vm_page.c revision 161674
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 161674 2006-08-27 19:50:13Z alc $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/kernel.h>
106#include <sys/malloc.h>
107#include <sys/mutex.h>
108#include <sys/proc.h>
109#include <sys/sysctl.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124#include <machine/md_var.h>
125
126/*
127 *	Associated with page of user-allocatable memory is a
128 *	page structure.
129 */
130
131struct mtx vm_page_queue_mtx;
132struct mtx vm_page_queue_free_mtx;
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139static int boot_pages = UMA_BOOT_PAGES;
140TUNABLE_INT("vm.boot_pages", &boot_pages);
141SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
142	"number of pages allocated for bootstrapping the VM system");
143
144/*
145 *	vm_set_page_size:
146 *
147 *	Sets the page size, perhaps based upon the memory
148 *	size.  Must be called before any use of page-size
149 *	dependent functions.
150 */
151void
152vm_set_page_size(void)
153{
154	if (cnt.v_page_size == 0)
155		cnt.v_page_size = PAGE_SIZE;
156	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
157		panic("vm_set_page_size: page size not a power of two");
158}
159
160/*
161 *	vm_page_blacklist_lookup:
162 *
163 *	See if a physical address in this page has been listed
164 *	in the blacklist tunable.  Entries in the tunable are
165 *	separated by spaces or commas.  If an invalid integer is
166 *	encountered then the rest of the string is skipped.
167 */
168static int
169vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
170{
171	vm_paddr_t bad;
172	char *cp, *pos;
173
174	for (pos = list; *pos != '\0'; pos = cp) {
175		bad = strtoq(pos, &cp, 0);
176		if (*cp != '\0') {
177			if (*cp == ' ' || *cp == ',') {
178				cp++;
179				if (cp == pos)
180					continue;
181			} else
182				break;
183		}
184		if (pa == trunc_page(bad))
185			return (1);
186	}
187	return (0);
188}
189
190/*
191 *	vm_page_startup:
192 *
193 *	Initializes the resident memory module.
194 *
195 *	Allocates memory for the page cells, and
196 *	for the object/offset-to-page hash table headers.
197 *	Each page cell is initialized and placed on the free list.
198 */
199vm_offset_t
200vm_page_startup(vm_offset_t vaddr)
201{
202	vm_offset_t mapped;
203	vm_size_t npages;
204	vm_paddr_t page_range;
205	vm_paddr_t new_end;
206	int i;
207	vm_paddr_t pa;
208	int nblocks;
209	vm_paddr_t last_pa;
210	char *list;
211
212	/* the biggest memory array is the second group of pages */
213	vm_paddr_t end;
214	vm_paddr_t biggestsize;
215	int biggestone;
216
217	vm_paddr_t total;
218
219	total = 0;
220	biggestsize = 0;
221	biggestone = 0;
222	nblocks = 0;
223	vaddr = round_page(vaddr);
224
225	for (i = 0; phys_avail[i + 1]; i += 2) {
226		phys_avail[i] = round_page(phys_avail[i]);
227		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
228	}
229
230	for (i = 0; phys_avail[i + 1]; i += 2) {
231		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
232
233		if (size > biggestsize) {
234			biggestone = i;
235			biggestsize = size;
236		}
237		++nblocks;
238		total += size;
239	}
240
241	end = phys_avail[biggestone+1];
242
243	/*
244	 * Initialize the locks.
245	 */
246	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
247	    MTX_RECURSE);
248	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
249	    MTX_SPIN);
250
251	/*
252	 * Initialize the queue headers for the free queue, the active queue
253	 * and the inactive queue.
254	 */
255	vm_pageq_init();
256
257	/*
258	 * Allocate memory for use when boot strapping the kernel memory
259	 * allocator.
260	 */
261	new_end = end - (boot_pages * UMA_SLAB_SIZE);
262	new_end = trunc_page(new_end);
263	mapped = pmap_map(&vaddr, new_end, end,
264	    VM_PROT_READ | VM_PROT_WRITE);
265	bzero((void *)mapped, end - new_end);
266	uma_startup((void *)mapped, boot_pages);
267
268#if defined(__amd64__) || defined(__i386__)
269	/*
270	 * Allocate a bitmap to indicate that a random physical page
271	 * needs to be included in a minidump.
272	 *
273	 * The amd64 port needs this to indicate which direct map pages
274	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
275	 *
276	 * However, i386 still needs this workspace internally within the
277	 * minidump code.  In theory, they are not needed on i386, but are
278	 * included should the sf_buf code decide to use them.
279	 */
280	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
281	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
282	new_end -= vm_page_dump_size;
283	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
284	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
285	bzero((void *)vm_page_dump, vm_page_dump_size);
286#endif
287	/*
288	 * Compute the number of pages of memory that will be available for
289	 * use (taking into account the overhead of a page structure per
290	 * page).
291	 */
292	first_page = phys_avail[0] / PAGE_SIZE;
293	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
294	npages = (total - (page_range * sizeof(struct vm_page)) -
295	    (end - new_end)) / PAGE_SIZE;
296	end = new_end;
297
298	/*
299	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
300	 */
301	vaddr += PAGE_SIZE;
302
303	/*
304	 * Initialize the mem entry structures now, and put them in the free
305	 * queue.
306	 */
307	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
308	mapped = pmap_map(&vaddr, new_end, end,
309	    VM_PROT_READ | VM_PROT_WRITE);
310	vm_page_array = (vm_page_t) mapped;
311#ifdef __amd64__
312	/*
313	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
314	 * so the pages must be tracked for a crashdump to include this data.
315	 * This includes the vm_page_array and the early UMA bootstrap pages.
316	 */
317	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
318		dump_add_page(pa);
319#endif
320	phys_avail[biggestone + 1] = new_end;
321
322	/*
323	 * Clear all of the page structures
324	 */
325	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
326	vm_page_array_size = page_range;
327
328	/*
329	 * Construct the free queue(s) in descending order (by physical
330	 * address) so that the first 16MB of physical memory is allocated
331	 * last rather than first.  On large-memory machines, this avoids
332	 * the exhaustion of low physical memory before isa_dma_init has run.
333	 */
334	cnt.v_page_count = 0;
335	cnt.v_free_count = 0;
336	list = getenv("vm.blacklist");
337	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
338		pa = phys_avail[i];
339		last_pa = phys_avail[i + 1];
340		while (pa < last_pa && npages-- > 0) {
341			if (list != NULL &&
342			    vm_page_blacklist_lookup(list, pa))
343				printf("Skipping page with pa 0x%jx\n",
344				    (uintmax_t)pa);
345			else
346				vm_pageq_add_new_page(pa);
347			pa += PAGE_SIZE;
348		}
349	}
350	freeenv(list);
351	return (vaddr);
352}
353
354void
355vm_page_flag_set(vm_page_t m, unsigned short bits)
356{
357
358	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
359	m->flags |= bits;
360}
361
362void
363vm_page_flag_clear(vm_page_t m, unsigned short bits)
364{
365
366	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
367	m->flags &= ~bits;
368}
369
370void
371vm_page_busy(vm_page_t m)
372{
373
374	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
375	KASSERT((m->flags & PG_BUSY) == 0,
376	    ("vm_page_busy: page already busy!!!"));
377	vm_page_flag_set(m, PG_BUSY);
378}
379
380/*
381 *      vm_page_flash:
382 *
383 *      wakeup anyone waiting for the page.
384 */
385void
386vm_page_flash(vm_page_t m)
387{
388
389	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
390	if (m->oflags & VPO_WANTED) {
391		m->oflags &= ~VPO_WANTED;
392		wakeup(m);
393	}
394}
395
396/*
397 *      vm_page_wakeup:
398 *
399 *      clear the PG_BUSY flag and wakeup anyone waiting for the
400 *      page.
401 *
402 */
403void
404vm_page_wakeup(vm_page_t m)
405{
406
407	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
408	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
409	vm_page_flag_clear(m, PG_BUSY);
410	vm_page_flash(m);
411}
412
413void
414vm_page_io_start(vm_page_t m)
415{
416
417	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
418	m->busy++;
419}
420
421void
422vm_page_io_finish(vm_page_t m)
423{
424
425	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
426	m->busy--;
427	if (m->busy == 0)
428		vm_page_flash(m);
429}
430
431/*
432 * Keep page from being freed by the page daemon
433 * much of the same effect as wiring, except much lower
434 * overhead and should be used only for *very* temporary
435 * holding ("wiring").
436 */
437void
438vm_page_hold(vm_page_t mem)
439{
440
441	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
442        mem->hold_count++;
443}
444
445void
446vm_page_unhold(vm_page_t mem)
447{
448
449	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
450	--mem->hold_count;
451	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
452	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
453		vm_page_free_toq(mem);
454}
455
456/*
457 *	vm_page_free:
458 *
459 *	Free a page
460 *
461 *	The clearing of PG_ZERO is a temporary safety until the code can be
462 *	reviewed to determine that PG_ZERO is being properly cleared on
463 *	write faults or maps.  PG_ZERO was previously cleared in
464 *	vm_page_alloc().
465 */
466void
467vm_page_free(vm_page_t m)
468{
469	vm_page_flag_clear(m, PG_ZERO);
470	vm_page_free_toq(m);
471	vm_page_zero_idle_wakeup();
472}
473
474/*
475 *	vm_page_free_zero:
476 *
477 *	Free a page to the zerod-pages queue
478 */
479void
480vm_page_free_zero(vm_page_t m)
481{
482	vm_page_flag_set(m, PG_ZERO);
483	vm_page_free_toq(m);
484}
485
486/*
487 *	vm_page_sleep:
488 *
489 *	Sleep and release the page queues lock.
490 *
491 *	The object containing the given page must be locked.
492 */
493void
494vm_page_sleep(vm_page_t m, const char *msg)
495{
496
497	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
498	if (!mtx_owned(&vm_page_queue_mtx))
499		vm_page_lock_queues();
500	vm_page_flag_set(m, PG_REFERENCED);
501	vm_page_unlock_queues();
502
503	/*
504	 * It's possible that while we sleep, the page will get
505	 * unbusied and freed.  If we are holding the object
506	 * lock, we will assume we hold a reference to the object
507	 * such that even if m->object changes, we can re-lock
508	 * it.
509	 */
510	m->oflags |= VPO_WANTED;
511	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
512}
513
514/*
515 *	vm_page_dirty:
516 *
517 *	make page all dirty
518 */
519void
520vm_page_dirty(vm_page_t m)
521{
522	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
523	    ("vm_page_dirty: page in cache!"));
524	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
525	    ("vm_page_dirty: page is free!"));
526	m->dirty = VM_PAGE_BITS_ALL;
527}
528
529/*
530 *	vm_page_splay:
531 *
532 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
533 *	the vm_page containing the given pindex.  If, however, that
534 *	pindex is not found in the vm_object, returns a vm_page that is
535 *	adjacent to the pindex, coming before or after it.
536 */
537vm_page_t
538vm_page_splay(vm_pindex_t pindex, vm_page_t root)
539{
540	struct vm_page dummy;
541	vm_page_t lefttreemax, righttreemin, y;
542
543	if (root == NULL)
544		return (root);
545	lefttreemax = righttreemin = &dummy;
546	for (;; root = y) {
547		if (pindex < root->pindex) {
548			if ((y = root->left) == NULL)
549				break;
550			if (pindex < y->pindex) {
551				/* Rotate right. */
552				root->left = y->right;
553				y->right = root;
554				root = y;
555				if ((y = root->left) == NULL)
556					break;
557			}
558			/* Link into the new root's right tree. */
559			righttreemin->left = root;
560			righttreemin = root;
561		} else if (pindex > root->pindex) {
562			if ((y = root->right) == NULL)
563				break;
564			if (pindex > y->pindex) {
565				/* Rotate left. */
566				root->right = y->left;
567				y->left = root;
568				root = y;
569				if ((y = root->right) == NULL)
570					break;
571			}
572			/* Link into the new root's left tree. */
573			lefttreemax->right = root;
574			lefttreemax = root;
575		} else
576			break;
577	}
578	/* Assemble the new root. */
579	lefttreemax->right = root->left;
580	righttreemin->left = root->right;
581	root->left = dummy.right;
582	root->right = dummy.left;
583	return (root);
584}
585
586/*
587 *	vm_page_insert:		[ internal use only ]
588 *
589 *	Inserts the given mem entry into the object and object list.
590 *
591 *	The pagetables are not updated but will presumably fault the page
592 *	in if necessary, or if a kernel page the caller will at some point
593 *	enter the page into the kernel's pmap.  We are not allowed to block
594 *	here so we *can't* do this anyway.
595 *
596 *	The object and page must be locked.
597 *	This routine may not block.
598 */
599void
600vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
601{
602	vm_page_t root;
603
604	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
605	if (m->object != NULL)
606		panic("vm_page_insert: page already inserted");
607
608	/*
609	 * Record the object/offset pair in this page
610	 */
611	m->object = object;
612	m->pindex = pindex;
613
614	/*
615	 * Now link into the object's ordered list of backed pages.
616	 */
617	root = object->root;
618	if (root == NULL) {
619		m->left = NULL;
620		m->right = NULL;
621		TAILQ_INSERT_TAIL(&object->memq, m, listq);
622	} else {
623		root = vm_page_splay(pindex, root);
624		if (pindex < root->pindex) {
625			m->left = root->left;
626			m->right = root;
627			root->left = NULL;
628			TAILQ_INSERT_BEFORE(root, m, listq);
629		} else if (pindex == root->pindex)
630			panic("vm_page_insert: offset already allocated");
631		else {
632			m->right = root->right;
633			m->left = root;
634			root->right = NULL;
635			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
636		}
637	}
638	object->root = m;
639	object->generation++;
640
641	/*
642	 * show that the object has one more resident page.
643	 */
644	object->resident_page_count++;
645	/*
646	 * Hold the vnode until the last page is released.
647	 */
648	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
649		vhold((struct vnode *)object->handle);
650
651	/*
652	 * Since we are inserting a new and possibly dirty page,
653	 * update the object's OBJ_MIGHTBEDIRTY flag.
654	 */
655	if (m->flags & PG_WRITEABLE)
656		vm_object_set_writeable_dirty(object);
657}
658
659/*
660 *	vm_page_remove:
661 *				NOTE: used by device pager as well -wfj
662 *
663 *	Removes the given mem entry from the object/offset-page
664 *	table and the object page list, but do not invalidate/terminate
665 *	the backing store.
666 *
667 *	The object and page must be locked.
668 *	The underlying pmap entry (if any) is NOT removed here.
669 *	This routine may not block.
670 */
671void
672vm_page_remove(vm_page_t m)
673{
674	vm_object_t object;
675	vm_page_t root;
676
677	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
678	if ((object = m->object) == NULL)
679		return;
680	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
681	if (m->flags & PG_BUSY) {
682		vm_page_flag_clear(m, PG_BUSY);
683		vm_page_flash(m);
684	}
685
686	/*
687	 * Now remove from the object's list of backed pages.
688	 */
689	if (m != object->root)
690		vm_page_splay(m->pindex, object->root);
691	if (m->left == NULL)
692		root = m->right;
693	else {
694		root = vm_page_splay(m->pindex, m->left);
695		root->right = m->right;
696	}
697	object->root = root;
698	TAILQ_REMOVE(&object->memq, m, listq);
699
700	/*
701	 * And show that the object has one fewer resident page.
702	 */
703	object->resident_page_count--;
704	object->generation++;
705	/*
706	 * The vnode may now be recycled.
707	 */
708	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
709		vdrop((struct vnode *)object->handle);
710
711	m->object = NULL;
712}
713
714/*
715 *	vm_page_lookup:
716 *
717 *	Returns the page associated with the object/offset
718 *	pair specified; if none is found, NULL is returned.
719 *
720 *	The object must be locked.
721 *	This routine may not block.
722 *	This is a critical path routine
723 */
724vm_page_t
725vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
726{
727	vm_page_t m;
728
729	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
730	if ((m = object->root) != NULL && m->pindex != pindex) {
731		m = vm_page_splay(pindex, m);
732		if ((object->root = m)->pindex != pindex)
733			m = NULL;
734	}
735	return (m);
736}
737
738/*
739 *	vm_page_rename:
740 *
741 *	Move the given memory entry from its
742 *	current object to the specified target object/offset.
743 *
744 *	The object must be locked.
745 *	This routine may not block.
746 *
747 *	Note: swap associated with the page must be invalidated by the move.  We
748 *	      have to do this for several reasons:  (1) we aren't freeing the
749 *	      page, (2) we are dirtying the page, (3) the VM system is probably
750 *	      moving the page from object A to B, and will then later move
751 *	      the backing store from A to B and we can't have a conflict.
752 *
753 *	Note: we *always* dirty the page.  It is necessary both for the
754 *	      fact that we moved it, and because we may be invalidating
755 *	      swap.  If the page is on the cache, we have to deactivate it
756 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
757 *	      on the cache.
758 */
759void
760vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
761{
762
763	vm_page_remove(m);
764	vm_page_insert(m, new_object, new_pindex);
765	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
766		vm_page_deactivate(m);
767	vm_page_dirty(m);
768}
769
770/*
771 *	vm_page_select_cache:
772 *
773 *	Move a page of the given color from the cache queue to the free
774 *	queue.  As pages might be found, but are not applicable, they are
775 *	deactivated.
776 *
777 *	This routine may not block.
778 */
779vm_page_t
780vm_page_select_cache(int color)
781{
782	vm_object_t object;
783	vm_page_t m;
784	boolean_t was_trylocked;
785
786	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
787	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
788		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
789		KASSERT(!pmap_page_is_mapped(m),
790		    ("Found mapped cache page %p", m));
791		KASSERT((m->flags & PG_UNMANAGED) == 0,
792		    ("Found unmanaged cache page %p", m));
793		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
794		if (m->hold_count == 0 && (object = m->object,
795		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
796		    VM_OBJECT_LOCKED(object))) {
797			KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
798			    ("Found busy cache page %p", m));
799			vm_page_free(m);
800			if (was_trylocked)
801				VM_OBJECT_UNLOCK(object);
802			break;
803		}
804		vm_page_deactivate(m);
805	}
806	return (m);
807}
808
809/*
810 *	vm_page_alloc:
811 *
812 *	Allocate and return a memory cell associated
813 *	with this VM object/offset pair.
814 *
815 *	page_req classes:
816 *	VM_ALLOC_NORMAL		normal process request
817 *	VM_ALLOC_SYSTEM		system *really* needs a page
818 *	VM_ALLOC_INTERRUPT	interrupt time request
819 *	VM_ALLOC_ZERO		zero page
820 *
821 *	This routine may not block.
822 *
823 *	Additional special handling is required when called from an
824 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
825 *	the page cache in this case.
826 */
827vm_page_t
828vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
829{
830	vm_page_t m = NULL;
831	int color, flags, page_req;
832
833	page_req = req & VM_ALLOC_CLASS_MASK;
834	KASSERT(curthread->td_intr_nesting_level == 0 ||
835	    page_req == VM_ALLOC_INTERRUPT,
836	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
837
838	if ((req & VM_ALLOC_NOOBJ) == 0) {
839		KASSERT(object != NULL,
840		    ("vm_page_alloc: NULL object."));
841		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
842		color = (pindex + object->pg_color) & PQ_COLORMASK;
843	} else
844		color = pindex & PQ_COLORMASK;
845
846	/*
847	 * The pager is allowed to eat deeper into the free page list.
848	 */
849	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
850		page_req = VM_ALLOC_SYSTEM;
851	};
852
853loop:
854	mtx_lock_spin(&vm_page_queue_free_mtx);
855	if (cnt.v_free_count > cnt.v_free_reserved ||
856	    (page_req == VM_ALLOC_SYSTEM &&
857	     cnt.v_cache_count == 0 &&
858	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
859	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
860		/*
861		 * Allocate from the free queue if the number of free pages
862		 * exceeds the minimum for the request class.
863		 */
864		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
865	} else if (page_req != VM_ALLOC_INTERRUPT) {
866		mtx_unlock_spin(&vm_page_queue_free_mtx);
867		/*
868		 * Allocatable from cache (non-interrupt only).  On success,
869		 * we must free the page and try again, thus ensuring that
870		 * cnt.v_*_free_min counters are replenished.
871		 */
872		vm_page_lock_queues();
873		if ((m = vm_page_select_cache(color)) == NULL) {
874			KASSERT(cnt.v_cache_count == 0,
875			    ("vm_page_alloc: cache queue is missing %d pages",
876			    cnt.v_cache_count));
877			vm_page_unlock_queues();
878			atomic_add_int(&vm_pageout_deficit, 1);
879			pagedaemon_wakeup();
880
881			if (page_req != VM_ALLOC_SYSTEM)
882				return NULL;
883
884			mtx_lock_spin(&vm_page_queue_free_mtx);
885			if (cnt.v_free_count <=  cnt.v_interrupt_free_min) {
886				mtx_unlock_spin(&vm_page_queue_free_mtx);
887				return (NULL);
888			}
889			m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
890		} else {
891			vm_page_unlock_queues();
892			goto loop;
893		}
894	} else {
895		/*
896		 * Not allocatable from cache from interrupt, give up.
897		 */
898		mtx_unlock_spin(&vm_page_queue_free_mtx);
899		atomic_add_int(&vm_pageout_deficit, 1);
900		pagedaemon_wakeup();
901		return (NULL);
902	}
903
904	/*
905	 *  At this point we had better have found a good page.
906	 */
907
908	KASSERT(
909	    m != NULL,
910	    ("vm_page_alloc(): missing page on free queue")
911	);
912
913	/*
914	 * Remove from free queue
915	 */
916	vm_pageq_remove_nowakeup(m);
917
918	/*
919	 * Initialize structure.  Only the PG_ZERO flag is inherited.
920	 */
921	flags = PG_BUSY;
922	if (m->flags & PG_ZERO) {
923		vm_page_zero_count--;
924		if (req & VM_ALLOC_ZERO)
925			flags = PG_ZERO | PG_BUSY;
926	}
927	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
928		flags &= ~PG_BUSY;
929	m->flags = flags;
930	m->oflags = 0;
931	if (req & VM_ALLOC_WIRED) {
932		atomic_add_int(&cnt.v_wire_count, 1);
933		m->wire_count = 1;
934	} else
935		m->wire_count = 0;
936	m->hold_count = 0;
937	m->act_count = 0;
938	m->busy = 0;
939	m->valid = 0;
940	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
941	mtx_unlock_spin(&vm_page_queue_free_mtx);
942
943	if ((req & VM_ALLOC_NOOBJ) == 0)
944		vm_page_insert(m, object, pindex);
945	else
946		m->pindex = pindex;
947
948	/*
949	 * Don't wakeup too often - wakeup the pageout daemon when
950	 * we would be nearly out of memory.
951	 */
952	if (vm_paging_needed())
953		pagedaemon_wakeup();
954
955	return (m);
956}
957
958/*
959 *	vm_wait:	(also see VM_WAIT macro)
960 *
961 *	Block until free pages are available for allocation
962 *	- Called in various places before memory allocations.
963 */
964void
965vm_wait(void)
966{
967
968	vm_page_lock_queues();
969	if (curproc == pageproc) {
970		vm_pageout_pages_needed = 1;
971		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
972		    PDROP | PSWP, "VMWait", 0);
973	} else {
974		if (!vm_pages_needed) {
975			vm_pages_needed = 1;
976			wakeup(&vm_pages_needed);
977		}
978		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
979		    "vmwait", 0);
980	}
981}
982
983/*
984 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
985 *
986 *	Block until free pages are available for allocation
987 *	- Called only in vm_fault so that processes page faulting
988 *	  can be easily tracked.
989 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
990 *	  processes will be able to grab memory first.  Do not change
991 *	  this balance without careful testing first.
992 */
993void
994vm_waitpfault(void)
995{
996
997	vm_page_lock_queues();
998	if (!vm_pages_needed) {
999		vm_pages_needed = 1;
1000		wakeup(&vm_pages_needed);
1001	}
1002	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
1003	    "pfault", 0);
1004}
1005
1006/*
1007 *	vm_page_activate:
1008 *
1009 *	Put the specified page on the active list (if appropriate).
1010 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1011 *	mess with it.
1012 *
1013 *	The page queues must be locked.
1014 *	This routine may not block.
1015 */
1016void
1017vm_page_activate(vm_page_t m)
1018{
1019
1020	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1021	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1022		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1023			cnt.v_reactivated++;
1024		vm_pageq_remove(m);
1025		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1026			if (m->act_count < ACT_INIT)
1027				m->act_count = ACT_INIT;
1028			vm_pageq_enqueue(PQ_ACTIVE, m);
1029		}
1030	} else {
1031		if (m->act_count < ACT_INIT)
1032			m->act_count = ACT_INIT;
1033	}
1034}
1035
1036/*
1037 *	vm_page_free_wakeup:
1038 *
1039 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1040 *	routine is called when a page has been added to the cache or free
1041 *	queues.
1042 *
1043 *	The page queues must be locked.
1044 *	This routine may not block.
1045 */
1046static inline void
1047vm_page_free_wakeup(void)
1048{
1049
1050	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1051	/*
1052	 * if pageout daemon needs pages, then tell it that there are
1053	 * some free.
1054	 */
1055	if (vm_pageout_pages_needed &&
1056	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1057		wakeup(&vm_pageout_pages_needed);
1058		vm_pageout_pages_needed = 0;
1059	}
1060	/*
1061	 * wakeup processes that are waiting on memory if we hit a
1062	 * high water mark. And wakeup scheduler process if we have
1063	 * lots of memory. this process will swapin processes.
1064	 */
1065	if (vm_pages_needed && !vm_page_count_min()) {
1066		vm_pages_needed = 0;
1067		wakeup(&cnt.v_free_count);
1068	}
1069}
1070
1071/*
1072 *	vm_page_free_toq:
1073 *
1074 *	Returns the given page to the PQ_FREE list,
1075 *	disassociating it with any VM object.
1076 *
1077 *	Object and page must be locked prior to entry.
1078 *	This routine may not block.
1079 */
1080
1081void
1082vm_page_free_toq(vm_page_t m)
1083{
1084	struct vpgqueues *pq;
1085
1086	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1087	KASSERT(!pmap_page_is_mapped(m),
1088	    ("vm_page_free_toq: freeing mapped page %p", m));
1089	cnt.v_tfree++;
1090
1091	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1092		printf(
1093		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1094		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1095		    m->hold_count);
1096		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1097			panic("vm_page_free: freeing free page");
1098		else
1099			panic("vm_page_free: freeing busy page");
1100	}
1101
1102	/*
1103	 * unqueue, then remove page.  Note that we cannot destroy
1104	 * the page here because we do not want to call the pager's
1105	 * callback routine until after we've put the page on the
1106	 * appropriate free queue.
1107	 */
1108	vm_pageq_remove_nowakeup(m);
1109	vm_page_remove(m);
1110
1111	/*
1112	 * If fictitious remove object association and
1113	 * return, otherwise delay object association removal.
1114	 */
1115	if ((m->flags & PG_FICTITIOUS) != 0) {
1116		return;
1117	}
1118
1119	m->valid = 0;
1120	vm_page_undirty(m);
1121
1122	if (m->wire_count != 0) {
1123		if (m->wire_count > 1) {
1124			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1125				m->wire_count, (long)m->pindex);
1126		}
1127		panic("vm_page_free: freeing wired page");
1128	}
1129	if (m->hold_count != 0) {
1130		m->flags &= ~PG_ZERO;
1131		VM_PAGE_SETQUEUE2(m, PQ_HOLD);
1132	} else
1133		VM_PAGE_SETQUEUE1(m, PQ_FREE);
1134	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1135	mtx_lock_spin(&vm_page_queue_free_mtx);
1136	pq->lcnt++;
1137	++(*pq->cnt);
1138
1139	/*
1140	 * Put zero'd pages on the end ( where we look for zero'd pages
1141	 * first ) and non-zerod pages at the head.
1142	 */
1143	if (m->flags & PG_ZERO) {
1144		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1145		++vm_page_zero_count;
1146	} else {
1147		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1148	}
1149	mtx_unlock_spin(&vm_page_queue_free_mtx);
1150	vm_page_free_wakeup();
1151}
1152
1153/*
1154 *	vm_page_unmanage:
1155 *
1156 * 	Prevent PV management from being done on the page.  The page is
1157 *	removed from the paging queues as if it were wired, and as a
1158 *	consequence of no longer being managed the pageout daemon will not
1159 *	touch it (since there is no way to locate the pte mappings for the
1160 *	page).  madvise() calls that mess with the pmap will also no longer
1161 *	operate on the page.
1162 *
1163 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1164 *	will clear the flag.
1165 *
1166 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1167 *	physical memory as backing store rather then swap-backed memory and
1168 *	will eventually be extended to support 4MB unmanaged physical
1169 *	mappings.
1170 */
1171void
1172vm_page_unmanage(vm_page_t m)
1173{
1174
1175	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1176	if ((m->flags & PG_UNMANAGED) == 0) {
1177		if (m->wire_count == 0)
1178			vm_pageq_remove(m);
1179	}
1180	vm_page_flag_set(m, PG_UNMANAGED);
1181}
1182
1183/*
1184 *	vm_page_wire:
1185 *
1186 *	Mark this page as wired down by yet
1187 *	another map, removing it from paging queues
1188 *	as necessary.
1189 *
1190 *	The page queues must be locked.
1191 *	This routine may not block.
1192 */
1193void
1194vm_page_wire(vm_page_t m)
1195{
1196
1197	/*
1198	 * Only bump the wire statistics if the page is not already wired,
1199	 * and only unqueue the page if it is on some queue (if it is unmanaged
1200	 * it is already off the queues).
1201	 */
1202	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1203	if (m->flags & PG_FICTITIOUS)
1204		return;
1205	if (m->wire_count == 0) {
1206		if ((m->flags & PG_UNMANAGED) == 0)
1207			vm_pageq_remove(m);
1208		atomic_add_int(&cnt.v_wire_count, 1);
1209	}
1210	m->wire_count++;
1211	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1212}
1213
1214/*
1215 *	vm_page_unwire:
1216 *
1217 *	Release one wiring of this page, potentially
1218 *	enabling it to be paged again.
1219 *
1220 *	Many pages placed on the inactive queue should actually go
1221 *	into the cache, but it is difficult to figure out which.  What
1222 *	we do instead, if the inactive target is well met, is to put
1223 *	clean pages at the head of the inactive queue instead of the tail.
1224 *	This will cause them to be moved to the cache more quickly and
1225 *	if not actively re-referenced, freed more quickly.  If we just
1226 *	stick these pages at the end of the inactive queue, heavy filesystem
1227 *	meta-data accesses can cause an unnecessary paging load on memory bound
1228 *	processes.  This optimization causes one-time-use metadata to be
1229 *	reused more quickly.
1230 *
1231 *	BUT, if we are in a low-memory situation we have no choice but to
1232 *	put clean pages on the cache queue.
1233 *
1234 *	A number of routines use vm_page_unwire() to guarantee that the page
1235 *	will go into either the inactive or active queues, and will NEVER
1236 *	be placed in the cache - for example, just after dirtying a page.
1237 *	dirty pages in the cache are not allowed.
1238 *
1239 *	The page queues must be locked.
1240 *	This routine may not block.
1241 */
1242void
1243vm_page_unwire(vm_page_t m, int activate)
1244{
1245
1246	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1247	if (m->flags & PG_FICTITIOUS)
1248		return;
1249	if (m->wire_count > 0) {
1250		m->wire_count--;
1251		if (m->wire_count == 0) {
1252			atomic_subtract_int(&cnt.v_wire_count, 1);
1253			if (m->flags & PG_UNMANAGED) {
1254				;
1255			} else if (activate)
1256				vm_pageq_enqueue(PQ_ACTIVE, m);
1257			else {
1258				vm_page_flag_clear(m, PG_WINATCFLS);
1259				vm_pageq_enqueue(PQ_INACTIVE, m);
1260			}
1261		}
1262	} else {
1263		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1264	}
1265}
1266
1267
1268/*
1269 * Move the specified page to the inactive queue.  If the page has
1270 * any associated swap, the swap is deallocated.
1271 *
1272 * Normally athead is 0 resulting in LRU operation.  athead is set
1273 * to 1 if we want this page to be 'as if it were placed in the cache',
1274 * except without unmapping it from the process address space.
1275 *
1276 * This routine may not block.
1277 */
1278static inline void
1279_vm_page_deactivate(vm_page_t m, int athead)
1280{
1281
1282	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1283
1284	/*
1285	 * Ignore if already inactive.
1286	 */
1287	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1288		return;
1289	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1290		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1291			cnt.v_reactivated++;
1292		vm_page_flag_clear(m, PG_WINATCFLS);
1293		vm_pageq_remove(m);
1294		if (athead)
1295			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1296		else
1297			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1298		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1299		vm_page_queues[PQ_INACTIVE].lcnt++;
1300		cnt.v_inactive_count++;
1301	}
1302}
1303
1304void
1305vm_page_deactivate(vm_page_t m)
1306{
1307    _vm_page_deactivate(m, 0);
1308}
1309
1310/*
1311 * vm_page_try_to_cache:
1312 *
1313 * Returns 0 on failure, 1 on success
1314 */
1315int
1316vm_page_try_to_cache(vm_page_t m)
1317{
1318
1319	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1320	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1321	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1322	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1323		return (0);
1324	}
1325	pmap_remove_all(m);
1326	if (m->dirty)
1327		return (0);
1328	vm_page_cache(m);
1329	return (1);
1330}
1331
1332/*
1333 * vm_page_try_to_free()
1334 *
1335 *	Attempt to free the page.  If we cannot free it, we do nothing.
1336 *	1 is returned on success, 0 on failure.
1337 */
1338int
1339vm_page_try_to_free(vm_page_t m)
1340{
1341
1342	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1343	if (m->object != NULL)
1344		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1345	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1346	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1347		return (0);
1348	}
1349	pmap_remove_all(m);
1350	if (m->dirty)
1351		return (0);
1352	vm_page_free(m);
1353	return (1);
1354}
1355
1356/*
1357 * vm_page_cache
1358 *
1359 * Put the specified page onto the page cache queue (if appropriate).
1360 *
1361 * This routine may not block.
1362 */
1363void
1364vm_page_cache(vm_page_t m)
1365{
1366
1367	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1368	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1369	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1370	    m->hold_count || m->wire_count) {
1371		printf("vm_page_cache: attempting to cache busy page\n");
1372		return;
1373	}
1374	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1375		return;
1376
1377	/*
1378	 * Remove all pmaps and indicate that the page is not
1379	 * writeable or mapped.
1380	 */
1381	pmap_remove_all(m);
1382	if (m->dirty != 0) {
1383		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1384			(long)m->pindex);
1385	}
1386	vm_pageq_remove_nowakeup(m);
1387	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1388	vm_page_free_wakeup();
1389}
1390
1391/*
1392 * vm_page_dontneed
1393 *
1394 *	Cache, deactivate, or do nothing as appropriate.  This routine
1395 *	is typically used by madvise() MADV_DONTNEED.
1396 *
1397 *	Generally speaking we want to move the page into the cache so
1398 *	it gets reused quickly.  However, this can result in a silly syndrome
1399 *	due to the page recycling too quickly.  Small objects will not be
1400 *	fully cached.  On the otherhand, if we move the page to the inactive
1401 *	queue we wind up with a problem whereby very large objects
1402 *	unnecessarily blow away our inactive and cache queues.
1403 *
1404 *	The solution is to move the pages based on a fixed weighting.  We
1405 *	either leave them alone, deactivate them, or move them to the cache,
1406 *	where moving them to the cache has the highest weighting.
1407 *	By forcing some pages into other queues we eventually force the
1408 *	system to balance the queues, potentially recovering other unrelated
1409 *	space from active.  The idea is to not force this to happen too
1410 *	often.
1411 */
1412void
1413vm_page_dontneed(vm_page_t m)
1414{
1415	static int dnweight;
1416	int dnw;
1417	int head;
1418
1419	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1420	dnw = ++dnweight;
1421
1422	/*
1423	 * occassionally leave the page alone
1424	 */
1425	if ((dnw & 0x01F0) == 0 ||
1426	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1427	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1428	) {
1429		if (m->act_count >= ACT_INIT)
1430			--m->act_count;
1431		return;
1432	}
1433
1434	if (m->dirty == 0 && pmap_is_modified(m))
1435		vm_page_dirty(m);
1436
1437	if (m->dirty || (dnw & 0x0070) == 0) {
1438		/*
1439		 * Deactivate the page 3 times out of 32.
1440		 */
1441		head = 0;
1442	} else {
1443		/*
1444		 * Cache the page 28 times out of every 32.  Note that
1445		 * the page is deactivated instead of cached, but placed
1446		 * at the head of the queue instead of the tail.
1447		 */
1448		head = 1;
1449	}
1450	_vm_page_deactivate(m, head);
1451}
1452
1453/*
1454 * Grab a page, waiting until we are waken up due to the page
1455 * changing state.  We keep on waiting, if the page continues
1456 * to be in the object.  If the page doesn't exist, first allocate it
1457 * and then conditionally zero it.
1458 *
1459 * This routine may block.
1460 */
1461vm_page_t
1462vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1463{
1464	vm_page_t m;
1465
1466	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1467retrylookup:
1468	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1469		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1470			if ((allocflags & VM_ALLOC_RETRY) == 0)
1471				return (NULL);
1472			goto retrylookup;
1473		} else {
1474			vm_page_lock_queues();
1475			if (allocflags & VM_ALLOC_WIRED)
1476				vm_page_wire(m);
1477			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1478				vm_page_busy(m);
1479			vm_page_unlock_queues();
1480			return (m);
1481		}
1482	}
1483	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1484	if (m == NULL) {
1485		VM_OBJECT_UNLOCK(object);
1486		VM_WAIT;
1487		VM_OBJECT_LOCK(object);
1488		if ((allocflags & VM_ALLOC_RETRY) == 0)
1489			return (NULL);
1490		goto retrylookup;
1491	}
1492	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1493		pmap_zero_page(m);
1494	return (m);
1495}
1496
1497/*
1498 * Mapping function for valid bits or for dirty bits in
1499 * a page.  May not block.
1500 *
1501 * Inputs are required to range within a page.
1502 */
1503inline int
1504vm_page_bits(int base, int size)
1505{
1506	int first_bit;
1507	int last_bit;
1508
1509	KASSERT(
1510	    base + size <= PAGE_SIZE,
1511	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1512	);
1513
1514	if (size == 0)		/* handle degenerate case */
1515		return (0);
1516
1517	first_bit = base >> DEV_BSHIFT;
1518	last_bit = (base + size - 1) >> DEV_BSHIFT;
1519
1520	return ((2 << last_bit) - (1 << first_bit));
1521}
1522
1523/*
1524 *	vm_page_set_validclean:
1525 *
1526 *	Sets portions of a page valid and clean.  The arguments are expected
1527 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1528 *	of any partial chunks touched by the range.  The invalid portion of
1529 *	such chunks will be zero'd.
1530 *
1531 *	This routine may not block.
1532 *
1533 *	(base + size) must be less then or equal to PAGE_SIZE.
1534 */
1535void
1536vm_page_set_validclean(vm_page_t m, int base, int size)
1537{
1538	int pagebits;
1539	int frag;
1540	int endoff;
1541
1542	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1543	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1544	if (size == 0)	/* handle degenerate case */
1545		return;
1546
1547	/*
1548	 * If the base is not DEV_BSIZE aligned and the valid
1549	 * bit is clear, we have to zero out a portion of the
1550	 * first block.
1551	 */
1552	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1553	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1554		pmap_zero_page_area(m, frag, base - frag);
1555
1556	/*
1557	 * If the ending offset is not DEV_BSIZE aligned and the
1558	 * valid bit is clear, we have to zero out a portion of
1559	 * the last block.
1560	 */
1561	endoff = base + size;
1562	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1563	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1564		pmap_zero_page_area(m, endoff,
1565		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1566
1567	/*
1568	 * Set valid, clear dirty bits.  If validating the entire
1569	 * page we can safely clear the pmap modify bit.  We also
1570	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1571	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1572	 * be set again.
1573	 *
1574	 * We set valid bits inclusive of any overlap, but we can only
1575	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1576	 * the range.
1577	 */
1578	pagebits = vm_page_bits(base, size);
1579	m->valid |= pagebits;
1580#if 0	/* NOT YET */
1581	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1582		frag = DEV_BSIZE - frag;
1583		base += frag;
1584		size -= frag;
1585		if (size < 0)
1586			size = 0;
1587	}
1588	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1589#endif
1590	m->dirty &= ~pagebits;
1591	if (base == 0 && size == PAGE_SIZE) {
1592		pmap_clear_modify(m);
1593		m->oflags &= ~VPO_NOSYNC;
1594	}
1595}
1596
1597void
1598vm_page_clear_dirty(vm_page_t m, int base, int size)
1599{
1600
1601	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1602	m->dirty &= ~vm_page_bits(base, size);
1603}
1604
1605/*
1606 *	vm_page_set_invalid:
1607 *
1608 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1609 *	valid and dirty bits for the effected areas are cleared.
1610 *
1611 *	May not block.
1612 */
1613void
1614vm_page_set_invalid(vm_page_t m, int base, int size)
1615{
1616	int bits;
1617
1618	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1619	bits = vm_page_bits(base, size);
1620	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1621	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1622		pmap_remove_all(m);
1623	m->valid &= ~bits;
1624	m->dirty &= ~bits;
1625	m->object->generation++;
1626}
1627
1628/*
1629 * vm_page_zero_invalid()
1630 *
1631 *	The kernel assumes that the invalid portions of a page contain
1632 *	garbage, but such pages can be mapped into memory by user code.
1633 *	When this occurs, we must zero out the non-valid portions of the
1634 *	page so user code sees what it expects.
1635 *
1636 *	Pages are most often semi-valid when the end of a file is mapped
1637 *	into memory and the file's size is not page aligned.
1638 */
1639void
1640vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1641{
1642	int b;
1643	int i;
1644
1645	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1646	/*
1647	 * Scan the valid bits looking for invalid sections that
1648	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1649	 * valid bit may be set ) have already been zerod by
1650	 * vm_page_set_validclean().
1651	 */
1652	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1653		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1654		    (m->valid & (1 << i))
1655		) {
1656			if (i > b) {
1657				pmap_zero_page_area(m,
1658				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1659			}
1660			b = i + 1;
1661		}
1662	}
1663
1664	/*
1665	 * setvalid is TRUE when we can safely set the zero'd areas
1666	 * as being valid.  We can do this if there are no cache consistancy
1667	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1668	 */
1669	if (setvalid)
1670		m->valid = VM_PAGE_BITS_ALL;
1671}
1672
1673/*
1674 *	vm_page_is_valid:
1675 *
1676 *	Is (partial) page valid?  Note that the case where size == 0
1677 *	will return FALSE in the degenerate case where the page is
1678 *	entirely invalid, and TRUE otherwise.
1679 *
1680 *	May not block.
1681 */
1682int
1683vm_page_is_valid(vm_page_t m, int base, int size)
1684{
1685	int bits = vm_page_bits(base, size);
1686
1687	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1688	if (m->valid && ((m->valid & bits) == bits))
1689		return 1;
1690	else
1691		return 0;
1692}
1693
1694/*
1695 * update dirty bits from pmap/mmu.  May not block.
1696 */
1697void
1698vm_page_test_dirty(vm_page_t m)
1699{
1700	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1701		vm_page_dirty(m);
1702	}
1703}
1704
1705int so_zerocp_fullpage = 0;
1706
1707void
1708vm_page_cowfault(vm_page_t m)
1709{
1710	vm_page_t mnew;
1711	vm_object_t object;
1712	vm_pindex_t pindex;
1713
1714	object = m->object;
1715	pindex = m->pindex;
1716
1717 retry_alloc:
1718	pmap_remove_all(m);
1719	vm_page_remove(m);
1720	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1721	if (mnew == NULL) {
1722		vm_page_insert(m, object, pindex);
1723		vm_page_unlock_queues();
1724		VM_OBJECT_UNLOCK(object);
1725		VM_WAIT;
1726		VM_OBJECT_LOCK(object);
1727		vm_page_lock_queues();
1728		goto retry_alloc;
1729	}
1730
1731	if (m->cow == 0) {
1732		/*
1733		 * check to see if we raced with an xmit complete when
1734		 * waiting to allocate a page.  If so, put things back
1735		 * the way they were
1736		 */
1737		vm_page_free(mnew);
1738		vm_page_insert(m, object, pindex);
1739	} else { /* clear COW & copy page */
1740		if (!so_zerocp_fullpage)
1741			pmap_copy_page(m, mnew);
1742		mnew->valid = VM_PAGE_BITS_ALL;
1743		vm_page_dirty(mnew);
1744		mnew->wire_count = m->wire_count - m->cow;
1745		m->wire_count = m->cow;
1746	}
1747}
1748
1749void
1750vm_page_cowclear(vm_page_t m)
1751{
1752
1753	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1754	if (m->cow) {
1755		m->cow--;
1756		/*
1757		 * let vm_fault add back write permission  lazily
1758		 */
1759	}
1760	/*
1761	 *  sf_buf_free() will free the page, so we needn't do it here
1762	 */
1763}
1764
1765void
1766vm_page_cowsetup(vm_page_t m)
1767{
1768
1769	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1770	m->cow++;
1771	pmap_remove_write(m);
1772}
1773
1774#include "opt_ddb.h"
1775#ifdef DDB
1776#include <sys/kernel.h>
1777
1778#include <ddb/ddb.h>
1779
1780DB_SHOW_COMMAND(page, vm_page_print_page_info)
1781{
1782	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1783	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1784	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1785	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1786	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1787	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1788	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1789	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1790	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1791	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1792}
1793
1794DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1795{
1796	int i;
1797	db_printf("PQ_FREE:");
1798	for (i = 0; i < PQ_NUMCOLORS; i++) {
1799		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1800	}
1801	db_printf("\n");
1802
1803	db_printf("PQ_CACHE:");
1804	for (i = 0; i < PQ_NUMCOLORS; i++) {
1805		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1806	}
1807	db_printf("\n");
1808
1809	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1810		vm_page_queues[PQ_ACTIVE].lcnt,
1811		vm_page_queues[PQ_INACTIVE].lcnt);
1812}
1813#endif /* DDB */
1814