vm_page.c revision 183389
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- a hash chain mutex is required when associating or disassociating
71 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72 *	  regardless of other mutexes or the busy state of a page.
73 *
74 *	- either a hash chain mutex OR a busied page is required in order
75 *	  to modify the page flags.  A hash chain mutex must be obtained in
76 *	  order to busy a page.  A page's flags cannot be modified by a
77 *	  hash chain mutex if the page is marked busy.
78 *
79 *	- The object memq mutex is held when inserting or removing
80 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81 *	  is different from the object's main mutex.
82 *
83 *	Generally speaking, you have to be aware of side effects when running
84 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86 *	vm_page_cache(), vm_page_activate(), and a number of other routines
87 *	will release the hash chain mutex for you.  Intermediate manipulation
88 *	routines such as vm_page_flag_set() expect the hash chain to be held
89 *	on entry and the hash chain will remain held on return.
90 *
91 *	pageq scanning can only occur with the pageq in question locked.
92 *	We have a known bottleneck with the active queue, but the cache
93 *	and free queues are actually arrays already.
94 */
95
96/*
97 *	Resident memory management module.
98 */
99
100#include <sys/cdefs.h>
101__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 183389 2008-09-26 18:44:40Z emaste $");
102
103#include "opt_vm.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/lock.h>
108#include <sys/kernel.h>
109#include <sys/malloc.h>
110#include <sys/mutex.h>
111#include <sys/proc.h>
112#include <sys/sysctl.h>
113#include <sys/vmmeter.h>
114#include <sys/vnode.h>
115
116#include <vm/vm.h>
117#include <vm/vm_param.h>
118#include <vm/vm_kern.h>
119#include <vm/vm_object.h>
120#include <vm/vm_page.h>
121#include <vm/vm_pageout.h>
122#include <vm/vm_pager.h>
123#include <vm/vm_phys.h>
124#include <vm/vm_reserv.h>
125#include <vm/vm_extern.h>
126#include <vm/uma.h>
127#include <vm/uma_int.h>
128
129#include <machine/md_var.h>
130
131/*
132 *	Associated with page of user-allocatable memory is a
133 *	page structure.
134 */
135
136struct vpgqueues vm_page_queues[PQ_COUNT];
137struct mtx vm_page_queue_mtx;
138struct mtx vm_page_queue_free_mtx;
139
140vm_page_t vm_page_array = 0;
141int vm_page_array_size = 0;
142long first_page = 0;
143int vm_page_zero_count = 0;
144
145static int boot_pages = UMA_BOOT_PAGES;
146TUNABLE_INT("vm.boot_pages", &boot_pages);
147SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
148	"number of pages allocated for bootstrapping the VM system");
149
150static void vm_page_enqueue(int queue, vm_page_t m);
151
152/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
153#if PAGE_SIZE == 32768
154#ifdef CTASSERT
155CTASSERT(sizeof(u_long) >= 8);
156#endif
157#endif
158
159/*
160 *	vm_set_page_size:
161 *
162 *	Sets the page size, perhaps based upon the memory
163 *	size.  Must be called before any use of page-size
164 *	dependent functions.
165 */
166void
167vm_set_page_size(void)
168{
169	if (cnt.v_page_size == 0)
170		cnt.v_page_size = PAGE_SIZE;
171	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
172		panic("vm_set_page_size: page size not a power of two");
173}
174
175/*
176 *	vm_page_blacklist_lookup:
177 *
178 *	See if a physical address in this page has been listed
179 *	in the blacklist tunable.  Entries in the tunable are
180 *	separated by spaces or commas.  If an invalid integer is
181 *	encountered then the rest of the string is skipped.
182 */
183static int
184vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
185{
186	vm_paddr_t bad;
187	char *cp, *pos;
188
189	for (pos = list; *pos != '\0'; pos = cp) {
190		bad = strtoq(pos, &cp, 0);
191		if (*cp != '\0') {
192			if (*cp == ' ' || *cp == ',') {
193				cp++;
194				if (cp == pos)
195					continue;
196			} else
197				break;
198		}
199		if (pa == trunc_page(bad))
200			return (1);
201	}
202	return (0);
203}
204
205/*
206 *	vm_page_startup:
207 *
208 *	Initializes the resident memory module.
209 *
210 *	Allocates memory for the page cells, and
211 *	for the object/offset-to-page hash table headers.
212 *	Each page cell is initialized and placed on the free list.
213 */
214vm_offset_t
215vm_page_startup(vm_offset_t vaddr)
216{
217	vm_offset_t mapped;
218	vm_paddr_t page_range;
219	vm_paddr_t new_end;
220	int i;
221	vm_paddr_t pa;
222	int nblocks;
223	vm_paddr_t last_pa;
224	char *list;
225
226	/* the biggest memory array is the second group of pages */
227	vm_paddr_t end;
228	vm_paddr_t biggestsize;
229	vm_paddr_t low_water, high_water;
230	int biggestone;
231
232	biggestsize = 0;
233	biggestone = 0;
234	nblocks = 0;
235	vaddr = round_page(vaddr);
236
237	for (i = 0; phys_avail[i + 1]; i += 2) {
238		phys_avail[i] = round_page(phys_avail[i]);
239		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
240	}
241
242	low_water = phys_avail[0];
243	high_water = phys_avail[1];
244
245	for (i = 0; phys_avail[i + 1]; i += 2) {
246		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
247
248		if (size > biggestsize) {
249			biggestone = i;
250			biggestsize = size;
251		}
252		if (phys_avail[i] < low_water)
253			low_water = phys_avail[i];
254		if (phys_avail[i + 1] > high_water)
255			high_water = phys_avail[i + 1];
256		++nblocks;
257	}
258
259#ifdef XEN
260	low_water = 0;
261#endif
262
263	end = phys_avail[biggestone+1];
264
265	/*
266	 * Initialize the locks.
267	 */
268	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
269	    MTX_RECURSE);
270	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
271	    MTX_DEF);
272
273	/*
274	 * Initialize the queue headers for the hold queue, the active queue,
275	 * and the inactive queue.
276	 */
277	for (i = 0; i < PQ_COUNT; i++)
278		TAILQ_INIT(&vm_page_queues[i].pl);
279	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
280	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
281	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
282
283	/*
284	 * Allocate memory for use when boot strapping the kernel memory
285	 * allocator.
286	 */
287	new_end = end - (boot_pages * UMA_SLAB_SIZE);
288	new_end = trunc_page(new_end);
289	mapped = pmap_map(&vaddr, new_end, end,
290	    VM_PROT_READ | VM_PROT_WRITE);
291	bzero((void *)mapped, end - new_end);
292	uma_startup((void *)mapped, boot_pages);
293
294#if defined(__amd64__) || defined(__i386__)
295	/*
296	 * Allocate a bitmap to indicate that a random physical page
297	 * needs to be included in a minidump.
298	 *
299	 * The amd64 port needs this to indicate which direct map pages
300	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
301	 *
302	 * However, i386 still needs this workspace internally within the
303	 * minidump code.  In theory, they are not needed on i386, but are
304	 * included should the sf_buf code decide to use them.
305	 */
306	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
307	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
308	new_end -= vm_page_dump_size;
309	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
310	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
311	bzero((void *)vm_page_dump, vm_page_dump_size);
312#endif
313	/*
314	 * Compute the number of pages of memory that will be available for
315	 * use (taking into account the overhead of a page structure per
316	 * page).
317	 */
318	first_page = low_water / PAGE_SIZE;
319#ifdef VM_PHYSSEG_SPARSE
320	page_range = 0;
321	for (i = 0; phys_avail[i + 1] != 0; i += 2)
322		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
323#elif defined(VM_PHYSSEG_DENSE)
324	page_range = high_water / PAGE_SIZE - first_page;
325#else
326#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
327#endif
328	end = new_end;
329
330	/*
331	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
332	 */
333	vaddr += PAGE_SIZE;
334
335	/*
336	 * Initialize the mem entry structures now, and put them in the free
337	 * queue.
338	 */
339	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
340	mapped = pmap_map(&vaddr, new_end, end,
341	    VM_PROT_READ | VM_PROT_WRITE);
342	vm_page_array = (vm_page_t) mapped;
343#if VM_NRESERVLEVEL > 0
344	/*
345	 * Allocate memory for the reservation management system's data
346	 * structures.
347	 */
348	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
349#endif
350#ifdef __amd64__
351	/*
352	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
353	 * so the pages must be tracked for a crashdump to include this data.
354	 * This includes the vm_page_array and the early UMA bootstrap pages.
355	 */
356	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
357		dump_add_page(pa);
358#endif
359	phys_avail[biggestone + 1] = new_end;
360
361	/*
362	 * Clear all of the page structures
363	 */
364	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
365	for (i = 0; i < page_range; i++)
366		vm_page_array[i].order = VM_NFREEORDER;
367	vm_page_array_size = page_range;
368
369	/*
370	 * Initialize the physical memory allocator.
371	 */
372	vm_phys_init();
373
374	/*
375	 * Add every available physical page that is not blacklisted to
376	 * the free lists.
377	 */
378	cnt.v_page_count = 0;
379	cnt.v_free_count = 0;
380	list = getenv("vm.blacklist");
381	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
382		pa = phys_avail[i];
383		last_pa = phys_avail[i + 1];
384		while (pa < last_pa) {
385			if (list != NULL &&
386			    vm_page_blacklist_lookup(list, pa))
387				printf("Skipping page with pa 0x%jx\n",
388				    (uintmax_t)pa);
389			else
390				vm_phys_add_page(pa);
391			pa += PAGE_SIZE;
392		}
393	}
394	freeenv(list);
395#if VM_NRESERVLEVEL > 0
396	/*
397	 * Initialize the reservation management system.
398	 */
399	vm_reserv_init();
400#endif
401	return (vaddr);
402}
403
404void
405vm_page_flag_set(vm_page_t m, unsigned short bits)
406{
407
408	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
409	m->flags |= bits;
410}
411
412void
413vm_page_flag_clear(vm_page_t m, unsigned short bits)
414{
415
416	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
417	m->flags &= ~bits;
418}
419
420void
421vm_page_busy(vm_page_t m)
422{
423
424	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
425	KASSERT((m->oflags & VPO_BUSY) == 0,
426	    ("vm_page_busy: page already busy!!!"));
427	m->oflags |= VPO_BUSY;
428}
429
430/*
431 *      vm_page_flash:
432 *
433 *      wakeup anyone waiting for the page.
434 */
435void
436vm_page_flash(vm_page_t m)
437{
438
439	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
440	if (m->oflags & VPO_WANTED) {
441		m->oflags &= ~VPO_WANTED;
442		wakeup(m);
443	}
444}
445
446/*
447 *      vm_page_wakeup:
448 *
449 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
450 *      page.
451 *
452 */
453void
454vm_page_wakeup(vm_page_t m)
455{
456
457	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
458	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
459	m->oflags &= ~VPO_BUSY;
460	vm_page_flash(m);
461}
462
463void
464vm_page_io_start(vm_page_t m)
465{
466
467	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
468	m->busy++;
469}
470
471void
472vm_page_io_finish(vm_page_t m)
473{
474
475	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
476	m->busy--;
477	if (m->busy == 0)
478		vm_page_flash(m);
479}
480
481/*
482 * Keep page from being freed by the page daemon
483 * much of the same effect as wiring, except much lower
484 * overhead and should be used only for *very* temporary
485 * holding ("wiring").
486 */
487void
488vm_page_hold(vm_page_t mem)
489{
490
491	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
492        mem->hold_count++;
493}
494
495void
496vm_page_unhold(vm_page_t mem)
497{
498
499	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
500	--mem->hold_count;
501	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
502	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
503		vm_page_free_toq(mem);
504}
505
506/*
507 *	vm_page_free:
508 *
509 *	Free a page.
510 */
511void
512vm_page_free(vm_page_t m)
513{
514
515	m->flags &= ~PG_ZERO;
516	vm_page_free_toq(m);
517}
518
519/*
520 *	vm_page_free_zero:
521 *
522 *	Free a page to the zerod-pages queue
523 */
524void
525vm_page_free_zero(vm_page_t m)
526{
527
528	m->flags |= PG_ZERO;
529	vm_page_free_toq(m);
530}
531
532/*
533 *	vm_page_sleep:
534 *
535 *	Sleep and release the page queues lock.
536 *
537 *	The object containing the given page must be locked.
538 */
539void
540vm_page_sleep(vm_page_t m, const char *msg)
541{
542
543	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
544	if (!mtx_owned(&vm_page_queue_mtx))
545		vm_page_lock_queues();
546	vm_page_flag_set(m, PG_REFERENCED);
547	vm_page_unlock_queues();
548
549	/*
550	 * It's possible that while we sleep, the page will get
551	 * unbusied and freed.  If we are holding the object
552	 * lock, we will assume we hold a reference to the object
553	 * such that even if m->object changes, we can re-lock
554	 * it.
555	 */
556	m->oflags |= VPO_WANTED;
557	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
558}
559
560/*
561 *	vm_page_dirty:
562 *
563 *	make page all dirty
564 */
565void
566vm_page_dirty(vm_page_t m)
567{
568	KASSERT((m->flags & PG_CACHED) == 0,
569	    ("vm_page_dirty: page in cache!"));
570	KASSERT(!VM_PAGE_IS_FREE(m),
571	    ("vm_page_dirty: page is free!"));
572	m->dirty = VM_PAGE_BITS_ALL;
573}
574
575/*
576 *	vm_page_splay:
577 *
578 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
579 *	the vm_page containing the given pindex.  If, however, that
580 *	pindex is not found in the vm_object, returns a vm_page that is
581 *	adjacent to the pindex, coming before or after it.
582 */
583vm_page_t
584vm_page_splay(vm_pindex_t pindex, vm_page_t root)
585{
586	struct vm_page dummy;
587	vm_page_t lefttreemax, righttreemin, y;
588
589	if (root == NULL)
590		return (root);
591	lefttreemax = righttreemin = &dummy;
592	for (;; root = y) {
593		if (pindex < root->pindex) {
594			if ((y = root->left) == NULL)
595				break;
596			if (pindex < y->pindex) {
597				/* Rotate right. */
598				root->left = y->right;
599				y->right = root;
600				root = y;
601				if ((y = root->left) == NULL)
602					break;
603			}
604			/* Link into the new root's right tree. */
605			righttreemin->left = root;
606			righttreemin = root;
607		} else if (pindex > root->pindex) {
608			if ((y = root->right) == NULL)
609				break;
610			if (pindex > y->pindex) {
611				/* Rotate left. */
612				root->right = y->left;
613				y->left = root;
614				root = y;
615				if ((y = root->right) == NULL)
616					break;
617			}
618			/* Link into the new root's left tree. */
619			lefttreemax->right = root;
620			lefttreemax = root;
621		} else
622			break;
623	}
624	/* Assemble the new root. */
625	lefttreemax->right = root->left;
626	righttreemin->left = root->right;
627	root->left = dummy.right;
628	root->right = dummy.left;
629	return (root);
630}
631
632/*
633 *	vm_page_insert:		[ internal use only ]
634 *
635 *	Inserts the given mem entry into the object and object list.
636 *
637 *	The pagetables are not updated but will presumably fault the page
638 *	in if necessary, or if a kernel page the caller will at some point
639 *	enter the page into the kernel's pmap.  We are not allowed to block
640 *	here so we *can't* do this anyway.
641 *
642 *	The object and page must be locked.
643 *	This routine may not block.
644 */
645void
646vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
647{
648	vm_page_t root;
649
650	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
651	if (m->object != NULL)
652		panic("vm_page_insert: page already inserted");
653
654	/*
655	 * Record the object/offset pair in this page
656	 */
657	m->object = object;
658	m->pindex = pindex;
659
660	/*
661	 * Now link into the object's ordered list of backed pages.
662	 */
663	root = object->root;
664	if (root == NULL) {
665		m->left = NULL;
666		m->right = NULL;
667		TAILQ_INSERT_TAIL(&object->memq, m, listq);
668	} else {
669		root = vm_page_splay(pindex, root);
670		if (pindex < root->pindex) {
671			m->left = root->left;
672			m->right = root;
673			root->left = NULL;
674			TAILQ_INSERT_BEFORE(root, m, listq);
675		} else if (pindex == root->pindex)
676			panic("vm_page_insert: offset already allocated");
677		else {
678			m->right = root->right;
679			m->left = root;
680			root->right = NULL;
681			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
682		}
683	}
684	object->root = m;
685	object->generation++;
686
687	/*
688	 * show that the object has one more resident page.
689	 */
690	object->resident_page_count++;
691	/*
692	 * Hold the vnode until the last page is released.
693	 */
694	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
695		vhold((struct vnode *)object->handle);
696
697	/*
698	 * Since we are inserting a new and possibly dirty page,
699	 * update the object's OBJ_MIGHTBEDIRTY flag.
700	 */
701	if (m->flags & PG_WRITEABLE)
702		vm_object_set_writeable_dirty(object);
703}
704
705/*
706 *	vm_page_remove:
707 *				NOTE: used by device pager as well -wfj
708 *
709 *	Removes the given mem entry from the object/offset-page
710 *	table and the object page list, but do not invalidate/terminate
711 *	the backing store.
712 *
713 *	The object and page must be locked.
714 *	The underlying pmap entry (if any) is NOT removed here.
715 *	This routine may not block.
716 */
717void
718vm_page_remove(vm_page_t m)
719{
720	vm_object_t object;
721	vm_page_t root;
722
723	if ((object = m->object) == NULL)
724		return;
725	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
726	if (m->oflags & VPO_BUSY) {
727		m->oflags &= ~VPO_BUSY;
728		vm_page_flash(m);
729	}
730	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
731
732	/*
733	 * Now remove from the object's list of backed pages.
734	 */
735	if (m != object->root)
736		vm_page_splay(m->pindex, object->root);
737	if (m->left == NULL)
738		root = m->right;
739	else {
740		root = vm_page_splay(m->pindex, m->left);
741		root->right = m->right;
742	}
743	object->root = root;
744	TAILQ_REMOVE(&object->memq, m, listq);
745
746	/*
747	 * And show that the object has one fewer resident page.
748	 */
749	object->resident_page_count--;
750	object->generation++;
751	/*
752	 * The vnode may now be recycled.
753	 */
754	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
755		vdrop((struct vnode *)object->handle);
756
757	m->object = NULL;
758}
759
760/*
761 *	vm_page_lookup:
762 *
763 *	Returns the page associated with the object/offset
764 *	pair specified; if none is found, NULL is returned.
765 *
766 *	The object must be locked.
767 *	This routine may not block.
768 *	This is a critical path routine
769 */
770vm_page_t
771vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
772{
773	vm_page_t m;
774
775	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
776	if ((m = object->root) != NULL && m->pindex != pindex) {
777		m = vm_page_splay(pindex, m);
778		if ((object->root = m)->pindex != pindex)
779			m = NULL;
780	}
781	return (m);
782}
783
784/*
785 *	vm_page_rename:
786 *
787 *	Move the given memory entry from its
788 *	current object to the specified target object/offset.
789 *
790 *	The object must be locked.
791 *	This routine may not block.
792 *
793 *	Note: swap associated with the page must be invalidated by the move.  We
794 *	      have to do this for several reasons:  (1) we aren't freeing the
795 *	      page, (2) we are dirtying the page, (3) the VM system is probably
796 *	      moving the page from object A to B, and will then later move
797 *	      the backing store from A to B and we can't have a conflict.
798 *
799 *	Note: we *always* dirty the page.  It is necessary both for the
800 *	      fact that we moved it, and because we may be invalidating
801 *	      swap.  If the page is on the cache, we have to deactivate it
802 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
803 *	      on the cache.
804 */
805void
806vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
807{
808
809	vm_page_remove(m);
810	vm_page_insert(m, new_object, new_pindex);
811	vm_page_dirty(m);
812}
813
814/*
815 *	Convert all of the given object's cached pages that have a
816 *	pindex within the given range into free pages.  If the value
817 *	zero is given for "end", then the range's upper bound is
818 *	infinity.  If the given object is backed by a vnode and it
819 *	transitions from having one or more cached pages to none, the
820 *	vnode's hold count is reduced.
821 */
822void
823vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
824{
825	vm_page_t m, m_next;
826	boolean_t empty;
827
828	mtx_lock(&vm_page_queue_free_mtx);
829	if (__predict_false(object->cache == NULL)) {
830		mtx_unlock(&vm_page_queue_free_mtx);
831		return;
832	}
833	m = object->cache = vm_page_splay(start, object->cache);
834	if (m->pindex < start) {
835		if (m->right == NULL)
836			m = NULL;
837		else {
838			m_next = vm_page_splay(start, m->right);
839			m_next->left = m;
840			m->right = NULL;
841			m = object->cache = m_next;
842		}
843	}
844
845	/*
846	 * At this point, "m" is either (1) a reference to the page
847	 * with the least pindex that is greater than or equal to
848	 * "start" or (2) NULL.
849	 */
850	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
851		/*
852		 * Find "m"'s successor and remove "m" from the
853		 * object's cache.
854		 */
855		if (m->right == NULL) {
856			object->cache = m->left;
857			m_next = NULL;
858		} else {
859			m_next = vm_page_splay(start, m->right);
860			m_next->left = m->left;
861			object->cache = m_next;
862		}
863		/* Convert "m" to a free page. */
864		m->object = NULL;
865		m->valid = 0;
866		/* Clear PG_CACHED and set PG_FREE. */
867		m->flags ^= PG_CACHED | PG_FREE;
868		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
869		    ("vm_page_cache_free: page %p has inconsistent flags", m));
870		cnt.v_cache_count--;
871		cnt.v_free_count++;
872	}
873	empty = object->cache == NULL;
874	mtx_unlock(&vm_page_queue_free_mtx);
875	if (object->type == OBJT_VNODE && empty)
876		vdrop(object->handle);
877}
878
879/*
880 *	Returns the cached page that is associated with the given
881 *	object and offset.  If, however, none exists, returns NULL.
882 *
883 *	The free page queue must be locked.
884 */
885static inline vm_page_t
886vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
887{
888	vm_page_t m;
889
890	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
891	if ((m = object->cache) != NULL && m->pindex != pindex) {
892		m = vm_page_splay(pindex, m);
893		if ((object->cache = m)->pindex != pindex)
894			m = NULL;
895	}
896	return (m);
897}
898
899/*
900 *	Remove the given cached page from its containing object's
901 *	collection of cached pages.
902 *
903 *	The free page queue must be locked.
904 */
905void
906vm_page_cache_remove(vm_page_t m)
907{
908	vm_object_t object;
909	vm_page_t root;
910
911	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
912	KASSERT((m->flags & PG_CACHED) != 0,
913	    ("vm_page_cache_remove: page %p is not cached", m));
914	object = m->object;
915	if (m != object->cache) {
916		root = vm_page_splay(m->pindex, object->cache);
917		KASSERT(root == m,
918		    ("vm_page_cache_remove: page %p is not cached in object %p",
919		    m, object));
920	}
921	if (m->left == NULL)
922		root = m->right;
923	else if (m->right == NULL)
924		root = m->left;
925	else {
926		root = vm_page_splay(m->pindex, m->left);
927		root->right = m->right;
928	}
929	object->cache = root;
930	m->object = NULL;
931	cnt.v_cache_count--;
932}
933
934/*
935 *	Transfer all of the cached pages with offset greater than or
936 *	equal to 'offidxstart' from the original object's cache to the
937 *	new object's cache.  However, any cached pages with offset
938 *	greater than or equal to the new object's size are kept in the
939 *	original object.  Initially, the new object's cache must be
940 *	empty.  Offset 'offidxstart' in the original object must
941 *	correspond to offset zero in the new object.
942 *
943 *	The new object must be locked.
944 */
945void
946vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
947    vm_object_t new_object)
948{
949	vm_page_t m, m_next;
950
951	/*
952	 * Insertion into an object's collection of cached pages
953	 * requires the object to be locked.  In contrast, removal does
954	 * not.
955	 */
956	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
957	KASSERT(new_object->cache == NULL,
958	    ("vm_page_cache_transfer: object %p has cached pages",
959	    new_object));
960	mtx_lock(&vm_page_queue_free_mtx);
961	if ((m = orig_object->cache) != NULL) {
962		/*
963		 * Transfer all of the pages with offset greater than or
964		 * equal to 'offidxstart' from the original object's
965		 * cache to the new object's cache.
966		 */
967		m = vm_page_splay(offidxstart, m);
968		if (m->pindex < offidxstart) {
969			orig_object->cache = m;
970			new_object->cache = m->right;
971			m->right = NULL;
972		} else {
973			orig_object->cache = m->left;
974			new_object->cache = m;
975			m->left = NULL;
976		}
977		while ((m = new_object->cache) != NULL) {
978			if ((m->pindex - offidxstart) >= new_object->size) {
979				/*
980				 * Return all of the cached pages with
981				 * offset greater than or equal to the
982				 * new object's size to the original
983				 * object's cache.
984				 */
985				new_object->cache = m->left;
986				m->left = orig_object->cache;
987				orig_object->cache = m;
988				break;
989			}
990			m_next = vm_page_splay(m->pindex, m->right);
991			/* Update the page's object and offset. */
992			m->object = new_object;
993			m->pindex -= offidxstart;
994			if (m_next == NULL)
995				break;
996			m->right = NULL;
997			m_next->left = m;
998			new_object->cache = m_next;
999		}
1000		KASSERT(new_object->cache == NULL ||
1001		    new_object->type == OBJT_SWAP,
1002		    ("vm_page_cache_transfer: object %p's type is incompatible"
1003		    " with cached pages", new_object));
1004	}
1005	mtx_unlock(&vm_page_queue_free_mtx);
1006}
1007
1008/*
1009 *	vm_page_alloc:
1010 *
1011 *	Allocate and return a memory cell associated
1012 *	with this VM object/offset pair.
1013 *
1014 *	page_req classes:
1015 *	VM_ALLOC_NORMAL		normal process request
1016 *	VM_ALLOC_SYSTEM		system *really* needs a page
1017 *	VM_ALLOC_INTERRUPT	interrupt time request
1018 *	VM_ALLOC_ZERO		zero page
1019 *
1020 *	This routine may not block.
1021 */
1022vm_page_t
1023vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1024{
1025	struct vnode *vp = NULL;
1026	vm_object_t m_object;
1027	vm_page_t m;
1028	int flags, page_req;
1029
1030	page_req = req & VM_ALLOC_CLASS_MASK;
1031	KASSERT(curthread->td_intr_nesting_level == 0 ||
1032	    page_req == VM_ALLOC_INTERRUPT,
1033	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1034
1035	if ((req & VM_ALLOC_NOOBJ) == 0) {
1036		KASSERT(object != NULL,
1037		    ("vm_page_alloc: NULL object."));
1038		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1039	}
1040
1041	/*
1042	 * The pager is allowed to eat deeper into the free page list.
1043	 */
1044	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1045		page_req = VM_ALLOC_SYSTEM;
1046	};
1047
1048	mtx_lock(&vm_page_queue_free_mtx);
1049	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1050	    (page_req == VM_ALLOC_SYSTEM &&
1051	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1052	    (page_req == VM_ALLOC_INTERRUPT &&
1053	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1054		/*
1055		 * Allocate from the free queue if the number of free pages
1056		 * exceeds the minimum for the request class.
1057		 */
1058		if (object != NULL &&
1059		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1060			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1061				mtx_unlock(&vm_page_queue_free_mtx);
1062				return (NULL);
1063			}
1064			if (vm_phys_unfree_page(m))
1065				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1066#if VM_NRESERVLEVEL > 0
1067			else if (!vm_reserv_reactivate_page(m))
1068#else
1069			else
1070#endif
1071				panic("vm_page_alloc: cache page %p is missing"
1072				    " from the free queue", m);
1073		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1074			mtx_unlock(&vm_page_queue_free_mtx);
1075			return (NULL);
1076#if VM_NRESERVLEVEL > 0
1077		} else if (object == NULL || object->type == OBJT_DEVICE ||
1078		    (object->flags & OBJ_COLORED) == 0 ||
1079		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1080#else
1081		} else {
1082#endif
1083			m = vm_phys_alloc_pages(object != NULL ?
1084			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1085#if VM_NRESERVLEVEL > 0
1086			if (m == NULL && vm_reserv_reclaim_inactive()) {
1087				m = vm_phys_alloc_pages(object != NULL ?
1088				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1089				    0);
1090			}
1091#endif
1092		}
1093	} else {
1094		/*
1095		 * Not allocatable, give up.
1096		 */
1097		mtx_unlock(&vm_page_queue_free_mtx);
1098		atomic_add_int(&vm_pageout_deficit, 1);
1099		pagedaemon_wakeup();
1100		return (NULL);
1101	}
1102
1103	/*
1104	 *  At this point we had better have found a good page.
1105	 */
1106
1107	KASSERT(
1108	    m != NULL,
1109	    ("vm_page_alloc(): missing page on free queue")
1110	);
1111	if ((m->flags & PG_CACHED) != 0) {
1112		KASSERT(m->valid != 0,
1113		    ("vm_page_alloc: cached page %p is invalid", m));
1114		if (m->object == object && m->pindex == pindex)
1115	  		cnt.v_reactivated++;
1116		else
1117			m->valid = 0;
1118		m_object = m->object;
1119		vm_page_cache_remove(m);
1120		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1121			vp = m_object->handle;
1122	} else {
1123		KASSERT(VM_PAGE_IS_FREE(m),
1124		    ("vm_page_alloc: page %p is not free", m));
1125		KASSERT(m->valid == 0,
1126		    ("vm_page_alloc: free page %p is valid", m));
1127		cnt.v_free_count--;
1128	}
1129
1130	/*
1131	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1132	 */
1133	flags = 0;
1134	if (m->flags & PG_ZERO) {
1135		vm_page_zero_count--;
1136		if (req & VM_ALLOC_ZERO)
1137			flags = PG_ZERO;
1138	}
1139	if (object == NULL || object->type == OBJT_PHYS)
1140		flags |= PG_UNMANAGED;
1141	m->flags = flags;
1142	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1143		m->oflags = 0;
1144	else
1145		m->oflags = VPO_BUSY;
1146	if (req & VM_ALLOC_WIRED) {
1147		atomic_add_int(&cnt.v_wire_count, 1);
1148		m->wire_count = 1;
1149	} else
1150		m->wire_count = 0;
1151	m->hold_count = 0;
1152	m->act_count = 0;
1153	m->busy = 0;
1154	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
1155	mtx_unlock(&vm_page_queue_free_mtx);
1156
1157	if ((req & VM_ALLOC_NOOBJ) == 0)
1158		vm_page_insert(m, object, pindex);
1159	else
1160		m->pindex = pindex;
1161
1162	/*
1163	 * The following call to vdrop() must come after the above call
1164	 * to vm_page_insert() in case both affect the same object and
1165	 * vnode.  Otherwise, the affected vnode's hold count could
1166	 * temporarily become zero.
1167	 */
1168	if (vp != NULL)
1169		vdrop(vp);
1170
1171	/*
1172	 * Don't wakeup too often - wakeup the pageout daemon when
1173	 * we would be nearly out of memory.
1174	 */
1175	if (vm_paging_needed())
1176		pagedaemon_wakeup();
1177
1178	return (m);
1179}
1180
1181/*
1182 *	vm_wait:	(also see VM_WAIT macro)
1183 *
1184 *	Block until free pages are available for allocation
1185 *	- Called in various places before memory allocations.
1186 */
1187void
1188vm_wait(void)
1189{
1190
1191	mtx_lock(&vm_page_queue_free_mtx);
1192	if (curproc == pageproc) {
1193		vm_pageout_pages_needed = 1;
1194		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1195		    PDROP | PSWP, "VMWait", 0);
1196	} else {
1197		if (!vm_pages_needed) {
1198			vm_pages_needed = 1;
1199			wakeup(&vm_pages_needed);
1200		}
1201		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1202		    "vmwait", 0);
1203	}
1204}
1205
1206/*
1207 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1208 *
1209 *	Block until free pages are available for allocation
1210 *	- Called only in vm_fault so that processes page faulting
1211 *	  can be easily tracked.
1212 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1213 *	  processes will be able to grab memory first.  Do not change
1214 *	  this balance without careful testing first.
1215 */
1216void
1217vm_waitpfault(void)
1218{
1219
1220	mtx_lock(&vm_page_queue_free_mtx);
1221	if (!vm_pages_needed) {
1222		vm_pages_needed = 1;
1223		wakeup(&vm_pages_needed);
1224	}
1225	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1226	    "pfault", 0);
1227}
1228
1229/*
1230 *	vm_page_requeue:
1231 *
1232 *	If the given page is contained within a page queue, move it to the tail
1233 *	of that queue.
1234 *
1235 *	The page queues must be locked.
1236 */
1237void
1238vm_page_requeue(vm_page_t m)
1239{
1240	int queue = VM_PAGE_GETQUEUE(m);
1241	struct vpgqueues *vpq;
1242
1243	if (queue != PQ_NONE) {
1244		vpq = &vm_page_queues[queue];
1245		TAILQ_REMOVE(&vpq->pl, m, pageq);
1246		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1247	}
1248}
1249
1250/*
1251 *	vm_pageq_remove:
1252 *
1253 *	Remove a page from its queue.
1254 *
1255 *	The queue containing the given page must be locked.
1256 *	This routine may not block.
1257 */
1258void
1259vm_pageq_remove(vm_page_t m)
1260{
1261	int queue = VM_PAGE_GETQUEUE(m);
1262	struct vpgqueues *pq;
1263
1264	if (queue != PQ_NONE) {
1265		VM_PAGE_SETQUEUE2(m, PQ_NONE);
1266		pq = &vm_page_queues[queue];
1267		TAILQ_REMOVE(&pq->pl, m, pageq);
1268		(*pq->cnt)--;
1269	}
1270}
1271
1272/*
1273 *	vm_page_enqueue:
1274 *
1275 *	Add the given page to the specified queue.
1276 *
1277 *	The page queues must be locked.
1278 */
1279static void
1280vm_page_enqueue(int queue, vm_page_t m)
1281{
1282	struct vpgqueues *vpq;
1283
1284	vpq = &vm_page_queues[queue];
1285	VM_PAGE_SETQUEUE2(m, queue);
1286	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1287	++*vpq->cnt;
1288}
1289
1290/*
1291 *	vm_page_activate:
1292 *
1293 *	Put the specified page on the active list (if appropriate).
1294 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1295 *	mess with it.
1296 *
1297 *	The page queues must be locked.
1298 *	This routine may not block.
1299 */
1300void
1301vm_page_activate(vm_page_t m)
1302{
1303
1304	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1305	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1306		vm_pageq_remove(m);
1307		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1308			if (m->act_count < ACT_INIT)
1309				m->act_count = ACT_INIT;
1310			vm_page_enqueue(PQ_ACTIVE, m);
1311		}
1312	} else {
1313		if (m->act_count < ACT_INIT)
1314			m->act_count = ACT_INIT;
1315	}
1316}
1317
1318/*
1319 *	vm_page_free_wakeup:
1320 *
1321 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1322 *	routine is called when a page has been added to the cache or free
1323 *	queues.
1324 *
1325 *	The page queues must be locked.
1326 *	This routine may not block.
1327 */
1328static inline void
1329vm_page_free_wakeup(void)
1330{
1331
1332	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1333	/*
1334	 * if pageout daemon needs pages, then tell it that there are
1335	 * some free.
1336	 */
1337	if (vm_pageout_pages_needed &&
1338	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1339		wakeup(&vm_pageout_pages_needed);
1340		vm_pageout_pages_needed = 0;
1341	}
1342	/*
1343	 * wakeup processes that are waiting on memory if we hit a
1344	 * high water mark. And wakeup scheduler process if we have
1345	 * lots of memory. this process will swapin processes.
1346	 */
1347	if (vm_pages_needed && !vm_page_count_min()) {
1348		vm_pages_needed = 0;
1349		wakeup(&cnt.v_free_count);
1350	}
1351}
1352
1353/*
1354 *	vm_page_free_toq:
1355 *
1356 *	Returns the given page to the free list,
1357 *	disassociating it with any VM object.
1358 *
1359 *	Object and page must be locked prior to entry.
1360 *	This routine may not block.
1361 */
1362
1363void
1364vm_page_free_toq(vm_page_t m)
1365{
1366
1367	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1368		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1369	KASSERT(!pmap_page_is_mapped(m),
1370	    ("vm_page_free_toq: freeing mapped page %p", m));
1371	PCPU_INC(cnt.v_tfree);
1372
1373	if (m->busy || VM_PAGE_IS_FREE(m)) {
1374		printf(
1375		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1376		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1377		    m->hold_count);
1378		if (VM_PAGE_IS_FREE(m))
1379			panic("vm_page_free: freeing free page");
1380		else
1381			panic("vm_page_free: freeing busy page");
1382	}
1383
1384	/*
1385	 * unqueue, then remove page.  Note that we cannot destroy
1386	 * the page here because we do not want to call the pager's
1387	 * callback routine until after we've put the page on the
1388	 * appropriate free queue.
1389	 */
1390	vm_pageq_remove(m);
1391	vm_page_remove(m);
1392
1393	/*
1394	 * If fictitious remove object association and
1395	 * return, otherwise delay object association removal.
1396	 */
1397	if ((m->flags & PG_FICTITIOUS) != 0) {
1398		return;
1399	}
1400
1401	m->valid = 0;
1402	vm_page_undirty(m);
1403
1404	if (m->wire_count != 0) {
1405		if (m->wire_count > 1) {
1406			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1407				m->wire_count, (long)m->pindex);
1408		}
1409		panic("vm_page_free: freeing wired page");
1410	}
1411	if (m->hold_count != 0) {
1412		m->flags &= ~PG_ZERO;
1413		vm_page_enqueue(PQ_HOLD, m);
1414	} else {
1415		mtx_lock(&vm_page_queue_free_mtx);
1416		m->flags |= PG_FREE;
1417		cnt.v_free_count++;
1418#if VM_NRESERVLEVEL > 0
1419		if (!vm_reserv_free_page(m))
1420#else
1421		if (TRUE)
1422#endif
1423			vm_phys_free_pages(m, 0);
1424		if ((m->flags & PG_ZERO) != 0)
1425			++vm_page_zero_count;
1426		else
1427			vm_page_zero_idle_wakeup();
1428		vm_page_free_wakeup();
1429		mtx_unlock(&vm_page_queue_free_mtx);
1430	}
1431}
1432
1433/*
1434 *	vm_page_wire:
1435 *
1436 *	Mark this page as wired down by yet
1437 *	another map, removing it from paging queues
1438 *	as necessary.
1439 *
1440 *	The page queues must be locked.
1441 *	This routine may not block.
1442 */
1443void
1444vm_page_wire(vm_page_t m)
1445{
1446
1447	/*
1448	 * Only bump the wire statistics if the page is not already wired,
1449	 * and only unqueue the page if it is on some queue (if it is unmanaged
1450	 * it is already off the queues).
1451	 */
1452	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1453	if (m->flags & PG_FICTITIOUS)
1454		return;
1455	if (m->wire_count == 0) {
1456		if ((m->flags & PG_UNMANAGED) == 0)
1457			vm_pageq_remove(m);
1458		atomic_add_int(&cnt.v_wire_count, 1);
1459	}
1460	m->wire_count++;
1461	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1462}
1463
1464/*
1465 *	vm_page_unwire:
1466 *
1467 *	Release one wiring of this page, potentially
1468 *	enabling it to be paged again.
1469 *
1470 *	Many pages placed on the inactive queue should actually go
1471 *	into the cache, but it is difficult to figure out which.  What
1472 *	we do instead, if the inactive target is well met, is to put
1473 *	clean pages at the head of the inactive queue instead of the tail.
1474 *	This will cause them to be moved to the cache more quickly and
1475 *	if not actively re-referenced, freed more quickly.  If we just
1476 *	stick these pages at the end of the inactive queue, heavy filesystem
1477 *	meta-data accesses can cause an unnecessary paging load on memory bound
1478 *	processes.  This optimization causes one-time-use metadata to be
1479 *	reused more quickly.
1480 *
1481 *	BUT, if we are in a low-memory situation we have no choice but to
1482 *	put clean pages on the cache queue.
1483 *
1484 *	A number of routines use vm_page_unwire() to guarantee that the page
1485 *	will go into either the inactive or active queues, and will NEVER
1486 *	be placed in the cache - for example, just after dirtying a page.
1487 *	dirty pages in the cache are not allowed.
1488 *
1489 *	The page queues must be locked.
1490 *	This routine may not block.
1491 */
1492void
1493vm_page_unwire(vm_page_t m, int activate)
1494{
1495
1496	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1497	if (m->flags & PG_FICTITIOUS)
1498		return;
1499	if (m->wire_count > 0) {
1500		m->wire_count--;
1501		if (m->wire_count == 0) {
1502			atomic_subtract_int(&cnt.v_wire_count, 1);
1503			if (m->flags & PG_UNMANAGED) {
1504				;
1505			} else if (activate)
1506				vm_page_enqueue(PQ_ACTIVE, m);
1507			else {
1508				vm_page_flag_clear(m, PG_WINATCFLS);
1509				vm_page_enqueue(PQ_INACTIVE, m);
1510			}
1511		}
1512	} else {
1513		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1514	}
1515}
1516
1517
1518/*
1519 * Move the specified page to the inactive queue.  If the page has
1520 * any associated swap, the swap is deallocated.
1521 *
1522 * Normally athead is 0 resulting in LRU operation.  athead is set
1523 * to 1 if we want this page to be 'as if it were placed in the cache',
1524 * except without unmapping it from the process address space.
1525 *
1526 * This routine may not block.
1527 */
1528static inline void
1529_vm_page_deactivate(vm_page_t m, int athead)
1530{
1531
1532	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1533
1534	/*
1535	 * Ignore if already inactive.
1536	 */
1537	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1538		return;
1539	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1540		vm_page_flag_clear(m, PG_WINATCFLS);
1541		vm_pageq_remove(m);
1542		if (athead)
1543			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1544		else
1545			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1546		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1547		cnt.v_inactive_count++;
1548	}
1549}
1550
1551void
1552vm_page_deactivate(vm_page_t m)
1553{
1554    _vm_page_deactivate(m, 0);
1555}
1556
1557/*
1558 * vm_page_try_to_cache:
1559 *
1560 * Returns 0 on failure, 1 on success
1561 */
1562int
1563vm_page_try_to_cache(vm_page_t m)
1564{
1565
1566	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1567	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1568	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1569	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1570		return (0);
1571	}
1572	pmap_remove_all(m);
1573	if (m->dirty)
1574		return (0);
1575	vm_page_cache(m);
1576	return (1);
1577}
1578
1579/*
1580 * vm_page_try_to_free()
1581 *
1582 *	Attempt to free the page.  If we cannot free it, we do nothing.
1583 *	1 is returned on success, 0 on failure.
1584 */
1585int
1586vm_page_try_to_free(vm_page_t m)
1587{
1588
1589	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1590	if (m->object != NULL)
1591		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1592	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1593	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1594		return (0);
1595	}
1596	pmap_remove_all(m);
1597	if (m->dirty)
1598		return (0);
1599	vm_page_free(m);
1600	return (1);
1601}
1602
1603/*
1604 * vm_page_cache
1605 *
1606 * Put the specified page onto the page cache queue (if appropriate).
1607 *
1608 * This routine may not block.
1609 */
1610void
1611vm_page_cache(vm_page_t m)
1612{
1613	vm_object_t object;
1614	vm_page_t root;
1615
1616	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1617	object = m->object;
1618	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1619	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1620	    m->hold_count || m->wire_count) {
1621		panic("vm_page_cache: attempting to cache busy page");
1622	}
1623	pmap_remove_all(m);
1624	if (m->dirty != 0)
1625		panic("vm_page_cache: page %p is dirty", m);
1626	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1627	    (object->type == OBJT_SWAP &&
1628	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1629		/*
1630		 * Hypothesis: A cache-elgible page belonging to a
1631		 * default object or swap object but without a backing
1632		 * store must be zero filled.
1633		 */
1634		vm_page_free(m);
1635		return;
1636	}
1637	KASSERT((m->flags & PG_CACHED) == 0,
1638	    ("vm_page_cache: page %p is already cached", m));
1639	cnt.v_tcached++;
1640
1641	/*
1642	 * Remove the page from the paging queues.
1643	 */
1644	vm_pageq_remove(m);
1645
1646	/*
1647	 * Remove the page from the object's collection of resident
1648	 * pages.
1649	 */
1650	if (m != object->root)
1651		vm_page_splay(m->pindex, object->root);
1652	if (m->left == NULL)
1653		root = m->right;
1654	else {
1655		root = vm_page_splay(m->pindex, m->left);
1656		root->right = m->right;
1657	}
1658	object->root = root;
1659	TAILQ_REMOVE(&object->memq, m, listq);
1660	object->resident_page_count--;
1661	object->generation++;
1662
1663	/*
1664	 * Insert the page into the object's collection of cached pages
1665	 * and the physical memory allocator's cache/free page queues.
1666	 */
1667	vm_page_flag_clear(m, PG_ZERO);
1668	mtx_lock(&vm_page_queue_free_mtx);
1669	m->flags |= PG_CACHED;
1670	cnt.v_cache_count++;
1671	root = object->cache;
1672	if (root == NULL) {
1673		m->left = NULL;
1674		m->right = NULL;
1675	} else {
1676		root = vm_page_splay(m->pindex, root);
1677		if (m->pindex < root->pindex) {
1678			m->left = root->left;
1679			m->right = root;
1680			root->left = NULL;
1681		} else if (__predict_false(m->pindex == root->pindex))
1682			panic("vm_page_cache: offset already cached");
1683		else {
1684			m->right = root->right;
1685			m->left = root;
1686			root->right = NULL;
1687		}
1688	}
1689	object->cache = m;
1690#if VM_NRESERVLEVEL > 0
1691	if (!vm_reserv_free_page(m)) {
1692#else
1693	if (TRUE) {
1694#endif
1695		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1696		vm_phys_free_pages(m, 0);
1697	}
1698	vm_page_free_wakeup();
1699	mtx_unlock(&vm_page_queue_free_mtx);
1700
1701	/*
1702	 * Increment the vnode's hold count if this is the object's only
1703	 * cached page.  Decrement the vnode's hold count if this was
1704	 * the object's only resident page.
1705	 */
1706	if (object->type == OBJT_VNODE) {
1707		if (root == NULL && object->resident_page_count != 0)
1708			vhold(object->handle);
1709		else if (root != NULL && object->resident_page_count == 0)
1710			vdrop(object->handle);
1711	}
1712}
1713
1714/*
1715 * vm_page_dontneed
1716 *
1717 *	Cache, deactivate, or do nothing as appropriate.  This routine
1718 *	is typically used by madvise() MADV_DONTNEED.
1719 *
1720 *	Generally speaking we want to move the page into the cache so
1721 *	it gets reused quickly.  However, this can result in a silly syndrome
1722 *	due to the page recycling too quickly.  Small objects will not be
1723 *	fully cached.  On the otherhand, if we move the page to the inactive
1724 *	queue we wind up with a problem whereby very large objects
1725 *	unnecessarily blow away our inactive and cache queues.
1726 *
1727 *	The solution is to move the pages based on a fixed weighting.  We
1728 *	either leave them alone, deactivate them, or move them to the cache,
1729 *	where moving them to the cache has the highest weighting.
1730 *	By forcing some pages into other queues we eventually force the
1731 *	system to balance the queues, potentially recovering other unrelated
1732 *	space from active.  The idea is to not force this to happen too
1733 *	often.
1734 */
1735void
1736vm_page_dontneed(vm_page_t m)
1737{
1738	static int dnweight;
1739	int dnw;
1740	int head;
1741
1742	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1743	dnw = ++dnweight;
1744
1745	/*
1746	 * occassionally leave the page alone
1747	 */
1748	if ((dnw & 0x01F0) == 0 ||
1749	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
1750		if (m->act_count >= ACT_INIT)
1751			--m->act_count;
1752		return;
1753	}
1754
1755	/*
1756	 * Clear any references to the page.  Otherwise, the page daemon will
1757	 * immediately reactivate the page.
1758	 */
1759	vm_page_flag_clear(m, PG_REFERENCED);
1760	pmap_clear_reference(m);
1761
1762	if (m->dirty == 0 && pmap_is_modified(m))
1763		vm_page_dirty(m);
1764
1765	if (m->dirty || (dnw & 0x0070) == 0) {
1766		/*
1767		 * Deactivate the page 3 times out of 32.
1768		 */
1769		head = 0;
1770	} else {
1771		/*
1772		 * Cache the page 28 times out of every 32.  Note that
1773		 * the page is deactivated instead of cached, but placed
1774		 * at the head of the queue instead of the tail.
1775		 */
1776		head = 1;
1777	}
1778	_vm_page_deactivate(m, head);
1779}
1780
1781/*
1782 * Grab a page, waiting until we are waken up due to the page
1783 * changing state.  We keep on waiting, if the page continues
1784 * to be in the object.  If the page doesn't exist, first allocate it
1785 * and then conditionally zero it.
1786 *
1787 * This routine may block.
1788 */
1789vm_page_t
1790vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1791{
1792	vm_page_t m;
1793
1794	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1795retrylookup:
1796	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1797		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1798			if ((allocflags & VM_ALLOC_RETRY) == 0)
1799				return (NULL);
1800			goto retrylookup;
1801		} else {
1802			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1803				vm_page_lock_queues();
1804				vm_page_wire(m);
1805				vm_page_unlock_queues();
1806			}
1807			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1808				vm_page_busy(m);
1809			return (m);
1810		}
1811	}
1812	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1813	if (m == NULL) {
1814		VM_OBJECT_UNLOCK(object);
1815		VM_WAIT;
1816		VM_OBJECT_LOCK(object);
1817		if ((allocflags & VM_ALLOC_RETRY) == 0)
1818			return (NULL);
1819		goto retrylookup;
1820	} else if (m->valid != 0)
1821		return (m);
1822	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1823		pmap_zero_page(m);
1824	return (m);
1825}
1826
1827/*
1828 * Mapping function for valid bits or for dirty bits in
1829 * a page.  May not block.
1830 *
1831 * Inputs are required to range within a page.
1832 */
1833int
1834vm_page_bits(int base, int size)
1835{
1836	int first_bit;
1837	int last_bit;
1838
1839	KASSERT(
1840	    base + size <= PAGE_SIZE,
1841	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1842	);
1843
1844	if (size == 0)		/* handle degenerate case */
1845		return (0);
1846
1847	first_bit = base >> DEV_BSHIFT;
1848	last_bit = (base + size - 1) >> DEV_BSHIFT;
1849
1850	return ((2 << last_bit) - (1 << first_bit));
1851}
1852
1853/*
1854 *	vm_page_set_validclean:
1855 *
1856 *	Sets portions of a page valid and clean.  The arguments are expected
1857 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1858 *	of any partial chunks touched by the range.  The invalid portion of
1859 *	such chunks will be zero'd.
1860 *
1861 *	This routine may not block.
1862 *
1863 *	(base + size) must be less then or equal to PAGE_SIZE.
1864 */
1865void
1866vm_page_set_validclean(vm_page_t m, int base, int size)
1867{
1868	int pagebits;
1869	int frag;
1870	int endoff;
1871
1872	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1873	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1874	if (size == 0)	/* handle degenerate case */
1875		return;
1876
1877	/*
1878	 * If the base is not DEV_BSIZE aligned and the valid
1879	 * bit is clear, we have to zero out a portion of the
1880	 * first block.
1881	 */
1882	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1883	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1884		pmap_zero_page_area(m, frag, base - frag);
1885
1886	/*
1887	 * If the ending offset is not DEV_BSIZE aligned and the
1888	 * valid bit is clear, we have to zero out a portion of
1889	 * the last block.
1890	 */
1891	endoff = base + size;
1892	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1893	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1894		pmap_zero_page_area(m, endoff,
1895		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1896
1897	/*
1898	 * Set valid, clear dirty bits.  If validating the entire
1899	 * page we can safely clear the pmap modify bit.  We also
1900	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1901	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1902	 * be set again.
1903	 *
1904	 * We set valid bits inclusive of any overlap, but we can only
1905	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1906	 * the range.
1907	 */
1908	pagebits = vm_page_bits(base, size);
1909	m->valid |= pagebits;
1910#if 0	/* NOT YET */
1911	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1912		frag = DEV_BSIZE - frag;
1913		base += frag;
1914		size -= frag;
1915		if (size < 0)
1916			size = 0;
1917	}
1918	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1919#endif
1920	m->dirty &= ~pagebits;
1921	if (base == 0 && size == PAGE_SIZE) {
1922		pmap_clear_modify(m);
1923		m->oflags &= ~VPO_NOSYNC;
1924	}
1925}
1926
1927void
1928vm_page_clear_dirty(vm_page_t m, int base, int size)
1929{
1930
1931	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1932	m->dirty &= ~vm_page_bits(base, size);
1933}
1934
1935/*
1936 *	vm_page_set_invalid:
1937 *
1938 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1939 *	valid and dirty bits for the effected areas are cleared.
1940 *
1941 *	May not block.
1942 */
1943void
1944vm_page_set_invalid(vm_page_t m, int base, int size)
1945{
1946	int bits;
1947
1948	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1949	bits = vm_page_bits(base, size);
1950	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1951	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1952		pmap_remove_all(m);
1953	m->valid &= ~bits;
1954	m->dirty &= ~bits;
1955	m->object->generation++;
1956}
1957
1958/*
1959 * vm_page_zero_invalid()
1960 *
1961 *	The kernel assumes that the invalid portions of a page contain
1962 *	garbage, but such pages can be mapped into memory by user code.
1963 *	When this occurs, we must zero out the non-valid portions of the
1964 *	page so user code sees what it expects.
1965 *
1966 *	Pages are most often semi-valid when the end of a file is mapped
1967 *	into memory and the file's size is not page aligned.
1968 */
1969void
1970vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1971{
1972	int b;
1973	int i;
1974
1975	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1976	/*
1977	 * Scan the valid bits looking for invalid sections that
1978	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1979	 * valid bit may be set ) have already been zerod by
1980	 * vm_page_set_validclean().
1981	 */
1982	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1983		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1984		    (m->valid & (1 << i))
1985		) {
1986			if (i > b) {
1987				pmap_zero_page_area(m,
1988				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1989			}
1990			b = i + 1;
1991		}
1992	}
1993
1994	/*
1995	 * setvalid is TRUE when we can safely set the zero'd areas
1996	 * as being valid.  We can do this if there are no cache consistancy
1997	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1998	 */
1999	if (setvalid)
2000		m->valid = VM_PAGE_BITS_ALL;
2001}
2002
2003/*
2004 *	vm_page_is_valid:
2005 *
2006 *	Is (partial) page valid?  Note that the case where size == 0
2007 *	will return FALSE in the degenerate case where the page is
2008 *	entirely invalid, and TRUE otherwise.
2009 *
2010 *	May not block.
2011 */
2012int
2013vm_page_is_valid(vm_page_t m, int base, int size)
2014{
2015	int bits = vm_page_bits(base, size);
2016
2017	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2018	if (m->valid && ((m->valid & bits) == bits))
2019		return 1;
2020	else
2021		return 0;
2022}
2023
2024/*
2025 * update dirty bits from pmap/mmu.  May not block.
2026 */
2027void
2028vm_page_test_dirty(vm_page_t m)
2029{
2030	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2031		vm_page_dirty(m);
2032	}
2033}
2034
2035int so_zerocp_fullpage = 0;
2036
2037/*
2038 *	Replace the given page with a copy.  The copied page assumes
2039 *	the portion of the given page's "wire_count" that is not the
2040 *	responsibility of this copy-on-write mechanism.
2041 *
2042 *	The object containing the given page must have a non-zero
2043 *	paging-in-progress count and be locked.
2044 */
2045void
2046vm_page_cowfault(vm_page_t m)
2047{
2048	vm_page_t mnew;
2049	vm_object_t object;
2050	vm_pindex_t pindex;
2051
2052	object = m->object;
2053	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2054	KASSERT(object->paging_in_progress != 0,
2055	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2056	    object));
2057	pindex = m->pindex;
2058
2059 retry_alloc:
2060	pmap_remove_all(m);
2061	vm_page_remove(m);
2062	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2063	if (mnew == NULL) {
2064		vm_page_insert(m, object, pindex);
2065		vm_page_unlock_queues();
2066		VM_OBJECT_UNLOCK(object);
2067		VM_WAIT;
2068		VM_OBJECT_LOCK(object);
2069		if (m == vm_page_lookup(object, pindex)) {
2070			vm_page_lock_queues();
2071			goto retry_alloc;
2072		} else {
2073			/*
2074			 * Page disappeared during the wait.
2075			 */
2076			vm_page_lock_queues();
2077			return;
2078		}
2079	}
2080
2081	if (m->cow == 0) {
2082		/*
2083		 * check to see if we raced with an xmit complete when
2084		 * waiting to allocate a page.  If so, put things back
2085		 * the way they were
2086		 */
2087		vm_page_free(mnew);
2088		vm_page_insert(m, object, pindex);
2089	} else { /* clear COW & copy page */
2090		if (!so_zerocp_fullpage)
2091			pmap_copy_page(m, mnew);
2092		mnew->valid = VM_PAGE_BITS_ALL;
2093		vm_page_dirty(mnew);
2094		mnew->wire_count = m->wire_count - m->cow;
2095		m->wire_count = m->cow;
2096	}
2097}
2098
2099void
2100vm_page_cowclear(vm_page_t m)
2101{
2102
2103	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2104	if (m->cow) {
2105		m->cow--;
2106		/*
2107		 * let vm_fault add back write permission  lazily
2108		 */
2109	}
2110	/*
2111	 *  sf_buf_free() will free the page, so we needn't do it here
2112	 */
2113}
2114
2115void
2116vm_page_cowsetup(vm_page_t m)
2117{
2118
2119	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2120	m->cow++;
2121	pmap_remove_write(m);
2122}
2123
2124#include "opt_ddb.h"
2125#ifdef DDB
2126#include <sys/kernel.h>
2127
2128#include <ddb/ddb.h>
2129
2130DB_SHOW_COMMAND(page, vm_page_print_page_info)
2131{
2132	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2133	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2134	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2135	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2136	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2137	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2138	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2139	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2140	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2141	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2142}
2143
2144DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2145{
2146
2147	db_printf("PQ_FREE:");
2148	db_printf(" %d", cnt.v_free_count);
2149	db_printf("\n");
2150
2151	db_printf("PQ_CACHE:");
2152	db_printf(" %d", cnt.v_cache_count);
2153	db_printf("\n");
2154
2155	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2156		*vm_page_queues[PQ_ACTIVE].cnt,
2157		*vm_page_queues[PQ_INACTIVE].cnt);
2158}
2159#endif /* DDB */
2160