vm_page.c revision 243366
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue (vm_pagequeues[]), regardless of other locks or the
68 *	  busy state of a page.
69 *
70 *		* In general, no thread besides the page daemon can acquire or
71 *		  hold more than one page queue lock at a time.
72 *
73 *		* The page daemon can acquire and hold any pair of page queue
74 *		  locks in any order.
75 *
76 *	- The object mutex is held when inserting or removing
77 *	  pages from an object (vm_page_insert() or vm_page_remove()).
78 *
79 */
80
81/*
82 *	Resident memory management module.
83 */
84
85#include <sys/cdefs.h>
86__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 243366 2012-11-21 06:26:18Z alc $");
87
88#include "opt_vm.h"
89
90#include <sys/param.h>
91#include <sys/systm.h>
92#include <sys/lock.h>
93#include <sys/kernel.h>
94#include <sys/limits.h>
95#include <sys/malloc.h>
96#include <sys/msgbuf.h>
97#include <sys/mutex.h>
98#include <sys/proc.h>
99#include <sys/sysctl.h>
100#include <sys/vmmeter.h>
101#include <sys/vnode.h>
102
103#include <vm/vm.h>
104#include <vm/pmap.h>
105#include <vm/vm_param.h>
106#include <vm/vm_kern.h>
107#include <vm/vm_object.h>
108#include <vm/vm_page.h>
109#include <vm/vm_pageout.h>
110#include <vm/vm_pager.h>
111#include <vm/vm_phys.h>
112#include <vm/vm_reserv.h>
113#include <vm/vm_extern.h>
114#include <vm/uma.h>
115#include <vm/uma_int.h>
116
117#include <machine/md_var.h>
118
119/*
120 *	Associated with page of user-allocatable memory is a
121 *	page structure.
122 */
123
124struct vm_pagequeue vm_pagequeues[PQ_COUNT] = {
125	[PQ_INACTIVE] = {
126		.pq_pl = TAILQ_HEAD_INITIALIZER(
127		    vm_pagequeues[PQ_INACTIVE].pq_pl),
128		.pq_cnt = &cnt.v_inactive_count,
129		.pq_name = "vm inactive pagequeue"
130	},
131	[PQ_ACTIVE] = {
132		.pq_pl = TAILQ_HEAD_INITIALIZER(
133		    vm_pagequeues[PQ_ACTIVE].pq_pl),
134		.pq_cnt = &cnt.v_active_count,
135		.pq_name = "vm active pagequeue"
136	}
137};
138struct mtx_padalign vm_page_queue_free_mtx;
139
140struct mtx_padalign pa_lock[PA_LOCK_COUNT];
141
142vm_page_t vm_page_array;
143long vm_page_array_size;
144long first_page;
145int vm_page_zero_count;
146
147static int boot_pages = UMA_BOOT_PAGES;
148TUNABLE_INT("vm.boot_pages", &boot_pages);
149SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
150	"number of pages allocated for bootstrapping the VM system");
151
152static int pa_tryrelock_restart;
153SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
154    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
155
156static uma_zone_t fakepg_zone;
157
158static struct vnode *vm_page_alloc_init(vm_page_t m);
159static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
160static void vm_page_enqueue(int queue, vm_page_t m);
161static void vm_page_init_fakepg(void *dummy);
162
163SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
164
165static void
166vm_page_init_fakepg(void *dummy)
167{
168
169	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
170	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
171}
172
173/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
174#if PAGE_SIZE == 32768
175#ifdef CTASSERT
176CTASSERT(sizeof(u_long) >= 8);
177#endif
178#endif
179
180/*
181 * Try to acquire a physical address lock while a pmap is locked.  If we
182 * fail to trylock we unlock and lock the pmap directly and cache the
183 * locked pa in *locked.  The caller should then restart their loop in case
184 * the virtual to physical mapping has changed.
185 */
186int
187vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
188{
189	vm_paddr_t lockpa;
190
191	lockpa = *locked;
192	*locked = pa;
193	if (lockpa) {
194		PA_LOCK_ASSERT(lockpa, MA_OWNED);
195		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
196			return (0);
197		PA_UNLOCK(lockpa);
198	}
199	if (PA_TRYLOCK(pa))
200		return (0);
201	PMAP_UNLOCK(pmap);
202	atomic_add_int(&pa_tryrelock_restart, 1);
203	PA_LOCK(pa);
204	PMAP_LOCK(pmap);
205	return (EAGAIN);
206}
207
208/*
209 *	vm_set_page_size:
210 *
211 *	Sets the page size, perhaps based upon the memory
212 *	size.  Must be called before any use of page-size
213 *	dependent functions.
214 */
215void
216vm_set_page_size(void)
217{
218	if (cnt.v_page_size == 0)
219		cnt.v_page_size = PAGE_SIZE;
220	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
221		panic("vm_set_page_size: page size not a power of two");
222}
223
224/*
225 *	vm_page_blacklist_lookup:
226 *
227 *	See if a physical address in this page has been listed
228 *	in the blacklist tunable.  Entries in the tunable are
229 *	separated by spaces or commas.  If an invalid integer is
230 *	encountered then the rest of the string is skipped.
231 */
232static int
233vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
234{
235	vm_paddr_t bad;
236	char *cp, *pos;
237
238	for (pos = list; *pos != '\0'; pos = cp) {
239		bad = strtoq(pos, &cp, 0);
240		if (*cp != '\0') {
241			if (*cp == ' ' || *cp == ',') {
242				cp++;
243				if (cp == pos)
244					continue;
245			} else
246				break;
247		}
248		if (pa == trunc_page(bad))
249			return (1);
250	}
251	return (0);
252}
253
254/*
255 *	vm_page_startup:
256 *
257 *	Initializes the resident memory module.
258 *
259 *	Allocates memory for the page cells, and
260 *	for the object/offset-to-page hash table headers.
261 *	Each page cell is initialized and placed on the free list.
262 */
263vm_offset_t
264vm_page_startup(vm_offset_t vaddr)
265{
266	vm_offset_t mapped;
267	vm_paddr_t page_range;
268	vm_paddr_t new_end;
269	int i;
270	vm_paddr_t pa;
271	vm_paddr_t last_pa;
272	char *list;
273
274	/* the biggest memory array is the second group of pages */
275	vm_paddr_t end;
276	vm_paddr_t biggestsize;
277	vm_paddr_t low_water, high_water;
278	int biggestone;
279
280	biggestsize = 0;
281	biggestone = 0;
282	vaddr = round_page(vaddr);
283
284	for (i = 0; phys_avail[i + 1]; i += 2) {
285		phys_avail[i] = round_page(phys_avail[i]);
286		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
287	}
288
289	low_water = phys_avail[0];
290	high_water = phys_avail[1];
291
292	for (i = 0; phys_avail[i + 1]; i += 2) {
293		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
294
295		if (size > biggestsize) {
296			biggestone = i;
297			biggestsize = size;
298		}
299		if (phys_avail[i] < low_water)
300			low_water = phys_avail[i];
301		if (phys_avail[i + 1] > high_water)
302			high_water = phys_avail[i + 1];
303	}
304
305#ifdef XEN
306	low_water = 0;
307#endif
308
309	end = phys_avail[biggestone+1];
310
311	/*
312	 * Initialize the page and queue locks.
313	 */
314	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
315	for (i = 0; i < PA_LOCK_COUNT; i++)
316		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
317	for (i = 0; i < PQ_COUNT; i++)
318		vm_pagequeue_init_lock(&vm_pagequeues[i]);
319
320	/*
321	 * Allocate memory for use when boot strapping the kernel memory
322	 * allocator.
323	 */
324	new_end = end - (boot_pages * UMA_SLAB_SIZE);
325	new_end = trunc_page(new_end);
326	mapped = pmap_map(&vaddr, new_end, end,
327	    VM_PROT_READ | VM_PROT_WRITE);
328	bzero((void *)mapped, end - new_end);
329	uma_startup((void *)mapped, boot_pages);
330
331#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
332    defined(__mips__)
333	/*
334	 * Allocate a bitmap to indicate that a random physical page
335	 * needs to be included in a minidump.
336	 *
337	 * The amd64 port needs this to indicate which direct map pages
338	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
339	 *
340	 * However, i386 still needs this workspace internally within the
341	 * minidump code.  In theory, they are not needed on i386, but are
342	 * included should the sf_buf code decide to use them.
343	 */
344	last_pa = 0;
345	for (i = 0; dump_avail[i + 1] != 0; i += 2)
346		if (dump_avail[i + 1] > last_pa)
347			last_pa = dump_avail[i + 1];
348	page_range = last_pa / PAGE_SIZE;
349	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
350	new_end -= vm_page_dump_size;
351	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
352	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
353	bzero((void *)vm_page_dump, vm_page_dump_size);
354#endif
355#ifdef __amd64__
356	/*
357	 * Request that the physical pages underlying the message buffer be
358	 * included in a crash dump.  Since the message buffer is accessed
359	 * through the direct map, they are not automatically included.
360	 */
361	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
362	last_pa = pa + round_page(msgbufsize);
363	while (pa < last_pa) {
364		dump_add_page(pa);
365		pa += PAGE_SIZE;
366	}
367#endif
368	/*
369	 * Compute the number of pages of memory that will be available for
370	 * use (taking into account the overhead of a page structure per
371	 * page).
372	 */
373	first_page = low_water / PAGE_SIZE;
374#ifdef VM_PHYSSEG_SPARSE
375	page_range = 0;
376	for (i = 0; phys_avail[i + 1] != 0; i += 2)
377		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
378#elif defined(VM_PHYSSEG_DENSE)
379	page_range = high_water / PAGE_SIZE - first_page;
380#else
381#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
382#endif
383	end = new_end;
384
385	/*
386	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
387	 */
388	vaddr += PAGE_SIZE;
389
390	/*
391	 * Initialize the mem entry structures now, and put them in the free
392	 * queue.
393	 */
394	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
395	mapped = pmap_map(&vaddr, new_end, end,
396	    VM_PROT_READ | VM_PROT_WRITE);
397	vm_page_array = (vm_page_t) mapped;
398#if VM_NRESERVLEVEL > 0
399	/*
400	 * Allocate memory for the reservation management system's data
401	 * structures.
402	 */
403	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
404#endif
405#if defined(__amd64__) || defined(__mips__)
406	/*
407	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
408	 * like i386, so the pages must be tracked for a crashdump to include
409	 * this data.  This includes the vm_page_array and the early UMA
410	 * bootstrap pages.
411	 */
412	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
413		dump_add_page(pa);
414#endif
415	phys_avail[biggestone + 1] = new_end;
416
417	/*
418	 * Clear all of the page structures
419	 */
420	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
421	for (i = 0; i < page_range; i++)
422		vm_page_array[i].order = VM_NFREEORDER;
423	vm_page_array_size = page_range;
424
425	/*
426	 * Initialize the physical memory allocator.
427	 */
428	vm_phys_init();
429
430	/*
431	 * Add every available physical page that is not blacklisted to
432	 * the free lists.
433	 */
434	cnt.v_page_count = 0;
435	cnt.v_free_count = 0;
436	list = getenv("vm.blacklist");
437	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
438		pa = phys_avail[i];
439		last_pa = phys_avail[i + 1];
440		while (pa < last_pa) {
441			if (list != NULL &&
442			    vm_page_blacklist_lookup(list, pa))
443				printf("Skipping page with pa 0x%jx\n",
444				    (uintmax_t)pa);
445			else
446				vm_phys_add_page(pa);
447			pa += PAGE_SIZE;
448		}
449	}
450	freeenv(list);
451#if VM_NRESERVLEVEL > 0
452	/*
453	 * Initialize the reservation management system.
454	 */
455	vm_reserv_init();
456#endif
457	return (vaddr);
458}
459
460void
461vm_page_reference(vm_page_t m)
462{
463
464	vm_page_aflag_set(m, PGA_REFERENCED);
465}
466
467void
468vm_page_busy(vm_page_t m)
469{
470
471	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
472	KASSERT((m->oflags & VPO_BUSY) == 0,
473	    ("vm_page_busy: page already busy!!!"));
474	m->oflags |= VPO_BUSY;
475}
476
477/*
478 *      vm_page_flash:
479 *
480 *      wakeup anyone waiting for the page.
481 */
482void
483vm_page_flash(vm_page_t m)
484{
485
486	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
487	if (m->oflags & VPO_WANTED) {
488		m->oflags &= ~VPO_WANTED;
489		wakeup(m);
490	}
491}
492
493/*
494 *      vm_page_wakeup:
495 *
496 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
497 *      page.
498 *
499 */
500void
501vm_page_wakeup(vm_page_t m)
502{
503
504	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
505	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
506	m->oflags &= ~VPO_BUSY;
507	vm_page_flash(m);
508}
509
510void
511vm_page_io_start(vm_page_t m)
512{
513
514	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
515	m->busy++;
516}
517
518void
519vm_page_io_finish(vm_page_t m)
520{
521
522	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
523	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
524	m->busy--;
525	if (m->busy == 0)
526		vm_page_flash(m);
527}
528
529/*
530 * Keep page from being freed by the page daemon
531 * much of the same effect as wiring, except much lower
532 * overhead and should be used only for *very* temporary
533 * holding ("wiring").
534 */
535void
536vm_page_hold(vm_page_t mem)
537{
538
539	vm_page_lock_assert(mem, MA_OWNED);
540        mem->hold_count++;
541}
542
543void
544vm_page_unhold(vm_page_t mem)
545{
546
547	vm_page_lock_assert(mem, MA_OWNED);
548	--mem->hold_count;
549	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
550	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
551		vm_page_free_toq(mem);
552}
553
554/*
555 *	vm_page_unhold_pages:
556 *
557 *	Unhold each of the pages that is referenced by the given array.
558 */
559void
560vm_page_unhold_pages(vm_page_t *ma, int count)
561{
562	struct mtx *mtx, *new_mtx;
563
564	mtx = NULL;
565	for (; count != 0; count--) {
566		/*
567		 * Avoid releasing and reacquiring the same page lock.
568		 */
569		new_mtx = vm_page_lockptr(*ma);
570		if (mtx != new_mtx) {
571			if (mtx != NULL)
572				mtx_unlock(mtx);
573			mtx = new_mtx;
574			mtx_lock(mtx);
575		}
576		vm_page_unhold(*ma);
577		ma++;
578	}
579	if (mtx != NULL)
580		mtx_unlock(mtx);
581}
582
583vm_page_t
584PHYS_TO_VM_PAGE(vm_paddr_t pa)
585{
586	vm_page_t m;
587
588#ifdef VM_PHYSSEG_SPARSE
589	m = vm_phys_paddr_to_vm_page(pa);
590	if (m == NULL)
591		m = vm_phys_fictitious_to_vm_page(pa);
592	return (m);
593#elif defined(VM_PHYSSEG_DENSE)
594	long pi;
595
596	pi = atop(pa);
597	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
598		m = &vm_page_array[pi - first_page];
599		return (m);
600	}
601	return (vm_phys_fictitious_to_vm_page(pa));
602#else
603#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
604#endif
605}
606
607/*
608 *	vm_page_getfake:
609 *
610 *	Create a fictitious page with the specified physical address and
611 *	memory attribute.  The memory attribute is the only the machine-
612 *	dependent aspect of a fictitious page that must be initialized.
613 */
614vm_page_t
615vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
616{
617	vm_page_t m;
618
619	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
620	vm_page_initfake(m, paddr, memattr);
621	return (m);
622}
623
624void
625vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
626{
627
628	if ((m->flags & PG_FICTITIOUS) != 0) {
629		/*
630		 * The page's memattr might have changed since the
631		 * previous initialization.  Update the pmap to the
632		 * new memattr.
633		 */
634		goto memattr;
635	}
636	m->phys_addr = paddr;
637	m->queue = PQ_NONE;
638	/* Fictitious pages don't use "segind". */
639	m->flags = PG_FICTITIOUS;
640	/* Fictitious pages don't use "order" or "pool". */
641	m->oflags = VPO_BUSY | VPO_UNMANAGED;
642	m->wire_count = 1;
643memattr:
644	pmap_page_set_memattr(m, memattr);
645}
646
647/*
648 *	vm_page_putfake:
649 *
650 *	Release a fictitious page.
651 */
652void
653vm_page_putfake(vm_page_t m)
654{
655
656	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
657	KASSERT((m->flags & PG_FICTITIOUS) != 0,
658	    ("vm_page_putfake: bad page %p", m));
659	uma_zfree(fakepg_zone, m);
660}
661
662/*
663 *	vm_page_updatefake:
664 *
665 *	Update the given fictitious page to the specified physical address and
666 *	memory attribute.
667 */
668void
669vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
670{
671
672	KASSERT((m->flags & PG_FICTITIOUS) != 0,
673	    ("vm_page_updatefake: bad page %p", m));
674	m->phys_addr = paddr;
675	pmap_page_set_memattr(m, memattr);
676}
677
678/*
679 *	vm_page_free:
680 *
681 *	Free a page.
682 */
683void
684vm_page_free(vm_page_t m)
685{
686
687	m->flags &= ~PG_ZERO;
688	vm_page_free_toq(m);
689}
690
691/*
692 *	vm_page_free_zero:
693 *
694 *	Free a page to the zerod-pages queue
695 */
696void
697vm_page_free_zero(vm_page_t m)
698{
699
700	m->flags |= PG_ZERO;
701	vm_page_free_toq(m);
702}
703
704/*
705 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
706 * array which is not the request page.
707 */
708void
709vm_page_readahead_finish(vm_page_t m)
710{
711
712	if (m->valid != 0) {
713		/*
714		 * Since the page is not the requested page, whether
715		 * it should be activated or deactivated is not
716		 * obvious.  Empirical results have shown that
717		 * deactivating the page is usually the best choice,
718		 * unless the page is wanted by another thread.
719		 */
720		if (m->oflags & VPO_WANTED) {
721			vm_page_lock(m);
722			vm_page_activate(m);
723			vm_page_unlock(m);
724		} else {
725			vm_page_lock(m);
726			vm_page_deactivate(m);
727			vm_page_unlock(m);
728		}
729		vm_page_wakeup(m);
730	} else {
731		/*
732		 * Free the completely invalid page.  Such page state
733		 * occurs due to the short read operation which did
734		 * not covered our page at all, or in case when a read
735		 * error happens.
736		 */
737		vm_page_lock(m);
738		vm_page_free(m);
739		vm_page_unlock(m);
740	}
741}
742
743/*
744 *	vm_page_sleep:
745 *
746 *	Sleep and release the page lock.
747 *
748 *	The object containing the given page must be locked.
749 */
750void
751vm_page_sleep(vm_page_t m, const char *msg)
752{
753
754	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
755	if (mtx_owned(vm_page_lockptr(m)))
756		vm_page_unlock(m);
757
758	/*
759	 * It's possible that while we sleep, the page will get
760	 * unbusied and freed.  If we are holding the object
761	 * lock, we will assume we hold a reference to the object
762	 * such that even if m->object changes, we can re-lock
763	 * it.
764	 */
765	m->oflags |= VPO_WANTED;
766	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
767}
768
769/*
770 *	vm_page_dirty_KBI:		[ internal use only ]
771 *
772 *	Set all bits in the page's dirty field.
773 *
774 *	The object containing the specified page must be locked if the
775 *	call is made from the machine-independent layer.
776 *
777 *	See vm_page_clear_dirty_mask().
778 *
779 *	This function should only be called by vm_page_dirty().
780 */
781void
782vm_page_dirty_KBI(vm_page_t m)
783{
784
785	/* These assertions refer to this operation by its public name. */
786	KASSERT((m->flags & PG_CACHED) == 0,
787	    ("vm_page_dirty: page in cache!"));
788	KASSERT(!VM_PAGE_IS_FREE(m),
789	    ("vm_page_dirty: page is free!"));
790	KASSERT(m->valid == VM_PAGE_BITS_ALL,
791	    ("vm_page_dirty: page is invalid!"));
792	m->dirty = VM_PAGE_BITS_ALL;
793}
794
795/*
796 *	vm_page_splay:
797 *
798 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
799 *	the vm_page containing the given pindex.  If, however, that
800 *	pindex is not found in the vm_object, returns a vm_page that is
801 *	adjacent to the pindex, coming before or after it.
802 */
803vm_page_t
804vm_page_splay(vm_pindex_t pindex, vm_page_t root)
805{
806	struct vm_page dummy;
807	vm_page_t lefttreemax, righttreemin, y;
808
809	if (root == NULL)
810		return (root);
811	lefttreemax = righttreemin = &dummy;
812	for (;; root = y) {
813		if (pindex < root->pindex) {
814			if ((y = root->left) == NULL)
815				break;
816			if (pindex < y->pindex) {
817				/* Rotate right. */
818				root->left = y->right;
819				y->right = root;
820				root = y;
821				if ((y = root->left) == NULL)
822					break;
823			}
824			/* Link into the new root's right tree. */
825			righttreemin->left = root;
826			righttreemin = root;
827		} else if (pindex > root->pindex) {
828			if ((y = root->right) == NULL)
829				break;
830			if (pindex > y->pindex) {
831				/* Rotate left. */
832				root->right = y->left;
833				y->left = root;
834				root = y;
835				if ((y = root->right) == NULL)
836					break;
837			}
838			/* Link into the new root's left tree. */
839			lefttreemax->right = root;
840			lefttreemax = root;
841		} else
842			break;
843	}
844	/* Assemble the new root. */
845	lefttreemax->right = root->left;
846	righttreemin->left = root->right;
847	root->left = dummy.right;
848	root->right = dummy.left;
849	return (root);
850}
851
852/*
853 *	vm_page_insert:		[ internal use only ]
854 *
855 *	Inserts the given mem entry into the object and object list.
856 *
857 *	The pagetables are not updated but will presumably fault the page
858 *	in if necessary, or if a kernel page the caller will at some point
859 *	enter the page into the kernel's pmap.  We are not allowed to sleep
860 *	here so we *can't* do this anyway.
861 *
862 *	The object must be locked.
863 */
864void
865vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
866{
867	vm_page_t root;
868
869	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
870	if (m->object != NULL)
871		panic("vm_page_insert: page already inserted");
872
873	/*
874	 * Record the object/offset pair in this page
875	 */
876	m->object = object;
877	m->pindex = pindex;
878
879	/*
880	 * Now link into the object's ordered list of backed pages.
881	 */
882	root = object->root;
883	if (root == NULL) {
884		m->left = NULL;
885		m->right = NULL;
886		TAILQ_INSERT_TAIL(&object->memq, m, listq);
887	} else {
888		root = vm_page_splay(pindex, root);
889		if (pindex < root->pindex) {
890			m->left = root->left;
891			m->right = root;
892			root->left = NULL;
893			TAILQ_INSERT_BEFORE(root, m, listq);
894		} else if (pindex == root->pindex)
895			panic("vm_page_insert: offset already allocated");
896		else {
897			m->right = root->right;
898			m->left = root;
899			root->right = NULL;
900			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
901		}
902	}
903	object->root = m;
904
905	/*
906	 * Show that the object has one more resident page.
907	 */
908	object->resident_page_count++;
909
910	/*
911	 * Hold the vnode until the last page is released.
912	 */
913	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
914		vhold(object->handle);
915
916	/*
917	 * Since we are inserting a new and possibly dirty page,
918	 * update the object's OBJ_MIGHTBEDIRTY flag.
919	 */
920	if (pmap_page_is_write_mapped(m))
921		vm_object_set_writeable_dirty(object);
922}
923
924/*
925 *	vm_page_remove:
926 *
927 *	Removes the given mem entry from the object/offset-page
928 *	table and the object page list, but do not invalidate/terminate
929 *	the backing store.
930 *
931 *	The underlying pmap entry (if any) is NOT removed here.
932 *
933 *	The object must be locked.  The page must be locked if it is managed.
934 */
935void
936vm_page_remove(vm_page_t m)
937{
938	vm_object_t object;
939	vm_page_t next, prev, root;
940
941	if ((m->oflags & VPO_UNMANAGED) == 0)
942		vm_page_lock_assert(m, MA_OWNED);
943	if ((object = m->object) == NULL)
944		return;
945	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
946	if (m->oflags & VPO_BUSY) {
947		m->oflags &= ~VPO_BUSY;
948		vm_page_flash(m);
949	}
950
951	/*
952	 * Now remove from the object's list of backed pages.
953	 */
954	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
955		/*
956		 * Since the page's successor in the list is also its parent
957		 * in the tree, its right subtree must be empty.
958		 */
959		next->left = m->left;
960		KASSERT(m->right == NULL,
961		    ("vm_page_remove: page %p has right child", m));
962	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
963	    prev->right == m) {
964		/*
965		 * Since the page's predecessor in the list is also its parent
966		 * in the tree, its left subtree must be empty.
967		 */
968		KASSERT(m->left == NULL,
969		    ("vm_page_remove: page %p has left child", m));
970		prev->right = m->right;
971	} else {
972		if (m != object->root)
973			vm_page_splay(m->pindex, object->root);
974		if (m->left == NULL)
975			root = m->right;
976		else if (m->right == NULL)
977			root = m->left;
978		else {
979			/*
980			 * Move the page's successor to the root, because
981			 * pages are usually removed in ascending order.
982			 */
983			if (m->right != next)
984				vm_page_splay(m->pindex, m->right);
985			next->left = m->left;
986			root = next;
987		}
988		object->root = root;
989	}
990	TAILQ_REMOVE(&object->memq, m, listq);
991
992	/*
993	 * And show that the object has one fewer resident page.
994	 */
995	object->resident_page_count--;
996
997	/*
998	 * The vnode may now be recycled.
999	 */
1000	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1001		vdrop(object->handle);
1002
1003	m->object = NULL;
1004}
1005
1006/*
1007 *	vm_page_lookup:
1008 *
1009 *	Returns the page associated with the object/offset
1010 *	pair specified; if none is found, NULL is returned.
1011 *
1012 *	The object must be locked.
1013 */
1014vm_page_t
1015vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1016{
1017	vm_page_t m;
1018
1019	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1020	if ((m = object->root) != NULL && m->pindex != pindex) {
1021		m = vm_page_splay(pindex, m);
1022		if ((object->root = m)->pindex != pindex)
1023			m = NULL;
1024	}
1025	return (m);
1026}
1027
1028/*
1029 *	vm_page_find_least:
1030 *
1031 *	Returns the page associated with the object with least pindex
1032 *	greater than or equal to the parameter pindex, or NULL.
1033 *
1034 *	The object must be locked.
1035 */
1036vm_page_t
1037vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1038{
1039	vm_page_t m;
1040
1041	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1042	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
1043		if (m->pindex < pindex) {
1044			m = vm_page_splay(pindex, object->root);
1045			if ((object->root = m)->pindex < pindex)
1046				m = TAILQ_NEXT(m, listq);
1047		}
1048	}
1049	return (m);
1050}
1051
1052/*
1053 * Returns the given page's successor (by pindex) within the object if it is
1054 * resident; if none is found, NULL is returned.
1055 *
1056 * The object must be locked.
1057 */
1058vm_page_t
1059vm_page_next(vm_page_t m)
1060{
1061	vm_page_t next;
1062
1063	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1064	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1065	    next->pindex != m->pindex + 1)
1066		next = NULL;
1067	return (next);
1068}
1069
1070/*
1071 * Returns the given page's predecessor (by pindex) within the object if it is
1072 * resident; if none is found, NULL is returned.
1073 *
1074 * The object must be locked.
1075 */
1076vm_page_t
1077vm_page_prev(vm_page_t m)
1078{
1079	vm_page_t prev;
1080
1081	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1082	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1083	    prev->pindex != m->pindex - 1)
1084		prev = NULL;
1085	return (prev);
1086}
1087
1088/*
1089 *	vm_page_rename:
1090 *
1091 *	Move the given memory entry from its
1092 *	current object to the specified target object/offset.
1093 *
1094 *	Note: swap associated with the page must be invalidated by the move.  We
1095 *	      have to do this for several reasons:  (1) we aren't freeing the
1096 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1097 *	      moving the page from object A to B, and will then later move
1098 *	      the backing store from A to B and we can't have a conflict.
1099 *
1100 *	Note: we *always* dirty the page.  It is necessary both for the
1101 *	      fact that we moved it, and because we may be invalidating
1102 *	      swap.  If the page is on the cache, we have to deactivate it
1103 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1104 *	      on the cache.
1105 *
1106 *	The objects must be locked.  The page must be locked if it is managed.
1107 */
1108void
1109vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1110{
1111
1112	vm_page_remove(m);
1113	vm_page_insert(m, new_object, new_pindex);
1114	vm_page_dirty(m);
1115}
1116
1117/*
1118 *	Convert all of the given object's cached pages that have a
1119 *	pindex within the given range into free pages.  If the value
1120 *	zero is given for "end", then the range's upper bound is
1121 *	infinity.  If the given object is backed by a vnode and it
1122 *	transitions from having one or more cached pages to none, the
1123 *	vnode's hold count is reduced.
1124 */
1125void
1126vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1127{
1128	vm_page_t m, m_next;
1129	boolean_t empty;
1130
1131	mtx_lock(&vm_page_queue_free_mtx);
1132	if (__predict_false(object->cache == NULL)) {
1133		mtx_unlock(&vm_page_queue_free_mtx);
1134		return;
1135	}
1136	m = object->cache = vm_page_splay(start, object->cache);
1137	if (m->pindex < start) {
1138		if (m->right == NULL)
1139			m = NULL;
1140		else {
1141			m_next = vm_page_splay(start, m->right);
1142			m_next->left = m;
1143			m->right = NULL;
1144			m = object->cache = m_next;
1145		}
1146	}
1147
1148	/*
1149	 * At this point, "m" is either (1) a reference to the page
1150	 * with the least pindex that is greater than or equal to
1151	 * "start" or (2) NULL.
1152	 */
1153	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1154		/*
1155		 * Find "m"'s successor and remove "m" from the
1156		 * object's cache.
1157		 */
1158		if (m->right == NULL) {
1159			object->cache = m->left;
1160			m_next = NULL;
1161		} else {
1162			m_next = vm_page_splay(start, m->right);
1163			m_next->left = m->left;
1164			object->cache = m_next;
1165		}
1166		/* Convert "m" to a free page. */
1167		m->object = NULL;
1168		m->valid = 0;
1169		/* Clear PG_CACHED and set PG_FREE. */
1170		m->flags ^= PG_CACHED | PG_FREE;
1171		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1172		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1173		cnt.v_cache_count--;
1174		cnt.v_free_count++;
1175	}
1176	empty = object->cache == NULL;
1177	mtx_unlock(&vm_page_queue_free_mtx);
1178	if (object->type == OBJT_VNODE && empty)
1179		vdrop(object->handle);
1180}
1181
1182/*
1183 *	Returns the cached page that is associated with the given
1184 *	object and offset.  If, however, none exists, returns NULL.
1185 *
1186 *	The free page queue must be locked.
1187 */
1188static inline vm_page_t
1189vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1190{
1191	vm_page_t m;
1192
1193	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1194	if ((m = object->cache) != NULL && m->pindex != pindex) {
1195		m = vm_page_splay(pindex, m);
1196		if ((object->cache = m)->pindex != pindex)
1197			m = NULL;
1198	}
1199	return (m);
1200}
1201
1202/*
1203 *	Remove the given cached page from its containing object's
1204 *	collection of cached pages.
1205 *
1206 *	The free page queue must be locked.
1207 */
1208static void
1209vm_page_cache_remove(vm_page_t m)
1210{
1211	vm_object_t object;
1212	vm_page_t root;
1213
1214	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1215	KASSERT((m->flags & PG_CACHED) != 0,
1216	    ("vm_page_cache_remove: page %p is not cached", m));
1217	object = m->object;
1218	if (m != object->cache) {
1219		root = vm_page_splay(m->pindex, object->cache);
1220		KASSERT(root == m,
1221		    ("vm_page_cache_remove: page %p is not cached in object %p",
1222		    m, object));
1223	}
1224	if (m->left == NULL)
1225		root = m->right;
1226	else if (m->right == NULL)
1227		root = m->left;
1228	else {
1229		root = vm_page_splay(m->pindex, m->left);
1230		root->right = m->right;
1231	}
1232	object->cache = root;
1233	m->object = NULL;
1234	cnt.v_cache_count--;
1235}
1236
1237/*
1238 *	Transfer all of the cached pages with offset greater than or
1239 *	equal to 'offidxstart' from the original object's cache to the
1240 *	new object's cache.  However, any cached pages with offset
1241 *	greater than or equal to the new object's size are kept in the
1242 *	original object.  Initially, the new object's cache must be
1243 *	empty.  Offset 'offidxstart' in the original object must
1244 *	correspond to offset zero in the new object.
1245 *
1246 *	The new object must be locked.
1247 */
1248void
1249vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1250    vm_object_t new_object)
1251{
1252	vm_page_t m, m_next;
1253
1254	/*
1255	 * Insertion into an object's collection of cached pages
1256	 * requires the object to be locked.  In contrast, removal does
1257	 * not.
1258	 */
1259	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1260	KASSERT(new_object->cache == NULL,
1261	    ("vm_page_cache_transfer: object %p has cached pages",
1262	    new_object));
1263	mtx_lock(&vm_page_queue_free_mtx);
1264	if ((m = orig_object->cache) != NULL) {
1265		/*
1266		 * Transfer all of the pages with offset greater than or
1267		 * equal to 'offidxstart' from the original object's
1268		 * cache to the new object's cache.
1269		 */
1270		m = vm_page_splay(offidxstart, m);
1271		if (m->pindex < offidxstart) {
1272			orig_object->cache = m;
1273			new_object->cache = m->right;
1274			m->right = NULL;
1275		} else {
1276			orig_object->cache = m->left;
1277			new_object->cache = m;
1278			m->left = NULL;
1279		}
1280		while ((m = new_object->cache) != NULL) {
1281			if ((m->pindex - offidxstart) >= new_object->size) {
1282				/*
1283				 * Return all of the cached pages with
1284				 * offset greater than or equal to the
1285				 * new object's size to the original
1286				 * object's cache.
1287				 */
1288				new_object->cache = m->left;
1289				m->left = orig_object->cache;
1290				orig_object->cache = m;
1291				break;
1292			}
1293			m_next = vm_page_splay(m->pindex, m->right);
1294			/* Update the page's object and offset. */
1295			m->object = new_object;
1296			m->pindex -= offidxstart;
1297			if (m_next == NULL)
1298				break;
1299			m->right = NULL;
1300			m_next->left = m;
1301			new_object->cache = m_next;
1302		}
1303		KASSERT(new_object->cache == NULL ||
1304		    new_object->type == OBJT_SWAP,
1305		    ("vm_page_cache_transfer: object %p's type is incompatible"
1306		    " with cached pages", new_object));
1307	}
1308	mtx_unlock(&vm_page_queue_free_mtx);
1309}
1310
1311/*
1312 *	Returns TRUE if a cached page is associated with the given object and
1313 *	offset, and FALSE otherwise.
1314 *
1315 *	The object must be locked.
1316 */
1317boolean_t
1318vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1319{
1320	vm_page_t m;
1321
1322	/*
1323	 * Insertion into an object's collection of cached pages requires the
1324	 * object to be locked.  Therefore, if the object is locked and the
1325	 * object's collection is empty, there is no need to acquire the free
1326	 * page queues lock in order to prove that the specified page doesn't
1327	 * exist.
1328	 */
1329	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1330	if (__predict_true(object->cache == NULL))
1331		return (FALSE);
1332	mtx_lock(&vm_page_queue_free_mtx);
1333	m = vm_page_cache_lookup(object, pindex);
1334	mtx_unlock(&vm_page_queue_free_mtx);
1335	return (m != NULL);
1336}
1337
1338/*
1339 *	vm_page_alloc:
1340 *
1341 *	Allocate and return a page that is associated with the specified
1342 *	object and offset pair.  By default, this page has the flag VPO_BUSY
1343 *	set.
1344 *
1345 *	The caller must always specify an allocation class.
1346 *
1347 *	allocation classes:
1348 *	VM_ALLOC_NORMAL		normal process request
1349 *	VM_ALLOC_SYSTEM		system *really* needs a page
1350 *	VM_ALLOC_INTERRUPT	interrupt time request
1351 *
1352 *	optional allocation flags:
1353 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1354 *				intends to allocate
1355 *	VM_ALLOC_IFCACHED	return page only if it is cached
1356 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1357 *				is cached
1358 *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1359 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1360 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1361 *				should not have the flag VPO_BUSY set
1362 *	VM_ALLOC_WIRED		wire the allocated page
1363 *	VM_ALLOC_ZERO		prefer a zeroed page
1364 *
1365 *	This routine may not sleep.
1366 */
1367vm_page_t
1368vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1369{
1370	struct vnode *vp = NULL;
1371	vm_object_t m_object;
1372	vm_page_t m;
1373	int flags, req_class;
1374
1375	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1376	    ("vm_page_alloc: inconsistent object/req"));
1377	if (object != NULL)
1378		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1379
1380	req_class = req & VM_ALLOC_CLASS_MASK;
1381
1382	/*
1383	 * The page daemon is allowed to dig deeper into the free page list.
1384	 */
1385	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1386		req_class = VM_ALLOC_SYSTEM;
1387
1388	mtx_lock(&vm_page_queue_free_mtx);
1389	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1390	    (req_class == VM_ALLOC_SYSTEM &&
1391	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1392	    (req_class == VM_ALLOC_INTERRUPT &&
1393	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1394		/*
1395		 * Allocate from the free queue if the number of free pages
1396		 * exceeds the minimum for the request class.
1397		 */
1398		if (object != NULL &&
1399		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1400			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1401				mtx_unlock(&vm_page_queue_free_mtx);
1402				return (NULL);
1403			}
1404			if (vm_phys_unfree_page(m))
1405				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1406#if VM_NRESERVLEVEL > 0
1407			else if (!vm_reserv_reactivate_page(m))
1408#else
1409			else
1410#endif
1411				panic("vm_page_alloc: cache page %p is missing"
1412				    " from the free queue", m);
1413		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1414			mtx_unlock(&vm_page_queue_free_mtx);
1415			return (NULL);
1416#if VM_NRESERVLEVEL > 0
1417		} else if (object == NULL || object->type == OBJT_DEVICE ||
1418		    object->type == OBJT_SG ||
1419		    (object->flags & OBJ_COLORED) == 0 ||
1420		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1421#else
1422		} else {
1423#endif
1424			m = vm_phys_alloc_pages(object != NULL ?
1425			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1426#if VM_NRESERVLEVEL > 0
1427			if (m == NULL && vm_reserv_reclaim_inactive()) {
1428				m = vm_phys_alloc_pages(object != NULL ?
1429				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1430				    0);
1431			}
1432#endif
1433		}
1434	} else {
1435		/*
1436		 * Not allocatable, give up.
1437		 */
1438		mtx_unlock(&vm_page_queue_free_mtx);
1439		atomic_add_int(&vm_pageout_deficit,
1440		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1441		pagedaemon_wakeup();
1442		return (NULL);
1443	}
1444
1445	/*
1446	 *  At this point we had better have found a good page.
1447	 */
1448	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1449	KASSERT(m->queue == PQ_NONE,
1450	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1451	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1452	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1453	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1454	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1455	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1456	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1457	    pmap_page_get_memattr(m)));
1458	if ((m->flags & PG_CACHED) != 0) {
1459		KASSERT((m->flags & PG_ZERO) == 0,
1460		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1461		KASSERT(m->valid != 0,
1462		    ("vm_page_alloc: cached page %p is invalid", m));
1463		if (m->object == object && m->pindex == pindex)
1464	  		cnt.v_reactivated++;
1465		else
1466			m->valid = 0;
1467		m_object = m->object;
1468		vm_page_cache_remove(m);
1469		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1470			vp = m_object->handle;
1471	} else {
1472		KASSERT(VM_PAGE_IS_FREE(m),
1473		    ("vm_page_alloc: page %p is not free", m));
1474		KASSERT(m->valid == 0,
1475		    ("vm_page_alloc: free page %p is valid", m));
1476		cnt.v_free_count--;
1477	}
1478
1479	/*
1480	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1481	 * must be cleared before the free page queues lock is released.
1482	 */
1483	flags = 0;
1484	if (m->flags & PG_ZERO) {
1485		vm_page_zero_count--;
1486		if (req & VM_ALLOC_ZERO)
1487			flags = PG_ZERO;
1488	}
1489	if (req & VM_ALLOC_NODUMP)
1490		flags |= PG_NODUMP;
1491	m->flags = flags;
1492	mtx_unlock(&vm_page_queue_free_mtx);
1493	m->aflags = 0;
1494	if (object == NULL || object->type == OBJT_PHYS)
1495		m->oflags = VPO_UNMANAGED;
1496	else
1497		m->oflags = 0;
1498	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1499		m->oflags |= VPO_BUSY;
1500	if (req & VM_ALLOC_WIRED) {
1501		/*
1502		 * The page lock is not required for wiring a page until that
1503		 * page is inserted into the object.
1504		 */
1505		atomic_add_int(&cnt.v_wire_count, 1);
1506		m->wire_count = 1;
1507	}
1508	m->act_count = 0;
1509
1510	if (object != NULL) {
1511		/* Ignore device objects; the pager sets "memattr" for them. */
1512		if (object->memattr != VM_MEMATTR_DEFAULT &&
1513		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1514			pmap_page_set_memattr(m, object->memattr);
1515		vm_page_insert(m, object, pindex);
1516	} else
1517		m->pindex = pindex;
1518
1519	/*
1520	 * The following call to vdrop() must come after the above call
1521	 * to vm_page_insert() in case both affect the same object and
1522	 * vnode.  Otherwise, the affected vnode's hold count could
1523	 * temporarily become zero.
1524	 */
1525	if (vp != NULL)
1526		vdrop(vp);
1527
1528	/*
1529	 * Don't wakeup too often - wakeup the pageout daemon when
1530	 * we would be nearly out of memory.
1531	 */
1532	if (vm_paging_needed())
1533		pagedaemon_wakeup();
1534
1535	return (m);
1536}
1537
1538/*
1539 *	vm_page_alloc_contig:
1540 *
1541 *	Allocate a contiguous set of physical pages of the given size "npages"
1542 *	from the free lists.  All of the physical pages must be at or above
1543 *	the given physical address "low" and below the given physical address
1544 *	"high".  The given value "alignment" determines the alignment of the
1545 *	first physical page in the set.  If the given value "boundary" is
1546 *	non-zero, then the set of physical pages cannot cross any physical
1547 *	address boundary that is a multiple of that value.  Both "alignment"
1548 *	and "boundary" must be a power of two.
1549 *
1550 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1551 *	then the memory attribute setting for the physical pages is configured
1552 *	to the object's memory attribute setting.  Otherwise, the memory
1553 *	attribute setting for the physical pages is configured to "memattr",
1554 *	overriding the object's memory attribute setting.  However, if the
1555 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1556 *	memory attribute setting for the physical pages cannot be configured
1557 *	to VM_MEMATTR_DEFAULT.
1558 *
1559 *	The caller must always specify an allocation class.
1560 *
1561 *	allocation classes:
1562 *	VM_ALLOC_NORMAL		normal process request
1563 *	VM_ALLOC_SYSTEM		system *really* needs a page
1564 *	VM_ALLOC_INTERRUPT	interrupt time request
1565 *
1566 *	optional allocation flags:
1567 *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1568 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1569 *				should not have the flag VPO_BUSY set
1570 *	VM_ALLOC_WIRED		wire the allocated page
1571 *	VM_ALLOC_ZERO		prefer a zeroed page
1572 *
1573 *	This routine may not sleep.
1574 */
1575vm_page_t
1576vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1577    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1578    vm_paddr_t boundary, vm_memattr_t memattr)
1579{
1580	struct vnode *drop;
1581	vm_page_t deferred_vdrop_list, m, m_ret;
1582	u_int flags, oflags;
1583	int req_class;
1584
1585	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1586	    ("vm_page_alloc_contig: inconsistent object/req"));
1587	if (object != NULL) {
1588		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1589		KASSERT(object->type == OBJT_PHYS,
1590		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1591		    object));
1592	}
1593	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1594	req_class = req & VM_ALLOC_CLASS_MASK;
1595
1596	/*
1597	 * The page daemon is allowed to dig deeper into the free page list.
1598	 */
1599	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1600		req_class = VM_ALLOC_SYSTEM;
1601
1602	deferred_vdrop_list = NULL;
1603	mtx_lock(&vm_page_queue_free_mtx);
1604	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1605	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1606	    cnt.v_free_count + cnt.v_cache_count >= npages +
1607	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1608	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1609#if VM_NRESERVLEVEL > 0
1610retry:
1611		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1612		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1613		    low, high, alignment, boundary)) == NULL)
1614#endif
1615			m_ret = vm_phys_alloc_contig(npages, low, high,
1616			    alignment, boundary);
1617	} else {
1618		mtx_unlock(&vm_page_queue_free_mtx);
1619		atomic_add_int(&vm_pageout_deficit, npages);
1620		pagedaemon_wakeup();
1621		return (NULL);
1622	}
1623	if (m_ret != NULL)
1624		for (m = m_ret; m < &m_ret[npages]; m++) {
1625			drop = vm_page_alloc_init(m);
1626			if (drop != NULL) {
1627				/*
1628				 * Enqueue the vnode for deferred vdrop().
1629				 *
1630				 * Once the pages are removed from the free
1631				 * page list, "pageq" can be safely abused to
1632				 * construct a short-lived list of vnodes.
1633				 */
1634				m->pageq.tqe_prev = (void *)drop;
1635				m->pageq.tqe_next = deferred_vdrop_list;
1636				deferred_vdrop_list = m;
1637			}
1638		}
1639	else {
1640#if VM_NRESERVLEVEL > 0
1641		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1642		    boundary))
1643			goto retry;
1644#endif
1645	}
1646	mtx_unlock(&vm_page_queue_free_mtx);
1647	if (m_ret == NULL)
1648		return (NULL);
1649
1650	/*
1651	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1652	 */
1653	flags = 0;
1654	if ((req & VM_ALLOC_ZERO) != 0)
1655		flags = PG_ZERO;
1656	if ((req & VM_ALLOC_NODUMP) != 0)
1657		flags |= PG_NODUMP;
1658	if ((req & VM_ALLOC_WIRED) != 0)
1659		atomic_add_int(&cnt.v_wire_count, npages);
1660	oflags = VPO_UNMANAGED;
1661	if (object != NULL) {
1662		if ((req & VM_ALLOC_NOBUSY) == 0)
1663			oflags |= VPO_BUSY;
1664		if (object->memattr != VM_MEMATTR_DEFAULT &&
1665		    memattr == VM_MEMATTR_DEFAULT)
1666			memattr = object->memattr;
1667	}
1668	for (m = m_ret; m < &m_ret[npages]; m++) {
1669		m->aflags = 0;
1670		m->flags = (m->flags | PG_NODUMP) & flags;
1671		if ((req & VM_ALLOC_WIRED) != 0)
1672			m->wire_count = 1;
1673		/* Unmanaged pages don't use "act_count". */
1674		m->oflags = oflags;
1675		if (memattr != VM_MEMATTR_DEFAULT)
1676			pmap_page_set_memattr(m, memattr);
1677		if (object != NULL)
1678			vm_page_insert(m, object, pindex);
1679		else
1680			m->pindex = pindex;
1681		pindex++;
1682	}
1683	while (deferred_vdrop_list != NULL) {
1684		vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
1685		deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
1686	}
1687	if (vm_paging_needed())
1688		pagedaemon_wakeup();
1689	return (m_ret);
1690}
1691
1692/*
1693 * Initialize a page that has been freshly dequeued from a freelist.
1694 * The caller has to drop the vnode returned, if it is not NULL.
1695 *
1696 * This function may only be used to initialize unmanaged pages.
1697 *
1698 * To be called with vm_page_queue_free_mtx held.
1699 */
1700static struct vnode *
1701vm_page_alloc_init(vm_page_t m)
1702{
1703	struct vnode *drop;
1704	vm_object_t m_object;
1705
1706	KASSERT(m->queue == PQ_NONE,
1707	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1708	    m, m->queue));
1709	KASSERT(m->wire_count == 0,
1710	    ("vm_page_alloc_init: page %p is wired", m));
1711	KASSERT(m->hold_count == 0,
1712	    ("vm_page_alloc_init: page %p is held", m));
1713	KASSERT(m->busy == 0,
1714	    ("vm_page_alloc_init: page %p is busy", m));
1715	KASSERT(m->dirty == 0,
1716	    ("vm_page_alloc_init: page %p is dirty", m));
1717	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1718	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1719	    m, pmap_page_get_memattr(m)));
1720	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1721	drop = NULL;
1722	if ((m->flags & PG_CACHED) != 0) {
1723		KASSERT((m->flags & PG_ZERO) == 0,
1724		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1725		m->valid = 0;
1726		m_object = m->object;
1727		vm_page_cache_remove(m);
1728		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1729			drop = m_object->handle;
1730	} else {
1731		KASSERT(VM_PAGE_IS_FREE(m),
1732		    ("vm_page_alloc_init: page %p is not free", m));
1733		KASSERT(m->valid == 0,
1734		    ("vm_page_alloc_init: free page %p is valid", m));
1735		cnt.v_free_count--;
1736		if ((m->flags & PG_ZERO) != 0)
1737			vm_page_zero_count--;
1738	}
1739	/* Don't clear the PG_ZERO flag; we'll need it later. */
1740	m->flags &= PG_ZERO;
1741	return (drop);
1742}
1743
1744/*
1745 * 	vm_page_alloc_freelist:
1746 *
1747 *	Allocate a physical page from the specified free page list.
1748 *
1749 *	The caller must always specify an allocation class.
1750 *
1751 *	allocation classes:
1752 *	VM_ALLOC_NORMAL		normal process request
1753 *	VM_ALLOC_SYSTEM		system *really* needs a page
1754 *	VM_ALLOC_INTERRUPT	interrupt time request
1755 *
1756 *	optional allocation flags:
1757 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1758 *				intends to allocate
1759 *	VM_ALLOC_WIRED		wire the allocated page
1760 *	VM_ALLOC_ZERO		prefer a zeroed page
1761 *
1762 *	This routine may not sleep.
1763 */
1764vm_page_t
1765vm_page_alloc_freelist(int flind, int req)
1766{
1767	struct vnode *drop;
1768	vm_page_t m;
1769	u_int flags;
1770	int req_class;
1771
1772	req_class = req & VM_ALLOC_CLASS_MASK;
1773
1774	/*
1775	 * The page daemon is allowed to dig deeper into the free page list.
1776	 */
1777	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1778		req_class = VM_ALLOC_SYSTEM;
1779
1780	/*
1781	 * Do not allocate reserved pages unless the req has asked for it.
1782	 */
1783	mtx_lock(&vm_page_queue_free_mtx);
1784	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1785	    (req_class == VM_ALLOC_SYSTEM &&
1786	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1787	    (req_class == VM_ALLOC_INTERRUPT &&
1788	    cnt.v_free_count + cnt.v_cache_count > 0))
1789		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1790	else {
1791		mtx_unlock(&vm_page_queue_free_mtx);
1792		atomic_add_int(&vm_pageout_deficit,
1793		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1794		pagedaemon_wakeup();
1795		return (NULL);
1796	}
1797	if (m == NULL) {
1798		mtx_unlock(&vm_page_queue_free_mtx);
1799		return (NULL);
1800	}
1801	drop = vm_page_alloc_init(m);
1802	mtx_unlock(&vm_page_queue_free_mtx);
1803
1804	/*
1805	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1806	 */
1807	m->aflags = 0;
1808	flags = 0;
1809	if ((req & VM_ALLOC_ZERO) != 0)
1810		flags = PG_ZERO;
1811	m->flags &= flags;
1812	if ((req & VM_ALLOC_WIRED) != 0) {
1813		/*
1814		 * The page lock is not required for wiring a page that does
1815		 * not belong to an object.
1816		 */
1817		atomic_add_int(&cnt.v_wire_count, 1);
1818		m->wire_count = 1;
1819	}
1820	/* Unmanaged pages don't use "act_count". */
1821	m->oflags = VPO_UNMANAGED;
1822	if (drop != NULL)
1823		vdrop(drop);
1824	if (vm_paging_needed())
1825		pagedaemon_wakeup();
1826	return (m);
1827}
1828
1829/*
1830 *	vm_wait:	(also see VM_WAIT macro)
1831 *
1832 *	Sleep until free pages are available for allocation.
1833 *	- Called in various places before memory allocations.
1834 */
1835void
1836vm_wait(void)
1837{
1838
1839	mtx_lock(&vm_page_queue_free_mtx);
1840	if (curproc == pageproc) {
1841		vm_pageout_pages_needed = 1;
1842		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1843		    PDROP | PSWP, "VMWait", 0);
1844	} else {
1845		if (!vm_pages_needed) {
1846			vm_pages_needed = 1;
1847			wakeup(&vm_pages_needed);
1848		}
1849		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1850		    "vmwait", 0);
1851	}
1852}
1853
1854/*
1855 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1856 *
1857 *	Sleep until free pages are available for allocation.
1858 *	- Called only in vm_fault so that processes page faulting
1859 *	  can be easily tracked.
1860 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1861 *	  processes will be able to grab memory first.  Do not change
1862 *	  this balance without careful testing first.
1863 */
1864void
1865vm_waitpfault(void)
1866{
1867
1868	mtx_lock(&vm_page_queue_free_mtx);
1869	if (!vm_pages_needed) {
1870		vm_pages_needed = 1;
1871		wakeup(&vm_pages_needed);
1872	}
1873	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1874	    "pfault", 0);
1875}
1876
1877/*
1878 *	vm_page_dequeue:
1879 *
1880 *	Remove the given page from its current page queue.
1881 *
1882 *	The page must be locked.
1883 */
1884void
1885vm_page_dequeue(vm_page_t m)
1886{
1887	struct vm_pagequeue *pq;
1888
1889	vm_page_lock_assert(m, MA_OWNED);
1890	KASSERT(m->queue != PQ_NONE,
1891	    ("vm_page_dequeue: page %p is not queued", m));
1892	pq = &vm_pagequeues[m->queue];
1893	vm_pagequeue_lock(pq);
1894	m->queue = PQ_NONE;
1895	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1896	(*pq->pq_cnt)--;
1897	vm_pagequeue_unlock(pq);
1898}
1899
1900/*
1901 *	vm_page_dequeue_locked:
1902 *
1903 *	Remove the given page from its current page queue.
1904 *
1905 *	The page and page queue must be locked.
1906 */
1907void
1908vm_page_dequeue_locked(vm_page_t m)
1909{
1910	struct vm_pagequeue *pq;
1911
1912	vm_page_lock_assert(m, MA_OWNED);
1913	pq = &vm_pagequeues[m->queue];
1914	vm_pagequeue_assert_locked(pq);
1915	m->queue = PQ_NONE;
1916	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1917	(*pq->pq_cnt)--;
1918}
1919
1920/*
1921 *	vm_page_enqueue:
1922 *
1923 *	Add the given page to the specified page queue.
1924 *
1925 *	The page must be locked.
1926 */
1927static void
1928vm_page_enqueue(int queue, vm_page_t m)
1929{
1930	struct vm_pagequeue *pq;
1931
1932	vm_page_lock_assert(m, MA_OWNED);
1933	pq = &vm_pagequeues[queue];
1934	vm_pagequeue_lock(pq);
1935	m->queue = queue;
1936	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1937	++*pq->pq_cnt;
1938	vm_pagequeue_unlock(pq);
1939}
1940
1941/*
1942 *	vm_page_requeue:
1943 *
1944 *	Move the given page to the tail of its current page queue.
1945 *
1946 *	The page must be locked.
1947 */
1948void
1949vm_page_requeue(vm_page_t m)
1950{
1951	struct vm_pagequeue *pq;
1952
1953	vm_page_lock_assert(m, MA_OWNED);
1954	KASSERT(m->queue != PQ_NONE,
1955	    ("vm_page_requeue: page %p is not queued", m));
1956	pq = &vm_pagequeues[m->queue];
1957	vm_pagequeue_lock(pq);
1958	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1959	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1960	vm_pagequeue_unlock(pq);
1961}
1962
1963/*
1964 *	vm_page_requeue_locked:
1965 *
1966 *	Move the given page to the tail of its current page queue.
1967 *
1968 *	The page queue must be locked.
1969 */
1970void
1971vm_page_requeue_locked(vm_page_t m)
1972{
1973	struct vm_pagequeue *pq;
1974
1975	KASSERT(m->queue != PQ_NONE,
1976	    ("vm_page_requeue_locked: page %p is not queued", m));
1977	pq = &vm_pagequeues[m->queue];
1978	vm_pagequeue_assert_locked(pq);
1979	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1980	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1981}
1982
1983/*
1984 *	vm_page_activate:
1985 *
1986 *	Put the specified page on the active list (if appropriate).
1987 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1988 *	mess with it.
1989 *
1990 *	The page must be locked.
1991 */
1992void
1993vm_page_activate(vm_page_t m)
1994{
1995	int queue;
1996
1997	vm_page_lock_assert(m, MA_OWNED);
1998	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1999	if ((queue = m->queue) != PQ_ACTIVE) {
2000		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2001			if (m->act_count < ACT_INIT)
2002				m->act_count = ACT_INIT;
2003			if (queue != PQ_NONE)
2004				vm_page_dequeue(m);
2005			vm_page_enqueue(PQ_ACTIVE, m);
2006		} else
2007			KASSERT(queue == PQ_NONE,
2008			    ("vm_page_activate: wired page %p is queued", m));
2009	} else {
2010		if (m->act_count < ACT_INIT)
2011			m->act_count = ACT_INIT;
2012	}
2013}
2014
2015/*
2016 *	vm_page_free_wakeup:
2017 *
2018 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2019 *	routine is called when a page has been added to the cache or free
2020 *	queues.
2021 *
2022 *	The page queues must be locked.
2023 */
2024static inline void
2025vm_page_free_wakeup(void)
2026{
2027
2028	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2029	/*
2030	 * if pageout daemon needs pages, then tell it that there are
2031	 * some free.
2032	 */
2033	if (vm_pageout_pages_needed &&
2034	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
2035		wakeup(&vm_pageout_pages_needed);
2036		vm_pageout_pages_needed = 0;
2037	}
2038	/*
2039	 * wakeup processes that are waiting on memory if we hit a
2040	 * high water mark. And wakeup scheduler process if we have
2041	 * lots of memory. this process will swapin processes.
2042	 */
2043	if (vm_pages_needed && !vm_page_count_min()) {
2044		vm_pages_needed = 0;
2045		wakeup(&cnt.v_free_count);
2046	}
2047}
2048
2049/*
2050 *	vm_page_free_toq:
2051 *
2052 *	Returns the given page to the free list,
2053 *	disassociating it with any VM object.
2054 *
2055 *	The object must be locked.  The page must be locked if it is managed.
2056 */
2057void
2058vm_page_free_toq(vm_page_t m)
2059{
2060
2061	if ((m->oflags & VPO_UNMANAGED) == 0) {
2062		vm_page_lock_assert(m, MA_OWNED);
2063		KASSERT(!pmap_page_is_mapped(m),
2064		    ("vm_page_free_toq: freeing mapped page %p", m));
2065	} else
2066		KASSERT(m->queue == PQ_NONE,
2067		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2068	PCPU_INC(cnt.v_tfree);
2069
2070	if (VM_PAGE_IS_FREE(m))
2071		panic("vm_page_free: freeing free page %p", m);
2072	else if (m->busy != 0)
2073		panic("vm_page_free: freeing busy page %p", m);
2074
2075	/*
2076	 * Unqueue, then remove page.  Note that we cannot destroy
2077	 * the page here because we do not want to call the pager's
2078	 * callback routine until after we've put the page on the
2079	 * appropriate free queue.
2080	 */
2081	vm_page_remque(m);
2082	vm_page_remove(m);
2083
2084	/*
2085	 * If fictitious remove object association and
2086	 * return, otherwise delay object association removal.
2087	 */
2088	if ((m->flags & PG_FICTITIOUS) != 0) {
2089		return;
2090	}
2091
2092	m->valid = 0;
2093	vm_page_undirty(m);
2094
2095	if (m->wire_count != 0)
2096		panic("vm_page_free: freeing wired page %p", m);
2097	if (m->hold_count != 0) {
2098		m->flags &= ~PG_ZERO;
2099		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2100		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2101		m->flags |= PG_UNHOLDFREE;
2102	} else {
2103		/*
2104		 * Restore the default memory attribute to the page.
2105		 */
2106		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2107			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2108
2109		/*
2110		 * Insert the page into the physical memory allocator's
2111		 * cache/free page queues.
2112		 */
2113		mtx_lock(&vm_page_queue_free_mtx);
2114		m->flags |= PG_FREE;
2115		cnt.v_free_count++;
2116#if VM_NRESERVLEVEL > 0
2117		if (!vm_reserv_free_page(m))
2118#else
2119		if (TRUE)
2120#endif
2121			vm_phys_free_pages(m, 0);
2122		if ((m->flags & PG_ZERO) != 0)
2123			++vm_page_zero_count;
2124		else
2125			vm_page_zero_idle_wakeup();
2126		vm_page_free_wakeup();
2127		mtx_unlock(&vm_page_queue_free_mtx);
2128	}
2129}
2130
2131/*
2132 *	vm_page_wire:
2133 *
2134 *	Mark this page as wired down by yet
2135 *	another map, removing it from paging queues
2136 *	as necessary.
2137 *
2138 *	If the page is fictitious, then its wire count must remain one.
2139 *
2140 *	The page must be locked.
2141 */
2142void
2143vm_page_wire(vm_page_t m)
2144{
2145
2146	/*
2147	 * Only bump the wire statistics if the page is not already wired,
2148	 * and only unqueue the page if it is on some queue (if it is unmanaged
2149	 * it is already off the queues).
2150	 */
2151	vm_page_lock_assert(m, MA_OWNED);
2152	if ((m->flags & PG_FICTITIOUS) != 0) {
2153		KASSERT(m->wire_count == 1,
2154		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2155		    m));
2156		return;
2157	}
2158	if (m->wire_count == 0) {
2159		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2160		    m->queue == PQ_NONE,
2161		    ("vm_page_wire: unmanaged page %p is queued", m));
2162		vm_page_remque(m);
2163		atomic_add_int(&cnt.v_wire_count, 1);
2164	}
2165	m->wire_count++;
2166	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2167}
2168
2169/*
2170 * vm_page_unwire:
2171 *
2172 * Release one wiring of the specified page, potentially enabling it to be
2173 * paged again.  If paging is enabled, then the value of the parameter
2174 * "activate" determines to which queue the page is added.  If "activate" is
2175 * non-zero, then the page is added to the active queue.  Otherwise, it is
2176 * added to the inactive queue.
2177 *
2178 * However, unless the page belongs to an object, it is not enqueued because
2179 * it cannot be paged out.
2180 *
2181 * If a page is fictitious, then its wire count must alway be one.
2182 *
2183 * A managed page must be locked.
2184 */
2185void
2186vm_page_unwire(vm_page_t m, int activate)
2187{
2188
2189	if ((m->oflags & VPO_UNMANAGED) == 0)
2190		vm_page_lock_assert(m, MA_OWNED);
2191	if ((m->flags & PG_FICTITIOUS) != 0) {
2192		KASSERT(m->wire_count == 1,
2193	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2194		return;
2195	}
2196	if (m->wire_count > 0) {
2197		m->wire_count--;
2198		if (m->wire_count == 0) {
2199			atomic_subtract_int(&cnt.v_wire_count, 1);
2200			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2201			    m->object == NULL)
2202				return;
2203			if (!activate)
2204				m->flags &= ~PG_WINATCFLS;
2205			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2206		}
2207	} else
2208		panic("vm_page_unwire: page %p's wire count is zero", m);
2209}
2210
2211/*
2212 * Move the specified page to the inactive queue.
2213 *
2214 * Many pages placed on the inactive queue should actually go
2215 * into the cache, but it is difficult to figure out which.  What
2216 * we do instead, if the inactive target is well met, is to put
2217 * clean pages at the head of the inactive queue instead of the tail.
2218 * This will cause them to be moved to the cache more quickly and
2219 * if not actively re-referenced, reclaimed more quickly.  If we just
2220 * stick these pages at the end of the inactive queue, heavy filesystem
2221 * meta-data accesses can cause an unnecessary paging load on memory bound
2222 * processes.  This optimization causes one-time-use metadata to be
2223 * reused more quickly.
2224 *
2225 * Normally athead is 0 resulting in LRU operation.  athead is set
2226 * to 1 if we want this page to be 'as if it were placed in the cache',
2227 * except without unmapping it from the process address space.
2228 *
2229 * The page must be locked.
2230 */
2231static inline void
2232_vm_page_deactivate(vm_page_t m, int athead)
2233{
2234	struct vm_pagequeue *pq;
2235	int queue;
2236
2237	vm_page_lock_assert(m, MA_OWNED);
2238
2239	/*
2240	 * Ignore if already inactive.
2241	 */
2242	if ((queue = m->queue) == PQ_INACTIVE)
2243		return;
2244	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2245		if (queue != PQ_NONE)
2246			vm_page_dequeue(m);
2247		m->flags &= ~PG_WINATCFLS;
2248		pq = &vm_pagequeues[PQ_INACTIVE];
2249		vm_pagequeue_lock(pq);
2250		m->queue = PQ_INACTIVE;
2251		if (athead)
2252			TAILQ_INSERT_HEAD(&pq->pq_pl, m, pageq);
2253		else
2254			TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
2255		cnt.v_inactive_count++;
2256		vm_pagequeue_unlock(pq);
2257	}
2258}
2259
2260/*
2261 * Move the specified page to the inactive queue.
2262 *
2263 * The page must be locked.
2264 */
2265void
2266vm_page_deactivate(vm_page_t m)
2267{
2268
2269	_vm_page_deactivate(m, 0);
2270}
2271
2272/*
2273 * vm_page_try_to_cache:
2274 *
2275 * Returns 0 on failure, 1 on success
2276 */
2277int
2278vm_page_try_to_cache(vm_page_t m)
2279{
2280
2281	vm_page_lock_assert(m, MA_OWNED);
2282	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2283	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2284	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2285		return (0);
2286	pmap_remove_all(m);
2287	if (m->dirty)
2288		return (0);
2289	vm_page_cache(m);
2290	return (1);
2291}
2292
2293/*
2294 * vm_page_try_to_free()
2295 *
2296 *	Attempt to free the page.  If we cannot free it, we do nothing.
2297 *	1 is returned on success, 0 on failure.
2298 */
2299int
2300vm_page_try_to_free(vm_page_t m)
2301{
2302
2303	vm_page_lock_assert(m, MA_OWNED);
2304	if (m->object != NULL)
2305		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2306	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2307	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2308		return (0);
2309	pmap_remove_all(m);
2310	if (m->dirty)
2311		return (0);
2312	vm_page_free(m);
2313	return (1);
2314}
2315
2316/*
2317 * vm_page_cache
2318 *
2319 * Put the specified page onto the page cache queue (if appropriate).
2320 *
2321 * The object and page must be locked.
2322 */
2323void
2324vm_page_cache(vm_page_t m)
2325{
2326	vm_object_t object;
2327	vm_page_t next, prev, root;
2328
2329	vm_page_lock_assert(m, MA_OWNED);
2330	object = m->object;
2331	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2332	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2333	    m->hold_count || m->wire_count)
2334		panic("vm_page_cache: attempting to cache busy page");
2335	KASSERT(!pmap_page_is_mapped(m),
2336	    ("vm_page_cache: page %p is mapped", m));
2337	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2338	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2339	    (object->type == OBJT_SWAP &&
2340	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2341		/*
2342		 * Hypothesis: A cache-elgible page belonging to a
2343		 * default object or swap object but without a backing
2344		 * store must be zero filled.
2345		 */
2346		vm_page_free(m);
2347		return;
2348	}
2349	KASSERT((m->flags & PG_CACHED) == 0,
2350	    ("vm_page_cache: page %p is already cached", m));
2351	PCPU_INC(cnt.v_tcached);
2352
2353	/*
2354	 * Remove the page from the paging queues.
2355	 */
2356	vm_page_remque(m);
2357
2358	/*
2359	 * Remove the page from the object's collection of resident
2360	 * pages.
2361	 */
2362	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
2363		/*
2364		 * Since the page's successor in the list is also its parent
2365		 * in the tree, its right subtree must be empty.
2366		 */
2367		next->left = m->left;
2368		KASSERT(m->right == NULL,
2369		    ("vm_page_cache: page %p has right child", m));
2370	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
2371	    prev->right == m) {
2372		/*
2373		 * Since the page's predecessor in the list is also its parent
2374		 * in the tree, its left subtree must be empty.
2375		 */
2376		KASSERT(m->left == NULL,
2377		    ("vm_page_cache: page %p has left child", m));
2378		prev->right = m->right;
2379	} else {
2380		if (m != object->root)
2381			vm_page_splay(m->pindex, object->root);
2382		if (m->left == NULL)
2383			root = m->right;
2384		else if (m->right == NULL)
2385			root = m->left;
2386		else {
2387			/*
2388			 * Move the page's successor to the root, because
2389			 * pages are usually removed in ascending order.
2390			 */
2391			if (m->right != next)
2392				vm_page_splay(m->pindex, m->right);
2393			next->left = m->left;
2394			root = next;
2395		}
2396		object->root = root;
2397	}
2398	TAILQ_REMOVE(&object->memq, m, listq);
2399	object->resident_page_count--;
2400
2401	/*
2402	 * Restore the default memory attribute to the page.
2403	 */
2404	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2405		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2406
2407	/*
2408	 * Insert the page into the object's collection of cached pages
2409	 * and the physical memory allocator's cache/free page queues.
2410	 */
2411	m->flags &= ~PG_ZERO;
2412	mtx_lock(&vm_page_queue_free_mtx);
2413	m->flags |= PG_CACHED;
2414	cnt.v_cache_count++;
2415	root = object->cache;
2416	if (root == NULL) {
2417		m->left = NULL;
2418		m->right = NULL;
2419	} else {
2420		root = vm_page_splay(m->pindex, root);
2421		if (m->pindex < root->pindex) {
2422			m->left = root->left;
2423			m->right = root;
2424			root->left = NULL;
2425		} else if (__predict_false(m->pindex == root->pindex))
2426			panic("vm_page_cache: offset already cached");
2427		else {
2428			m->right = root->right;
2429			m->left = root;
2430			root->right = NULL;
2431		}
2432	}
2433	object->cache = m;
2434#if VM_NRESERVLEVEL > 0
2435	if (!vm_reserv_free_page(m)) {
2436#else
2437	if (TRUE) {
2438#endif
2439		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2440		vm_phys_free_pages(m, 0);
2441	}
2442	vm_page_free_wakeup();
2443	mtx_unlock(&vm_page_queue_free_mtx);
2444
2445	/*
2446	 * Increment the vnode's hold count if this is the object's only
2447	 * cached page.  Decrement the vnode's hold count if this was
2448	 * the object's only resident page.
2449	 */
2450	if (object->type == OBJT_VNODE) {
2451		if (root == NULL && object->resident_page_count != 0)
2452			vhold(object->handle);
2453		else if (root != NULL && object->resident_page_count == 0)
2454			vdrop(object->handle);
2455	}
2456}
2457
2458/*
2459 * vm_page_dontneed
2460 *
2461 *	Cache, deactivate, or do nothing as appropriate.  This routine
2462 *	is typically used by madvise() MADV_DONTNEED.
2463 *
2464 *	Generally speaking we want to move the page into the cache so
2465 *	it gets reused quickly.  However, this can result in a silly syndrome
2466 *	due to the page recycling too quickly.  Small objects will not be
2467 *	fully cached.  On the otherhand, if we move the page to the inactive
2468 *	queue we wind up with a problem whereby very large objects
2469 *	unnecessarily blow away our inactive and cache queues.
2470 *
2471 *	The solution is to move the pages based on a fixed weighting.  We
2472 *	either leave them alone, deactivate them, or move them to the cache,
2473 *	where moving them to the cache has the highest weighting.
2474 *	By forcing some pages into other queues we eventually force the
2475 *	system to balance the queues, potentially recovering other unrelated
2476 *	space from active.  The idea is to not force this to happen too
2477 *	often.
2478 *
2479 *	The object and page must be locked.
2480 */
2481void
2482vm_page_dontneed(vm_page_t m)
2483{
2484	int dnw;
2485	int head;
2486
2487	vm_page_lock_assert(m, MA_OWNED);
2488	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2489	dnw = PCPU_GET(dnweight);
2490	PCPU_INC(dnweight);
2491
2492	/*
2493	 * Occasionally leave the page alone.
2494	 */
2495	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2496		if (m->act_count >= ACT_INIT)
2497			--m->act_count;
2498		return;
2499	}
2500
2501	/*
2502	 * Clear any references to the page.  Otherwise, the page daemon will
2503	 * immediately reactivate the page.
2504	 *
2505	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2506	 * pmap operation, such as pmap_remove(), could clear a reference in
2507	 * the pmap and set PGA_REFERENCED on the page before the
2508	 * pmap_clear_reference() had completed.  Consequently, the page would
2509	 * appear referenced based upon an old reference that occurred before
2510	 * this function ran.
2511	 */
2512	pmap_clear_reference(m);
2513	vm_page_aflag_clear(m, PGA_REFERENCED);
2514
2515	if (m->dirty == 0 && pmap_is_modified(m))
2516		vm_page_dirty(m);
2517
2518	if (m->dirty || (dnw & 0x0070) == 0) {
2519		/*
2520		 * Deactivate the page 3 times out of 32.
2521		 */
2522		head = 0;
2523	} else {
2524		/*
2525		 * Cache the page 28 times out of every 32.  Note that
2526		 * the page is deactivated instead of cached, but placed
2527		 * at the head of the queue instead of the tail.
2528		 */
2529		head = 1;
2530	}
2531	_vm_page_deactivate(m, head);
2532}
2533
2534/*
2535 * Grab a page, waiting until we are waken up due to the page
2536 * changing state.  We keep on waiting, if the page continues
2537 * to be in the object.  If the page doesn't exist, first allocate it
2538 * and then conditionally zero it.
2539 *
2540 * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2541 * to facilitate its eventual removal.
2542 *
2543 * This routine may sleep.
2544 *
2545 * The object must be locked on entry.  The lock will, however, be released
2546 * and reacquired if the routine sleeps.
2547 */
2548vm_page_t
2549vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2550{
2551	vm_page_t m;
2552
2553	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2554	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2555	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2556retrylookup:
2557	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2558		if ((m->oflags & VPO_BUSY) != 0 ||
2559		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2560			/*
2561			 * Reference the page before unlocking and
2562			 * sleeping so that the page daemon is less
2563			 * likely to reclaim it.
2564			 */
2565			vm_page_aflag_set(m, PGA_REFERENCED);
2566			vm_page_sleep(m, "pgrbwt");
2567			goto retrylookup;
2568		} else {
2569			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2570				vm_page_lock(m);
2571				vm_page_wire(m);
2572				vm_page_unlock(m);
2573			}
2574			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2575				vm_page_busy(m);
2576			return (m);
2577		}
2578	}
2579	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2580	    VM_ALLOC_IGN_SBUSY));
2581	if (m == NULL) {
2582		VM_OBJECT_UNLOCK(object);
2583		VM_WAIT;
2584		VM_OBJECT_LOCK(object);
2585		goto retrylookup;
2586	} else if (m->valid != 0)
2587		return (m);
2588	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2589		pmap_zero_page(m);
2590	return (m);
2591}
2592
2593/*
2594 * Mapping function for valid or dirty bits in a page.
2595 *
2596 * Inputs are required to range within a page.
2597 */
2598vm_page_bits_t
2599vm_page_bits(int base, int size)
2600{
2601	int first_bit;
2602	int last_bit;
2603
2604	KASSERT(
2605	    base + size <= PAGE_SIZE,
2606	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2607	);
2608
2609	if (size == 0)		/* handle degenerate case */
2610		return (0);
2611
2612	first_bit = base >> DEV_BSHIFT;
2613	last_bit = (base + size - 1) >> DEV_BSHIFT;
2614
2615	return (((vm_page_bits_t)2 << last_bit) -
2616	    ((vm_page_bits_t)1 << first_bit));
2617}
2618
2619/*
2620 *	vm_page_set_valid_range:
2621 *
2622 *	Sets portions of a page valid.  The arguments are expected
2623 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2624 *	of any partial chunks touched by the range.  The invalid portion of
2625 *	such chunks will be zeroed.
2626 *
2627 *	(base + size) must be less then or equal to PAGE_SIZE.
2628 */
2629void
2630vm_page_set_valid_range(vm_page_t m, int base, int size)
2631{
2632	int endoff, frag;
2633
2634	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2635	if (size == 0)	/* handle degenerate case */
2636		return;
2637
2638	/*
2639	 * If the base is not DEV_BSIZE aligned and the valid
2640	 * bit is clear, we have to zero out a portion of the
2641	 * first block.
2642	 */
2643	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2644	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2645		pmap_zero_page_area(m, frag, base - frag);
2646
2647	/*
2648	 * If the ending offset is not DEV_BSIZE aligned and the
2649	 * valid bit is clear, we have to zero out a portion of
2650	 * the last block.
2651	 */
2652	endoff = base + size;
2653	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2654	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2655		pmap_zero_page_area(m, endoff,
2656		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2657
2658	/*
2659	 * Assert that no previously invalid block that is now being validated
2660	 * is already dirty.
2661	 */
2662	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2663	    ("vm_page_set_valid_range: page %p is dirty", m));
2664
2665	/*
2666	 * Set valid bits inclusive of any overlap.
2667	 */
2668	m->valid |= vm_page_bits(base, size);
2669}
2670
2671/*
2672 * Clear the given bits from the specified page's dirty field.
2673 */
2674static __inline void
2675vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2676{
2677	uintptr_t addr;
2678#if PAGE_SIZE < 16384
2679	int shift;
2680#endif
2681
2682	/*
2683	 * If the object is locked and the page is neither VPO_BUSY nor
2684	 * write mapped, then the page's dirty field cannot possibly be
2685	 * set by a concurrent pmap operation.
2686	 */
2687	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2688	if ((m->oflags & VPO_BUSY) == 0 && !pmap_page_is_write_mapped(m))
2689		m->dirty &= ~pagebits;
2690	else {
2691		/*
2692		 * The pmap layer can call vm_page_dirty() without
2693		 * holding a distinguished lock.  The combination of
2694		 * the object's lock and an atomic operation suffice
2695		 * to guarantee consistency of the page dirty field.
2696		 *
2697		 * For PAGE_SIZE == 32768 case, compiler already
2698		 * properly aligns the dirty field, so no forcible
2699		 * alignment is needed. Only require existence of
2700		 * atomic_clear_64 when page size is 32768.
2701		 */
2702		addr = (uintptr_t)&m->dirty;
2703#if PAGE_SIZE == 32768
2704		atomic_clear_64((uint64_t *)addr, pagebits);
2705#elif PAGE_SIZE == 16384
2706		atomic_clear_32((uint32_t *)addr, pagebits);
2707#else		/* PAGE_SIZE <= 8192 */
2708		/*
2709		 * Use a trick to perform a 32-bit atomic on the
2710		 * containing aligned word, to not depend on the existence
2711		 * of atomic_clear_{8, 16}.
2712		 */
2713		shift = addr & (sizeof(uint32_t) - 1);
2714#if BYTE_ORDER == BIG_ENDIAN
2715		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2716#else
2717		shift *= NBBY;
2718#endif
2719		addr &= ~(sizeof(uint32_t) - 1);
2720		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2721#endif		/* PAGE_SIZE */
2722	}
2723}
2724
2725/*
2726 *	vm_page_set_validclean:
2727 *
2728 *	Sets portions of a page valid and clean.  The arguments are expected
2729 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2730 *	of any partial chunks touched by the range.  The invalid portion of
2731 *	such chunks will be zero'd.
2732 *
2733 *	(base + size) must be less then or equal to PAGE_SIZE.
2734 */
2735void
2736vm_page_set_validclean(vm_page_t m, int base, int size)
2737{
2738	vm_page_bits_t oldvalid, pagebits;
2739	int endoff, frag;
2740
2741	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2742	if (size == 0)	/* handle degenerate case */
2743		return;
2744
2745	/*
2746	 * If the base is not DEV_BSIZE aligned and the valid
2747	 * bit is clear, we have to zero out a portion of the
2748	 * first block.
2749	 */
2750	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2751	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2752		pmap_zero_page_area(m, frag, base - frag);
2753
2754	/*
2755	 * If the ending offset is not DEV_BSIZE aligned and the
2756	 * valid bit is clear, we have to zero out a portion of
2757	 * the last block.
2758	 */
2759	endoff = base + size;
2760	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2761	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2762		pmap_zero_page_area(m, endoff,
2763		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2764
2765	/*
2766	 * Set valid, clear dirty bits.  If validating the entire
2767	 * page we can safely clear the pmap modify bit.  We also
2768	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2769	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2770	 * be set again.
2771	 *
2772	 * We set valid bits inclusive of any overlap, but we can only
2773	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2774	 * the range.
2775	 */
2776	oldvalid = m->valid;
2777	pagebits = vm_page_bits(base, size);
2778	m->valid |= pagebits;
2779#if 0	/* NOT YET */
2780	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2781		frag = DEV_BSIZE - frag;
2782		base += frag;
2783		size -= frag;
2784		if (size < 0)
2785			size = 0;
2786	}
2787	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2788#endif
2789	if (base == 0 && size == PAGE_SIZE) {
2790		/*
2791		 * The page can only be modified within the pmap if it is
2792		 * mapped, and it can only be mapped if it was previously
2793		 * fully valid.
2794		 */
2795		if (oldvalid == VM_PAGE_BITS_ALL)
2796			/*
2797			 * Perform the pmap_clear_modify() first.  Otherwise,
2798			 * a concurrent pmap operation, such as
2799			 * pmap_protect(), could clear a modification in the
2800			 * pmap and set the dirty field on the page before
2801			 * pmap_clear_modify() had begun and after the dirty
2802			 * field was cleared here.
2803			 */
2804			pmap_clear_modify(m);
2805		m->dirty = 0;
2806		m->oflags &= ~VPO_NOSYNC;
2807	} else if (oldvalid != VM_PAGE_BITS_ALL)
2808		m->dirty &= ~pagebits;
2809	else
2810		vm_page_clear_dirty_mask(m, pagebits);
2811}
2812
2813void
2814vm_page_clear_dirty(vm_page_t m, int base, int size)
2815{
2816
2817	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2818}
2819
2820/*
2821 *	vm_page_set_invalid:
2822 *
2823 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2824 *	valid and dirty bits for the effected areas are cleared.
2825 */
2826void
2827vm_page_set_invalid(vm_page_t m, int base, int size)
2828{
2829	vm_page_bits_t bits;
2830
2831	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2832	KASSERT((m->oflags & VPO_BUSY) == 0,
2833	    ("vm_page_set_invalid: page %p is busy", m));
2834	bits = vm_page_bits(base, size);
2835	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2836		pmap_remove_all(m);
2837	KASSERT(!pmap_page_is_mapped(m),
2838	    ("vm_page_set_invalid: page %p is mapped", m));
2839	m->valid &= ~bits;
2840	m->dirty &= ~bits;
2841}
2842
2843/*
2844 * vm_page_zero_invalid()
2845 *
2846 *	The kernel assumes that the invalid portions of a page contain
2847 *	garbage, but such pages can be mapped into memory by user code.
2848 *	When this occurs, we must zero out the non-valid portions of the
2849 *	page so user code sees what it expects.
2850 *
2851 *	Pages are most often semi-valid when the end of a file is mapped
2852 *	into memory and the file's size is not page aligned.
2853 */
2854void
2855vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2856{
2857	int b;
2858	int i;
2859
2860	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2861	/*
2862	 * Scan the valid bits looking for invalid sections that
2863	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2864	 * valid bit may be set ) have already been zerod by
2865	 * vm_page_set_validclean().
2866	 */
2867	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2868		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2869		    (m->valid & ((vm_page_bits_t)1 << i))) {
2870			if (i > b) {
2871				pmap_zero_page_area(m,
2872				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2873			}
2874			b = i + 1;
2875		}
2876	}
2877
2878	/*
2879	 * setvalid is TRUE when we can safely set the zero'd areas
2880	 * as being valid.  We can do this if there are no cache consistancy
2881	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2882	 */
2883	if (setvalid)
2884		m->valid = VM_PAGE_BITS_ALL;
2885}
2886
2887/*
2888 *	vm_page_is_valid:
2889 *
2890 *	Is (partial) page valid?  Note that the case where size == 0
2891 *	will return FALSE in the degenerate case where the page is
2892 *	entirely invalid, and TRUE otherwise.
2893 */
2894int
2895vm_page_is_valid(vm_page_t m, int base, int size)
2896{
2897	vm_page_bits_t bits;
2898
2899	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2900	bits = vm_page_bits(base, size);
2901	if (m->valid && ((m->valid & bits) == bits))
2902		return 1;
2903	else
2904		return 0;
2905}
2906
2907/*
2908 * Set the page's dirty bits if the page is modified.
2909 */
2910void
2911vm_page_test_dirty(vm_page_t m)
2912{
2913
2914	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2915	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2916		vm_page_dirty(m);
2917}
2918
2919void
2920vm_page_lock_KBI(vm_page_t m, const char *file, int line)
2921{
2922
2923	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
2924}
2925
2926void
2927vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
2928{
2929
2930	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
2931}
2932
2933int
2934vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
2935{
2936
2937	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
2938}
2939
2940#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
2941void
2942vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
2943{
2944
2945	mtx_assert_(vm_page_lockptr(m), a, file, line);
2946}
2947#endif
2948
2949int so_zerocp_fullpage = 0;
2950
2951/*
2952 *	Replace the given page with a copy.  The copied page assumes
2953 *	the portion of the given page's "wire_count" that is not the
2954 *	responsibility of this copy-on-write mechanism.
2955 *
2956 *	The object containing the given page must have a non-zero
2957 *	paging-in-progress count and be locked.
2958 */
2959void
2960vm_page_cowfault(vm_page_t m)
2961{
2962	vm_page_t mnew;
2963	vm_object_t object;
2964	vm_pindex_t pindex;
2965
2966	vm_page_lock_assert(m, MA_OWNED);
2967	object = m->object;
2968	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2969	KASSERT(object->paging_in_progress != 0,
2970	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2971	    object));
2972	pindex = m->pindex;
2973
2974 retry_alloc:
2975	pmap_remove_all(m);
2976	vm_page_remove(m);
2977	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2978	if (mnew == NULL) {
2979		vm_page_insert(m, object, pindex);
2980		vm_page_unlock(m);
2981		VM_OBJECT_UNLOCK(object);
2982		VM_WAIT;
2983		VM_OBJECT_LOCK(object);
2984		if (m == vm_page_lookup(object, pindex)) {
2985			vm_page_lock(m);
2986			goto retry_alloc;
2987		} else {
2988			/*
2989			 * Page disappeared during the wait.
2990			 */
2991			return;
2992		}
2993	}
2994
2995	if (m->cow == 0) {
2996		/*
2997		 * check to see if we raced with an xmit complete when
2998		 * waiting to allocate a page.  If so, put things back
2999		 * the way they were
3000		 */
3001		vm_page_unlock(m);
3002		vm_page_lock(mnew);
3003		vm_page_free(mnew);
3004		vm_page_unlock(mnew);
3005		vm_page_insert(m, object, pindex);
3006	} else { /* clear COW & copy page */
3007		if (!so_zerocp_fullpage)
3008			pmap_copy_page(m, mnew);
3009		mnew->valid = VM_PAGE_BITS_ALL;
3010		vm_page_dirty(mnew);
3011		mnew->wire_count = m->wire_count - m->cow;
3012		m->wire_count = m->cow;
3013		vm_page_unlock(m);
3014	}
3015}
3016
3017void
3018vm_page_cowclear(vm_page_t m)
3019{
3020
3021	vm_page_lock_assert(m, MA_OWNED);
3022	if (m->cow) {
3023		m->cow--;
3024		/*
3025		 * let vm_fault add back write permission  lazily
3026		 */
3027	}
3028	/*
3029	 *  sf_buf_free() will free the page, so we needn't do it here
3030	 */
3031}
3032
3033int
3034vm_page_cowsetup(vm_page_t m)
3035{
3036
3037	vm_page_lock_assert(m, MA_OWNED);
3038	if ((m->flags & PG_FICTITIOUS) != 0 ||
3039	    (m->oflags & VPO_UNMANAGED) != 0 ||
3040	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
3041		return (EBUSY);
3042	m->cow++;
3043	pmap_remove_write(m);
3044	VM_OBJECT_UNLOCK(m->object);
3045	return (0);
3046}
3047
3048#ifdef INVARIANTS
3049void
3050vm_page_object_lock_assert(vm_page_t m)
3051{
3052
3053	/*
3054	 * Certain of the page's fields may only be modified by the
3055	 * holder of the containing object's lock or the setter of the
3056	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
3057	 * VPO_BUSY flag is not recorded, and thus cannot be checked
3058	 * here.
3059	 */
3060	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
3061		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3062}
3063#endif
3064
3065#include "opt_ddb.h"
3066#ifdef DDB
3067#include <sys/kernel.h>
3068
3069#include <ddb/ddb.h>
3070
3071DB_SHOW_COMMAND(page, vm_page_print_page_info)
3072{
3073	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
3074	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
3075	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
3076	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
3077	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
3078	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
3079	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
3080	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
3081	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
3082	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
3083}
3084
3085DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3086{
3087
3088	db_printf("PQ_FREE:");
3089	db_printf(" %d", cnt.v_free_count);
3090	db_printf("\n");
3091
3092	db_printf("PQ_CACHE:");
3093	db_printf(" %d", cnt.v_cache_count);
3094	db_printf("\n");
3095
3096	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
3097		*vm_pagequeues[PQ_ACTIVE].pq_cnt,
3098		*vm_pagequeues[PQ_INACTIVE].pq_cnt);
3099}
3100#endif /* DDB */
3101