vm_page.c revision 171633
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 171633 2007-07-27 20:01:22Z alc $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/kernel.h>
106#include <sys/malloc.h>
107#include <sys/mutex.h>
108#include <sys/proc.h>
109#include <sys/sysctl.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_phys.h>
121#include <vm/vm_extern.h>
122#include <vm/uma.h>
123#include <vm/uma_int.h>
124
125#include <machine/md_var.h>
126
127/*
128 *	Associated with page of user-allocatable memory is a
129 *	page structure.
130 */
131
132struct mtx vm_page_queue_mtx;
133struct mtx vm_page_queue_free_mtx;
134
135vm_page_t vm_page_array = 0;
136int vm_page_array_size = 0;
137long first_page = 0;
138int vm_page_zero_count = 0;
139
140static int boot_pages = UMA_BOOT_PAGES;
141TUNABLE_INT("vm.boot_pages", &boot_pages);
142SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
143	"number of pages allocated for bootstrapping the VM system");
144
145/*
146 *	vm_set_page_size:
147 *
148 *	Sets the page size, perhaps based upon the memory
149 *	size.  Must be called before any use of page-size
150 *	dependent functions.
151 */
152void
153vm_set_page_size(void)
154{
155	if (cnt.v_page_size == 0)
156		cnt.v_page_size = PAGE_SIZE;
157	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
158		panic("vm_set_page_size: page size not a power of two");
159}
160
161/*
162 *	vm_page_blacklist_lookup:
163 *
164 *	See if a physical address in this page has been listed
165 *	in the blacklist tunable.  Entries in the tunable are
166 *	separated by spaces or commas.  If an invalid integer is
167 *	encountered then the rest of the string is skipped.
168 */
169static int
170vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
171{
172	vm_paddr_t bad;
173	char *cp, *pos;
174
175	for (pos = list; *pos != '\0'; pos = cp) {
176		bad = strtoq(pos, &cp, 0);
177		if (*cp != '\0') {
178			if (*cp == ' ' || *cp == ',') {
179				cp++;
180				if (cp == pos)
181					continue;
182			} else
183				break;
184		}
185		if (pa == trunc_page(bad))
186			return (1);
187	}
188	return (0);
189}
190
191/*
192 *	vm_page_startup:
193 *
194 *	Initializes the resident memory module.
195 *
196 *	Allocates memory for the page cells, and
197 *	for the object/offset-to-page hash table headers.
198 *	Each page cell is initialized and placed on the free list.
199 */
200vm_offset_t
201vm_page_startup(vm_offset_t vaddr)
202{
203	vm_offset_t mapped;
204	vm_size_t npages;
205	vm_paddr_t page_range;
206	vm_paddr_t new_end;
207	int i;
208	vm_paddr_t pa;
209	int nblocks;
210	vm_paddr_t last_pa;
211	char *list;
212
213	/* the biggest memory array is the second group of pages */
214	vm_paddr_t end;
215	vm_paddr_t biggestsize;
216	vm_paddr_t low_water, high_water;
217	int biggestone;
218
219	vm_paddr_t total;
220
221	total = 0;
222	biggestsize = 0;
223	biggestone = 0;
224	nblocks = 0;
225	vaddr = round_page(vaddr);
226
227	for (i = 0; phys_avail[i + 1]; i += 2) {
228		phys_avail[i] = round_page(phys_avail[i]);
229		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
230	}
231
232	low_water = phys_avail[0];
233	high_water = phys_avail[1];
234
235	for (i = 0; phys_avail[i + 1]; i += 2) {
236		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
237
238		if (size > biggestsize) {
239			biggestone = i;
240			biggestsize = size;
241		}
242		if (phys_avail[i] < low_water)
243			low_water = phys_avail[i];
244		if (phys_avail[i + 1] > high_water)
245			high_water = phys_avail[i + 1];
246		++nblocks;
247		total += size;
248	}
249
250	end = phys_avail[biggestone+1];
251
252	/*
253	 * Initialize the locks.
254	 */
255	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
256	    MTX_RECURSE);
257	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
258	    MTX_DEF);
259
260	/*
261	 * Initialize the queue headers for the free queue, the active queue
262	 * and the inactive queue.
263	 */
264	vm_pageq_init();
265
266	/*
267	 * Allocate memory for use when boot strapping the kernel memory
268	 * allocator.
269	 */
270	new_end = end - (boot_pages * UMA_SLAB_SIZE);
271	new_end = trunc_page(new_end);
272	mapped = pmap_map(&vaddr, new_end, end,
273	    VM_PROT_READ | VM_PROT_WRITE);
274	bzero((void *)mapped, end - new_end);
275	uma_startup((void *)mapped, boot_pages);
276
277#if defined(__amd64__) || defined(__i386__)
278	/*
279	 * Allocate a bitmap to indicate that a random physical page
280	 * needs to be included in a minidump.
281	 *
282	 * The amd64 port needs this to indicate which direct map pages
283	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
284	 *
285	 * However, i386 still needs this workspace internally within the
286	 * minidump code.  In theory, they are not needed on i386, but are
287	 * included should the sf_buf code decide to use them.
288	 */
289	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
290	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
291	new_end -= vm_page_dump_size;
292	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
293	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
294	bzero((void *)vm_page_dump, vm_page_dump_size);
295#endif
296	/*
297	 * Compute the number of pages of memory that will be available for
298	 * use (taking into account the overhead of a page structure per
299	 * page).
300	 */
301	first_page = low_water / PAGE_SIZE;
302#ifdef VM_PHYSSEG_SPARSE
303	page_range = 0;
304	for (i = 0; phys_avail[i + 1] != 0; i += 2)
305		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
306#elif defined(VM_PHYSSEG_DENSE)
307	page_range = high_water / PAGE_SIZE - first_page;
308#else
309#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
310#endif
311	npages = (total - (page_range * sizeof(struct vm_page)) -
312	    (end - new_end)) / PAGE_SIZE;
313	end = new_end;
314
315	/*
316	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
317	 */
318	vaddr += PAGE_SIZE;
319
320	/*
321	 * Initialize the mem entry structures now, and put them in the free
322	 * queue.
323	 */
324	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
325	mapped = pmap_map(&vaddr, new_end, end,
326	    VM_PROT_READ | VM_PROT_WRITE);
327	vm_page_array = (vm_page_t) mapped;
328#ifdef __amd64__
329	/*
330	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
331	 * so the pages must be tracked for a crashdump to include this data.
332	 * This includes the vm_page_array and the early UMA bootstrap pages.
333	 */
334	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
335		dump_add_page(pa);
336#endif
337	phys_avail[biggestone + 1] = new_end;
338
339	/*
340	 * Clear all of the page structures
341	 */
342	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
343	for (i = 0; i < page_range; i++)
344		vm_page_array[i].order = VM_NFREEORDER;
345	vm_page_array_size = page_range;
346
347	/*
348	 * This assertion tests the hypothesis that npages and total are
349	 * redundant.  XXX
350	 */
351	page_range = 0;
352	for (i = 0; phys_avail[i + 1] != 0; i += 2)
353		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
354	KASSERT(page_range == npages,
355	    ("vm_page_startup: inconsistent page counts"));
356
357	/*
358	 * Initialize the physical memory allocator.
359	 */
360	vm_phys_init();
361
362	/*
363	 * Add every available physical page that is not blacklisted to
364	 * the free lists.
365	 */
366	cnt.v_page_count = 0;
367	cnt.v_free_count = 0;
368	list = getenv("vm.blacklist");
369	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
370		pa = phys_avail[i];
371		last_pa = phys_avail[i + 1];
372		while (pa < last_pa) {
373			if (list != NULL &&
374			    vm_page_blacklist_lookup(list, pa))
375				printf("Skipping page with pa 0x%jx\n",
376				    (uintmax_t)pa);
377			else
378				vm_phys_add_page(pa);
379			pa += PAGE_SIZE;
380		}
381	}
382	freeenv(list);
383	return (vaddr);
384}
385
386void
387vm_page_flag_set(vm_page_t m, unsigned short bits)
388{
389
390	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
391	m->flags |= bits;
392}
393
394void
395vm_page_flag_clear(vm_page_t m, unsigned short bits)
396{
397
398	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
399	m->flags &= ~bits;
400}
401
402void
403vm_page_busy(vm_page_t m)
404{
405
406	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
407	KASSERT((m->oflags & VPO_BUSY) == 0,
408	    ("vm_page_busy: page already busy!!!"));
409	m->oflags |= VPO_BUSY;
410}
411
412/*
413 *      vm_page_flash:
414 *
415 *      wakeup anyone waiting for the page.
416 */
417void
418vm_page_flash(vm_page_t m)
419{
420
421	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
422	if (m->oflags & VPO_WANTED) {
423		m->oflags &= ~VPO_WANTED;
424		wakeup(m);
425	}
426}
427
428/*
429 *      vm_page_wakeup:
430 *
431 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
432 *      page.
433 *
434 */
435void
436vm_page_wakeup(vm_page_t m)
437{
438
439	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
440	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
441	m->oflags &= ~VPO_BUSY;
442	vm_page_flash(m);
443}
444
445void
446vm_page_io_start(vm_page_t m)
447{
448
449	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
450	m->busy++;
451}
452
453void
454vm_page_io_finish(vm_page_t m)
455{
456
457	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
458	m->busy--;
459	if (m->busy == 0)
460		vm_page_flash(m);
461}
462
463/*
464 * Keep page from being freed by the page daemon
465 * much of the same effect as wiring, except much lower
466 * overhead and should be used only for *very* temporary
467 * holding ("wiring").
468 */
469void
470vm_page_hold(vm_page_t mem)
471{
472
473	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
474        mem->hold_count++;
475}
476
477void
478vm_page_unhold(vm_page_t mem)
479{
480
481	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
482	--mem->hold_count;
483	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
484	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
485		vm_page_free_toq(mem);
486}
487
488/*
489 *	vm_page_free:
490 *
491 *	Free a page.
492 */
493void
494vm_page_free(vm_page_t m)
495{
496
497	m->flags &= ~PG_ZERO;
498	vm_page_free_toq(m);
499}
500
501/*
502 *	vm_page_free_zero:
503 *
504 *	Free a page to the zerod-pages queue
505 */
506void
507vm_page_free_zero(vm_page_t m)
508{
509
510	m->flags |= PG_ZERO;
511	vm_page_free_toq(m);
512}
513
514/*
515 *	vm_page_sleep:
516 *
517 *	Sleep and release the page queues lock.
518 *
519 *	The object containing the given page must be locked.
520 */
521void
522vm_page_sleep(vm_page_t m, const char *msg)
523{
524
525	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
526	if (!mtx_owned(&vm_page_queue_mtx))
527		vm_page_lock_queues();
528	vm_page_flag_set(m, PG_REFERENCED);
529	vm_page_unlock_queues();
530
531	/*
532	 * It's possible that while we sleep, the page will get
533	 * unbusied and freed.  If we are holding the object
534	 * lock, we will assume we hold a reference to the object
535	 * such that even if m->object changes, we can re-lock
536	 * it.
537	 */
538	m->oflags |= VPO_WANTED;
539	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
540}
541
542/*
543 *	vm_page_dirty:
544 *
545 *	make page all dirty
546 */
547void
548vm_page_dirty(vm_page_t m)
549{
550	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
551	    ("vm_page_dirty: page in cache!"));
552	KASSERT(!VM_PAGE_IS_FREE(m),
553	    ("vm_page_dirty: page is free!"));
554	m->dirty = VM_PAGE_BITS_ALL;
555}
556
557/*
558 *	vm_page_splay:
559 *
560 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
561 *	the vm_page containing the given pindex.  If, however, that
562 *	pindex is not found in the vm_object, returns a vm_page that is
563 *	adjacent to the pindex, coming before or after it.
564 */
565vm_page_t
566vm_page_splay(vm_pindex_t pindex, vm_page_t root)
567{
568	struct vm_page dummy;
569	vm_page_t lefttreemax, righttreemin, y;
570
571	if (root == NULL)
572		return (root);
573	lefttreemax = righttreemin = &dummy;
574	for (;; root = y) {
575		if (pindex < root->pindex) {
576			if ((y = root->left) == NULL)
577				break;
578			if (pindex < y->pindex) {
579				/* Rotate right. */
580				root->left = y->right;
581				y->right = root;
582				root = y;
583				if ((y = root->left) == NULL)
584					break;
585			}
586			/* Link into the new root's right tree. */
587			righttreemin->left = root;
588			righttreemin = root;
589		} else if (pindex > root->pindex) {
590			if ((y = root->right) == NULL)
591				break;
592			if (pindex > y->pindex) {
593				/* Rotate left. */
594				root->right = y->left;
595				y->left = root;
596				root = y;
597				if ((y = root->right) == NULL)
598					break;
599			}
600			/* Link into the new root's left tree. */
601			lefttreemax->right = root;
602			lefttreemax = root;
603		} else
604			break;
605	}
606	/* Assemble the new root. */
607	lefttreemax->right = root->left;
608	righttreemin->left = root->right;
609	root->left = dummy.right;
610	root->right = dummy.left;
611	return (root);
612}
613
614/*
615 *	vm_page_insert:		[ internal use only ]
616 *
617 *	Inserts the given mem entry into the object and object list.
618 *
619 *	The pagetables are not updated but will presumably fault the page
620 *	in if necessary, or if a kernel page the caller will at some point
621 *	enter the page into the kernel's pmap.  We are not allowed to block
622 *	here so we *can't* do this anyway.
623 *
624 *	The object and page must be locked.
625 *	This routine may not block.
626 */
627void
628vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
629{
630	vm_page_t root;
631
632	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
633	if (m->object != NULL)
634		panic("vm_page_insert: page already inserted");
635
636	/*
637	 * Record the object/offset pair in this page
638	 */
639	m->object = object;
640	m->pindex = pindex;
641
642	/*
643	 * Now link into the object's ordered list of backed pages.
644	 */
645	root = object->root;
646	if (root == NULL) {
647		m->left = NULL;
648		m->right = NULL;
649		TAILQ_INSERT_TAIL(&object->memq, m, listq);
650	} else {
651		root = vm_page_splay(pindex, root);
652		if (pindex < root->pindex) {
653			m->left = root->left;
654			m->right = root;
655			root->left = NULL;
656			TAILQ_INSERT_BEFORE(root, m, listq);
657		} else if (pindex == root->pindex)
658			panic("vm_page_insert: offset already allocated");
659		else {
660			m->right = root->right;
661			m->left = root;
662			root->right = NULL;
663			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
664		}
665	}
666	object->root = m;
667	object->generation++;
668
669	/*
670	 * show that the object has one more resident page.
671	 */
672	object->resident_page_count++;
673	/*
674	 * Hold the vnode until the last page is released.
675	 */
676	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
677		vhold((struct vnode *)object->handle);
678
679	/*
680	 * Since we are inserting a new and possibly dirty page,
681	 * update the object's OBJ_MIGHTBEDIRTY flag.
682	 */
683	if (m->flags & PG_WRITEABLE)
684		vm_object_set_writeable_dirty(object);
685}
686
687/*
688 *	vm_page_remove:
689 *				NOTE: used by device pager as well -wfj
690 *
691 *	Removes the given mem entry from the object/offset-page
692 *	table and the object page list, but do not invalidate/terminate
693 *	the backing store.
694 *
695 *	The object and page must be locked.
696 *	The underlying pmap entry (if any) is NOT removed here.
697 *	This routine may not block.
698 */
699void
700vm_page_remove(vm_page_t m)
701{
702	vm_object_t object;
703	vm_page_t root;
704
705	if ((object = m->object) == NULL)
706		return;
707	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
708	if (m->oflags & VPO_BUSY) {
709		m->oflags &= ~VPO_BUSY;
710		vm_page_flash(m);
711	}
712	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
713
714	/*
715	 * Now remove from the object's list of backed pages.
716	 */
717	if (m != object->root)
718		vm_page_splay(m->pindex, object->root);
719	if (m->left == NULL)
720		root = m->right;
721	else {
722		root = vm_page_splay(m->pindex, m->left);
723		root->right = m->right;
724	}
725	object->root = root;
726	TAILQ_REMOVE(&object->memq, m, listq);
727
728	/*
729	 * And show that the object has one fewer resident page.
730	 */
731	object->resident_page_count--;
732	object->generation++;
733	/*
734	 * The vnode may now be recycled.
735	 */
736	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
737		vdrop((struct vnode *)object->handle);
738
739	m->object = NULL;
740}
741
742/*
743 *	vm_page_lookup:
744 *
745 *	Returns the page associated with the object/offset
746 *	pair specified; if none is found, NULL is returned.
747 *
748 *	The object must be locked.
749 *	This routine may not block.
750 *	This is a critical path routine
751 */
752vm_page_t
753vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
754{
755	vm_page_t m;
756
757	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
758	if ((m = object->root) != NULL && m->pindex != pindex) {
759		m = vm_page_splay(pindex, m);
760		if ((object->root = m)->pindex != pindex)
761			m = NULL;
762	}
763	return (m);
764}
765
766/*
767 *	vm_page_rename:
768 *
769 *	Move the given memory entry from its
770 *	current object to the specified target object/offset.
771 *
772 *	The object must be locked.
773 *	This routine may not block.
774 *
775 *	Note: swap associated with the page must be invalidated by the move.  We
776 *	      have to do this for several reasons:  (1) we aren't freeing the
777 *	      page, (2) we are dirtying the page, (3) the VM system is probably
778 *	      moving the page from object A to B, and will then later move
779 *	      the backing store from A to B and we can't have a conflict.
780 *
781 *	Note: we *always* dirty the page.  It is necessary both for the
782 *	      fact that we moved it, and because we may be invalidating
783 *	      swap.  If the page is on the cache, we have to deactivate it
784 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
785 *	      on the cache.
786 */
787void
788vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
789{
790
791	vm_page_remove(m);
792	vm_page_insert(m, new_object, new_pindex);
793	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
794		vm_page_deactivate(m);
795	vm_page_dirty(m);
796}
797
798/*
799 *	vm_page_select_cache:
800 *
801 *	Move a page of the given color from the cache queue to the free
802 *	queue.  As pages might be found, but are not applicable, they are
803 *	deactivated.
804 *
805 *	This routine may not block.
806 */
807vm_page_t
808vm_page_select_cache(void)
809{
810	vm_object_t object;
811	vm_page_t m;
812	boolean_t was_trylocked;
813
814	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
815	while ((m = TAILQ_FIRST(&vm_page_queues[PQ_CACHE].pl)) != NULL) {
816		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
817		KASSERT(!pmap_page_is_mapped(m),
818		    ("Found mapped cache page %p", m));
819		KASSERT((m->flags & PG_UNMANAGED) == 0,
820		    ("Found unmanaged cache page %p", m));
821		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
822		if (m->hold_count == 0 && (object = m->object,
823		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
824		    VM_OBJECT_LOCKED(object))) {
825			KASSERT((m->oflags & VPO_BUSY) == 0 && m->busy == 0,
826			    ("Found busy cache page %p", m));
827			vm_page_free(m);
828			if (was_trylocked)
829				VM_OBJECT_UNLOCK(object);
830			break;
831		}
832		vm_page_deactivate(m);
833	}
834	return (m);
835}
836
837/*
838 *	vm_page_alloc:
839 *
840 *	Allocate and return a memory cell associated
841 *	with this VM object/offset pair.
842 *
843 *	page_req classes:
844 *	VM_ALLOC_NORMAL		normal process request
845 *	VM_ALLOC_SYSTEM		system *really* needs a page
846 *	VM_ALLOC_INTERRUPT	interrupt time request
847 *	VM_ALLOC_ZERO		zero page
848 *
849 *	This routine may not block.
850 *
851 *	Additional special handling is required when called from an
852 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
853 *	the page cache in this case.
854 */
855vm_page_t
856vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
857{
858	vm_page_t m = NULL;
859	int flags, page_req;
860
861	page_req = req & VM_ALLOC_CLASS_MASK;
862	KASSERT(curthread->td_intr_nesting_level == 0 ||
863	    page_req == VM_ALLOC_INTERRUPT,
864	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
865
866	if ((req & VM_ALLOC_NOOBJ) == 0) {
867		KASSERT(object != NULL,
868		    ("vm_page_alloc: NULL object."));
869		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
870	}
871
872	/*
873	 * The pager is allowed to eat deeper into the free page list.
874	 */
875	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
876		page_req = VM_ALLOC_SYSTEM;
877	};
878
879loop:
880	mtx_lock(&vm_page_queue_free_mtx);
881	if (cnt.v_free_count > cnt.v_free_reserved ||
882	    (page_req == VM_ALLOC_SYSTEM &&
883	     cnt.v_cache_count == 0 &&
884	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
885	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
886		/*
887		 * Allocate from the free queue if the number of free pages
888		 * exceeds the minimum for the request class.
889		 */
890		m = vm_phys_alloc_pages(object != NULL ?
891		    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
892	} else if (page_req != VM_ALLOC_INTERRUPT) {
893		mtx_unlock(&vm_page_queue_free_mtx);
894		/*
895		 * Allocatable from cache (non-interrupt only).  On success,
896		 * we must free the page and try again, thus ensuring that
897		 * cnt.v_*_free_min counters are replenished.
898		 */
899		vm_page_lock_queues();
900		if ((m = vm_page_select_cache()) == NULL) {
901			KASSERT(cnt.v_cache_count == 0,
902			    ("vm_page_alloc: cache queue is missing %d pages",
903			    cnt.v_cache_count));
904			vm_page_unlock_queues();
905			atomic_add_int(&vm_pageout_deficit, 1);
906			pagedaemon_wakeup();
907
908			if (page_req != VM_ALLOC_SYSTEM)
909				return (NULL);
910
911			mtx_lock(&vm_page_queue_free_mtx);
912			if (cnt.v_free_count <= cnt.v_interrupt_free_min) {
913				mtx_unlock(&vm_page_queue_free_mtx);
914				return (NULL);
915			}
916			m = vm_phys_alloc_pages(object != NULL ?
917			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
918		} else {
919			vm_page_unlock_queues();
920			goto loop;
921		}
922	} else {
923		/*
924		 * Not allocatable from cache from interrupt, give up.
925		 */
926		mtx_unlock(&vm_page_queue_free_mtx);
927		atomic_add_int(&vm_pageout_deficit, 1);
928		pagedaemon_wakeup();
929		return (NULL);
930	}
931
932	/*
933	 *  At this point we had better have found a good page.
934	 */
935
936	KASSERT(
937	    m != NULL,
938	    ("vm_page_alloc(): missing page on free queue")
939	);
940	KASSERT(VM_PAGE_IS_FREE(m),
941	    ("vm_page_alloc: page %p is not free", m));
942
943	/*
944	 * Initialize structure.  Only the PG_ZERO flag is inherited.
945	 */
946	flags = 0;
947	if (m->flags & PG_ZERO) {
948		vm_page_zero_count--;
949		if (req & VM_ALLOC_ZERO)
950			flags = PG_ZERO;
951	}
952	if (object != NULL && object->type == OBJT_PHYS)
953		flags |= PG_UNMANAGED;
954	m->flags = flags;
955	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
956		m->oflags = 0;
957	else
958		m->oflags = VPO_BUSY;
959	if (req & VM_ALLOC_WIRED) {
960		atomic_add_int(&cnt.v_wire_count, 1);
961		m->wire_count = 1;
962	} else
963		m->wire_count = 0;
964	m->hold_count = 0;
965	m->act_count = 0;
966	m->busy = 0;
967	m->valid = 0;
968	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
969	mtx_unlock(&vm_page_queue_free_mtx);
970
971	if ((req & VM_ALLOC_NOOBJ) == 0)
972		vm_page_insert(m, object, pindex);
973	else
974		m->pindex = pindex;
975
976	/*
977	 * Don't wakeup too often - wakeup the pageout daemon when
978	 * we would be nearly out of memory.
979	 */
980	if (vm_paging_needed())
981		pagedaemon_wakeup();
982
983	return (m);
984}
985
986/*
987 *	vm_wait:	(also see VM_WAIT macro)
988 *
989 *	Block until free pages are available for allocation
990 *	- Called in various places before memory allocations.
991 */
992void
993vm_wait(void)
994{
995
996	mtx_lock(&vm_page_queue_free_mtx);
997	if (curproc == pageproc) {
998		vm_pageout_pages_needed = 1;
999		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1000		    PDROP | PSWP, "VMWait", 0);
1001	} else {
1002		if (!vm_pages_needed) {
1003			vm_pages_needed = 1;
1004			wakeup(&vm_pages_needed);
1005		}
1006		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1007		    "vmwait", 0);
1008	}
1009}
1010
1011/*
1012 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1013 *
1014 *	Block until free pages are available for allocation
1015 *	- Called only in vm_fault so that processes page faulting
1016 *	  can be easily tracked.
1017 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1018 *	  processes will be able to grab memory first.  Do not change
1019 *	  this balance without careful testing first.
1020 */
1021void
1022vm_waitpfault(void)
1023{
1024
1025	mtx_lock(&vm_page_queue_free_mtx);
1026	if (!vm_pages_needed) {
1027		vm_pages_needed = 1;
1028		wakeup(&vm_pages_needed);
1029	}
1030	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1031	    "pfault", 0);
1032}
1033
1034/*
1035 *	vm_page_activate:
1036 *
1037 *	Put the specified page on the active list (if appropriate).
1038 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1039 *	mess with it.
1040 *
1041 *	The page queues must be locked.
1042 *	This routine may not block.
1043 */
1044void
1045vm_page_activate(vm_page_t m)
1046{
1047
1048	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1049	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1050		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1051			cnt.v_reactivated++;
1052		vm_pageq_remove(m);
1053		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1054			if (m->act_count < ACT_INIT)
1055				m->act_count = ACT_INIT;
1056			vm_pageq_enqueue(PQ_ACTIVE, m);
1057		}
1058	} else {
1059		if (m->act_count < ACT_INIT)
1060			m->act_count = ACT_INIT;
1061	}
1062}
1063
1064/*
1065 *	vm_page_free_wakeup:
1066 *
1067 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1068 *	routine is called when a page has been added to the cache or free
1069 *	queues.
1070 *
1071 *	The page queues must be locked.
1072 *	This routine may not block.
1073 */
1074static inline void
1075vm_page_free_wakeup(void)
1076{
1077
1078	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1079	/*
1080	 * if pageout daemon needs pages, then tell it that there are
1081	 * some free.
1082	 */
1083	if (vm_pageout_pages_needed &&
1084	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1085		wakeup(&vm_pageout_pages_needed);
1086		vm_pageout_pages_needed = 0;
1087	}
1088	/*
1089	 * wakeup processes that are waiting on memory if we hit a
1090	 * high water mark. And wakeup scheduler process if we have
1091	 * lots of memory. this process will swapin processes.
1092	 */
1093	if (vm_pages_needed && !vm_page_count_min()) {
1094		vm_pages_needed = 0;
1095		wakeup(&cnt.v_free_count);
1096	}
1097}
1098
1099/*
1100 *	vm_page_free_toq:
1101 *
1102 *	Returns the given page to the free list,
1103 *	disassociating it with any VM object.
1104 *
1105 *	Object and page must be locked prior to entry.
1106 *	This routine may not block.
1107 */
1108
1109void
1110vm_page_free_toq(vm_page_t m)
1111{
1112
1113	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1114		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1115	KASSERT(!pmap_page_is_mapped(m),
1116	    ("vm_page_free_toq: freeing mapped page %p", m));
1117	PCPU_INC(cnt.v_tfree);
1118
1119	if (m->busy || VM_PAGE_IS_FREE(m)) {
1120		printf(
1121		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1122		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1123		    m->hold_count);
1124		if (VM_PAGE_IS_FREE(m))
1125			panic("vm_page_free: freeing free page");
1126		else
1127			panic("vm_page_free: freeing busy page");
1128	}
1129
1130	/*
1131	 * unqueue, then remove page.  Note that we cannot destroy
1132	 * the page here because we do not want to call the pager's
1133	 * callback routine until after we've put the page on the
1134	 * appropriate free queue.
1135	 */
1136	vm_pageq_remove_nowakeup(m);
1137	vm_page_remove(m);
1138
1139	/*
1140	 * If fictitious remove object association and
1141	 * return, otherwise delay object association removal.
1142	 */
1143	if ((m->flags & PG_FICTITIOUS) != 0) {
1144		return;
1145	}
1146
1147	m->valid = 0;
1148	vm_page_undirty(m);
1149
1150	if (m->wire_count != 0) {
1151		if (m->wire_count > 1) {
1152			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1153				m->wire_count, (long)m->pindex);
1154		}
1155		panic("vm_page_free: freeing wired page");
1156	}
1157	if (m->hold_count != 0) {
1158		m->flags &= ~PG_ZERO;
1159		vm_pageq_enqueue(PQ_HOLD, m);
1160	} else {
1161		m->flags |= PG_FREE;
1162		mtx_lock(&vm_page_queue_free_mtx);
1163		if ((m->flags & PG_ZERO) != 0) {
1164			vm_phys_free_pages(m, 0);
1165			++vm_page_zero_count;
1166		} else {
1167			vm_phys_free_pages(m, 0);
1168			vm_page_zero_idle_wakeup();
1169		}
1170		vm_page_free_wakeup();
1171		mtx_unlock(&vm_page_queue_free_mtx);
1172	}
1173}
1174
1175/*
1176 *	vm_page_wire:
1177 *
1178 *	Mark this page as wired down by yet
1179 *	another map, removing it from paging queues
1180 *	as necessary.
1181 *
1182 *	The page queues must be locked.
1183 *	This routine may not block.
1184 */
1185void
1186vm_page_wire(vm_page_t m)
1187{
1188
1189	/*
1190	 * Only bump the wire statistics if the page is not already wired,
1191	 * and only unqueue the page if it is on some queue (if it is unmanaged
1192	 * it is already off the queues).
1193	 */
1194	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1195	if (m->flags & PG_FICTITIOUS)
1196		return;
1197	if (m->wire_count == 0) {
1198		if ((m->flags & PG_UNMANAGED) == 0)
1199			vm_pageq_remove(m);
1200		atomic_add_int(&cnt.v_wire_count, 1);
1201	}
1202	m->wire_count++;
1203	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1204}
1205
1206/*
1207 *	vm_page_unwire:
1208 *
1209 *	Release one wiring of this page, potentially
1210 *	enabling it to be paged again.
1211 *
1212 *	Many pages placed on the inactive queue should actually go
1213 *	into the cache, but it is difficult to figure out which.  What
1214 *	we do instead, if the inactive target is well met, is to put
1215 *	clean pages at the head of the inactive queue instead of the tail.
1216 *	This will cause them to be moved to the cache more quickly and
1217 *	if not actively re-referenced, freed more quickly.  If we just
1218 *	stick these pages at the end of the inactive queue, heavy filesystem
1219 *	meta-data accesses can cause an unnecessary paging load on memory bound
1220 *	processes.  This optimization causes one-time-use metadata to be
1221 *	reused more quickly.
1222 *
1223 *	BUT, if we are in a low-memory situation we have no choice but to
1224 *	put clean pages on the cache queue.
1225 *
1226 *	A number of routines use vm_page_unwire() to guarantee that the page
1227 *	will go into either the inactive or active queues, and will NEVER
1228 *	be placed in the cache - for example, just after dirtying a page.
1229 *	dirty pages in the cache are not allowed.
1230 *
1231 *	The page queues must be locked.
1232 *	This routine may not block.
1233 */
1234void
1235vm_page_unwire(vm_page_t m, int activate)
1236{
1237
1238	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1239	if (m->flags & PG_FICTITIOUS)
1240		return;
1241	if (m->wire_count > 0) {
1242		m->wire_count--;
1243		if (m->wire_count == 0) {
1244			atomic_subtract_int(&cnt.v_wire_count, 1);
1245			if (m->flags & PG_UNMANAGED) {
1246				;
1247			} else if (activate)
1248				vm_pageq_enqueue(PQ_ACTIVE, m);
1249			else {
1250				vm_page_flag_clear(m, PG_WINATCFLS);
1251				vm_pageq_enqueue(PQ_INACTIVE, m);
1252			}
1253		}
1254	} else {
1255		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1256	}
1257}
1258
1259
1260/*
1261 * Move the specified page to the inactive queue.  If the page has
1262 * any associated swap, the swap is deallocated.
1263 *
1264 * Normally athead is 0 resulting in LRU operation.  athead is set
1265 * to 1 if we want this page to be 'as if it were placed in the cache',
1266 * except without unmapping it from the process address space.
1267 *
1268 * This routine may not block.
1269 */
1270static inline void
1271_vm_page_deactivate(vm_page_t m, int athead)
1272{
1273
1274	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1275
1276	/*
1277	 * Ignore if already inactive.
1278	 */
1279	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1280		return;
1281	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1282		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1283			cnt.v_reactivated++;
1284		vm_page_flag_clear(m, PG_WINATCFLS);
1285		vm_pageq_remove(m);
1286		if (athead)
1287			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1288		else
1289			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1290		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1291		cnt.v_inactive_count++;
1292	}
1293}
1294
1295void
1296vm_page_deactivate(vm_page_t m)
1297{
1298    _vm_page_deactivate(m, 0);
1299}
1300
1301/*
1302 * vm_page_try_to_cache:
1303 *
1304 * Returns 0 on failure, 1 on success
1305 */
1306int
1307vm_page_try_to_cache(vm_page_t m)
1308{
1309
1310	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1311	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1312	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1313	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1314		return (0);
1315	}
1316	pmap_remove_all(m);
1317	if (m->dirty)
1318		return (0);
1319	vm_page_cache(m);
1320	return (1);
1321}
1322
1323/*
1324 * vm_page_try_to_free()
1325 *
1326 *	Attempt to free the page.  If we cannot free it, we do nothing.
1327 *	1 is returned on success, 0 on failure.
1328 */
1329int
1330vm_page_try_to_free(vm_page_t m)
1331{
1332
1333	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1334	if (m->object != NULL)
1335		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1336	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1337	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1338		return (0);
1339	}
1340	pmap_remove_all(m);
1341	if (m->dirty)
1342		return (0);
1343	vm_page_free(m);
1344	return (1);
1345}
1346
1347/*
1348 * vm_page_cache
1349 *
1350 * Put the specified page onto the page cache queue (if appropriate).
1351 *
1352 * This routine may not block.
1353 */
1354void
1355vm_page_cache(vm_page_t m)
1356{
1357
1358	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1359	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1360	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1361	    m->hold_count || m->wire_count) {
1362		panic("vm_page_cache: attempting to cache busy page");
1363	}
1364	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1365		return;
1366	cnt.v_tcached++;
1367
1368	/*
1369	 * Remove all pmaps and indicate that the page is not
1370	 * writeable or mapped.
1371	 */
1372	pmap_remove_all(m);
1373	if (m->dirty != 0) {
1374		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1375			(long)m->pindex);
1376	}
1377	vm_pageq_remove_nowakeup(m);
1378	vm_pageq_enqueue(PQ_CACHE, m);
1379	mtx_lock(&vm_page_queue_free_mtx);
1380	vm_page_free_wakeup();
1381	mtx_unlock(&vm_page_queue_free_mtx);
1382}
1383
1384/*
1385 * vm_page_dontneed
1386 *
1387 *	Cache, deactivate, or do nothing as appropriate.  This routine
1388 *	is typically used by madvise() MADV_DONTNEED.
1389 *
1390 *	Generally speaking we want to move the page into the cache so
1391 *	it gets reused quickly.  However, this can result in a silly syndrome
1392 *	due to the page recycling too quickly.  Small objects will not be
1393 *	fully cached.  On the otherhand, if we move the page to the inactive
1394 *	queue we wind up with a problem whereby very large objects
1395 *	unnecessarily blow away our inactive and cache queues.
1396 *
1397 *	The solution is to move the pages based on a fixed weighting.  We
1398 *	either leave them alone, deactivate them, or move them to the cache,
1399 *	where moving them to the cache has the highest weighting.
1400 *	By forcing some pages into other queues we eventually force the
1401 *	system to balance the queues, potentially recovering other unrelated
1402 *	space from active.  The idea is to not force this to happen too
1403 *	often.
1404 */
1405void
1406vm_page_dontneed(vm_page_t m)
1407{
1408	static int dnweight;
1409	int dnw;
1410	int head;
1411
1412	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1413	dnw = ++dnweight;
1414
1415	/*
1416	 * occassionally leave the page alone
1417	 */
1418	if ((dnw & 0x01F0) == 0 ||
1419	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1420	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1421	) {
1422		if (m->act_count >= ACT_INIT)
1423			--m->act_count;
1424		return;
1425	}
1426
1427	if (m->dirty == 0 && pmap_is_modified(m))
1428		vm_page_dirty(m);
1429
1430	if (m->dirty || (dnw & 0x0070) == 0) {
1431		/*
1432		 * Deactivate the page 3 times out of 32.
1433		 */
1434		head = 0;
1435	} else {
1436		/*
1437		 * Cache the page 28 times out of every 32.  Note that
1438		 * the page is deactivated instead of cached, but placed
1439		 * at the head of the queue instead of the tail.
1440		 */
1441		head = 1;
1442	}
1443	_vm_page_deactivate(m, head);
1444}
1445
1446/*
1447 * Grab a page, waiting until we are waken up due to the page
1448 * changing state.  We keep on waiting, if the page continues
1449 * to be in the object.  If the page doesn't exist, first allocate it
1450 * and then conditionally zero it.
1451 *
1452 * This routine may block.
1453 */
1454vm_page_t
1455vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1456{
1457	vm_page_t m;
1458
1459	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1460retrylookup:
1461	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1462		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1463			if ((allocflags & VM_ALLOC_RETRY) == 0)
1464				return (NULL);
1465			goto retrylookup;
1466		} else {
1467			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1468				vm_page_lock_queues();
1469				vm_page_wire(m);
1470				vm_page_unlock_queues();
1471			}
1472			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1473				vm_page_busy(m);
1474			return (m);
1475		}
1476	}
1477	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1478	if (m == NULL) {
1479		VM_OBJECT_UNLOCK(object);
1480		VM_WAIT;
1481		VM_OBJECT_LOCK(object);
1482		if ((allocflags & VM_ALLOC_RETRY) == 0)
1483			return (NULL);
1484		goto retrylookup;
1485	}
1486	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1487		pmap_zero_page(m);
1488	return (m);
1489}
1490
1491/*
1492 * Mapping function for valid bits or for dirty bits in
1493 * a page.  May not block.
1494 *
1495 * Inputs are required to range within a page.
1496 */
1497int
1498vm_page_bits(int base, int size)
1499{
1500	int first_bit;
1501	int last_bit;
1502
1503	KASSERT(
1504	    base + size <= PAGE_SIZE,
1505	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1506	);
1507
1508	if (size == 0)		/* handle degenerate case */
1509		return (0);
1510
1511	first_bit = base >> DEV_BSHIFT;
1512	last_bit = (base + size - 1) >> DEV_BSHIFT;
1513
1514	return ((2 << last_bit) - (1 << first_bit));
1515}
1516
1517/*
1518 *	vm_page_set_validclean:
1519 *
1520 *	Sets portions of a page valid and clean.  The arguments are expected
1521 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1522 *	of any partial chunks touched by the range.  The invalid portion of
1523 *	such chunks will be zero'd.
1524 *
1525 *	This routine may not block.
1526 *
1527 *	(base + size) must be less then or equal to PAGE_SIZE.
1528 */
1529void
1530vm_page_set_validclean(vm_page_t m, int base, int size)
1531{
1532	int pagebits;
1533	int frag;
1534	int endoff;
1535
1536	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1537	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1538	if (size == 0)	/* handle degenerate case */
1539		return;
1540
1541	/*
1542	 * If the base is not DEV_BSIZE aligned and the valid
1543	 * bit is clear, we have to zero out a portion of the
1544	 * first block.
1545	 */
1546	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1547	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1548		pmap_zero_page_area(m, frag, base - frag);
1549
1550	/*
1551	 * If the ending offset is not DEV_BSIZE aligned and the
1552	 * valid bit is clear, we have to zero out a portion of
1553	 * the last block.
1554	 */
1555	endoff = base + size;
1556	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1557	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1558		pmap_zero_page_area(m, endoff,
1559		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1560
1561	/*
1562	 * Set valid, clear dirty bits.  If validating the entire
1563	 * page we can safely clear the pmap modify bit.  We also
1564	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1565	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1566	 * be set again.
1567	 *
1568	 * We set valid bits inclusive of any overlap, but we can only
1569	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1570	 * the range.
1571	 */
1572	pagebits = vm_page_bits(base, size);
1573	m->valid |= pagebits;
1574#if 0	/* NOT YET */
1575	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1576		frag = DEV_BSIZE - frag;
1577		base += frag;
1578		size -= frag;
1579		if (size < 0)
1580			size = 0;
1581	}
1582	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1583#endif
1584	m->dirty &= ~pagebits;
1585	if (base == 0 && size == PAGE_SIZE) {
1586		pmap_clear_modify(m);
1587		m->oflags &= ~VPO_NOSYNC;
1588	}
1589}
1590
1591void
1592vm_page_clear_dirty(vm_page_t m, int base, int size)
1593{
1594
1595	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1596	m->dirty &= ~vm_page_bits(base, size);
1597}
1598
1599/*
1600 *	vm_page_set_invalid:
1601 *
1602 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1603 *	valid and dirty bits for the effected areas are cleared.
1604 *
1605 *	May not block.
1606 */
1607void
1608vm_page_set_invalid(vm_page_t m, int base, int size)
1609{
1610	int bits;
1611
1612	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1613	bits = vm_page_bits(base, size);
1614	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1615	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1616		pmap_remove_all(m);
1617	m->valid &= ~bits;
1618	m->dirty &= ~bits;
1619	m->object->generation++;
1620}
1621
1622/*
1623 * vm_page_zero_invalid()
1624 *
1625 *	The kernel assumes that the invalid portions of a page contain
1626 *	garbage, but such pages can be mapped into memory by user code.
1627 *	When this occurs, we must zero out the non-valid portions of the
1628 *	page so user code sees what it expects.
1629 *
1630 *	Pages are most often semi-valid when the end of a file is mapped
1631 *	into memory and the file's size is not page aligned.
1632 */
1633void
1634vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1635{
1636	int b;
1637	int i;
1638
1639	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1640	/*
1641	 * Scan the valid bits looking for invalid sections that
1642	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1643	 * valid bit may be set ) have already been zerod by
1644	 * vm_page_set_validclean().
1645	 */
1646	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1647		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1648		    (m->valid & (1 << i))
1649		) {
1650			if (i > b) {
1651				pmap_zero_page_area(m,
1652				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1653			}
1654			b = i + 1;
1655		}
1656	}
1657
1658	/*
1659	 * setvalid is TRUE when we can safely set the zero'd areas
1660	 * as being valid.  We can do this if there are no cache consistancy
1661	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1662	 */
1663	if (setvalid)
1664		m->valid = VM_PAGE_BITS_ALL;
1665}
1666
1667/*
1668 *	vm_page_is_valid:
1669 *
1670 *	Is (partial) page valid?  Note that the case where size == 0
1671 *	will return FALSE in the degenerate case where the page is
1672 *	entirely invalid, and TRUE otherwise.
1673 *
1674 *	May not block.
1675 */
1676int
1677vm_page_is_valid(vm_page_t m, int base, int size)
1678{
1679	int bits = vm_page_bits(base, size);
1680
1681	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1682	if (m->valid && ((m->valid & bits) == bits))
1683		return 1;
1684	else
1685		return 0;
1686}
1687
1688/*
1689 * update dirty bits from pmap/mmu.  May not block.
1690 */
1691void
1692vm_page_test_dirty(vm_page_t m)
1693{
1694	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1695		vm_page_dirty(m);
1696	}
1697}
1698
1699int so_zerocp_fullpage = 0;
1700
1701/*
1702 *	Replace the given page with a copy.  The copied page assumes
1703 *	the portion of the given page's "wire_count" that is not the
1704 *	responsibility of this copy-on-write mechanism.
1705 *
1706 *	The object containing the given page must have a non-zero
1707 *	paging-in-progress count and be locked.
1708 */
1709void
1710vm_page_cowfault(vm_page_t m)
1711{
1712	vm_page_t mnew;
1713	vm_object_t object;
1714	vm_pindex_t pindex;
1715
1716	object = m->object;
1717	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1718	KASSERT(object->paging_in_progress != 0,
1719	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
1720	    object));
1721	pindex = m->pindex;
1722
1723 retry_alloc:
1724	pmap_remove_all(m);
1725	vm_page_remove(m);
1726	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1727	if (mnew == NULL) {
1728		vm_page_insert(m, object, pindex);
1729		vm_page_unlock_queues();
1730		VM_OBJECT_UNLOCK(object);
1731		VM_WAIT;
1732		VM_OBJECT_LOCK(object);
1733		if (m == vm_page_lookup(object, pindex)) {
1734			vm_page_lock_queues();
1735			goto retry_alloc;
1736		} else {
1737			/*
1738			 * Page disappeared during the wait.
1739			 */
1740			vm_page_lock_queues();
1741			return;
1742		}
1743	}
1744
1745	if (m->cow == 0) {
1746		/*
1747		 * check to see if we raced with an xmit complete when
1748		 * waiting to allocate a page.  If so, put things back
1749		 * the way they were
1750		 */
1751		vm_page_free(mnew);
1752		vm_page_insert(m, object, pindex);
1753	} else { /* clear COW & copy page */
1754		if (!so_zerocp_fullpage)
1755			pmap_copy_page(m, mnew);
1756		mnew->valid = VM_PAGE_BITS_ALL;
1757		vm_page_dirty(mnew);
1758		mnew->wire_count = m->wire_count - m->cow;
1759		m->wire_count = m->cow;
1760	}
1761}
1762
1763void
1764vm_page_cowclear(vm_page_t m)
1765{
1766
1767	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1768	if (m->cow) {
1769		m->cow--;
1770		/*
1771		 * let vm_fault add back write permission  lazily
1772		 */
1773	}
1774	/*
1775	 *  sf_buf_free() will free the page, so we needn't do it here
1776	 */
1777}
1778
1779void
1780vm_page_cowsetup(vm_page_t m)
1781{
1782
1783	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1784	m->cow++;
1785	pmap_remove_write(m);
1786}
1787
1788#include "opt_ddb.h"
1789#ifdef DDB
1790#include <sys/kernel.h>
1791
1792#include <ddb/ddb.h>
1793
1794DB_SHOW_COMMAND(page, vm_page_print_page_info)
1795{
1796	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1797	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1798	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1799	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1800	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1801	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1802	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1803	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1804	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1805	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1806}
1807
1808DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1809{
1810
1811	db_printf("PQ_FREE:");
1812	db_printf(" %d", cnt.v_free_count);
1813	db_printf("\n");
1814
1815	db_printf("PQ_CACHE:");
1816	db_printf(" %d", *vm_page_queues[PQ_CACHE].cnt);
1817	db_printf("\n");
1818
1819	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1820		*vm_page_queues[PQ_ACTIVE].cnt,
1821		*vm_page_queues[PQ_INACTIVE].cnt);
1822}
1823#endif /* DDB */
1824