vm_page.c revision 212174
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- a hash chain mutex is required when associating or disassociating
71 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72 *	  regardless of other mutexes or the busy state of a page.
73 *
74 *	- either a hash chain mutex OR a busied page is required in order
75 *	  to modify the page flags.  A hash chain mutex must be obtained in
76 *	  order to busy a page.  A page's flags cannot be modified by a
77 *	  hash chain mutex if the page is marked busy.
78 *
79 *	- The object memq mutex is held when inserting or removing
80 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81 *	  is different from the object's main mutex.
82 *
83 *	Generally speaking, you have to be aware of side effects when running
84 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86 *	vm_page_cache(), vm_page_activate(), and a number of other routines
87 *	will release the hash chain mutex for you.  Intermediate manipulation
88 *	routines such as vm_page_flag_set() expect the hash chain to be held
89 *	on entry and the hash chain will remain held on return.
90 *
91 *	pageq scanning can only occur with the pageq in question locked.
92 *	We have a known bottleneck with the active queue, but the cache
93 *	and free queues are actually arrays already.
94 */
95
96/*
97 *	Resident memory management module.
98 */
99
100#include <sys/cdefs.h>
101__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 212174 2010-09-03 10:40:53Z avg $");
102
103#include "opt_msgbuf.h"
104#include "opt_vm.h"
105
106#include <sys/param.h>
107#include <sys/systm.h>
108#include <sys/lock.h>
109#include <sys/kernel.h>
110#include <sys/limits.h>
111#include <sys/malloc.h>
112#include <sys/msgbuf.h>
113#include <sys/mutex.h>
114#include <sys/proc.h>
115#include <sys/sysctl.h>
116#include <sys/vmmeter.h>
117#include <sys/vnode.h>
118
119#include <vm/vm.h>
120#include <vm/pmap.h>
121#include <vm/vm_param.h>
122#include <vm/vm_kern.h>
123#include <vm/vm_object.h>
124#include <vm/vm_page.h>
125#include <vm/vm_pageout.h>
126#include <vm/vm_pager.h>
127#include <vm/vm_phys.h>
128#include <vm/vm_reserv.h>
129#include <vm/vm_extern.h>
130#include <vm/uma.h>
131#include <vm/uma_int.h>
132
133#include <machine/md_var.h>
134
135#if defined(__amd64__) || defined (__i386__)
136extern struct sysctl_oid_list sysctl__vm_pmap_children;
137#else
138SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
139#endif
140
141static uint64_t pmap_tryrelock_calls;
142SYSCTL_QUAD(_vm_pmap, OID_AUTO, tryrelock_calls, CTLFLAG_RD,
143    &pmap_tryrelock_calls, 0, "Number of tryrelock calls");
144
145static int pmap_tryrelock_restart;
146SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
147    &pmap_tryrelock_restart, 0, "Number of tryrelock restarts");
148
149static int pmap_tryrelock_race;
150SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_race, CTLFLAG_RD,
151    &pmap_tryrelock_race, 0, "Number of tryrelock pmap race cases");
152
153/*
154 *	Associated with page of user-allocatable memory is a
155 *	page structure.
156 */
157
158struct vpgqueues vm_page_queues[PQ_COUNT];
159struct vpglocks vm_page_queue_lock;
160struct vpglocks vm_page_queue_free_lock;
161
162struct vpglocks	pa_lock[PA_LOCK_COUNT] __aligned(CACHE_LINE_SIZE);
163
164vm_page_t vm_page_array = 0;
165int vm_page_array_size = 0;
166long first_page = 0;
167int vm_page_zero_count = 0;
168
169static int boot_pages = UMA_BOOT_PAGES;
170TUNABLE_INT("vm.boot_pages", &boot_pages);
171SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
172	"number of pages allocated for bootstrapping the VM system");
173
174static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
175static void vm_page_queue_remove(int queue, vm_page_t m);
176static void vm_page_enqueue(int queue, vm_page_t m);
177
178/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
179#if PAGE_SIZE == 32768
180#ifdef CTASSERT
181CTASSERT(sizeof(u_long) >= 8);
182#endif
183#endif
184
185/*
186 * Try to acquire a physical address lock while a pmap is locked.  If we
187 * fail to trylock we unlock and lock the pmap directly and cache the
188 * locked pa in *locked.  The caller should then restart their loop in case
189 * the virtual to physical mapping has changed.
190 */
191int
192vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
193{
194	vm_paddr_t lockpa;
195	uint32_t gen_count;
196
197	gen_count = pmap->pm_gen_count;
198	atomic_add_long((volatile long *)&pmap_tryrelock_calls, 1);
199	lockpa = *locked;
200	*locked = pa;
201	if (lockpa) {
202		PA_LOCK_ASSERT(lockpa, MA_OWNED);
203		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
204			return (0);
205		PA_UNLOCK(lockpa);
206	}
207	if (PA_TRYLOCK(pa))
208		return (0);
209	PMAP_UNLOCK(pmap);
210	atomic_add_int((volatile int *)&pmap_tryrelock_restart, 1);
211	PA_LOCK(pa);
212	PMAP_LOCK(pmap);
213
214	if (pmap->pm_gen_count != gen_count + 1) {
215		pmap->pm_retries++;
216		atomic_add_int((volatile int *)&pmap_tryrelock_race, 1);
217		return (EAGAIN);
218	}
219	return (0);
220}
221
222/*
223 *	vm_set_page_size:
224 *
225 *	Sets the page size, perhaps based upon the memory
226 *	size.  Must be called before any use of page-size
227 *	dependent functions.
228 */
229void
230vm_set_page_size(void)
231{
232	if (cnt.v_page_size == 0)
233		cnt.v_page_size = PAGE_SIZE;
234	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
235		panic("vm_set_page_size: page size not a power of two");
236}
237
238/*
239 *	vm_page_blacklist_lookup:
240 *
241 *	See if a physical address in this page has been listed
242 *	in the blacklist tunable.  Entries in the tunable are
243 *	separated by spaces or commas.  If an invalid integer is
244 *	encountered then the rest of the string is skipped.
245 */
246static int
247vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
248{
249	vm_paddr_t bad;
250	char *cp, *pos;
251
252	for (pos = list; *pos != '\0'; pos = cp) {
253		bad = strtoq(pos, &cp, 0);
254		if (*cp != '\0') {
255			if (*cp == ' ' || *cp == ',') {
256				cp++;
257				if (cp == pos)
258					continue;
259			} else
260				break;
261		}
262		if (pa == trunc_page(bad))
263			return (1);
264	}
265	return (0);
266}
267
268/*
269 *	vm_page_startup:
270 *
271 *	Initializes the resident memory module.
272 *
273 *	Allocates memory for the page cells, and
274 *	for the object/offset-to-page hash table headers.
275 *	Each page cell is initialized and placed on the free list.
276 */
277vm_offset_t
278vm_page_startup(vm_offset_t vaddr)
279{
280	vm_offset_t mapped;
281	vm_paddr_t page_range;
282	vm_paddr_t new_end;
283	int i;
284	vm_paddr_t pa;
285	int nblocks;
286	vm_paddr_t last_pa;
287	char *list;
288
289	/* the biggest memory array is the second group of pages */
290	vm_paddr_t end;
291	vm_paddr_t biggestsize;
292	vm_paddr_t low_water, high_water;
293	int biggestone;
294
295	biggestsize = 0;
296	biggestone = 0;
297	nblocks = 0;
298	vaddr = round_page(vaddr);
299
300	for (i = 0; phys_avail[i + 1]; i += 2) {
301		phys_avail[i] = round_page(phys_avail[i]);
302		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
303	}
304
305	low_water = phys_avail[0];
306	high_water = phys_avail[1];
307
308	for (i = 0; phys_avail[i + 1]; i += 2) {
309		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
310
311		if (size > biggestsize) {
312			biggestone = i;
313			biggestsize = size;
314		}
315		if (phys_avail[i] < low_water)
316			low_water = phys_avail[i];
317		if (phys_avail[i + 1] > high_water)
318			high_water = phys_avail[i + 1];
319		++nblocks;
320	}
321
322#ifdef XEN
323	low_water = 0;
324#endif
325
326	end = phys_avail[biggestone+1];
327
328	/*
329	 * Initialize the locks.
330	 */
331	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
332	    MTX_RECURSE);
333	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
334	    MTX_DEF);
335
336	/* Setup page locks. */
337	for (i = 0; i < PA_LOCK_COUNT; i++)
338		mtx_init(&pa_lock[i].data, "page lock", NULL,
339		    MTX_DEF | MTX_RECURSE | MTX_DUPOK);
340
341	/*
342	 * Initialize the queue headers for the hold queue, the active queue,
343	 * and the inactive queue.
344	 */
345	for (i = 0; i < PQ_COUNT; i++)
346		TAILQ_INIT(&vm_page_queues[i].pl);
347	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
348	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
349	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
350
351	/*
352	 * Allocate memory for use when boot strapping the kernel memory
353	 * allocator.
354	 */
355	new_end = end - (boot_pages * UMA_SLAB_SIZE);
356	new_end = trunc_page(new_end);
357	mapped = pmap_map(&vaddr, new_end, end,
358	    VM_PROT_READ | VM_PROT_WRITE);
359	bzero((void *)mapped, end - new_end);
360	uma_startup((void *)mapped, boot_pages);
361
362#if defined(__amd64__) || defined(__i386__) || defined(__arm__)
363	/*
364	 * Allocate a bitmap to indicate that a random physical page
365	 * needs to be included in a minidump.
366	 *
367	 * The amd64 port needs this to indicate which direct map pages
368	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
369	 *
370	 * However, i386 still needs this workspace internally within the
371	 * minidump code.  In theory, they are not needed on i386, but are
372	 * included should the sf_buf code decide to use them.
373	 */
374	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
375	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
376	new_end -= vm_page_dump_size;
377	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
378	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
379	bzero((void *)vm_page_dump, vm_page_dump_size);
380#endif
381#ifdef __amd64__
382	/*
383	 * Request that the physical pages underlying the message buffer be
384	 * included in a crash dump.  Since the message buffer is accessed
385	 * through the direct map, they are not automatically included.
386	 */
387	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
388	last_pa = pa + round_page(MSGBUF_SIZE);
389	while (pa < last_pa) {
390		dump_add_page(pa);
391		pa += PAGE_SIZE;
392	}
393#endif
394	/*
395	 * Compute the number of pages of memory that will be available for
396	 * use (taking into account the overhead of a page structure per
397	 * page).
398	 */
399	first_page = low_water / PAGE_SIZE;
400#ifdef VM_PHYSSEG_SPARSE
401	page_range = 0;
402	for (i = 0; phys_avail[i + 1] != 0; i += 2)
403		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
404#elif defined(VM_PHYSSEG_DENSE)
405	page_range = high_water / PAGE_SIZE - first_page;
406#else
407#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
408#endif
409	end = new_end;
410
411	/*
412	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
413	 */
414	vaddr += PAGE_SIZE;
415
416	/*
417	 * Initialize the mem entry structures now, and put them in the free
418	 * queue.
419	 */
420	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
421	mapped = pmap_map(&vaddr, new_end, end,
422	    VM_PROT_READ | VM_PROT_WRITE);
423	vm_page_array = (vm_page_t) mapped;
424#if VM_NRESERVLEVEL > 0
425	/*
426	 * Allocate memory for the reservation management system's data
427	 * structures.
428	 */
429	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
430#endif
431#ifdef __amd64__
432	/*
433	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
434	 * so the pages must be tracked for a crashdump to include this data.
435	 * This includes the vm_page_array and the early UMA bootstrap pages.
436	 */
437	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
438		dump_add_page(pa);
439#endif
440	phys_avail[biggestone + 1] = new_end;
441
442	/*
443	 * Clear all of the page structures
444	 */
445	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
446	for (i = 0; i < page_range; i++)
447		vm_page_array[i].order = VM_NFREEORDER;
448	vm_page_array_size = page_range;
449
450	/*
451	 * Initialize the physical memory allocator.
452	 */
453	vm_phys_init();
454
455	/*
456	 * Add every available physical page that is not blacklisted to
457	 * the free lists.
458	 */
459	cnt.v_page_count = 0;
460	cnt.v_free_count = 0;
461	list = getenv("vm.blacklist");
462	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
463		pa = phys_avail[i];
464		last_pa = phys_avail[i + 1];
465		while (pa < last_pa) {
466			if (list != NULL &&
467			    vm_page_blacklist_lookup(list, pa))
468				printf("Skipping page with pa 0x%jx\n",
469				    (uintmax_t)pa);
470			else
471				vm_phys_add_page(pa);
472			pa += PAGE_SIZE;
473		}
474	}
475	freeenv(list);
476#if VM_NRESERVLEVEL > 0
477	/*
478	 * Initialize the reservation management system.
479	 */
480	vm_reserv_init();
481#endif
482	return (vaddr);
483}
484
485void
486vm_page_flag_set(vm_page_t m, unsigned short bits)
487{
488
489	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
490	/*
491	 * The PG_WRITEABLE flag can only be set if the page is managed and
492	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
493	 */
494	KASSERT((bits & PG_WRITEABLE) == 0 ||
495	    ((m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) == 0 &&
496	    (m->oflags & VPO_BUSY) != 0), ("PG_WRITEABLE and !VPO_BUSY"));
497	m->flags |= bits;
498}
499
500void
501vm_page_flag_clear(vm_page_t m, unsigned short bits)
502{
503
504	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
505	/*
506	 * The PG_REFERENCED flag can only be cleared if the object
507	 * containing the page is locked.
508	 */
509	KASSERT((bits & PG_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
510	    ("PG_REFERENCED and !VM_OBJECT_LOCKED"));
511	m->flags &= ~bits;
512}
513
514void
515vm_page_busy(vm_page_t m)
516{
517
518	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
519	KASSERT((m->oflags & VPO_BUSY) == 0,
520	    ("vm_page_busy: page already busy!!!"));
521	m->oflags |= VPO_BUSY;
522}
523
524/*
525 *      vm_page_flash:
526 *
527 *      wakeup anyone waiting for the page.
528 */
529void
530vm_page_flash(vm_page_t m)
531{
532
533	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
534	if (m->oflags & VPO_WANTED) {
535		m->oflags &= ~VPO_WANTED;
536		wakeup(m);
537	}
538}
539
540/*
541 *      vm_page_wakeup:
542 *
543 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
544 *      page.
545 *
546 */
547void
548vm_page_wakeup(vm_page_t m)
549{
550
551	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
552	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
553	m->oflags &= ~VPO_BUSY;
554	vm_page_flash(m);
555}
556
557void
558vm_page_io_start(vm_page_t m)
559{
560
561	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
562	m->busy++;
563}
564
565void
566vm_page_io_finish(vm_page_t m)
567{
568
569	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
570	m->busy--;
571	if (m->busy == 0)
572		vm_page_flash(m);
573}
574
575/*
576 * Keep page from being freed by the page daemon
577 * much of the same effect as wiring, except much lower
578 * overhead and should be used only for *very* temporary
579 * holding ("wiring").
580 */
581void
582vm_page_hold(vm_page_t mem)
583{
584
585	vm_page_lock_assert(mem, MA_OWNED);
586        mem->hold_count++;
587}
588
589void
590vm_page_unhold(vm_page_t mem)
591{
592
593	vm_page_lock_assert(mem, MA_OWNED);
594	--mem->hold_count;
595	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
596	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
597		vm_page_free_toq(mem);
598}
599
600/*
601 *	vm_page_free:
602 *
603 *	Free a page.
604 */
605void
606vm_page_free(vm_page_t m)
607{
608
609	m->flags &= ~PG_ZERO;
610	vm_page_free_toq(m);
611}
612
613/*
614 *	vm_page_free_zero:
615 *
616 *	Free a page to the zerod-pages queue
617 */
618void
619vm_page_free_zero(vm_page_t m)
620{
621
622	m->flags |= PG_ZERO;
623	vm_page_free_toq(m);
624}
625
626/*
627 *	vm_page_sleep:
628 *
629 *	Sleep and release the page and page queues locks.
630 *
631 *	The object containing the given page must be locked.
632 */
633void
634vm_page_sleep(vm_page_t m, const char *msg)
635{
636
637	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
638	if (mtx_owned(&vm_page_queue_mtx))
639		vm_page_unlock_queues();
640	if (mtx_owned(vm_page_lockptr(m)))
641		vm_page_unlock(m);
642
643	/*
644	 * It's possible that while we sleep, the page will get
645	 * unbusied and freed.  If we are holding the object
646	 * lock, we will assume we hold a reference to the object
647	 * such that even if m->object changes, we can re-lock
648	 * it.
649	 */
650	m->oflags |= VPO_WANTED;
651	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
652}
653
654/*
655 *	vm_page_dirty:
656 *
657 *	make page all dirty
658 */
659void
660vm_page_dirty(vm_page_t m)
661{
662
663	KASSERT((m->flags & PG_CACHED) == 0,
664	    ("vm_page_dirty: page in cache!"));
665	KASSERT(!VM_PAGE_IS_FREE(m),
666	    ("vm_page_dirty: page is free!"));
667	KASSERT(m->valid == VM_PAGE_BITS_ALL,
668	    ("vm_page_dirty: page is invalid!"));
669	m->dirty = VM_PAGE_BITS_ALL;
670}
671
672/*
673 *	vm_page_splay:
674 *
675 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
676 *	the vm_page containing the given pindex.  If, however, that
677 *	pindex is not found in the vm_object, returns a vm_page that is
678 *	adjacent to the pindex, coming before or after it.
679 */
680vm_page_t
681vm_page_splay(vm_pindex_t pindex, vm_page_t root)
682{
683	struct vm_page dummy;
684	vm_page_t lefttreemax, righttreemin, y;
685
686	if (root == NULL)
687		return (root);
688	lefttreemax = righttreemin = &dummy;
689	for (;; root = y) {
690		if (pindex < root->pindex) {
691			if ((y = root->left) == NULL)
692				break;
693			if (pindex < y->pindex) {
694				/* Rotate right. */
695				root->left = y->right;
696				y->right = root;
697				root = y;
698				if ((y = root->left) == NULL)
699					break;
700			}
701			/* Link into the new root's right tree. */
702			righttreemin->left = root;
703			righttreemin = root;
704		} else if (pindex > root->pindex) {
705			if ((y = root->right) == NULL)
706				break;
707			if (pindex > y->pindex) {
708				/* Rotate left. */
709				root->right = y->left;
710				y->left = root;
711				root = y;
712				if ((y = root->right) == NULL)
713					break;
714			}
715			/* Link into the new root's left tree. */
716			lefttreemax->right = root;
717			lefttreemax = root;
718		} else
719			break;
720	}
721	/* Assemble the new root. */
722	lefttreemax->right = root->left;
723	righttreemin->left = root->right;
724	root->left = dummy.right;
725	root->right = dummy.left;
726	return (root);
727}
728
729/*
730 *	vm_page_insert:		[ internal use only ]
731 *
732 *	Inserts the given mem entry into the object and object list.
733 *
734 *	The pagetables are not updated but will presumably fault the page
735 *	in if necessary, or if a kernel page the caller will at some point
736 *	enter the page into the kernel's pmap.  We are not allowed to block
737 *	here so we *can't* do this anyway.
738 *
739 *	The object and page must be locked.
740 *	This routine may not block.
741 */
742void
743vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
744{
745	vm_page_t root;
746
747	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
748	if (m->object != NULL)
749		panic("vm_page_insert: page already inserted");
750
751	/*
752	 * Record the object/offset pair in this page
753	 */
754	m->object = object;
755	m->pindex = pindex;
756
757	/*
758	 * Now link into the object's ordered list of backed pages.
759	 */
760	root = object->root;
761	if (root == NULL) {
762		m->left = NULL;
763		m->right = NULL;
764		TAILQ_INSERT_TAIL(&object->memq, m, listq);
765	} else {
766		root = vm_page_splay(pindex, root);
767		if (pindex < root->pindex) {
768			m->left = root->left;
769			m->right = root;
770			root->left = NULL;
771			TAILQ_INSERT_BEFORE(root, m, listq);
772		} else if (pindex == root->pindex)
773			panic("vm_page_insert: offset already allocated");
774		else {
775			m->right = root->right;
776			m->left = root;
777			root->right = NULL;
778			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
779		}
780	}
781	object->root = m;
782	object->generation++;
783
784	/*
785	 * show that the object has one more resident page.
786	 */
787	object->resident_page_count++;
788	/*
789	 * Hold the vnode until the last page is released.
790	 */
791	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
792		vhold((struct vnode *)object->handle);
793
794	/*
795	 * Since we are inserting a new and possibly dirty page,
796	 * update the object's OBJ_MIGHTBEDIRTY flag.
797	 */
798	if (m->flags & PG_WRITEABLE)
799		vm_object_set_writeable_dirty(object);
800}
801
802/*
803 *	vm_page_remove:
804 *				NOTE: used by device pager as well -wfj
805 *
806 *	Removes the given mem entry from the object/offset-page
807 *	table and the object page list, but do not invalidate/terminate
808 *	the backing store.
809 *
810 *	The object and page must be locked.
811 *	The underlying pmap entry (if any) is NOT removed here.
812 *	This routine may not block.
813 */
814void
815vm_page_remove(vm_page_t m)
816{
817	vm_object_t object;
818	vm_page_t root;
819
820	if ((m->flags & PG_UNMANAGED) == 0)
821		vm_page_lock_assert(m, MA_OWNED);
822	if ((object = m->object) == NULL)
823		return;
824	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
825	if (m->oflags & VPO_BUSY) {
826		m->oflags &= ~VPO_BUSY;
827		vm_page_flash(m);
828	}
829
830	/*
831	 * Now remove from the object's list of backed pages.
832	 */
833	if (m != object->root)
834		vm_page_splay(m->pindex, object->root);
835	if (m->left == NULL)
836		root = m->right;
837	else {
838		root = vm_page_splay(m->pindex, m->left);
839		root->right = m->right;
840	}
841	object->root = root;
842	TAILQ_REMOVE(&object->memq, m, listq);
843
844	/*
845	 * And show that the object has one fewer resident page.
846	 */
847	object->resident_page_count--;
848	object->generation++;
849	/*
850	 * The vnode may now be recycled.
851	 */
852	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
853		vdrop((struct vnode *)object->handle);
854
855	m->object = NULL;
856}
857
858/*
859 *	vm_page_lookup:
860 *
861 *	Returns the page associated with the object/offset
862 *	pair specified; if none is found, NULL is returned.
863 *
864 *	The object must be locked.
865 *	This routine may not block.
866 *	This is a critical path routine
867 */
868vm_page_t
869vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
870{
871	vm_page_t m;
872
873	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
874	if ((m = object->root) != NULL && m->pindex != pindex) {
875		m = vm_page_splay(pindex, m);
876		if ((object->root = m)->pindex != pindex)
877			m = NULL;
878	}
879	return (m);
880}
881
882/*
883 *	vm_page_find_least:
884 *
885 *	Returns the page associated with the object with least pindex
886 *	greater than or equal to the parameter pindex, or NULL.
887 *
888 *	The object must be locked.
889 *	The routine may not block.
890 */
891vm_page_t
892vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
893{
894	vm_page_t m;
895
896	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
897	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
898		if (m->pindex < pindex) {
899			m = vm_page_splay(pindex, object->root);
900			if ((object->root = m)->pindex < pindex)
901				m = TAILQ_NEXT(m, listq);
902		}
903	}
904	return (m);
905}
906
907/*
908 * Returns the given page's successor (by pindex) within the object if it is
909 * resident; if none is found, NULL is returned.
910 *
911 * The object must be locked.
912 */
913vm_page_t
914vm_page_next(vm_page_t m)
915{
916	vm_page_t next;
917
918	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
919	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
920	    next->pindex != m->pindex + 1)
921		next = NULL;
922	return (next);
923}
924
925/*
926 * Returns the given page's predecessor (by pindex) within the object if it is
927 * resident; if none is found, NULL is returned.
928 *
929 * The object must be locked.
930 */
931vm_page_t
932vm_page_prev(vm_page_t m)
933{
934	vm_page_t prev;
935
936	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
937	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
938	    prev->pindex != m->pindex - 1)
939		prev = NULL;
940	return (prev);
941}
942
943/*
944 *	vm_page_rename:
945 *
946 *	Move the given memory entry from its
947 *	current object to the specified target object/offset.
948 *
949 *	The object must be locked.
950 *	This routine may not block.
951 *
952 *	Note: swap associated with the page must be invalidated by the move.  We
953 *	      have to do this for several reasons:  (1) we aren't freeing the
954 *	      page, (2) we are dirtying the page, (3) the VM system is probably
955 *	      moving the page from object A to B, and will then later move
956 *	      the backing store from A to B and we can't have a conflict.
957 *
958 *	Note: we *always* dirty the page.  It is necessary both for the
959 *	      fact that we moved it, and because we may be invalidating
960 *	      swap.  If the page is on the cache, we have to deactivate it
961 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
962 *	      on the cache.
963 */
964void
965vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
966{
967
968	vm_page_remove(m);
969	vm_page_insert(m, new_object, new_pindex);
970	vm_page_dirty(m);
971}
972
973/*
974 *	Convert all of the given object's cached pages that have a
975 *	pindex within the given range into free pages.  If the value
976 *	zero is given for "end", then the range's upper bound is
977 *	infinity.  If the given object is backed by a vnode and it
978 *	transitions from having one or more cached pages to none, the
979 *	vnode's hold count is reduced.
980 */
981void
982vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
983{
984	vm_page_t m, m_next;
985	boolean_t empty;
986
987	mtx_lock(&vm_page_queue_free_mtx);
988	if (__predict_false(object->cache == NULL)) {
989		mtx_unlock(&vm_page_queue_free_mtx);
990		return;
991	}
992	m = object->cache = vm_page_splay(start, object->cache);
993	if (m->pindex < start) {
994		if (m->right == NULL)
995			m = NULL;
996		else {
997			m_next = vm_page_splay(start, m->right);
998			m_next->left = m;
999			m->right = NULL;
1000			m = object->cache = m_next;
1001		}
1002	}
1003
1004	/*
1005	 * At this point, "m" is either (1) a reference to the page
1006	 * with the least pindex that is greater than or equal to
1007	 * "start" or (2) NULL.
1008	 */
1009	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1010		/*
1011		 * Find "m"'s successor and remove "m" from the
1012		 * object's cache.
1013		 */
1014		if (m->right == NULL) {
1015			object->cache = m->left;
1016			m_next = NULL;
1017		} else {
1018			m_next = vm_page_splay(start, m->right);
1019			m_next->left = m->left;
1020			object->cache = m_next;
1021		}
1022		/* Convert "m" to a free page. */
1023		m->object = NULL;
1024		m->valid = 0;
1025		/* Clear PG_CACHED and set PG_FREE. */
1026		m->flags ^= PG_CACHED | PG_FREE;
1027		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1028		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1029		cnt.v_cache_count--;
1030		cnt.v_free_count++;
1031	}
1032	empty = object->cache == NULL;
1033	mtx_unlock(&vm_page_queue_free_mtx);
1034	if (object->type == OBJT_VNODE && empty)
1035		vdrop(object->handle);
1036}
1037
1038/*
1039 *	Returns the cached page that is associated with the given
1040 *	object and offset.  If, however, none exists, returns NULL.
1041 *
1042 *	The free page queue must be locked.
1043 */
1044static inline vm_page_t
1045vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1046{
1047	vm_page_t m;
1048
1049	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1050	if ((m = object->cache) != NULL && m->pindex != pindex) {
1051		m = vm_page_splay(pindex, m);
1052		if ((object->cache = m)->pindex != pindex)
1053			m = NULL;
1054	}
1055	return (m);
1056}
1057
1058/*
1059 *	Remove the given cached page from its containing object's
1060 *	collection of cached pages.
1061 *
1062 *	The free page queue must be locked.
1063 */
1064void
1065vm_page_cache_remove(vm_page_t m)
1066{
1067	vm_object_t object;
1068	vm_page_t root;
1069
1070	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1071	KASSERT((m->flags & PG_CACHED) != 0,
1072	    ("vm_page_cache_remove: page %p is not cached", m));
1073	object = m->object;
1074	if (m != object->cache) {
1075		root = vm_page_splay(m->pindex, object->cache);
1076		KASSERT(root == m,
1077		    ("vm_page_cache_remove: page %p is not cached in object %p",
1078		    m, object));
1079	}
1080	if (m->left == NULL)
1081		root = m->right;
1082	else if (m->right == NULL)
1083		root = m->left;
1084	else {
1085		root = vm_page_splay(m->pindex, m->left);
1086		root->right = m->right;
1087	}
1088	object->cache = root;
1089	m->object = NULL;
1090	cnt.v_cache_count--;
1091}
1092
1093/*
1094 *	Transfer all of the cached pages with offset greater than or
1095 *	equal to 'offidxstart' from the original object's cache to the
1096 *	new object's cache.  However, any cached pages with offset
1097 *	greater than or equal to the new object's size are kept in the
1098 *	original object.  Initially, the new object's cache must be
1099 *	empty.  Offset 'offidxstart' in the original object must
1100 *	correspond to offset zero in the new object.
1101 *
1102 *	The new object must be locked.
1103 */
1104void
1105vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1106    vm_object_t new_object)
1107{
1108	vm_page_t m, m_next;
1109
1110	/*
1111	 * Insertion into an object's collection of cached pages
1112	 * requires the object to be locked.  In contrast, removal does
1113	 * not.
1114	 */
1115	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1116	KASSERT(new_object->cache == NULL,
1117	    ("vm_page_cache_transfer: object %p has cached pages",
1118	    new_object));
1119	mtx_lock(&vm_page_queue_free_mtx);
1120	if ((m = orig_object->cache) != NULL) {
1121		/*
1122		 * Transfer all of the pages with offset greater than or
1123		 * equal to 'offidxstart' from the original object's
1124		 * cache to the new object's cache.
1125		 */
1126		m = vm_page_splay(offidxstart, m);
1127		if (m->pindex < offidxstart) {
1128			orig_object->cache = m;
1129			new_object->cache = m->right;
1130			m->right = NULL;
1131		} else {
1132			orig_object->cache = m->left;
1133			new_object->cache = m;
1134			m->left = NULL;
1135		}
1136		while ((m = new_object->cache) != NULL) {
1137			if ((m->pindex - offidxstart) >= new_object->size) {
1138				/*
1139				 * Return all of the cached pages with
1140				 * offset greater than or equal to the
1141				 * new object's size to the original
1142				 * object's cache.
1143				 */
1144				new_object->cache = m->left;
1145				m->left = orig_object->cache;
1146				orig_object->cache = m;
1147				break;
1148			}
1149			m_next = vm_page_splay(m->pindex, m->right);
1150			/* Update the page's object and offset. */
1151			m->object = new_object;
1152			m->pindex -= offidxstart;
1153			if (m_next == NULL)
1154				break;
1155			m->right = NULL;
1156			m_next->left = m;
1157			new_object->cache = m_next;
1158		}
1159		KASSERT(new_object->cache == NULL ||
1160		    new_object->type == OBJT_SWAP,
1161		    ("vm_page_cache_transfer: object %p's type is incompatible"
1162		    " with cached pages", new_object));
1163	}
1164	mtx_unlock(&vm_page_queue_free_mtx);
1165}
1166
1167/*
1168 *	vm_page_alloc:
1169 *
1170 *	Allocate and return a memory cell associated
1171 *	with this VM object/offset pair.
1172 *
1173 *	The caller must always specify an allocation class.
1174 *
1175 *	allocation classes:
1176 *	VM_ALLOC_NORMAL		normal process request
1177 *	VM_ALLOC_SYSTEM		system *really* needs a page
1178 *	VM_ALLOC_INTERRUPT	interrupt time request
1179 *
1180 *	optional allocation flags:
1181 *	VM_ALLOC_ZERO		prefer a zeroed page
1182 *	VM_ALLOC_WIRED		wire the allocated page
1183 *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1184 *	VM_ALLOC_NOBUSY		do not set the page busy
1185 *	VM_ALLOC_IFCACHED	return page only if it is cached
1186 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1187 *				is cached
1188 *
1189 *	This routine may not sleep.
1190 */
1191vm_page_t
1192vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1193{
1194	struct vnode *vp = NULL;
1195	vm_object_t m_object;
1196	vm_page_t m;
1197	int flags, page_req;
1198
1199	page_req = req & VM_ALLOC_CLASS_MASK;
1200	KASSERT(curthread->td_intr_nesting_level == 0 ||
1201	    page_req == VM_ALLOC_INTERRUPT,
1202	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1203
1204	if ((req & VM_ALLOC_NOOBJ) == 0) {
1205		KASSERT(object != NULL,
1206		    ("vm_page_alloc: NULL object."));
1207		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1208	}
1209
1210	/*
1211	 * The pager is allowed to eat deeper into the free page list.
1212	 */
1213	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1214		page_req = VM_ALLOC_SYSTEM;
1215	};
1216
1217	mtx_lock(&vm_page_queue_free_mtx);
1218	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1219	    (page_req == VM_ALLOC_SYSTEM &&
1220	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1221	    (page_req == VM_ALLOC_INTERRUPT &&
1222	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1223		/*
1224		 * Allocate from the free queue if the number of free pages
1225		 * exceeds the minimum for the request class.
1226		 */
1227		if (object != NULL &&
1228		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1229			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1230				mtx_unlock(&vm_page_queue_free_mtx);
1231				return (NULL);
1232			}
1233			if (vm_phys_unfree_page(m))
1234				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1235#if VM_NRESERVLEVEL > 0
1236			else if (!vm_reserv_reactivate_page(m))
1237#else
1238			else
1239#endif
1240				panic("vm_page_alloc: cache page %p is missing"
1241				    " from the free queue", m);
1242		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1243			mtx_unlock(&vm_page_queue_free_mtx);
1244			return (NULL);
1245#if VM_NRESERVLEVEL > 0
1246		} else if (object == NULL || object->type == OBJT_DEVICE ||
1247		    object->type == OBJT_SG ||
1248		    (object->flags & OBJ_COLORED) == 0 ||
1249		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1250#else
1251		} else {
1252#endif
1253			m = vm_phys_alloc_pages(object != NULL ?
1254			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1255#if VM_NRESERVLEVEL > 0
1256			if (m == NULL && vm_reserv_reclaim_inactive()) {
1257				m = vm_phys_alloc_pages(object != NULL ?
1258				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1259				    0);
1260			}
1261#endif
1262		}
1263	} else {
1264		/*
1265		 * Not allocatable, give up.
1266		 */
1267		mtx_unlock(&vm_page_queue_free_mtx);
1268		atomic_add_int(&vm_pageout_deficit,
1269		    MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1270		pagedaemon_wakeup();
1271		return (NULL);
1272	}
1273
1274	/*
1275	 *  At this point we had better have found a good page.
1276	 */
1277
1278	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1279	KASSERT(m->queue == PQ_NONE,
1280	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1281	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1282	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1283	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1284	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1285	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1286	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1287	    pmap_page_get_memattr(m)));
1288	if ((m->flags & PG_CACHED) != 0) {
1289		KASSERT(m->valid != 0,
1290		    ("vm_page_alloc: cached page %p is invalid", m));
1291		if (m->object == object && m->pindex == pindex)
1292	  		cnt.v_reactivated++;
1293		else
1294			m->valid = 0;
1295		m_object = m->object;
1296		vm_page_cache_remove(m);
1297		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1298			vp = m_object->handle;
1299	} else {
1300		KASSERT(VM_PAGE_IS_FREE(m),
1301		    ("vm_page_alloc: page %p is not free", m));
1302		KASSERT(m->valid == 0,
1303		    ("vm_page_alloc: free page %p is valid", m));
1304		cnt.v_free_count--;
1305	}
1306
1307	/*
1308	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1309	 */
1310	flags = 0;
1311	if (m->flags & PG_ZERO) {
1312		vm_page_zero_count--;
1313		if (req & VM_ALLOC_ZERO)
1314			flags = PG_ZERO;
1315	}
1316	if (object == NULL || object->type == OBJT_PHYS)
1317		flags |= PG_UNMANAGED;
1318	m->flags = flags;
1319	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1320		m->oflags = 0;
1321	else
1322		m->oflags = VPO_BUSY;
1323	if (req & VM_ALLOC_WIRED) {
1324		atomic_add_int(&cnt.v_wire_count, 1);
1325		m->wire_count = 1;
1326	}
1327	m->act_count = 0;
1328	mtx_unlock(&vm_page_queue_free_mtx);
1329
1330	if (object != NULL) {
1331		/* Ignore device objects; the pager sets "memattr" for them. */
1332		if (object->memattr != VM_MEMATTR_DEFAULT &&
1333		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1334			pmap_page_set_memattr(m, object->memattr);
1335		vm_page_insert(m, object, pindex);
1336	} else
1337		m->pindex = pindex;
1338
1339	/*
1340	 * The following call to vdrop() must come after the above call
1341	 * to vm_page_insert() in case both affect the same object and
1342	 * vnode.  Otherwise, the affected vnode's hold count could
1343	 * temporarily become zero.
1344	 */
1345	if (vp != NULL)
1346		vdrop(vp);
1347
1348	/*
1349	 * Don't wakeup too often - wakeup the pageout daemon when
1350	 * we would be nearly out of memory.
1351	 */
1352	if (vm_paging_needed())
1353		pagedaemon_wakeup();
1354
1355	return (m);
1356}
1357
1358/*
1359 * Initialize a page that has been freshly dequeued from a freelist.
1360 * The caller has to drop the vnode returned, if it is not NULL.
1361 *
1362 * To be called with vm_page_queue_free_mtx held.
1363 */
1364struct vnode *
1365vm_page_alloc_init(vm_page_t m)
1366{
1367	struct vnode *drop;
1368	vm_object_t m_object;
1369
1370	KASSERT(m->queue == PQ_NONE,
1371	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1372	    m, m->queue));
1373	KASSERT(m->wire_count == 0,
1374	    ("vm_page_alloc_init: page %p is wired", m));
1375	KASSERT(m->hold_count == 0,
1376	    ("vm_page_alloc_init: page %p is held", m));
1377	KASSERT(m->busy == 0,
1378	    ("vm_page_alloc_init: page %p is busy", m));
1379	KASSERT(m->dirty == 0,
1380	    ("vm_page_alloc_init: page %p is dirty", m));
1381	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1382	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1383	    m, pmap_page_get_memattr(m)));
1384	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1385	drop = NULL;
1386	if ((m->flags & PG_CACHED) != 0) {
1387		m->valid = 0;
1388		m_object = m->object;
1389		vm_page_cache_remove(m);
1390		if (m_object->type == OBJT_VNODE &&
1391		    m_object->cache == NULL)
1392			drop = m_object->handle;
1393	} else {
1394		KASSERT(VM_PAGE_IS_FREE(m),
1395		    ("vm_page_alloc_init: page %p is not free", m));
1396		KASSERT(m->valid == 0,
1397		    ("vm_page_alloc_init: free page %p is valid", m));
1398		cnt.v_free_count--;
1399	}
1400	if (m->flags & PG_ZERO)
1401		vm_page_zero_count--;
1402	/* Don't clear the PG_ZERO flag; we'll need it later. */
1403	m->flags = PG_UNMANAGED | (m->flags & PG_ZERO);
1404	m->oflags = 0;
1405	/* Unmanaged pages don't use "act_count". */
1406	return (drop);
1407}
1408
1409/*
1410 * 	vm_page_alloc_freelist:
1411 *
1412 *	Allocate a page from the specified freelist with specified order.
1413 *	Only the ALLOC_CLASS values in req are honored, other request flags
1414 *	are ignored.
1415 */
1416vm_page_t
1417vm_page_alloc_freelist(int flind, int order, int req)
1418{
1419	struct vnode *drop;
1420	vm_page_t m;
1421	int page_req;
1422
1423	m = NULL;
1424	page_req = req & VM_ALLOC_CLASS_MASK;
1425	mtx_lock(&vm_page_queue_free_mtx);
1426	/*
1427	 * Do not allocate reserved pages unless the req has asked for it.
1428	 */
1429	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1430	    (page_req == VM_ALLOC_SYSTEM &&
1431	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1432	    (page_req == VM_ALLOC_INTERRUPT &&
1433	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1434		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, order);
1435	}
1436	if (m == NULL) {
1437		mtx_unlock(&vm_page_queue_free_mtx);
1438		return (NULL);
1439	}
1440	drop = vm_page_alloc_init(m);
1441	mtx_unlock(&vm_page_queue_free_mtx);
1442	if (drop)
1443		vdrop(drop);
1444	return (m);
1445}
1446
1447/*
1448 *	vm_wait:	(also see VM_WAIT macro)
1449 *
1450 *	Block until free pages are available for allocation
1451 *	- Called in various places before memory allocations.
1452 */
1453void
1454vm_wait(void)
1455{
1456
1457	mtx_lock(&vm_page_queue_free_mtx);
1458	if (curproc == pageproc) {
1459		vm_pageout_pages_needed = 1;
1460		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1461		    PDROP | PSWP, "VMWait", 0);
1462	} else {
1463		if (!vm_pages_needed) {
1464			vm_pages_needed = 1;
1465			wakeup(&vm_pages_needed);
1466		}
1467		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1468		    "vmwait", 0);
1469	}
1470}
1471
1472/*
1473 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1474 *
1475 *	Block until free pages are available for allocation
1476 *	- Called only in vm_fault so that processes page faulting
1477 *	  can be easily tracked.
1478 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1479 *	  processes will be able to grab memory first.  Do not change
1480 *	  this balance without careful testing first.
1481 */
1482void
1483vm_waitpfault(void)
1484{
1485
1486	mtx_lock(&vm_page_queue_free_mtx);
1487	if (!vm_pages_needed) {
1488		vm_pages_needed = 1;
1489		wakeup(&vm_pages_needed);
1490	}
1491	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1492	    "pfault", 0);
1493}
1494
1495/*
1496 *	vm_page_requeue:
1497 *
1498 *	Move the given page to the tail of its present page queue.
1499 *
1500 *	The page queues must be locked.
1501 */
1502void
1503vm_page_requeue(vm_page_t m)
1504{
1505	struct vpgqueues *vpq;
1506	int queue;
1507
1508	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1509	queue = m->queue;
1510	KASSERT(queue != PQ_NONE,
1511	    ("vm_page_requeue: page %p is not queued", m));
1512	vpq = &vm_page_queues[queue];
1513	TAILQ_REMOVE(&vpq->pl, m, pageq);
1514	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1515}
1516
1517/*
1518 *	vm_page_queue_remove:
1519 *
1520 *	Remove the given page from the specified queue.
1521 *
1522 *	The page and page queues must be locked.
1523 */
1524static __inline void
1525vm_page_queue_remove(int queue, vm_page_t m)
1526{
1527	struct vpgqueues *pq;
1528
1529	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1530	vm_page_lock_assert(m, MA_OWNED);
1531	pq = &vm_page_queues[queue];
1532	TAILQ_REMOVE(&pq->pl, m, pageq);
1533	(*pq->cnt)--;
1534}
1535
1536/*
1537 *	vm_pageq_remove:
1538 *
1539 *	Remove a page from its queue.
1540 *
1541 *	The given page must be locked.
1542 *	This routine may not block.
1543 */
1544void
1545vm_pageq_remove(vm_page_t m)
1546{
1547	int queue;
1548
1549	vm_page_lock_assert(m, MA_OWNED);
1550	if ((queue = m->queue) != PQ_NONE) {
1551		vm_page_lock_queues();
1552		m->queue = PQ_NONE;
1553		vm_page_queue_remove(queue, m);
1554		vm_page_unlock_queues();
1555	}
1556}
1557
1558/*
1559 *	vm_page_enqueue:
1560 *
1561 *	Add the given page to the specified queue.
1562 *
1563 *	The page queues must be locked.
1564 */
1565static void
1566vm_page_enqueue(int queue, vm_page_t m)
1567{
1568	struct vpgqueues *vpq;
1569
1570	vpq = &vm_page_queues[queue];
1571	m->queue = queue;
1572	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1573	++*vpq->cnt;
1574}
1575
1576/*
1577 *	vm_page_activate:
1578 *
1579 *	Put the specified page on the active list (if appropriate).
1580 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1581 *	mess with it.
1582 *
1583 *	The page must be locked.
1584 *	This routine may not block.
1585 */
1586void
1587vm_page_activate(vm_page_t m)
1588{
1589	int queue;
1590
1591	vm_page_lock_assert(m, MA_OWNED);
1592	if ((queue = m->queue) != PQ_ACTIVE) {
1593		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1594			if (m->act_count < ACT_INIT)
1595				m->act_count = ACT_INIT;
1596			vm_page_lock_queues();
1597			if (queue != PQ_NONE)
1598				vm_page_queue_remove(queue, m);
1599			vm_page_enqueue(PQ_ACTIVE, m);
1600			vm_page_unlock_queues();
1601		} else
1602			KASSERT(queue == PQ_NONE,
1603			    ("vm_page_activate: wired page %p is queued", m));
1604	} else {
1605		if (m->act_count < ACT_INIT)
1606			m->act_count = ACT_INIT;
1607	}
1608}
1609
1610/*
1611 *	vm_page_free_wakeup:
1612 *
1613 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1614 *	routine is called when a page has been added to the cache or free
1615 *	queues.
1616 *
1617 *	The page queues must be locked.
1618 *	This routine may not block.
1619 */
1620static inline void
1621vm_page_free_wakeup(void)
1622{
1623
1624	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1625	/*
1626	 * if pageout daemon needs pages, then tell it that there are
1627	 * some free.
1628	 */
1629	if (vm_pageout_pages_needed &&
1630	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1631		wakeup(&vm_pageout_pages_needed);
1632		vm_pageout_pages_needed = 0;
1633	}
1634	/*
1635	 * wakeup processes that are waiting on memory if we hit a
1636	 * high water mark. And wakeup scheduler process if we have
1637	 * lots of memory. this process will swapin processes.
1638	 */
1639	if (vm_pages_needed && !vm_page_count_min()) {
1640		vm_pages_needed = 0;
1641		wakeup(&cnt.v_free_count);
1642	}
1643}
1644
1645/*
1646 *	vm_page_free_toq:
1647 *
1648 *	Returns the given page to the free list,
1649 *	disassociating it with any VM object.
1650 *
1651 *	Object and page must be locked prior to entry.
1652 *	This routine may not block.
1653 */
1654
1655void
1656vm_page_free_toq(vm_page_t m)
1657{
1658
1659	if ((m->flags & PG_UNMANAGED) == 0) {
1660		vm_page_lock_assert(m, MA_OWNED);
1661		KASSERT(!pmap_page_is_mapped(m),
1662		    ("vm_page_free_toq: freeing mapped page %p", m));
1663	}
1664	PCPU_INC(cnt.v_tfree);
1665
1666	if (m->busy || VM_PAGE_IS_FREE(m)) {
1667		printf(
1668		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1669		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1670		    m->hold_count);
1671		if (VM_PAGE_IS_FREE(m))
1672			panic("vm_page_free: freeing free page");
1673		else
1674			panic("vm_page_free: freeing busy page");
1675	}
1676
1677	/*
1678	 * unqueue, then remove page.  Note that we cannot destroy
1679	 * the page here because we do not want to call the pager's
1680	 * callback routine until after we've put the page on the
1681	 * appropriate free queue.
1682	 */
1683	if ((m->flags & PG_UNMANAGED) == 0)
1684		vm_pageq_remove(m);
1685	vm_page_remove(m);
1686
1687	/*
1688	 * If fictitious remove object association and
1689	 * return, otherwise delay object association removal.
1690	 */
1691	if ((m->flags & PG_FICTITIOUS) != 0) {
1692		return;
1693	}
1694
1695	m->valid = 0;
1696	vm_page_undirty(m);
1697
1698	if (m->wire_count != 0) {
1699		if (m->wire_count > 1) {
1700			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1701				m->wire_count, (long)m->pindex);
1702		}
1703		panic("vm_page_free: freeing wired page");
1704	}
1705	if (m->hold_count != 0) {
1706		m->flags &= ~PG_ZERO;
1707		vm_page_lock_queues();
1708		vm_page_enqueue(PQ_HOLD, m);
1709		vm_page_unlock_queues();
1710	} else {
1711		/*
1712		 * Restore the default memory attribute to the page.
1713		 */
1714		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1715			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1716
1717		/*
1718		 * Insert the page into the physical memory allocator's
1719		 * cache/free page queues.
1720		 */
1721		mtx_lock(&vm_page_queue_free_mtx);
1722		m->flags |= PG_FREE;
1723		cnt.v_free_count++;
1724#if VM_NRESERVLEVEL > 0
1725		if (!vm_reserv_free_page(m))
1726#else
1727		if (TRUE)
1728#endif
1729			vm_phys_free_pages(m, 0);
1730		if ((m->flags & PG_ZERO) != 0)
1731			++vm_page_zero_count;
1732		else
1733			vm_page_zero_idle_wakeup();
1734		vm_page_free_wakeup();
1735		mtx_unlock(&vm_page_queue_free_mtx);
1736	}
1737}
1738
1739/*
1740 *	vm_page_wire:
1741 *
1742 *	Mark this page as wired down by yet
1743 *	another map, removing it from paging queues
1744 *	as necessary.
1745 *
1746 *	If the page is fictitious, then its wire count must remain one.
1747 *
1748 *	The page must be locked.
1749 *	This routine may not block.
1750 */
1751void
1752vm_page_wire(vm_page_t m)
1753{
1754
1755	/*
1756	 * Only bump the wire statistics if the page is not already wired,
1757	 * and only unqueue the page if it is on some queue (if it is unmanaged
1758	 * it is already off the queues).
1759	 */
1760	vm_page_lock_assert(m, MA_OWNED);
1761	if ((m->flags & PG_FICTITIOUS) != 0) {
1762		KASSERT(m->wire_count == 1,
1763		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1764		    m));
1765		return;
1766	}
1767	if (m->wire_count == 0) {
1768		if ((m->flags & PG_UNMANAGED) == 0)
1769			vm_pageq_remove(m);
1770		atomic_add_int(&cnt.v_wire_count, 1);
1771	}
1772	m->wire_count++;
1773	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1774}
1775
1776/*
1777 * vm_page_unwire:
1778 *
1779 * Release one wiring of the specified page, potentially enabling it to be
1780 * paged again.  If paging is enabled, then the value of the parameter
1781 * "activate" determines to which queue the page is added.  If "activate" is
1782 * non-zero, then the page is added to the active queue.  Otherwise, it is
1783 * added to the inactive queue.
1784 *
1785 * However, unless the page belongs to an object, it is not enqueued because
1786 * it cannot be paged out.
1787 *
1788 * If a page is fictitious, then its wire count must alway be one.
1789 *
1790 * A managed page must be locked.
1791 */
1792void
1793vm_page_unwire(vm_page_t m, int activate)
1794{
1795
1796	if ((m->flags & PG_UNMANAGED) == 0)
1797		vm_page_lock_assert(m, MA_OWNED);
1798	if ((m->flags & PG_FICTITIOUS) != 0) {
1799		KASSERT(m->wire_count == 1,
1800	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1801		return;
1802	}
1803	if (m->wire_count > 0) {
1804		m->wire_count--;
1805		if (m->wire_count == 0) {
1806			atomic_subtract_int(&cnt.v_wire_count, 1);
1807			if ((m->flags & PG_UNMANAGED) != 0 ||
1808			    m->object == NULL)
1809				return;
1810			vm_page_lock_queues();
1811			if (activate)
1812				vm_page_enqueue(PQ_ACTIVE, m);
1813			else {
1814				vm_page_flag_clear(m, PG_WINATCFLS);
1815				vm_page_enqueue(PQ_INACTIVE, m);
1816			}
1817			vm_page_unlock_queues();
1818		}
1819	} else
1820		panic("vm_page_unwire: page %p's wire count is zero", m);
1821}
1822
1823/*
1824 * Move the specified page to the inactive queue.
1825 *
1826 * Many pages placed on the inactive queue should actually go
1827 * into the cache, but it is difficult to figure out which.  What
1828 * we do instead, if the inactive target is well met, is to put
1829 * clean pages at the head of the inactive queue instead of the tail.
1830 * This will cause them to be moved to the cache more quickly and
1831 * if not actively re-referenced, reclaimed more quickly.  If we just
1832 * stick these pages at the end of the inactive queue, heavy filesystem
1833 * meta-data accesses can cause an unnecessary paging load on memory bound
1834 * processes.  This optimization causes one-time-use metadata to be
1835 * reused more quickly.
1836 *
1837 * Normally athead is 0 resulting in LRU operation.  athead is set
1838 * to 1 if we want this page to be 'as if it were placed in the cache',
1839 * except without unmapping it from the process address space.
1840 *
1841 * This routine may not block.
1842 */
1843static inline void
1844_vm_page_deactivate(vm_page_t m, int athead)
1845{
1846	int queue;
1847
1848	vm_page_lock_assert(m, MA_OWNED);
1849
1850	/*
1851	 * Ignore if already inactive.
1852	 */
1853	if ((queue = m->queue) == PQ_INACTIVE)
1854		return;
1855	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1856		vm_page_lock_queues();
1857		vm_page_flag_clear(m, PG_WINATCFLS);
1858		if (queue != PQ_NONE)
1859			vm_page_queue_remove(queue, m);
1860		if (athead)
1861			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1862			    pageq);
1863		else
1864			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1865			    pageq);
1866		m->queue = PQ_INACTIVE;
1867		cnt.v_inactive_count++;
1868		vm_page_unlock_queues();
1869	}
1870}
1871
1872/*
1873 * Move the specified page to the inactive queue.
1874 *
1875 * The page must be locked.
1876 */
1877void
1878vm_page_deactivate(vm_page_t m)
1879{
1880
1881	_vm_page_deactivate(m, 0);
1882}
1883
1884/*
1885 * vm_page_try_to_cache:
1886 *
1887 * Returns 0 on failure, 1 on success
1888 */
1889int
1890vm_page_try_to_cache(vm_page_t m)
1891{
1892
1893	vm_page_lock_assert(m, MA_OWNED);
1894	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1895	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1896	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1897		return (0);
1898	pmap_remove_all(m);
1899	if (m->dirty)
1900		return (0);
1901	vm_page_cache(m);
1902	return (1);
1903}
1904
1905/*
1906 * vm_page_try_to_free()
1907 *
1908 *	Attempt to free the page.  If we cannot free it, we do nothing.
1909 *	1 is returned on success, 0 on failure.
1910 */
1911int
1912vm_page_try_to_free(vm_page_t m)
1913{
1914
1915	vm_page_lock_assert(m, MA_OWNED);
1916	if (m->object != NULL)
1917		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1918	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1919	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1920		return (0);
1921	pmap_remove_all(m);
1922	if (m->dirty)
1923		return (0);
1924	vm_page_free(m);
1925	return (1);
1926}
1927
1928/*
1929 * vm_page_cache
1930 *
1931 * Put the specified page onto the page cache queue (if appropriate).
1932 *
1933 * This routine may not block.
1934 */
1935void
1936vm_page_cache(vm_page_t m)
1937{
1938	vm_object_t object;
1939	vm_page_t root;
1940
1941	vm_page_lock_assert(m, MA_OWNED);
1942	object = m->object;
1943	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1944	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1945	    m->hold_count || m->wire_count)
1946		panic("vm_page_cache: attempting to cache busy page");
1947	pmap_remove_all(m);
1948	if (m->dirty != 0)
1949		panic("vm_page_cache: page %p is dirty", m);
1950	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1951	    (object->type == OBJT_SWAP &&
1952	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1953		/*
1954		 * Hypothesis: A cache-elgible page belonging to a
1955		 * default object or swap object but without a backing
1956		 * store must be zero filled.
1957		 */
1958		vm_page_free(m);
1959		return;
1960	}
1961	KASSERT((m->flags & PG_CACHED) == 0,
1962	    ("vm_page_cache: page %p is already cached", m));
1963	PCPU_INC(cnt.v_tcached);
1964
1965	/*
1966	 * Remove the page from the paging queues.
1967	 */
1968	vm_pageq_remove(m);
1969
1970	/*
1971	 * Remove the page from the object's collection of resident
1972	 * pages.
1973	 */
1974	if (m != object->root)
1975		vm_page_splay(m->pindex, object->root);
1976	if (m->left == NULL)
1977		root = m->right;
1978	else {
1979		root = vm_page_splay(m->pindex, m->left);
1980		root->right = m->right;
1981	}
1982	object->root = root;
1983	TAILQ_REMOVE(&object->memq, m, listq);
1984	object->resident_page_count--;
1985	object->generation++;
1986
1987	/*
1988	 * Restore the default memory attribute to the page.
1989	 */
1990	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1991		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1992
1993	/*
1994	 * Insert the page into the object's collection of cached pages
1995	 * and the physical memory allocator's cache/free page queues.
1996	 */
1997	m->flags &= ~PG_ZERO;
1998	mtx_lock(&vm_page_queue_free_mtx);
1999	m->flags |= PG_CACHED;
2000	cnt.v_cache_count++;
2001	root = object->cache;
2002	if (root == NULL) {
2003		m->left = NULL;
2004		m->right = NULL;
2005	} else {
2006		root = vm_page_splay(m->pindex, root);
2007		if (m->pindex < root->pindex) {
2008			m->left = root->left;
2009			m->right = root;
2010			root->left = NULL;
2011		} else if (__predict_false(m->pindex == root->pindex))
2012			panic("vm_page_cache: offset already cached");
2013		else {
2014			m->right = root->right;
2015			m->left = root;
2016			root->right = NULL;
2017		}
2018	}
2019	object->cache = m;
2020#if VM_NRESERVLEVEL > 0
2021	if (!vm_reserv_free_page(m)) {
2022#else
2023	if (TRUE) {
2024#endif
2025		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2026		vm_phys_free_pages(m, 0);
2027	}
2028	vm_page_free_wakeup();
2029	mtx_unlock(&vm_page_queue_free_mtx);
2030
2031	/*
2032	 * Increment the vnode's hold count if this is the object's only
2033	 * cached page.  Decrement the vnode's hold count if this was
2034	 * the object's only resident page.
2035	 */
2036	if (object->type == OBJT_VNODE) {
2037		if (root == NULL && object->resident_page_count != 0)
2038			vhold(object->handle);
2039		else if (root != NULL && object->resident_page_count == 0)
2040			vdrop(object->handle);
2041	}
2042}
2043
2044/*
2045 * vm_page_dontneed
2046 *
2047 *	Cache, deactivate, or do nothing as appropriate.  This routine
2048 *	is typically used by madvise() MADV_DONTNEED.
2049 *
2050 *	Generally speaking we want to move the page into the cache so
2051 *	it gets reused quickly.  However, this can result in a silly syndrome
2052 *	due to the page recycling too quickly.  Small objects will not be
2053 *	fully cached.  On the otherhand, if we move the page to the inactive
2054 *	queue we wind up with a problem whereby very large objects
2055 *	unnecessarily blow away our inactive and cache queues.
2056 *
2057 *	The solution is to move the pages based on a fixed weighting.  We
2058 *	either leave them alone, deactivate them, or move them to the cache,
2059 *	where moving them to the cache has the highest weighting.
2060 *	By forcing some pages into other queues we eventually force the
2061 *	system to balance the queues, potentially recovering other unrelated
2062 *	space from active.  The idea is to not force this to happen too
2063 *	often.
2064 */
2065void
2066vm_page_dontneed(vm_page_t m)
2067{
2068	int dnw;
2069	int head;
2070
2071	vm_page_lock_assert(m, MA_OWNED);
2072	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2073	dnw = PCPU_GET(dnweight);
2074	PCPU_INC(dnweight);
2075
2076	/*
2077	 * Occasionally leave the page alone.
2078	 */
2079	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2080		if (m->act_count >= ACT_INIT)
2081			--m->act_count;
2082		return;
2083	}
2084
2085	/*
2086	 * Clear any references to the page.  Otherwise, the page daemon will
2087	 * immediately reactivate the page.
2088	 *
2089	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2090	 * pmap operation, such as pmap_remove(), could clear a reference in
2091	 * the pmap and set PG_REFERENCED on the page before the
2092	 * pmap_clear_reference() had completed.  Consequently, the page would
2093	 * appear referenced based upon an old reference that occurred before
2094	 * this function ran.
2095	 */
2096	pmap_clear_reference(m);
2097	vm_page_lock_queues();
2098	vm_page_flag_clear(m, PG_REFERENCED);
2099	vm_page_unlock_queues();
2100
2101	if (m->dirty == 0 && pmap_is_modified(m))
2102		vm_page_dirty(m);
2103
2104	if (m->dirty || (dnw & 0x0070) == 0) {
2105		/*
2106		 * Deactivate the page 3 times out of 32.
2107		 */
2108		head = 0;
2109	} else {
2110		/*
2111		 * Cache the page 28 times out of every 32.  Note that
2112		 * the page is deactivated instead of cached, but placed
2113		 * at the head of the queue instead of the tail.
2114		 */
2115		head = 1;
2116	}
2117	_vm_page_deactivate(m, head);
2118}
2119
2120/*
2121 * Grab a page, waiting until we are waken up due to the page
2122 * changing state.  We keep on waiting, if the page continues
2123 * to be in the object.  If the page doesn't exist, first allocate it
2124 * and then conditionally zero it.
2125 *
2126 * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2127 * to facilitate its eventual removal.
2128 *
2129 * This routine may block.
2130 */
2131vm_page_t
2132vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2133{
2134	vm_page_t m;
2135
2136	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2137	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2138	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2139retrylookup:
2140	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2141		if ((m->oflags & VPO_BUSY) != 0 ||
2142		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2143			/*
2144			 * Reference the page before unlocking and
2145			 * sleeping so that the page daemon is less
2146			 * likely to reclaim it.
2147			 */
2148			vm_page_lock_queues();
2149			vm_page_flag_set(m, PG_REFERENCED);
2150			vm_page_sleep(m, "pgrbwt");
2151			goto retrylookup;
2152		} else {
2153			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2154				vm_page_lock(m);
2155				vm_page_wire(m);
2156				vm_page_unlock(m);
2157			}
2158			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2159				vm_page_busy(m);
2160			return (m);
2161		}
2162	}
2163	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2164	    VM_ALLOC_IGN_SBUSY));
2165	if (m == NULL) {
2166		VM_OBJECT_UNLOCK(object);
2167		VM_WAIT;
2168		VM_OBJECT_LOCK(object);
2169		goto retrylookup;
2170	} else if (m->valid != 0)
2171		return (m);
2172	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2173		pmap_zero_page(m);
2174	return (m);
2175}
2176
2177/*
2178 * Mapping function for valid bits or for dirty bits in
2179 * a page.  May not block.
2180 *
2181 * Inputs are required to range within a page.
2182 */
2183int
2184vm_page_bits(int base, int size)
2185{
2186	int first_bit;
2187	int last_bit;
2188
2189	KASSERT(
2190	    base + size <= PAGE_SIZE,
2191	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2192	);
2193
2194	if (size == 0)		/* handle degenerate case */
2195		return (0);
2196
2197	first_bit = base >> DEV_BSHIFT;
2198	last_bit = (base + size - 1) >> DEV_BSHIFT;
2199
2200	return ((2 << last_bit) - (1 << first_bit));
2201}
2202
2203/*
2204 *	vm_page_set_valid:
2205 *
2206 *	Sets portions of a page valid.  The arguments are expected
2207 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2208 *	of any partial chunks touched by the range.  The invalid portion of
2209 *	such chunks will be zeroed.
2210 *
2211 *	(base + size) must be less then or equal to PAGE_SIZE.
2212 */
2213void
2214vm_page_set_valid(vm_page_t m, int base, int size)
2215{
2216	int endoff, frag;
2217
2218	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2219	if (size == 0)	/* handle degenerate case */
2220		return;
2221
2222	/*
2223	 * If the base is not DEV_BSIZE aligned and the valid
2224	 * bit is clear, we have to zero out a portion of the
2225	 * first block.
2226	 */
2227	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2228	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2229		pmap_zero_page_area(m, frag, base - frag);
2230
2231	/*
2232	 * If the ending offset is not DEV_BSIZE aligned and the
2233	 * valid bit is clear, we have to zero out a portion of
2234	 * the last block.
2235	 */
2236	endoff = base + size;
2237	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2238	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2239		pmap_zero_page_area(m, endoff,
2240		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2241
2242	/*
2243	 * Assert that no previously invalid block that is now being validated
2244	 * is already dirty.
2245	 */
2246	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2247	    ("vm_page_set_valid: page %p is dirty", m));
2248
2249	/*
2250	 * Set valid bits inclusive of any overlap.
2251	 */
2252	m->valid |= vm_page_bits(base, size);
2253}
2254
2255/*
2256 * Clear the given bits from the specified page's dirty field.
2257 */
2258static __inline void
2259vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2260{
2261
2262	/*
2263	 * If the object is locked and the page is neither VPO_BUSY nor
2264	 * PG_WRITEABLE, then the page's dirty field cannot possibly be
2265	 * modified by a concurrent pmap operation.
2266	 */
2267	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2268	if ((m->oflags & VPO_BUSY) == 0 && (m->flags & PG_WRITEABLE) == 0)
2269		m->dirty &= ~pagebits;
2270	else {
2271		vm_page_lock_queues();
2272		m->dirty &= ~pagebits;
2273		vm_page_unlock_queues();
2274	}
2275}
2276
2277/*
2278 *	vm_page_set_validclean:
2279 *
2280 *	Sets portions of a page valid and clean.  The arguments are expected
2281 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2282 *	of any partial chunks touched by the range.  The invalid portion of
2283 *	such chunks will be zero'd.
2284 *
2285 *	This routine may not block.
2286 *
2287 *	(base + size) must be less then or equal to PAGE_SIZE.
2288 */
2289void
2290vm_page_set_validclean(vm_page_t m, int base, int size)
2291{
2292	u_long oldvalid;
2293	int endoff, frag, pagebits;
2294
2295	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2296	if (size == 0)	/* handle degenerate case */
2297		return;
2298
2299	/*
2300	 * If the base is not DEV_BSIZE aligned and the valid
2301	 * bit is clear, we have to zero out a portion of the
2302	 * first block.
2303	 */
2304	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2305	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2306		pmap_zero_page_area(m, frag, base - frag);
2307
2308	/*
2309	 * If the ending offset is not DEV_BSIZE aligned and the
2310	 * valid bit is clear, we have to zero out a portion of
2311	 * the last block.
2312	 */
2313	endoff = base + size;
2314	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2315	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2316		pmap_zero_page_area(m, endoff,
2317		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2318
2319	/*
2320	 * Set valid, clear dirty bits.  If validating the entire
2321	 * page we can safely clear the pmap modify bit.  We also
2322	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2323	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2324	 * be set again.
2325	 *
2326	 * We set valid bits inclusive of any overlap, but we can only
2327	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2328	 * the range.
2329	 */
2330	oldvalid = m->valid;
2331	pagebits = vm_page_bits(base, size);
2332	m->valid |= pagebits;
2333#if 0	/* NOT YET */
2334	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2335		frag = DEV_BSIZE - frag;
2336		base += frag;
2337		size -= frag;
2338		if (size < 0)
2339			size = 0;
2340	}
2341	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2342#endif
2343	if (base == 0 && size == PAGE_SIZE) {
2344		/*
2345		 * The page can only be modified within the pmap if it is
2346		 * mapped, and it can only be mapped if it was previously
2347		 * fully valid.
2348		 */
2349		if (oldvalid == VM_PAGE_BITS_ALL)
2350			/*
2351			 * Perform the pmap_clear_modify() first.  Otherwise,
2352			 * a concurrent pmap operation, such as
2353			 * pmap_protect(), could clear a modification in the
2354			 * pmap and set the dirty field on the page before
2355			 * pmap_clear_modify() had begun and after the dirty
2356			 * field was cleared here.
2357			 */
2358			pmap_clear_modify(m);
2359		m->dirty = 0;
2360		m->oflags &= ~VPO_NOSYNC;
2361	} else if (oldvalid != VM_PAGE_BITS_ALL)
2362		m->dirty &= ~pagebits;
2363	else
2364		vm_page_clear_dirty_mask(m, pagebits);
2365}
2366
2367void
2368vm_page_clear_dirty(vm_page_t m, int base, int size)
2369{
2370
2371	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2372}
2373
2374/*
2375 *	vm_page_set_invalid:
2376 *
2377 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2378 *	valid and dirty bits for the effected areas are cleared.
2379 *
2380 *	May not block.
2381 */
2382void
2383vm_page_set_invalid(vm_page_t m, int base, int size)
2384{
2385	int bits;
2386
2387	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2388	KASSERT((m->oflags & VPO_BUSY) == 0,
2389	    ("vm_page_set_invalid: page %p is busy", m));
2390	bits = vm_page_bits(base, size);
2391	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2392		pmap_remove_all(m);
2393	KASSERT(!pmap_page_is_mapped(m),
2394	    ("vm_page_set_invalid: page %p is mapped", m));
2395	m->valid &= ~bits;
2396	m->dirty &= ~bits;
2397	m->object->generation++;
2398}
2399
2400/*
2401 * vm_page_zero_invalid()
2402 *
2403 *	The kernel assumes that the invalid portions of a page contain
2404 *	garbage, but such pages can be mapped into memory by user code.
2405 *	When this occurs, we must zero out the non-valid portions of the
2406 *	page so user code sees what it expects.
2407 *
2408 *	Pages are most often semi-valid when the end of a file is mapped
2409 *	into memory and the file's size is not page aligned.
2410 */
2411void
2412vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2413{
2414	int b;
2415	int i;
2416
2417	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2418	/*
2419	 * Scan the valid bits looking for invalid sections that
2420	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2421	 * valid bit may be set ) have already been zerod by
2422	 * vm_page_set_validclean().
2423	 */
2424	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2425		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2426		    (m->valid & (1 << i))
2427		) {
2428			if (i > b) {
2429				pmap_zero_page_area(m,
2430				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2431			}
2432			b = i + 1;
2433		}
2434	}
2435
2436	/*
2437	 * setvalid is TRUE when we can safely set the zero'd areas
2438	 * as being valid.  We can do this if there are no cache consistancy
2439	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2440	 */
2441	if (setvalid)
2442		m->valid = VM_PAGE_BITS_ALL;
2443}
2444
2445/*
2446 *	vm_page_is_valid:
2447 *
2448 *	Is (partial) page valid?  Note that the case where size == 0
2449 *	will return FALSE in the degenerate case where the page is
2450 *	entirely invalid, and TRUE otherwise.
2451 *
2452 *	May not block.
2453 */
2454int
2455vm_page_is_valid(vm_page_t m, int base, int size)
2456{
2457	int bits = vm_page_bits(base, size);
2458
2459	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2460	if (m->valid && ((m->valid & bits) == bits))
2461		return 1;
2462	else
2463		return 0;
2464}
2465
2466/*
2467 * update dirty bits from pmap/mmu.  May not block.
2468 */
2469void
2470vm_page_test_dirty(vm_page_t m)
2471{
2472
2473	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2474	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2475		vm_page_dirty(m);
2476}
2477
2478int so_zerocp_fullpage = 0;
2479
2480/*
2481 *	Replace the given page with a copy.  The copied page assumes
2482 *	the portion of the given page's "wire_count" that is not the
2483 *	responsibility of this copy-on-write mechanism.
2484 *
2485 *	The object containing the given page must have a non-zero
2486 *	paging-in-progress count and be locked.
2487 */
2488void
2489vm_page_cowfault(vm_page_t m)
2490{
2491	vm_page_t mnew;
2492	vm_object_t object;
2493	vm_pindex_t pindex;
2494
2495	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2496	vm_page_lock_assert(m, MA_OWNED);
2497	object = m->object;
2498	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2499	KASSERT(object->paging_in_progress != 0,
2500	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2501	    object));
2502	pindex = m->pindex;
2503
2504 retry_alloc:
2505	pmap_remove_all(m);
2506	vm_page_remove(m);
2507	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2508	if (mnew == NULL) {
2509		vm_page_insert(m, object, pindex);
2510		vm_page_unlock(m);
2511		VM_OBJECT_UNLOCK(object);
2512		VM_WAIT;
2513		VM_OBJECT_LOCK(object);
2514		if (m == vm_page_lookup(object, pindex)) {
2515			vm_page_lock(m);
2516			goto retry_alloc;
2517		} else {
2518			/*
2519			 * Page disappeared during the wait.
2520			 */
2521			return;
2522		}
2523	}
2524
2525	if (m->cow == 0) {
2526		/*
2527		 * check to see if we raced with an xmit complete when
2528		 * waiting to allocate a page.  If so, put things back
2529		 * the way they were
2530		 */
2531		vm_page_unlock(m);
2532		vm_page_lock(mnew);
2533		vm_page_free(mnew);
2534		vm_page_unlock(mnew);
2535		vm_page_insert(m, object, pindex);
2536	} else { /* clear COW & copy page */
2537		if (!so_zerocp_fullpage)
2538			pmap_copy_page(m, mnew);
2539		mnew->valid = VM_PAGE_BITS_ALL;
2540		vm_page_dirty(mnew);
2541		mnew->wire_count = m->wire_count - m->cow;
2542		m->wire_count = m->cow;
2543		vm_page_unlock(m);
2544	}
2545}
2546
2547void
2548vm_page_cowclear(vm_page_t m)
2549{
2550
2551	vm_page_lock_assert(m, MA_OWNED);
2552	if (m->cow) {
2553		m->cow--;
2554		/*
2555		 * let vm_fault add back write permission  lazily
2556		 */
2557	}
2558	/*
2559	 *  sf_buf_free() will free the page, so we needn't do it here
2560	 */
2561}
2562
2563int
2564vm_page_cowsetup(vm_page_t m)
2565{
2566
2567	vm_page_lock_assert(m, MA_OWNED);
2568	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2569	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2570		return (EBUSY);
2571	m->cow++;
2572	pmap_remove_write(m);
2573	VM_OBJECT_UNLOCK(m->object);
2574	return (0);
2575}
2576
2577#include "opt_ddb.h"
2578#ifdef DDB
2579#include <sys/kernel.h>
2580
2581#include <ddb/ddb.h>
2582
2583DB_SHOW_COMMAND(page, vm_page_print_page_info)
2584{
2585	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2586	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2587	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2588	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2589	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2590	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2591	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2592	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2593	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2594	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2595}
2596
2597DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2598{
2599
2600	db_printf("PQ_FREE:");
2601	db_printf(" %d", cnt.v_free_count);
2602	db_printf("\n");
2603
2604	db_printf("PQ_CACHE:");
2605	db_printf(" %d", cnt.v_cache_count);
2606	db_printf("\n");
2607
2608	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2609		*vm_page_queues[PQ_ACTIVE].cnt,
2610		*vm_page_queues[PQ_INACTIVE].cnt);
2611}
2612#endif /* DDB */
2613