtx);
1103	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1104	    offidxstart)) != NULL) {
1105		/*
1106		 * Transfer all of the pages with offset greater than or
1107		 * equal to 'offidxstart' from the original object's
1108		 * cache to the new object's cache.
1109		 */
1110		if ((m->pindex - offidxstart) >= new_object->size)
1111			break;
1112		vm_radix_remove(&orig_object->cache, m->pindex);
1113		/* Update the page's object and offset. */
1114		m->object = new_object;
1115		m->pindex -= offidxstart;
1116		vm_radix_insert(&new_object->cache, m);
1117	}
1118	mtx_unlock(&vm_page_queue_free_mtx);
1119}
1120
1121/*
1122 *	Returns TRUE if a cached page is associated with the given object and
1123 *	offset, and FALSE otherwise.
1124 *
1125 *	The object must be locked.
1126 */
1127boolean_t
1128vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1129{
1130	vm_page_t m;
1131
1132	/*
1133	 * Insertion into an object's collection of cached pages requires the
1134	 * object to be locked.  Therefore, if the object is locked and the
1135	 * object's collection is empty, there is no need to acquire the free
1136	 * page queues lock in order to prove that the specified page doesn't
1137	 * exist.
1138	 */
1139	VM_OBJECT_ASSERT_WLOCKED(object);
1140	if (__predict_true(vm_object_cache_is_empty(object)))
1141		return (FALSE);
1142	mtx_lock(&vm_page_queue_free_mtx);
1143	m = vm_page_cache_lookup(object, pindex);
1144	mtx_unlock(&vm_page_queue_free_mtx);
1145	return (m != NULL);
1146}
1147
1148/*
1149 *	vm_page_alloc:
1150 *
1151 *	Allocate and return a page that is associated with the specified
1152 *	object and offset pair.  By default, this page has the flag VPO_BUSY
1153 *	set.
1154 *
1155 *	The caller must always specify an allocation class.
1156 *
1157 *	allocation classes:
1158 *	VM_ALLOC_NORMAL		normal process request
1159 *	VM_ALLOC_SYSTEM		system *really* needs a page
1160 *	VM_ALLOC_INTERRUPT	interrupt time request
1161 *
1162 *	optional allocation flags:
1163 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1164 *				intends to allocate
1165 *	VM_ALLOC_IFCACHED	return page only if it is cached
1166 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1167 *				is cached
1168 *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1169 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1170 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1171 *				should not have the flag VPO_BUSY set
1172 *	VM_ALLOC_WIRED		wire the allocated page
1173 *	VM_ALLOC_ZERO		prefer a zeroed page
1174 *
1175 *	This routine may not sleep.
1176 */
1177vm_page_t
1178vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1179{
1180	struct vnode *vp = NULL;
1181	vm_object_t m_object;
1182	vm_page_t m;
1183	int flags, req_class;
1184
1185	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1186	    ("vm_page_alloc: inconsistent object/req"));
1187	if (object != NULL)
1188		VM_OBJECT_ASSERT_WLOCKED(object);
1189
1190	req_class = req & VM_ALLOC_CLASS_MASK;
1191
1192	/*
1193	 * The page daemon is allowed to dig deeper into the free page list.
1194	 */
1195	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1196		req_class = VM_ALLOC_SYSTEM;
1197
1198	mtx_lock(&vm_page_queue_free_mtx);
1199	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1200	    (req_class == VM_ALLOC_SYSTEM &&
1201	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1202	    (req_class == VM_ALLOC_INTERRUPT &&
1203	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1204		/*
1205		 * Allocate from the free queue if the number of free pages
1206		 * exceeds the minimum for the request class.
1207		 */
1208		if (object != NULL &&
1209		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1210			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1211				mtx_unlock(&vm_page_queue_free_mtx);
1212				return (NULL);
1213			}
1214			if (vm_phys_unfree_page(m))
1215				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1216#if VM_NRESERVLEVEL > 0
1217			else if (!vm_reserv_reactivate_page(m))
1218#else
1219			else
1220#endif
1221				panic("vm_page_alloc: cache page %p is missing"
1222				    " from the free queue", m);
1223		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1224			mtx_unlock(&vm_page_queue_free_mtx);
1225			return (NULL);
1226#if VM_NRESERVLEVEL > 0
1227		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1228		    OBJ_FICTITIOUS)) != OBJ_COLORED ||
1229		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1230#else
1231		} else {
1232#endif
1233			m = vm_phys_alloc_pages(object != NULL ?
1234			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1235#if VM_NRESERVLEVEL > 0
1236			if (m == NULL && vm_reserv_reclaim_inactive()) {
1237				m = vm_phys_alloc_pages(object != NULL ?
1238				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1239				    0);
1240			}
1241#endif
1242		}
1243	} else {
1244		/*
1245		 * Not allocatable, give up.
1246		 */
1247		mtx_unlock(&vm_page_queue_free_mtx);
1248		atomic_add_int(&vm_pageout_deficit,
1249		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1250		pagedaemon_wakeup();
1251		return (NULL);
1252	}
1253
1254	/*
1255	 *  At this point we had better have found a good page.
1256	 */
1257	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1258	KASSERT(m->queue == PQ_NONE,
1259	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1260	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1261	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1262	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1263	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1264	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1265	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1266	    pmap_page_get_memattr(m)));
1267	if ((m->flags & PG_CACHED) != 0) {
1268		KASSERT((m->flags & PG_ZERO) == 0,
1269		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1270		KASSERT(m->valid != 0,
1271		    ("vm_page_alloc: cached page %p is invalid", m));
1272		if (m->object == object && m->pindex == pindex)
1273	  		cnt.v_reactivated++;
1274		else
1275			m->valid = 0;
1276		m_object = m->object;
1277		vm_page_cache_remove(m);
1278		if (m_object->type == OBJT_VNODE &&
1279		    vm_object_cache_is_empty(m_object))
1280			vp = m_object->handle;
1281	} else {
1282		KASSERT(VM_PAGE_IS_FREE(m),
1283		    ("vm_page_alloc: page %p is not free", m));
1284		KASSERT(m->valid == 0,
1285		    ("vm_page_alloc: free page %p is valid", m));
1286		cnt.v_free_count--;
1287	}
1288
1289	/*
1290	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1291	 * must be cleared before the free page queues lock is released.
1292	 */
1293	flags = 0;
1294	if (m->flags & PG_ZERO) {
1295		vm_page_zero_count--;
1296		if (req & VM_ALLOC_ZERO)
1297			flags = PG_ZERO;
1298	}
1299	if (req & VM_ALLOC_NODUMP)
1300		flags |= PG_NODUMP;
1301	m->flags = flags;
1302	mtx_unlock(&vm_page_queue_free_mtx);
1303	m->aflags = 0;
1304	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1305	    VPO_UNMANAGED : 0;
1306	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1307		m->oflags |= VPO_BUSY;
1308	if (req & VM_ALLOC_WIRED) {
1309		/*
1310		 * The page lock is not required for wiring a page until that
1311		 * page is inserted into the object.
1312		 */
1313		atomic_add_int(&cnt.v_wire_count, 1);
1314		m->wire_count = 1;
1315	}
1316	m->act_count = 0;
1317
1318	if (object != NULL) {
1319		/* Ignore device objects; the pager sets "memattr" for them. */
1320		if (object->memattr != VM_MEMATTR_DEFAULT &&
1321		    (object->flags & OBJ_FICTITIOUS) == 0)
1322			pmap_page_set_memattr(m, object->memattr);
1323		vm_page_insert(m, object, pindex);
1324	} else
1325		m->pindex = pindex;
1326
1327	/*
1328	 * The following call to vdrop() must come after the above call
1329	 * to vm_page_insert() in case both affect the same object and
1330	 * vnode.  Otherwise, the affected vnode's hold count could
1331	 * temporarily become zero.
1332	 */
1333	if (vp != NULL)
1334		vdrop(vp);
1335
1336	/*
1337	 * Don't wakeup too often - wakeup the pageout daemon when
1338	 * we would be nearly out of memory.
1339	 */
1340	if (vm_paging_needed())
1341		pagedaemon_wakeup();
1342
1343	return (m);
1344}
1345
1346/*
1347 *	vm_page_alloc_contig:
1348 *
1349 *	Allocate a contiguous set of physical pages of the given size "npages"
1350 *	from the free lists.  All of the physical pages must be at or above
1351 *	the given physical address "low" and below the given physical address
1352 *	"high".  The given value "alignment" determines the alignment of the
1353 *	first physical page in the set.  If the given value "boundary" is
1354 *	non-zero, then the set of physical pages cannot cross any physical
1355 *	address boundary that is a multiple of that value.  Both "alignment"
1356 *	and "boundary" must be a power of two.
1357 *
1358 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1359 *	then the memory attribute setting for the physical pages is configured
1360 *	to the object's memory attribute setting.  Otherwise, the memory
1361 *	attribute setting for the physical pages is configured to "memattr",
1362 *	overriding the object's memory attribute setting.  However, if the
1363 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1364 *	memory attribute setting for the physical pages cannot be configured
1365 *	to VM_MEMATTR_DEFAULT.
1366 *
1367 *	The caller must always specify an allocation class.
1368 *
1369 *	allocation classes:
1370 *	VM_ALLOC_NORMAL		normal process request
1371 *	VM_ALLOC_SYSTEM		system *really* needs a page
1372 *	VM_ALLOC_INTERRUPT	interrupt time request
1373 *
1374 *	optional allocation flags:
1375 *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1376 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1377 *				should not have the flag VPO_BUSY set
1378 *	VM_ALLOC_WIRED		wire the allocated page
1379 *	VM_ALLOC_ZERO		prefer a zeroed page
1380 *
1381 *	This routine may not sleep.
1382 */
1383vm_page_t
1384vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1385    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1386    vm_paddr_t boundary, vm_memattr_t memattr)
1387{
1388	struct vnode *drop;
1389	vm_page_t deferred_vdrop_list, m, m_ret;
1390	u_int flags, oflags;
1391	int req_class;
1392
1393	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1394	    ("vm_page_alloc_contig: inconsistent object/req"));
1395	if (object != NULL) {
1396		VM_OBJECT_ASSERT_WLOCKED(object);
1397		KASSERT(object->type == OBJT_PHYS,
1398		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1399		    object));
1400	}
1401	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1402	req_class = req & VM_ALLOC_CLASS_MASK;
1403
1404	/*
1405	 * The page daemon is allowed to dig deeper into the free page list.
1406	 */
1407	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1408		req_class = VM_ALLOC_SYSTEM;
1409
1410	deferred_vdrop_list = NULL;
1411	mtx_lock(&vm_page_queue_free_mtx);
1412	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1413	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1414	    cnt.v_free_count + cnt.v_cache_count >= npages +
1415	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1416	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1417#if VM_NRESERVLEVEL > 0
1418retry:
1419		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1420		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1421		    low, high, alignment, boundary)) == NULL)
1422#endif
1423			m_ret = vm_phys_alloc_contig(npages, low, high,
1424			    alignment, boundary);
1425	} else {
1426		mtx_unlock(&vm_page_queue_free_mtx);
1427		atomic_add_int(&vm_pageout_deficit, npages);
1428		pagedaemon_wakeup();
1429		return (NULL);
1430	}
1431	if (m_ret != NULL)
1432		for (m = m_ret; m < &m_ret[npages]; m++) {
1433			drop = vm_page_alloc_init(m);
1434			if (drop != NULL) {
1435				/*
1436				 * Enqueue the vnode for deferred vdrop().
1437				 *
1438				 * Once the pages are removed from the free
1439				 * page list, "pageq" can be safely abused to
1440				 * construct a short-lived list of vnodes.
1441				 */
1442				m->pageq.tqe_prev = (void *)drop;
1443				m->pageq.tqe_next = deferred_vdrop_list;
1444				deferred_vdrop_list = m;
1445			}
1446		}
1447	else {
1448#if VM_NRESERVLEVEL > 0
1449		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1450		    boundary))
1451			goto retry;
1452#endif
1453	}
1454	mtx_unlock(&vm_page_queue_free_mtx);
1455	if (m_ret == NULL)
1456		return (NULL);
1457
1458	/*
1459	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1460	 */
1461	flags = 0;
1462	if ((req & VM_ALLOC_ZERO) != 0)
1463		flags = PG_ZERO;
1464	if ((req & VM_ALLOC_NODUMP) != 0)
1465		flags |= PG_NODUMP;
1466	if ((req & VM_ALLOC_WIRED) != 0)
1467		atomic_add_int(&cnt.v_wire_count, npages);
1468	oflags = VPO_UNMANAGED;
1469	if (object != NULL) {
1470		if ((req & VM_ALLOC_NOBUSY) == 0)
1471			oflags |= VPO_BUSY;
1472		if (object->memattr != VM_MEMATTR_DEFAULT &&
1473		    memattr == VM_MEMATTR_DEFAULT)
1474			memattr = object->memattr;
1475	}
1476	for (m = m_ret; m < &m_ret[npages]; m++) {
1477		m->aflags = 0;
1478		m->flags = (m->flags | PG_NODUMP) & flags;
1479		if ((req & VM_ALLOC_WIRED) != 0)
1480			m->wire_count = 1;
1481		/* Unmanaged pages don't use "act_count". */
1482		m->oflags = oflags;
1483		if (memattr != VM_MEMATTR_DEFAULT)
1484			pmap_page_set_memattr(m, memattr);
1485		if (object != NULL)
1486			vm_page_insert(m, object, pindex);
1487		else
1488			m->pindex = pindex;
1489		pindex++;
1490	}
1491	while (deferred_vdrop_list != NULL) {
1492		vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
1493		deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
1494	}
1495	if (vm_paging_needed())
1496		pagedaemon_wakeup();
1497	return (m_ret);
1498}
1499
1500/*
1501 * Initialize a page that has been freshly dequeued from a freelist.
1502 * The caller has to drop the vnode returned, if it is not NULL.
1503 *
1504 * This function may only be used to initialize unmanaged pages.
1505 *
1506 * To be called with vm_page_queue_free_mtx held.
1507 */
1508static struct vnode *
1509vm_page_alloc_init(vm_page_t m)
1510{
1511	struct vnode *drop;
1512	vm_object_t m_object;
1513
1514	KASSERT(m->queue == PQ_NONE,
1515	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1516	    m, m->queue));
1517	KASSERT(m->wire_count == 0,
1518	    ("vm_page_alloc_init: page %p is wired", m));
1519	KASSERT(m->hold_count == 0,
1520	    ("vm_page_alloc_init: page %p is held", m));
1521	KASSERT(m->busy == 0,
1522	    ("vm_page_alloc_init: page %p is busy", m));
1523	KASSERT(m->dirty == 0,
1524	    ("vm_page_alloc_init: page %p is dirty", m));
1525	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1526	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1527	    m, pmap_page_get_memattr(m)));
1528	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1529	drop = NULL;
1530	if ((m->flags & PG_CACHED) != 0) {
1531		KASSERT((m->flags & PG_ZERO) == 0,
1532		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1533		m->valid = 0;
1534		m_object = m->object;
1535		vm_page_cache_remove(m);
1536		if (m_object->type == OBJT_VNODE &&
1537		    vm_object_cache_is_empty(m_object))
1538			drop = m_object->handle;
1539	} else {
1540		KASSERT(VM_PAGE_IS_FREE(m),
1541		    ("vm_page_alloc_init: page %p is not free", m));
1542		KASSERT(m->valid == 0,
1543		    ("vm_page_alloc_init: free page %p is valid", m));
1544		cnt.v_free_count--;
1545		if ((m->flags & PG_ZERO) != 0)
1546			vm_page_zero_count--;
1547	}
1548	/* Don't clear the PG_ZERO flag; we'll need it later. */
1549	m->flags &= PG_ZERO;
1550	return (drop);
1551}
1552
1553/*
1554 * 	vm_page_alloc_freelist:
1555 *
1556 *	Allocate a physical page from the specified free page list.
1557 *
1558 *	The caller must always specify an allocation class.
1559 *
1560 *	allocation classes:
1561 *	VM_ALLOC_NORMAL		normal process request
1562 *	VM_ALLOC_SYSTEM		system *really* needs a page
1563 *	VM_ALLOC_INTERRUPT	interrupt time request
1564 *
1565 *	optional allocation flags:
1566 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1567 *				intends to allocate
1568 *	VM_ALLOC_WIRED		wire the allocated page
1569 *	VM_ALLOC_ZERO		prefer a zeroed page
1570 *
1571 *	This routine may not sleep.
1572 */
1573vm_page_t
1574vm_page_alloc_freelist(int flind, int req)
1575{
1576	struct vnode *drop;
1577	vm_page_t m;
1578	u_int flags;
1579	int req_class;
1580
1581	req_class = req & VM_ALLOC_CLASS_MASK;
1582
1583	/*
1584	 * The page daemon is allowed to dig deeper into the free page list.
1585	 */
1586	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1587		req_class = VM_ALLOC_SYSTEM;
1588
1589	/*
1590	 * Do not allocate reserved pages unless the req has asked for it.
1591	 */
1592	mtx_lock(&vm_page_queue_free_mtx);
1593	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1594	    (req_class == VM_ALLOC_SYSTEM &&
1595	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1596	    (req_class == VM_ALLOC_INTERRUPT &&
1597	    cnt.v_free_count + cnt.v_cache_count > 0))
1598		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1599	else {
1600		mtx_unlock(&vm_page_queue_free_mtx);
1601		atomic_add_int(&vm_pageout_deficit,
1602		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1603		pagedaemon_wakeup();
1604		return (NULL);
1605	}
1606	if (m == NULL) {
1607		mtx_unlock(&vm_page_queue_free_mtx);
1608		return (NULL);
1609	}
1610	drop = vm_page_alloc_init(m);
1611	mtx_unlock(&vm_page_queue_free_mtx);
1612
1613	/*
1614	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1615	 */
1616	m->aflags = 0;
1617	flags = 0;
1618	if ((req & VM_ALLOC_ZERO) != 0)
1619		flags = PG_ZERO;
1620	m->flags &= flags;
1621	if ((req & VM_ALLOC_WIRED) != 0) {
1622		/*
1623		 * The page lock is not required for wiring a page that does
1624		 * not belong to an object.
1625		 */
1626		atomic_add_int(&cnt.v_wire_count, 1);
1627		m->wire_count = 1;
1628	}
1629	/* Unmanaged pages don't use "act_count". */
1630	m->oflags = VPO_UNMANAGED;
1631	if (drop != NULL)
1632		vdrop(drop);
1633	if (vm_paging_needed())
1634		pagedaemon_wakeup();
1635	return (m);
1636}
1637
1638/*
1639 *	vm_wait:	(also see VM_WAIT macro)
1640 *
1641 *	Sleep until free pages are available for allocation.
1642 *	- Called in various places before memory allocations.
1643 */
1644void
1645vm_wait(void)
1646{
1647
1648	mtx_lock(&vm_page_queue_free_mtx);
1649	if (curproc == pageproc) {
1650		vm_pageout_pages_needed = 1;
1651		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1652		    PDROP | PSWP, "VMWait", 0);
1653	} else {
1654		if (!vm_pages_needed) {
1655			vm_pages_needed = 1;
1656			wakeup(&vm_pages_needed);
1657		}
1658		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1659		    "vmwait", 0);
1660	}
1661}
1662
1663/*
1664 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1665 *
1666 *	Sleep until free pages are available for allocation.
1667 *	- Called only in vm_fault so that processes page faulting
1668 *	  can be easily tracked.
1669 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1670 *	  processes will be able to grab memory first.  Do not change
1671 *	  this balance without careful testing first.
1672 */
1673void
1674vm_waitpfault(void)
1675{
1676
1677	mtx_lock(&vm_page_queue_free_mtx);
1678	if (!vm_pages_needed) {
1679		vm_pages_needed = 1;
1680		wakeup(&vm_pages_needed);
1681	}
1682	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1683	    "pfault", 0);
1684}
1685
1686/*
1687 *	vm_page_dequeue:
1688 *
1689 *	Remove the given page from its current page queue.
1690 *
1691 *	The page must be locked.
1692 */
1693void
1694vm_page_dequeue(vm_page_t m)
1695{
1696	struct vm_pagequeue *pq;
1697
1698	vm_page_lock_assert(m, MA_OWNED);
1699	KASSERT(m->queue != PQ_NONE,
1700	    ("vm_page_dequeue: page %p is not queued", m));
1701	pq = &vm_pagequeues[m->queue];
1702	vm_pagequeue_lock(pq);
1703	m->queue = PQ_NONE;
1704	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1705	(*pq->pq_cnt)--;
1706	vm_pagequeue_unlock(pq);
1707}
1708
1709/*
1710 *	vm_page_dequeue_locked:
1711 *
1712 *	Remove the given page from its current page queue.
1713 *
1714 *	The page and page queue must be locked.
1715 */
1716void
1717vm_page_dequeue_locked(vm_page_t m)
1718{
1719	struct vm_pagequeue *pq;
1720
1721	vm_page_lock_assert(m, MA_OWNED);
1722	pq = &vm_pagequeues[m->queue];
1723	vm_pagequeue_assert_locked(pq);
1724	m->queue = PQ_NONE;
1725	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1726	(*pq->pq_cnt)--;
1727}
1728
1729/*
1730 *	vm_page_enqueue:
1731 *
1732 *	Add the given page to the specified page queue.
1733 *
1734 *	The page must be locked.
1735 */
1736static void
1737vm_page_enqueue(int queue, vm_page_t m)
1738{
1739	struct vm_pagequeue *pq;
1740
1741	vm_page_lock_assert(m, MA_OWNED);
1742	pq = &vm_pagequeues[queue];
1743	vm_pagequeue_lock(pq);
1744	m->queue = queue;
1745	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1746	++*pq->pq_cnt;
1747	vm_pagequeue_unlock(pq);
1748}
1749
1750/*
1751 *	vm_page_requeue:
1752 *
1753 *	Move the given page to the tail of its current page queue.
1754 *
1755 *	The page must be locked.
1756 */
1757void
1758vm_page_requeue(vm_page_t m)
1759{
1760	struct vm_pagequeue *pq;
1761
1762	vm_page_lock_assert(m, MA_OWNED);
1763	KASSERT(m->queue != PQ_NONE,
1764	    ("vm_page_requeue: page %p is not queued", m));
1765	pq = &vm_pagequeues[m->queue];
1766	vm_pagequeue_lock(pq);
1767	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1768	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1769	vm_pagequeue_unlock(pq);
1770}
1771
1772/*
1773 *	vm_page_requeue_locked:
1774 *
1775 *	Move the given page to the tail of its current page queue.
1776 *
1777 *	The page queue must be locked.
1778 */
1779void
1780vm_page_requeue_locked(vm_page_t m)
1781{
1782	struct vm_pagequeue *pq;
1783
1784	KASSERT(m->queue != PQ_NONE,
1785	    ("vm_page_requeue_locked: page %p is not queued", m));
1786	pq = &vm_pagequeues[m->queue];
1787	vm_pagequeue_assert_locked(pq);
1788	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1789	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1790}
1791
1792/*
1793 *	vm_page_activate:
1794 *
1795 *	Put the specified page on the active list (if appropriate).
1796 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1797 *	mess with it.
1798 *
1799 *	The page must be locked.
1800 */
1801void
1802vm_page_activate(vm_page_t m)
1803{
1804	int queue;
1805
1806	vm_page_lock_assert(m, MA_OWNED);
1807	VM_OBJECT_ASSERT_WLOCKED(m->object);
1808	if ((queue = m->queue) != PQ_ACTIVE) {
1809		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1810			if (m->act_count < ACT_INIT)
1811				m->act_count = ACT_INIT;
1812			if (queue != PQ_NONE)
1813				vm_page_dequeue(m);
1814			vm_page_enqueue(PQ_ACTIVE, m);
1815		} else
1816			KASSERT(queue == PQ_NONE,
1817			    ("vm_page_activate: wired page %p is queued", m));
1818	} else {
1819		if (m->act_count < ACT_INIT)
1820			m->act_count = ACT_INIT;
1821	}
1822}
1823
1824/*
1825 *	vm_page_free_wakeup:
1826 *
1827 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1828 *	routine is called when a page has been added to the cache or free
1829 *	queues.
1830 *
1831 *	The page queues must be locked.
1832 */
1833static inline void
1834vm_page_free_wakeup(void)
1835{
1836
1837	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1838	/*
1839	 * if pageout daemon needs pages, then tell it that there are
1840	 * some free.
1841	 */
1842	if (vm_pageout_pages_needed &&
1843	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1844		wakeup(&vm_pageout_pages_needed);
1845		vm_pageout_pages_needed = 0;
1846	}
1847	/*
1848	 * wakeup processes that are waiting on memory if we hit a
1849	 * high water mark. And wakeup scheduler process if we have
1850	 * lots of memory. this process will swapin processes.
1851	 */
1852	if (vm_pages_needed && !vm_page_count_min()) {
1853		vm_pages_needed = 0;
1854		wakeup(&cnt.v_free_count);
1855	}
1856}
1857
1858/*
1859 *	vm_page_free_toq:
1860 *
1861 *	Returns the given page to the free list,
1862 *	disassociating it with any VM object.
1863 *
1864 *	The object must be locked.  The page must be locked if it is managed.
1865 */
1866void
1867vm_page_free_toq(vm_page_t m)
1868{
1869
1870	if ((m->oflags & VPO_UNMANAGED) == 0) {
1871		vm_page_lock_assert(m, MA_OWNED);
1872		KASSERT(!pmap_page_is_mapped(m),
1873		    ("vm_page_free_toq: freeing mapped page %p", m));
1874	} else
1875		KASSERT(m->queue == PQ_NONE,
1876		    ("vm_page_free_toq: unmanaged page %p is queued", m));
1877	PCPU_INC(cnt.v_tfree);
1878
1879	if (VM_PAGE_IS_FREE(m))
1880		panic("vm_page_free: freeing free page %p", m);
1881	else if (m->busy != 0)
1882		panic("vm_page_free: freeing busy page %p", m);
1883
1884	/*
1885	 * Unqueue, then remove page.  Note that we cannot destroy
1886	 * the page here because we do not want to call the pager's
1887	 * callback routine until after we've put the page on the
1888	 * appropriate free queue.
1889	 */
1890	vm_page_remque(m);
1891	vm_page_remove(m);
1892
1893	/*
1894	 * If fictitious remove object association and
1895	 * return, otherwise delay object association removal.
1896	 */
1897	if ((m->flags & PG_FICTITIOUS) != 0) {
1898		return;
1899	}
1900
1901	m->valid = 0;
1902	vm_page_undirty(m);
1903
1904	if (m->wire_count != 0)
1905		panic("vm_page_free: freeing wired page %p", m);
1906	if (m->hold_count != 0) {
1907		m->flags &= ~PG_ZERO;
1908		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
1909		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
1910		m->flags |= PG_UNHOLDFREE;
1911	} else {
1912		/*
1913		 * Restore the default memory attribute to the page.
1914		 */
1915		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1916			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1917
1918		/*
1919		 * Insert the page into the physical memory allocator's
1920		 * cache/free page queues.
1921		 */
1922		mtx_lock(&vm_page_queue_free_mtx);
1923		m->flags |= PG_FREE;
1924		cnt.v_free_count++;
1925#if VM_NRESERVLEVEL > 0
1926		if (!vm_reserv_free_page(m))
1927#else
1928		if (TRUE)
1929#endif
1930			vm_phys_free_pages(m, 0);
1931		if ((m->flags & PG_ZERO) != 0)
1932			++vm_page_zero_count;
1933		else
1934			vm_page_zero_idle_wakeup();
1935		vm_page_free_wakeup();
1936		mtx_unlock(&vm_page_queue_free_mtx);
1937	}
1938}
1939
1940/*
1941 *	vm_page_wire:
1942 *
1943 *	Mark this page as wired down by yet
1944 *	another map, removing it from paging queues
1945 *	as necessary.
1946 *
1947 *	If the page is fictitious, then its wire count must remain one.
1948 *
1949 *	The page must be locked.
1950 */
1951void
1952vm_page_wire(vm_page_t m)
1953{
1954
1955	/*
1956	 * Only bump the wire statistics if the page is not already wired,
1957	 * and only unqueue the page if it is on some queue (if it is unmanaged
1958	 * it is already off the queues).
1959	 */
1960	vm_page_lock_assert(m, MA_OWNED);
1961	if ((m->flags & PG_FICTITIOUS) != 0) {
1962		KASSERT(m->wire_count == 1,
1963		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1964		    m));
1965		return;
1966	}
1967	if (m->wire_count == 0) {
1968		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
1969		    m->queue == PQ_NONE,
1970		    ("vm_page_wire: unmanaged page %p is queued", m));
1971		vm_page_remque(m);
1972		atomic_add_int(&cnt.v_wire_count, 1);
1973	}
1974	m->wire_count++;
1975	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1976}
1977
1978/*
1979 * vm_page_unwire:
1980 *
1981 * Release one wiring of the specified page, potentially enabling it to be
1982 * paged again.  If paging is enabled, then the value of the parameter
1983 * "activate" determines to which queue the page is added.  If "activate" is
1984 * non-zero, then the page is added to the active queue.  Otherwise, it is
1985 * added to the inactive queue.
1986 *
1987 * However, unless the page belongs to an object, it is not enqueued because
1988 * it cannot be paged out.
1989 *
1990 * If a page is fictitious, then its wire count must alway be one.
1991 *
1992 * A managed page must be locked.
1993 */
1994void
1995vm_page_unwire(vm_page_t m, int activate)
1996{
1997
1998	if ((m->oflags & VPO_UNMANAGED) == 0)
1999		vm_page_lock_assert(m, MA_OWNED);
2000	if ((m->flags & PG_FICTITIOUS) != 0) {
2001		KASSERT(m->wire_count == 1,
2002	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2003		return;
2004	}
2005	if (m->wire_count > 0) {
2006		m->wire_count--;
2007		if (m->wire_count == 0) {
2008			atomic_subtract_int(&cnt.v_wire_count, 1);
2009			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2010			    m->object == NULL)
2011				return;
2012			if (!activate)
2013				m->flags &= ~PG_WINATCFLS;
2014			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2015		}
2016	} else
2017		panic("vm_page_unwire: page %p's wire count is zero", m);
2018}
2019
2020/*
2021 * Move the specified page to the inactive queue.
2022 *
2023 * Many pages placed on the inactive queue should actually go
2024 * into the cache, but it is difficult to figure out which.  What
2025 * we do instead, if the inactive target is well met, is to put
2026 * clean pages at the head of the inactive queue instead of the tail.
2027 * This will cause them to be moved to the cache more quickly and
2028 * if not actively re-referenced, reclaimed more quickly.  If we just
2029 * stick these pages at the end of the inactive queue, heavy filesystem
2030 * meta-data accesses can cause an unnecessary paging load on memory bound
2031 * processes.  This optimization causes one-time-use metadata to be
2032 * reused more quickly.
2033 *
2034 * Normally athead is 0 resulting in LRU operation.  athead is set
2035 * to 1 if we want this page to be 'as if it were placed in the cache',
2036 * except without unmapping it from the process address space.
2037 *
2038 * The page must be locked.
2039 */
2040static inline void
2041_vm_page_deactivate(vm_page_t m, int athead)
2042{
2043	struct vm_pagequeue *pq;
2044	int queue;
2045
2046	vm_page_lock_assert(m, MA_OWNED);
2047
2048	/*
2049	 * Ignore if already inactive.
2050	 */
2051	if ((queue = m->queue) == PQ_INACTIVE)
2052		return;
2053	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2054		if (queue != PQ_NONE)
2055			vm_page_dequeue(m);
2056		m->flags &= ~PG_WINATCFLS;
2057		pq = &vm_pagequeues[PQ_INACTIVE];
2058		vm_pagequeue_lock(pq);
2059		m->queue = PQ_INACTIVE;
2060		if (athead)
2061			TAILQ_INSERT_HEAD(&pq->pq_pl, m, pageq);
2062		else
2063			TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
2064		cnt.v_inactive_count++;
2065		vm_pagequeue_unlock(pq);
2066	}
2067}
2068
2069/*
2070 * Move the specified page to the inactive queue.
2071 *
2072 * The page must be locked.
2073 */
2074void
2075vm_page_deactivate(vm_page_t m)
2076{
2077
2078	_vm_page_deactivate(m, 0);
2079}
2080
2081/*
2082 * vm_page_try_to_cache:
2083 *
2084 * Returns 0 on failure, 1 on success
2085 */
2086int
2087vm_page_try_to_cache(vm_page_t m)
2088{
2089
2090	vm_page_lock_assert(m, MA_OWNED);
2091	VM_OBJECT_ASSERT_WLOCKED(m->object);
2092	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2093	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2094		return (0);
2095	pmap_remove_all(m);
2096	if (m->dirty)
2097		return (0);
2098	vm_page_cache(m);
2099	return (1);
2100}
2101
2102/*
2103 * vm_page_try_to_free()
2104 *
2105 *	Attempt to free the page.  If we cannot free it, we do nothing.
2106 *	1 is returned on success, 0 on failure.
2107 */
2108int
2109vm_page_try_to_free(vm_page_t m)
2110{
2111
2112	vm_page_lock_assert(m, MA_OWNED);
2113	if (m->object != NULL)
2114		VM_OBJECT_ASSERT_WLOCKED(m->object);
2115	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2116	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2117		return (0);
2118	pmap_remove_all(m);
2119	if (m->dirty)
2120		return (0);
2121	vm_page_free(m);
2122	return (1);
2123}
2124
2125/*
2126 * vm_page_cache
2127 *
2128 * Put the specified page onto the page cache queue (if appropriate).
2129 *
2130 * The object and page must be locked.
2131 */
2132void
2133vm_page_cache(vm_page_t m)
2134{
2135	vm_object_t object;
2136	boolean_t cache_was_empty;
2137
2138	vm_page_lock_assert(m, MA_OWNED);
2139	object = m->object;
2140	VM_OBJECT_ASSERT_WLOCKED(object);
2141	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2142	    m->hold_count || m->wire_count)
2143		panic("vm_page_cache: attempting to cache busy page");
2144	KASSERT(!pmap_page_is_mapped(m),
2145	    ("vm_page_cache: page %p is mapped", m));
2146	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2147	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2148	    (object->type == OBJT_SWAP &&
2149	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2150		/*
2151		 * Hypothesis: A cache-elgible page belonging to a
2152		 * default object or swap object but without a backing
2153		 * store must be zero filled.
2154		 */
2155		vm_page_free(m);
2156		return;
2157	}
2158	KASSERT((m->flags & PG_CACHED) == 0,
2159	    ("vm_page_cache: page %p is already cached", m));
2160	PCPU_INC(cnt.v_tcached);
2161
2162	/*
2163	 * Remove the page from the paging queues.
2164	 */
2165	vm_page_remque(m);
2166
2167	/*
2168	 * Remove the page from the object's collection of resident
2169	 * pages.
2170	 */
2171	vm_radix_remove(&object->rtree, m->pindex);
2172	TAILQ_REMOVE(&object->memq, m, listq);
2173	object->resident_page_count--;
2174
2175	/*
2176	 * Restore the default memory attribute to the page.
2177	 */
2178	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2179		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2180
2181	/*
2182	 * Insert the page into the object's collection of cached pages
2183	 * and the physical memory allocator's cache/free page queues.
2184	 */
2185	m->flags &= ~PG_ZERO;
2186	mtx_lock(&vm_page_queue_free_mtx);
2187	m->flags |= PG_CACHED;
2188	cnt.v_cache_count++;
2189	cache_was_empty = vm_radix_is_empty(&object->cache);
2190	vm_radix_insert(&object->cache, m);
2191#if VM_NRESERVLEVEL > 0
2192	if (!vm_reserv_free_page(m)) {
2193#else
2194	if (TRUE) {
2195#endif
2196		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2197		vm_phys_free_pages(m, 0);
2198	}
2199	vm_page_free_wakeup();
2200	mtx_unlock(&vm_page_queue_free_mtx);
2201
2202	/*
2203	 * Increment the vnode's hold count if this is the object's only
2204	 * cached page.  Decrement the vnode's hold count if this was
2205	 * the object's only resident page.
2206	 */
2207	if (object->type == OBJT_VNODE) {
2208		if (cache_was_empty && object->resident_page_count != 0)
2209			vhold(object->handle);
2210		else if (!cache_was_empty && object->resident_page_count == 0)
2211			vdrop(object->handle);
2212	}
2213}
2214
2215/*
2216 * vm_page_dontneed
2217 *
2218 *	Cache, deactivate, or do nothing as appropriate.  This routine
2219 *	is typically used by madvise() MADV_DONTNEED.
2220 *
2221 *	Generally speaking we want to move the page into the cache so
2222 *	it gets reused quickly.  However, this can result in a silly syndrome
2223 *	due to the page recycling too quickly.  Small objects will not be
2224 *	fully cached.  On the otherhand, if we move the page to the inactive
2225 *	queue we wind up with a problem whereby very large objects
2226 *	unnecessarily blow away our inactive and cache queues.
2227 *
2228 *	The solution is to move the pages based on a fixed weighting.  We
2229 *	either leave them alone, deactivate them, or move them to the cache,
2230 *	where moving them to the cache has the highest weighting.
2231 *	By forcing some pages into other queues we eventually force the
2232 *	system to balance the queues, potentially recovering other unrelated
2233 *	space from active.  The idea is to not force this to happen too
2234 *	often.
2235 *
2236 *	The object and page must be locked.
2237 */
2238void
2239vm_page_dontneed(vm_page_t m)
2240{
2241	int dnw;
2242	int head;
2243
2244	vm_page_lock_assert(m, MA_OWNED);
2245	VM_OBJECT_ASSERT_WLOCKED(m->object);
2246	dnw = PCPU_GET(dnweight);
2247	PCPU_INC(dnweight);
2248
2249	/*
2250	 * Occasionally leave the page alone.
2251	 */
2252	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2253		if (m->act_count >= ACT_INIT)
2254			--m->act_count;
2255		return;
2256	}
2257
2258	/*
2259	 * Clear any references to the page.  Otherwise, the page daemon will
2260	 * immediately reactivate the page.
2261	 *
2262	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2263	 * pmap operation, such as pmap_remove(), could clear a reference in
2264	 * the pmap and set PGA_REFERENCED on the page before the
2265	 * pmap_clear_reference() had completed.  Consequently, the page would
2266	 * appear referenced based upon an old reference that occurred before
2267	 * this function ran.
2268	 */
2269	pmap_clear_reference(m);
2270	vm_page_aflag_clear(m, PGA_REFERENCED);
2271
2272	if (m->dirty == 0 && pmap_is_modified(m))
2273		vm_page_dirty(m);
2274
2275	if (m->dirty || (dnw & 0x0070) == 0) {
2276		/*
2277		 * Deactivate the page 3 times out of 32.
2278		 */
2279		head = 0;
2280	} else {
2281		/*
2282		 * Cache the page 28 times out of every 32.  Note that
2283		 * the page is deactivated instead of cached, but placed
2284		 * at the head of the queue instead of the tail.
2285		 */
2286		head = 1;
2287	}
2288	_vm_page_deactivate(m, head);
2289}
2290
2291/*
2292 * Grab a page, waiting until we are waken up due to the page
2293 * changing state.  We keep on waiting, if the page continues
2294 * to be in the object.  If the page doesn't exist, first allocate it
2295 * and then conditionally zero it.
2296 *
2297 * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2298 * to facilitate its eventual removal.
2299 *
2300 * This routine may sleep.
2301 *
2302 * The object must be locked on entry.  The lock will, however, be released
2303 * and reacquired if the routine sleeps.
2304 */
2305vm_page_t
2306vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2307{
2308	vm_page_t m;
2309
2310	VM_OBJECT_ASSERT_WLOCKED(object);
2311	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2312	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2313retrylookup:
2314	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2315		if ((m->oflags & VPO_BUSY) != 0 ||
2316		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2317			/*
2318			 * Reference the page before unlocking and
2319			 * sleeping so that the page daemon is less
2320			 * likely to reclaim it.
2321			 */
2322			vm_page_aflag_set(m, PGA_REFERENCED);
2323			vm_page_sleep(m, "pgrbwt");
2324			goto retrylookup;
2325		} else {
2326			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2327				vm_page_lock(m);
2328				vm_page_wire(m);
2329				vm_page_unlock(m);
2330			}
2331			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2332				vm_page_busy(m);
2333			return (m);
2334		}
2335	}
2336	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2337	    VM_ALLOC_IGN_SBUSY));
2338	if (m == NULL) {
2339		VM_OBJECT_WUNLOCK(object);
2340		VM_WAIT;
2341		VM_OBJECT_WLOCK(object);
2342		goto retrylookup;
2343	} else if (m->valid != 0)
2344		return (m);
2345	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2346		pmap_zero_page(m);
2347	return (m);
2348}
2349
2350/*
2351 * Mapping function for valid or dirty bits in a page.
2352 *
2353 * Inputs are required to range within a page.
2354 */
2355vm_page_bits_t
2356vm_page_bits(int base, int size)
2357{
2358	int first_bit;
2359	int last_bit;
2360
2361	KASSERT(
2362	    base + size <= PAGE_SIZE,
2363	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2364	);
2365
2366	if (size == 0)		/* handle degenerate case */
2367		return (0);
2368
2369	first_bit = base >> DEV_BSHIFT;
2370	last_bit = (base + size - 1) >> DEV_BSHIFT;
2371
2372	return (((vm_page_bits_t)2 << last_bit) -
2373	    ((vm_page_bits_t)1 << first_bit));
2374}
2375
2376/*
2377 *	vm_page_set_valid_range:
2378 *
2379 *	Sets portions of a page valid.  The arguments are expected
2380 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2381 *	of any partial chunks touched by the range.  The invalid portion of
2382 *	such chunks will be zeroed.
2383 *
2384 *	(base + size) must be less then or equal to PAGE_SIZE.
2385 */
2386void
2387vm_page_set_valid_range(vm_page_t m, int base, int size)
2388{
2389	int endoff, frag;
2390
2391	VM_OBJECT_ASSERT_WLOCKED(m->object);
2392	if (size == 0)	/* handle degenerate case */
2393		return;
2394
2395	/*
2396	 * If the base is not DEV_BSIZE aligned and the valid
2397	 * bit is clear, we have to zero out a portion of the
2398	 * first block.
2399	 */
2400	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2401	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2402		pmap_zero_page_area(m, frag, base - frag);
2403
2404	/*
2405	 * If the ending offset is not DEV_BSIZE aligned and the
2406	 * valid bit is clear, we have to zero out a portion of
2407	 * the last block.
2408	 */
2409	endoff = base + size;
2410	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2411	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2412		pmap_zero_page_area(m, endoff,
2413		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2414
2415	/*
2416	 * Assert that no previously invalid block that is now being validated
2417	 * is already dirty.
2418	 */
2419	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2420	    ("vm_page_set_valid_range: page %p is dirty", m));
2421
2422	/*
2423	 * Set valid bits inclusive of any overlap.
2424	 */
2425	m->valid |= vm_page_bits(base, size);
2426}
2427
2428/*
2429 * Clear the given bits from the specified page's dirty field.
2430 */
2431static __inline void
2432vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2433{
2434	uintptr_t addr;
2435#if PAGE_SIZE < 16384
2436	int shift;
2437#endif
2438
2439	/*
2440	 * If the object is locked and the page is neither VPO_BUSY nor
2441	 * write mapped, then the page's dirty field cannot possibly be
2442	 * set by a concurrent pmap operation.
2443	 */
2444	VM_OBJECT_ASSERT_WLOCKED(m->object);
2445	if ((m->oflags & VPO_BUSY) == 0 && !pmap_page_is_write_mapped(m))
2446		m->dirty &= ~pagebits;
2447	else {
2448		/*
2449		 * The pmap layer can call vm_page_dirty() without
2450		 * holding a distinguished lock.  The combination of
2451		 * the object's lock and an atomic operation suffice
2452		 * to guarantee consistency of the page dirty field.
2453		 *
2454		 * For PAGE_SIZE == 32768 case, compiler already
2455		 * properly aligns the dirty field, so no forcible
2456		 * alignment is needed. Only require existence of
2457		 * atomic_clear_64 when page size is 32768.
2458		 */
2459		addr = (uintptr_t)&m->dirty;
2460#if PAGE_SIZE == 32768
2461		atomic_clear_64((uint64_t *)addr, pagebits);
2462#elif PAGE_SIZE == 16384
2463		atomic_clear_32((uint32_t *)addr, pagebits);
2464#else		/* PAGE_SIZE <= 8192 */
2465		/*
2466		 * Use a trick to perform a 32-bit atomic on the
2467		 * containing aligned word, to not depend on the existence
2468		 * of atomic_clear_{8, 16}.
2469		 */
2470		shift = addr & (sizeof(uint32_t) - 1);
2471#if BYTE_ORDER == BIG_ENDIAN
2472		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2473#else
2474		shift *= NBBY;
2475#endif
2476		addr &= ~(sizeof(uint32_t) - 1);
2477		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2478#endif		/* PAGE_SIZE */
2479	}
2480}
2481
2482/*
2483 *	vm_page_set_validclean:
2484 *
2485 *	Sets portions of a page valid and clean.  The arguments are expected
2486 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2487 *	of any partial chunks touched by the range.  The invalid portion of
2488 *	such chunks will be zero'd.
2489 *
2490 *	(base + size) must be less then or equal to PAGE_SIZE.
2491 */
2492void
2493vm_page_set_validclean(vm_page_t m, int base, int size)
2494{
2495	vm_page_bits_t oldvalid, pagebits;
2496	int endoff, frag;
2497
2498	VM_OBJECT_ASSERT_WLOCKED(m->object);
2499	if (size == 0)	/* handle degenerate case */
2500		return;
2501
2502	/*
2503	 * If the base is not DEV_BSIZE aligned and the valid
2504	 * bit is clear, we have to zero out a portion of the
2505	 * first block.
2506	 */
2507	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2508	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2509		pmap_zero_page_area(m, frag, base - frag);
2510
2511	/*
2512	 * If the ending offset is not DEV_BSIZE aligned and the
2513	 * valid bit is clear, we have to zero out a portion of
2514	 * the last block.
2515	 */
2516	endoff = base + size;
2517	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2518	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2519		pmap_zero_page_area(m, endoff,
2520		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2521
2522	/*
2523	 * Set valid, clear dirty bits.  If validating the entire
2524	 * page we can safely clear the pmap modify bit.  We also
2525	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2526	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2527	 * be set again.
2528	 *
2529	 * We set valid bits inclusive of any overlap, but we can only
2530	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2531	 * the range.
2532	 */
2533	oldvalid = m->valid;
2534	pagebits = vm_page_bits(base, size);
2535	m->valid |= pagebits;
2536#if 0	/* NOT YET */
2537	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2538		frag = DEV_BSIZE - frag;
2539		base += frag;
2540		size -= frag;
2541		if (size < 0)
2542			size = 0;
2543	}
2544	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2545#endif
2546	if (base == 0 && size == PAGE_SIZE) {
2547		/*
2548		 * The page can only be modified within the pmap if it is
2549		 * mapped, and it can only be mapped if it was previously
2550		 * fully valid.
2551		 */
2552		if (oldvalid == VM_PAGE_BITS_ALL)
2553			/*
2554			 * Perform the pmap_clear_modify() first.  Otherwise,
2555			 * a concurrent pmap operation, such as
2556			 * pmap_protect(), could clear a modification in the
2557			 * pmap and set the dirty field on the page before
2558			 * pmap_clear_modify() had begun and after the dirty
2559			 * field was cleared here.
2560			 */
2561			pmap_clear_modify(m);
2562		m->dirty = 0;
2563		m->oflags &= ~VPO_NOSYNC;
2564	} else if (oldvalid != VM_PAGE_BITS_ALL)
2565		m->dirty &= ~pagebits;
2566	else
2567		vm_page_clear_dirty_mask(m, pagebits);
2568}
2569
2570void
2571vm_page_clear_dirty(vm_page_t m, int base, int size)
2572{
2573
2574	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2575}
2576
2577/*
2578 *	vm_page_set_invalid:
2579 *
2580 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2581 *	valid and dirty bits for the effected areas are cleared.
2582 */
2583void
2584vm_page_set_invalid(vm_page_t m, int base, int size)
2585{
2586	vm_page_bits_t bits;
2587
2588	VM_OBJECT_ASSERT_WLOCKED(m->object);
2589	KASSERT((m->oflags & VPO_BUSY) == 0,
2590	    ("vm_page_set_invalid: page %p is busy", m));
2591	bits = vm_page_bits(base, size);
2592	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2593		pmap_remove_all(m);
2594	KASSERT(!pmap_page_is_mapped(m),
2595	    ("vm_page_set_invalid: page %p is mapped", m));
2596	m->valid &= ~bits;
2597	m->dirty &= ~bits;
2598}
2599
2600/*
2601 * vm_page_zero_invalid()
2602 *
2603 *	The kernel assumes that the invalid portions of a page contain
2604 *	garbage, but such pages can be mapped into memory by user code.
2605 *	When this occurs, we must zero out the non-valid portions of the
2606 *	page so user code sees what it expects.
2607 *
2608 *	Pages are most often semi-valid when the end of a file is mapped
2609 *	into memory and the file's size is not page aligned.
2610 */
2611void
2612vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2613{
2614	int b;
2615	int i;
2616
2617	VM_OBJECT_ASSERT_WLOCKED(m->object);
2618	/*
2619	 * Scan the valid bits looking for invalid sections that
2620	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2621	 * valid bit may be set ) have already been zerod by
2622	 * vm_page_set_validclean().
2623	 */
2624	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2625		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2626		    (m->valid & ((vm_page_bits_t)1 << i))) {
2627			if (i > b) {
2628				pmap_zero_page_area(m,
2629				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2630			}
2631			b = i + 1;
2632		}
2633	}
2634
2635	/*
2636	 * setvalid is TRUE when we can safely set the zero'd areas
2637	 * as being valid.  We can do this if there are no cache consistancy
2638	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2639	 */
2640	if (setvalid)
2641		m->valid = VM_PAGE_BITS_ALL;
2642}
2643
2644/*
2645 *	vm_page_is_valid:
2646 *
2647 *	Is (partial) page valid?  Note that the case where size == 0
2648 *	will return FALSE in the degenerate case where the page is
2649 *	entirely invalid, and TRUE otherwise.
2650 */
2651int
2652vm_page_is_valid(vm_page_t m, int base, int size)
2653{
2654	vm_page_bits_t bits;
2655
2656	VM_OBJECT_ASSERT_WLOCKED(m->object);
2657	bits = vm_page_bits(base, size);
2658	return (m->valid != 0 && (m->valid & bits) == bits);
2659}
2660
2661/*
2662 * Set the page's dirty bits if the page is modified.
2663 */
2664void
2665vm_page_test_dirty(vm_page_t m)
2666{
2667
2668	VM_OBJECT_ASSERT_WLOCKED(m->object);
2669	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2670		vm_page_dirty(m);
2671}
2672
2673void
2674vm_page_lock_KBI(vm_page_t m, const char *file, int line)
2675{
2676
2677	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
2678}
2679
2680void
2681vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
2682{
2683
2684	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
2685}
2686
2687int
2688vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
2689{
2690
2691	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
2692}
2693
2694#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
2695void
2696vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
2697{
2698
2699	mtx_assert_(vm_page_lockptr(m), a, file, line);
2700}
2701#endif
2702
2703int so_zerocp_fullpage = 0;
2704
2705/*
2706 *	Replace the given page with a copy.  The copied page assumes
2707 *	the portion of the given page's "wire_count" that is not the
2708 *	responsibility of this copy-on-write mechanism.
2709 *
2710 *	The object containing the given page must have a non-zero
2711 *	paging-in-progress count and be locked.
2712 */
2713void
2714vm_page_cowfault(vm_page_t m)
2715{
2716	vm_page_t mnew;
2717	vm_object_t object;
2718	vm_pindex_t pindex;
2719
2720	vm_page_lock_assert(m, MA_OWNED);
2721	object = m->object;
2722	VM_OBJECT_ASSERT_WLOCKED(object);
2723	KASSERT(object->paging_in_progress != 0,
2724	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2725	    object));
2726	pindex = m->pindex;
2727
2728 retry_alloc:
2729	pmap_remove_all(m);
2730	vm_page_remove(m);
2731	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2732	if (mnew == NULL) {
2733		vm_page_insert(m, object, pindex);
2734		vm_page_unlock(m);
2735		VM_OBJECT_WUNLOCK(object);
2736		VM_WAIT;
2737		VM_OBJECT_WLOCK(object);
2738		if (m == vm_page_lookup(object, pindex)) {
2739			vm_page_lock(m);
2740			goto retry_alloc;
2741		} else {
2742			/*
2743			 * Page disappeared during the wait.
2744			 */
2745			return;
2746		}
2747	}
2748
2749	if (m->cow == 0) {
2750		/*
2751		 * check to see if we raced with an xmit complete when
2752		 * waiting to allocate a page.  If so, put things back
2753		 * the way they were
2754		 */
2755		vm_page_unlock(m);
2756		vm_page_lock(mnew);
2757		vm_page_free(mnew);
2758		vm_page_unlock(mnew);
2759		vm_page_insert(m, object, pindex);
2760	} else { /* clear COW & copy page */
2761		if (!so_zerocp_fullpage)
2762			pmap_copy_page(m, mnew);
2763		mnew->valid = VM_PAGE_BITS_ALL;
2764		vm_page_dirty(mnew);
2765		mnew->wire_count = m->wire_count - m->cow;
2766		m->wire_count = m->cow;
2767		vm_page_unlock(m);
2768	}
2769}
2770
2771void
2772vm_page_cowclear(vm_page_t m)
2773{
2774
2775	vm_page_lock_assert(m, MA_OWNED);
2776	if (m->cow) {
2777		m->cow--;
2778		/*
2779		 * let vm_fault add back write permission  lazily
2780		 */
2781	}
2782	/*
2783	 *  sf_buf_free() will free the page, so we needn't do it here
2784	 */
2785}
2786
2787int
2788vm_page_cowsetup(vm_page_t m)
2789{
2790
2791	vm_page_lock_assert(m, MA_OWNED);
2792	if ((m->flags & PG_FICTITIOUS) != 0 ||
2793	    (m->oflags & VPO_UNMANAGED) != 0 ||
2794	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYWLOCK(m->object))
2795		return (EBUSY);
2796	m->cow++;
2797	pmap_remove_write(m);
2798	VM_OBJECT_WUNLOCK(m->object);
2799	return (0);
2800}
2801
2802#ifdef INVARIANTS
2803void
2804vm_page_object_lock_assert(vm_page_t m)
2805{
2806
2807	/*
2808	 * Certain of the page's fields may only be modified by the
2809	 * holder of the containing object's lock or the setter of the
2810	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
2811	 * VPO_BUSY flag is not recorded, and thus cannot be checked
2812	 * here.
2813	 */
2814	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
2815		VM_OBJECT_ASSERT_WLOCKED(m->object);
2816}
2817#endif
2818
2819#include "opt_ddb.h"
2820#ifdef DDB
2821#include <sys/kernel.h>
2822
2823#include <ddb/ddb.h>
2824
2825DB_SHOW_COMMAND(page, vm_page_print_page_info)
2826{
2827	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2828	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2829	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2830	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2831	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2832	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2833	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2834	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2835	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2836	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2837}
2838
2839DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2840{
2841
2842	db_printf("PQ_FREE:");
2843	db_printf(" %d", cnt.v_free_count);
2844	db_printf("\n");
2845
2846	db_printf("PQ_CACHE:");
2847	db_printf(" %d", cnt.v_cache_count);
2848	db_printf("\n");
2849
2850	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2851		*vm_pagequeues[PQ_ACTIVE].pq_cnt,
2852		*vm_pagequeues[PQ_INACTIVE].pq_cnt);
2853}
2854#endif /* DDB */
2855