vm_page.c revision 166508
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 166508 2007-02-05 06:02:55Z alc $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/kernel.h>
106#include <sys/malloc.h>
107#include <sys/mutex.h>
108#include <sys/proc.h>
109#include <sys/sysctl.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124#include <machine/md_var.h>
125
126/*
127 *	Associated with page of user-allocatable memory is a
128 *	page structure.
129 */
130
131struct mtx vm_page_queue_mtx;
132struct mtx vm_page_queue_free_mtx;
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139static int boot_pages = UMA_BOOT_PAGES;
140TUNABLE_INT("vm.boot_pages", &boot_pages);
141SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
142	"number of pages allocated for bootstrapping the VM system");
143
144/*
145 *	vm_set_page_size:
146 *
147 *	Sets the page size, perhaps based upon the memory
148 *	size.  Must be called before any use of page-size
149 *	dependent functions.
150 */
151void
152vm_set_page_size(void)
153{
154	if (cnt.v_page_size == 0)
155		cnt.v_page_size = PAGE_SIZE;
156	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
157		panic("vm_set_page_size: page size not a power of two");
158}
159
160/*
161 *	vm_page_blacklist_lookup:
162 *
163 *	See if a physical address in this page has been listed
164 *	in the blacklist tunable.  Entries in the tunable are
165 *	separated by spaces or commas.  If an invalid integer is
166 *	encountered then the rest of the string is skipped.
167 */
168static int
169vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
170{
171	vm_paddr_t bad;
172	char *cp, *pos;
173
174	for (pos = list; *pos != '\0'; pos = cp) {
175		bad = strtoq(pos, &cp, 0);
176		if (*cp != '\0') {
177			if (*cp == ' ' || *cp == ',') {
178				cp++;
179				if (cp == pos)
180					continue;
181			} else
182				break;
183		}
184		if (pa == trunc_page(bad))
185			return (1);
186	}
187	return (0);
188}
189
190/*
191 *	vm_page_startup:
192 *
193 *	Initializes the resident memory module.
194 *
195 *	Allocates memory for the page cells, and
196 *	for the object/offset-to-page hash table headers.
197 *	Each page cell is initialized and placed on the free list.
198 */
199vm_offset_t
200vm_page_startup(vm_offset_t vaddr)
201{
202	vm_offset_t mapped;
203	vm_size_t npages;
204	vm_paddr_t page_range;
205	vm_paddr_t new_end;
206	int i;
207	vm_paddr_t pa;
208	int nblocks;
209	vm_paddr_t last_pa;
210	char *list;
211
212	/* the biggest memory array is the second group of pages */
213	vm_paddr_t end;
214	vm_paddr_t biggestsize;
215	vm_paddr_t low_water, high_water;
216	int biggestone;
217
218	vm_paddr_t total;
219
220	total = 0;
221	biggestsize = 0;
222	biggestone = 0;
223	nblocks = 0;
224	vaddr = round_page(vaddr);
225
226	for (i = 0; phys_avail[i + 1]; i += 2) {
227		phys_avail[i] = round_page(phys_avail[i]);
228		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
229	}
230
231	low_water = phys_avail[0];
232	high_water = phys_avail[1];
233
234	for (i = 0; phys_avail[i + 1]; i += 2) {
235		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
236
237		if (size > biggestsize) {
238			biggestone = i;
239			biggestsize = size;
240		}
241		if (phys_avail[i] < low_water)
242			low_water = phys_avail[i];
243		if (phys_avail[i + 1] > high_water)
244			high_water = phys_avail[i + 1];
245		++nblocks;
246		total += size;
247	}
248
249	end = phys_avail[biggestone+1];
250
251	/*
252	 * Initialize the locks.
253	 */
254	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
255	    MTX_RECURSE);
256	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
257	    MTX_DEF);
258
259	/*
260	 * Initialize the queue headers for the free queue, the active queue
261	 * and the inactive queue.
262	 */
263	vm_pageq_init();
264
265	/*
266	 * Allocate memory for use when boot strapping the kernel memory
267	 * allocator.
268	 */
269	new_end = end - (boot_pages * UMA_SLAB_SIZE);
270	new_end = trunc_page(new_end);
271	mapped = pmap_map(&vaddr, new_end, end,
272	    VM_PROT_READ | VM_PROT_WRITE);
273	bzero((void *)mapped, end - new_end);
274	uma_startup((void *)mapped, boot_pages);
275
276#if defined(__amd64__) || defined(__i386__)
277	/*
278	 * Allocate a bitmap to indicate that a random physical page
279	 * needs to be included in a minidump.
280	 *
281	 * The amd64 port needs this to indicate which direct map pages
282	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
283	 *
284	 * However, i386 still needs this workspace internally within the
285	 * minidump code.  In theory, they are not needed on i386, but are
286	 * included should the sf_buf code decide to use them.
287	 */
288	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
289	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
290	new_end -= vm_page_dump_size;
291	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
292	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
293	bzero((void *)vm_page_dump, vm_page_dump_size);
294#endif
295	/*
296	 * Compute the number of pages of memory that will be available for
297	 * use (taking into account the overhead of a page structure per
298	 * page).
299	 */
300	first_page = low_water / PAGE_SIZE;
301	page_range = high_water / PAGE_SIZE - first_page;
302	npages = (total - (page_range * sizeof(struct vm_page)) -
303	    (end - new_end)) / PAGE_SIZE;
304	end = new_end;
305
306	/*
307	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
308	 */
309	vaddr += PAGE_SIZE;
310
311	/*
312	 * Initialize the mem entry structures now, and put them in the free
313	 * queue.
314	 */
315	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
316	mapped = pmap_map(&vaddr, new_end, end,
317	    VM_PROT_READ | VM_PROT_WRITE);
318	vm_page_array = (vm_page_t) mapped;
319#ifdef __amd64__
320	/*
321	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
322	 * so the pages must be tracked for a crashdump to include this data.
323	 * This includes the vm_page_array and the early UMA bootstrap pages.
324	 */
325	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
326		dump_add_page(pa);
327#endif
328	phys_avail[biggestone + 1] = new_end;
329
330	/*
331	 * Clear all of the page structures
332	 */
333	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
334	vm_page_array_size = page_range;
335
336	/*
337	 * This assertion tests the hypothesis that npages and total are
338	 * redundant.  XXX
339	 */
340	page_range = 0;
341	for (i = 0; phys_avail[i + 1] != 0; i += 2)
342		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
343	KASSERT(page_range == npages,
344	    ("vm_page_startup: inconsistent page counts"));
345
346	/*
347	 * Construct the free queue(s) in descending order (by physical
348	 * address) so that the first 16MB of physical memory is allocated
349	 * last rather than first.  On large-memory machines, this avoids
350	 * the exhaustion of low physical memory before isa_dma_init has run.
351	 */
352	cnt.v_page_count = 0;
353	cnt.v_free_count = 0;
354	list = getenv("vm.blacklist");
355	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
356		pa = phys_avail[i];
357		last_pa = phys_avail[i + 1];
358		while (pa < last_pa) {
359			if (list != NULL &&
360			    vm_page_blacklist_lookup(list, pa))
361				printf("Skipping page with pa 0x%jx\n",
362				    (uintmax_t)pa);
363			else
364				vm_pageq_add_new_page(pa);
365			pa += PAGE_SIZE;
366		}
367	}
368	freeenv(list);
369	return (vaddr);
370}
371
372void
373vm_page_flag_set(vm_page_t m, unsigned short bits)
374{
375
376	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
377	m->flags |= bits;
378}
379
380void
381vm_page_flag_clear(vm_page_t m, unsigned short bits)
382{
383
384	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
385	m->flags &= ~bits;
386}
387
388void
389vm_page_busy(vm_page_t m)
390{
391
392	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
393	KASSERT((m->oflags & VPO_BUSY) == 0,
394	    ("vm_page_busy: page already busy!!!"));
395	m->oflags |= VPO_BUSY;
396}
397
398/*
399 *      vm_page_flash:
400 *
401 *      wakeup anyone waiting for the page.
402 */
403void
404vm_page_flash(vm_page_t m)
405{
406
407	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
408	if (m->oflags & VPO_WANTED) {
409		m->oflags &= ~VPO_WANTED;
410		wakeup(m);
411	}
412}
413
414/*
415 *      vm_page_wakeup:
416 *
417 *      clear the VPO_BUSY flag and wakeup anyone waiting for the
418 *      page.
419 *
420 */
421void
422vm_page_wakeup(vm_page_t m)
423{
424
425	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
426	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
427	m->oflags &= ~VPO_BUSY;
428	vm_page_flash(m);
429}
430
431void
432vm_page_io_start(vm_page_t m)
433{
434
435	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
436	m->busy++;
437}
438
439void
440vm_page_io_finish(vm_page_t m)
441{
442
443	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
444	m->busy--;
445	if (m->busy == 0)
446		vm_page_flash(m);
447}
448
449/*
450 * Keep page from being freed by the page daemon
451 * much of the same effect as wiring, except much lower
452 * overhead and should be used only for *very* temporary
453 * holding ("wiring").
454 */
455void
456vm_page_hold(vm_page_t mem)
457{
458
459	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
460        mem->hold_count++;
461}
462
463void
464vm_page_unhold(vm_page_t mem)
465{
466
467	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
468	--mem->hold_count;
469	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
470	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
471		vm_page_free_toq(mem);
472}
473
474/*
475 *	vm_page_free:
476 *
477 *	Free a page
478 *
479 *	The clearing of PG_ZERO is a temporary safety until the code can be
480 *	reviewed to determine that PG_ZERO is being properly cleared on
481 *	write faults or maps.  PG_ZERO was previously cleared in
482 *	vm_page_alloc().
483 */
484void
485vm_page_free(vm_page_t m)
486{
487	vm_page_flag_clear(m, PG_ZERO);
488	vm_page_free_toq(m);
489	vm_page_zero_idle_wakeup();
490}
491
492/*
493 *	vm_page_free_zero:
494 *
495 *	Free a page to the zerod-pages queue
496 */
497void
498vm_page_free_zero(vm_page_t m)
499{
500	vm_page_flag_set(m, PG_ZERO);
501	vm_page_free_toq(m);
502}
503
504/*
505 *	vm_page_sleep:
506 *
507 *	Sleep and release the page queues lock.
508 *
509 *	The object containing the given page must be locked.
510 */
511void
512vm_page_sleep(vm_page_t m, const char *msg)
513{
514
515	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
516	if (!mtx_owned(&vm_page_queue_mtx))
517		vm_page_lock_queues();
518	vm_page_flag_set(m, PG_REFERENCED);
519	vm_page_unlock_queues();
520
521	/*
522	 * It's possible that while we sleep, the page will get
523	 * unbusied and freed.  If we are holding the object
524	 * lock, we will assume we hold a reference to the object
525	 * such that even if m->object changes, we can re-lock
526	 * it.
527	 */
528	m->oflags |= VPO_WANTED;
529	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
530}
531
532/*
533 *	vm_page_dirty:
534 *
535 *	make page all dirty
536 */
537void
538vm_page_dirty(vm_page_t m)
539{
540	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
541	    ("vm_page_dirty: page in cache!"));
542	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
543	    ("vm_page_dirty: page is free!"));
544	m->dirty = VM_PAGE_BITS_ALL;
545}
546
547/*
548 *	vm_page_splay:
549 *
550 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
551 *	the vm_page containing the given pindex.  If, however, that
552 *	pindex is not found in the vm_object, returns a vm_page that is
553 *	adjacent to the pindex, coming before or after it.
554 */
555vm_page_t
556vm_page_splay(vm_pindex_t pindex, vm_page_t root)
557{
558	struct vm_page dummy;
559	vm_page_t lefttreemax, righttreemin, y;
560
561	if (root == NULL)
562		return (root);
563	lefttreemax = righttreemin = &dummy;
564	for (;; root = y) {
565		if (pindex < root->pindex) {
566			if ((y = root->left) == NULL)
567				break;
568			if (pindex < y->pindex) {
569				/* Rotate right. */
570				root->left = y->right;
571				y->right = root;
572				root = y;
573				if ((y = root->left) == NULL)
574					break;
575			}
576			/* Link into the new root's right tree. */
577			righttreemin->left = root;
578			righttreemin = root;
579		} else if (pindex > root->pindex) {
580			if ((y = root->right) == NULL)
581				break;
582			if (pindex > y->pindex) {
583				/* Rotate left. */
584				root->right = y->left;
585				y->left = root;
586				root = y;
587				if ((y = root->right) == NULL)
588					break;
589			}
590			/* Link into the new root's left tree. */
591			lefttreemax->right = root;
592			lefttreemax = root;
593		} else
594			break;
595	}
596	/* Assemble the new root. */
597	lefttreemax->right = root->left;
598	righttreemin->left = root->right;
599	root->left = dummy.right;
600	root->right = dummy.left;
601	return (root);
602}
603
604/*
605 *	vm_page_insert:		[ internal use only ]
606 *
607 *	Inserts the given mem entry into the object and object list.
608 *
609 *	The pagetables are not updated but will presumably fault the page
610 *	in if necessary, or if a kernel page the caller will at some point
611 *	enter the page into the kernel's pmap.  We are not allowed to block
612 *	here so we *can't* do this anyway.
613 *
614 *	The object and page must be locked.
615 *	This routine may not block.
616 */
617void
618vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
619{
620	vm_page_t root;
621
622	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
623	if (m->object != NULL)
624		panic("vm_page_insert: page already inserted");
625
626	/*
627	 * Record the object/offset pair in this page
628	 */
629	m->object = object;
630	m->pindex = pindex;
631
632	/*
633	 * Now link into the object's ordered list of backed pages.
634	 */
635	root = object->root;
636	if (root == NULL) {
637		m->left = NULL;
638		m->right = NULL;
639		TAILQ_INSERT_TAIL(&object->memq, m, listq);
640	} else {
641		root = vm_page_splay(pindex, root);
642		if (pindex < root->pindex) {
643			m->left = root->left;
644			m->right = root;
645			root->left = NULL;
646			TAILQ_INSERT_BEFORE(root, m, listq);
647		} else if (pindex == root->pindex)
648			panic("vm_page_insert: offset already allocated");
649		else {
650			m->right = root->right;
651			m->left = root;
652			root->right = NULL;
653			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
654		}
655	}
656	object->root = m;
657	object->generation++;
658
659	/*
660	 * show that the object has one more resident page.
661	 */
662	object->resident_page_count++;
663	/*
664	 * Hold the vnode until the last page is released.
665	 */
666	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
667		vhold((struct vnode *)object->handle);
668
669	/*
670	 * Since we are inserting a new and possibly dirty page,
671	 * update the object's OBJ_MIGHTBEDIRTY flag.
672	 */
673	if (m->flags & PG_WRITEABLE)
674		vm_object_set_writeable_dirty(object);
675}
676
677/*
678 *	vm_page_remove:
679 *				NOTE: used by device pager as well -wfj
680 *
681 *	Removes the given mem entry from the object/offset-page
682 *	table and the object page list, but do not invalidate/terminate
683 *	the backing store.
684 *
685 *	The object and page must be locked.
686 *	The underlying pmap entry (if any) is NOT removed here.
687 *	This routine may not block.
688 */
689void
690vm_page_remove(vm_page_t m)
691{
692	vm_object_t object;
693	vm_page_t root;
694
695	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
696	if ((object = m->object) == NULL)
697		return;
698	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
699	if (m->oflags & VPO_BUSY) {
700		m->oflags &= ~VPO_BUSY;
701		vm_page_flash(m);
702	}
703
704	/*
705	 * Now remove from the object's list of backed pages.
706	 */
707	if (m != object->root)
708		vm_page_splay(m->pindex, object->root);
709	if (m->left == NULL)
710		root = m->right;
711	else {
712		root = vm_page_splay(m->pindex, m->left);
713		root->right = m->right;
714	}
715	object->root = root;
716	TAILQ_REMOVE(&object->memq, m, listq);
717
718	/*
719	 * And show that the object has one fewer resident page.
720	 */
721	object->resident_page_count--;
722	object->generation++;
723	/*
724	 * The vnode may now be recycled.
725	 */
726	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
727		vdrop((struct vnode *)object->handle);
728
729	m->object = NULL;
730}
731
732/*
733 *	vm_page_lookup:
734 *
735 *	Returns the page associated with the object/offset
736 *	pair specified; if none is found, NULL is returned.
737 *
738 *	The object must be locked.
739 *	This routine may not block.
740 *	This is a critical path routine
741 */
742vm_page_t
743vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
744{
745	vm_page_t m;
746
747	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
748	if ((m = object->root) != NULL && m->pindex != pindex) {
749		m = vm_page_splay(pindex, m);
750		if ((object->root = m)->pindex != pindex)
751			m = NULL;
752	}
753	return (m);
754}
755
756/*
757 *	vm_page_rename:
758 *
759 *	Move the given memory entry from its
760 *	current object to the specified target object/offset.
761 *
762 *	The object must be locked.
763 *	This routine may not block.
764 *
765 *	Note: swap associated with the page must be invalidated by the move.  We
766 *	      have to do this for several reasons:  (1) we aren't freeing the
767 *	      page, (2) we are dirtying the page, (3) the VM system is probably
768 *	      moving the page from object A to B, and will then later move
769 *	      the backing store from A to B and we can't have a conflict.
770 *
771 *	Note: we *always* dirty the page.  It is necessary both for the
772 *	      fact that we moved it, and because we may be invalidating
773 *	      swap.  If the page is on the cache, we have to deactivate it
774 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
775 *	      on the cache.
776 */
777void
778vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
779{
780
781	vm_page_remove(m);
782	vm_page_insert(m, new_object, new_pindex);
783	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
784		vm_page_deactivate(m);
785	vm_page_dirty(m);
786}
787
788/*
789 *	vm_page_select_cache:
790 *
791 *	Move a page of the given color from the cache queue to the free
792 *	queue.  As pages might be found, but are not applicable, they are
793 *	deactivated.
794 *
795 *	This routine may not block.
796 */
797vm_page_t
798vm_page_select_cache(int color)
799{
800	vm_object_t object;
801	vm_page_t m;
802	boolean_t was_trylocked;
803
804	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
805	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
806		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
807		KASSERT(!pmap_page_is_mapped(m),
808		    ("Found mapped cache page %p", m));
809		KASSERT((m->flags & PG_UNMANAGED) == 0,
810		    ("Found unmanaged cache page %p", m));
811		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
812		if (m->hold_count == 0 && (object = m->object,
813		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
814		    VM_OBJECT_LOCKED(object))) {
815			KASSERT((m->oflags & VPO_BUSY) == 0 && m->busy == 0,
816			    ("Found busy cache page %p", m));
817			vm_page_free(m);
818			if (was_trylocked)
819				VM_OBJECT_UNLOCK(object);
820			break;
821		}
822		vm_page_deactivate(m);
823	}
824	return (m);
825}
826
827/*
828 *	vm_page_alloc:
829 *
830 *	Allocate and return a memory cell associated
831 *	with this VM object/offset pair.
832 *
833 *	page_req classes:
834 *	VM_ALLOC_NORMAL		normal process request
835 *	VM_ALLOC_SYSTEM		system *really* needs a page
836 *	VM_ALLOC_INTERRUPT	interrupt time request
837 *	VM_ALLOC_ZERO		zero page
838 *
839 *	This routine may not block.
840 *
841 *	Additional special handling is required when called from an
842 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
843 *	the page cache in this case.
844 */
845vm_page_t
846vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
847{
848	vm_page_t m = NULL;
849	int color, flags, page_req;
850
851	page_req = req & VM_ALLOC_CLASS_MASK;
852	KASSERT(curthread->td_intr_nesting_level == 0 ||
853	    page_req == VM_ALLOC_INTERRUPT,
854	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
855
856	if ((req & VM_ALLOC_NOOBJ) == 0) {
857		KASSERT(object != NULL,
858		    ("vm_page_alloc: NULL object."));
859		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
860		color = (pindex + object->pg_color) & PQ_COLORMASK;
861	} else
862		color = pindex & PQ_COLORMASK;
863
864	/*
865	 * The pager is allowed to eat deeper into the free page list.
866	 */
867	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
868		page_req = VM_ALLOC_SYSTEM;
869	};
870
871loop:
872	mtx_lock(&vm_page_queue_free_mtx);
873	if (cnt.v_free_count > cnt.v_free_reserved ||
874	    (page_req == VM_ALLOC_SYSTEM &&
875	     cnt.v_cache_count == 0 &&
876	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
877	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
878		/*
879		 * Allocate from the free queue if the number of free pages
880		 * exceeds the minimum for the request class.
881		 */
882		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
883	} else if (page_req != VM_ALLOC_INTERRUPT) {
884		mtx_unlock(&vm_page_queue_free_mtx);
885		/*
886		 * Allocatable from cache (non-interrupt only).  On success,
887		 * we must free the page and try again, thus ensuring that
888		 * cnt.v_*_free_min counters are replenished.
889		 */
890		vm_page_lock_queues();
891		if ((m = vm_page_select_cache(color)) == NULL) {
892			KASSERT(cnt.v_cache_count == 0,
893			    ("vm_page_alloc: cache queue is missing %d pages",
894			    cnt.v_cache_count));
895			vm_page_unlock_queues();
896			atomic_add_int(&vm_pageout_deficit, 1);
897			pagedaemon_wakeup();
898
899			if (page_req != VM_ALLOC_SYSTEM)
900				return (NULL);
901
902			mtx_lock(&vm_page_queue_free_mtx);
903			if (cnt.v_free_count <= cnt.v_interrupt_free_min) {
904				mtx_unlock(&vm_page_queue_free_mtx);
905				return (NULL);
906			}
907			m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
908		} else {
909			vm_page_unlock_queues();
910			goto loop;
911		}
912	} else {
913		/*
914		 * Not allocatable from cache from interrupt, give up.
915		 */
916		mtx_unlock(&vm_page_queue_free_mtx);
917		atomic_add_int(&vm_pageout_deficit, 1);
918		pagedaemon_wakeup();
919		return (NULL);
920	}
921
922	/*
923	 *  At this point we had better have found a good page.
924	 */
925
926	KASSERT(
927	    m != NULL,
928	    ("vm_page_alloc(): missing page on free queue")
929	);
930
931	/*
932	 * Remove from free queue
933	 */
934	vm_pageq_remove_nowakeup(m);
935
936	/*
937	 * Initialize structure.  Only the PG_ZERO flag is inherited.
938	 */
939	flags = 0;
940	if (m->flags & PG_ZERO) {
941		vm_page_zero_count--;
942		if (req & VM_ALLOC_ZERO)
943			flags = PG_ZERO;
944	}
945	m->flags = flags;
946	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
947		m->oflags = 0;
948	else
949		m->oflags = VPO_BUSY;
950	if (req & VM_ALLOC_WIRED) {
951		atomic_add_int(&cnt.v_wire_count, 1);
952		m->wire_count = 1;
953	} else
954		m->wire_count = 0;
955	m->hold_count = 0;
956	m->act_count = 0;
957	m->busy = 0;
958	m->valid = 0;
959	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
960	mtx_unlock(&vm_page_queue_free_mtx);
961
962	if ((req & VM_ALLOC_NOOBJ) == 0)
963		vm_page_insert(m, object, pindex);
964	else
965		m->pindex = pindex;
966
967	/*
968	 * Don't wakeup too often - wakeup the pageout daemon when
969	 * we would be nearly out of memory.
970	 */
971	if (vm_paging_needed())
972		pagedaemon_wakeup();
973
974	return (m);
975}
976
977/*
978 *	vm_wait:	(also see VM_WAIT macro)
979 *
980 *	Block until free pages are available for allocation
981 *	- Called in various places before memory allocations.
982 */
983void
984vm_wait(void)
985{
986
987	vm_page_lock_queues();
988	if (curproc == pageproc) {
989		vm_pageout_pages_needed = 1;
990		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
991		    PDROP | PSWP, "VMWait", 0);
992	} else {
993		if (!vm_pages_needed) {
994			vm_pages_needed = 1;
995			wakeup(&vm_pages_needed);
996		}
997		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
998		    "vmwait", 0);
999	}
1000}
1001
1002/*
1003 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1004 *
1005 *	Block until free pages are available for allocation
1006 *	- Called only in vm_fault so that processes page faulting
1007 *	  can be easily tracked.
1008 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1009 *	  processes will be able to grab memory first.  Do not change
1010 *	  this balance without careful testing first.
1011 */
1012void
1013vm_waitpfault(void)
1014{
1015
1016	vm_page_lock_queues();
1017	if (!vm_pages_needed) {
1018		vm_pages_needed = 1;
1019		wakeup(&vm_pages_needed);
1020	}
1021	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
1022	    "pfault", 0);
1023}
1024
1025/*
1026 *	vm_page_activate:
1027 *
1028 *	Put the specified page on the active list (if appropriate).
1029 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1030 *	mess with it.
1031 *
1032 *	The page queues must be locked.
1033 *	This routine may not block.
1034 */
1035void
1036vm_page_activate(vm_page_t m)
1037{
1038
1039	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1040	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1041		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1042			cnt.v_reactivated++;
1043		vm_pageq_remove(m);
1044		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1045			if (m->act_count < ACT_INIT)
1046				m->act_count = ACT_INIT;
1047			vm_pageq_enqueue(PQ_ACTIVE, m);
1048		}
1049	} else {
1050		if (m->act_count < ACT_INIT)
1051			m->act_count = ACT_INIT;
1052	}
1053}
1054
1055/*
1056 *	vm_page_free_wakeup:
1057 *
1058 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1059 *	routine is called when a page has been added to the cache or free
1060 *	queues.
1061 *
1062 *	The page queues must be locked.
1063 *	This routine may not block.
1064 */
1065static inline void
1066vm_page_free_wakeup(void)
1067{
1068
1069	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1070	/*
1071	 * if pageout daemon needs pages, then tell it that there are
1072	 * some free.
1073	 */
1074	if (vm_pageout_pages_needed &&
1075	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1076		wakeup(&vm_pageout_pages_needed);
1077		vm_pageout_pages_needed = 0;
1078	}
1079	/*
1080	 * wakeup processes that are waiting on memory if we hit a
1081	 * high water mark. And wakeup scheduler process if we have
1082	 * lots of memory. this process will swapin processes.
1083	 */
1084	if (vm_pages_needed && !vm_page_count_min()) {
1085		vm_pages_needed = 0;
1086		wakeup(&cnt.v_free_count);
1087	}
1088}
1089
1090/*
1091 *	vm_page_free_toq:
1092 *
1093 *	Returns the given page to the PQ_FREE list,
1094 *	disassociating it with any VM object.
1095 *
1096 *	Object and page must be locked prior to entry.
1097 *	This routine may not block.
1098 */
1099
1100void
1101vm_page_free_toq(vm_page_t m)
1102{
1103	struct vpgqueues *pq;
1104
1105	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1106	KASSERT(!pmap_page_is_mapped(m),
1107	    ("vm_page_free_toq: freeing mapped page %p", m));
1108	cnt.v_tfree++;
1109
1110	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1111		printf(
1112		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1113		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1114		    m->hold_count);
1115		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1116			panic("vm_page_free: freeing free page");
1117		else
1118			panic("vm_page_free: freeing busy page");
1119	}
1120
1121	/*
1122	 * unqueue, then remove page.  Note that we cannot destroy
1123	 * the page here because we do not want to call the pager's
1124	 * callback routine until after we've put the page on the
1125	 * appropriate free queue.
1126	 */
1127	vm_pageq_remove_nowakeup(m);
1128	vm_page_remove(m);
1129
1130	/*
1131	 * If fictitious remove object association and
1132	 * return, otherwise delay object association removal.
1133	 */
1134	if ((m->flags & PG_FICTITIOUS) != 0) {
1135		return;
1136	}
1137
1138	m->valid = 0;
1139	vm_page_undirty(m);
1140
1141	if (m->wire_count != 0) {
1142		if (m->wire_count > 1) {
1143			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1144				m->wire_count, (long)m->pindex);
1145		}
1146		panic("vm_page_free: freeing wired page");
1147	}
1148	if (m->hold_count != 0) {
1149		m->flags &= ~PG_ZERO;
1150		VM_PAGE_SETQUEUE2(m, PQ_HOLD);
1151	} else
1152		VM_PAGE_SETQUEUE1(m, PQ_FREE);
1153	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1154	mtx_lock(&vm_page_queue_free_mtx);
1155	pq->lcnt++;
1156	++(*pq->cnt);
1157
1158	/*
1159	 * Put zero'd pages on the end ( where we look for zero'd pages
1160	 * first ) and non-zerod pages at the head.
1161	 */
1162	if (m->flags & PG_ZERO) {
1163		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1164		++vm_page_zero_count;
1165	} else {
1166		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1167	}
1168	mtx_unlock(&vm_page_queue_free_mtx);
1169	vm_page_free_wakeup();
1170}
1171
1172/*
1173 *	vm_page_unmanage:
1174 *
1175 * 	Prevent PV management from being done on the page.  The page is
1176 *	removed from the paging queues as if it were wired, and as a
1177 *	consequence of no longer being managed the pageout daemon will not
1178 *	touch it (since there is no way to locate the pte mappings for the
1179 *	page).  madvise() calls that mess with the pmap will also no longer
1180 *	operate on the page.
1181 *
1182 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1183 *	will clear the flag.
1184 *
1185 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1186 *	physical memory as backing store rather then swap-backed memory and
1187 *	will eventually be extended to support 4MB unmanaged physical
1188 *	mappings.
1189 */
1190void
1191vm_page_unmanage(vm_page_t m)
1192{
1193
1194	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1195	if ((m->flags & PG_UNMANAGED) == 0) {
1196		if (m->wire_count == 0)
1197			vm_pageq_remove(m);
1198	}
1199	vm_page_flag_set(m, PG_UNMANAGED);
1200}
1201
1202/*
1203 *	vm_page_wire:
1204 *
1205 *	Mark this page as wired down by yet
1206 *	another map, removing it from paging queues
1207 *	as necessary.
1208 *
1209 *	The page queues must be locked.
1210 *	This routine may not block.
1211 */
1212void
1213vm_page_wire(vm_page_t m)
1214{
1215
1216	/*
1217	 * Only bump the wire statistics if the page is not already wired,
1218	 * and only unqueue the page if it is on some queue (if it is unmanaged
1219	 * it is already off the queues).
1220	 */
1221	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1222	if (m->flags & PG_FICTITIOUS)
1223		return;
1224	if (m->wire_count == 0) {
1225		if ((m->flags & PG_UNMANAGED) == 0)
1226			vm_pageq_remove(m);
1227		atomic_add_int(&cnt.v_wire_count, 1);
1228	}
1229	m->wire_count++;
1230	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1231}
1232
1233/*
1234 *	vm_page_unwire:
1235 *
1236 *	Release one wiring of this page, potentially
1237 *	enabling it to be paged again.
1238 *
1239 *	Many pages placed on the inactive queue should actually go
1240 *	into the cache, but it is difficult to figure out which.  What
1241 *	we do instead, if the inactive target is well met, is to put
1242 *	clean pages at the head of the inactive queue instead of the tail.
1243 *	This will cause them to be moved to the cache more quickly and
1244 *	if not actively re-referenced, freed more quickly.  If we just
1245 *	stick these pages at the end of the inactive queue, heavy filesystem
1246 *	meta-data accesses can cause an unnecessary paging load on memory bound
1247 *	processes.  This optimization causes one-time-use metadata to be
1248 *	reused more quickly.
1249 *
1250 *	BUT, if we are in a low-memory situation we have no choice but to
1251 *	put clean pages on the cache queue.
1252 *
1253 *	A number of routines use vm_page_unwire() to guarantee that the page
1254 *	will go into either the inactive or active queues, and will NEVER
1255 *	be placed in the cache - for example, just after dirtying a page.
1256 *	dirty pages in the cache are not allowed.
1257 *
1258 *	The page queues must be locked.
1259 *	This routine may not block.
1260 */
1261void
1262vm_page_unwire(vm_page_t m, int activate)
1263{
1264
1265	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1266	if (m->flags & PG_FICTITIOUS)
1267		return;
1268	if (m->wire_count > 0) {
1269		m->wire_count--;
1270		if (m->wire_count == 0) {
1271			atomic_subtract_int(&cnt.v_wire_count, 1);
1272			if (m->flags & PG_UNMANAGED) {
1273				;
1274			} else if (activate)
1275				vm_pageq_enqueue(PQ_ACTIVE, m);
1276			else {
1277				vm_page_flag_clear(m, PG_WINATCFLS);
1278				vm_pageq_enqueue(PQ_INACTIVE, m);
1279			}
1280		}
1281	} else {
1282		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1283	}
1284}
1285
1286
1287/*
1288 * Move the specified page to the inactive queue.  If the page has
1289 * any associated swap, the swap is deallocated.
1290 *
1291 * Normally athead is 0 resulting in LRU operation.  athead is set
1292 * to 1 if we want this page to be 'as if it were placed in the cache',
1293 * except without unmapping it from the process address space.
1294 *
1295 * This routine may not block.
1296 */
1297static inline void
1298_vm_page_deactivate(vm_page_t m, int athead)
1299{
1300
1301	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1302
1303	/*
1304	 * Ignore if already inactive.
1305	 */
1306	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1307		return;
1308	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1309		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1310			cnt.v_reactivated++;
1311		vm_page_flag_clear(m, PG_WINATCFLS);
1312		vm_pageq_remove(m);
1313		if (athead)
1314			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1315		else
1316			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1317		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1318		vm_page_queues[PQ_INACTIVE].lcnt++;
1319		cnt.v_inactive_count++;
1320	}
1321}
1322
1323void
1324vm_page_deactivate(vm_page_t m)
1325{
1326    _vm_page_deactivate(m, 0);
1327}
1328
1329/*
1330 * vm_page_try_to_cache:
1331 *
1332 * Returns 0 on failure, 1 on success
1333 */
1334int
1335vm_page_try_to_cache(vm_page_t m)
1336{
1337
1338	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1339	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1340	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1341	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1342		return (0);
1343	}
1344	pmap_remove_all(m);
1345	if (m->dirty)
1346		return (0);
1347	vm_page_cache(m);
1348	return (1);
1349}
1350
1351/*
1352 * vm_page_try_to_free()
1353 *
1354 *	Attempt to free the page.  If we cannot free it, we do nothing.
1355 *	1 is returned on success, 0 on failure.
1356 */
1357int
1358vm_page_try_to_free(vm_page_t m)
1359{
1360
1361	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1362	if (m->object != NULL)
1363		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1364	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1365	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1366		return (0);
1367	}
1368	pmap_remove_all(m);
1369	if (m->dirty)
1370		return (0);
1371	vm_page_free(m);
1372	return (1);
1373}
1374
1375/*
1376 * vm_page_cache
1377 *
1378 * Put the specified page onto the page cache queue (if appropriate).
1379 *
1380 * This routine may not block.
1381 */
1382void
1383vm_page_cache(vm_page_t m)
1384{
1385
1386	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1387	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1388	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1389	    m->hold_count || m->wire_count) {
1390		printf("vm_page_cache: attempting to cache busy page\n");
1391		return;
1392	}
1393	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1394		return;
1395
1396	/*
1397	 * Remove all pmaps and indicate that the page is not
1398	 * writeable or mapped.
1399	 */
1400	pmap_remove_all(m);
1401	if (m->dirty != 0) {
1402		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1403			(long)m->pindex);
1404	}
1405	vm_pageq_remove_nowakeup(m);
1406	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1407	vm_page_free_wakeup();
1408}
1409
1410/*
1411 * vm_page_dontneed
1412 *
1413 *	Cache, deactivate, or do nothing as appropriate.  This routine
1414 *	is typically used by madvise() MADV_DONTNEED.
1415 *
1416 *	Generally speaking we want to move the page into the cache so
1417 *	it gets reused quickly.  However, this can result in a silly syndrome
1418 *	due to the page recycling too quickly.  Small objects will not be
1419 *	fully cached.  On the otherhand, if we move the page to the inactive
1420 *	queue we wind up with a problem whereby very large objects
1421 *	unnecessarily blow away our inactive and cache queues.
1422 *
1423 *	The solution is to move the pages based on a fixed weighting.  We
1424 *	either leave them alone, deactivate them, or move them to the cache,
1425 *	where moving them to the cache has the highest weighting.
1426 *	By forcing some pages into other queues we eventually force the
1427 *	system to balance the queues, potentially recovering other unrelated
1428 *	space from active.  The idea is to not force this to happen too
1429 *	often.
1430 */
1431void
1432vm_page_dontneed(vm_page_t m)
1433{
1434	static int dnweight;
1435	int dnw;
1436	int head;
1437
1438	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1439	dnw = ++dnweight;
1440
1441	/*
1442	 * occassionally leave the page alone
1443	 */
1444	if ((dnw & 0x01F0) == 0 ||
1445	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1446	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1447	) {
1448		if (m->act_count >= ACT_INIT)
1449			--m->act_count;
1450		return;
1451	}
1452
1453	if (m->dirty == 0 && pmap_is_modified(m))
1454		vm_page_dirty(m);
1455
1456	if (m->dirty || (dnw & 0x0070) == 0) {
1457		/*
1458		 * Deactivate the page 3 times out of 32.
1459		 */
1460		head = 0;
1461	} else {
1462		/*
1463		 * Cache the page 28 times out of every 32.  Note that
1464		 * the page is deactivated instead of cached, but placed
1465		 * at the head of the queue instead of the tail.
1466		 */
1467		head = 1;
1468	}
1469	_vm_page_deactivate(m, head);
1470}
1471
1472/*
1473 * Grab a page, waiting until we are waken up due to the page
1474 * changing state.  We keep on waiting, if the page continues
1475 * to be in the object.  If the page doesn't exist, first allocate it
1476 * and then conditionally zero it.
1477 *
1478 * This routine may block.
1479 */
1480vm_page_t
1481vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1482{
1483	vm_page_t m;
1484
1485	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1486retrylookup:
1487	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1488		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1489			if ((allocflags & VM_ALLOC_RETRY) == 0)
1490				return (NULL);
1491			goto retrylookup;
1492		} else {
1493			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1494				vm_page_lock_queues();
1495				vm_page_wire(m);
1496				vm_page_unlock_queues();
1497			}
1498			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1499				vm_page_busy(m);
1500			return (m);
1501		}
1502	}
1503	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1504	if (m == NULL) {
1505		VM_OBJECT_UNLOCK(object);
1506		VM_WAIT;
1507		VM_OBJECT_LOCK(object);
1508		if ((allocflags & VM_ALLOC_RETRY) == 0)
1509			return (NULL);
1510		goto retrylookup;
1511	}
1512	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1513		pmap_zero_page(m);
1514	return (m);
1515}
1516
1517/*
1518 * Mapping function for valid bits or for dirty bits in
1519 * a page.  May not block.
1520 *
1521 * Inputs are required to range within a page.
1522 */
1523inline int
1524vm_page_bits(int base, int size)
1525{
1526	int first_bit;
1527	int last_bit;
1528
1529	KASSERT(
1530	    base + size <= PAGE_SIZE,
1531	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1532	);
1533
1534	if (size == 0)		/* handle degenerate case */
1535		return (0);
1536
1537	first_bit = base >> DEV_BSHIFT;
1538	last_bit = (base + size - 1) >> DEV_BSHIFT;
1539
1540	return ((2 << last_bit) - (1 << first_bit));
1541}
1542
1543/*
1544 *	vm_page_set_validclean:
1545 *
1546 *	Sets portions of a page valid and clean.  The arguments are expected
1547 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1548 *	of any partial chunks touched by the range.  The invalid portion of
1549 *	such chunks will be zero'd.
1550 *
1551 *	This routine may not block.
1552 *
1553 *	(base + size) must be less then or equal to PAGE_SIZE.
1554 */
1555void
1556vm_page_set_validclean(vm_page_t m, int base, int size)
1557{
1558	int pagebits;
1559	int frag;
1560	int endoff;
1561
1562	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1563	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1564	if (size == 0)	/* handle degenerate case */
1565		return;
1566
1567	/*
1568	 * If the base is not DEV_BSIZE aligned and the valid
1569	 * bit is clear, we have to zero out a portion of the
1570	 * first block.
1571	 */
1572	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1573	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1574		pmap_zero_page_area(m, frag, base - frag);
1575
1576	/*
1577	 * If the ending offset is not DEV_BSIZE aligned and the
1578	 * valid bit is clear, we have to zero out a portion of
1579	 * the last block.
1580	 */
1581	endoff = base + size;
1582	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1583	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1584		pmap_zero_page_area(m, endoff,
1585		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1586
1587	/*
1588	 * Set valid, clear dirty bits.  If validating the entire
1589	 * page we can safely clear the pmap modify bit.  We also
1590	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1591	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1592	 * be set again.
1593	 *
1594	 * We set valid bits inclusive of any overlap, but we can only
1595	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1596	 * the range.
1597	 */
1598	pagebits = vm_page_bits(base, size);
1599	m->valid |= pagebits;
1600#if 0	/* NOT YET */
1601	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1602		frag = DEV_BSIZE - frag;
1603		base += frag;
1604		size -= frag;
1605		if (size < 0)
1606			size = 0;
1607	}
1608	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1609#endif
1610	m->dirty &= ~pagebits;
1611	if (base == 0 && size == PAGE_SIZE) {
1612		pmap_clear_modify(m);
1613		m->oflags &= ~VPO_NOSYNC;
1614	}
1615}
1616
1617void
1618vm_page_clear_dirty(vm_page_t m, int base, int size)
1619{
1620
1621	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1622	m->dirty &= ~vm_page_bits(base, size);
1623}
1624
1625/*
1626 *	vm_page_set_invalid:
1627 *
1628 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1629 *	valid and dirty bits for the effected areas are cleared.
1630 *
1631 *	May not block.
1632 */
1633void
1634vm_page_set_invalid(vm_page_t m, int base, int size)
1635{
1636	int bits;
1637
1638	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1639	bits = vm_page_bits(base, size);
1640	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1641	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1642		pmap_remove_all(m);
1643	m->valid &= ~bits;
1644	m->dirty &= ~bits;
1645	m->object->generation++;
1646}
1647
1648/*
1649 * vm_page_zero_invalid()
1650 *
1651 *	The kernel assumes that the invalid portions of a page contain
1652 *	garbage, but such pages can be mapped into memory by user code.
1653 *	When this occurs, we must zero out the non-valid portions of the
1654 *	page so user code sees what it expects.
1655 *
1656 *	Pages are most often semi-valid when the end of a file is mapped
1657 *	into memory and the file's size is not page aligned.
1658 */
1659void
1660vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1661{
1662	int b;
1663	int i;
1664
1665	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1666	/*
1667	 * Scan the valid bits looking for invalid sections that
1668	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1669	 * valid bit may be set ) have already been zerod by
1670	 * vm_page_set_validclean().
1671	 */
1672	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1673		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1674		    (m->valid & (1 << i))
1675		) {
1676			if (i > b) {
1677				pmap_zero_page_area(m,
1678				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1679			}
1680			b = i + 1;
1681		}
1682	}
1683
1684	/*
1685	 * setvalid is TRUE when we can safely set the zero'd areas
1686	 * as being valid.  We can do this if there are no cache consistancy
1687	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1688	 */
1689	if (setvalid)
1690		m->valid = VM_PAGE_BITS_ALL;
1691}
1692
1693/*
1694 *	vm_page_is_valid:
1695 *
1696 *	Is (partial) page valid?  Note that the case where size == 0
1697 *	will return FALSE in the degenerate case where the page is
1698 *	entirely invalid, and TRUE otherwise.
1699 *
1700 *	May not block.
1701 */
1702int
1703vm_page_is_valid(vm_page_t m, int base, int size)
1704{
1705	int bits = vm_page_bits(base, size);
1706
1707	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1708	if (m->valid && ((m->valid & bits) == bits))
1709		return 1;
1710	else
1711		return 0;
1712}
1713
1714/*
1715 * update dirty bits from pmap/mmu.  May not block.
1716 */
1717void
1718vm_page_test_dirty(vm_page_t m)
1719{
1720	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1721		vm_page_dirty(m);
1722	}
1723}
1724
1725int so_zerocp_fullpage = 0;
1726
1727void
1728vm_page_cowfault(vm_page_t m)
1729{
1730	vm_page_t mnew;
1731	vm_object_t object;
1732	vm_pindex_t pindex;
1733
1734	object = m->object;
1735	pindex = m->pindex;
1736
1737 retry_alloc:
1738	pmap_remove_all(m);
1739	vm_page_remove(m);
1740	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1741	if (mnew == NULL) {
1742		vm_page_insert(m, object, pindex);
1743		vm_page_unlock_queues();
1744		VM_OBJECT_UNLOCK(object);
1745		VM_WAIT;
1746		VM_OBJECT_LOCK(object);
1747		vm_page_lock_queues();
1748		goto retry_alloc;
1749	}
1750
1751	if (m->cow == 0) {
1752		/*
1753		 * check to see if we raced with an xmit complete when
1754		 * waiting to allocate a page.  If so, put things back
1755		 * the way they were
1756		 */
1757		vm_page_free(mnew);
1758		vm_page_insert(m, object, pindex);
1759	} else { /* clear COW & copy page */
1760		if (!so_zerocp_fullpage)
1761			pmap_copy_page(m, mnew);
1762		mnew->valid = VM_PAGE_BITS_ALL;
1763		vm_page_dirty(mnew);
1764		mnew->wire_count = m->wire_count - m->cow;
1765		m->wire_count = m->cow;
1766	}
1767}
1768
1769void
1770vm_page_cowclear(vm_page_t m)
1771{
1772
1773	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1774	if (m->cow) {
1775		m->cow--;
1776		/*
1777		 * let vm_fault add back write permission  lazily
1778		 */
1779	}
1780	/*
1781	 *  sf_buf_free() will free the page, so we needn't do it here
1782	 */
1783}
1784
1785void
1786vm_page_cowsetup(vm_page_t m)
1787{
1788
1789	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1790	m->cow++;
1791	pmap_remove_write(m);
1792}
1793
1794#include "opt_ddb.h"
1795#ifdef DDB
1796#include <sys/kernel.h>
1797
1798#include <ddb/ddb.h>
1799
1800DB_SHOW_COMMAND(page, vm_page_print_page_info)
1801{
1802	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1803	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1804	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1805	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1806	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1807	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1808	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1809	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1810	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1811	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1812}
1813
1814DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1815{
1816	int i;
1817	db_printf("PQ_FREE:");
1818	for (i = 0; i < PQ_NUMCOLORS; i++) {
1819		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1820	}
1821	db_printf("\n");
1822
1823	db_printf("PQ_CACHE:");
1824	for (i = 0; i < PQ_NUMCOLORS; i++) {
1825		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1826	}
1827	db_printf("\n");
1828
1829	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1830		vm_page_queues[PQ_ACTIVE].lcnt,
1831		vm_page_queues[PQ_INACTIVE].lcnt);
1832}
1833#endif /* DDB */
1834