vm_page.c revision 160889
150477Speter/*-
243561Skato * Copyright (c) 1991 Regents of the University of California.
3128736Snyan * All rights reserved.
4125625Snyan *
5139103Sru * This code is derived from software contributed to Berkeley by
6125780Snyan * The Mach Operating System project at Carnegie-Mellon University.
7125625Snyan *
8125780Snyan * Redistribution and use in source and binary forms, with or without
9235264Savg * modification, are permitted provided that the following conditions
1043561Skato * are met:
1158871Skato * 1. Redistributions of source code must retain the above copyright
12125780Snyan *    notice, this list of conditions and the following disclaimer.
1358871Skato * 2. Redistributions in binary form must reproduce the above copyright
1443561Skato *    notice, this list of conditions and the following disclaimer in the
15208789Sed *    documentation and/or other materials provided with the distribution.
1643561Skato * 4. Neither the name of the University nor the names of its contributors
1743561Skato *    may be used to endorse or promote products derived from this software
18232263Sdim *    without specific prior written permission.
19232263Sdim *
20232263Sdim * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21232263Sdim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*-
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 160889 2006-08-01 19:06:06Z alc $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/kernel.h>
106#include <sys/malloc.h>
107#include <sys/mutex.h>
108#include <sys/proc.h>
109#include <sys/sysctl.h>
110#include <sys/vmmeter.h>
111#include <sys/vnode.h>
112
113#include <vm/vm.h>
114#include <vm/vm_param.h>
115#include <vm/vm_kern.h>
116#include <vm/vm_object.h>
117#include <vm/vm_page.h>
118#include <vm/vm_pageout.h>
119#include <vm/vm_pager.h>
120#include <vm/vm_extern.h>
121#include <vm/uma.h>
122#include <vm/uma_int.h>
123
124#include <machine/md_var.h>
125
126/*
127 *	Associated with page of user-allocatable memory is a
128 *	page structure.
129 */
130
131struct mtx vm_page_queue_mtx;
132struct mtx vm_page_queue_free_mtx;
133
134vm_page_t vm_page_array = 0;
135int vm_page_array_size = 0;
136long first_page = 0;
137int vm_page_zero_count = 0;
138
139static int boot_pages = UMA_BOOT_PAGES;
140TUNABLE_INT("vm.boot_pages", &boot_pages);
141SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
142	"number of pages allocated for bootstrapping the VM system");
143
144/*
145 *	vm_set_page_size:
146 *
147 *	Sets the page size, perhaps based upon the memory
148 *	size.  Must be called before any use of page-size
149 *	dependent functions.
150 */
151void
152vm_set_page_size(void)
153{
154	if (cnt.v_page_size == 0)
155		cnt.v_page_size = PAGE_SIZE;
156	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
157		panic("vm_set_page_size: page size not a power of two");
158}
159
160/*
161 *	vm_page_blacklist_lookup:
162 *
163 *	See if a physical address in this page has been listed
164 *	in the blacklist tunable.  Entries in the tunable are
165 *	separated by spaces or commas.  If an invalid integer is
166 *	encountered then the rest of the string is skipped.
167 */
168static int
169vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
170{
171	vm_paddr_t bad;
172	char *cp, *pos;
173
174	for (pos = list; *pos != '\0'; pos = cp) {
175		bad = strtoq(pos, &cp, 0);
176		if (*cp != '\0') {
177			if (*cp == ' ' || *cp == ',') {
178				cp++;
179				if (cp == pos)
180					continue;
181			} else
182				break;
183		}
184		if (pa == trunc_page(bad))
185			return (1);
186	}
187	return (0);
188}
189
190/*
191 *	vm_page_startup:
192 *
193 *	Initializes the resident memory module.
194 *
195 *	Allocates memory for the page cells, and
196 *	for the object/offset-to-page hash table headers.
197 *	Each page cell is initialized and placed on the free list.
198 */
199vm_offset_t
200vm_page_startup(vm_offset_t vaddr)
201{
202	vm_offset_t mapped;
203	vm_size_t npages;
204	vm_paddr_t page_range;
205	vm_paddr_t new_end;
206	int i;
207	vm_paddr_t pa;
208	int nblocks;
209	vm_paddr_t last_pa;
210	char *list;
211
212	/* the biggest memory array is the second group of pages */
213	vm_paddr_t end;
214	vm_paddr_t biggestsize;
215	int biggestone;
216
217	vm_paddr_t total;
218
219	total = 0;
220	biggestsize = 0;
221	biggestone = 0;
222	nblocks = 0;
223	vaddr = round_page(vaddr);
224
225	for (i = 0; phys_avail[i + 1]; i += 2) {
226		phys_avail[i] = round_page(phys_avail[i]);
227		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
228	}
229
230	for (i = 0; phys_avail[i + 1]; i += 2) {
231		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
232
233		if (size > biggestsize) {
234			biggestone = i;
235			biggestsize = size;
236		}
237		++nblocks;
238		total += size;
239	}
240
241	end = phys_avail[biggestone+1];
242
243	/*
244	 * Initialize the locks.
245	 */
246	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
247	    MTX_RECURSE);
248	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
249	    MTX_SPIN);
250
251	/*
252	 * Initialize the queue headers for the free queue, the active queue
253	 * and the inactive queue.
254	 */
255	vm_pageq_init();
256
257	/*
258	 * Allocate memory for use when boot strapping the kernel memory
259	 * allocator.
260	 */
261	new_end = end - (boot_pages * UMA_SLAB_SIZE);
262	new_end = trunc_page(new_end);
263	mapped = pmap_map(&vaddr, new_end, end,
264	    VM_PROT_READ | VM_PROT_WRITE);
265	bzero((void *)mapped, end - new_end);
266	uma_startup((void *)mapped, boot_pages);
267
268#if defined(__amd64__) || defined(__i386__)
269	/*
270	 * Allocate a bitmap to indicate that a random physical page
271	 * needs to be included in a minidump.
272	 *
273	 * The amd64 port needs this to indicate which direct map pages
274	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
275	 *
276	 * However, i386 still needs this workspace internally within the
277	 * minidump code.  In theory, they are not needed on i386, but are
278	 * included should the sf_buf code decide to use them.
279	 */
280	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
281	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
282	new_end -= vm_page_dump_size;
283	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
284	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
285	bzero((void *)vm_page_dump, vm_page_dump_size);
286#endif
287	/*
288	 * Compute the number of pages of memory that will be available for
289	 * use (taking into account the overhead of a page structure per
290	 * page).
291	 */
292	first_page = phys_avail[0] / PAGE_SIZE;
293	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
294	npages = (total - (page_range * sizeof(struct vm_page)) -
295	    (end - new_end)) / PAGE_SIZE;
296	end = new_end;
297
298	/*
299	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
300	 */
301	vaddr += PAGE_SIZE;
302
303	/*
304	 * Initialize the mem entry structures now, and put them in the free
305	 * queue.
306	 */
307	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
308	mapped = pmap_map(&vaddr, new_end, end,
309	    VM_PROT_READ | VM_PROT_WRITE);
310	vm_page_array = (vm_page_t) mapped;
311#ifdef __amd64__
312	/*
313	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
314	 * so the pages must be tracked for a crashdump to include this data.
315	 * This includes the vm_page_array and the early UMA bootstrap pages.
316	 */
317	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
318		dump_add_page(pa);
319#endif
320	phys_avail[biggestone + 1] = new_end;
321
322	/*
323	 * Clear all of the page structures
324	 */
325	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
326	vm_page_array_size = page_range;
327
328	/*
329	 * Construct the free queue(s) in descending order (by physical
330	 * address) so that the first 16MB of physical memory is allocated
331	 * last rather than first.  On large-memory machines, this avoids
332	 * the exhaustion of low physical memory before isa_dma_init has run.
333	 */
334	cnt.v_page_count = 0;
335	cnt.v_free_count = 0;
336	list = getenv("vm.blacklist");
337	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
338		pa = phys_avail[i];
339		last_pa = phys_avail[i + 1];
340		while (pa < last_pa && npages-- > 0) {
341			if (list != NULL &&
342			    vm_page_blacklist_lookup(list, pa))
343				printf("Skipping page with pa 0x%jx\n",
344				    (uintmax_t)pa);
345			else
346				vm_pageq_add_new_page(pa);
347			pa += PAGE_SIZE;
348		}
349	}
350	freeenv(list);
351	return (vaddr);
352}
353
354void
355vm_page_flag_set(vm_page_t m, unsigned short bits)
356{
357
358	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
359	m->flags |= bits;
360}
361
362void
363vm_page_flag_clear(vm_page_t m, unsigned short bits)
364{
365
366	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
367	m->flags &= ~bits;
368}
369
370void
371vm_page_busy(vm_page_t m)
372{
373
374	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
375	KASSERT((m->flags & PG_BUSY) == 0,
376	    ("vm_page_busy: page already busy!!!"));
377	vm_page_flag_set(m, PG_BUSY);
378}
379
380/*
381 *      vm_page_flash:
382 *
383 *      wakeup anyone waiting for the page.
384 */
385void
386vm_page_flash(vm_page_t m)
387{
388
389	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
390	if (m->flags & PG_WANTED) {
391		vm_page_flag_clear(m, PG_WANTED);
392		wakeup(m);
393	}
394}
395
396/*
397 *      vm_page_wakeup:
398 *
399 *      clear the PG_BUSY flag and wakeup anyone waiting for the
400 *      page.
401 *
402 */
403void
404vm_page_wakeup(vm_page_t m)
405{
406
407	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
408	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
409	vm_page_flag_clear(m, PG_BUSY);
410	vm_page_flash(m);
411}
412
413void
414vm_page_io_start(vm_page_t m)
415{
416
417	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
418	m->busy++;
419}
420
421void
422vm_page_io_finish(vm_page_t m)
423{
424
425	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
426	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
427	m->busy--;
428	if (m->busy == 0)
429		vm_page_flash(m);
430}
431
432/*
433 * Keep page from being freed by the page daemon
434 * much of the same effect as wiring, except much lower
435 * overhead and should be used only for *very* temporary
436 * holding ("wiring").
437 */
438void
439vm_page_hold(vm_page_t mem)
440{
441
442	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
443        mem->hold_count++;
444}
445
446void
447vm_page_unhold(vm_page_t mem)
448{
449
450	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
451	--mem->hold_count;
452	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
453	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
454		vm_page_free_toq(mem);
455}
456
457/*
458 *	vm_page_free:
459 *
460 *	Free a page
461 *
462 *	The clearing of PG_ZERO is a temporary safety until the code can be
463 *	reviewed to determine that PG_ZERO is being properly cleared on
464 *	write faults or maps.  PG_ZERO was previously cleared in
465 *	vm_page_alloc().
466 */
467void
468vm_page_free(vm_page_t m)
469{
470	vm_page_flag_clear(m, PG_ZERO);
471	vm_page_free_toq(m);
472	vm_page_zero_idle_wakeup();
473}
474
475/*
476 *	vm_page_free_zero:
477 *
478 *	Free a page to the zerod-pages queue
479 */
480void
481vm_page_free_zero(vm_page_t m)
482{
483	vm_page_flag_set(m, PG_ZERO);
484	vm_page_free_toq(m);
485}
486
487/*
488 *	vm_page_sleep_if_busy:
489 *
490 *	Sleep and release the page queues lock if PG_BUSY is set or,
491 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
492 *	thread slept and the page queues lock was released.
493 *	Otherwise, retains the page queues lock and returns FALSE.
494 */
495int
496vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
497{
498	vm_object_t object;
499
500	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
501	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
502	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
503		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
504		/*
505		 * It's possible that while we sleep, the page will get
506		 * unbusied and freed.  If we are holding the object
507		 * lock, we will assume we hold a reference to the object
508		 * such that even if m->object changes, we can re-lock
509		 * it.
510		 */
511		object = m->object;
512		VM_OBJECT_UNLOCK(object);
513		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
514		VM_OBJECT_LOCK(object);
515		return (TRUE);
516	}
517	return (FALSE);
518}
519
520/*
521 *	vm_page_dirty:
522 *
523 *	make page all dirty
524 */
525void
526vm_page_dirty(vm_page_t m)
527{
528	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
529	    ("vm_page_dirty: page in cache!"));
530	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
531	    ("vm_page_dirty: page is free!"));
532	m->dirty = VM_PAGE_BITS_ALL;
533}
534
535/*
536 *	vm_page_splay:
537 *
538 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
539 *	the vm_page containing the given pindex.  If, however, that
540 *	pindex is not found in the vm_object, returns a vm_page that is
541 *	adjacent to the pindex, coming before or after it.
542 */
543vm_page_t
544vm_page_splay(vm_pindex_t pindex, vm_page_t root)
545{
546	struct vm_page dummy;
547	vm_page_t lefttreemax, righttreemin, y;
548
549	if (root == NULL)
550		return (root);
551	lefttreemax = righttreemin = &dummy;
552	for (;; root = y) {
553		if (pindex < root->pindex) {
554			if ((y = root->left) == NULL)
555				break;
556			if (pindex < y->pindex) {
557				/* Rotate right. */
558				root->left = y->right;
559				y->right = root;
560				root = y;
561				if ((y = root->left) == NULL)
562					break;
563			}
564			/* Link into the new root's right tree. */
565			righttreemin->left = root;
566			righttreemin = root;
567		} else if (pindex > root->pindex) {
568			if ((y = root->right) == NULL)
569				break;
570			if (pindex > y->pindex) {
571				/* Rotate left. */
572				root->right = y->left;
573				y->left = root;
574				root = y;
575				if ((y = root->right) == NULL)
576					break;
577			}
578			/* Link into the new root's left tree. */
579			lefttreemax->right = root;
580			lefttreemax = root;
581		} else
582			break;
583	}
584	/* Assemble the new root. */
585	lefttreemax->right = root->left;
586	righttreemin->left = root->right;
587	root->left = dummy.right;
588	root->right = dummy.left;
589	return (root);
590}
591
592/*
593 *	vm_page_insert:		[ internal use only ]
594 *
595 *	Inserts the given mem entry into the object and object list.
596 *
597 *	The pagetables are not updated but will presumably fault the page
598 *	in if necessary, or if a kernel page the caller will at some point
599 *	enter the page into the kernel's pmap.  We are not allowed to block
600 *	here so we *can't* do this anyway.
601 *
602 *	The object and page must be locked.
603 *	This routine may not block.
604 */
605void
606vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
607{
608	vm_page_t root;
609
610	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
611	if (m->object != NULL)
612		panic("vm_page_insert: page already inserted");
613
614	/*
615	 * Record the object/offset pair in this page
616	 */
617	m->object = object;
618	m->pindex = pindex;
619
620	/*
621	 * Now link into the object's ordered list of backed pages.
622	 */
623	root = object->root;
624	if (root == NULL) {
625		m->left = NULL;
626		m->right = NULL;
627		TAILQ_INSERT_TAIL(&object->memq, m, listq);
628	} else {
629		root = vm_page_splay(pindex, root);
630		if (pindex < root->pindex) {
631			m->left = root->left;
632			m->right = root;
633			root->left = NULL;
634			TAILQ_INSERT_BEFORE(root, m, listq);
635		} else if (pindex == root->pindex)
636			panic("vm_page_insert: offset already allocated");
637		else {
638			m->right = root->right;
639			m->left = root;
640			root->right = NULL;
641			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
642		}
643	}
644	object->root = m;
645	object->generation++;
646
647	/*
648	 * show that the object has one more resident page.
649	 */
650	object->resident_page_count++;
651	/*
652	 * Hold the vnode until the last page is released.
653	 */
654	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
655		vhold((struct vnode *)object->handle);
656
657	/*
658	 * Since we are inserting a new and possibly dirty page,
659	 * update the object's OBJ_MIGHTBEDIRTY flag.
660	 */
661	if (m->flags & PG_WRITEABLE)
662		vm_object_set_writeable_dirty(object);
663}
664
665/*
666 *	vm_page_remove:
667 *				NOTE: used by device pager as well -wfj
668 *
669 *	Removes the given mem entry from the object/offset-page
670 *	table and the object page list, but do not invalidate/terminate
671 *	the backing store.
672 *
673 *	The object and page must be locked.
674 *	The underlying pmap entry (if any) is NOT removed here.
675 *	This routine may not block.
676 */
677void
678vm_page_remove(vm_page_t m)
679{
680	vm_object_t object;
681	vm_page_t root;
682
683	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
684	if ((object = m->object) == NULL)
685		return;
686	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
687	if (m->flags & PG_BUSY) {
688		vm_page_flag_clear(m, PG_BUSY);
689		vm_page_flash(m);
690	}
691
692	/*
693	 * Now remove from the object's list of backed pages.
694	 */
695	if (m != object->root)
696		vm_page_splay(m->pindex, object->root);
697	if (m->left == NULL)
698		root = m->right;
699	else {
700		root = vm_page_splay(m->pindex, m->left);
701		root->right = m->right;
702	}
703	object->root = root;
704	TAILQ_REMOVE(&object->memq, m, listq);
705
706	/*
707	 * And show that the object has one fewer resident page.
708	 */
709	object->resident_page_count--;
710	object->generation++;
711	/*
712	 * The vnode may now be recycled.
713	 */
714	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
715		vdrop((struct vnode *)object->handle);
716
717	m->object = NULL;
718}
719
720/*
721 *	vm_page_lookup:
722 *
723 *	Returns the page associated with the object/offset
724 *	pair specified; if none is found, NULL is returned.
725 *
726 *	The object must be locked.
727 *	This routine may not block.
728 *	This is a critical path routine
729 */
730vm_page_t
731vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
732{
733	vm_page_t m;
734
735	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
736	if ((m = object->root) != NULL && m->pindex != pindex) {
737		m = vm_page_splay(pindex, m);
738		if ((object->root = m)->pindex != pindex)
739			m = NULL;
740	}
741	return (m);
742}
743
744/*
745 *	vm_page_rename:
746 *
747 *	Move the given memory entry from its
748 *	current object to the specified target object/offset.
749 *
750 *	The object must be locked.
751 *	This routine may not block.
752 *
753 *	Note: swap associated with the page must be invalidated by the move.  We
754 *	      have to do this for several reasons:  (1) we aren't freeing the
755 *	      page, (2) we are dirtying the page, (3) the VM system is probably
756 *	      moving the page from object A to B, and will then later move
757 *	      the backing store from A to B and we can't have a conflict.
758 *
759 *	Note: we *always* dirty the page.  It is necessary both for the
760 *	      fact that we moved it, and because we may be invalidating
761 *	      swap.  If the page is on the cache, we have to deactivate it
762 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
763 *	      on the cache.
764 */
765void
766vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
767{
768
769	vm_page_remove(m);
770	vm_page_insert(m, new_object, new_pindex);
771	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
772		vm_page_deactivate(m);
773	vm_page_dirty(m);
774}
775
776/*
777 *	vm_page_select_cache:
778 *
779 *	Move a page of the given color from the cache queue to the free
780 *	queue.  As pages might be found, but are not applicable, they are
781 *	deactivated.
782 *
783 *	This routine may not block.
784 */
785vm_page_t
786vm_page_select_cache(int color)
787{
788	vm_object_t object;
789	vm_page_t m;
790	boolean_t was_trylocked;
791
792	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
793	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
794		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
795		KASSERT(!pmap_page_is_mapped(m),
796		    ("Found mapped cache page %p", m));
797		KASSERT((m->flags & PG_UNMANAGED) == 0,
798		    ("Found unmanaged cache page %p", m));
799		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
800		if (m->hold_count == 0 && (object = m->object,
801		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
802		    VM_OBJECT_LOCKED(object))) {
803			KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
804			    ("Found busy cache page %p", m));
805			vm_page_free(m);
806			if (was_trylocked)
807				VM_OBJECT_UNLOCK(object);
808			break;
809		}
810		vm_page_deactivate(m);
811	}
812	return (m);
813}
814
815/*
816 *	vm_page_alloc:
817 *
818 *	Allocate and return a memory cell associated
819 *	with this VM object/offset pair.
820 *
821 *	page_req classes:
822 *	VM_ALLOC_NORMAL		normal process request
823 *	VM_ALLOC_SYSTEM		system *really* needs a page
824 *	VM_ALLOC_INTERRUPT	interrupt time request
825 *	VM_ALLOC_ZERO		zero page
826 *
827 *	This routine may not block.
828 *
829 *	Additional special handling is required when called from an
830 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
831 *	the page cache in this case.
832 */
833vm_page_t
834vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
835{
836	vm_page_t m = NULL;
837	int color, flags, page_req;
838
839	page_req = req & VM_ALLOC_CLASS_MASK;
840	KASSERT(curthread->td_intr_nesting_level == 0 ||
841	    page_req == VM_ALLOC_INTERRUPT,
842	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
843
844	if ((req & VM_ALLOC_NOOBJ) == 0) {
845		KASSERT(object != NULL,
846		    ("vm_page_alloc: NULL object."));
847		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
848		color = (pindex + object->pg_color) & PQ_COLORMASK;
849	} else
850		color = pindex & PQ_COLORMASK;
851
852	/*
853	 * The pager is allowed to eat deeper into the free page list.
854	 */
855	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
856		page_req = VM_ALLOC_SYSTEM;
857	};
858
859loop:
860	mtx_lock_spin(&vm_page_queue_free_mtx);
861	if (cnt.v_free_count > cnt.v_free_reserved ||
862	    (page_req == VM_ALLOC_SYSTEM &&
863	     cnt.v_cache_count == 0 &&
864	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
865	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
866		/*
867		 * Allocate from the free queue if the number of free pages
868		 * exceeds the minimum for the request class.
869		 */
870		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
871	} else if (page_req != VM_ALLOC_INTERRUPT) {
872		mtx_unlock_spin(&vm_page_queue_free_mtx);
873		/*
874		 * Allocatable from cache (non-interrupt only).  On success,
875		 * we must free the page and try again, thus ensuring that
876		 * cnt.v_*_free_min counters are replenished.
877		 */
878		vm_page_lock_queues();
879		if ((m = vm_page_select_cache(color)) == NULL) {
880			KASSERT(cnt.v_cache_count == 0,
881			    ("vm_page_alloc: cache queue is missing %d pages",
882			    cnt.v_cache_count));
883			vm_page_unlock_queues();
884			atomic_add_int(&vm_pageout_deficit, 1);
885			pagedaemon_wakeup();
886
887			if (page_req != VM_ALLOC_SYSTEM)
888				return NULL;
889
890			mtx_lock_spin(&vm_page_queue_free_mtx);
891			if (cnt.v_free_count <=  cnt.v_interrupt_free_min) {
892				mtx_unlock_spin(&vm_page_queue_free_mtx);
893				return (NULL);
894			}
895			m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
896		} else {
897			vm_page_unlock_queues();
898			goto loop;
899		}
900	} else {
901		/*
902		 * Not allocatable from cache from interrupt, give up.
903		 */
904		mtx_unlock_spin(&vm_page_queue_free_mtx);
905		atomic_add_int(&vm_pageout_deficit, 1);
906		pagedaemon_wakeup();
907		return (NULL);
908	}
909
910	/*
911	 *  At this point we had better have found a good page.
912	 */
913
914	KASSERT(
915	    m != NULL,
916	    ("vm_page_alloc(): missing page on free queue")
917	);
918
919	/*
920	 * Remove from free queue
921	 */
922	vm_pageq_remove_nowakeup(m);
923
924	/*
925	 * Initialize structure.  Only the PG_ZERO flag is inherited.
926	 */
927	flags = PG_BUSY;
928	if (m->flags & PG_ZERO) {
929		vm_page_zero_count--;
930		if (req & VM_ALLOC_ZERO)
931			flags = PG_ZERO | PG_BUSY;
932	}
933	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
934		flags &= ~PG_BUSY;
935	m->flags = flags;
936	if (req & VM_ALLOC_WIRED) {
937		atomic_add_int(&cnt.v_wire_count, 1);
938		m->wire_count = 1;
939	} else
940		m->wire_count = 0;
941	m->hold_count = 0;
942	m->act_count = 0;
943	m->busy = 0;
944	m->valid = 0;
945	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
946	mtx_unlock_spin(&vm_page_queue_free_mtx);
947
948	if ((req & VM_ALLOC_NOOBJ) == 0)
949		vm_page_insert(m, object, pindex);
950	else
951		m->pindex = pindex;
952
953	/*
954	 * Don't wakeup too often - wakeup the pageout daemon when
955	 * we would be nearly out of memory.
956	 */
957	if (vm_paging_needed())
958		pagedaemon_wakeup();
959
960	return (m);
961}
962
963/*
964 *	vm_wait:	(also see VM_WAIT macro)
965 *
966 *	Block until free pages are available for allocation
967 *	- Called in various places before memory allocations.
968 */
969void
970vm_wait(void)
971{
972
973	vm_page_lock_queues();
974	if (curproc == pageproc) {
975		vm_pageout_pages_needed = 1;
976		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
977		    PDROP | PSWP, "VMWait", 0);
978	} else {
979		if (!vm_pages_needed) {
980			vm_pages_needed = 1;
981			wakeup(&vm_pages_needed);
982		}
983		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
984		    "vmwait", 0);
985	}
986}
987
988/*
989 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
990 *
991 *	Block until free pages are available for allocation
992 *	- Called only in vm_fault so that processes page faulting
993 *	  can be easily tracked.
994 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
995 *	  processes will be able to grab memory first.  Do not change
996 *	  this balance without careful testing first.
997 */
998void
999vm_waitpfault(void)
1000{
1001
1002	vm_page_lock_queues();
1003	if (!vm_pages_needed) {
1004		vm_pages_needed = 1;
1005		wakeup(&vm_pages_needed);
1006	}
1007	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
1008	    "pfault", 0);
1009}
1010
1011/*
1012 *	vm_page_activate:
1013 *
1014 *	Put the specified page on the active list (if appropriate).
1015 *	Ensure that act_count is at least ACT_INIT but do not otherwise
1016 *	mess with it.
1017 *
1018 *	The page queues must be locked.
1019 *	This routine may not block.
1020 */
1021void
1022vm_page_activate(vm_page_t m)
1023{
1024
1025	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1026	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1027		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1028			cnt.v_reactivated++;
1029		vm_pageq_remove(m);
1030		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1031			if (m->act_count < ACT_INIT)
1032				m->act_count = ACT_INIT;
1033			vm_pageq_enqueue(PQ_ACTIVE, m);
1034		}
1035	} else {
1036		if (m->act_count < ACT_INIT)
1037			m->act_count = ACT_INIT;
1038	}
1039}
1040
1041/*
1042 *	vm_page_free_wakeup:
1043 *
1044 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1045 *	routine is called when a page has been added to the cache or free
1046 *	queues.
1047 *
1048 *	The page queues must be locked.
1049 *	This routine may not block.
1050 */
1051static inline void
1052vm_page_free_wakeup(void)
1053{
1054
1055	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1056	/*
1057	 * if pageout daemon needs pages, then tell it that there are
1058	 * some free.
1059	 */
1060	if (vm_pageout_pages_needed &&
1061	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1062		wakeup(&vm_pageout_pages_needed);
1063		vm_pageout_pages_needed = 0;
1064	}
1065	/*
1066	 * wakeup processes that are waiting on memory if we hit a
1067	 * high water mark. And wakeup scheduler process if we have
1068	 * lots of memory. this process will swapin processes.
1069	 */
1070	if (vm_pages_needed && !vm_page_count_min()) {
1071		vm_pages_needed = 0;
1072		wakeup(&cnt.v_free_count);
1073	}
1074}
1075
1076/*
1077 *	vm_page_free_toq:
1078 *
1079 *	Returns the given page to the PQ_FREE list,
1080 *	disassociating it with any VM object.
1081 *
1082 *	Object and page must be locked prior to entry.
1083 *	This routine may not block.
1084 */
1085
1086void
1087vm_page_free_toq(vm_page_t m)
1088{
1089	struct vpgqueues *pq;
1090
1091	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1092	KASSERT(!pmap_page_is_mapped(m),
1093	    ("vm_page_free_toq: freeing mapped page %p", m));
1094	cnt.v_tfree++;
1095
1096	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1097		printf(
1098		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1099		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1100		    m->hold_count);
1101		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1102			panic("vm_page_free: freeing free page");
1103		else
1104			panic("vm_page_free: freeing busy page");
1105	}
1106
1107	/*
1108	 * unqueue, then remove page.  Note that we cannot destroy
1109	 * the page here because we do not want to call the pager's
1110	 * callback routine until after we've put the page on the
1111	 * appropriate free queue.
1112	 */
1113	vm_pageq_remove_nowakeup(m);
1114	vm_page_remove(m);
1115
1116	/*
1117	 * If fictitious remove object association and
1118	 * return, otherwise delay object association removal.
1119	 */
1120	if ((m->flags & PG_FICTITIOUS) != 0) {
1121		return;
1122	}
1123
1124	m->valid = 0;
1125	vm_page_undirty(m);
1126
1127	if (m->wire_count != 0) {
1128		if (m->wire_count > 1) {
1129			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1130				m->wire_count, (long)m->pindex);
1131		}
1132		panic("vm_page_free: freeing wired page");
1133	}
1134
1135	/*
1136	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1137	 */
1138	if (m->flags & PG_UNMANAGED) {
1139		m->flags &= ~PG_UNMANAGED;
1140	}
1141
1142	if (m->hold_count != 0) {
1143		m->flags &= ~PG_ZERO;
1144		VM_PAGE_SETQUEUE2(m, PQ_HOLD);
1145	} else
1146		VM_PAGE_SETQUEUE1(m, PQ_FREE);
1147	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1148	mtx_lock_spin(&vm_page_queue_free_mtx);
1149	pq->lcnt++;
1150	++(*pq->cnt);
1151
1152	/*
1153	 * Put zero'd pages on the end ( where we look for zero'd pages
1154	 * first ) and non-zerod pages at the head.
1155	 */
1156	if (m->flags & PG_ZERO) {
1157		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1158		++vm_page_zero_count;
1159	} else {
1160		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1161	}
1162	mtx_unlock_spin(&vm_page_queue_free_mtx);
1163	vm_page_free_wakeup();
1164}
1165
1166/*
1167 *	vm_page_unmanage:
1168 *
1169 * 	Prevent PV management from being done on the page.  The page is
1170 *	removed from the paging queues as if it were wired, and as a
1171 *	consequence of no longer being managed the pageout daemon will not
1172 *	touch it (since there is no way to locate the pte mappings for the
1173 *	page).  madvise() calls that mess with the pmap will also no longer
1174 *	operate on the page.
1175 *
1176 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1177 *	will clear the flag.
1178 *
1179 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1180 *	physical memory as backing store rather then swap-backed memory and
1181 *	will eventually be extended to support 4MB unmanaged physical
1182 *	mappings.
1183 */
1184void
1185vm_page_unmanage(vm_page_t m)
1186{
1187
1188	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1189	if ((m->flags & PG_UNMANAGED) == 0) {
1190		if (m->wire_count == 0)
1191			vm_pageq_remove(m);
1192	}
1193	vm_page_flag_set(m, PG_UNMANAGED);
1194}
1195
1196/*
1197 *	vm_page_wire:
1198 *
1199 *	Mark this page as wired down by yet
1200 *	another map, removing it from paging queues
1201 *	as necessary.
1202 *
1203 *	The page queues must be locked.
1204 *	This routine may not block.
1205 */
1206void
1207vm_page_wire(vm_page_t m)
1208{
1209
1210	/*
1211	 * Only bump the wire statistics if the page is not already wired,
1212	 * and only unqueue the page if it is on some queue (if it is unmanaged
1213	 * it is already off the queues).
1214	 */
1215	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1216	if (m->flags & PG_FICTITIOUS)
1217		return;
1218	if (m->wire_count == 0) {
1219		if ((m->flags & PG_UNMANAGED) == 0)
1220			vm_pageq_remove(m);
1221		atomic_add_int(&cnt.v_wire_count, 1);
1222	}
1223	m->wire_count++;
1224	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1225}
1226
1227/*
1228 *	vm_page_unwire:
1229 *
1230 *	Release one wiring of this page, potentially
1231 *	enabling it to be paged again.
1232 *
1233 *	Many pages placed on the inactive queue should actually go
1234 *	into the cache, but it is difficult to figure out which.  What
1235 *	we do instead, if the inactive target is well met, is to put
1236 *	clean pages at the head of the inactive queue instead of the tail.
1237 *	This will cause them to be moved to the cache more quickly and
1238 *	if not actively re-referenced, freed more quickly.  If we just
1239 *	stick these pages at the end of the inactive queue, heavy filesystem
1240 *	meta-data accesses can cause an unnecessary paging load on memory bound
1241 *	processes.  This optimization causes one-time-use metadata to be
1242 *	reused more quickly.
1243 *
1244 *	BUT, if we are in a low-memory situation we have no choice but to
1245 *	put clean pages on the cache queue.
1246 *
1247 *	A number of routines use vm_page_unwire() to guarantee that the page
1248 *	will go into either the inactive or active queues, and will NEVER
1249 *	be placed in the cache - for example, just after dirtying a page.
1250 *	dirty pages in the cache are not allowed.
1251 *
1252 *	The page queues must be locked.
1253 *	This routine may not block.
1254 */
1255void
1256vm_page_unwire(vm_page_t m, int activate)
1257{
1258
1259	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1260	if (m->flags & PG_FICTITIOUS)
1261		return;
1262	if (m->wire_count > 0) {
1263		m->wire_count--;
1264		if (m->wire_count == 0) {
1265			atomic_subtract_int(&cnt.v_wire_count, 1);
1266			if (m->flags & PG_UNMANAGED) {
1267				;
1268			} else if (activate)
1269				vm_pageq_enqueue(PQ_ACTIVE, m);
1270			else {
1271				vm_page_flag_clear(m, PG_WINATCFLS);
1272				vm_pageq_enqueue(PQ_INACTIVE, m);
1273			}
1274		}
1275	} else {
1276		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1277	}
1278}
1279
1280
1281/*
1282 * Move the specified page to the inactive queue.  If the page has
1283 * any associated swap, the swap is deallocated.
1284 *
1285 * Normally athead is 0 resulting in LRU operation.  athead is set
1286 * to 1 if we want this page to be 'as if it were placed in the cache',
1287 * except without unmapping it from the process address space.
1288 *
1289 * This routine may not block.
1290 */
1291static inline void
1292_vm_page_deactivate(vm_page_t m, int athead)
1293{
1294
1295	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1296
1297	/*
1298	 * Ignore if already inactive.
1299	 */
1300	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1301		return;
1302	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1303		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1304			cnt.v_reactivated++;
1305		vm_page_flag_clear(m, PG_WINATCFLS);
1306		vm_pageq_remove(m);
1307		if (athead)
1308			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1309		else
1310			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1311		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1312		vm_page_queues[PQ_INACTIVE].lcnt++;
1313		cnt.v_inactive_count++;
1314	}
1315}
1316
1317void
1318vm_page_deactivate(vm_page_t m)
1319{
1320    _vm_page_deactivate(m, 0);
1321}
1322
1323/*
1324 * vm_page_try_to_cache:
1325 *
1326 * Returns 0 on failure, 1 on success
1327 */
1328int
1329vm_page_try_to_cache(vm_page_t m)
1330{
1331
1332	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1333	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1334	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1335	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1336		return (0);
1337	}
1338	pmap_remove_all(m);
1339	if (m->dirty)
1340		return (0);
1341	vm_page_cache(m);
1342	return (1);
1343}
1344
1345/*
1346 * vm_page_try_to_free()
1347 *
1348 *	Attempt to free the page.  If we cannot free it, we do nothing.
1349 *	1 is returned on success, 0 on failure.
1350 */
1351int
1352vm_page_try_to_free(vm_page_t m)
1353{
1354
1355	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1356	if (m->object != NULL)
1357		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1358	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1359	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1360		return (0);
1361	}
1362	pmap_remove_all(m);
1363	if (m->dirty)
1364		return (0);
1365	vm_page_free(m);
1366	return (1);
1367}
1368
1369/*
1370 * vm_page_cache
1371 *
1372 * Put the specified page onto the page cache queue (if appropriate).
1373 *
1374 * This routine may not block.
1375 */
1376void
1377vm_page_cache(vm_page_t m)
1378{
1379
1380	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1381	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1382	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1383	    m->hold_count || m->wire_count) {
1384		printf("vm_page_cache: attempting to cache busy page\n");
1385		return;
1386	}
1387	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1388		return;
1389
1390	/*
1391	 * Remove all pmaps and indicate that the page is not
1392	 * writeable or mapped.
1393	 */
1394	pmap_remove_all(m);
1395	if (m->dirty != 0) {
1396		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1397			(long)m->pindex);
1398	}
1399	vm_pageq_remove_nowakeup(m);
1400	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1401	vm_page_free_wakeup();
1402}
1403
1404/*
1405 * vm_page_dontneed
1406 *
1407 *	Cache, deactivate, or do nothing as appropriate.  This routine
1408 *	is typically used by madvise() MADV_DONTNEED.
1409 *
1410 *	Generally speaking we want to move the page into the cache so
1411 *	it gets reused quickly.  However, this can result in a silly syndrome
1412 *	due to the page recycling too quickly.  Small objects will not be
1413 *	fully cached.  On the otherhand, if we move the page to the inactive
1414 *	queue we wind up with a problem whereby very large objects
1415 *	unnecessarily blow away our inactive and cache queues.
1416 *
1417 *	The solution is to move the pages based on a fixed weighting.  We
1418 *	either leave them alone, deactivate them, or move them to the cache,
1419 *	where moving them to the cache has the highest weighting.
1420 *	By forcing some pages into other queues we eventually force the
1421 *	system to balance the queues, potentially recovering other unrelated
1422 *	space from active.  The idea is to not force this to happen too
1423 *	often.
1424 */
1425void
1426vm_page_dontneed(vm_page_t m)
1427{
1428	static int dnweight;
1429	int dnw;
1430	int head;
1431
1432	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1433	dnw = ++dnweight;
1434
1435	/*
1436	 * occassionally leave the page alone
1437	 */
1438	if ((dnw & 0x01F0) == 0 ||
1439	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1440	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1441	) {
1442		if (m->act_count >= ACT_INIT)
1443			--m->act_count;
1444		return;
1445	}
1446
1447	if (m->dirty == 0 && pmap_is_modified(m))
1448		vm_page_dirty(m);
1449
1450	if (m->dirty || (dnw & 0x0070) == 0) {
1451		/*
1452		 * Deactivate the page 3 times out of 32.
1453		 */
1454		head = 0;
1455	} else {
1456		/*
1457		 * Cache the page 28 times out of every 32.  Note that
1458		 * the page is deactivated instead of cached, but placed
1459		 * at the head of the queue instead of the tail.
1460		 */
1461		head = 1;
1462	}
1463	_vm_page_deactivate(m, head);
1464}
1465
1466/*
1467 * Grab a page, waiting until we are waken up due to the page
1468 * changing state.  We keep on waiting, if the page continues
1469 * to be in the object.  If the page doesn't exist, first allocate it
1470 * and then conditionally zero it.
1471 *
1472 * This routine may block.
1473 */
1474vm_page_t
1475vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1476{
1477	vm_page_t m;
1478
1479	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1480retrylookup:
1481	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1482		vm_page_lock_queues();
1483		if (m->busy || (m->flags & PG_BUSY)) {
1484			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1485			VM_OBJECT_UNLOCK(object);
1486			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1487			VM_OBJECT_LOCK(object);
1488			if ((allocflags & VM_ALLOC_RETRY) == 0)
1489				return (NULL);
1490			goto retrylookup;
1491		} else {
1492			if (allocflags & VM_ALLOC_WIRED)
1493				vm_page_wire(m);
1494			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1495				vm_page_busy(m);
1496			vm_page_unlock_queues();
1497			return (m);
1498		}
1499	}
1500	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1501	if (m == NULL) {
1502		VM_OBJECT_UNLOCK(object);
1503		VM_WAIT;
1504		VM_OBJECT_LOCK(object);
1505		if ((allocflags & VM_ALLOC_RETRY) == 0)
1506			return (NULL);
1507		goto retrylookup;
1508	}
1509	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1510		pmap_zero_page(m);
1511	return (m);
1512}
1513
1514/*
1515 * Mapping function for valid bits or for dirty bits in
1516 * a page.  May not block.
1517 *
1518 * Inputs are required to range within a page.
1519 */
1520inline int
1521vm_page_bits(int base, int size)
1522{
1523	int first_bit;
1524	int last_bit;
1525
1526	KASSERT(
1527	    base + size <= PAGE_SIZE,
1528	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1529	);
1530
1531	if (size == 0)		/* handle degenerate case */
1532		return (0);
1533
1534	first_bit = base >> DEV_BSHIFT;
1535	last_bit = (base + size - 1) >> DEV_BSHIFT;
1536
1537	return ((2 << last_bit) - (1 << first_bit));
1538}
1539
1540/*
1541 *	vm_page_set_validclean:
1542 *
1543 *	Sets portions of a page valid and clean.  The arguments are expected
1544 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1545 *	of any partial chunks touched by the range.  The invalid portion of
1546 *	such chunks will be zero'd.
1547 *
1548 *	This routine may not block.
1549 *
1550 *	(base + size) must be less then or equal to PAGE_SIZE.
1551 */
1552void
1553vm_page_set_validclean(vm_page_t m, int base, int size)
1554{
1555	int pagebits;
1556	int frag;
1557	int endoff;
1558
1559	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1560	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1561	if (size == 0)	/* handle degenerate case */
1562		return;
1563
1564	/*
1565	 * If the base is not DEV_BSIZE aligned and the valid
1566	 * bit is clear, we have to zero out a portion of the
1567	 * first block.
1568	 */
1569	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1570	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1571		pmap_zero_page_area(m, frag, base - frag);
1572
1573	/*
1574	 * If the ending offset is not DEV_BSIZE aligned and the
1575	 * valid bit is clear, we have to zero out a portion of
1576	 * the last block.
1577	 */
1578	endoff = base + size;
1579	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1580	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1581		pmap_zero_page_area(m, endoff,
1582		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1583
1584	/*
1585	 * Set valid, clear dirty bits.  If validating the entire
1586	 * page we can safely clear the pmap modify bit.  We also
1587	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1588	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1589	 * be set again.
1590	 *
1591	 * We set valid bits inclusive of any overlap, but we can only
1592	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1593	 * the range.
1594	 */
1595	pagebits = vm_page_bits(base, size);
1596	m->valid |= pagebits;
1597#if 0	/* NOT YET */
1598	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1599		frag = DEV_BSIZE - frag;
1600		base += frag;
1601		size -= frag;
1602		if (size < 0)
1603			size = 0;
1604	}
1605	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1606#endif
1607	m->dirty &= ~pagebits;
1608	if (base == 0 && size == PAGE_SIZE) {
1609		pmap_clear_modify(m);
1610		vm_page_flag_clear(m, PG_NOSYNC);
1611	}
1612}
1613
1614void
1615vm_page_clear_dirty(vm_page_t m, int base, int size)
1616{
1617
1618	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1619	m->dirty &= ~vm_page_bits(base, size);
1620}
1621
1622/*
1623 *	vm_page_set_invalid:
1624 *
1625 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1626 *	valid and dirty bits for the effected areas are cleared.
1627 *
1628 *	May not block.
1629 */
1630void
1631vm_page_set_invalid(vm_page_t m, int base, int size)
1632{
1633	int bits;
1634
1635	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1636	bits = vm_page_bits(base, size);
1637	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1638	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1639		pmap_remove_all(m);
1640	m->valid &= ~bits;
1641	m->dirty &= ~bits;
1642	m->object->generation++;
1643}
1644
1645/*
1646 * vm_page_zero_invalid()
1647 *
1648 *	The kernel assumes that the invalid portions of a page contain
1649 *	garbage, but such pages can be mapped into memory by user code.
1650 *	When this occurs, we must zero out the non-valid portions of the
1651 *	page so user code sees what it expects.
1652 *
1653 *	Pages are most often semi-valid when the end of a file is mapped
1654 *	into memory and the file's size is not page aligned.
1655 */
1656void
1657vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1658{
1659	int b;
1660	int i;
1661
1662	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1663	/*
1664	 * Scan the valid bits looking for invalid sections that
1665	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1666	 * valid bit may be set ) have already been zerod by
1667	 * vm_page_set_validclean().
1668	 */
1669	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1670		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1671		    (m->valid & (1 << i))
1672		) {
1673			if (i > b) {
1674				pmap_zero_page_area(m,
1675				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1676			}
1677			b = i + 1;
1678		}
1679	}
1680
1681	/*
1682	 * setvalid is TRUE when we can safely set the zero'd areas
1683	 * as being valid.  We can do this if there are no cache consistancy
1684	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1685	 */
1686	if (setvalid)
1687		m->valid = VM_PAGE_BITS_ALL;
1688}
1689
1690/*
1691 *	vm_page_is_valid:
1692 *
1693 *	Is (partial) page valid?  Note that the case where size == 0
1694 *	will return FALSE in the degenerate case where the page is
1695 *	entirely invalid, and TRUE otherwise.
1696 *
1697 *	May not block.
1698 */
1699int
1700vm_page_is_valid(vm_page_t m, int base, int size)
1701{
1702	int bits = vm_page_bits(base, size);
1703
1704	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1705	if (m->valid && ((m->valid & bits) == bits))
1706		return 1;
1707	else
1708		return 0;
1709}
1710
1711/*
1712 * update dirty bits from pmap/mmu.  May not block.
1713 */
1714void
1715vm_page_test_dirty(vm_page_t m)
1716{
1717	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1718		vm_page_dirty(m);
1719	}
1720}
1721
1722int so_zerocp_fullpage = 0;
1723
1724void
1725vm_page_cowfault(vm_page_t m)
1726{
1727	vm_page_t mnew;
1728	vm_object_t object;
1729	vm_pindex_t pindex;
1730
1731	object = m->object;
1732	pindex = m->pindex;
1733
1734 retry_alloc:
1735	pmap_remove_all(m);
1736	vm_page_remove(m);
1737	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1738	if (mnew == NULL) {
1739		vm_page_insert(m, object, pindex);
1740		vm_page_unlock_queues();
1741		VM_OBJECT_UNLOCK(object);
1742		VM_WAIT;
1743		VM_OBJECT_LOCK(object);
1744		vm_page_lock_queues();
1745		goto retry_alloc;
1746	}
1747
1748	if (m->cow == 0) {
1749		/*
1750		 * check to see if we raced with an xmit complete when
1751		 * waiting to allocate a page.  If so, put things back
1752		 * the way they were
1753		 */
1754		vm_page_free(mnew);
1755		vm_page_insert(m, object, pindex);
1756	} else { /* clear COW & copy page */
1757		if (!so_zerocp_fullpage)
1758			pmap_copy_page(m, mnew);
1759		mnew->valid = VM_PAGE_BITS_ALL;
1760		vm_page_dirty(mnew);
1761		vm_page_flag_clear(mnew, PG_BUSY);
1762		mnew->wire_count = m->wire_count - m->cow;
1763		m->wire_count = m->cow;
1764	}
1765}
1766
1767void
1768vm_page_cowclear(vm_page_t m)
1769{
1770
1771	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1772	if (m->cow) {
1773		m->cow--;
1774		/*
1775		 * let vm_fault add back write permission  lazily
1776		 */
1777	}
1778	/*
1779	 *  sf_buf_free() will free the page, so we needn't do it here
1780	 */
1781}
1782
1783void
1784vm_page_cowsetup(vm_page_t m)
1785{
1786
1787	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1788	m->cow++;
1789	pmap_remove_write(m);
1790}
1791
1792#include "opt_ddb.h"
1793#ifdef DDB
1794#include <sys/kernel.h>
1795
1796#include <ddb/ddb.h>
1797
1798DB_SHOW_COMMAND(page, vm_page_print_page_info)
1799{
1800	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1801	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1802	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1803	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1804	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1805	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1806	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1807	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1808	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1809	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1810}
1811
1812DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1813{
1814	int i;
1815	db_printf("PQ_FREE:");
1816	for (i = 0; i < PQ_NUMCOLORS; i++) {
1817		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1818	}
1819	db_printf("\n");
1820
1821	db_printf("PQ_CACHE:");
1822	for (i = 0; i < PQ_NUMCOLORS; i++) {
1823		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1824	}
1825	db_printf("\n");
1826
1827	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1828		vm_page_queues[PQ_ACTIVE].lcnt,
1829		vm_page_queues[PQ_INACTIVE].lcnt);
1830}
1831#endif /* DDB */
1832