vm_page.c revision 226740
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- The object mutex is held when inserting or removing
71 *	  pages from an object (vm_page_insert() or vm_page_remove()).
72 *
73 */
74
75/*
76 *	Resident memory management module.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 226740 2011-10-25 16:35:08Z alc $");
81
82#include "opt_vm.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/lock.h>
87#include <sys/kernel.h>
88#include <sys/limits.h>
89#include <sys/malloc.h>
90#include <sys/msgbuf.h>
91#include <sys/mutex.h>
92#include <sys/proc.h>
93#include <sys/sysctl.h>
94#include <sys/vmmeter.h>
95#include <sys/vnode.h>
96
97#include <vm/vm.h>
98#include <vm/pmap.h>
99#include <vm/vm_param.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_object.h>
102#include <vm/vm_page.h>
103#include <vm/vm_pageout.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_phys.h>
106#include <vm/vm_reserv.h>
107#include <vm/vm_extern.h>
108#include <vm/uma.h>
109#include <vm/uma_int.h>
110
111#include <machine/md_var.h>
112
113/*
114 *	Associated with page of user-allocatable memory is a
115 *	page structure.
116 */
117
118struct vpgqueues vm_page_queues[PQ_COUNT];
119struct vpglocks vm_page_queue_lock;
120struct vpglocks vm_page_queue_free_lock;
121
122struct vpglocks	pa_lock[PA_LOCK_COUNT];
123
124vm_page_t vm_page_array = 0;
125int vm_page_array_size = 0;
126long first_page = 0;
127int vm_page_zero_count = 0;
128
129static int boot_pages = UMA_BOOT_PAGES;
130TUNABLE_INT("vm.boot_pages", &boot_pages);
131SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
132	"number of pages allocated for bootstrapping the VM system");
133
134static int pa_tryrelock_restart;
135SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
136    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
137
138static uma_zone_t fakepg_zone;
139
140static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
141static void vm_page_queue_remove(int queue, vm_page_t m);
142static void vm_page_enqueue(int queue, vm_page_t m);
143static void vm_page_init_fakepg(void *dummy);
144
145SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
146
147static void
148vm_page_init_fakepg(void *dummy)
149{
150
151	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
152	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
153}
154
155/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
156#if PAGE_SIZE == 32768
157#ifdef CTASSERT
158CTASSERT(sizeof(u_long) >= 8);
159#endif
160#endif
161
162/*
163 * Try to acquire a physical address lock while a pmap is locked.  If we
164 * fail to trylock we unlock and lock the pmap directly and cache the
165 * locked pa in *locked.  The caller should then restart their loop in case
166 * the virtual to physical mapping has changed.
167 */
168int
169vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
170{
171	vm_paddr_t lockpa;
172
173	lockpa = *locked;
174	*locked = pa;
175	if (lockpa) {
176		PA_LOCK_ASSERT(lockpa, MA_OWNED);
177		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
178			return (0);
179		PA_UNLOCK(lockpa);
180	}
181	if (PA_TRYLOCK(pa))
182		return (0);
183	PMAP_UNLOCK(pmap);
184	atomic_add_int(&pa_tryrelock_restart, 1);
185	PA_LOCK(pa);
186	PMAP_LOCK(pmap);
187	return (EAGAIN);
188}
189
190/*
191 *	vm_set_page_size:
192 *
193 *	Sets the page size, perhaps based upon the memory
194 *	size.  Must be called before any use of page-size
195 *	dependent functions.
196 */
197void
198vm_set_page_size(void)
199{
200	if (cnt.v_page_size == 0)
201		cnt.v_page_size = PAGE_SIZE;
202	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
203		panic("vm_set_page_size: page size not a power of two");
204}
205
206/*
207 *	vm_page_blacklist_lookup:
208 *
209 *	See if a physical address in this page has been listed
210 *	in the blacklist tunable.  Entries in the tunable are
211 *	separated by spaces or commas.  If an invalid integer is
212 *	encountered then the rest of the string is skipped.
213 */
214static int
215vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
216{
217	vm_paddr_t bad;
218	char *cp, *pos;
219
220	for (pos = list; *pos != '\0'; pos = cp) {
221		bad = strtoq(pos, &cp, 0);
222		if (*cp != '\0') {
223			if (*cp == ' ' || *cp == ',') {
224				cp++;
225				if (cp == pos)
226					continue;
227			} else
228				break;
229		}
230		if (pa == trunc_page(bad))
231			return (1);
232	}
233	return (0);
234}
235
236/*
237 *	vm_page_startup:
238 *
239 *	Initializes the resident memory module.
240 *
241 *	Allocates memory for the page cells, and
242 *	for the object/offset-to-page hash table headers.
243 *	Each page cell is initialized and placed on the free list.
244 */
245vm_offset_t
246vm_page_startup(vm_offset_t vaddr)
247{
248	vm_offset_t mapped;
249	vm_paddr_t page_range;
250	vm_paddr_t new_end;
251	int i;
252	vm_paddr_t pa;
253	vm_paddr_t last_pa;
254	char *list;
255
256	/* the biggest memory array is the second group of pages */
257	vm_paddr_t end;
258	vm_paddr_t biggestsize;
259	vm_paddr_t low_water, high_water;
260	int biggestone;
261
262	biggestsize = 0;
263	biggestone = 0;
264	vaddr = round_page(vaddr);
265
266	for (i = 0; phys_avail[i + 1]; i += 2) {
267		phys_avail[i] = round_page(phys_avail[i]);
268		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
269	}
270
271	low_water = phys_avail[0];
272	high_water = phys_avail[1];
273
274	for (i = 0; phys_avail[i + 1]; i += 2) {
275		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
276
277		if (size > biggestsize) {
278			biggestone = i;
279			biggestsize = size;
280		}
281		if (phys_avail[i] < low_water)
282			low_water = phys_avail[i];
283		if (phys_avail[i + 1] > high_water)
284			high_water = phys_avail[i + 1];
285	}
286
287#ifdef XEN
288	low_water = 0;
289#endif
290
291	end = phys_avail[biggestone+1];
292
293	/*
294	 * Initialize the locks.
295	 */
296	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
297	    MTX_RECURSE);
298	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
299	    MTX_DEF);
300
301	/* Setup page locks. */
302	for (i = 0; i < PA_LOCK_COUNT; i++)
303		mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF);
304
305	/*
306	 * Initialize the queue headers for the hold queue, the active queue,
307	 * and the inactive queue.
308	 */
309	for (i = 0; i < PQ_COUNT; i++)
310		TAILQ_INIT(&vm_page_queues[i].pl);
311	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
312	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
313	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
314
315	/*
316	 * Allocate memory for use when boot strapping the kernel memory
317	 * allocator.
318	 */
319	new_end = end - (boot_pages * UMA_SLAB_SIZE);
320	new_end = trunc_page(new_end);
321	mapped = pmap_map(&vaddr, new_end, end,
322	    VM_PROT_READ | VM_PROT_WRITE);
323	bzero((void *)mapped, end - new_end);
324	uma_startup((void *)mapped, boot_pages);
325
326#if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
327    defined(__mips__)
328	/*
329	 * Allocate a bitmap to indicate that a random physical page
330	 * needs to be included in a minidump.
331	 *
332	 * The amd64 port needs this to indicate which direct map pages
333	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
334	 *
335	 * However, i386 still needs this workspace internally within the
336	 * minidump code.  In theory, they are not needed on i386, but are
337	 * included should the sf_buf code decide to use them.
338	 */
339	last_pa = 0;
340	for (i = 0; dump_avail[i + 1] != 0; i += 2)
341		if (dump_avail[i + 1] > last_pa)
342			last_pa = dump_avail[i + 1];
343	page_range = last_pa / PAGE_SIZE;
344	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
345	new_end -= vm_page_dump_size;
346	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
347	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
348	bzero((void *)vm_page_dump, vm_page_dump_size);
349#endif
350#ifdef __amd64__
351	/*
352	 * Request that the physical pages underlying the message buffer be
353	 * included in a crash dump.  Since the message buffer is accessed
354	 * through the direct map, they are not automatically included.
355	 */
356	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
357	last_pa = pa + round_page(msgbufsize);
358	while (pa < last_pa) {
359		dump_add_page(pa);
360		pa += PAGE_SIZE;
361	}
362#endif
363	/*
364	 * Compute the number of pages of memory that will be available for
365	 * use (taking into account the overhead of a page structure per
366	 * page).
367	 */
368	first_page = low_water / PAGE_SIZE;
369#ifdef VM_PHYSSEG_SPARSE
370	page_range = 0;
371	for (i = 0; phys_avail[i + 1] != 0; i += 2)
372		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
373#elif defined(VM_PHYSSEG_DENSE)
374	page_range = high_water / PAGE_SIZE - first_page;
375#else
376#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
377#endif
378	end = new_end;
379
380	/*
381	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
382	 */
383	vaddr += PAGE_SIZE;
384
385	/*
386	 * Initialize the mem entry structures now, and put them in the free
387	 * queue.
388	 */
389	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
390	mapped = pmap_map(&vaddr, new_end, end,
391	    VM_PROT_READ | VM_PROT_WRITE);
392	vm_page_array = (vm_page_t) mapped;
393#if VM_NRESERVLEVEL > 0
394	/*
395	 * Allocate memory for the reservation management system's data
396	 * structures.
397	 */
398	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
399#endif
400#if defined(__amd64__) || defined(__mips__)
401	/*
402	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
403	 * like i386, so the pages must be tracked for a crashdump to include
404	 * this data.  This includes the vm_page_array and the early UMA
405	 * bootstrap pages.
406	 */
407	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
408		dump_add_page(pa);
409#endif
410	phys_avail[biggestone + 1] = new_end;
411
412	/*
413	 * Clear all of the page structures
414	 */
415	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
416	for (i = 0; i < page_range; i++)
417		vm_page_array[i].order = VM_NFREEORDER;
418	vm_page_array_size = page_range;
419
420	/*
421	 * Initialize the physical memory allocator.
422	 */
423	vm_phys_init();
424
425	/*
426	 * Add every available physical page that is not blacklisted to
427	 * the free lists.
428	 */
429	cnt.v_page_count = 0;
430	cnt.v_free_count = 0;
431	list = getenv("vm.blacklist");
432	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
433		pa = phys_avail[i];
434		last_pa = phys_avail[i + 1];
435		while (pa < last_pa) {
436			if (list != NULL &&
437			    vm_page_blacklist_lookup(list, pa))
438				printf("Skipping page with pa 0x%jx\n",
439				    (uintmax_t)pa);
440			else
441				vm_phys_add_page(pa);
442			pa += PAGE_SIZE;
443		}
444	}
445	freeenv(list);
446#if VM_NRESERVLEVEL > 0
447	/*
448	 * Initialize the reservation management system.
449	 */
450	vm_reserv_init();
451#endif
452	return (vaddr);
453}
454
455
456CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
457
458void
459vm_page_aflag_set(vm_page_t m, uint8_t bits)
460{
461	uint32_t *addr, val;
462
463	/*
464	 * The PGA_WRITEABLE flag can only be set if the page is managed and
465	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
466	 */
467	KASSERT((bits & PGA_WRITEABLE) == 0 ||
468	    (m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == VPO_BUSY,
469	    ("PGA_WRITEABLE and !VPO_BUSY"));
470
471	/*
472	 * We want to use atomic updates for m->aflags, which is a
473	 * byte wide.  Not all architectures provide atomic operations
474	 * on the single-byte destination.  Punt and access the whole
475	 * 4-byte word with an atomic update.  Parallel non-atomic
476	 * updates to the fields included in the update by proximity
477	 * are handled properly by atomics.
478	 */
479	addr = (void *)&m->aflags;
480	MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
481	val = bits;
482#if BYTE_ORDER == BIG_ENDIAN
483	val <<= 24;
484#endif
485	atomic_set_32(addr, val);
486}
487
488void
489vm_page_aflag_clear(vm_page_t m, uint8_t bits)
490{
491	uint32_t *addr, val;
492
493	/*
494	 * The PGA_REFERENCED flag can only be cleared if the object
495	 * containing the page is locked.
496	 */
497	KASSERT((bits & PGA_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
498	    ("PGA_REFERENCED and !VM_OBJECT_LOCKED"));
499
500	/*
501	 * See the comment in vm_page_aflag_set().
502	 */
503	addr = (void *)&m->aflags;
504	MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
505	val = bits;
506#if BYTE_ORDER == BIG_ENDIAN
507	val <<= 24;
508#endif
509	atomic_clear_32(addr, val);
510}
511
512void
513vm_page_reference(vm_page_t m)
514{
515
516	vm_page_aflag_set(m, PGA_REFERENCED);
517}
518
519void
520vm_page_busy(vm_page_t m)
521{
522
523	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
524	KASSERT((m->oflags & VPO_BUSY) == 0,
525	    ("vm_page_busy: page already busy!!!"));
526	m->oflags |= VPO_BUSY;
527}
528
529/*
530 *      vm_page_flash:
531 *
532 *      wakeup anyone waiting for the page.
533 */
534void
535vm_page_flash(vm_page_t m)
536{
537
538	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
539	if (m->oflags & VPO_WANTED) {
540		m->oflags &= ~VPO_WANTED;
541		wakeup(m);
542	}
543}
544
545/*
546 *      vm_page_wakeup:
547 *
548 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
549 *      page.
550 *
551 */
552void
553vm_page_wakeup(vm_page_t m)
554{
555
556	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
557	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
558	m->oflags &= ~VPO_BUSY;
559	vm_page_flash(m);
560}
561
562void
563vm_page_io_start(vm_page_t m)
564{
565
566	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
567	m->busy++;
568}
569
570void
571vm_page_io_finish(vm_page_t m)
572{
573
574	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
575	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
576	m->busy--;
577	if (m->busy == 0)
578		vm_page_flash(m);
579}
580
581/*
582 * Keep page from being freed by the page daemon
583 * much of the same effect as wiring, except much lower
584 * overhead and should be used only for *very* temporary
585 * holding ("wiring").
586 */
587void
588vm_page_hold(vm_page_t mem)
589{
590
591	vm_page_lock_assert(mem, MA_OWNED);
592        mem->hold_count++;
593}
594
595void
596vm_page_unhold(vm_page_t mem)
597{
598
599	vm_page_lock_assert(mem, MA_OWNED);
600	--mem->hold_count;
601	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
602	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
603		vm_page_free_toq(mem);
604}
605
606/*
607 *	vm_page_unhold_pages:
608 *
609 *	Unhold each of the pages that is referenced by the given array.
610 */
611void
612vm_page_unhold_pages(vm_page_t *ma, int count)
613{
614	struct mtx *mtx, *new_mtx;
615
616	mtx = NULL;
617	for (; count != 0; count--) {
618		/*
619		 * Avoid releasing and reacquiring the same page lock.
620		 */
621		new_mtx = vm_page_lockptr(*ma);
622		if (mtx != new_mtx) {
623			if (mtx != NULL)
624				mtx_unlock(mtx);
625			mtx = new_mtx;
626			mtx_lock(mtx);
627		}
628		vm_page_unhold(*ma);
629		ma++;
630	}
631	if (mtx != NULL)
632		mtx_unlock(mtx);
633}
634
635/*
636 *	vm_page_getfake:
637 *
638 *	Create a fictitious page with the specified physical address and
639 *	memory attribute.  The memory attribute is the only the machine-
640 *	dependent aspect of a fictitious page that must be initialized.
641 */
642vm_page_t
643vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
644{
645	vm_page_t m;
646
647	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
648	m->phys_addr = paddr;
649	m->queue = PQ_NONE;
650	/* Fictitious pages don't use "segind". */
651	m->flags = PG_FICTITIOUS;
652	/* Fictitious pages don't use "order" or "pool". */
653	m->oflags = VPO_BUSY | VPO_UNMANAGED;
654	m->wire_count = 1;
655	pmap_page_set_memattr(m, memattr);
656	return (m);
657}
658
659/*
660 *	vm_page_putfake:
661 *
662 *	Release a fictitious page.
663 */
664void
665vm_page_putfake(vm_page_t m)
666{
667
668	KASSERT((m->flags & PG_FICTITIOUS) != 0,
669	    ("vm_page_putfake: bad page %p", m));
670	uma_zfree(fakepg_zone, m);
671}
672
673/*
674 *	vm_page_updatefake:
675 *
676 *	Update the given fictitious page to the specified physical address and
677 *	memory attribute.
678 */
679void
680vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
681{
682
683	KASSERT((m->flags & PG_FICTITIOUS) != 0,
684	    ("vm_page_updatefake: bad page %p", m));
685	m->phys_addr = paddr;
686	pmap_page_set_memattr(m, memattr);
687}
688
689/*
690 *	vm_page_free:
691 *
692 *	Free a page.
693 */
694void
695vm_page_free(vm_page_t m)
696{
697
698	m->flags &= ~PG_ZERO;
699	vm_page_free_toq(m);
700}
701
702/*
703 *	vm_page_free_zero:
704 *
705 *	Free a page to the zerod-pages queue
706 */
707void
708vm_page_free_zero(vm_page_t m)
709{
710
711	m->flags |= PG_ZERO;
712	vm_page_free_toq(m);
713}
714
715/*
716 *	vm_page_sleep:
717 *
718 *	Sleep and release the page and page queues locks.
719 *
720 *	The object containing the given page must be locked.
721 */
722void
723vm_page_sleep(vm_page_t m, const char *msg)
724{
725
726	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
727	if (mtx_owned(&vm_page_queue_mtx))
728		vm_page_unlock_queues();
729	if (mtx_owned(vm_page_lockptr(m)))
730		vm_page_unlock(m);
731
732	/*
733	 * It's possible that while we sleep, the page will get
734	 * unbusied and freed.  If we are holding the object
735	 * lock, we will assume we hold a reference to the object
736	 * such that even if m->object changes, we can re-lock
737	 * it.
738	 */
739	m->oflags |= VPO_WANTED;
740	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
741}
742
743/*
744 *	vm_page_dirty:
745 *
746 *	Set all bits in the page's dirty field.
747 *
748 *	The object containing the specified page must be locked if the
749 *	call is made from the machine-independent layer.
750 *
751 *	See vm_page_clear_dirty_mask().
752 */
753void
754vm_page_dirty(vm_page_t m)
755{
756
757	KASSERT((m->flags & PG_CACHED) == 0,
758	    ("vm_page_dirty: page in cache!"));
759	KASSERT(!VM_PAGE_IS_FREE(m),
760	    ("vm_page_dirty: page is free!"));
761	KASSERT(m->valid == VM_PAGE_BITS_ALL,
762	    ("vm_page_dirty: page is invalid!"));
763	m->dirty = VM_PAGE_BITS_ALL;
764}
765
766/*
767 *	vm_page_splay:
768 *
769 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
770 *	the vm_page containing the given pindex.  If, however, that
771 *	pindex is not found in the vm_object, returns a vm_page that is
772 *	adjacent to the pindex, coming before or after it.
773 */
774vm_page_t
775vm_page_splay(vm_pindex_t pindex, vm_page_t root)
776{
777	struct vm_page dummy;
778	vm_page_t lefttreemax, righttreemin, y;
779
780	if (root == NULL)
781		return (root);
782	lefttreemax = righttreemin = &dummy;
783	for (;; root = y) {
784		if (pindex < root->pindex) {
785			if ((y = root->left) == NULL)
786				break;
787			if (pindex < y->pindex) {
788				/* Rotate right. */
789				root->left = y->right;
790				y->right = root;
791				root = y;
792				if ((y = root->left) == NULL)
793					break;
794			}
795			/* Link into the new root's right tree. */
796			righttreemin->left = root;
797			righttreemin = root;
798		} else if (pindex > root->pindex) {
799			if ((y = root->right) == NULL)
800				break;
801			if (pindex > y->pindex) {
802				/* Rotate left. */
803				root->right = y->left;
804				y->left = root;
805				root = y;
806				if ((y = root->right) == NULL)
807					break;
808			}
809			/* Link into the new root's left tree. */
810			lefttreemax->right = root;
811			lefttreemax = root;
812		} else
813			break;
814	}
815	/* Assemble the new root. */
816	lefttreemax->right = root->left;
817	righttreemin->left = root->right;
818	root->left = dummy.right;
819	root->right = dummy.left;
820	return (root);
821}
822
823/*
824 *	vm_page_insert:		[ internal use only ]
825 *
826 *	Inserts the given mem entry into the object and object list.
827 *
828 *	The pagetables are not updated but will presumably fault the page
829 *	in if necessary, or if a kernel page the caller will at some point
830 *	enter the page into the kernel's pmap.  We are not allowed to block
831 *	here so we *can't* do this anyway.
832 *
833 *	The object and page must be locked.
834 *	This routine may not block.
835 */
836void
837vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
838{
839	vm_page_t root;
840
841	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
842	if (m->object != NULL)
843		panic("vm_page_insert: page already inserted");
844
845	/*
846	 * Record the object/offset pair in this page
847	 */
848	m->object = object;
849	m->pindex = pindex;
850
851	/*
852	 * Now link into the object's ordered list of backed pages.
853	 */
854	root = object->root;
855	if (root == NULL) {
856		m->left = NULL;
857		m->right = NULL;
858		TAILQ_INSERT_TAIL(&object->memq, m, listq);
859	} else {
860		root = vm_page_splay(pindex, root);
861		if (pindex < root->pindex) {
862			m->left = root->left;
863			m->right = root;
864			root->left = NULL;
865			TAILQ_INSERT_BEFORE(root, m, listq);
866		} else if (pindex == root->pindex)
867			panic("vm_page_insert: offset already allocated");
868		else {
869			m->right = root->right;
870			m->left = root;
871			root->right = NULL;
872			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
873		}
874	}
875	object->root = m;
876
877	/*
878	 * show that the object has one more resident page.
879	 */
880	object->resident_page_count++;
881	/*
882	 * Hold the vnode until the last page is released.
883	 */
884	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
885		vhold((struct vnode *)object->handle);
886
887	/*
888	 * Since we are inserting a new and possibly dirty page,
889	 * update the object's OBJ_MIGHTBEDIRTY flag.
890	 */
891	if (m->aflags & PGA_WRITEABLE)
892		vm_object_set_writeable_dirty(object);
893}
894
895/*
896 *	vm_page_remove:
897 *				NOTE: used by device pager as well -wfj
898 *
899 *	Removes the given mem entry from the object/offset-page
900 *	table and the object page list, but do not invalidate/terminate
901 *	the backing store.
902 *
903 *	The object and page must be locked.
904 *	The underlying pmap entry (if any) is NOT removed here.
905 *	This routine may not block.
906 */
907void
908vm_page_remove(vm_page_t m)
909{
910	vm_object_t object;
911	vm_page_t next, prev, root;
912
913	if ((m->oflags & VPO_UNMANAGED) == 0)
914		vm_page_lock_assert(m, MA_OWNED);
915	if ((object = m->object) == NULL)
916		return;
917	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
918	if (m->oflags & VPO_BUSY) {
919		m->oflags &= ~VPO_BUSY;
920		vm_page_flash(m);
921	}
922
923	/*
924	 * Now remove from the object's list of backed pages.
925	 */
926	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
927		/*
928		 * Since the page's successor in the list is also its parent
929		 * in the tree, its right subtree must be empty.
930		 */
931		next->left = m->left;
932		KASSERT(m->right == NULL,
933		    ("vm_page_remove: page %p has right child", m));
934	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
935	    prev->right == m) {
936		/*
937		 * Since the page's predecessor in the list is also its parent
938		 * in the tree, its left subtree must be empty.
939		 */
940		KASSERT(m->left == NULL,
941		    ("vm_page_remove: page %p has left child", m));
942		prev->right = m->right;
943	} else {
944		if (m != object->root)
945			vm_page_splay(m->pindex, object->root);
946		if (m->left == NULL)
947			root = m->right;
948		else if (m->right == NULL)
949			root = m->left;
950		else {
951			/*
952			 * Move the page's successor to the root, because
953			 * pages are usually removed in ascending order.
954			 */
955			if (m->right != next)
956				vm_page_splay(m->pindex, m->right);
957			next->left = m->left;
958			root = next;
959		}
960		object->root = root;
961	}
962	TAILQ_REMOVE(&object->memq, m, listq);
963
964	/*
965	 * And show that the object has one fewer resident page.
966	 */
967	object->resident_page_count--;
968	/*
969	 * The vnode may now be recycled.
970	 */
971	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
972		vdrop((struct vnode *)object->handle);
973
974	m->object = NULL;
975}
976
977/*
978 *	vm_page_lookup:
979 *
980 *	Returns the page associated with the object/offset
981 *	pair specified; if none is found, NULL is returned.
982 *
983 *	The object must be locked.
984 *	This routine may not block.
985 *	This is a critical path routine
986 */
987vm_page_t
988vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
989{
990	vm_page_t m;
991
992	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
993	if ((m = object->root) != NULL && m->pindex != pindex) {
994		m = vm_page_splay(pindex, m);
995		if ((object->root = m)->pindex != pindex)
996			m = NULL;
997	}
998	return (m);
999}
1000
1001/*
1002 *	vm_page_find_least:
1003 *
1004 *	Returns the page associated with the object with least pindex
1005 *	greater than or equal to the parameter pindex, or NULL.
1006 *
1007 *	The object must be locked.
1008 *	The routine may not block.
1009 */
1010vm_page_t
1011vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1012{
1013	vm_page_t m;
1014
1015	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1016	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
1017		if (m->pindex < pindex) {
1018			m = vm_page_splay(pindex, object->root);
1019			if ((object->root = m)->pindex < pindex)
1020				m = TAILQ_NEXT(m, listq);
1021		}
1022	}
1023	return (m);
1024}
1025
1026/*
1027 * Returns the given page's successor (by pindex) within the object if it is
1028 * resident; if none is found, NULL is returned.
1029 *
1030 * The object must be locked.
1031 */
1032vm_page_t
1033vm_page_next(vm_page_t m)
1034{
1035	vm_page_t next;
1036
1037	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1038	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1039	    next->pindex != m->pindex + 1)
1040		next = NULL;
1041	return (next);
1042}
1043
1044/*
1045 * Returns the given page's predecessor (by pindex) within the object if it is
1046 * resident; if none is found, NULL is returned.
1047 *
1048 * The object must be locked.
1049 */
1050vm_page_t
1051vm_page_prev(vm_page_t m)
1052{
1053	vm_page_t prev;
1054
1055	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1056	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1057	    prev->pindex != m->pindex - 1)
1058		prev = NULL;
1059	return (prev);
1060}
1061
1062/*
1063 *	vm_page_rename:
1064 *
1065 *	Move the given memory entry from its
1066 *	current object to the specified target object/offset.
1067 *
1068 *	The object must be locked.
1069 *	This routine may not block.
1070 *
1071 *	Note: swap associated with the page must be invalidated by the move.  We
1072 *	      have to do this for several reasons:  (1) we aren't freeing the
1073 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1074 *	      moving the page from object A to B, and will then later move
1075 *	      the backing store from A to B and we can't have a conflict.
1076 *
1077 *	Note: we *always* dirty the page.  It is necessary both for the
1078 *	      fact that we moved it, and because we may be invalidating
1079 *	      swap.  If the page is on the cache, we have to deactivate it
1080 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1081 *	      on the cache.
1082 */
1083void
1084vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1085{
1086
1087	vm_page_remove(m);
1088	vm_page_insert(m, new_object, new_pindex);
1089	vm_page_dirty(m);
1090}
1091
1092/*
1093 *	Convert all of the given object's cached pages that have a
1094 *	pindex within the given range into free pages.  If the value
1095 *	zero is given for "end", then the range's upper bound is
1096 *	infinity.  If the given object is backed by a vnode and it
1097 *	transitions from having one or more cached pages to none, the
1098 *	vnode's hold count is reduced.
1099 */
1100void
1101vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1102{
1103	vm_page_t m, m_next;
1104	boolean_t empty;
1105
1106	mtx_lock(&vm_page_queue_free_mtx);
1107	if (__predict_false(object->cache == NULL)) {
1108		mtx_unlock(&vm_page_queue_free_mtx);
1109		return;
1110	}
1111	m = object->cache = vm_page_splay(start, object->cache);
1112	if (m->pindex < start) {
1113		if (m->right == NULL)
1114			m = NULL;
1115		else {
1116			m_next = vm_page_splay(start, m->right);
1117			m_next->left = m;
1118			m->right = NULL;
1119			m = object->cache = m_next;
1120		}
1121	}
1122
1123	/*
1124	 * At this point, "m" is either (1) a reference to the page
1125	 * with the least pindex that is greater than or equal to
1126	 * "start" or (2) NULL.
1127	 */
1128	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1129		/*
1130		 * Find "m"'s successor and remove "m" from the
1131		 * object's cache.
1132		 */
1133		if (m->right == NULL) {
1134			object->cache = m->left;
1135			m_next = NULL;
1136		} else {
1137			m_next = vm_page_splay(start, m->right);
1138			m_next->left = m->left;
1139			object->cache = m_next;
1140		}
1141		/* Convert "m" to a free page. */
1142		m->object = NULL;
1143		m->valid = 0;
1144		/* Clear PG_CACHED and set PG_FREE. */
1145		m->flags ^= PG_CACHED | PG_FREE;
1146		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1147		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1148		cnt.v_cache_count--;
1149		cnt.v_free_count++;
1150	}
1151	empty = object->cache == NULL;
1152	mtx_unlock(&vm_page_queue_free_mtx);
1153	if (object->type == OBJT_VNODE && empty)
1154		vdrop(object->handle);
1155}
1156
1157/*
1158 *	Returns the cached page that is associated with the given
1159 *	object and offset.  If, however, none exists, returns NULL.
1160 *
1161 *	The free page queue must be locked.
1162 */
1163static inline vm_page_t
1164vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1165{
1166	vm_page_t m;
1167
1168	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1169	if ((m = object->cache) != NULL && m->pindex != pindex) {
1170		m = vm_page_splay(pindex, m);
1171		if ((object->cache = m)->pindex != pindex)
1172			m = NULL;
1173	}
1174	return (m);
1175}
1176
1177/*
1178 *	Remove the given cached page from its containing object's
1179 *	collection of cached pages.
1180 *
1181 *	The free page queue must be locked.
1182 */
1183void
1184vm_page_cache_remove(vm_page_t m)
1185{
1186	vm_object_t object;
1187	vm_page_t root;
1188
1189	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1190	KASSERT((m->flags & PG_CACHED) != 0,
1191	    ("vm_page_cache_remove: page %p is not cached", m));
1192	object = m->object;
1193	if (m != object->cache) {
1194		root = vm_page_splay(m->pindex, object->cache);
1195		KASSERT(root == m,
1196		    ("vm_page_cache_remove: page %p is not cached in object %p",
1197		    m, object));
1198	}
1199	if (m->left == NULL)
1200		root = m->right;
1201	else if (m->right == NULL)
1202		root = m->left;
1203	else {
1204		root = vm_page_splay(m->pindex, m->left);
1205		root->right = m->right;
1206	}
1207	object->cache = root;
1208	m->object = NULL;
1209	cnt.v_cache_count--;
1210}
1211
1212/*
1213 *	Transfer all of the cached pages with offset greater than or
1214 *	equal to 'offidxstart' from the original object's cache to the
1215 *	new object's cache.  However, any cached pages with offset
1216 *	greater than or equal to the new object's size are kept in the
1217 *	original object.  Initially, the new object's cache must be
1218 *	empty.  Offset 'offidxstart' in the original object must
1219 *	correspond to offset zero in the new object.
1220 *
1221 *	The new object must be locked.
1222 */
1223void
1224vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1225    vm_object_t new_object)
1226{
1227	vm_page_t m, m_next;
1228
1229	/*
1230	 * Insertion into an object's collection of cached pages
1231	 * requires the object to be locked.  In contrast, removal does
1232	 * not.
1233	 */
1234	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1235	KASSERT(new_object->cache == NULL,
1236	    ("vm_page_cache_transfer: object %p has cached pages",
1237	    new_object));
1238	mtx_lock(&vm_page_queue_free_mtx);
1239	if ((m = orig_object->cache) != NULL) {
1240		/*
1241		 * Transfer all of the pages with offset greater than or
1242		 * equal to 'offidxstart' from the original object's
1243		 * cache to the new object's cache.
1244		 */
1245		m = vm_page_splay(offidxstart, m);
1246		if (m->pindex < offidxstart) {
1247			orig_object->cache = m;
1248			new_object->cache = m->right;
1249			m->right = NULL;
1250		} else {
1251			orig_object->cache = m->left;
1252			new_object->cache = m;
1253			m->left = NULL;
1254		}
1255		while ((m = new_object->cache) != NULL) {
1256			if ((m->pindex - offidxstart) >= new_object->size) {
1257				/*
1258				 * Return all of the cached pages with
1259				 * offset greater than or equal to the
1260				 * new object's size to the original
1261				 * object's cache.
1262				 */
1263				new_object->cache = m->left;
1264				m->left = orig_object->cache;
1265				orig_object->cache = m;
1266				break;
1267			}
1268			m_next = vm_page_splay(m->pindex, m->right);
1269			/* Update the page's object and offset. */
1270			m->object = new_object;
1271			m->pindex -= offidxstart;
1272			if (m_next == NULL)
1273				break;
1274			m->right = NULL;
1275			m_next->left = m;
1276			new_object->cache = m_next;
1277		}
1278		KASSERT(new_object->cache == NULL ||
1279		    new_object->type == OBJT_SWAP,
1280		    ("vm_page_cache_transfer: object %p's type is incompatible"
1281		    " with cached pages", new_object));
1282	}
1283	mtx_unlock(&vm_page_queue_free_mtx);
1284}
1285
1286/*
1287 *	vm_page_alloc:
1288 *
1289 *	Allocate and return a memory cell associated
1290 *	with this VM object/offset pair.
1291 *
1292 *	The caller must always specify an allocation class.
1293 *
1294 *	allocation classes:
1295 *	VM_ALLOC_NORMAL		normal process request
1296 *	VM_ALLOC_SYSTEM		system *really* needs a page
1297 *	VM_ALLOC_INTERRUPT	interrupt time request
1298 *
1299 *	optional allocation flags:
1300 *	VM_ALLOC_ZERO		prefer a zeroed page
1301 *	VM_ALLOC_WIRED		wire the allocated page
1302 *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1303 *	VM_ALLOC_NOBUSY		do not set the page busy
1304 *	VM_ALLOC_IFCACHED	return page only if it is cached
1305 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1306 *				is cached
1307 *
1308 *	This routine may not sleep.
1309 */
1310vm_page_t
1311vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1312{
1313	struct vnode *vp = NULL;
1314	vm_object_t m_object;
1315	vm_page_t m;
1316	int flags, page_req;
1317
1318	if ((req & VM_ALLOC_NOOBJ) == 0) {
1319		KASSERT(object != NULL,
1320		    ("vm_page_alloc: NULL object."));
1321		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1322	}
1323
1324	page_req = req & VM_ALLOC_CLASS_MASK;
1325
1326	/*
1327	 * The pager is allowed to eat deeper into the free page list.
1328	 */
1329	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT))
1330		page_req = VM_ALLOC_SYSTEM;
1331
1332	mtx_lock(&vm_page_queue_free_mtx);
1333	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1334	    (page_req == VM_ALLOC_SYSTEM &&
1335	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1336	    (page_req == VM_ALLOC_INTERRUPT &&
1337	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1338		/*
1339		 * Allocate from the free queue if the number of free pages
1340		 * exceeds the minimum for the request class.
1341		 */
1342		if (object != NULL &&
1343		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1344			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1345				mtx_unlock(&vm_page_queue_free_mtx);
1346				return (NULL);
1347			}
1348			if (vm_phys_unfree_page(m))
1349				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1350#if VM_NRESERVLEVEL > 0
1351			else if (!vm_reserv_reactivate_page(m))
1352#else
1353			else
1354#endif
1355				panic("vm_page_alloc: cache page %p is missing"
1356				    " from the free queue", m);
1357		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1358			mtx_unlock(&vm_page_queue_free_mtx);
1359			return (NULL);
1360#if VM_NRESERVLEVEL > 0
1361		} else if (object == NULL || object->type == OBJT_DEVICE ||
1362		    object->type == OBJT_SG ||
1363		    (object->flags & OBJ_COLORED) == 0 ||
1364		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1365#else
1366		} else {
1367#endif
1368			m = vm_phys_alloc_pages(object != NULL ?
1369			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1370#if VM_NRESERVLEVEL > 0
1371			if (m == NULL && vm_reserv_reclaim_inactive()) {
1372				m = vm_phys_alloc_pages(object != NULL ?
1373				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1374				    0);
1375			}
1376#endif
1377		}
1378	} else {
1379		/*
1380		 * Not allocatable, give up.
1381		 */
1382		mtx_unlock(&vm_page_queue_free_mtx);
1383		atomic_add_int(&vm_pageout_deficit,
1384		    MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1385		pagedaemon_wakeup();
1386		return (NULL);
1387	}
1388
1389	/*
1390	 *  At this point we had better have found a good page.
1391	 */
1392
1393	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1394	KASSERT(m->queue == PQ_NONE,
1395	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1396	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1397	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1398	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1399	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1400	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1401	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1402	    pmap_page_get_memattr(m)));
1403	if ((m->flags & PG_CACHED) != 0) {
1404		KASSERT(m->valid != 0,
1405		    ("vm_page_alloc: cached page %p is invalid", m));
1406		if (m->object == object && m->pindex == pindex)
1407	  		cnt.v_reactivated++;
1408		else
1409			m->valid = 0;
1410		m_object = m->object;
1411		vm_page_cache_remove(m);
1412		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1413			vp = m_object->handle;
1414	} else {
1415		KASSERT(VM_PAGE_IS_FREE(m),
1416		    ("vm_page_alloc: page %p is not free", m));
1417		KASSERT(m->valid == 0,
1418		    ("vm_page_alloc: free page %p is valid", m));
1419		cnt.v_free_count--;
1420	}
1421
1422	/*
1423	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1424	 * must be cleared before the free page queues lock is released.
1425	 */
1426	flags = 0;
1427	if (m->flags & PG_ZERO) {
1428		vm_page_zero_count--;
1429		if (req & VM_ALLOC_ZERO)
1430			flags = PG_ZERO;
1431	}
1432	m->flags = flags;
1433	mtx_unlock(&vm_page_queue_free_mtx);
1434	m->aflags = 0;
1435	if (object == NULL || object->type == OBJT_PHYS)
1436		m->oflags = VPO_UNMANAGED;
1437	else
1438		m->oflags = 0;
1439	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1440		m->oflags |= VPO_BUSY;
1441	if (req & VM_ALLOC_WIRED) {
1442		/*
1443		 * The page lock is not required for wiring a page until that
1444		 * page is inserted into the object.
1445		 */
1446		atomic_add_int(&cnt.v_wire_count, 1);
1447		m->wire_count = 1;
1448	}
1449	m->act_count = 0;
1450
1451	if (object != NULL) {
1452		/* Ignore device objects; the pager sets "memattr" for them. */
1453		if (object->memattr != VM_MEMATTR_DEFAULT &&
1454		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1455			pmap_page_set_memattr(m, object->memattr);
1456		vm_page_insert(m, object, pindex);
1457	} else
1458		m->pindex = pindex;
1459
1460	/*
1461	 * The following call to vdrop() must come after the above call
1462	 * to vm_page_insert() in case both affect the same object and
1463	 * vnode.  Otherwise, the affected vnode's hold count could
1464	 * temporarily become zero.
1465	 */
1466	if (vp != NULL)
1467		vdrop(vp);
1468
1469	/*
1470	 * Don't wakeup too often - wakeup the pageout daemon when
1471	 * we would be nearly out of memory.
1472	 */
1473	if (vm_paging_needed())
1474		pagedaemon_wakeup();
1475
1476	return (m);
1477}
1478
1479/*
1480 * Initialize a page that has been freshly dequeued from a freelist.
1481 * The caller has to drop the vnode returned, if it is not NULL.
1482 *
1483 * To be called with vm_page_queue_free_mtx held.
1484 */
1485struct vnode *
1486vm_page_alloc_init(vm_page_t m)
1487{
1488	struct vnode *drop;
1489	vm_object_t m_object;
1490
1491	KASSERT(m->queue == PQ_NONE,
1492	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1493	    m, m->queue));
1494	KASSERT(m->wire_count == 0,
1495	    ("vm_page_alloc_init: page %p is wired", m));
1496	KASSERT(m->hold_count == 0,
1497	    ("vm_page_alloc_init: page %p is held", m));
1498	KASSERT(m->busy == 0,
1499	    ("vm_page_alloc_init: page %p is busy", m));
1500	KASSERT(m->dirty == 0,
1501	    ("vm_page_alloc_init: page %p is dirty", m));
1502	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1503	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1504	    m, pmap_page_get_memattr(m)));
1505	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1506	drop = NULL;
1507	if ((m->flags & PG_CACHED) != 0) {
1508		m->valid = 0;
1509		m_object = m->object;
1510		vm_page_cache_remove(m);
1511		if (m_object->type == OBJT_VNODE &&
1512		    m_object->cache == NULL)
1513			drop = m_object->handle;
1514	} else {
1515		KASSERT(VM_PAGE_IS_FREE(m),
1516		    ("vm_page_alloc_init: page %p is not free", m));
1517		KASSERT(m->valid == 0,
1518		    ("vm_page_alloc_init: free page %p is valid", m));
1519		cnt.v_free_count--;
1520	}
1521	if (m->flags & PG_ZERO)
1522		vm_page_zero_count--;
1523	/* Don't clear the PG_ZERO flag; we'll need it later. */
1524	m->flags &= PG_ZERO;
1525	m->aflags = 0;
1526	m->oflags = VPO_UNMANAGED;
1527	/* Unmanaged pages don't use "act_count". */
1528	return (drop);
1529}
1530
1531/*
1532 * 	vm_page_alloc_freelist:
1533 *
1534 *	Allocate a page from the specified freelist.
1535 *	Only the ALLOC_CLASS values in req are honored, other request flags
1536 *	are ignored.
1537 */
1538vm_page_t
1539vm_page_alloc_freelist(int flind, int req)
1540{
1541	struct vnode *drop;
1542	vm_page_t m;
1543	int page_req;
1544
1545	m = NULL;
1546	page_req = req & VM_ALLOC_CLASS_MASK;
1547	mtx_lock(&vm_page_queue_free_mtx);
1548	/*
1549	 * Do not allocate reserved pages unless the req has asked for it.
1550	 */
1551	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1552	    (page_req == VM_ALLOC_SYSTEM &&
1553	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1554	    (page_req == VM_ALLOC_INTERRUPT &&
1555	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1556		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1557	}
1558	if (m == NULL) {
1559		mtx_unlock(&vm_page_queue_free_mtx);
1560		return (NULL);
1561	}
1562	drop = vm_page_alloc_init(m);
1563	mtx_unlock(&vm_page_queue_free_mtx);
1564	if (drop)
1565		vdrop(drop);
1566	return (m);
1567}
1568
1569/*
1570 *	vm_wait:	(also see VM_WAIT macro)
1571 *
1572 *	Block until free pages are available for allocation
1573 *	- Called in various places before memory allocations.
1574 */
1575void
1576vm_wait(void)
1577{
1578
1579	mtx_lock(&vm_page_queue_free_mtx);
1580	if (curproc == pageproc) {
1581		vm_pageout_pages_needed = 1;
1582		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1583		    PDROP | PSWP, "VMWait", 0);
1584	} else {
1585		if (!vm_pages_needed) {
1586			vm_pages_needed = 1;
1587			wakeup(&vm_pages_needed);
1588		}
1589		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1590		    "vmwait", 0);
1591	}
1592}
1593
1594/*
1595 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1596 *
1597 *	Block until free pages are available for allocation
1598 *	- Called only in vm_fault so that processes page faulting
1599 *	  can be easily tracked.
1600 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1601 *	  processes will be able to grab memory first.  Do not change
1602 *	  this balance without careful testing first.
1603 */
1604void
1605vm_waitpfault(void)
1606{
1607
1608	mtx_lock(&vm_page_queue_free_mtx);
1609	if (!vm_pages_needed) {
1610		vm_pages_needed = 1;
1611		wakeup(&vm_pages_needed);
1612	}
1613	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1614	    "pfault", 0);
1615}
1616
1617/*
1618 *	vm_page_requeue:
1619 *
1620 *	Move the given page to the tail of its present page queue.
1621 *
1622 *	The page queues must be locked.
1623 */
1624void
1625vm_page_requeue(vm_page_t m)
1626{
1627	struct vpgqueues *vpq;
1628	int queue;
1629
1630	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1631	queue = m->queue;
1632	KASSERT(queue != PQ_NONE,
1633	    ("vm_page_requeue: page %p is not queued", m));
1634	vpq = &vm_page_queues[queue];
1635	TAILQ_REMOVE(&vpq->pl, m, pageq);
1636	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1637}
1638
1639/*
1640 *	vm_page_queue_remove:
1641 *
1642 *	Remove the given page from the specified queue.
1643 *
1644 *	The page and page queues must be locked.
1645 */
1646static __inline void
1647vm_page_queue_remove(int queue, vm_page_t m)
1648{
1649	struct vpgqueues *pq;
1650
1651	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1652	vm_page_lock_assert(m, MA_OWNED);
1653	pq = &vm_page_queues[queue];
1654	TAILQ_REMOVE(&pq->pl, m, pageq);
1655	(*pq->cnt)--;
1656}
1657
1658/*
1659 *	vm_pageq_remove:
1660 *
1661 *	Remove a page from its queue.
1662 *
1663 *	The given page must be locked.
1664 *	This routine may not block.
1665 */
1666void
1667vm_pageq_remove(vm_page_t m)
1668{
1669	int queue;
1670
1671	vm_page_lock_assert(m, MA_OWNED);
1672	if ((queue = m->queue) != PQ_NONE) {
1673		vm_page_lock_queues();
1674		m->queue = PQ_NONE;
1675		vm_page_queue_remove(queue, m);
1676		vm_page_unlock_queues();
1677	}
1678}
1679
1680/*
1681 *	vm_page_enqueue:
1682 *
1683 *	Add the given page to the specified queue.
1684 *
1685 *	The page queues must be locked.
1686 */
1687static void
1688vm_page_enqueue(int queue, vm_page_t m)
1689{
1690	struct vpgqueues *vpq;
1691
1692	vpq = &vm_page_queues[queue];
1693	m->queue = queue;
1694	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1695	++*vpq->cnt;
1696}
1697
1698/*
1699 *	vm_page_activate:
1700 *
1701 *	Put the specified page on the active list (if appropriate).
1702 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1703 *	mess with it.
1704 *
1705 *	The page must be locked.
1706 *	This routine may not block.
1707 */
1708void
1709vm_page_activate(vm_page_t m)
1710{
1711	int queue;
1712
1713	vm_page_lock_assert(m, MA_OWNED);
1714	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1715	if ((queue = m->queue) != PQ_ACTIVE) {
1716		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1717			if (m->act_count < ACT_INIT)
1718				m->act_count = ACT_INIT;
1719			vm_page_lock_queues();
1720			if (queue != PQ_NONE)
1721				vm_page_queue_remove(queue, m);
1722			vm_page_enqueue(PQ_ACTIVE, m);
1723			vm_page_unlock_queues();
1724		} else
1725			KASSERT(queue == PQ_NONE,
1726			    ("vm_page_activate: wired page %p is queued", m));
1727	} else {
1728		if (m->act_count < ACT_INIT)
1729			m->act_count = ACT_INIT;
1730	}
1731}
1732
1733/*
1734 *	vm_page_free_wakeup:
1735 *
1736 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1737 *	routine is called when a page has been added to the cache or free
1738 *	queues.
1739 *
1740 *	The page queues must be locked.
1741 *	This routine may not block.
1742 */
1743static inline void
1744vm_page_free_wakeup(void)
1745{
1746
1747	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1748	/*
1749	 * if pageout daemon needs pages, then tell it that there are
1750	 * some free.
1751	 */
1752	if (vm_pageout_pages_needed &&
1753	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1754		wakeup(&vm_pageout_pages_needed);
1755		vm_pageout_pages_needed = 0;
1756	}
1757	/*
1758	 * wakeup processes that are waiting on memory if we hit a
1759	 * high water mark. And wakeup scheduler process if we have
1760	 * lots of memory. this process will swapin processes.
1761	 */
1762	if (vm_pages_needed && !vm_page_count_min()) {
1763		vm_pages_needed = 0;
1764		wakeup(&cnt.v_free_count);
1765	}
1766}
1767
1768/*
1769 *	vm_page_free_toq:
1770 *
1771 *	Returns the given page to the free list,
1772 *	disassociating it with any VM object.
1773 *
1774 *	Object and page must be locked prior to entry.
1775 *	This routine may not block.
1776 */
1777
1778void
1779vm_page_free_toq(vm_page_t m)
1780{
1781
1782	if ((m->oflags & VPO_UNMANAGED) == 0) {
1783		vm_page_lock_assert(m, MA_OWNED);
1784		KASSERT(!pmap_page_is_mapped(m),
1785		    ("vm_page_free_toq: freeing mapped page %p", m));
1786	}
1787	PCPU_INC(cnt.v_tfree);
1788
1789	if (VM_PAGE_IS_FREE(m))
1790		panic("vm_page_free: freeing free page %p", m);
1791	else if (m->busy != 0)
1792		panic("vm_page_free: freeing busy page %p", m);
1793
1794	/*
1795	 * unqueue, then remove page.  Note that we cannot destroy
1796	 * the page here because we do not want to call the pager's
1797	 * callback routine until after we've put the page on the
1798	 * appropriate free queue.
1799	 */
1800	if ((m->oflags & VPO_UNMANAGED) == 0)
1801		vm_pageq_remove(m);
1802	vm_page_remove(m);
1803
1804	/*
1805	 * If fictitious remove object association and
1806	 * return, otherwise delay object association removal.
1807	 */
1808	if ((m->flags & PG_FICTITIOUS) != 0) {
1809		return;
1810	}
1811
1812	m->valid = 0;
1813	vm_page_undirty(m);
1814
1815	if (m->wire_count != 0)
1816		panic("vm_page_free: freeing wired page %p", m);
1817	if (m->hold_count != 0) {
1818		m->flags &= ~PG_ZERO;
1819		vm_page_lock_queues();
1820		vm_page_enqueue(PQ_HOLD, m);
1821		vm_page_unlock_queues();
1822	} else {
1823		/*
1824		 * Restore the default memory attribute to the page.
1825		 */
1826		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1827			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1828
1829		/*
1830		 * Insert the page into the physical memory allocator's
1831		 * cache/free page queues.
1832		 */
1833		mtx_lock(&vm_page_queue_free_mtx);
1834		m->flags |= PG_FREE;
1835		cnt.v_free_count++;
1836#if VM_NRESERVLEVEL > 0
1837		if (!vm_reserv_free_page(m))
1838#else
1839		if (TRUE)
1840#endif
1841			vm_phys_free_pages(m, 0);
1842		if ((m->flags & PG_ZERO) != 0)
1843			++vm_page_zero_count;
1844		else
1845			vm_page_zero_idle_wakeup();
1846		vm_page_free_wakeup();
1847		mtx_unlock(&vm_page_queue_free_mtx);
1848	}
1849}
1850
1851/*
1852 *	vm_page_wire:
1853 *
1854 *	Mark this page as wired down by yet
1855 *	another map, removing it from paging queues
1856 *	as necessary.
1857 *
1858 *	If the page is fictitious, then its wire count must remain one.
1859 *
1860 *	The page must be locked.
1861 *	This routine may not block.
1862 */
1863void
1864vm_page_wire(vm_page_t m)
1865{
1866
1867	/*
1868	 * Only bump the wire statistics if the page is not already wired,
1869	 * and only unqueue the page if it is on some queue (if it is unmanaged
1870	 * it is already off the queues).
1871	 */
1872	vm_page_lock_assert(m, MA_OWNED);
1873	if ((m->flags & PG_FICTITIOUS) != 0) {
1874		KASSERT(m->wire_count == 1,
1875		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1876		    m));
1877		return;
1878	}
1879	if (m->wire_count == 0) {
1880		if ((m->oflags & VPO_UNMANAGED) == 0)
1881			vm_pageq_remove(m);
1882		atomic_add_int(&cnt.v_wire_count, 1);
1883	}
1884	m->wire_count++;
1885	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1886}
1887
1888/*
1889 * vm_page_unwire:
1890 *
1891 * Release one wiring of the specified page, potentially enabling it to be
1892 * paged again.  If paging is enabled, then the value of the parameter
1893 * "activate" determines to which queue the page is added.  If "activate" is
1894 * non-zero, then the page is added to the active queue.  Otherwise, it is
1895 * added to the inactive queue.
1896 *
1897 * However, unless the page belongs to an object, it is not enqueued because
1898 * it cannot be paged out.
1899 *
1900 * If a page is fictitious, then its wire count must alway be one.
1901 *
1902 * A managed page must be locked.
1903 */
1904void
1905vm_page_unwire(vm_page_t m, int activate)
1906{
1907
1908	if ((m->oflags & VPO_UNMANAGED) == 0)
1909		vm_page_lock_assert(m, MA_OWNED);
1910	if ((m->flags & PG_FICTITIOUS) != 0) {
1911		KASSERT(m->wire_count == 1,
1912	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1913		return;
1914	}
1915	if (m->wire_count > 0) {
1916		m->wire_count--;
1917		if (m->wire_count == 0) {
1918			atomic_subtract_int(&cnt.v_wire_count, 1);
1919			if ((m->oflags & VPO_UNMANAGED) != 0 ||
1920			    m->object == NULL)
1921				return;
1922			vm_page_lock_queues();
1923			if (activate)
1924				vm_page_enqueue(PQ_ACTIVE, m);
1925			else {
1926				m->flags &= ~PG_WINATCFLS;
1927				vm_page_enqueue(PQ_INACTIVE, m);
1928			}
1929			vm_page_unlock_queues();
1930		}
1931	} else
1932		panic("vm_page_unwire: page %p's wire count is zero", m);
1933}
1934
1935/*
1936 * Move the specified page to the inactive queue.
1937 *
1938 * Many pages placed on the inactive queue should actually go
1939 * into the cache, but it is difficult to figure out which.  What
1940 * we do instead, if the inactive target is well met, is to put
1941 * clean pages at the head of the inactive queue instead of the tail.
1942 * This will cause them to be moved to the cache more quickly and
1943 * if not actively re-referenced, reclaimed more quickly.  If we just
1944 * stick these pages at the end of the inactive queue, heavy filesystem
1945 * meta-data accesses can cause an unnecessary paging load on memory bound
1946 * processes.  This optimization causes one-time-use metadata to be
1947 * reused more quickly.
1948 *
1949 * Normally athead is 0 resulting in LRU operation.  athead is set
1950 * to 1 if we want this page to be 'as if it were placed in the cache',
1951 * except without unmapping it from the process address space.
1952 *
1953 * This routine may not block.
1954 */
1955static inline void
1956_vm_page_deactivate(vm_page_t m, int athead)
1957{
1958	int queue;
1959
1960	vm_page_lock_assert(m, MA_OWNED);
1961
1962	/*
1963	 * Ignore if already inactive.
1964	 */
1965	if ((queue = m->queue) == PQ_INACTIVE)
1966		return;
1967	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1968		vm_page_lock_queues();
1969		m->flags &= ~PG_WINATCFLS;
1970		if (queue != PQ_NONE)
1971			vm_page_queue_remove(queue, m);
1972		if (athead)
1973			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1974			    pageq);
1975		else
1976			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1977			    pageq);
1978		m->queue = PQ_INACTIVE;
1979		cnt.v_inactive_count++;
1980		vm_page_unlock_queues();
1981	}
1982}
1983
1984/*
1985 * Move the specified page to the inactive queue.
1986 *
1987 * The page must be locked.
1988 */
1989void
1990vm_page_deactivate(vm_page_t m)
1991{
1992
1993	_vm_page_deactivate(m, 0);
1994}
1995
1996/*
1997 * vm_page_try_to_cache:
1998 *
1999 * Returns 0 on failure, 1 on success
2000 */
2001int
2002vm_page_try_to_cache(vm_page_t m)
2003{
2004
2005	vm_page_lock_assert(m, MA_OWNED);
2006	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2007	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2008	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2009		return (0);
2010	pmap_remove_all(m);
2011	if (m->dirty)
2012		return (0);
2013	vm_page_cache(m);
2014	return (1);
2015}
2016
2017/*
2018 * vm_page_try_to_free()
2019 *
2020 *	Attempt to free the page.  If we cannot free it, we do nothing.
2021 *	1 is returned on success, 0 on failure.
2022 */
2023int
2024vm_page_try_to_free(vm_page_t m)
2025{
2026
2027	vm_page_lock_assert(m, MA_OWNED);
2028	if (m->object != NULL)
2029		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2030	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2031	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2032		return (0);
2033	pmap_remove_all(m);
2034	if (m->dirty)
2035		return (0);
2036	vm_page_free(m);
2037	return (1);
2038}
2039
2040/*
2041 * vm_page_cache
2042 *
2043 * Put the specified page onto the page cache queue (if appropriate).
2044 *
2045 * This routine may not block.
2046 */
2047void
2048vm_page_cache(vm_page_t m)
2049{
2050	vm_object_t object;
2051	vm_page_t next, prev, root;
2052
2053	vm_page_lock_assert(m, MA_OWNED);
2054	object = m->object;
2055	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2056	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2057	    m->hold_count || m->wire_count)
2058		panic("vm_page_cache: attempting to cache busy page");
2059	pmap_remove_all(m);
2060	if (m->dirty != 0)
2061		panic("vm_page_cache: page %p is dirty", m);
2062	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2063	    (object->type == OBJT_SWAP &&
2064	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2065		/*
2066		 * Hypothesis: A cache-elgible page belonging to a
2067		 * default object or swap object but without a backing
2068		 * store must be zero filled.
2069		 */
2070		vm_page_free(m);
2071		return;
2072	}
2073	KASSERT((m->flags & PG_CACHED) == 0,
2074	    ("vm_page_cache: page %p is already cached", m));
2075	PCPU_INC(cnt.v_tcached);
2076
2077	/*
2078	 * Remove the page from the paging queues.
2079	 */
2080	vm_pageq_remove(m);
2081
2082	/*
2083	 * Remove the page from the object's collection of resident
2084	 * pages.
2085	 */
2086	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
2087		/*
2088		 * Since the page's successor in the list is also its parent
2089		 * in the tree, its right subtree must be empty.
2090		 */
2091		next->left = m->left;
2092		KASSERT(m->right == NULL,
2093		    ("vm_page_cache: page %p has right child", m));
2094	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
2095	    prev->right == m) {
2096		/*
2097		 * Since the page's predecessor in the list is also its parent
2098		 * in the tree, its left subtree must be empty.
2099		 */
2100		KASSERT(m->left == NULL,
2101		    ("vm_page_cache: page %p has left child", m));
2102		prev->right = m->right;
2103	} else {
2104		if (m != object->root)
2105			vm_page_splay(m->pindex, object->root);
2106		if (m->left == NULL)
2107			root = m->right;
2108		else if (m->right == NULL)
2109			root = m->left;
2110		else {
2111			/*
2112			 * Move the page's successor to the root, because
2113			 * pages are usually removed in ascending order.
2114			 */
2115			if (m->right != next)
2116				vm_page_splay(m->pindex, m->right);
2117			next->left = m->left;
2118			root = next;
2119		}
2120		object->root = root;
2121	}
2122	TAILQ_REMOVE(&object->memq, m, listq);
2123	object->resident_page_count--;
2124
2125	/*
2126	 * Restore the default memory attribute to the page.
2127	 */
2128	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2129		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2130
2131	/*
2132	 * Insert the page into the object's collection of cached pages
2133	 * and the physical memory allocator's cache/free page queues.
2134	 */
2135	m->flags &= ~PG_ZERO;
2136	mtx_lock(&vm_page_queue_free_mtx);
2137	m->flags |= PG_CACHED;
2138	cnt.v_cache_count++;
2139	root = object->cache;
2140	if (root == NULL) {
2141		m->left = NULL;
2142		m->right = NULL;
2143	} else {
2144		root = vm_page_splay(m->pindex, root);
2145		if (m->pindex < root->pindex) {
2146			m->left = root->left;
2147			m->right = root;
2148			root->left = NULL;
2149		} else if (__predict_false(m->pindex == root->pindex))
2150			panic("vm_page_cache: offset already cached");
2151		else {
2152			m->right = root->right;
2153			m->left = root;
2154			root->right = NULL;
2155		}
2156	}
2157	object->cache = m;
2158#if VM_NRESERVLEVEL > 0
2159	if (!vm_reserv_free_page(m)) {
2160#else
2161	if (TRUE) {
2162#endif
2163		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2164		vm_phys_free_pages(m, 0);
2165	}
2166	vm_page_free_wakeup();
2167	mtx_unlock(&vm_page_queue_free_mtx);
2168
2169	/*
2170	 * Increment the vnode's hold count if this is the object's only
2171	 * cached page.  Decrement the vnode's hold count if this was
2172	 * the object's only resident page.
2173	 */
2174	if (object->type == OBJT_VNODE) {
2175		if (root == NULL && object->resident_page_count != 0)
2176			vhold(object->handle);
2177		else if (root != NULL && object->resident_page_count == 0)
2178			vdrop(object->handle);
2179	}
2180}
2181
2182/*
2183 * vm_page_dontneed
2184 *
2185 *	Cache, deactivate, or do nothing as appropriate.  This routine
2186 *	is typically used by madvise() MADV_DONTNEED.
2187 *
2188 *	Generally speaking we want to move the page into the cache so
2189 *	it gets reused quickly.  However, this can result in a silly syndrome
2190 *	due to the page recycling too quickly.  Small objects will not be
2191 *	fully cached.  On the otherhand, if we move the page to the inactive
2192 *	queue we wind up with a problem whereby very large objects
2193 *	unnecessarily blow away our inactive and cache queues.
2194 *
2195 *	The solution is to move the pages based on a fixed weighting.  We
2196 *	either leave them alone, deactivate them, or move them to the cache,
2197 *	where moving them to the cache has the highest weighting.
2198 *	By forcing some pages into other queues we eventually force the
2199 *	system to balance the queues, potentially recovering other unrelated
2200 *	space from active.  The idea is to not force this to happen too
2201 *	often.
2202 */
2203void
2204vm_page_dontneed(vm_page_t m)
2205{
2206	int dnw;
2207	int head;
2208
2209	vm_page_lock_assert(m, MA_OWNED);
2210	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2211	dnw = PCPU_GET(dnweight);
2212	PCPU_INC(dnweight);
2213
2214	/*
2215	 * Occasionally leave the page alone.
2216	 */
2217	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2218		if (m->act_count >= ACT_INIT)
2219			--m->act_count;
2220		return;
2221	}
2222
2223	/*
2224	 * Clear any references to the page.  Otherwise, the page daemon will
2225	 * immediately reactivate the page.
2226	 *
2227	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2228	 * pmap operation, such as pmap_remove(), could clear a reference in
2229	 * the pmap and set PGA_REFERENCED on the page before the
2230	 * pmap_clear_reference() had completed.  Consequently, the page would
2231	 * appear referenced based upon an old reference that occurred before
2232	 * this function ran.
2233	 */
2234	pmap_clear_reference(m);
2235	vm_page_aflag_clear(m, PGA_REFERENCED);
2236
2237	if (m->dirty == 0 && pmap_is_modified(m))
2238		vm_page_dirty(m);
2239
2240	if (m->dirty || (dnw & 0x0070) == 0) {
2241		/*
2242		 * Deactivate the page 3 times out of 32.
2243		 */
2244		head = 0;
2245	} else {
2246		/*
2247		 * Cache the page 28 times out of every 32.  Note that
2248		 * the page is deactivated instead of cached, but placed
2249		 * at the head of the queue instead of the tail.
2250		 */
2251		head = 1;
2252	}
2253	_vm_page_deactivate(m, head);
2254}
2255
2256/*
2257 * Grab a page, waiting until we are waken up due to the page
2258 * changing state.  We keep on waiting, if the page continues
2259 * to be in the object.  If the page doesn't exist, first allocate it
2260 * and then conditionally zero it.
2261 *
2262 * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2263 * to facilitate its eventual removal.
2264 *
2265 * This routine may block.
2266 */
2267vm_page_t
2268vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2269{
2270	vm_page_t m;
2271
2272	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2273	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2274	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2275retrylookup:
2276	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2277		if ((m->oflags & VPO_BUSY) != 0 ||
2278		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2279			/*
2280			 * Reference the page before unlocking and
2281			 * sleeping so that the page daemon is less
2282			 * likely to reclaim it.
2283			 */
2284			vm_page_aflag_set(m, PGA_REFERENCED);
2285			vm_page_sleep(m, "pgrbwt");
2286			goto retrylookup;
2287		} else {
2288			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2289				vm_page_lock(m);
2290				vm_page_wire(m);
2291				vm_page_unlock(m);
2292			}
2293			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2294				vm_page_busy(m);
2295			return (m);
2296		}
2297	}
2298	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2299	    VM_ALLOC_IGN_SBUSY));
2300	if (m == NULL) {
2301		VM_OBJECT_UNLOCK(object);
2302		VM_WAIT;
2303		VM_OBJECT_LOCK(object);
2304		goto retrylookup;
2305	} else if (m->valid != 0)
2306		return (m);
2307	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2308		pmap_zero_page(m);
2309	return (m);
2310}
2311
2312/*
2313 * Mapping function for valid bits or for dirty bits in
2314 * a page.  May not block.
2315 *
2316 * Inputs are required to range within a page.
2317 */
2318int
2319vm_page_bits(int base, int size)
2320{
2321	int first_bit;
2322	int last_bit;
2323
2324	KASSERT(
2325	    base + size <= PAGE_SIZE,
2326	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2327	);
2328
2329	if (size == 0)		/* handle degenerate case */
2330		return (0);
2331
2332	first_bit = base >> DEV_BSHIFT;
2333	last_bit = (base + size - 1) >> DEV_BSHIFT;
2334
2335	return ((2 << last_bit) - (1 << first_bit));
2336}
2337
2338/*
2339 *	vm_page_set_valid:
2340 *
2341 *	Sets portions of a page valid.  The arguments are expected
2342 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2343 *	of any partial chunks touched by the range.  The invalid portion of
2344 *	such chunks will be zeroed.
2345 *
2346 *	(base + size) must be less then or equal to PAGE_SIZE.
2347 */
2348void
2349vm_page_set_valid(vm_page_t m, int base, int size)
2350{
2351	int endoff, frag;
2352
2353	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2354	if (size == 0)	/* handle degenerate case */
2355		return;
2356
2357	/*
2358	 * If the base is not DEV_BSIZE aligned and the valid
2359	 * bit is clear, we have to zero out a portion of the
2360	 * first block.
2361	 */
2362	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2363	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2364		pmap_zero_page_area(m, frag, base - frag);
2365
2366	/*
2367	 * If the ending offset is not DEV_BSIZE aligned and the
2368	 * valid bit is clear, we have to zero out a portion of
2369	 * the last block.
2370	 */
2371	endoff = base + size;
2372	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2373	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2374		pmap_zero_page_area(m, endoff,
2375		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2376
2377	/*
2378	 * Assert that no previously invalid block that is now being validated
2379	 * is already dirty.
2380	 */
2381	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2382	    ("vm_page_set_valid: page %p is dirty", m));
2383
2384	/*
2385	 * Set valid bits inclusive of any overlap.
2386	 */
2387	m->valid |= vm_page_bits(base, size);
2388}
2389
2390/*
2391 * Clear the given bits from the specified page's dirty field.
2392 */
2393static __inline void
2394vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2395{
2396	uintptr_t addr;
2397#if PAGE_SIZE < 16384
2398	int shift;
2399#endif
2400
2401	/*
2402	 * If the object is locked and the page is neither VPO_BUSY nor
2403	 * PGA_WRITEABLE, then the page's dirty field cannot possibly be
2404	 * set by a concurrent pmap operation.
2405	 */
2406	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2407	if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0)
2408		m->dirty &= ~pagebits;
2409	else {
2410		/*
2411		 * The pmap layer can call vm_page_dirty() without
2412		 * holding a distinguished lock.  The combination of
2413		 * the object's lock and an atomic operation suffice
2414		 * to guarantee consistency of the page dirty field.
2415		 *
2416		 * For PAGE_SIZE == 32768 case, compiler already
2417		 * properly aligns the dirty field, so no forcible
2418		 * alignment is needed. Only require existence of
2419		 * atomic_clear_64 when page size is 32768.
2420		 */
2421		addr = (uintptr_t)&m->dirty;
2422#if PAGE_SIZE == 32768
2423#error pagebits too short
2424		atomic_clear_64((uint64_t *)addr, pagebits);
2425#elif PAGE_SIZE == 16384
2426		atomic_clear_32((uint32_t *)addr, pagebits);
2427#else		/* PAGE_SIZE <= 8192 */
2428		/*
2429		 * Use a trick to perform a 32-bit atomic on the
2430		 * containing aligned word, to not depend on the existence
2431		 * of atomic_clear_{8, 16}.
2432		 */
2433		shift = addr & (sizeof(uint32_t) - 1);
2434#if BYTE_ORDER == BIG_ENDIAN
2435		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2436#else
2437		shift *= NBBY;
2438#endif
2439		addr &= ~(sizeof(uint32_t) - 1);
2440		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2441#endif		/* PAGE_SIZE */
2442	}
2443}
2444
2445/*
2446 *	vm_page_set_validclean:
2447 *
2448 *	Sets portions of a page valid and clean.  The arguments are expected
2449 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2450 *	of any partial chunks touched by the range.  The invalid portion of
2451 *	such chunks will be zero'd.
2452 *
2453 *	This routine may not block.
2454 *
2455 *	(base + size) must be less then or equal to PAGE_SIZE.
2456 */
2457void
2458vm_page_set_validclean(vm_page_t m, int base, int size)
2459{
2460	u_long oldvalid;
2461	int endoff, frag, pagebits;
2462
2463	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2464	if (size == 0)	/* handle degenerate case */
2465		return;
2466
2467	/*
2468	 * If the base is not DEV_BSIZE aligned and the valid
2469	 * bit is clear, we have to zero out a portion of the
2470	 * first block.
2471	 */
2472	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2473	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2474		pmap_zero_page_area(m, frag, base - frag);
2475
2476	/*
2477	 * If the ending offset is not DEV_BSIZE aligned and the
2478	 * valid bit is clear, we have to zero out a portion of
2479	 * the last block.
2480	 */
2481	endoff = base + size;
2482	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2483	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2484		pmap_zero_page_area(m, endoff,
2485		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2486
2487	/*
2488	 * Set valid, clear dirty bits.  If validating the entire
2489	 * page we can safely clear the pmap modify bit.  We also
2490	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2491	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2492	 * be set again.
2493	 *
2494	 * We set valid bits inclusive of any overlap, but we can only
2495	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2496	 * the range.
2497	 */
2498	oldvalid = m->valid;
2499	pagebits = vm_page_bits(base, size);
2500	m->valid |= pagebits;
2501#if 0	/* NOT YET */
2502	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2503		frag = DEV_BSIZE - frag;
2504		base += frag;
2505		size -= frag;
2506		if (size < 0)
2507			size = 0;
2508	}
2509	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2510#endif
2511	if (base == 0 && size == PAGE_SIZE) {
2512		/*
2513		 * The page can only be modified within the pmap if it is
2514		 * mapped, and it can only be mapped if it was previously
2515		 * fully valid.
2516		 */
2517		if (oldvalid == VM_PAGE_BITS_ALL)
2518			/*
2519			 * Perform the pmap_clear_modify() first.  Otherwise,
2520			 * a concurrent pmap operation, such as
2521			 * pmap_protect(), could clear a modification in the
2522			 * pmap and set the dirty field on the page before
2523			 * pmap_clear_modify() had begun and after the dirty
2524			 * field was cleared here.
2525			 */
2526			pmap_clear_modify(m);
2527		m->dirty = 0;
2528		m->oflags &= ~VPO_NOSYNC;
2529	} else if (oldvalid != VM_PAGE_BITS_ALL)
2530		m->dirty &= ~pagebits;
2531	else
2532		vm_page_clear_dirty_mask(m, pagebits);
2533}
2534
2535void
2536vm_page_clear_dirty(vm_page_t m, int base, int size)
2537{
2538
2539	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2540}
2541
2542/*
2543 *	vm_page_set_invalid:
2544 *
2545 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2546 *	valid and dirty bits for the effected areas are cleared.
2547 *
2548 *	May not block.
2549 */
2550void
2551vm_page_set_invalid(vm_page_t m, int base, int size)
2552{
2553	int bits;
2554
2555	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2556	KASSERT((m->oflags & VPO_BUSY) == 0,
2557	    ("vm_page_set_invalid: page %p is busy", m));
2558	bits = vm_page_bits(base, size);
2559	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2560		pmap_remove_all(m);
2561	KASSERT(!pmap_page_is_mapped(m),
2562	    ("vm_page_set_invalid: page %p is mapped", m));
2563	m->valid &= ~bits;
2564	m->dirty &= ~bits;
2565}
2566
2567/*
2568 * vm_page_zero_invalid()
2569 *
2570 *	The kernel assumes that the invalid portions of a page contain
2571 *	garbage, but such pages can be mapped into memory by user code.
2572 *	When this occurs, we must zero out the non-valid portions of the
2573 *	page so user code sees what it expects.
2574 *
2575 *	Pages are most often semi-valid when the end of a file is mapped
2576 *	into memory and the file's size is not page aligned.
2577 */
2578void
2579vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2580{
2581	int b;
2582	int i;
2583
2584	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2585	/*
2586	 * Scan the valid bits looking for invalid sections that
2587	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2588	 * valid bit may be set ) have already been zerod by
2589	 * vm_page_set_validclean().
2590	 */
2591	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2592		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2593		    (m->valid & (1 << i))
2594		) {
2595			if (i > b) {
2596				pmap_zero_page_area(m,
2597				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2598			}
2599			b = i + 1;
2600		}
2601	}
2602
2603	/*
2604	 * setvalid is TRUE when we can safely set the zero'd areas
2605	 * as being valid.  We can do this if there are no cache consistancy
2606	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2607	 */
2608	if (setvalid)
2609		m->valid = VM_PAGE_BITS_ALL;
2610}
2611
2612/*
2613 *	vm_page_is_valid:
2614 *
2615 *	Is (partial) page valid?  Note that the case where size == 0
2616 *	will return FALSE in the degenerate case where the page is
2617 *	entirely invalid, and TRUE otherwise.
2618 *
2619 *	May not block.
2620 */
2621int
2622vm_page_is_valid(vm_page_t m, int base, int size)
2623{
2624	int bits = vm_page_bits(base, size);
2625
2626	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2627	if (m->valid && ((m->valid & bits) == bits))
2628		return 1;
2629	else
2630		return 0;
2631}
2632
2633/*
2634 * update dirty bits from pmap/mmu.  May not block.
2635 */
2636void
2637vm_page_test_dirty(vm_page_t m)
2638{
2639
2640	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2641	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2642		vm_page_dirty(m);
2643}
2644
2645int so_zerocp_fullpage = 0;
2646
2647/*
2648 *	Replace the given page with a copy.  The copied page assumes
2649 *	the portion of the given page's "wire_count" that is not the
2650 *	responsibility of this copy-on-write mechanism.
2651 *
2652 *	The object containing the given page must have a non-zero
2653 *	paging-in-progress count and be locked.
2654 */
2655void
2656vm_page_cowfault(vm_page_t m)
2657{
2658	vm_page_t mnew;
2659	vm_object_t object;
2660	vm_pindex_t pindex;
2661
2662	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2663	vm_page_lock_assert(m, MA_OWNED);
2664	object = m->object;
2665	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2666	KASSERT(object->paging_in_progress != 0,
2667	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2668	    object));
2669	pindex = m->pindex;
2670
2671 retry_alloc:
2672	pmap_remove_all(m);
2673	vm_page_remove(m);
2674	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2675	if (mnew == NULL) {
2676		vm_page_insert(m, object, pindex);
2677		vm_page_unlock(m);
2678		VM_OBJECT_UNLOCK(object);
2679		VM_WAIT;
2680		VM_OBJECT_LOCK(object);
2681		if (m == vm_page_lookup(object, pindex)) {
2682			vm_page_lock(m);
2683			goto retry_alloc;
2684		} else {
2685			/*
2686			 * Page disappeared during the wait.
2687			 */
2688			return;
2689		}
2690	}
2691
2692	if (m->cow == 0) {
2693		/*
2694		 * check to see if we raced with an xmit complete when
2695		 * waiting to allocate a page.  If so, put things back
2696		 * the way they were
2697		 */
2698		vm_page_unlock(m);
2699		vm_page_lock(mnew);
2700		vm_page_free(mnew);
2701		vm_page_unlock(mnew);
2702		vm_page_insert(m, object, pindex);
2703	} else { /* clear COW & copy page */
2704		if (!so_zerocp_fullpage)
2705			pmap_copy_page(m, mnew);
2706		mnew->valid = VM_PAGE_BITS_ALL;
2707		vm_page_dirty(mnew);
2708		mnew->wire_count = m->wire_count - m->cow;
2709		m->wire_count = m->cow;
2710		vm_page_unlock(m);
2711	}
2712}
2713
2714void
2715vm_page_cowclear(vm_page_t m)
2716{
2717
2718	vm_page_lock_assert(m, MA_OWNED);
2719	if (m->cow) {
2720		m->cow--;
2721		/*
2722		 * let vm_fault add back write permission  lazily
2723		 */
2724	}
2725	/*
2726	 *  sf_buf_free() will free the page, so we needn't do it here
2727	 */
2728}
2729
2730int
2731vm_page_cowsetup(vm_page_t m)
2732{
2733
2734	vm_page_lock_assert(m, MA_OWNED);
2735	if ((m->flags & PG_FICTITIOUS) != 0 ||
2736	    (m->oflags & VPO_UNMANAGED) != 0 ||
2737	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2738		return (EBUSY);
2739	m->cow++;
2740	pmap_remove_write(m);
2741	VM_OBJECT_UNLOCK(m->object);
2742	return (0);
2743}
2744
2745#ifdef INVARIANTS
2746void
2747vm_page_object_lock_assert(vm_page_t m)
2748{
2749
2750	/*
2751	 * Certain of the page's fields may only be modified by the
2752	 * holder of the containing object's lock or the setter of the
2753	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
2754	 * VPO_BUSY flag is not recorded, and thus cannot be checked
2755	 * here.
2756	 */
2757	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
2758		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2759}
2760#endif
2761
2762#include "opt_ddb.h"
2763#ifdef DDB
2764#include <sys/kernel.h>
2765
2766#include <ddb/ddb.h>
2767
2768DB_SHOW_COMMAND(page, vm_page_print_page_info)
2769{
2770	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2771	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2772	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2773	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2774	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2775	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2776	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2777	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2778	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2779	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2780}
2781
2782DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2783{
2784
2785	db_printf("PQ_FREE:");
2786	db_printf(" %d", cnt.v_free_count);
2787	db_printf("\n");
2788
2789	db_printf("PQ_CACHE:");
2790	db_printf(" %d", cnt.v_cache_count);
2791	db_printf("\n");
2792
2793	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2794		*vm_page_queues[PQ_ACTIVE].cnt,
2795		*vm_page_queues[PQ_INACTIVE].cnt);
2796}
2797#endif /* DDB */
2798