vm_page.c revision 208990
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- a hash chain mutex is required when associating or disassociating
71 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72 *	  regardless of other mutexes or the busy state of a page.
73 *
74 *	- either a hash chain mutex OR a busied page is required in order
75 *	  to modify the page flags.  A hash chain mutex must be obtained in
76 *	  order to busy a page.  A page's flags cannot be modified by a
77 *	  hash chain mutex if the page is marked busy.
78 *
79 *	- The object memq mutex is held when inserting or removing
80 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81 *	  is different from the object's main mutex.
82 *
83 *	Generally speaking, you have to be aware of side effects when running
84 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86 *	vm_page_cache(), vm_page_activate(), and a number of other routines
87 *	will release the hash chain mutex for you.  Intermediate manipulation
88 *	routines such as vm_page_flag_set() expect the hash chain to be held
89 *	on entry and the hash chain will remain held on return.
90 *
91 *	pageq scanning can only occur with the pageq in question locked.
92 *	We have a known bottleneck with the active queue, but the cache
93 *	and free queues are actually arrays already.
94 */
95
96/*
97 *	Resident memory management module.
98 */
99
100#include <sys/cdefs.h>
101__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 208990 2010-06-10 16:56:35Z alc $");
102
103#include "opt_vm.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/lock.h>
108#include <sys/kernel.h>
109#include <sys/limits.h>
110#include <sys/malloc.h>
111#include <sys/msgbuf.h>
112#include <sys/mutex.h>
113#include <sys/proc.h>
114#include <sys/sysctl.h>
115#include <sys/vmmeter.h>
116#include <sys/vnode.h>
117
118#include <vm/vm.h>
119#include <vm/pmap.h>
120#include <vm/vm_param.h>
121#include <vm/vm_kern.h>
122#include <vm/vm_object.h>
123#include <vm/vm_page.h>
124#include <vm/vm_pageout.h>
125#include <vm/vm_pager.h>
126#include <vm/vm_phys.h>
127#include <vm/vm_reserv.h>
128#include <vm/vm_extern.h>
129#include <vm/uma.h>
130#include <vm/uma_int.h>
131
132#include <machine/md_var.h>
133
134#if defined(__amd64__) || defined (__i386__)
135extern struct sysctl_oid_list sysctl__vm_pmap_children;
136#else
137SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
138#endif
139
140static uint64_t pmap_tryrelock_calls;
141SYSCTL_QUAD(_vm_pmap, OID_AUTO, tryrelock_calls, CTLFLAG_RD,
142    &pmap_tryrelock_calls, 0, "Number of tryrelock calls");
143
144static int pmap_tryrelock_restart;
145SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
146    &pmap_tryrelock_restart, 0, "Number of tryrelock restarts");
147
148static int pmap_tryrelock_race;
149SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_race, CTLFLAG_RD,
150    &pmap_tryrelock_race, 0, "Number of tryrelock pmap race cases");
151
152/*
153 *	Associated with page of user-allocatable memory is a
154 *	page structure.
155 */
156
157struct vpgqueues vm_page_queues[PQ_COUNT];
158struct vpglocks vm_page_queue_lock;
159struct vpglocks vm_page_queue_free_lock;
160
161struct vpglocks	pa_lock[PA_LOCK_COUNT] __aligned(CACHE_LINE_SIZE);
162
163vm_page_t vm_page_array = 0;
164int vm_page_array_size = 0;
165long first_page = 0;
166int vm_page_zero_count = 0;
167
168static int boot_pages = UMA_BOOT_PAGES;
169TUNABLE_INT("vm.boot_pages", &boot_pages);
170SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
171	"number of pages allocated for bootstrapping the VM system");
172
173static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
174static void vm_page_queue_remove(int queue, vm_page_t m);
175static void vm_page_enqueue(int queue, vm_page_t m);
176
177/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
178#if PAGE_SIZE == 32768
179#ifdef CTASSERT
180CTASSERT(sizeof(u_long) >= 8);
181#endif
182#endif
183
184/*
185 * Try to acquire a physical address lock while a pmap is locked.  If we
186 * fail to trylock we unlock and lock the pmap directly and cache the
187 * locked pa in *locked.  The caller should then restart their loop in case
188 * the virtual to physical mapping has changed.
189 */
190int
191vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
192{
193	vm_paddr_t lockpa;
194	uint32_t gen_count;
195
196	gen_count = pmap->pm_gen_count;
197	atomic_add_long((volatile long *)&pmap_tryrelock_calls, 1);
198	lockpa = *locked;
199	*locked = pa;
200	if (lockpa) {
201		PA_LOCK_ASSERT(lockpa, MA_OWNED);
202		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
203			return (0);
204		PA_UNLOCK(lockpa);
205	}
206	if (PA_TRYLOCK(pa))
207		return (0);
208	PMAP_UNLOCK(pmap);
209	atomic_add_int((volatile int *)&pmap_tryrelock_restart, 1);
210	PA_LOCK(pa);
211	PMAP_LOCK(pmap);
212
213	if (pmap->pm_gen_count != gen_count + 1) {
214		pmap->pm_retries++;
215		atomic_add_int((volatile int *)&pmap_tryrelock_race, 1);
216		return (EAGAIN);
217	}
218	return (0);
219}
220
221/*
222 *	vm_set_page_size:
223 *
224 *	Sets the page size, perhaps based upon the memory
225 *	size.  Must be called before any use of page-size
226 *	dependent functions.
227 */
228void
229vm_set_page_size(void)
230{
231	if (cnt.v_page_size == 0)
232		cnt.v_page_size = PAGE_SIZE;
233	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
234		panic("vm_set_page_size: page size not a power of two");
235}
236
237/*
238 *	vm_page_blacklist_lookup:
239 *
240 *	See if a physical address in this page has been listed
241 *	in the blacklist tunable.  Entries in the tunable are
242 *	separated by spaces or commas.  If an invalid integer is
243 *	encountered then the rest of the string is skipped.
244 */
245static int
246vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
247{
248	vm_paddr_t bad;
249	char *cp, *pos;
250
251	for (pos = list; *pos != '\0'; pos = cp) {
252		bad = strtoq(pos, &cp, 0);
253		if (*cp != '\0') {
254			if (*cp == ' ' || *cp == ',') {
255				cp++;
256				if (cp == pos)
257					continue;
258			} else
259				break;
260		}
261		if (pa == trunc_page(bad))
262			return (1);
263	}
264	return (0);
265}
266
267/*
268 *	vm_page_startup:
269 *
270 *	Initializes the resident memory module.
271 *
272 *	Allocates memory for the page cells, and
273 *	for the object/offset-to-page hash table headers.
274 *	Each page cell is initialized and placed on the free list.
275 */
276vm_offset_t
277vm_page_startup(vm_offset_t vaddr)
278{
279	vm_offset_t mapped;
280	vm_paddr_t page_range;
281	vm_paddr_t new_end;
282	int i;
283	vm_paddr_t pa;
284	int nblocks;
285	vm_paddr_t last_pa;
286	char *list;
287
288	/* the biggest memory array is the second group of pages */
289	vm_paddr_t end;
290	vm_paddr_t biggestsize;
291	vm_paddr_t low_water, high_water;
292	int biggestone;
293
294	biggestsize = 0;
295	biggestone = 0;
296	nblocks = 0;
297	vaddr = round_page(vaddr);
298
299	for (i = 0; phys_avail[i + 1]; i += 2) {
300		phys_avail[i] = round_page(phys_avail[i]);
301		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
302	}
303
304	low_water = phys_avail[0];
305	high_water = phys_avail[1];
306
307	for (i = 0; phys_avail[i + 1]; i += 2) {
308		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
309
310		if (size > biggestsize) {
311			biggestone = i;
312			biggestsize = size;
313		}
314		if (phys_avail[i] < low_water)
315			low_water = phys_avail[i];
316		if (phys_avail[i + 1] > high_water)
317			high_water = phys_avail[i + 1];
318		++nblocks;
319	}
320
321#ifdef XEN
322	low_water = 0;
323#endif
324
325	end = phys_avail[biggestone+1];
326
327	/*
328	 * Initialize the locks.
329	 */
330	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
331	    MTX_RECURSE);
332	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
333	    MTX_DEF);
334
335	/* Setup page locks. */
336	for (i = 0; i < PA_LOCK_COUNT; i++)
337		mtx_init(&pa_lock[i].data, "page lock", NULL,
338		    MTX_DEF | MTX_RECURSE | MTX_DUPOK);
339
340	/*
341	 * Initialize the queue headers for the hold queue, the active queue,
342	 * and the inactive queue.
343	 */
344	for (i = 0; i < PQ_COUNT; i++)
345		TAILQ_INIT(&vm_page_queues[i].pl);
346	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
347	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
348	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
349
350	/*
351	 * Allocate memory for use when boot strapping the kernel memory
352	 * allocator.
353	 */
354	new_end = end - (boot_pages * UMA_SLAB_SIZE);
355	new_end = trunc_page(new_end);
356	mapped = pmap_map(&vaddr, new_end, end,
357	    VM_PROT_READ | VM_PROT_WRITE);
358	bzero((void *)mapped, end - new_end);
359	uma_startup((void *)mapped, boot_pages);
360
361#if defined(__amd64__) || defined(__i386__) || defined(__arm__)
362	/*
363	 * Allocate a bitmap to indicate that a random physical page
364	 * needs to be included in a minidump.
365	 *
366	 * The amd64 port needs this to indicate which direct map pages
367	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
368	 *
369	 * However, i386 still needs this workspace internally within the
370	 * minidump code.  In theory, they are not needed on i386, but are
371	 * included should the sf_buf code decide to use them.
372	 */
373	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
374	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
375	new_end -= vm_page_dump_size;
376	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
377	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
378	bzero((void *)vm_page_dump, vm_page_dump_size);
379#endif
380#ifdef __amd64__
381	/*
382	 * Request that the physical pages underlying the message buffer be
383	 * included in a crash dump.  Since the message buffer is accessed
384	 * through the direct map, they are not automatically included.
385	 */
386	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
387	last_pa = pa + round_page(MSGBUF_SIZE);
388	while (pa < last_pa) {
389		dump_add_page(pa);
390		pa += PAGE_SIZE;
391	}
392#endif
393	/*
394	 * Compute the number of pages of memory that will be available for
395	 * use (taking into account the overhead of a page structure per
396	 * page).
397	 */
398	first_page = low_water / PAGE_SIZE;
399#ifdef VM_PHYSSEG_SPARSE
400	page_range = 0;
401	for (i = 0; phys_avail[i + 1] != 0; i += 2)
402		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
403#elif defined(VM_PHYSSEG_DENSE)
404	page_range = high_water / PAGE_SIZE - first_page;
405#else
406#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
407#endif
408	end = new_end;
409
410	/*
411	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
412	 */
413	vaddr += PAGE_SIZE;
414
415	/*
416	 * Initialize the mem entry structures now, and put them in the free
417	 * queue.
418	 */
419	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
420	mapped = pmap_map(&vaddr, new_end, end,
421	    VM_PROT_READ | VM_PROT_WRITE);
422	vm_page_array = (vm_page_t) mapped;
423#if VM_NRESERVLEVEL > 0
424	/*
425	 * Allocate memory for the reservation management system's data
426	 * structures.
427	 */
428	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
429#endif
430#ifdef __amd64__
431	/*
432	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
433	 * so the pages must be tracked for a crashdump to include this data.
434	 * This includes the vm_page_array and the early UMA bootstrap pages.
435	 */
436	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
437		dump_add_page(pa);
438#endif
439	phys_avail[biggestone + 1] = new_end;
440
441	/*
442	 * Clear all of the page structures
443	 */
444	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
445	for (i = 0; i < page_range; i++)
446		vm_page_array[i].order = VM_NFREEORDER;
447	vm_page_array_size = page_range;
448
449	/*
450	 * Initialize the physical memory allocator.
451	 */
452	vm_phys_init();
453
454	/*
455	 * Add every available physical page that is not blacklisted to
456	 * the free lists.
457	 */
458	cnt.v_page_count = 0;
459	cnt.v_free_count = 0;
460	list = getenv("vm.blacklist");
461	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
462		pa = phys_avail[i];
463		last_pa = phys_avail[i + 1];
464		while (pa < last_pa) {
465			if (list != NULL &&
466			    vm_page_blacklist_lookup(list, pa))
467				printf("Skipping page with pa 0x%jx\n",
468				    (uintmax_t)pa);
469			else
470				vm_phys_add_page(pa);
471			pa += PAGE_SIZE;
472		}
473	}
474	freeenv(list);
475#if VM_NRESERVLEVEL > 0
476	/*
477	 * Initialize the reservation management system.
478	 */
479	vm_reserv_init();
480#endif
481	return (vaddr);
482}
483
484void
485vm_page_flag_set(vm_page_t m, unsigned short bits)
486{
487
488	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
489	/*
490	 * For a managed page, the PG_WRITEABLE flag can be set only if
491	 * the page is VPO_BUSY.  Currently this flag is only set by
492	 * pmap_enter().
493	 */
494	KASSERT((bits & PG_WRITEABLE) == 0 ||
495	    (m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) != 0 ||
496	    (m->oflags & VPO_BUSY) != 0, ("PG_WRITEABLE and !VPO_BUSY"));
497	m->flags |= bits;
498}
499
500void
501vm_page_flag_clear(vm_page_t m, unsigned short bits)
502{
503
504	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
505	KASSERT((bits & PG_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
506	    ("PG_REFERENCED and !VM_OBJECT_LOCKED"));
507	m->flags &= ~bits;
508}
509
510void
511vm_page_busy(vm_page_t m)
512{
513
514	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
515	KASSERT((m->oflags & VPO_BUSY) == 0,
516	    ("vm_page_busy: page already busy!!!"));
517	m->oflags |= VPO_BUSY;
518}
519
520/*
521 *      vm_page_flash:
522 *
523 *      wakeup anyone waiting for the page.
524 */
525void
526vm_page_flash(vm_page_t m)
527{
528
529	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
530	if (m->oflags & VPO_WANTED) {
531		m->oflags &= ~VPO_WANTED;
532		wakeup(m);
533	}
534}
535
536/*
537 *      vm_page_wakeup:
538 *
539 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
540 *      page.
541 *
542 */
543void
544vm_page_wakeup(vm_page_t m)
545{
546
547	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
548	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
549	m->oflags &= ~VPO_BUSY;
550	vm_page_flash(m);
551}
552
553void
554vm_page_io_start(vm_page_t m)
555{
556
557	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
558	m->busy++;
559}
560
561void
562vm_page_io_finish(vm_page_t m)
563{
564
565	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
566	m->busy--;
567	if (m->busy == 0)
568		vm_page_flash(m);
569}
570
571/*
572 * Keep page from being freed by the page daemon
573 * much of the same effect as wiring, except much lower
574 * overhead and should be used only for *very* temporary
575 * holding ("wiring").
576 */
577void
578vm_page_hold(vm_page_t mem)
579{
580
581	vm_page_lock_assert(mem, MA_OWNED);
582        mem->hold_count++;
583}
584
585void
586vm_page_unhold(vm_page_t mem)
587{
588
589	vm_page_lock_assert(mem, MA_OWNED);
590	--mem->hold_count;
591	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
592	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
593		vm_page_free_toq(mem);
594}
595
596/*
597 *	vm_page_free:
598 *
599 *	Free a page.
600 */
601void
602vm_page_free(vm_page_t m)
603{
604
605	m->flags &= ~PG_ZERO;
606	vm_page_free_toq(m);
607}
608
609/*
610 *	vm_page_free_zero:
611 *
612 *	Free a page to the zerod-pages queue
613 */
614void
615vm_page_free_zero(vm_page_t m)
616{
617
618	m->flags |= PG_ZERO;
619	vm_page_free_toq(m);
620}
621
622/*
623 *	vm_page_sleep:
624 *
625 *	Sleep and release the page and page queues locks.
626 *
627 *	The object containing the given page must be locked.
628 */
629void
630vm_page_sleep(vm_page_t m, const char *msg)
631{
632
633	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
634	if (mtx_owned(&vm_page_queue_mtx))
635		vm_page_unlock_queues();
636	if (mtx_owned(vm_page_lockptr(m)))
637		vm_page_unlock(m);
638
639	/*
640	 * It's possible that while we sleep, the page will get
641	 * unbusied and freed.  If we are holding the object
642	 * lock, we will assume we hold a reference to the object
643	 * such that even if m->object changes, we can re-lock
644	 * it.
645	 */
646	m->oflags |= VPO_WANTED;
647	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
648}
649
650/*
651 *	vm_page_dirty:
652 *
653 *	make page all dirty
654 */
655void
656vm_page_dirty(vm_page_t m)
657{
658
659	KASSERT((m->flags & PG_CACHED) == 0,
660	    ("vm_page_dirty: page in cache!"));
661	KASSERT(!VM_PAGE_IS_FREE(m),
662	    ("vm_page_dirty: page is free!"));
663	KASSERT(m->valid == VM_PAGE_BITS_ALL,
664	    ("vm_page_dirty: page is invalid!"));
665	m->dirty = VM_PAGE_BITS_ALL;
666}
667
668/*
669 *	vm_page_splay:
670 *
671 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
672 *	the vm_page containing the given pindex.  If, however, that
673 *	pindex is not found in the vm_object, returns a vm_page that is
674 *	adjacent to the pindex, coming before or after it.
675 */
676vm_page_t
677vm_page_splay(vm_pindex_t pindex, vm_page_t root)
678{
679	struct vm_page dummy;
680	vm_page_t lefttreemax, righttreemin, y;
681
682	if (root == NULL)
683		return (root);
684	lefttreemax = righttreemin = &dummy;
685	for (;; root = y) {
686		if (pindex < root->pindex) {
687			if ((y = root->left) == NULL)
688				break;
689			if (pindex < y->pindex) {
690				/* Rotate right. */
691				root->left = y->right;
692				y->right = root;
693				root = y;
694				if ((y = root->left) == NULL)
695					break;
696			}
697			/* Link into the new root's right tree. */
698			righttreemin->left = root;
699			righttreemin = root;
700		} else if (pindex > root->pindex) {
701			if ((y = root->right) == NULL)
702				break;
703			if (pindex > y->pindex) {
704				/* Rotate left. */
705				root->right = y->left;
706				y->left = root;
707				root = y;
708				if ((y = root->right) == NULL)
709					break;
710			}
711			/* Link into the new root's left tree. */
712			lefttreemax->right = root;
713			lefttreemax = root;
714		} else
715			break;
716	}
717	/* Assemble the new root. */
718	lefttreemax->right = root->left;
719	righttreemin->left = root->right;
720	root->left = dummy.right;
721	root->right = dummy.left;
722	return (root);
723}
724
725/*
726 *	vm_page_insert:		[ internal use only ]
727 *
728 *	Inserts the given mem entry into the object and object list.
729 *
730 *	The pagetables are not updated but will presumably fault the page
731 *	in if necessary, or if a kernel page the caller will at some point
732 *	enter the page into the kernel's pmap.  We are not allowed to block
733 *	here so we *can't* do this anyway.
734 *
735 *	The object and page must be locked.
736 *	This routine may not block.
737 */
738void
739vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
740{
741	vm_page_t root;
742
743	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
744	if (m->object != NULL)
745		panic("vm_page_insert: page already inserted");
746
747	/*
748	 * Record the object/offset pair in this page
749	 */
750	m->object = object;
751	m->pindex = pindex;
752
753	/*
754	 * Now link into the object's ordered list of backed pages.
755	 */
756	root = object->root;
757	if (root == NULL) {
758		m->left = NULL;
759		m->right = NULL;
760		TAILQ_INSERT_TAIL(&object->memq, m, listq);
761	} else {
762		root = vm_page_splay(pindex, root);
763		if (pindex < root->pindex) {
764			m->left = root->left;
765			m->right = root;
766			root->left = NULL;
767			TAILQ_INSERT_BEFORE(root, m, listq);
768		} else if (pindex == root->pindex)
769			panic("vm_page_insert: offset already allocated");
770		else {
771			m->right = root->right;
772			m->left = root;
773			root->right = NULL;
774			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
775		}
776	}
777	object->root = m;
778	object->generation++;
779
780	/*
781	 * show that the object has one more resident page.
782	 */
783	object->resident_page_count++;
784	/*
785	 * Hold the vnode until the last page is released.
786	 */
787	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
788		vhold((struct vnode *)object->handle);
789
790	/*
791	 * Since we are inserting a new and possibly dirty page,
792	 * update the object's OBJ_MIGHTBEDIRTY flag.
793	 */
794	if (m->flags & PG_WRITEABLE)
795		vm_object_set_writeable_dirty(object);
796}
797
798/*
799 *	vm_page_remove:
800 *				NOTE: used by device pager as well -wfj
801 *
802 *	Removes the given mem entry from the object/offset-page
803 *	table and the object page list, but do not invalidate/terminate
804 *	the backing store.
805 *
806 *	The object and page must be locked.
807 *	The underlying pmap entry (if any) is NOT removed here.
808 *	This routine may not block.
809 */
810void
811vm_page_remove(vm_page_t m)
812{
813	vm_object_t object;
814	vm_page_t root;
815
816	if ((m->flags & PG_UNMANAGED) == 0)
817		vm_page_lock_assert(m, MA_OWNED);
818	if ((object = m->object) == NULL)
819		return;
820	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
821	if (m->oflags & VPO_BUSY) {
822		m->oflags &= ~VPO_BUSY;
823		vm_page_flash(m);
824	}
825
826	/*
827	 * Now remove from the object's list of backed pages.
828	 */
829	if (m != object->root)
830		vm_page_splay(m->pindex, object->root);
831	if (m->left == NULL)
832		root = m->right;
833	else {
834		root = vm_page_splay(m->pindex, m->left);
835		root->right = m->right;
836	}
837	object->root = root;
838	TAILQ_REMOVE(&object->memq, m, listq);
839
840	/*
841	 * And show that the object has one fewer resident page.
842	 */
843	object->resident_page_count--;
844	object->generation++;
845	/*
846	 * The vnode may now be recycled.
847	 */
848	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
849		vdrop((struct vnode *)object->handle);
850
851	m->object = NULL;
852}
853
854/*
855 *	vm_page_lookup:
856 *
857 *	Returns the page associated with the object/offset
858 *	pair specified; if none is found, NULL is returned.
859 *
860 *	The object must be locked.
861 *	This routine may not block.
862 *	This is a critical path routine
863 */
864vm_page_t
865vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
866{
867	vm_page_t m;
868
869	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
870	if ((m = object->root) != NULL && m->pindex != pindex) {
871		m = vm_page_splay(pindex, m);
872		if ((object->root = m)->pindex != pindex)
873			m = NULL;
874	}
875	return (m);
876}
877
878/*
879 *	vm_page_rename:
880 *
881 *	Move the given memory entry from its
882 *	current object to the specified target object/offset.
883 *
884 *	The object must be locked.
885 *	This routine may not block.
886 *
887 *	Note: swap associated with the page must be invalidated by the move.  We
888 *	      have to do this for several reasons:  (1) we aren't freeing the
889 *	      page, (2) we are dirtying the page, (3) the VM system is probably
890 *	      moving the page from object A to B, and will then later move
891 *	      the backing store from A to B and we can't have a conflict.
892 *
893 *	Note: we *always* dirty the page.  It is necessary both for the
894 *	      fact that we moved it, and because we may be invalidating
895 *	      swap.  If the page is on the cache, we have to deactivate it
896 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
897 *	      on the cache.
898 */
899void
900vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
901{
902
903	vm_page_remove(m);
904	vm_page_insert(m, new_object, new_pindex);
905	vm_page_dirty(m);
906}
907
908/*
909 *	Convert all of the given object's cached pages that have a
910 *	pindex within the given range into free pages.  If the value
911 *	zero is given for "end", then the range's upper bound is
912 *	infinity.  If the given object is backed by a vnode and it
913 *	transitions from having one or more cached pages to none, the
914 *	vnode's hold count is reduced.
915 */
916void
917vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
918{
919	vm_page_t m, m_next;
920	boolean_t empty;
921
922	mtx_lock(&vm_page_queue_free_mtx);
923	if (__predict_false(object->cache == NULL)) {
924		mtx_unlock(&vm_page_queue_free_mtx);
925		return;
926	}
927	m = object->cache = vm_page_splay(start, object->cache);
928	if (m->pindex < start) {
929		if (m->right == NULL)
930			m = NULL;
931		else {
932			m_next = vm_page_splay(start, m->right);
933			m_next->left = m;
934			m->right = NULL;
935			m = object->cache = m_next;
936		}
937	}
938
939	/*
940	 * At this point, "m" is either (1) a reference to the page
941	 * with the least pindex that is greater than or equal to
942	 * "start" or (2) NULL.
943	 */
944	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
945		/*
946		 * Find "m"'s successor and remove "m" from the
947		 * object's cache.
948		 */
949		if (m->right == NULL) {
950			object->cache = m->left;
951			m_next = NULL;
952		} else {
953			m_next = vm_page_splay(start, m->right);
954			m_next->left = m->left;
955			object->cache = m_next;
956		}
957		/* Convert "m" to a free page. */
958		m->object = NULL;
959		m->valid = 0;
960		/* Clear PG_CACHED and set PG_FREE. */
961		m->flags ^= PG_CACHED | PG_FREE;
962		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
963		    ("vm_page_cache_free: page %p has inconsistent flags", m));
964		cnt.v_cache_count--;
965		cnt.v_free_count++;
966	}
967	empty = object->cache == NULL;
968	mtx_unlock(&vm_page_queue_free_mtx);
969	if (object->type == OBJT_VNODE && empty)
970		vdrop(object->handle);
971}
972
973/*
974 *	Returns the cached page that is associated with the given
975 *	object and offset.  If, however, none exists, returns NULL.
976 *
977 *	The free page queue must be locked.
978 */
979static inline vm_page_t
980vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
981{
982	vm_page_t m;
983
984	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
985	if ((m = object->cache) != NULL && m->pindex != pindex) {
986		m = vm_page_splay(pindex, m);
987		if ((object->cache = m)->pindex != pindex)
988			m = NULL;
989	}
990	return (m);
991}
992
993/*
994 *	Remove the given cached page from its containing object's
995 *	collection of cached pages.
996 *
997 *	The free page queue must be locked.
998 */
999void
1000vm_page_cache_remove(vm_page_t m)
1001{
1002	vm_object_t object;
1003	vm_page_t root;
1004
1005	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1006	KASSERT((m->flags & PG_CACHED) != 0,
1007	    ("vm_page_cache_remove: page %p is not cached", m));
1008	object = m->object;
1009	if (m != object->cache) {
1010		root = vm_page_splay(m->pindex, object->cache);
1011		KASSERT(root == m,
1012		    ("vm_page_cache_remove: page %p is not cached in object %p",
1013		    m, object));
1014	}
1015	if (m->left == NULL)
1016		root = m->right;
1017	else if (m->right == NULL)
1018		root = m->left;
1019	else {
1020		root = vm_page_splay(m->pindex, m->left);
1021		root->right = m->right;
1022	}
1023	object->cache = root;
1024	m->object = NULL;
1025	cnt.v_cache_count--;
1026}
1027
1028/*
1029 *	Transfer all of the cached pages with offset greater than or
1030 *	equal to 'offidxstart' from the original object's cache to the
1031 *	new object's cache.  However, any cached pages with offset
1032 *	greater than or equal to the new object's size are kept in the
1033 *	original object.  Initially, the new object's cache must be
1034 *	empty.  Offset 'offidxstart' in the original object must
1035 *	correspond to offset zero in the new object.
1036 *
1037 *	The new object must be locked.
1038 */
1039void
1040vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1041    vm_object_t new_object)
1042{
1043	vm_page_t m, m_next;
1044
1045	/*
1046	 * Insertion into an object's collection of cached pages
1047	 * requires the object to be locked.  In contrast, removal does
1048	 * not.
1049	 */
1050	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1051	KASSERT(new_object->cache == NULL,
1052	    ("vm_page_cache_transfer: object %p has cached pages",
1053	    new_object));
1054	mtx_lock(&vm_page_queue_free_mtx);
1055	if ((m = orig_object->cache) != NULL) {
1056		/*
1057		 * Transfer all of the pages with offset greater than or
1058		 * equal to 'offidxstart' from the original object's
1059		 * cache to the new object's cache.
1060		 */
1061		m = vm_page_splay(offidxstart, m);
1062		if (m->pindex < offidxstart) {
1063			orig_object->cache = m;
1064			new_object->cache = m->right;
1065			m->right = NULL;
1066		} else {
1067			orig_object->cache = m->left;
1068			new_object->cache = m;
1069			m->left = NULL;
1070		}
1071		while ((m = new_object->cache) != NULL) {
1072			if ((m->pindex - offidxstart) >= new_object->size) {
1073				/*
1074				 * Return all of the cached pages with
1075				 * offset greater than or equal to the
1076				 * new object's size to the original
1077				 * object's cache.
1078				 */
1079				new_object->cache = m->left;
1080				m->left = orig_object->cache;
1081				orig_object->cache = m;
1082				break;
1083			}
1084			m_next = vm_page_splay(m->pindex, m->right);
1085			/* Update the page's object and offset. */
1086			m->object = new_object;
1087			m->pindex -= offidxstart;
1088			if (m_next == NULL)
1089				break;
1090			m->right = NULL;
1091			m_next->left = m;
1092			new_object->cache = m_next;
1093		}
1094		KASSERT(new_object->cache == NULL ||
1095		    new_object->type == OBJT_SWAP,
1096		    ("vm_page_cache_transfer: object %p's type is incompatible"
1097		    " with cached pages", new_object));
1098	}
1099	mtx_unlock(&vm_page_queue_free_mtx);
1100}
1101
1102/*
1103 *	vm_page_alloc:
1104 *
1105 *	Allocate and return a memory cell associated
1106 *	with this VM object/offset pair.
1107 *
1108 *	page_req classes:
1109 *	VM_ALLOC_NORMAL		normal process request
1110 *	VM_ALLOC_SYSTEM		system *really* needs a page
1111 *	VM_ALLOC_INTERRUPT	interrupt time request
1112 *	VM_ALLOC_ZERO		zero page
1113 *	VM_ALLOC_WIRED		wire the allocated page
1114 *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1115 *	VM_ALLOC_NOBUSY		do not set the page busy
1116 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1117 *				is cached
1118 *
1119 *	This routine may not sleep.
1120 */
1121vm_page_t
1122vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1123{
1124	struct vnode *vp = NULL;
1125	vm_object_t m_object;
1126	vm_page_t m;
1127	int flags, page_req;
1128
1129	page_req = req & VM_ALLOC_CLASS_MASK;
1130	KASSERT(curthread->td_intr_nesting_level == 0 ||
1131	    page_req == VM_ALLOC_INTERRUPT,
1132	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1133
1134	if ((req & VM_ALLOC_NOOBJ) == 0) {
1135		KASSERT(object != NULL,
1136		    ("vm_page_alloc: NULL object."));
1137		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1138	}
1139
1140	/*
1141	 * The pager is allowed to eat deeper into the free page list.
1142	 */
1143	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1144		page_req = VM_ALLOC_SYSTEM;
1145	};
1146
1147	mtx_lock(&vm_page_queue_free_mtx);
1148	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1149	    (page_req == VM_ALLOC_SYSTEM &&
1150	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1151	    (page_req == VM_ALLOC_INTERRUPT &&
1152	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1153		/*
1154		 * Allocate from the free queue if the number of free pages
1155		 * exceeds the minimum for the request class.
1156		 */
1157		if (object != NULL &&
1158		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1159			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1160				mtx_unlock(&vm_page_queue_free_mtx);
1161				return (NULL);
1162			}
1163			if (vm_phys_unfree_page(m))
1164				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1165#if VM_NRESERVLEVEL > 0
1166			else if (!vm_reserv_reactivate_page(m))
1167#else
1168			else
1169#endif
1170				panic("vm_page_alloc: cache page %p is missing"
1171				    " from the free queue", m);
1172		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1173			mtx_unlock(&vm_page_queue_free_mtx);
1174			return (NULL);
1175#if VM_NRESERVLEVEL > 0
1176		} else if (object == NULL || object->type == OBJT_DEVICE ||
1177		    object->type == OBJT_SG ||
1178		    (object->flags & OBJ_COLORED) == 0 ||
1179		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1180#else
1181		} else {
1182#endif
1183			m = vm_phys_alloc_pages(object != NULL ?
1184			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1185#if VM_NRESERVLEVEL > 0
1186			if (m == NULL && vm_reserv_reclaim_inactive()) {
1187				m = vm_phys_alloc_pages(object != NULL ?
1188				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1189				    0);
1190			}
1191#endif
1192		}
1193	} else {
1194		/*
1195		 * Not allocatable, give up.
1196		 */
1197		mtx_unlock(&vm_page_queue_free_mtx);
1198		atomic_add_int(&vm_pageout_deficit, 1);
1199		pagedaemon_wakeup();
1200		return (NULL);
1201	}
1202
1203	/*
1204	 *  At this point we had better have found a good page.
1205	 */
1206
1207	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1208	KASSERT(m->queue == PQ_NONE,
1209	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1210	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1211	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1212	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1213	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1214	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1215	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1216	    pmap_page_get_memattr(m)));
1217	if ((m->flags & PG_CACHED) != 0) {
1218		KASSERT(m->valid != 0,
1219		    ("vm_page_alloc: cached page %p is invalid", m));
1220		if (m->object == object && m->pindex == pindex)
1221	  		cnt.v_reactivated++;
1222		else
1223			m->valid = 0;
1224		m_object = m->object;
1225		vm_page_cache_remove(m);
1226		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1227			vp = m_object->handle;
1228	} else {
1229		KASSERT(VM_PAGE_IS_FREE(m),
1230		    ("vm_page_alloc: page %p is not free", m));
1231		KASSERT(m->valid == 0,
1232		    ("vm_page_alloc: free page %p is valid", m));
1233		cnt.v_free_count--;
1234	}
1235
1236	/*
1237	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1238	 */
1239	flags = 0;
1240	if (m->flags & PG_ZERO) {
1241		vm_page_zero_count--;
1242		if (req & VM_ALLOC_ZERO)
1243			flags = PG_ZERO;
1244	}
1245	if (object == NULL || object->type == OBJT_PHYS)
1246		flags |= PG_UNMANAGED;
1247	m->flags = flags;
1248	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1249		m->oflags = 0;
1250	else
1251		m->oflags = VPO_BUSY;
1252	if (req & VM_ALLOC_WIRED) {
1253		atomic_add_int(&cnt.v_wire_count, 1);
1254		m->wire_count = 1;
1255	}
1256	m->act_count = 0;
1257	mtx_unlock(&vm_page_queue_free_mtx);
1258
1259	if (object != NULL) {
1260		/* Ignore device objects; the pager sets "memattr" for them. */
1261		if (object->memattr != VM_MEMATTR_DEFAULT &&
1262		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1263			pmap_page_set_memattr(m, object->memattr);
1264		vm_page_insert(m, object, pindex);
1265	} else
1266		m->pindex = pindex;
1267
1268	/*
1269	 * The following call to vdrop() must come after the above call
1270	 * to vm_page_insert() in case both affect the same object and
1271	 * vnode.  Otherwise, the affected vnode's hold count could
1272	 * temporarily become zero.
1273	 */
1274	if (vp != NULL)
1275		vdrop(vp);
1276
1277	/*
1278	 * Don't wakeup too often - wakeup the pageout daemon when
1279	 * we would be nearly out of memory.
1280	 */
1281	if (vm_paging_needed())
1282		pagedaemon_wakeup();
1283
1284	return (m);
1285}
1286
1287/*
1288 *	vm_wait:	(also see VM_WAIT macro)
1289 *
1290 *	Block until free pages are available for allocation
1291 *	- Called in various places before memory allocations.
1292 */
1293void
1294vm_wait(void)
1295{
1296
1297	mtx_lock(&vm_page_queue_free_mtx);
1298	if (curproc == pageproc) {
1299		vm_pageout_pages_needed = 1;
1300		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1301		    PDROP | PSWP, "VMWait", 0);
1302	} else {
1303		if (!vm_pages_needed) {
1304			vm_pages_needed = 1;
1305			wakeup(&vm_pages_needed);
1306		}
1307		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1308		    "vmwait", 0);
1309	}
1310}
1311
1312/*
1313 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1314 *
1315 *	Block until free pages are available for allocation
1316 *	- Called only in vm_fault so that processes page faulting
1317 *	  can be easily tracked.
1318 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1319 *	  processes will be able to grab memory first.  Do not change
1320 *	  this balance without careful testing first.
1321 */
1322void
1323vm_waitpfault(void)
1324{
1325
1326	mtx_lock(&vm_page_queue_free_mtx);
1327	if (!vm_pages_needed) {
1328		vm_pages_needed = 1;
1329		wakeup(&vm_pages_needed);
1330	}
1331	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1332	    "pfault", 0);
1333}
1334
1335/*
1336 *	vm_page_requeue:
1337 *
1338 *	Move the given page to the tail of its present page queue.
1339 *
1340 *	The page queues must be locked.
1341 */
1342void
1343vm_page_requeue(vm_page_t m)
1344{
1345	int queue = VM_PAGE_GETQUEUE(m);
1346	struct vpgqueues *vpq;
1347
1348	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1349	KASSERT(queue != PQ_NONE,
1350	    ("vm_page_requeue: page %p is not queued", m));
1351	vpq = &vm_page_queues[queue];
1352	TAILQ_REMOVE(&vpq->pl, m, pageq);
1353	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1354}
1355
1356/*
1357 *	vm_page_queue_remove:
1358 *
1359 *	Remove the given page from the specified queue.
1360 *
1361 *	The page and page queues must be locked.
1362 */
1363static __inline void
1364vm_page_queue_remove(int queue, vm_page_t m)
1365{
1366	struct vpgqueues *pq;
1367
1368	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1369	vm_page_lock_assert(m, MA_OWNED);
1370	pq = &vm_page_queues[queue];
1371	TAILQ_REMOVE(&pq->pl, m, pageq);
1372	(*pq->cnt)--;
1373}
1374
1375/*
1376 *	vm_pageq_remove:
1377 *
1378 *	Remove a page from its queue.
1379 *
1380 *	The given page must be locked.
1381 *	This routine may not block.
1382 */
1383void
1384vm_pageq_remove(vm_page_t m)
1385{
1386	int queue = VM_PAGE_GETQUEUE(m);
1387
1388	vm_page_lock_assert(m, MA_OWNED);
1389	if (queue != PQ_NONE) {
1390		vm_page_lock_queues();
1391		VM_PAGE_SETQUEUE2(m, PQ_NONE);
1392		vm_page_queue_remove(queue, m);
1393		vm_page_unlock_queues();
1394	}
1395}
1396
1397/*
1398 *	vm_page_enqueue:
1399 *
1400 *	Add the given page to the specified queue.
1401 *
1402 *	The page queues must be locked.
1403 */
1404static void
1405vm_page_enqueue(int queue, vm_page_t m)
1406{
1407	struct vpgqueues *vpq;
1408
1409	vpq = &vm_page_queues[queue];
1410	VM_PAGE_SETQUEUE2(m, queue);
1411	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1412	++*vpq->cnt;
1413}
1414
1415/*
1416 *	vm_page_activate:
1417 *
1418 *	Put the specified page on the active list (if appropriate).
1419 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1420 *	mess with it.
1421 *
1422 *	The page must be locked.
1423 *	This routine may not block.
1424 */
1425void
1426vm_page_activate(vm_page_t m)
1427{
1428	int queue;
1429
1430	vm_page_lock_assert(m, MA_OWNED);
1431	if ((queue = VM_PAGE_GETKNOWNQUEUE2(m)) != PQ_ACTIVE) {
1432		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1433			if (m->act_count < ACT_INIT)
1434				m->act_count = ACT_INIT;
1435			vm_page_lock_queues();
1436			if (queue != PQ_NONE)
1437				vm_page_queue_remove(queue, m);
1438			vm_page_enqueue(PQ_ACTIVE, m);
1439			vm_page_unlock_queues();
1440		} else
1441			KASSERT(queue == PQ_NONE,
1442			    ("vm_page_activate: wired page %p is queued", m));
1443	} else {
1444		if (m->act_count < ACT_INIT)
1445			m->act_count = ACT_INIT;
1446	}
1447}
1448
1449/*
1450 *	vm_page_free_wakeup:
1451 *
1452 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1453 *	routine is called when a page has been added to the cache or free
1454 *	queues.
1455 *
1456 *	The page queues must be locked.
1457 *	This routine may not block.
1458 */
1459static inline void
1460vm_page_free_wakeup(void)
1461{
1462
1463	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1464	/*
1465	 * if pageout daemon needs pages, then tell it that there are
1466	 * some free.
1467	 */
1468	if (vm_pageout_pages_needed &&
1469	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1470		wakeup(&vm_pageout_pages_needed);
1471		vm_pageout_pages_needed = 0;
1472	}
1473	/*
1474	 * wakeup processes that are waiting on memory if we hit a
1475	 * high water mark. And wakeup scheduler process if we have
1476	 * lots of memory. this process will swapin processes.
1477	 */
1478	if (vm_pages_needed && !vm_page_count_min()) {
1479		vm_pages_needed = 0;
1480		wakeup(&cnt.v_free_count);
1481	}
1482}
1483
1484/*
1485 *	vm_page_free_toq:
1486 *
1487 *	Returns the given page to the free list,
1488 *	disassociating it with any VM object.
1489 *
1490 *	Object and page must be locked prior to entry.
1491 *	This routine may not block.
1492 */
1493
1494void
1495vm_page_free_toq(vm_page_t m)
1496{
1497
1498	if ((m->flags & PG_UNMANAGED) == 0) {
1499		vm_page_lock_assert(m, MA_OWNED);
1500		KASSERT(!pmap_page_is_mapped(m),
1501		    ("vm_page_free_toq: freeing mapped page %p", m));
1502	}
1503	PCPU_INC(cnt.v_tfree);
1504
1505	if (m->busy || VM_PAGE_IS_FREE(m)) {
1506		printf(
1507		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1508		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1509		    m->hold_count);
1510		if (VM_PAGE_IS_FREE(m))
1511			panic("vm_page_free: freeing free page");
1512		else
1513			panic("vm_page_free: freeing busy page");
1514	}
1515
1516	/*
1517	 * unqueue, then remove page.  Note that we cannot destroy
1518	 * the page here because we do not want to call the pager's
1519	 * callback routine until after we've put the page on the
1520	 * appropriate free queue.
1521	 */
1522	if ((m->flags & PG_UNMANAGED) == 0)
1523		vm_pageq_remove(m);
1524	vm_page_remove(m);
1525
1526	/*
1527	 * If fictitious remove object association and
1528	 * return, otherwise delay object association removal.
1529	 */
1530	if ((m->flags & PG_FICTITIOUS) != 0) {
1531		return;
1532	}
1533
1534	m->valid = 0;
1535	vm_page_undirty(m);
1536
1537	if (m->wire_count != 0) {
1538		if (m->wire_count > 1) {
1539			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1540				m->wire_count, (long)m->pindex);
1541		}
1542		panic("vm_page_free: freeing wired page");
1543	}
1544	if (m->hold_count != 0) {
1545		m->flags &= ~PG_ZERO;
1546		vm_page_lock_queues();
1547		vm_page_enqueue(PQ_HOLD, m);
1548		vm_page_unlock_queues();
1549	} else {
1550		/*
1551		 * Restore the default memory attribute to the page.
1552		 */
1553		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1554			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1555
1556		/*
1557		 * Insert the page into the physical memory allocator's
1558		 * cache/free page queues.
1559		 */
1560		mtx_lock(&vm_page_queue_free_mtx);
1561		m->flags |= PG_FREE;
1562		cnt.v_free_count++;
1563#if VM_NRESERVLEVEL > 0
1564		if (!vm_reserv_free_page(m))
1565#else
1566		if (TRUE)
1567#endif
1568			vm_phys_free_pages(m, 0);
1569		if ((m->flags & PG_ZERO) != 0)
1570			++vm_page_zero_count;
1571		else
1572			vm_page_zero_idle_wakeup();
1573		vm_page_free_wakeup();
1574		mtx_unlock(&vm_page_queue_free_mtx);
1575	}
1576}
1577
1578/*
1579 *	vm_page_wire:
1580 *
1581 *	Mark this page as wired down by yet
1582 *	another map, removing it from paging queues
1583 *	as necessary.
1584 *
1585 *	The page must be locked.
1586 *	This routine may not block.
1587 */
1588void
1589vm_page_wire(vm_page_t m)
1590{
1591
1592	/*
1593	 * Only bump the wire statistics if the page is not already wired,
1594	 * and only unqueue the page if it is on some queue (if it is unmanaged
1595	 * it is already off the queues).
1596	 */
1597	vm_page_lock_assert(m, MA_OWNED);
1598	if (m->flags & PG_FICTITIOUS)
1599		return;
1600	if (m->wire_count == 0) {
1601		if ((m->flags & PG_UNMANAGED) == 0)
1602			vm_pageq_remove(m);
1603		atomic_add_int(&cnt.v_wire_count, 1);
1604	}
1605	m->wire_count++;
1606	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1607}
1608
1609/*
1610 *	vm_page_unwire:
1611 *
1612 *	Release one wiring of this page, potentially
1613 *	enabling it to be paged again.
1614 *
1615 *	Many pages placed on the inactive queue should actually go
1616 *	into the cache, but it is difficult to figure out which.  What
1617 *	we do instead, if the inactive target is well met, is to put
1618 *	clean pages at the head of the inactive queue instead of the tail.
1619 *	This will cause them to be moved to the cache more quickly and
1620 *	if not actively re-referenced, freed more quickly.  If we just
1621 *	stick these pages at the end of the inactive queue, heavy filesystem
1622 *	meta-data accesses can cause an unnecessary paging load on memory bound
1623 *	processes.  This optimization causes one-time-use metadata to be
1624 *	reused more quickly.
1625 *
1626 *	BUT, if we are in a low-memory situation we have no choice but to
1627 *	put clean pages on the cache queue.
1628 *
1629 *	A number of routines use vm_page_unwire() to guarantee that the page
1630 *	will go into either the inactive or active queues, and will NEVER
1631 *	be placed in the cache - for example, just after dirtying a page.
1632 *	dirty pages in the cache are not allowed.
1633 *
1634 *	The page must be locked.
1635 *	This routine may not block.
1636 */
1637void
1638vm_page_unwire(vm_page_t m, int activate)
1639{
1640
1641	if ((m->flags & PG_UNMANAGED) == 0)
1642		vm_page_lock_assert(m, MA_OWNED);
1643	if (m->flags & PG_FICTITIOUS)
1644		return;
1645	if (m->wire_count > 0) {
1646		m->wire_count--;
1647		if (m->wire_count == 0) {
1648			atomic_subtract_int(&cnt.v_wire_count, 1);
1649			if ((m->flags & PG_UNMANAGED) != 0)
1650				return;
1651			vm_page_lock_queues();
1652			if (activate)
1653				vm_page_enqueue(PQ_ACTIVE, m);
1654			else {
1655				vm_page_flag_clear(m, PG_WINATCFLS);
1656				vm_page_enqueue(PQ_INACTIVE, m);
1657			}
1658			vm_page_unlock_queues();
1659		}
1660	} else {
1661		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1662	}
1663}
1664
1665/*
1666 * Move the specified page to the inactive queue.
1667 *
1668 * Normally athead is 0 resulting in LRU operation.  athead is set
1669 * to 1 if we want this page to be 'as if it were placed in the cache',
1670 * except without unmapping it from the process address space.
1671 *
1672 * This routine may not block.
1673 */
1674static inline void
1675_vm_page_deactivate(vm_page_t m, int athead)
1676{
1677	int queue;
1678
1679	vm_page_lock_assert(m, MA_OWNED);
1680
1681	/*
1682	 * Ignore if already inactive.
1683	 */
1684	if ((queue = VM_PAGE_GETKNOWNQUEUE2(m)) == PQ_INACTIVE)
1685		return;
1686	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1687		vm_page_lock_queues();
1688		vm_page_flag_clear(m, PG_WINATCFLS);
1689		if (queue != PQ_NONE)
1690			vm_page_queue_remove(queue, m);
1691		if (athead)
1692			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1693			    pageq);
1694		else
1695			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1696			    pageq);
1697		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1698		cnt.v_inactive_count++;
1699		vm_page_unlock_queues();
1700	}
1701}
1702
1703/*
1704 * Move the specified page to the inactive queue.
1705 *
1706 * The page must be locked.
1707 */
1708void
1709vm_page_deactivate(vm_page_t m)
1710{
1711
1712	_vm_page_deactivate(m, 0);
1713}
1714
1715/*
1716 * vm_page_try_to_cache:
1717 *
1718 * Returns 0 on failure, 1 on success
1719 */
1720int
1721vm_page_try_to_cache(vm_page_t m)
1722{
1723
1724	vm_page_lock_assert(m, MA_OWNED);
1725	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1726	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1727	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1728		return (0);
1729	pmap_remove_all(m);
1730	if (m->dirty)
1731		return (0);
1732	vm_page_cache(m);
1733	return (1);
1734}
1735
1736/*
1737 * vm_page_try_to_free()
1738 *
1739 *	Attempt to free the page.  If we cannot free it, we do nothing.
1740 *	1 is returned on success, 0 on failure.
1741 */
1742int
1743vm_page_try_to_free(vm_page_t m)
1744{
1745
1746	vm_page_lock_assert(m, MA_OWNED);
1747	if (m->object != NULL)
1748		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1749	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1750	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1751		return (0);
1752	pmap_remove_all(m);
1753	if (m->dirty)
1754		return (0);
1755	vm_page_free(m);
1756	return (1);
1757}
1758
1759/*
1760 * vm_page_cache
1761 *
1762 * Put the specified page onto the page cache queue (if appropriate).
1763 *
1764 * This routine may not block.
1765 */
1766void
1767vm_page_cache(vm_page_t m)
1768{
1769	vm_object_t object;
1770	vm_page_t root;
1771
1772	vm_page_lock_assert(m, MA_OWNED);
1773	object = m->object;
1774	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1775	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1776	    m->hold_count || m->wire_count)
1777		panic("vm_page_cache: attempting to cache busy page");
1778	pmap_remove_all(m);
1779	if (m->dirty != 0)
1780		panic("vm_page_cache: page %p is dirty", m);
1781	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1782	    (object->type == OBJT_SWAP &&
1783	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1784		/*
1785		 * Hypothesis: A cache-elgible page belonging to a
1786		 * default object or swap object but without a backing
1787		 * store must be zero filled.
1788		 */
1789		vm_page_free(m);
1790		return;
1791	}
1792	KASSERT((m->flags & PG_CACHED) == 0,
1793	    ("vm_page_cache: page %p is already cached", m));
1794	PCPU_INC(cnt.v_tcached);
1795
1796	/*
1797	 * Remove the page from the paging queues.
1798	 */
1799	vm_pageq_remove(m);
1800
1801	/*
1802	 * Remove the page from the object's collection of resident
1803	 * pages.
1804	 */
1805	if (m != object->root)
1806		vm_page_splay(m->pindex, object->root);
1807	if (m->left == NULL)
1808		root = m->right;
1809	else {
1810		root = vm_page_splay(m->pindex, m->left);
1811		root->right = m->right;
1812	}
1813	object->root = root;
1814	TAILQ_REMOVE(&object->memq, m, listq);
1815	object->resident_page_count--;
1816	object->generation++;
1817
1818	/*
1819	 * Restore the default memory attribute to the page.
1820	 */
1821	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1822		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1823
1824	/*
1825	 * Insert the page into the object's collection of cached pages
1826	 * and the physical memory allocator's cache/free page queues.
1827	 */
1828	m->flags &= ~PG_ZERO;
1829	mtx_lock(&vm_page_queue_free_mtx);
1830	m->flags |= PG_CACHED;
1831	cnt.v_cache_count++;
1832	root = object->cache;
1833	if (root == NULL) {
1834		m->left = NULL;
1835		m->right = NULL;
1836	} else {
1837		root = vm_page_splay(m->pindex, root);
1838		if (m->pindex < root->pindex) {
1839			m->left = root->left;
1840			m->right = root;
1841			root->left = NULL;
1842		} else if (__predict_false(m->pindex == root->pindex))
1843			panic("vm_page_cache: offset already cached");
1844		else {
1845			m->right = root->right;
1846			m->left = root;
1847			root->right = NULL;
1848		}
1849	}
1850	object->cache = m;
1851#if VM_NRESERVLEVEL > 0
1852	if (!vm_reserv_free_page(m)) {
1853#else
1854	if (TRUE) {
1855#endif
1856		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1857		vm_phys_free_pages(m, 0);
1858	}
1859	vm_page_free_wakeup();
1860	mtx_unlock(&vm_page_queue_free_mtx);
1861
1862	/*
1863	 * Increment the vnode's hold count if this is the object's only
1864	 * cached page.  Decrement the vnode's hold count if this was
1865	 * the object's only resident page.
1866	 */
1867	if (object->type == OBJT_VNODE) {
1868		if (root == NULL && object->resident_page_count != 0)
1869			vhold(object->handle);
1870		else if (root != NULL && object->resident_page_count == 0)
1871			vdrop(object->handle);
1872	}
1873}
1874
1875/*
1876 * vm_page_dontneed
1877 *
1878 *	Cache, deactivate, or do nothing as appropriate.  This routine
1879 *	is typically used by madvise() MADV_DONTNEED.
1880 *
1881 *	Generally speaking we want to move the page into the cache so
1882 *	it gets reused quickly.  However, this can result in a silly syndrome
1883 *	due to the page recycling too quickly.  Small objects will not be
1884 *	fully cached.  On the otherhand, if we move the page to the inactive
1885 *	queue we wind up with a problem whereby very large objects
1886 *	unnecessarily blow away our inactive and cache queues.
1887 *
1888 *	The solution is to move the pages based on a fixed weighting.  We
1889 *	either leave them alone, deactivate them, or move them to the cache,
1890 *	where moving them to the cache has the highest weighting.
1891 *	By forcing some pages into other queues we eventually force the
1892 *	system to balance the queues, potentially recovering other unrelated
1893 *	space from active.  The idea is to not force this to happen too
1894 *	often.
1895 */
1896void
1897vm_page_dontneed(vm_page_t m)
1898{
1899	int dnw;
1900	int head;
1901
1902	vm_page_lock_assert(m, MA_OWNED);
1903	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1904	dnw = PCPU_GET(dnweight);
1905	PCPU_INC(dnweight);
1906
1907	/*
1908	 * Occasionally leave the page alone.
1909	 */
1910	if ((dnw & 0x01F0) == 0 ||
1911	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
1912		if (m->act_count >= ACT_INIT)
1913			--m->act_count;
1914		return;
1915	}
1916
1917	/*
1918	 * Clear any references to the page.  Otherwise, the page daemon will
1919	 * immediately reactivate the page.
1920	 *
1921	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
1922	 * pmap operation, such as pmap_remove(), could clear a reference in
1923	 * the pmap and set PG_REFERENCED on the page before the
1924	 * pmap_clear_reference() had completed.  Consequently, the page would
1925	 * appear referenced based upon an old reference that occurred before
1926	 * this function ran.
1927	 */
1928	pmap_clear_reference(m);
1929	vm_page_lock_queues();
1930	vm_page_flag_clear(m, PG_REFERENCED);
1931	vm_page_unlock_queues();
1932
1933	if (m->dirty == 0 && pmap_is_modified(m))
1934		vm_page_dirty(m);
1935
1936	if (m->dirty || (dnw & 0x0070) == 0) {
1937		/*
1938		 * Deactivate the page 3 times out of 32.
1939		 */
1940		head = 0;
1941	} else {
1942		/*
1943		 * Cache the page 28 times out of every 32.  Note that
1944		 * the page is deactivated instead of cached, but placed
1945		 * at the head of the queue instead of the tail.
1946		 */
1947		head = 1;
1948	}
1949	_vm_page_deactivate(m, head);
1950}
1951
1952/*
1953 * Grab a page, waiting until we are waken up due to the page
1954 * changing state.  We keep on waiting, if the page continues
1955 * to be in the object.  If the page doesn't exist, first allocate it
1956 * and then conditionally zero it.
1957 *
1958 * This routine may block.
1959 */
1960vm_page_t
1961vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1962{
1963	vm_page_t m;
1964
1965	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1966retrylookup:
1967	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1968		if ((m->oflags & VPO_BUSY) != 0 || m->busy != 0) {
1969			if ((allocflags & VM_ALLOC_RETRY) != 0) {
1970				/*
1971				 * Reference the page before unlocking and
1972				 * sleeping so that the page daemon is less
1973				 * likely to reclaim it.
1974				 */
1975				vm_page_lock_queues();
1976				vm_page_flag_set(m, PG_REFERENCED);
1977			}
1978			vm_page_sleep(m, "pgrbwt");
1979			if ((allocflags & VM_ALLOC_RETRY) == 0)
1980				return (NULL);
1981			goto retrylookup;
1982		} else {
1983			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1984				vm_page_lock(m);
1985				vm_page_wire(m);
1986				vm_page_unlock(m);
1987			}
1988			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1989				vm_page_busy(m);
1990			return (m);
1991		}
1992	}
1993	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1994	if (m == NULL) {
1995		VM_OBJECT_UNLOCK(object);
1996		VM_WAIT;
1997		VM_OBJECT_LOCK(object);
1998		if ((allocflags & VM_ALLOC_RETRY) == 0)
1999			return (NULL);
2000		goto retrylookup;
2001	} else if (m->valid != 0)
2002		return (m);
2003	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2004		pmap_zero_page(m);
2005	return (m);
2006}
2007
2008/*
2009 * Mapping function for valid bits or for dirty bits in
2010 * a page.  May not block.
2011 *
2012 * Inputs are required to range within a page.
2013 */
2014int
2015vm_page_bits(int base, int size)
2016{
2017	int first_bit;
2018	int last_bit;
2019
2020	KASSERT(
2021	    base + size <= PAGE_SIZE,
2022	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2023	);
2024
2025	if (size == 0)		/* handle degenerate case */
2026		return (0);
2027
2028	first_bit = base >> DEV_BSHIFT;
2029	last_bit = (base + size - 1) >> DEV_BSHIFT;
2030
2031	return ((2 << last_bit) - (1 << first_bit));
2032}
2033
2034/*
2035 *	vm_page_set_valid:
2036 *
2037 *	Sets portions of a page valid.  The arguments are expected
2038 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2039 *	of any partial chunks touched by the range.  The invalid portion of
2040 *	such chunks will be zeroed.
2041 *
2042 *	(base + size) must be less then or equal to PAGE_SIZE.
2043 */
2044void
2045vm_page_set_valid(vm_page_t m, int base, int size)
2046{
2047	int endoff, frag;
2048
2049	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2050	if (size == 0)	/* handle degenerate case */
2051		return;
2052
2053	/*
2054	 * If the base is not DEV_BSIZE aligned and the valid
2055	 * bit is clear, we have to zero out a portion of the
2056	 * first block.
2057	 */
2058	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2059	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2060		pmap_zero_page_area(m, frag, base - frag);
2061
2062	/*
2063	 * If the ending offset is not DEV_BSIZE aligned and the
2064	 * valid bit is clear, we have to zero out a portion of
2065	 * the last block.
2066	 */
2067	endoff = base + size;
2068	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2069	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2070		pmap_zero_page_area(m, endoff,
2071		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2072
2073	/*
2074	 * Assert that no previously invalid block that is now being validated
2075	 * is already dirty.
2076	 */
2077	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2078	    ("vm_page_set_valid: page %p is dirty", m));
2079
2080	/*
2081	 * Set valid bits inclusive of any overlap.
2082	 */
2083	m->valid |= vm_page_bits(base, size);
2084}
2085
2086/*
2087 * Clear the given bits from the specified page's dirty field.
2088 */
2089static __inline void
2090vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2091{
2092
2093	/*
2094	 * If the object is locked and the page is neither VPO_BUSY nor
2095	 * PG_WRITEABLE, then the page's dirty field cannot possibly be
2096	 * modified by a concurrent pmap operation.
2097	 */
2098	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2099	if ((m->oflags & VPO_BUSY) == 0 && (m->flags & PG_WRITEABLE) == 0)
2100		m->dirty &= ~pagebits;
2101	else {
2102		vm_page_lock_queues();
2103		m->dirty &= ~pagebits;
2104		vm_page_unlock_queues();
2105	}
2106}
2107
2108/*
2109 *	vm_page_set_validclean:
2110 *
2111 *	Sets portions of a page valid and clean.  The arguments are expected
2112 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2113 *	of any partial chunks touched by the range.  The invalid portion of
2114 *	such chunks will be zero'd.
2115 *
2116 *	This routine may not block.
2117 *
2118 *	(base + size) must be less then or equal to PAGE_SIZE.
2119 */
2120void
2121vm_page_set_validclean(vm_page_t m, int base, int size)
2122{
2123	u_long oldvalid;
2124	int endoff, frag, pagebits;
2125
2126	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2127	if (size == 0)	/* handle degenerate case */
2128		return;
2129
2130	/*
2131	 * If the base is not DEV_BSIZE aligned and the valid
2132	 * bit is clear, we have to zero out a portion of the
2133	 * first block.
2134	 */
2135	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2136	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2137		pmap_zero_page_area(m, frag, base - frag);
2138
2139	/*
2140	 * If the ending offset is not DEV_BSIZE aligned and the
2141	 * valid bit is clear, we have to zero out a portion of
2142	 * the last block.
2143	 */
2144	endoff = base + size;
2145	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2146	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2147		pmap_zero_page_area(m, endoff,
2148		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2149
2150	/*
2151	 * Set valid, clear dirty bits.  If validating the entire
2152	 * page we can safely clear the pmap modify bit.  We also
2153	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2154	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2155	 * be set again.
2156	 *
2157	 * We set valid bits inclusive of any overlap, but we can only
2158	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2159	 * the range.
2160	 */
2161	oldvalid = m->valid;
2162	pagebits = vm_page_bits(base, size);
2163	m->valid |= pagebits;
2164#if 0	/* NOT YET */
2165	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2166		frag = DEV_BSIZE - frag;
2167		base += frag;
2168		size -= frag;
2169		if (size < 0)
2170			size = 0;
2171	}
2172	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2173#endif
2174	if (base == 0 && size == PAGE_SIZE) {
2175		/*
2176		 * The page can only be modified within the pmap if it is
2177		 * mapped, and it can only be mapped if it was previously
2178		 * fully valid.
2179		 */
2180		if (oldvalid == VM_PAGE_BITS_ALL)
2181			/*
2182			 * Perform the pmap_clear_modify() first.  Otherwise,
2183			 * a concurrent pmap operation, such as
2184			 * pmap_protect(), could clear a modification in the
2185			 * pmap and set the dirty field on the page before
2186			 * pmap_clear_modify() had begun and after the dirty
2187			 * field was cleared here.
2188			 */
2189			pmap_clear_modify(m);
2190		m->dirty = 0;
2191		m->oflags &= ~VPO_NOSYNC;
2192	} else if (oldvalid != VM_PAGE_BITS_ALL)
2193		m->dirty &= ~pagebits;
2194	else
2195		vm_page_clear_dirty_mask(m, pagebits);
2196}
2197
2198void
2199vm_page_clear_dirty(vm_page_t m, int base, int size)
2200{
2201
2202	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2203}
2204
2205/*
2206 *	vm_page_set_invalid:
2207 *
2208 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2209 *	valid and dirty bits for the effected areas are cleared.
2210 *
2211 *	May not block.
2212 */
2213void
2214vm_page_set_invalid(vm_page_t m, int base, int size)
2215{
2216	int bits;
2217
2218	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2219	KASSERT((m->oflags & VPO_BUSY) == 0,
2220	    ("vm_page_set_invalid: page %p is busy", m));
2221	bits = vm_page_bits(base, size);
2222	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2223		pmap_remove_all(m);
2224	KASSERT(!pmap_page_is_mapped(m),
2225	    ("vm_page_set_invalid: page %p is mapped", m));
2226	m->valid &= ~bits;
2227	m->dirty &= ~bits;
2228	m->object->generation++;
2229}
2230
2231/*
2232 * vm_page_zero_invalid()
2233 *
2234 *	The kernel assumes that the invalid portions of a page contain
2235 *	garbage, but such pages can be mapped into memory by user code.
2236 *	When this occurs, we must zero out the non-valid portions of the
2237 *	page so user code sees what it expects.
2238 *
2239 *	Pages are most often semi-valid when the end of a file is mapped
2240 *	into memory and the file's size is not page aligned.
2241 */
2242void
2243vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2244{
2245	int b;
2246	int i;
2247
2248	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2249	/*
2250	 * Scan the valid bits looking for invalid sections that
2251	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2252	 * valid bit may be set ) have already been zerod by
2253	 * vm_page_set_validclean().
2254	 */
2255	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2256		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2257		    (m->valid & (1 << i))
2258		) {
2259			if (i > b) {
2260				pmap_zero_page_area(m,
2261				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2262			}
2263			b = i + 1;
2264		}
2265	}
2266
2267	/*
2268	 * setvalid is TRUE when we can safely set the zero'd areas
2269	 * as being valid.  We can do this if there are no cache consistancy
2270	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2271	 */
2272	if (setvalid)
2273		m->valid = VM_PAGE_BITS_ALL;
2274}
2275
2276/*
2277 *	vm_page_is_valid:
2278 *
2279 *	Is (partial) page valid?  Note that the case where size == 0
2280 *	will return FALSE in the degenerate case where the page is
2281 *	entirely invalid, and TRUE otherwise.
2282 *
2283 *	May not block.
2284 */
2285int
2286vm_page_is_valid(vm_page_t m, int base, int size)
2287{
2288	int bits = vm_page_bits(base, size);
2289
2290	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2291	if (m->valid && ((m->valid & bits) == bits))
2292		return 1;
2293	else
2294		return 0;
2295}
2296
2297/*
2298 * update dirty bits from pmap/mmu.  May not block.
2299 */
2300void
2301vm_page_test_dirty(vm_page_t m)
2302{
2303
2304	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2305	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2306		vm_page_dirty(m);
2307}
2308
2309int so_zerocp_fullpage = 0;
2310
2311/*
2312 *	Replace the given page with a copy.  The copied page assumes
2313 *	the portion of the given page's "wire_count" that is not the
2314 *	responsibility of this copy-on-write mechanism.
2315 *
2316 *	The object containing the given page must have a non-zero
2317 *	paging-in-progress count and be locked.
2318 */
2319void
2320vm_page_cowfault(vm_page_t m)
2321{
2322	vm_page_t mnew;
2323	vm_object_t object;
2324	vm_pindex_t pindex;
2325
2326	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2327	vm_page_lock_assert(m, MA_OWNED);
2328	object = m->object;
2329	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2330	KASSERT(object->paging_in_progress != 0,
2331	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2332	    object));
2333	pindex = m->pindex;
2334
2335 retry_alloc:
2336	pmap_remove_all(m);
2337	vm_page_remove(m);
2338	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2339	if (mnew == NULL) {
2340		vm_page_insert(m, object, pindex);
2341		vm_page_unlock(m);
2342		VM_OBJECT_UNLOCK(object);
2343		VM_WAIT;
2344		VM_OBJECT_LOCK(object);
2345		if (m == vm_page_lookup(object, pindex)) {
2346			vm_page_lock(m);
2347			goto retry_alloc;
2348		} else {
2349			/*
2350			 * Page disappeared during the wait.
2351			 */
2352			return;
2353		}
2354	}
2355
2356	if (m->cow == 0) {
2357		/*
2358		 * check to see if we raced with an xmit complete when
2359		 * waiting to allocate a page.  If so, put things back
2360		 * the way they were
2361		 */
2362		vm_page_unlock(m);
2363		vm_page_lock(mnew);
2364		vm_page_free(mnew);
2365		vm_page_unlock(mnew);
2366		vm_page_insert(m, object, pindex);
2367	} else { /* clear COW & copy page */
2368		if (!so_zerocp_fullpage)
2369			pmap_copy_page(m, mnew);
2370		mnew->valid = VM_PAGE_BITS_ALL;
2371		vm_page_dirty(mnew);
2372		mnew->wire_count = m->wire_count - m->cow;
2373		m->wire_count = m->cow;
2374		vm_page_unlock(m);
2375	}
2376}
2377
2378void
2379vm_page_cowclear(vm_page_t m)
2380{
2381
2382	vm_page_lock_assert(m, MA_OWNED);
2383	if (m->cow) {
2384		m->cow--;
2385		/*
2386		 * let vm_fault add back write permission  lazily
2387		 */
2388	}
2389	/*
2390	 *  sf_buf_free() will free the page, so we needn't do it here
2391	 */
2392}
2393
2394int
2395vm_page_cowsetup(vm_page_t m)
2396{
2397
2398	vm_page_lock_assert(m, MA_OWNED);
2399	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2400	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2401		return (EBUSY);
2402	m->cow++;
2403	pmap_remove_write(m);
2404	VM_OBJECT_UNLOCK(m->object);
2405	return (0);
2406}
2407
2408#include "opt_ddb.h"
2409#ifdef DDB
2410#include <sys/kernel.h>
2411
2412#include <ddb/ddb.h>
2413
2414DB_SHOW_COMMAND(page, vm_page_print_page_info)
2415{
2416	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2417	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2418	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2419	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2420	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2421	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2422	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2423	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2424	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2425	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2426}
2427
2428DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2429{
2430
2431	db_printf("PQ_FREE:");
2432	db_printf(" %d", cnt.v_free_count);
2433	db_printf("\n");
2434
2435	db_printf("PQ_CACHE:");
2436	db_printf(" %d", cnt.v_cache_count);
2437	db_printf("\n");
2438
2439	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2440		*vm_page_queues[PQ_ACTIVE].cnt,
2441		*vm_page_queues[PQ_INACTIVE].cnt);
2442}
2443#endif /* DDB */
2444