vm_page.c revision 19415
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37 *	$Id: vm_page.c,v 1.69 1996/10/15 03:16:45 dyson Exp $
38 */
39
40/*
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59 *  School of Computer Science
60 *  Carnegie Mellon University
61 *  Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67/*
68 *	Resident memory management module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/malloc.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76
77#include <vm/vm.h>
78#include <vm/vm_param.h>
79#include <vm/vm_prot.h>
80#include <vm/lock.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_extern.h>
87
88static void	vm_page_queue_init __P((void));
89static vm_page_t vm_page_select_free __P((vm_object_t object,
90			vm_pindex_t pindex, int prefqueue));
91
92/*
93 *	Associated with page of user-allocatable memory is a
94 *	page structure.
95 */
96
97static struct pglist *vm_page_buckets;	/* Array of buckets */
98static int vm_page_bucket_count;	/* How big is array? */
99static int vm_page_hash_mask;		/* Mask for hash function */
100
101struct pglist vm_page_queue_free[PQ_L2_SIZE];
102struct pglist vm_page_queue_zero[PQ_L2_SIZE];
103struct pglist vm_page_queue_active;
104struct pglist vm_page_queue_inactive;
105struct pglist vm_page_queue_cache[PQ_L2_SIZE];
106
107int no_queue;
108
109struct vpgqueues vm_page_queues[PQ_COUNT];
110int pqcnt[PQ_COUNT];
111
112static void
113vm_page_queue_init(void) {
114	int i;
115
116	vm_page_queues[PQ_NONE].pl = NULL;
117	vm_page_queues[PQ_NONE].cnt = &no_queue;
118	for(i=0;i<PQ_L2_SIZE;i++) {
119		vm_page_queues[PQ_FREE+i].pl = &vm_page_queue_free[i];
120		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
121	}
122	for(i=0;i<PQ_L2_SIZE;i++) {
123		vm_page_queues[PQ_ZERO+i].pl = &vm_page_queue_zero[i];
124		vm_page_queues[PQ_ZERO+i].cnt = &cnt.v_free_count;
125	}
126	vm_page_queues[PQ_INACTIVE].pl = &vm_page_queue_inactive;
127	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
128
129	vm_page_queues[PQ_ACTIVE].pl = &vm_page_queue_active;
130	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
131	for(i=0;i<PQ_L2_SIZE;i++) {
132		vm_page_queues[PQ_CACHE+i].pl = &vm_page_queue_cache[i];
133		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
134	}
135	for(i=0;i<PQ_COUNT;i++) {
136		if (vm_page_queues[i].pl) {
137			TAILQ_INIT(vm_page_queues[i].pl);
138		} else if (i != 0) {
139			panic("vm_page_queue_init: queue %d is null", i);
140		}
141		vm_page_queues[i].lcnt = &pqcnt[i];
142	}
143}
144
145vm_page_t vm_page_array;
146int vm_page_array_size;
147long first_page;
148static long last_page;
149static vm_size_t page_mask;
150static int page_shift;
151int vm_page_zero_count;
152
153/*
154 * map of contiguous valid DEV_BSIZE chunks in a page
155 * (this list is valid for page sizes upto 16*DEV_BSIZE)
156 */
157static u_short vm_page_dev_bsize_chunks[] = {
158	0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff,
159	0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff
160};
161
162static inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
163static int vm_page_freechk_and_unqueue __P((vm_page_t m));
164static void vm_page_free_wakeup __P((void));
165
166/*
167 *	vm_set_page_size:
168 *
169 *	Sets the page size, perhaps based upon the memory
170 *	size.  Must be called before any use of page-size
171 *	dependent functions.
172 *
173 *	Sets page_shift and page_mask from cnt.v_page_size.
174 */
175void
176vm_set_page_size()
177{
178
179	if (cnt.v_page_size == 0)
180		cnt.v_page_size = DEFAULT_PAGE_SIZE;
181	page_mask = cnt.v_page_size - 1;
182	if ((page_mask & cnt.v_page_size) != 0)
183		panic("vm_set_page_size: page size not a power of two");
184	for (page_shift = 0;; page_shift++)
185		if ((1 << page_shift) == cnt.v_page_size)
186			break;
187}
188
189/*
190 *	vm_page_startup:
191 *
192 *	Initializes the resident memory module.
193 *
194 *	Allocates memory for the page cells, and
195 *	for the object/offset-to-page hash table headers.
196 *	Each page cell is initialized and placed on the free list.
197 */
198
199vm_offset_t
200vm_page_startup(starta, enda, vaddr)
201	register vm_offset_t starta;
202	vm_offset_t enda;
203	register vm_offset_t vaddr;
204{
205	register vm_offset_t mapped;
206	register vm_page_t m;
207	register struct pglist *bucket;
208	vm_size_t npages, page_range;
209	register vm_offset_t new_start;
210	int i;
211	vm_offset_t pa;
212	int nblocks;
213	vm_offset_t first_managed_page;
214
215	/* the biggest memory array is the second group of pages */
216	vm_offset_t start;
217	vm_offset_t biggestone, biggestsize;
218
219	vm_offset_t total;
220
221	total = 0;
222	biggestsize = 0;
223	biggestone = 0;
224	nblocks = 0;
225	vaddr = round_page(vaddr);
226
227	for (i = 0; phys_avail[i + 1]; i += 2) {
228		phys_avail[i] = round_page(phys_avail[i]);
229		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
230	}
231
232	for (i = 0; phys_avail[i + 1]; i += 2) {
233		int size = phys_avail[i + 1] - phys_avail[i];
234
235		if (size > biggestsize) {
236			biggestone = i;
237			biggestsize = size;
238		}
239		++nblocks;
240		total += size;
241	}
242
243	start = phys_avail[biggestone];
244
245	/*
246	 * Initialize the queue headers for the free queue, the active queue
247	 * and the inactive queue.
248	 */
249
250	vm_page_queue_init();
251
252	/*
253	 * Allocate (and initialize) the hash table buckets.
254	 *
255	 * The number of buckets MUST BE a power of 2, and the actual value is
256	 * the next power of 2 greater than the number of physical pages in
257	 * the system.
258	 *
259	 * Note: This computation can be tweaked if desired.
260	 */
261	vm_page_buckets = (struct pglist *) vaddr;
262	bucket = vm_page_buckets;
263	if (vm_page_bucket_count == 0) {
264		vm_page_bucket_count = 1;
265		while (vm_page_bucket_count < atop(total))
266			vm_page_bucket_count <<= 1;
267	}
268	vm_page_hash_mask = vm_page_bucket_count - 1;
269
270	/*
271	 * Validate these addresses.
272	 */
273
274	new_start = start + vm_page_bucket_count * sizeof(struct pglist);
275	new_start = round_page(new_start);
276	mapped = vaddr;
277	vaddr = pmap_map(mapped, start, new_start,
278	    VM_PROT_READ | VM_PROT_WRITE);
279	start = new_start;
280	bzero((caddr_t) mapped, vaddr - mapped);
281	mapped = vaddr;
282
283	for (i = 0; i < vm_page_bucket_count; i++) {
284		TAILQ_INIT(bucket);
285		bucket++;
286	}
287
288	/*
289	 * round (or truncate) the addresses to our page size.
290	 */
291
292	/*
293	 * Pre-allocate maps and map entries that cannot be dynamically
294	 * allocated via malloc().  The maps include the kernel_map and
295	 * kmem_map which must be initialized before malloc() will work
296	 * (obviously).  Also could include pager maps which would be
297	 * allocated before kmeminit.
298	 *
299	 * Allow some kernel map entries... this should be plenty since people
300	 * shouldn't be cluttering up the kernel map (they should use their
301	 * own maps).
302	 */
303
304	kentry_data_size = MAX_KMAP * sizeof(struct vm_map) +
305	    MAX_KMAPENT * sizeof(struct vm_map_entry);
306	kentry_data_size = round_page(kentry_data_size);
307	kentry_data = (vm_offset_t) vaddr;
308	vaddr += kentry_data_size;
309
310	/*
311	 * Validate these zone addresses.
312	 */
313
314	new_start = start + (vaddr - mapped);
315	pmap_map(mapped, start, new_start, VM_PROT_READ | VM_PROT_WRITE);
316	bzero((caddr_t) mapped, (vaddr - mapped));
317	start = round_page(new_start);
318
319	/*
320	 * Compute the number of pages of memory that will be available for
321	 * use (taking into account the overhead of a page structure per
322	 * page).
323	 */
324
325	first_page = phys_avail[0] / PAGE_SIZE;
326	last_page = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
327
328	page_range = last_page - (phys_avail[0] / PAGE_SIZE);
329	npages = (total - (page_range * sizeof(struct vm_page)) -
330	    (start - phys_avail[biggestone])) / PAGE_SIZE;
331
332	/*
333	 * Initialize the mem entry structures now, and put them in the free
334	 * queue.
335	 */
336
337	vm_page_array = (vm_page_t) vaddr;
338	mapped = vaddr;
339
340	/*
341	 * Validate these addresses.
342	 */
343
344	new_start = round_page(start + page_range * sizeof(struct vm_page));
345	mapped = pmap_map(mapped, start, new_start,
346	    VM_PROT_READ | VM_PROT_WRITE);
347	start = new_start;
348
349	first_managed_page = start / PAGE_SIZE;
350
351	/*
352	 * Clear all of the page structures
353	 */
354	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
355	vm_page_array_size = page_range;
356
357	cnt.v_page_count = 0;
358	cnt.v_free_count = 0;
359	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
360		if (i == biggestone)
361			pa = ptoa(first_managed_page);
362		else
363			pa = phys_avail[i];
364		while (pa < phys_avail[i + 1] && npages-- > 0) {
365			++cnt.v_page_count;
366			++cnt.v_free_count;
367			m = PHYS_TO_VM_PAGE(pa);
368			m->phys_addr = pa;
369			m->flags = 0;
370			m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
371			m->queue = PQ_FREE + m->pc;
372			TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq);
373			++(*vm_page_queues[m->queue].lcnt);
374			pa += PAGE_SIZE;
375		}
376	}
377
378	return (mapped);
379}
380
381/*
382 *	vm_page_hash:
383 *
384 *	Distributes the object/offset key pair among hash buckets.
385 *
386 *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
387 */
388static inline int
389vm_page_hash(object, pindex)
390	vm_object_t object;
391	vm_pindex_t pindex;
392{
393	return ((((unsigned) object) >> 5) + (pindex >> 1)) & vm_page_hash_mask;
394}
395
396/*
397 *	vm_page_insert:		[ internal use only ]
398 *
399 *	Inserts the given mem entry into the object/object-page
400 *	table and object list.
401 *
402 *	The object and page must be locked, and must be splhigh.
403 */
404
405void
406vm_page_insert(m, object, pindex)
407	register vm_page_t m;
408	register vm_object_t object;
409	register vm_pindex_t pindex;
410{
411	register struct pglist *bucket;
412
413	if (m->flags & PG_TABLED)
414		panic("vm_page_insert: already inserted");
415
416	/*
417	 * Record the object/offset pair in this page
418	 */
419
420	m->object = object;
421	m->pindex = pindex;
422
423	/*
424	 * Insert it into the object_object/offset hash table
425	 */
426
427	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
428	TAILQ_INSERT_TAIL(bucket, m, hashq);
429
430	/*
431	 * Now link into the object's list of backed pages.
432	 */
433
434	TAILQ_INSERT_TAIL(&object->memq, m, listq);
435	m->flags |= PG_TABLED;
436	m->object->page_hint = m;
437
438	/*
439	 * And show that the object has one more resident page.
440	 */
441
442	object->resident_page_count++;
443}
444
445/*
446 *	vm_page_remove:		[ internal use only ]
447 *				NOTE: used by device pager as well -wfj
448 *
449 *	Removes the given mem entry from the object/offset-page
450 *	table and the object page list.
451 *
452 *	The object and page must be locked, and at splhigh.
453 */
454
455void
456vm_page_remove(m)
457	register vm_page_t m;
458{
459	register struct pglist *bucket;
460
461	if (!(m->flags & PG_TABLED))
462		return;
463
464	if (m->object->page_hint == m)
465		m->object->page_hint = NULL;
466
467	/*
468	 * Remove from the object_object/offset hash table
469	 */
470
471	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
472	TAILQ_REMOVE(bucket, m, hashq);
473
474	/*
475	 * Now remove from the object's list of backed pages.
476	 */
477
478	TAILQ_REMOVE(&m->object->memq, m, listq);
479
480	/*
481	 * And show that the object has one fewer resident page.
482	 */
483
484	m->object->resident_page_count--;
485
486	m->flags &= ~PG_TABLED;
487}
488
489/*
490 *	vm_page_lookup:
491 *
492 *	Returns the page associated with the object/offset
493 *	pair specified; if none is found, NULL is returned.
494 *
495 *	The object must be locked.  No side effects.
496 */
497
498vm_page_t
499vm_page_lookup(object, pindex)
500	register vm_object_t object;
501	register vm_pindex_t pindex;
502{
503	register vm_page_t m;
504	register struct pglist *bucket;
505	int s;
506
507	/*
508	 * Search the hash table for this object/offset pair
509	 */
510
511	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
512
513	s = splvm();
514	for (m = TAILQ_FIRST(bucket); m != NULL; m = TAILQ_NEXT(m,hashq)) {
515		if ((m->object == object) && (m->pindex == pindex)) {
516			splx(s);
517			m->object->page_hint = m;
518			return (m);
519		}
520	}
521	splx(s);
522	return (NULL);
523}
524
525/*
526 *	vm_page_rename:
527 *
528 *	Move the given memory entry from its
529 *	current object to the specified target object/offset.
530 *
531 *	The object must be locked.
532 */
533void
534vm_page_rename(m, new_object, new_pindex)
535	register vm_page_t m;
536	register vm_object_t new_object;
537	vm_pindex_t new_pindex;
538{
539	int s;
540
541	s = splvm();
542	vm_page_remove(m);
543	vm_page_insert(m, new_object, new_pindex);
544	splx(s);
545}
546
547/*
548 * vm_page_unqueue without any wakeup
549 */
550void
551vm_page_unqueue_nowakeup(m)
552	vm_page_t m;
553{
554	int queue = m->queue;
555	struct vpgqueues *pq;
556	if (queue != PQ_NONE) {
557		pq = &vm_page_queues[queue];
558		m->queue = PQ_NONE;
559		TAILQ_REMOVE(pq->pl, m, pageq);
560		--(*pq->cnt);
561		--(*pq->lcnt);
562	}
563}
564
565/*
566 * vm_page_unqueue must be called at splhigh();
567 */
568void
569vm_page_unqueue(m)
570	vm_page_t m;
571{
572	int queue = m->queue;
573	struct vpgqueues *pq;
574	if (queue != PQ_NONE) {
575		m->queue = PQ_NONE;
576		pq = &vm_page_queues[queue];
577		TAILQ_REMOVE(pq->pl, m, pageq);
578		--(*pq->cnt);
579		--(*pq->lcnt);
580		if ((m->queue - m->pc) == PQ_CACHE) {
581			if ((cnt.v_cache_count + cnt.v_free_count) <
582				(cnt.v_free_reserved + cnt.v_cache_min))
583				pagedaemon_wakeup();
584		}
585	}
586}
587
588/*
589 * Find a page on the specified queue with color optimization.
590 */
591vm_page_t
592vm_page_list_find(basequeue, index)
593	int basequeue, index;
594{
595#if PQ_L2_SIZE > 1
596
597	int i,j;
598	vm_page_t m;
599	int hindex;
600
601	for(j = 0; j < PQ_L1_SIZE; j++) {
602		for(i = (PQ_L2_SIZE/2) - (PQ_L1_SIZE - 1);
603			i >= 0;
604			i -= PQ_L1_SIZE) {
605			hindex = (index + (i+j)) & PQ_L2_MASK;
606			m = TAILQ_FIRST(vm_page_queues[basequeue + hindex].pl);
607			if (m)
608				return m;
609
610			hindex = (index - (i+j)) & PQ_L2_MASK;
611			m = TAILQ_FIRST(vm_page_queues[basequeue + hindex].pl);
612			if (m)
613				return m;
614		}
615	}
616	return NULL;
617#else
618	return TAILQ_FIRST(vm_page_queues[basequeue].pl);
619#endif
620
621}
622
623/*
624 * Find a page on the specified queue with color optimization.
625 */
626vm_page_t
627vm_page_select(object, pindex, basequeue)
628	vm_object_t object;
629	vm_pindex_t pindex;
630	int basequeue;
631{
632
633#if PQ_L2_SIZE > 1
634	int index;
635	index = (pindex + object->pg_color) & PQ_L2_MASK;
636	return vm_page_list_find(basequeue, index);
637
638#else
639	return TAILQ_FIRST(vm_page_queues[basequeue].pl);
640#endif
641
642}
643
644/*
645 * Find a free or zero page, with specified preference.
646 */
647static vm_page_t
648vm_page_select_free(object, pindex, prefqueue)
649	vm_object_t object;
650	vm_pindex_t pindex;
651	int prefqueue;
652{
653#if PQ_L2_SIZE > 1
654	int i,j;
655	int index, hindex;
656#endif
657	vm_page_t m;
658	int oqueuediff;
659
660	if (prefqueue == PQ_ZERO)
661		oqueuediff = PQ_FREE - PQ_ZERO;
662	else
663		oqueuediff = PQ_ZERO - PQ_FREE;
664
665	if (object->page_hint) {
666		 if (object->page_hint->pindex == (pindex - 1)) {
667			vm_offset_t last_phys;
668			if ((object->page_hint->flags & PG_FICTITIOUS) == 0) {
669				if ((object->page_hint < &vm_page_array[cnt.v_page_count-1]) &&
670					(object->page_hint >= &vm_page_array[0])) {
671					int queue;
672					last_phys = VM_PAGE_TO_PHYS(object->page_hint);
673					m = PHYS_TO_VM_PAGE(last_phys + PAGE_SIZE);
674					queue = m->queue - m->pc;
675					if (queue == PQ_FREE || queue == PQ_ZERO) {
676						return m;
677					}
678				}
679			}
680		}
681	}
682
683
684#if PQ_L2_SIZE > 1
685
686	index = pindex + object->pg_color;
687	for(j = 0; j < PQ_L1_SIZE; j++) {
688		for(i = (PQ_L2_SIZE/2) - (PQ_L1_SIZE - 1);
689			(i + j) >= 0;
690			i -= PQ_L1_SIZE) {
691
692			hindex = prefqueue + ((index + (i+j)) & PQ_L2_MASK);
693			if (m = TAILQ_FIRST(vm_page_queues[hindex].pl))
694				return m;
695			if (m = TAILQ_FIRST(vm_page_queues[hindex + oqueuediff].pl))
696				return m;
697
698			hindex = prefqueue + ((index - (i+j)) & PQ_L2_MASK);
699			if (m = TAILQ_FIRST(vm_page_queues[hindex].pl))
700				return m;
701			if (m = TAILQ_FIRST(vm_page_queues[hindex + oqueuediff].pl))
702				return m;
703		}
704	}
705#else
706	if (m = TAILQ_FIRST(vm_page_queues[prefqueue].pl))
707		return m;
708	else
709		return TAILQ_FIRST(vm_page_queues[prefqueue + oqueuediff].pl);
710#endif
711
712	return NULL;
713}
714
715/*
716 *	vm_page_alloc:
717 *
718 *	Allocate and return a memory cell associated
719 *	with this VM object/offset pair.
720 *
721 *	page_req classes:
722 *	VM_ALLOC_NORMAL		normal process request
723 *	VM_ALLOC_SYSTEM		system *really* needs a page
724 *	VM_ALLOC_INTERRUPT	interrupt time request
725 *	VM_ALLOC_ZERO		zero page
726 *
727 *	Object must be locked.
728 */
729vm_page_t
730vm_page_alloc(object, pindex, page_req)
731	vm_object_t object;
732	vm_pindex_t pindex;
733	int page_req;
734{
735	register vm_page_t m;
736	struct vpgqueues *pq;
737	int queue;
738	int s;
739
740#ifdef DIAGNOSTIC
741	m = vm_page_lookup(object, pindex);
742	if (m)
743		panic("vm_page_alloc: page already allocated");
744#endif
745
746	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
747		page_req = VM_ALLOC_SYSTEM;
748	};
749
750	s = splvm();
751
752	switch (page_req) {
753
754	case VM_ALLOC_NORMAL:
755		if (cnt.v_free_count >= cnt.v_free_reserved) {
756			m = vm_page_select_free(object, pindex, PQ_FREE);
757#if defined(DIAGNOSTIC)
758			if (m == NULL)
759				panic("vm_page_alloc(NORMAL): missing page on free queue\n");
760#endif
761		} else {
762			m = vm_page_select(object, pindex, PQ_CACHE);
763			if (m == NULL) {
764				splx(s);
765#if defined(DIAGNOSTIC)
766				if (cnt.v_cache_count > 0)
767					printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
768#endif
769				pagedaemon_wakeup();
770				return (NULL);
771			}
772		}
773		break;
774
775	case VM_ALLOC_ZERO:
776		if (cnt.v_free_count >= cnt.v_free_reserved) {
777			m = vm_page_select_free(object, pindex, PQ_ZERO);
778#if defined(DIAGNOSTIC)
779			if (m == NULL)
780				panic("vm_page_alloc(ZERO): missing page on free queue\n");
781#endif
782		} else {
783			m = vm_page_select(object, pindex, PQ_CACHE);
784			if (m == NULL) {
785				splx(s);
786#if defined(DIAGNOSTIC)
787				if (cnt.v_cache_count > 0)
788					printf("vm_page_alloc(ZERO): missing pages on cache queue: %d\n", cnt.v_cache_count);
789#endif
790				pagedaemon_wakeup();
791				return (NULL);
792			}
793		}
794		break;
795
796	case VM_ALLOC_SYSTEM:
797		if ((cnt.v_free_count >= cnt.v_free_reserved) ||
798		    ((cnt.v_cache_count == 0) &&
799		    (cnt.v_free_count >= cnt.v_interrupt_free_min))) {
800			m = vm_page_select_free(object, pindex, PQ_FREE);
801#if defined(DIAGNOSTIC)
802			if (m == NULL)
803				panic("vm_page_alloc(SYSTEM): missing page on free queue\n");
804#endif
805		} else {
806			m = vm_page_select(object, pindex, PQ_CACHE);
807			if (m == NULL) {
808				splx(s);
809#if defined(DIAGNOSTIC)
810				if (cnt.v_cache_count > 0)
811					printf("vm_page_alloc(SYSTEM): missing pages on cache queue: %d\n", cnt.v_cache_count);
812#endif
813				pagedaemon_wakeup();
814				return (NULL);
815			}
816		}
817		break;
818
819	case VM_ALLOC_INTERRUPT:
820		if (cnt.v_free_count > 0) {
821			m = vm_page_select_free(object, pindex, PQ_FREE);
822#if defined(DIAGNOSTIC)
823			if (m == NULL)
824				panic("vm_page_alloc(INTERRUPT): missing page on free queue\n");
825#endif
826		} else {
827			splx(s);
828			pagedaemon_wakeup();
829			return (NULL);
830		}
831		break;
832
833	default:
834		panic("vm_page_alloc: invalid allocation class");
835	}
836
837	queue = m->queue;
838	if (queue == PQ_ZERO)
839		--vm_page_zero_count;
840	pq = &vm_page_queues[queue];
841	TAILQ_REMOVE(pq->pl, m, pageq);
842	--(*pq->cnt);
843	--(*pq->lcnt);
844	if ((m->queue - m->pc) == PQ_ZERO) {
845		m->flags = PG_ZERO|PG_BUSY;
846	} else if ((m->queue - m->pc) == PQ_CACHE) {
847		vm_page_remove(m);
848		m->flags = PG_BUSY;
849	} else {
850		m->flags = PG_BUSY;
851	}
852	m->wire_count = 0;
853	m->hold_count = 0;
854	m->act_count = 0;
855	m->busy = 0;
856	m->valid = 0;
857	m->dirty = 0;
858	m->queue = PQ_NONE;
859
860	/* XXX before splx until vm_page_insert is safe */
861	vm_page_insert(m, object, pindex);
862
863	splx(s);
864
865	/*
866	 * Don't wakeup too often - wakeup the pageout daemon when
867	 * we would be nearly out of memory.
868	 */
869	if (((cnt.v_free_count + cnt.v_cache_count) <
870		(cnt.v_free_reserved + cnt.v_cache_min)) ||
871			(cnt.v_free_count < cnt.v_pageout_free_min))
872		pagedaemon_wakeup();
873
874	return (m);
875}
876
877/*
878 *	vm_page_activate:
879 *
880 *	Put the specified page on the active list (if appropriate).
881 *
882 *	The page queues must be locked.
883 */
884void
885vm_page_activate(m)
886	register vm_page_t m;
887{
888	int s;
889
890	s = splvm();
891	if (m->queue == PQ_ACTIVE)
892		panic("vm_page_activate: already active");
893
894	if ((m->queue - m->pc) == PQ_CACHE)
895		cnt.v_reactivated++;
896
897	vm_page_unqueue(m);
898
899	if (m->wire_count == 0) {
900		m->queue = PQ_ACTIVE;
901		++(*vm_page_queues[PQ_ACTIVE].lcnt);
902		TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
903		if (m->act_count < ACT_INIT)
904			m->act_count = ACT_INIT;
905		cnt.v_active_count++;
906	}
907	splx(s);
908}
909
910/*
911 * helper routine for vm_page_free and vm_page_free_zero
912 */
913static int
914vm_page_freechk_and_unqueue(m)
915	vm_page_t m;
916{
917	if (m->busy ||
918		(m->flags & PG_BUSY) ||
919		((m->queue - m->pc) == PQ_FREE) ||
920		(m->hold_count != 0)) {
921		printf("vm_page_free: pindex(%ld), busy(%d), PG_BUSY(%d), hold(%d)\n",
922			m->pindex, m->busy,
923			(m->flags & PG_BUSY) ? 1 : 0, m->hold_count);
924		if ((m->queue - m->pc) == PQ_FREE)
925			panic("vm_page_free: freeing free page");
926		else
927			panic("vm_page_free: freeing busy page");
928	}
929
930	vm_page_remove(m);
931	vm_page_unqueue_nowakeup(m);
932	if ((m->flags & PG_FICTITIOUS) != 0) {
933		return 0;
934	}
935	if (m->wire_count != 0) {
936		if (m->wire_count > 1) {
937			panic("vm_page_free: invalid wire count (%d), pindex: 0x%x",
938				m->wire_count, m->pindex);
939		}
940		m->wire_count = 0;
941		cnt.v_wire_count--;
942	}
943
944	return 1;
945}
946
947/*
948 * helper routine for vm_page_free and vm_page_free_zero
949 */
950static __inline void
951vm_page_free_wakeup()
952{
953
954/*
955 * if pageout daemon needs pages, then tell it that there are
956 * some free.
957 */
958	if (vm_pageout_pages_needed) {
959		wakeup(&vm_pageout_pages_needed);
960		vm_pageout_pages_needed = 0;
961	}
962	/*
963	 * wakeup processes that are waiting on memory if we hit a
964	 * high water mark. And wakeup scheduler process if we have
965	 * lots of memory. this process will swapin processes.
966	 */
967	if (vm_pages_needed &&
968		((cnt.v_free_count + cnt.v_cache_count) >= cnt.v_free_min)) {
969		wakeup(&cnt.v_free_count);
970		vm_pages_needed = 0;
971	}
972}
973
974/*
975 *	vm_page_free:
976 *
977 *	Returns the given page to the free list,
978 *	disassociating it with any VM object.
979 *
980 *	Object and page must be locked prior to entry.
981 */
982void
983vm_page_free(m)
984	register vm_page_t m;
985{
986	int s;
987	struct vpgqueues *pq;
988
989	s = splvm();
990
991	cnt.v_tfree++;
992
993	if (!vm_page_freechk_and_unqueue(m)) {
994		splx(s);
995		return;
996	}
997
998	m->queue = PQ_FREE + m->pc;
999	pq = &vm_page_queues[m->queue];
1000	++(*pq->lcnt);
1001	++(*pq->cnt);
1002	/*
1003	 * If the pageout process is grabbing the page, it is likely
1004	 * that the page is NOT in the cache.  It is more likely that
1005	 * the page will be partially in the cache if it is being
1006	 * explicitly freed.
1007	 */
1008	if (curproc == pageproc) {
1009		TAILQ_INSERT_TAIL(pq->pl, m, pageq);
1010	} else {
1011		TAILQ_INSERT_HEAD(pq->pl, m, pageq);
1012	}
1013	vm_page_free_wakeup();
1014	splx(s);
1015}
1016
1017void
1018vm_page_free_zero(m)
1019	register vm_page_t m;
1020{
1021	int s;
1022	struct vpgqueues *pq;
1023
1024	s = splvm();
1025
1026	cnt.v_tfree++;
1027
1028	if (!vm_page_freechk_and_unqueue(m)) {
1029		splx(s);
1030		return;
1031	}
1032
1033	m->queue = PQ_ZERO + m->pc;
1034	pq = &vm_page_queues[m->queue];
1035	++(*pq->lcnt);
1036	++(*pq->cnt);
1037
1038	TAILQ_INSERT_HEAD(pq->pl, m, pageq);
1039	++vm_page_zero_count;
1040	vm_page_free_wakeup();
1041	splx(s);
1042}
1043
1044/*
1045 *	vm_page_wire:
1046 *
1047 *	Mark this page as wired down by yet
1048 *	another map, removing it from paging queues
1049 *	as necessary.
1050 *
1051 *	The page queues must be locked.
1052 */
1053void
1054vm_page_wire(m)
1055	register vm_page_t m;
1056{
1057	int s;
1058
1059	if (m->wire_count == 0) {
1060		s = splvm();
1061		vm_page_unqueue(m);
1062		splx(s);
1063		cnt.v_wire_count++;
1064	}
1065	++(*vm_page_queues[PQ_NONE].lcnt);
1066	m->wire_count++;
1067	m->flags |= PG_MAPPED;
1068}
1069
1070/*
1071 *	vm_page_unwire:
1072 *
1073 *	Release one wiring of this page, potentially
1074 *	enabling it to be paged again.
1075 *
1076 *	The page queues must be locked.
1077 */
1078void
1079vm_page_unwire(m)
1080	register vm_page_t m;
1081{
1082	int s;
1083
1084	s = splvm();
1085
1086	if (m->wire_count > 0)
1087		m->wire_count--;
1088
1089	if (m->wire_count == 0) {
1090		cnt.v_wire_count--;
1091		TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1092		m->queue = PQ_ACTIVE;
1093		++(*vm_page_queues[PQ_ACTIVE].lcnt);
1094		cnt.v_active_count++;
1095	}
1096	splx(s);
1097}
1098
1099
1100/*
1101 *	vm_page_deactivate:
1102 *
1103 *	Returns the given page to the inactive list,
1104 *	indicating that no physical maps have access
1105 *	to this page.  [Used by the physical mapping system.]
1106 *
1107 *	The page queues must be locked.
1108 */
1109void
1110vm_page_deactivate(m)
1111	register vm_page_t m;
1112{
1113	int s;
1114
1115	/*
1116	 * Only move active pages -- ignore locked or already inactive ones.
1117	 *
1118	 * XXX: sometimes we get pages which aren't wired down or on any queue -
1119	 * we need to put them on the inactive queue also, otherwise we lose
1120	 * track of them. Paul Mackerras (paulus@cs.anu.edu.au) 9-Jan-93.
1121	 */
1122	if (m->queue == PQ_INACTIVE)
1123		return;
1124
1125	s = splvm();
1126	if (m->wire_count == 0 && m->hold_count == 0) {
1127		if ((m->queue - m->pc) == PQ_CACHE)
1128			cnt.v_reactivated++;
1129		vm_page_unqueue(m);
1130		TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
1131		m->queue = PQ_INACTIVE;
1132		++(*vm_page_queues[PQ_INACTIVE].lcnt);
1133		cnt.v_inactive_count++;
1134	}
1135	splx(s);
1136}
1137
1138/*
1139 * vm_page_cache
1140 *
1141 * Put the specified page onto the page cache queue (if appropriate).
1142 */
1143void
1144vm_page_cache(m)
1145	register vm_page_t m;
1146{
1147	int s;
1148
1149	if ((m->flags & PG_BUSY) || m->busy || m->wire_count) {
1150		printf("vm_page_cache: attempting to cache busy page\n");
1151		return;
1152	}
1153	if ((m->queue - m->pc) == PQ_CACHE)
1154		return;
1155
1156	vm_page_protect(m, VM_PROT_NONE);
1157	if (m->dirty != 0) {
1158		panic("vm_page_cache: caching a dirty page, pindex: %d", m->pindex);
1159	}
1160	s = splvm();
1161	vm_page_unqueue_nowakeup(m);
1162	m->queue = PQ_CACHE + m->pc;
1163	++(*vm_page_queues[m->queue].lcnt);
1164	TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq);
1165	cnt.v_cache_count++;
1166	vm_page_free_wakeup();
1167	splx(s);
1168}
1169
1170
1171/*
1172 * mapping function for valid bits or for dirty bits in
1173 * a page
1174 */
1175inline int
1176vm_page_bits(int base, int size)
1177{
1178	u_short chunk;
1179
1180	if ((base == 0) && (size >= PAGE_SIZE))
1181		return VM_PAGE_BITS_ALL;
1182	size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1183	base = (base % PAGE_SIZE) / DEV_BSIZE;
1184	chunk = vm_page_dev_bsize_chunks[size / DEV_BSIZE];
1185	return (chunk << base) & VM_PAGE_BITS_ALL;
1186}
1187
1188/*
1189 * set a page valid and clean
1190 */
1191void
1192vm_page_set_validclean(m, base, size)
1193	vm_page_t m;
1194	int base;
1195	int size;
1196{
1197	int pagebits = vm_page_bits(base, size);
1198	m->valid |= pagebits;
1199	m->dirty &= ~pagebits;
1200	if( base == 0 && size == PAGE_SIZE)
1201		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1202}
1203
1204/*
1205 * set a page (partially) invalid
1206 */
1207void
1208vm_page_set_invalid(m, base, size)
1209	vm_page_t m;
1210	int base;
1211	int size;
1212{
1213	int bits;
1214
1215	m->valid &= ~(bits = vm_page_bits(base, size));
1216	if (m->valid == 0)
1217		m->dirty &= ~bits;
1218}
1219
1220/*
1221 * is (partial) page valid?
1222 */
1223int
1224vm_page_is_valid(m, base, size)
1225	vm_page_t m;
1226	int base;
1227	int size;
1228{
1229	int bits = vm_page_bits(base, size);
1230
1231	if (m->valid && ((m->valid & bits) == bits))
1232		return 1;
1233	else
1234		return 0;
1235}
1236
1237void
1238vm_page_test_dirty(m)
1239	vm_page_t m;
1240{
1241	if ((m->dirty != VM_PAGE_BITS_ALL) &&
1242	    pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
1243		m->dirty = VM_PAGE_BITS_ALL;
1244	}
1245}
1246
1247/*
1248 * This interface is for merging with malloc() someday.
1249 * Even if we never implement compaction so that contiguous allocation
1250 * works after initialization time, malloc()'s data structures are good
1251 * for statistics and for allocations of less than a page.
1252 */
1253void *
1254contigmalloc(size, type, flags, low, high, alignment, boundary)
1255	unsigned long size;	/* should be size_t here and for malloc() */
1256	int type;
1257	int flags;
1258	unsigned long low;
1259	unsigned long high;
1260	unsigned long alignment;
1261	unsigned long boundary;
1262{
1263	int i, s, start;
1264	vm_offset_t addr, phys, tmp_addr;
1265	int pass;
1266	vm_page_t pga = vm_page_array;
1267
1268	size = round_page(size);
1269	if (size == 0)
1270		panic("vm_page_alloc_contig: size must not be 0");
1271	if ((alignment & (alignment - 1)) != 0)
1272		panic("vm_page_alloc_contig: alignment must be a power of 2");
1273	if ((boundary & (boundary - 1)) != 0)
1274		panic("vm_page_alloc_contig: boundary must be a power of 2");
1275
1276	start = 0;
1277	for (pass = 0; pass <= 1; pass++) {
1278		s = splvm();
1279again:
1280		/*
1281		 * Find first page in array that is free, within range, aligned, and
1282		 * such that the boundary won't be crossed.
1283		 */
1284		for (i = start; i < cnt.v_page_count; i++) {
1285			int pqtype;
1286			phys = VM_PAGE_TO_PHYS(&pga[i]);
1287			pqtype = pga[i].queue - pga[i].pc;
1288			if (((pqtype == PQ_ZERO) || (pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1289			    (phys >= low) && (phys < high) &&
1290			    ((phys & (alignment - 1)) == 0) &&
1291			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1292				break;
1293		}
1294
1295		/*
1296		 * If the above failed or we will exceed the upper bound, fail.
1297		 */
1298		if ((i == cnt.v_page_count) ||
1299			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1300			vm_page_t m, next;
1301
1302again1:
1303			for (m = TAILQ_FIRST(&vm_page_queue_inactive);
1304				m != NULL;
1305				m = next) {
1306
1307				if (m->queue != PQ_INACTIVE) {
1308					break;
1309				}
1310
1311				next = TAILQ_NEXT(m, pageq);
1312				if (m->flags & PG_BUSY) {
1313					m->flags |= PG_WANTED;
1314					tsleep(m, PVM, "vpctw0", 0);
1315					goto again1;
1316				}
1317				vm_page_test_dirty(m);
1318				if (m->dirty) {
1319					if (m->object->type == OBJT_VNODE) {
1320						vm_object_page_clean(m->object, 0, 0, TRUE, TRUE);
1321						goto again1;
1322					} else if (m->object->type == OBJT_SWAP ||
1323								m->object->type == OBJT_DEFAULT) {
1324						vm_page_protect(m, VM_PROT_NONE);
1325						vm_pageout_flush(&m, 1, 0);
1326						goto again1;
1327					}
1328				}
1329				if ((m->dirty == 0) &&
1330					(m->busy == 0) &&
1331					(m->hold_count == 0))
1332					vm_page_cache(m);
1333			}
1334
1335			for (m = TAILQ_FIRST(&vm_page_queue_active);
1336				m != NULL;
1337				m = next) {
1338
1339				if (m->queue != PQ_ACTIVE) {
1340					break;
1341				}
1342
1343				next = TAILQ_NEXT(m, pageq);
1344				if (m->flags & PG_BUSY) {
1345					m->flags |= PG_WANTED;
1346					tsleep(m, PVM, "vpctw1", 0);
1347					goto again1;
1348				}
1349				vm_page_test_dirty(m);
1350				if (m->dirty) {
1351					if (m->object->type == OBJT_VNODE) {
1352						vm_object_page_clean(m->object, 0, 0, TRUE, TRUE);
1353						goto again1;
1354					} else if (m->object->type == OBJT_SWAP ||
1355								m->object->type == OBJT_DEFAULT) {
1356						vm_page_protect(m, VM_PROT_NONE);
1357						vm_pageout_flush(&m, 1, 0);
1358						goto again1;
1359					}
1360				}
1361				if ((m->dirty == 0) &&
1362					(m->busy == 0) &&
1363					(m->hold_count == 0))
1364					vm_page_cache(m);
1365			}
1366
1367			splx(s);
1368			continue;
1369		}
1370		start = i;
1371
1372		/*
1373		 * Check successive pages for contiguous and free.
1374		 */
1375		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1376			int pqtype;
1377			pqtype = pga[i].queue - pga[i].pc;
1378			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1379			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1380			    ((pqtype != PQ_ZERO) && (pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1381				start++;
1382				goto again;
1383			}
1384		}
1385
1386		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1387			int pqtype;
1388			vm_page_t m = &pga[i];
1389
1390			pqtype = m->queue - m->pc;
1391			if (pqtype == PQ_CACHE)
1392				vm_page_free(m);
1393
1394			TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
1395			--(*vm_page_queues[m->queue].lcnt);
1396			cnt.v_free_count--;
1397			m->valid = VM_PAGE_BITS_ALL;
1398			m->flags = 0;
1399			m->dirty = 0;
1400			m->wire_count = 0;
1401			m->busy = 0;
1402			m->queue = PQ_NONE;
1403			m->object = NULL;
1404			vm_page_wire(m);
1405		}
1406
1407		/*
1408		 * We've found a contiguous chunk that meets are requirements.
1409		 * Allocate kernel VM, unfree and assign the physical pages to it and
1410		 * return kernel VM pointer.
1411		 */
1412		tmp_addr = addr = kmem_alloc_pageable(kernel_map, size);
1413		if (addr == 0) {
1414			/*
1415			 * XXX We almost never run out of kernel virtual
1416			 * space, so we don't make the allocated memory
1417			 * above available.
1418			 */
1419			splx(s);
1420			return (NULL);
1421		}
1422
1423		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1424			vm_page_t m = &pga[i];
1425			vm_page_insert(m, kernel_object,
1426				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1427			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1428			tmp_addr += PAGE_SIZE;
1429		}
1430
1431		splx(s);
1432		return ((void *)addr);
1433	}
1434	return NULL;
1435}
1436
1437vm_offset_t
1438vm_page_alloc_contig(size, low, high, alignment)
1439	vm_offset_t size;
1440	vm_offset_t low;
1441	vm_offset_t high;
1442	vm_offset_t alignment;
1443{
1444	return ((vm_offset_t)contigmalloc(size, M_DEVBUF, M_NOWAIT, low, high,
1445					  alignment, 0ul));
1446}
1447
1448#include "opt_ddb.h"
1449#ifdef DDB
1450#include <sys/kernel.h>
1451
1452#include <ddb/ddb.h>
1453
1454DB_SHOW_COMMAND(page, vm_page_print_page_info)
1455{
1456	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1457	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1458	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1459	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1460	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1461	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1462	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1463	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1464	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1465	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1466}
1467
1468DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1469{
1470	int i;
1471	db_printf("PQ_FREE:");
1472	for(i=0;i<PQ_L2_SIZE;i++) {
1473		db_printf(" %d", *vm_page_queues[PQ_FREE + i].lcnt);
1474	}
1475	db_printf("\n");
1476
1477	db_printf("PQ_CACHE:");
1478	for(i=0;i<PQ_L2_SIZE;i++) {
1479		db_printf(" %d", *vm_page_queues[PQ_CACHE + i].lcnt);
1480	}
1481	db_printf("\n");
1482
1483	db_printf("PQ_ZERO:");
1484	for(i=0;i<PQ_L2_SIZE;i++) {
1485		db_printf(" %d", *vm_page_queues[PQ_ZERO + i].lcnt);
1486	}
1487	db_printf("\n");
1488
1489	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1490		*vm_page_queues[PQ_ACTIVE].lcnt,
1491		*vm_page_queues[PQ_INACTIVE].lcnt);
1492}
1493#endif /* DDB */
1494