vm_page.c revision 181811
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- a pageq mutex is required when adding or removing a page from a
67 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68 *	  busy state of a page.
69 *
70 *	- a hash chain mutex is required when associating or disassociating
71 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72 *	  regardless of other mutexes or the busy state of a page.
73 *
74 *	- either a hash chain mutex OR a busied page is required in order
75 *	  to modify the page flags.  A hash chain mutex must be obtained in
76 *	  order to busy a page.  A page's flags cannot be modified by a
77 *	  hash chain mutex if the page is marked busy.
78 *
79 *	- The object memq mutex is held when inserting or removing
80 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81 *	  is different from the object's main mutex.
82 *
83 *	Generally speaking, you have to be aware of side effects when running
84 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86 *	vm_page_cache(), vm_page_activate(), and a number of other routines
87 *	will release the hash chain mutex for you.  Intermediate manipulation
88 *	routines such as vm_page_flag_set() expect the hash chain to be held
89 *	on entry and the hash chain will remain held on return.
90 *
91 *	pageq scanning can only occur with the pageq in question locked.
92 *	We have a known bottleneck with the active queue, but the cache
93 *	and free queues are actually arrays already.
94 */
95
96/*
97 *	Resident memory management module.
98 */
99
100#include <sys/cdefs.h>
101__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 181811 2008-08-17 23:40:29Z kmacy $");
102
103#include "opt_vm.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/lock.h>
108#include <sys/kernel.h>
109#include <sys/malloc.h>
110#include <sys/mutex.h>
111#include <sys/proc.h>
112#include <sys/sysctl.h>
113#include <sys/vmmeter.h>
114#include <sys/vnode.h>
115
116#include <vm/vm.h>
117#include <vm/vm_param.h>
118#include <vm/vm_kern.h>
119#include <vm/vm_object.h>
120#include <vm/vm_page.h>
121#include <vm/vm_pageout.h>
122#include <vm/vm_pager.h>
123#include <vm/vm_phys.h>
124#include <vm/vm_reserv.h>
125#include <vm/vm_extern.h>
126#include <vm/uma.h>
127#include <vm/uma_int.h>
128
129#include <machine/md_var.h>
130
131/*
132 *	Associated with page of user-allocatable memory is a
133 *	page structure.
134 */
135
136struct vpgqueues vm_page_queues[PQ_COUNT];
137struct mtx vm_page_queue_mtx;
138struct mtx vm_page_queue_free_mtx;
139
140vm_page_t vm_page_array = 0;
141int vm_page_array_size = 0;
142long first_page = 0;
143int vm_page_zero_count = 0;
144
145static int boot_pages = UMA_BOOT_PAGES;
146TUNABLE_INT("vm.boot_pages", &boot_pages);
147SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
148	"number of pages allocated for bootstrapping the VM system");
149
150static void vm_page_enqueue(int queue, vm_page_t m);
151
152/*
153 *	vm_set_page_size:
154 *
155 *	Sets the page size, perhaps based upon the memory
156 *	size.  Must be called before any use of page-size
157 *	dependent functions.
158 */
159void
160vm_set_page_size(void)
161{
162	if (cnt.v_page_size == 0)
163		cnt.v_page_size = PAGE_SIZE;
164	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
165		panic("vm_set_page_size: page size not a power of two");
166}
167
168/*
169 *	vm_page_blacklist_lookup:
170 *
171 *	See if a physical address in this page has been listed
172 *	in the blacklist tunable.  Entries in the tunable are
173 *	separated by spaces or commas.  If an invalid integer is
174 *	encountered then the rest of the string is skipped.
175 */
176static int
177vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
178{
179	vm_paddr_t bad;
180	char *cp, *pos;
181
182	for (pos = list; *pos != '\0'; pos = cp) {
183		bad = strtoq(pos, &cp, 0);
184		if (*cp != '\0') {
185			if (*cp == ' ' || *cp == ',') {
186				cp++;
187				if (cp == pos)
188					continue;
189			} else
190				break;
191		}
192		if (pa == trunc_page(bad))
193			return (1);
194	}
195	return (0);
196}
197
198/*
199 *	vm_page_startup:
200 *
201 *	Initializes the resident memory module.
202 *
203 *	Allocates memory for the page cells, and
204 *	for the object/offset-to-page hash table headers.
205 *	Each page cell is initialized and placed on the free list.
206 */
207vm_offset_t
208vm_page_startup(vm_offset_t vaddr)
209{
210	vm_offset_t mapped;
211	vm_paddr_t page_range;
212	vm_paddr_t new_end;
213	int i;
214	vm_paddr_t pa;
215	int nblocks;
216	vm_paddr_t last_pa;
217	char *list;
218
219	/* the biggest memory array is the second group of pages */
220	vm_paddr_t end;
221	vm_paddr_t biggestsize;
222	vm_paddr_t low_water, high_water;
223	int biggestone;
224
225	biggestsize = 0;
226	biggestone = 0;
227	nblocks = 0;
228	vaddr = round_page(vaddr);
229
230	for (i = 0; phys_avail[i + 1]; i += 2) {
231		phys_avail[i] = round_page(phys_avail[i]);
232		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
233	}
234
235	low_water = phys_avail[0];
236	high_water = phys_avail[1];
237
238	for (i = 0; phys_avail[i + 1]; i += 2) {
239		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
240
241		if (size > biggestsize) {
242			biggestone = i;
243			biggestsize = size;
244		}
245		if (phys_avail[i] < low_water)
246			low_water = phys_avail[i];
247		if (phys_avail[i + 1] > high_water)
248			high_water = phys_avail[i + 1];
249		++nblocks;
250	}
251
252#ifdef XEN
253	low_water = 0;
254#endif
255
256	end = phys_avail[biggestone+1];
257
258	/*
259	 * Initialize the locks.
260	 */
261	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
262	    MTX_RECURSE);
263	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
264	    MTX_DEF);
265
266	/*
267	 * Initialize the queue headers for the hold queue, the active queue,
268	 * and the inactive queue.
269	 */
270	for (i = 0; i < PQ_COUNT; i++)
271		TAILQ_INIT(&vm_page_queues[i].pl);
272	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
273	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
274	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
275
276	/*
277	 * Allocate memory for use when boot strapping the kernel memory
278	 * allocator.
279	 */
280	new_end = end - (boot_pages * UMA_SLAB_SIZE);
281	new_end = trunc_page(new_end);
282	mapped = pmap_map(&vaddr, new_end, end,
283	    VM_PROT_READ | VM_PROT_WRITE);
284	bzero((void *)mapped, end - new_end);
285	uma_startup((void *)mapped, boot_pages);
286
287#if defined(__amd64__) || defined(__i386__)
288	/*
289	 * Allocate a bitmap to indicate that a random physical page
290	 * needs to be included in a minidump.
291	 *
292	 * The amd64 port needs this to indicate which direct map pages
293	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
294	 *
295	 * However, i386 still needs this workspace internally within the
296	 * minidump code.  In theory, they are not needed on i386, but are
297	 * included should the sf_buf code decide to use them.
298	 */
299	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
300	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
301	new_end -= vm_page_dump_size;
302	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
303	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
304	bzero((void *)vm_page_dump, vm_page_dump_size);
305#endif
306	/*
307	 * Compute the number of pages of memory that will be available for
308	 * use (taking into account the overhead of a page structure per
309	 * page).
310	 */
311	first_page = low_water / PAGE_SIZE;
312#ifdef VM_PHYSSEG_SPARSE
313	page_range = 0;
314	for (i = 0; phys_avail[i + 1] != 0; i += 2)
315		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
316#elif defined(VM_PHYSSEG_DENSE)
317	page_range = high_water / PAGE_SIZE - first_page;
318#else
319#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
320#endif
321	end = new_end;
322
323	/*
324	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
325	 */
326	vaddr += PAGE_SIZE;
327
328	/*
329	 * Initialize the mem entry structures now, and put them in the free
330	 * queue.
331	 */
332	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
333	mapped = pmap_map(&vaddr, new_end, end,
334	    VM_PROT_READ | VM_PROT_WRITE);
335	vm_page_array = (vm_page_t) mapped;
336#if VM_NRESERVLEVEL > 0
337	/*
338	 * Allocate memory for the reservation management system's data
339	 * structures.
340	 */
341	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
342#endif
343#ifdef __amd64__
344	/*
345	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
346	 * so the pages must be tracked for a crashdump to include this data.
347	 * This includes the vm_page_array and the early UMA bootstrap pages.
348	 */
349	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
350		dump_add_page(pa);
351#endif
352	phys_avail[biggestone + 1] = new_end;
353
354	/*
355	 * Clear all of the page structures
356	 */
357	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
358	for (i = 0; i < page_range; i++)
359		vm_page_array[i].order = VM_NFREEORDER;
360	vm_page_array_size = page_range;
361
362	/*
363	 * Initialize the physical memory allocator.
364	 */
365	vm_phys_init();
366
367	/*
368	 * Add every available physical page that is not blacklisted to
369	 * the free lists.
370	 */
371	cnt.v_page_count = 0;
372	cnt.v_free_count = 0;
373	list = getenv("vm.blacklist");
374	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
375		pa = phys_avail[i];
376		last_pa = phys_avail[i + 1];
377		while (pa < last_pa) {
378			if (list != NULL &&
379			    vm_page_blacklist_lookup(list, pa))
380				printf("Skipping page with pa 0x%jx\n",
381				    (uintmax_t)pa);
382			else
383				vm_phys_add_page(pa);
384			pa += PAGE_SIZE;
385		}
386	}
387	freeenv(list);
388#if VM_NRESERVLEVEL > 0
389	/*
390	 * Initialize the reservation management system.
391	 */
392	vm_reserv_init();
393#endif
394	return (vaddr);
395}
396
397void
398vm_page_flag_set(vm_page_t m, unsigned short bits)
399{
400
401	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
402	m->flags |= bits;
403}
404
405void
406vm_page_flag_clear(vm_page_t m, unsigned short bits)
407{
408
409	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
410	m->flags &= ~bits;
411}
412
413void
414vm_page_busy(vm_page_t m)
415{
416
417	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
418	KASSERT((m->oflags & VPO_BUSY) == 0,
419	    ("vm_page_busy: page already busy!!!"));
420	m->oflags |= VPO_BUSY;
421}
422
423/*
424 *      vm_page_flash:
425 *
426 *      wakeup anyone waiting for the page.
427 */
428void
429vm_page_flash(vm_page_t m)
430{
431
432	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
433	if (m->oflags & VPO_WANTED) {
434		m->oflags &= ~VPO_WANTED;
435		wakeup(m);
436	}
437}
438
439/*
440 *      vm_page_wakeup:
441 *
442 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
443 *      page.
444 *
445 */
446void
447vm_page_wakeup(vm_page_t m)
448{
449
450	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
451	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
452	m->oflags &= ~VPO_BUSY;
453	vm_page_flash(m);
454}
455
456void
457vm_page_io_start(vm_page_t m)
458{
459
460	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
461	m->busy++;
462}
463
464void
465vm_page_io_finish(vm_page_t m)
466{
467
468	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
469	m->busy--;
470	if (m->busy == 0)
471		vm_page_flash(m);
472}
473
474/*
475 * Keep page from being freed by the page daemon
476 * much of the same effect as wiring, except much lower
477 * overhead and should be used only for *very* temporary
478 * holding ("wiring").
479 */
480void
481vm_page_hold(vm_page_t mem)
482{
483
484	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
485        mem->hold_count++;
486}
487
488void
489vm_page_unhold(vm_page_t mem)
490{
491
492	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
493	--mem->hold_count;
494	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
495	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
496		vm_page_free_toq(mem);
497}
498
499/*
500 *	vm_page_free:
501 *
502 *	Free a page.
503 */
504void
505vm_page_free(vm_page_t m)
506{
507
508	m->flags &= ~PG_ZERO;
509	vm_page_free_toq(m);
510}
511
512/*
513 *	vm_page_free_zero:
514 *
515 *	Free a page to the zerod-pages queue
516 */
517void
518vm_page_free_zero(vm_page_t m)
519{
520
521	m->flags |= PG_ZERO;
522	vm_page_free_toq(m);
523}
524
525/*
526 *	vm_page_sleep:
527 *
528 *	Sleep and release the page queues lock.
529 *
530 *	The object containing the given page must be locked.
531 */
532void
533vm_page_sleep(vm_page_t m, const char *msg)
534{
535
536	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
537	if (!mtx_owned(&vm_page_queue_mtx))
538		vm_page_lock_queues();
539	vm_page_flag_set(m, PG_REFERENCED);
540	vm_page_unlock_queues();
541
542	/*
543	 * It's possible that while we sleep, the page will get
544	 * unbusied and freed.  If we are holding the object
545	 * lock, we will assume we hold a reference to the object
546	 * such that even if m->object changes, we can re-lock
547	 * it.
548	 */
549	m->oflags |= VPO_WANTED;
550	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
551}
552
553/*
554 *	vm_page_dirty:
555 *
556 *	make page all dirty
557 */
558void
559vm_page_dirty(vm_page_t m)
560{
561	KASSERT((m->flags & PG_CACHED) == 0,
562	    ("vm_page_dirty: page in cache!"));
563	KASSERT(!VM_PAGE_IS_FREE(m),
564	    ("vm_page_dirty: page is free!"));
565	m->dirty = VM_PAGE_BITS_ALL;
566}
567
568/*
569 *	vm_page_splay:
570 *
571 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
572 *	the vm_page containing the given pindex.  If, however, that
573 *	pindex is not found in the vm_object, returns a vm_page that is
574 *	adjacent to the pindex, coming before or after it.
575 */
576vm_page_t
577vm_page_splay(vm_pindex_t pindex, vm_page_t root)
578{
579	struct vm_page dummy;
580	vm_page_t lefttreemax, righttreemin, y;
581
582	if (root == NULL)
583		return (root);
584	lefttreemax = righttreemin = &dummy;
585	for (;; root = y) {
586		if (pindex < root->pindex) {
587			if ((y = root->left) == NULL)
588				break;
589			if (pindex < y->pindex) {
590				/* Rotate right. */
591				root->left = y->right;
592				y->right = root;
593				root = y;
594				if ((y = root->left) == NULL)
595					break;
596			}
597			/* Link into the new root's right tree. */
598			righttreemin->left = root;
599			righttreemin = root;
600		} else if (pindex > root->pindex) {
601			if ((y = root->right) == NULL)
602				break;
603			if (pindex > y->pindex) {
604				/* Rotate left. */
605				root->right = y->left;
606				y->left = root;
607				root = y;
608				if ((y = root->right) == NULL)
609					break;
610			}
611			/* Link into the new root's left tree. */
612			lefttreemax->right = root;
613			lefttreemax = root;
614		} else
615			break;
616	}
617	/* Assemble the new root. */
618	lefttreemax->right = root->left;
619	righttreemin->left = root->right;
620	root->left = dummy.right;
621	root->right = dummy.left;
622	return (root);
623}
624
625/*
626 *	vm_page_insert:		[ internal use only ]
627 *
628 *	Inserts the given mem entry into the object and object list.
629 *
630 *	The pagetables are not updated but will presumably fault the page
631 *	in if necessary, or if a kernel page the caller will at some point
632 *	enter the page into the kernel's pmap.  We are not allowed to block
633 *	here so we *can't* do this anyway.
634 *
635 *	The object and page must be locked.
636 *	This routine may not block.
637 */
638void
639vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
640{
641	vm_page_t root;
642
643	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
644	if (m->object != NULL)
645		panic("vm_page_insert: page already inserted");
646
647	/*
648	 * Record the object/offset pair in this page
649	 */
650	m->object = object;
651	m->pindex = pindex;
652
653	/*
654	 * Now link into the object's ordered list of backed pages.
655	 */
656	root = object->root;
657	if (root == NULL) {
658		m->left = NULL;
659		m->right = NULL;
660		TAILQ_INSERT_TAIL(&object->memq, m, listq);
661	} else {
662		root = vm_page_splay(pindex, root);
663		if (pindex < root->pindex) {
664			m->left = root->left;
665			m->right = root;
666			root->left = NULL;
667			TAILQ_INSERT_BEFORE(root, m, listq);
668		} else if (pindex == root->pindex)
669			panic("vm_page_insert: offset already allocated");
670		else {
671			m->right = root->right;
672			m->left = root;
673			root->right = NULL;
674			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
675		}
676	}
677	object->root = m;
678	object->generation++;
679
680	/*
681	 * show that the object has one more resident page.
682	 */
683	object->resident_page_count++;
684	/*
685	 * Hold the vnode until the last page is released.
686	 */
687	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
688		vhold((struct vnode *)object->handle);
689
690	/*
691	 * Since we are inserting a new and possibly dirty page,
692	 * update the object's OBJ_MIGHTBEDIRTY flag.
693	 */
694	if (m->flags & PG_WRITEABLE)
695		vm_object_set_writeable_dirty(object);
696}
697
698/*
699 *	vm_page_remove:
700 *				NOTE: used by device pager as well -wfj
701 *
702 *	Removes the given mem entry from the object/offset-page
703 *	table and the object page list, but do not invalidate/terminate
704 *	the backing store.
705 *
706 *	The object and page must be locked.
707 *	The underlying pmap entry (if any) is NOT removed here.
708 *	This routine may not block.
709 */
710void
711vm_page_remove(vm_page_t m)
712{
713	vm_object_t object;
714	vm_page_t root;
715
716	if ((object = m->object) == NULL)
717		return;
718	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
719	if (m->oflags & VPO_BUSY) {
720		m->oflags &= ~VPO_BUSY;
721		vm_page_flash(m);
722	}
723	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
724
725	/*
726	 * Now remove from the object's list of backed pages.
727	 */
728	if (m != object->root)
729		vm_page_splay(m->pindex, object->root);
730	if (m->left == NULL)
731		root = m->right;
732	else {
733		root = vm_page_splay(m->pindex, m->left);
734		root->right = m->right;
735	}
736	object->root = root;
737	TAILQ_REMOVE(&object->memq, m, listq);
738
739	/*
740	 * And show that the object has one fewer resident page.
741	 */
742	object->resident_page_count--;
743	object->generation++;
744	/*
745	 * The vnode may now be recycled.
746	 */
747	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
748		vdrop((struct vnode *)object->handle);
749
750	m->object = NULL;
751}
752
753/*
754 *	vm_page_lookup:
755 *
756 *	Returns the page associated with the object/offset
757 *	pair specified; if none is found, NULL is returned.
758 *
759 *	The object must be locked.
760 *	This routine may not block.
761 *	This is a critical path routine
762 */
763vm_page_t
764vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
765{
766	vm_page_t m;
767
768	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
769	if ((m = object->root) != NULL && m->pindex != pindex) {
770		m = vm_page_splay(pindex, m);
771		if ((object->root = m)->pindex != pindex)
772			m = NULL;
773	}
774	return (m);
775}
776
777/*
778 *	vm_page_rename:
779 *
780 *	Move the given memory entry from its
781 *	current object to the specified target object/offset.
782 *
783 *	The object must be locked.
784 *	This routine may not block.
785 *
786 *	Note: swap associated with the page must be invalidated by the move.  We
787 *	      have to do this for several reasons:  (1) we aren't freeing the
788 *	      page, (2) we are dirtying the page, (3) the VM system is probably
789 *	      moving the page from object A to B, and will then later move
790 *	      the backing store from A to B and we can't have a conflict.
791 *
792 *	Note: we *always* dirty the page.  It is necessary both for the
793 *	      fact that we moved it, and because we may be invalidating
794 *	      swap.  If the page is on the cache, we have to deactivate it
795 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
796 *	      on the cache.
797 */
798void
799vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
800{
801
802	vm_page_remove(m);
803	vm_page_insert(m, new_object, new_pindex);
804	vm_page_dirty(m);
805}
806
807/*
808 *	Convert all of the given object's cached pages that have a
809 *	pindex within the given range into free pages.  If the value
810 *	zero is given for "end", then the range's upper bound is
811 *	infinity.  If the given object is backed by a vnode and it
812 *	transitions from having one or more cached pages to none, the
813 *	vnode's hold count is reduced.
814 */
815void
816vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
817{
818	vm_page_t m, m_next;
819	boolean_t empty;
820
821	mtx_lock(&vm_page_queue_free_mtx);
822	if (__predict_false(object->cache == NULL)) {
823		mtx_unlock(&vm_page_queue_free_mtx);
824		return;
825	}
826	m = object->cache = vm_page_splay(start, object->cache);
827	if (m->pindex < start) {
828		if (m->right == NULL)
829			m = NULL;
830		else {
831			m_next = vm_page_splay(start, m->right);
832			m_next->left = m;
833			m->right = NULL;
834			m = object->cache = m_next;
835		}
836	}
837
838	/*
839	 * At this point, "m" is either (1) a reference to the page
840	 * with the least pindex that is greater than or equal to
841	 * "start" or (2) NULL.
842	 */
843	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
844		/*
845		 * Find "m"'s successor and remove "m" from the
846		 * object's cache.
847		 */
848		if (m->right == NULL) {
849			object->cache = m->left;
850			m_next = NULL;
851		} else {
852			m_next = vm_page_splay(start, m->right);
853			m_next->left = m->left;
854			object->cache = m_next;
855		}
856		/* Convert "m" to a free page. */
857		m->object = NULL;
858		m->valid = 0;
859		/* Clear PG_CACHED and set PG_FREE. */
860		m->flags ^= PG_CACHED | PG_FREE;
861		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
862		    ("vm_page_cache_free: page %p has inconsistent flags", m));
863		cnt.v_cache_count--;
864		cnt.v_free_count++;
865	}
866	empty = object->cache == NULL;
867	mtx_unlock(&vm_page_queue_free_mtx);
868	if (object->type == OBJT_VNODE && empty)
869		vdrop(object->handle);
870}
871
872/*
873 *	Returns the cached page that is associated with the given
874 *	object and offset.  If, however, none exists, returns NULL.
875 *
876 *	The free page queue must be locked.
877 */
878static inline vm_page_t
879vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
880{
881	vm_page_t m;
882
883	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
884	if ((m = object->cache) != NULL && m->pindex != pindex) {
885		m = vm_page_splay(pindex, m);
886		if ((object->cache = m)->pindex != pindex)
887			m = NULL;
888	}
889	return (m);
890}
891
892/*
893 *	Remove the given cached page from its containing object's
894 *	collection of cached pages.
895 *
896 *	The free page queue must be locked.
897 */
898void
899vm_page_cache_remove(vm_page_t m)
900{
901	vm_object_t object;
902	vm_page_t root;
903
904	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
905	KASSERT((m->flags & PG_CACHED) != 0,
906	    ("vm_page_cache_remove: page %p is not cached", m));
907	object = m->object;
908	if (m != object->cache) {
909		root = vm_page_splay(m->pindex, object->cache);
910		KASSERT(root == m,
911		    ("vm_page_cache_remove: page %p is not cached in object %p",
912		    m, object));
913	}
914	if (m->left == NULL)
915		root = m->right;
916	else if (m->right == NULL)
917		root = m->left;
918	else {
919		root = vm_page_splay(m->pindex, m->left);
920		root->right = m->right;
921	}
922	object->cache = root;
923	m->object = NULL;
924	cnt.v_cache_count--;
925}
926
927/*
928 *	Transfer all of the cached pages with offset greater than or
929 *	equal to 'offidxstart' from the original object's cache to the
930 *	new object's cache.  However, any cached pages with offset
931 *	greater than or equal to the new object's size are kept in the
932 *	original object.  Initially, the new object's cache must be
933 *	empty.  Offset 'offidxstart' in the original object must
934 *	correspond to offset zero in the new object.
935 *
936 *	The new object must be locked.
937 */
938void
939vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
940    vm_object_t new_object)
941{
942	vm_page_t m, m_next;
943
944	/*
945	 * Insertion into an object's collection of cached pages
946	 * requires the object to be locked.  In contrast, removal does
947	 * not.
948	 */
949	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
950	KASSERT(new_object->cache == NULL,
951	    ("vm_page_cache_transfer: object %p has cached pages",
952	    new_object));
953	mtx_lock(&vm_page_queue_free_mtx);
954	if ((m = orig_object->cache) != NULL) {
955		/*
956		 * Transfer all of the pages with offset greater than or
957		 * equal to 'offidxstart' from the original object's
958		 * cache to the new object's cache.
959		 */
960		m = vm_page_splay(offidxstart, m);
961		if (m->pindex < offidxstart) {
962			orig_object->cache = m;
963			new_object->cache = m->right;
964			m->right = NULL;
965		} else {
966			orig_object->cache = m->left;
967			new_object->cache = m;
968			m->left = NULL;
969		}
970		while ((m = new_object->cache) != NULL) {
971			if ((m->pindex - offidxstart) >= new_object->size) {
972				/*
973				 * Return all of the cached pages with
974				 * offset greater than or equal to the
975				 * new object's size to the original
976				 * object's cache.
977				 */
978				new_object->cache = m->left;
979				m->left = orig_object->cache;
980				orig_object->cache = m;
981				break;
982			}
983			m_next = vm_page_splay(m->pindex, m->right);
984			/* Update the page's object and offset. */
985			m->object = new_object;
986			m->pindex -= offidxstart;
987			if (m_next == NULL)
988				break;
989			m->right = NULL;
990			m_next->left = m;
991			new_object->cache = m_next;
992		}
993		KASSERT(new_object->cache == NULL ||
994		    new_object->type == OBJT_SWAP,
995		    ("vm_page_cache_transfer: object %p's type is incompatible"
996		    " with cached pages", new_object));
997	}
998	mtx_unlock(&vm_page_queue_free_mtx);
999}
1000
1001/*
1002 *	vm_page_alloc:
1003 *
1004 *	Allocate and return a memory cell associated
1005 *	with this VM object/offset pair.
1006 *
1007 *	page_req classes:
1008 *	VM_ALLOC_NORMAL		normal process request
1009 *	VM_ALLOC_SYSTEM		system *really* needs a page
1010 *	VM_ALLOC_INTERRUPT	interrupt time request
1011 *	VM_ALLOC_ZERO		zero page
1012 *
1013 *	This routine may not block.
1014 */
1015vm_page_t
1016vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1017{
1018	struct vnode *vp = NULL;
1019	vm_object_t m_object;
1020	vm_page_t m;
1021	int flags, page_req;
1022
1023	page_req = req & VM_ALLOC_CLASS_MASK;
1024	KASSERT(curthread->td_intr_nesting_level == 0 ||
1025	    page_req == VM_ALLOC_INTERRUPT,
1026	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1027
1028	if ((req & VM_ALLOC_NOOBJ) == 0) {
1029		KASSERT(object != NULL,
1030		    ("vm_page_alloc: NULL object."));
1031		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1032	}
1033
1034	/*
1035	 * The pager is allowed to eat deeper into the free page list.
1036	 */
1037	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1038		page_req = VM_ALLOC_SYSTEM;
1039	};
1040
1041	mtx_lock(&vm_page_queue_free_mtx);
1042	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1043	    (page_req == VM_ALLOC_SYSTEM &&
1044	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1045	    (page_req == VM_ALLOC_INTERRUPT &&
1046	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1047		/*
1048		 * Allocate from the free queue if the number of free pages
1049		 * exceeds the minimum for the request class.
1050		 */
1051		if (object != NULL &&
1052		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1053			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1054				mtx_unlock(&vm_page_queue_free_mtx);
1055				return (NULL);
1056			}
1057			if (vm_phys_unfree_page(m))
1058				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1059#if VM_NRESERVLEVEL > 0
1060			else if (!vm_reserv_reactivate_page(m))
1061#else
1062			else
1063#endif
1064				panic("vm_page_alloc: cache page %p is missing"
1065				    " from the free queue", m);
1066		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1067			mtx_unlock(&vm_page_queue_free_mtx);
1068			return (NULL);
1069#if VM_NRESERVLEVEL > 0
1070		} else if (object == NULL || object->type == OBJT_DEVICE ||
1071		    (object->flags & OBJ_COLORED) == 0 ||
1072		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1073#else
1074		} else {
1075#endif
1076			m = vm_phys_alloc_pages(object != NULL ?
1077			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1078#if VM_NRESERVLEVEL > 0
1079			if (m == NULL && vm_reserv_reclaim_inactive()) {
1080				m = vm_phys_alloc_pages(object != NULL ?
1081				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1082				    0);
1083			}
1084#endif
1085		}
1086	} else {
1087		/*
1088		 * Not allocatable, give up.
1089		 */
1090		mtx_unlock(&vm_page_queue_free_mtx);
1091		atomic_add_int(&vm_pageout_deficit, 1);
1092		pagedaemon_wakeup();
1093		return (NULL);
1094	}
1095
1096	/*
1097	 *  At this point we had better have found a good page.
1098	 */
1099
1100	KASSERT(
1101	    m != NULL,
1102	    ("vm_page_alloc(): missing page on free queue")
1103	);
1104	if ((m->flags & PG_CACHED) != 0) {
1105		KASSERT(m->valid != 0,
1106		    ("vm_page_alloc: cached page %p is invalid", m));
1107		if (m->object == object && m->pindex == pindex)
1108	  		cnt.v_reactivated++;
1109		else
1110			m->valid = 0;
1111		m_object = m->object;
1112		vm_page_cache_remove(m);
1113		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1114			vp = m_object->handle;
1115	} else {
1116		KASSERT(VM_PAGE_IS_FREE(m),
1117		    ("vm_page_alloc: page %p is not free", m));
1118		KASSERT(m->valid == 0,
1119		    ("vm_page_alloc: free page %p is valid", m));
1120		cnt.v_free_count--;
1121	}
1122
1123	/*
1124	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1125	 */
1126	flags = 0;
1127	if (m->flags & PG_ZERO) {
1128		vm_page_zero_count--;
1129		if (req & VM_ALLOC_ZERO)
1130			flags = PG_ZERO;
1131	}
1132	if (object == NULL || object->type == OBJT_PHYS)
1133		flags |= PG_UNMANAGED;
1134	m->flags = flags;
1135	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1136		m->oflags = 0;
1137	else
1138		m->oflags = VPO_BUSY;
1139	if (req & VM_ALLOC_WIRED) {
1140		atomic_add_int(&cnt.v_wire_count, 1);
1141		m->wire_count = 1;
1142	} else
1143		m->wire_count = 0;
1144	m->hold_count = 0;
1145	m->act_count = 0;
1146	m->busy = 0;
1147	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
1148	mtx_unlock(&vm_page_queue_free_mtx);
1149
1150	if ((req & VM_ALLOC_NOOBJ) == 0)
1151		vm_page_insert(m, object, pindex);
1152	else
1153		m->pindex = pindex;
1154
1155	/*
1156	 * The following call to vdrop() must come after the above call
1157	 * to vm_page_insert() in case both affect the same object and
1158	 * vnode.  Otherwise, the affected vnode's hold count could
1159	 * temporarily become zero.
1160	 */
1161	if (vp != NULL)
1162		vdrop(vp);
1163
1164	/*
1165	 * Don't wakeup too often - wakeup the pageout daemon when
1166	 * we would be nearly out of memory.
1167	 */
1168	if (vm_paging_needed())
1169		pagedaemon_wakeup();
1170
1171	return (m);
1172}
1173
1174/*
1175 *	vm_wait:	(also see VM_WAIT macro)
1176 *
1177 *	Block until free pages are available for allocation
1178 *	- Called in various places before memory allocations.
1179 */
1180void
1181vm_wait(void)
1182{
1183
1184	mtx_lock(&vm_page_queue_free_mtx);
1185	if (curproc == pageproc) {
1186		vm_pageout_pages_needed = 1;
1187		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1188		    PDROP | PSWP, "VMWait", 0);
1189	} else {
1190		if (!vm_pages_needed) {
1191			vm_pages_needed = 1;
1192			wakeup(&vm_pages_needed);
1193		}
1194		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1195		    "vmwait", 0);
1196	}
1197}
1198
1199/*
1200 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1201 *
1202 *	Block until free pages are available for allocation
1203 *	- Called only in vm_fault so that processes page faulting
1204 *	  can be easily tracked.
1205 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1206 *	  processes will be able to grab memory first.  Do not change
1207 *	  this balance without careful testing first.
1208 */
1209void
1210vm_waitpfault(void)
1211{
1212
1213	mtx_lock(&vm_page_queue_free_mtx);
1214	if (!vm_pages_needed) {
1215		vm_pages_needed = 1;
1216		wakeup(&vm_pages_needed);
1217	}
1218	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1219	    "pfault", 0);
1220}
1221
1222/*
1223 *	vm_page_requeue:
1224 *
1225 *	If the given page is contained within a page queue, move it to the tail
1226 *	of that queue.
1227 *
1228 *	The page queues must be locked.
1229 */
1230void
1231vm_page_requeue(vm_page_t m)
1232{
1233	int queue = VM_PAGE_GETQUEUE(m);
1234	struct vpgqueues *vpq;
1235
1236	if (queue != PQ_NONE) {
1237		vpq = &vm_page_queues[queue];
1238		TAILQ_REMOVE(&vpq->pl, m, pageq);
1239		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1240	}
1241}
1242
1243/*
1244 *	vm_pageq_remove:
1245 *
1246 *	Remove a page from its queue.
1247 *
1248 *	The queue containing the given page must be locked.
1249 *	This routine may not block.
1250 */
1251void
1252vm_pageq_remove(vm_page_t m)
1253{
1254	int queue = VM_PAGE_GETQUEUE(m);
1255	struct vpgqueues *pq;
1256
1257	if (queue != PQ_NONE) {
1258		VM_PAGE_SETQUEUE2(m, PQ_NONE);
1259		pq = &vm_page_queues[queue];
1260		TAILQ_REMOVE(&pq->pl, m, pageq);
1261		(*pq->cnt)--;
1262	}
1263}
1264
1265/*
1266 *	vm_page_enqueue:
1267 *
1268 *	Add the given page to the specified queue.
1269 *
1270 *	The page queues must be locked.
1271 */
1272static void
1273vm_page_enqueue(int queue, vm_page_t m)
1274{
1275	struct vpgqueues *vpq;
1276
1277	vpq = &vm_page_queues[queue];
1278	VM_PAGE_SETQUEUE2(m, queue);
1279	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1280	++*vpq->cnt;
1281}
1282
1283/*
1284 *	vm_page_activate:
1285 *
1286 *	Put the specified page on the active list (if appropriate).
1287 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1288 *	mess with it.
1289 *
1290 *	The page queues must be locked.
1291 *	This routine may not block.
1292 */
1293void
1294vm_page_activate(vm_page_t m)
1295{
1296
1297	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1298	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1299		vm_pageq_remove(m);
1300		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1301			if (m->act_count < ACT_INIT)
1302				m->act_count = ACT_INIT;
1303			vm_page_enqueue(PQ_ACTIVE, m);
1304		}
1305	} else {
1306		if (m->act_count < ACT_INIT)
1307			m->act_count = ACT_INIT;
1308	}
1309}
1310
1311/*
1312 *	vm_page_free_wakeup:
1313 *
1314 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1315 *	routine is called when a page has been added to the cache or free
1316 *	queues.
1317 *
1318 *	The page queues must be locked.
1319 *	This routine may not block.
1320 */
1321static inline void
1322vm_page_free_wakeup(void)
1323{
1324
1325	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1326	/*
1327	 * if pageout daemon needs pages, then tell it that there are
1328	 * some free.
1329	 */
1330	if (vm_pageout_pages_needed &&
1331	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1332		wakeup(&vm_pageout_pages_needed);
1333		vm_pageout_pages_needed = 0;
1334	}
1335	/*
1336	 * wakeup processes that are waiting on memory if we hit a
1337	 * high water mark. And wakeup scheduler process if we have
1338	 * lots of memory. this process will swapin processes.
1339	 */
1340	if (vm_pages_needed && !vm_page_count_min()) {
1341		vm_pages_needed = 0;
1342		wakeup(&cnt.v_free_count);
1343	}
1344}
1345
1346/*
1347 *	vm_page_free_toq:
1348 *
1349 *	Returns the given page to the free list,
1350 *	disassociating it with any VM object.
1351 *
1352 *	Object and page must be locked prior to entry.
1353 *	This routine may not block.
1354 */
1355
1356void
1357vm_page_free_toq(vm_page_t m)
1358{
1359
1360	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1361		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1362	KASSERT(!pmap_page_is_mapped(m),
1363	    ("vm_page_free_toq: freeing mapped page %p", m));
1364	PCPU_INC(cnt.v_tfree);
1365
1366	if (m->busy || VM_PAGE_IS_FREE(m)) {
1367		printf(
1368		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1369		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1370		    m->hold_count);
1371		if (VM_PAGE_IS_FREE(m))
1372			panic("vm_page_free: freeing free page");
1373		else
1374			panic("vm_page_free: freeing busy page");
1375	}
1376
1377	/*
1378	 * unqueue, then remove page.  Note that we cannot destroy
1379	 * the page here because we do not want to call the pager's
1380	 * callback routine until after we've put the page on the
1381	 * appropriate free queue.
1382	 */
1383	vm_pageq_remove(m);
1384	vm_page_remove(m);
1385
1386	/*
1387	 * If fictitious remove object association and
1388	 * return, otherwise delay object association removal.
1389	 */
1390	if ((m->flags & PG_FICTITIOUS) != 0) {
1391		return;
1392	}
1393
1394	m->valid = 0;
1395	vm_page_undirty(m);
1396
1397	if (m->wire_count != 0) {
1398		if (m->wire_count > 1) {
1399			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1400				m->wire_count, (long)m->pindex);
1401		}
1402		panic("vm_page_free: freeing wired page");
1403	}
1404	if (m->hold_count != 0) {
1405		m->flags &= ~PG_ZERO;
1406		vm_page_enqueue(PQ_HOLD, m);
1407	} else {
1408		mtx_lock(&vm_page_queue_free_mtx);
1409		m->flags |= PG_FREE;
1410		cnt.v_free_count++;
1411#if VM_NRESERVLEVEL > 0
1412		if (!vm_reserv_free_page(m))
1413#else
1414		if (TRUE)
1415#endif
1416			vm_phys_free_pages(m, 0);
1417		if ((m->flags & PG_ZERO) != 0)
1418			++vm_page_zero_count;
1419		else
1420			vm_page_zero_idle_wakeup();
1421		vm_page_free_wakeup();
1422		mtx_unlock(&vm_page_queue_free_mtx);
1423	}
1424}
1425
1426/*
1427 *	vm_page_wire:
1428 *
1429 *	Mark this page as wired down by yet
1430 *	another map, removing it from paging queues
1431 *	as necessary.
1432 *
1433 *	The page queues must be locked.
1434 *	This routine may not block.
1435 */
1436void
1437vm_page_wire(vm_page_t m)
1438{
1439
1440	/*
1441	 * Only bump the wire statistics if the page is not already wired,
1442	 * and only unqueue the page if it is on some queue (if it is unmanaged
1443	 * it is already off the queues).
1444	 */
1445	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1446	if (m->flags & PG_FICTITIOUS)
1447		return;
1448	if (m->wire_count == 0) {
1449		if ((m->flags & PG_UNMANAGED) == 0)
1450			vm_pageq_remove(m);
1451		atomic_add_int(&cnt.v_wire_count, 1);
1452	}
1453	m->wire_count++;
1454	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1455}
1456
1457/*
1458 *	vm_page_unwire:
1459 *
1460 *	Release one wiring of this page, potentially
1461 *	enabling it to be paged again.
1462 *
1463 *	Many pages placed on the inactive queue should actually go
1464 *	into the cache, but it is difficult to figure out which.  What
1465 *	we do instead, if the inactive target is well met, is to put
1466 *	clean pages at the head of the inactive queue instead of the tail.
1467 *	This will cause them to be moved to the cache more quickly and
1468 *	if not actively re-referenced, freed more quickly.  If we just
1469 *	stick these pages at the end of the inactive queue, heavy filesystem
1470 *	meta-data accesses can cause an unnecessary paging load on memory bound
1471 *	processes.  This optimization causes one-time-use metadata to be
1472 *	reused more quickly.
1473 *
1474 *	BUT, if we are in a low-memory situation we have no choice but to
1475 *	put clean pages on the cache queue.
1476 *
1477 *	A number of routines use vm_page_unwire() to guarantee that the page
1478 *	will go into either the inactive or active queues, and will NEVER
1479 *	be placed in the cache - for example, just after dirtying a page.
1480 *	dirty pages in the cache are not allowed.
1481 *
1482 *	The page queues must be locked.
1483 *	This routine may not block.
1484 */
1485void
1486vm_page_unwire(vm_page_t m, int activate)
1487{
1488
1489	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1490	if (m->flags & PG_FICTITIOUS)
1491		return;
1492	if (m->wire_count > 0) {
1493		m->wire_count--;
1494		if (m->wire_count == 0) {
1495			atomic_subtract_int(&cnt.v_wire_count, 1);
1496			if (m->flags & PG_UNMANAGED) {
1497				;
1498			} else if (activate)
1499				vm_page_enqueue(PQ_ACTIVE, m);
1500			else {
1501				vm_page_flag_clear(m, PG_WINATCFLS);
1502				vm_page_enqueue(PQ_INACTIVE, m);
1503			}
1504		}
1505	} else {
1506		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1507	}
1508}
1509
1510
1511/*
1512 * Move the specified page to the inactive queue.  If the page has
1513 * any associated swap, the swap is deallocated.
1514 *
1515 * Normally athead is 0 resulting in LRU operation.  athead is set
1516 * to 1 if we want this page to be 'as if it were placed in the cache',
1517 * except without unmapping it from the process address space.
1518 *
1519 * This routine may not block.
1520 */
1521static inline void
1522_vm_page_deactivate(vm_page_t m, int athead)
1523{
1524
1525	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1526
1527	/*
1528	 * Ignore if already inactive.
1529	 */
1530	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1531		return;
1532	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1533		vm_page_flag_clear(m, PG_WINATCFLS);
1534		vm_pageq_remove(m);
1535		if (athead)
1536			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1537		else
1538			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1539		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1540		cnt.v_inactive_count++;
1541	}
1542}
1543
1544void
1545vm_page_deactivate(vm_page_t m)
1546{
1547    _vm_page_deactivate(m, 0);
1548}
1549
1550/*
1551 * vm_page_try_to_cache:
1552 *
1553 * Returns 0 on failure, 1 on success
1554 */
1555int
1556vm_page_try_to_cache(vm_page_t m)
1557{
1558
1559	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1560	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1561	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1562	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1563		return (0);
1564	}
1565	pmap_remove_all(m);
1566	if (m->dirty)
1567		return (0);
1568	vm_page_cache(m);
1569	return (1);
1570}
1571
1572/*
1573 * vm_page_try_to_free()
1574 *
1575 *	Attempt to free the page.  If we cannot free it, we do nothing.
1576 *	1 is returned on success, 0 on failure.
1577 */
1578int
1579vm_page_try_to_free(vm_page_t m)
1580{
1581
1582	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1583	if (m->object != NULL)
1584		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1585	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1586	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1587		return (0);
1588	}
1589	pmap_remove_all(m);
1590	if (m->dirty)
1591		return (0);
1592	vm_page_free(m);
1593	return (1);
1594}
1595
1596/*
1597 * vm_page_cache
1598 *
1599 * Put the specified page onto the page cache queue (if appropriate).
1600 *
1601 * This routine may not block.
1602 */
1603void
1604vm_page_cache(vm_page_t m)
1605{
1606	vm_object_t object;
1607	vm_page_t root;
1608
1609	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1610	object = m->object;
1611	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1612	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1613	    m->hold_count || m->wire_count) {
1614		panic("vm_page_cache: attempting to cache busy page");
1615	}
1616	pmap_remove_all(m);
1617	if (m->dirty != 0)
1618		panic("vm_page_cache: page %p is dirty", m);
1619	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1620	    (object->type == OBJT_SWAP &&
1621	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1622		/*
1623		 * Hypothesis: A cache-elgible page belonging to a
1624		 * default object or swap object but without a backing
1625		 * store must be zero filled.
1626		 */
1627		vm_page_free(m);
1628		return;
1629	}
1630	KASSERT((m->flags & PG_CACHED) == 0,
1631	    ("vm_page_cache: page %p is already cached", m));
1632	cnt.v_tcached++;
1633
1634	/*
1635	 * Remove the page from the paging queues.
1636	 */
1637	vm_pageq_remove(m);
1638
1639	/*
1640	 * Remove the page from the object's collection of resident
1641	 * pages.
1642	 */
1643	if (m != object->root)
1644		vm_page_splay(m->pindex, object->root);
1645	if (m->left == NULL)
1646		root = m->right;
1647	else {
1648		root = vm_page_splay(m->pindex, m->left);
1649		root->right = m->right;
1650	}
1651	object->root = root;
1652	TAILQ_REMOVE(&object->memq, m, listq);
1653	object->resident_page_count--;
1654	object->generation++;
1655
1656	/*
1657	 * Insert the page into the object's collection of cached pages
1658	 * and the physical memory allocator's cache/free page queues.
1659	 */
1660	vm_page_flag_clear(m, PG_ZERO);
1661	mtx_lock(&vm_page_queue_free_mtx);
1662	m->flags |= PG_CACHED;
1663	cnt.v_cache_count++;
1664	root = object->cache;
1665	if (root == NULL) {
1666		m->left = NULL;
1667		m->right = NULL;
1668	} else {
1669		root = vm_page_splay(m->pindex, root);
1670		if (m->pindex < root->pindex) {
1671			m->left = root->left;
1672			m->right = root;
1673			root->left = NULL;
1674		} else if (__predict_false(m->pindex == root->pindex))
1675			panic("vm_page_cache: offset already cached");
1676		else {
1677			m->right = root->right;
1678			m->left = root;
1679			root->right = NULL;
1680		}
1681	}
1682	object->cache = m;
1683#if VM_NRESERVLEVEL > 0
1684	if (!vm_reserv_free_page(m)) {
1685#else
1686	if (TRUE) {
1687#endif
1688		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1689		vm_phys_free_pages(m, 0);
1690	}
1691	vm_page_free_wakeup();
1692	mtx_unlock(&vm_page_queue_free_mtx);
1693
1694	/*
1695	 * Increment the vnode's hold count if this is the object's only
1696	 * cached page.  Decrement the vnode's hold count if this was
1697	 * the object's only resident page.
1698	 */
1699	if (object->type == OBJT_VNODE) {
1700		if (root == NULL && object->resident_page_count != 0)
1701			vhold(object->handle);
1702		else if (root != NULL && object->resident_page_count == 0)
1703			vdrop(object->handle);
1704	}
1705}
1706
1707/*
1708 * vm_page_dontneed
1709 *
1710 *	Cache, deactivate, or do nothing as appropriate.  This routine
1711 *	is typically used by madvise() MADV_DONTNEED.
1712 *
1713 *	Generally speaking we want to move the page into the cache so
1714 *	it gets reused quickly.  However, this can result in a silly syndrome
1715 *	due to the page recycling too quickly.  Small objects will not be
1716 *	fully cached.  On the otherhand, if we move the page to the inactive
1717 *	queue we wind up with a problem whereby very large objects
1718 *	unnecessarily blow away our inactive and cache queues.
1719 *
1720 *	The solution is to move the pages based on a fixed weighting.  We
1721 *	either leave them alone, deactivate them, or move them to the cache,
1722 *	where moving them to the cache has the highest weighting.
1723 *	By forcing some pages into other queues we eventually force the
1724 *	system to balance the queues, potentially recovering other unrelated
1725 *	space from active.  The idea is to not force this to happen too
1726 *	often.
1727 */
1728void
1729vm_page_dontneed(vm_page_t m)
1730{
1731	static int dnweight;
1732	int dnw;
1733	int head;
1734
1735	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1736	dnw = ++dnweight;
1737
1738	/*
1739	 * occassionally leave the page alone
1740	 */
1741	if ((dnw & 0x01F0) == 0 ||
1742	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
1743		if (m->act_count >= ACT_INIT)
1744			--m->act_count;
1745		return;
1746	}
1747
1748	/*
1749	 * Clear any references to the page.  Otherwise, the page daemon will
1750	 * immediately reactivate the page.
1751	 */
1752	vm_page_flag_clear(m, PG_REFERENCED);
1753	pmap_clear_reference(m);
1754
1755	if (m->dirty == 0 && pmap_is_modified(m))
1756		vm_page_dirty(m);
1757
1758	if (m->dirty || (dnw & 0x0070) == 0) {
1759		/*
1760		 * Deactivate the page 3 times out of 32.
1761		 */
1762		head = 0;
1763	} else {
1764		/*
1765		 * Cache the page 28 times out of every 32.  Note that
1766		 * the page is deactivated instead of cached, but placed
1767		 * at the head of the queue instead of the tail.
1768		 */
1769		head = 1;
1770	}
1771	_vm_page_deactivate(m, head);
1772}
1773
1774/*
1775 * Grab a page, waiting until we are waken up due to the page
1776 * changing state.  We keep on waiting, if the page continues
1777 * to be in the object.  If the page doesn't exist, first allocate it
1778 * and then conditionally zero it.
1779 *
1780 * This routine may block.
1781 */
1782vm_page_t
1783vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1784{
1785	vm_page_t m;
1786
1787	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1788retrylookup:
1789	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1790		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1791			if ((allocflags & VM_ALLOC_RETRY) == 0)
1792				return (NULL);
1793			goto retrylookup;
1794		} else {
1795			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1796				vm_page_lock_queues();
1797				vm_page_wire(m);
1798				vm_page_unlock_queues();
1799			}
1800			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1801				vm_page_busy(m);
1802			return (m);
1803		}
1804	}
1805	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1806	if (m == NULL) {
1807		VM_OBJECT_UNLOCK(object);
1808		VM_WAIT;
1809		VM_OBJECT_LOCK(object);
1810		if ((allocflags & VM_ALLOC_RETRY) == 0)
1811			return (NULL);
1812		goto retrylookup;
1813	} else if (m->valid != 0)
1814		return (m);
1815	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1816		pmap_zero_page(m);
1817	return (m);
1818}
1819
1820/*
1821 * Mapping function for valid bits or for dirty bits in
1822 * a page.  May not block.
1823 *
1824 * Inputs are required to range within a page.
1825 */
1826int
1827vm_page_bits(int base, int size)
1828{
1829	int first_bit;
1830	int last_bit;
1831
1832	KASSERT(
1833	    base + size <= PAGE_SIZE,
1834	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1835	);
1836
1837	if (size == 0)		/* handle degenerate case */
1838		return (0);
1839
1840	first_bit = base >> DEV_BSHIFT;
1841	last_bit = (base + size - 1) >> DEV_BSHIFT;
1842
1843	return ((2 << last_bit) - (1 << first_bit));
1844}
1845
1846/*
1847 *	vm_page_set_validclean:
1848 *
1849 *	Sets portions of a page valid and clean.  The arguments are expected
1850 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1851 *	of any partial chunks touched by the range.  The invalid portion of
1852 *	such chunks will be zero'd.
1853 *
1854 *	This routine may not block.
1855 *
1856 *	(base + size) must be less then or equal to PAGE_SIZE.
1857 */
1858void
1859vm_page_set_validclean(vm_page_t m, int base, int size)
1860{
1861	int pagebits;
1862	int frag;
1863	int endoff;
1864
1865	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1866	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1867	if (size == 0)	/* handle degenerate case */
1868		return;
1869
1870	/*
1871	 * If the base is not DEV_BSIZE aligned and the valid
1872	 * bit is clear, we have to zero out a portion of the
1873	 * first block.
1874	 */
1875	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1876	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1877		pmap_zero_page_area(m, frag, base - frag);
1878
1879	/*
1880	 * If the ending offset is not DEV_BSIZE aligned and the
1881	 * valid bit is clear, we have to zero out a portion of
1882	 * the last block.
1883	 */
1884	endoff = base + size;
1885	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1886	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1887		pmap_zero_page_area(m, endoff,
1888		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1889
1890	/*
1891	 * Set valid, clear dirty bits.  If validating the entire
1892	 * page we can safely clear the pmap modify bit.  We also
1893	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1894	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1895	 * be set again.
1896	 *
1897	 * We set valid bits inclusive of any overlap, but we can only
1898	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1899	 * the range.
1900	 */
1901	pagebits = vm_page_bits(base, size);
1902	m->valid |= pagebits;
1903#if 0	/* NOT YET */
1904	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1905		frag = DEV_BSIZE - frag;
1906		base += frag;
1907		size -= frag;
1908		if (size < 0)
1909			size = 0;
1910	}
1911	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1912#endif
1913	m->dirty &= ~pagebits;
1914	if (base == 0 && size == PAGE_SIZE) {
1915		pmap_clear_modify(m);
1916		m->oflags &= ~VPO_NOSYNC;
1917	}
1918}
1919
1920void
1921vm_page_clear_dirty(vm_page_t m, int base, int size)
1922{
1923
1924	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1925	m->dirty &= ~vm_page_bits(base, size);
1926}
1927
1928/*
1929 *	vm_page_set_invalid:
1930 *
1931 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1932 *	valid and dirty bits for the effected areas are cleared.
1933 *
1934 *	May not block.
1935 */
1936void
1937vm_page_set_invalid(vm_page_t m, int base, int size)
1938{
1939	int bits;
1940
1941	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1942	bits = vm_page_bits(base, size);
1943	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1944	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1945		pmap_remove_all(m);
1946	m->valid &= ~bits;
1947	m->dirty &= ~bits;
1948	m->object->generation++;
1949}
1950
1951/*
1952 * vm_page_zero_invalid()
1953 *
1954 *	The kernel assumes that the invalid portions of a page contain
1955 *	garbage, but such pages can be mapped into memory by user code.
1956 *	When this occurs, we must zero out the non-valid portions of the
1957 *	page so user code sees what it expects.
1958 *
1959 *	Pages are most often semi-valid when the end of a file is mapped
1960 *	into memory and the file's size is not page aligned.
1961 */
1962void
1963vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1964{
1965	int b;
1966	int i;
1967
1968	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1969	/*
1970	 * Scan the valid bits looking for invalid sections that
1971	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1972	 * valid bit may be set ) have already been zerod by
1973	 * vm_page_set_validclean().
1974	 */
1975	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1976		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1977		    (m->valid & (1 << i))
1978		) {
1979			if (i > b) {
1980				pmap_zero_page_area(m,
1981				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1982			}
1983			b = i + 1;
1984		}
1985	}
1986
1987	/*
1988	 * setvalid is TRUE when we can safely set the zero'd areas
1989	 * as being valid.  We can do this if there are no cache consistancy
1990	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1991	 */
1992	if (setvalid)
1993		m->valid = VM_PAGE_BITS_ALL;
1994}
1995
1996/*
1997 *	vm_page_is_valid:
1998 *
1999 *	Is (partial) page valid?  Note that the case where size == 0
2000 *	will return FALSE in the degenerate case where the page is
2001 *	entirely invalid, and TRUE otherwise.
2002 *
2003 *	May not block.
2004 */
2005int
2006vm_page_is_valid(vm_page_t m, int base, int size)
2007{
2008	int bits = vm_page_bits(base, size);
2009
2010	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2011	if (m->valid && ((m->valid & bits) == bits))
2012		return 1;
2013	else
2014		return 0;
2015}
2016
2017/*
2018 * update dirty bits from pmap/mmu.  May not block.
2019 */
2020void
2021vm_page_test_dirty(vm_page_t m)
2022{
2023	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2024		vm_page_dirty(m);
2025	}
2026}
2027
2028int so_zerocp_fullpage = 0;
2029
2030/*
2031 *	Replace the given page with a copy.  The copied page assumes
2032 *	the portion of the given page's "wire_count" that is not the
2033 *	responsibility of this copy-on-write mechanism.
2034 *
2035 *	The object containing the given page must have a non-zero
2036 *	paging-in-progress count and be locked.
2037 */
2038void
2039vm_page_cowfault(vm_page_t m)
2040{
2041	vm_page_t mnew;
2042	vm_object_t object;
2043	vm_pindex_t pindex;
2044
2045	object = m->object;
2046	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2047	KASSERT(object->paging_in_progress != 0,
2048	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2049	    object));
2050	pindex = m->pindex;
2051
2052 retry_alloc:
2053	pmap_remove_all(m);
2054	vm_page_remove(m);
2055	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2056	if (mnew == NULL) {
2057		vm_page_insert(m, object, pindex);
2058		vm_page_unlock_queues();
2059		VM_OBJECT_UNLOCK(object);
2060		VM_WAIT;
2061		VM_OBJECT_LOCK(object);
2062		if (m == vm_page_lookup(object, pindex)) {
2063			vm_page_lock_queues();
2064			goto retry_alloc;
2065		} else {
2066			/*
2067			 * Page disappeared during the wait.
2068			 */
2069			vm_page_lock_queues();
2070			return;
2071		}
2072	}
2073
2074	if (m->cow == 0) {
2075		/*
2076		 * check to see if we raced with an xmit complete when
2077		 * waiting to allocate a page.  If so, put things back
2078		 * the way they were
2079		 */
2080		vm_page_free(mnew);
2081		vm_page_insert(m, object, pindex);
2082	} else { /* clear COW & copy page */
2083		if (!so_zerocp_fullpage)
2084			pmap_copy_page(m, mnew);
2085		mnew->valid = VM_PAGE_BITS_ALL;
2086		vm_page_dirty(mnew);
2087		mnew->wire_count = m->wire_count - m->cow;
2088		m->wire_count = m->cow;
2089	}
2090}
2091
2092void
2093vm_page_cowclear(vm_page_t m)
2094{
2095
2096	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2097	if (m->cow) {
2098		m->cow--;
2099		/*
2100		 * let vm_fault add back write permission  lazily
2101		 */
2102	}
2103	/*
2104	 *  sf_buf_free() will free the page, so we needn't do it here
2105	 */
2106}
2107
2108void
2109vm_page_cowsetup(vm_page_t m)
2110{
2111
2112	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2113	m->cow++;
2114	pmap_remove_write(m);
2115}
2116
2117#include "opt_ddb.h"
2118#ifdef DDB
2119#include <sys/kernel.h>
2120
2121#include <ddb/ddb.h>
2122
2123DB_SHOW_COMMAND(page, vm_page_print_page_info)
2124{
2125	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2126	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2127	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2128	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2129	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2130	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2131	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2132	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2133	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2134	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2135}
2136
2137DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2138{
2139
2140	db_printf("PQ_FREE:");
2141	db_printf(" %d", cnt.v_free_count);
2142	db_printf("\n");
2143
2144	db_printf("PQ_CACHE:");
2145	db_printf(" %d", cnt.v_cache_count);
2146	db_printf("\n");
2147
2148	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2149		*vm_page_queues[PQ_ACTIVE].cnt,
2150		*vm_page_queues[PQ_INACTIVE].cnt);
2151}
2152#endif /* DDB */
2153