vm_page.c revision 136931
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 136931 2004-10-24 23:53:47Z alc $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/malloc.h>
106#include <sys/mutex.h>
107#include <sys/proc.h>
108#include <sys/vmmeter.h>
109#include <sys/vnode.h>
110
111#include <vm/vm.h>
112#include <vm/vm_param.h>
113#include <vm/vm_kern.h>
114#include <vm/vm_object.h>
115#include <vm/vm_page.h>
116#include <vm/vm_pageout.h>
117#include <vm/vm_pager.h>
118#include <vm/vm_extern.h>
119#include <vm/uma.h>
120#include <vm/uma_int.h>
121
122/*
123 *	Associated with page of user-allocatable memory is a
124 *	page structure.
125 */
126
127struct mtx vm_page_queue_mtx;
128struct mtx vm_page_queue_free_mtx;
129
130vm_page_t vm_page_array = 0;
131int vm_page_array_size = 0;
132long first_page = 0;
133int vm_page_zero_count = 0;
134
135/*
136 *	vm_set_page_size:
137 *
138 *	Sets the page size, perhaps based upon the memory
139 *	size.  Must be called before any use of page-size
140 *	dependent functions.
141 */
142void
143vm_set_page_size(void)
144{
145	if (cnt.v_page_size == 0)
146		cnt.v_page_size = PAGE_SIZE;
147	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
148		panic("vm_set_page_size: page size not a power of two");
149}
150
151/*
152 *	vm_page_startup:
153 *
154 *	Initializes the resident memory module.
155 *
156 *	Allocates memory for the page cells, and
157 *	for the object/offset-to-page hash table headers.
158 *	Each page cell is initialized and placed on the free list.
159 */
160vm_offset_t
161vm_page_startup(vm_offset_t vaddr)
162{
163	vm_offset_t mapped;
164	vm_size_t npages;
165	vm_paddr_t page_range;
166	vm_paddr_t new_end;
167	int i;
168	vm_paddr_t pa;
169	int nblocks;
170	vm_paddr_t last_pa;
171
172	/* the biggest memory array is the second group of pages */
173	vm_paddr_t end;
174	vm_paddr_t biggestsize;
175	int biggestone;
176
177	vm_paddr_t total;
178	vm_size_t bootpages;
179
180	total = 0;
181	biggestsize = 0;
182	biggestone = 0;
183	nblocks = 0;
184	vaddr = round_page(vaddr);
185
186	for (i = 0; phys_avail[i + 1]; i += 2) {
187		phys_avail[i] = round_page(phys_avail[i]);
188		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189	}
190
191	for (i = 0; phys_avail[i + 1]; i += 2) {
192		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
193
194		if (size > biggestsize) {
195			biggestone = i;
196			biggestsize = size;
197		}
198		++nblocks;
199		total += size;
200	}
201
202	end = phys_avail[biggestone+1];
203
204	/*
205	 * Initialize the locks.
206	 */
207	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
208	    MTX_RECURSE);
209	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
210	    MTX_SPIN);
211
212	/*
213	 * Initialize the queue headers for the free queue, the active queue
214	 * and the inactive queue.
215	 */
216	vm_pageq_init();
217
218	/*
219	 * Allocate memory for use when boot strapping the kernel memory
220	 * allocator.
221	 */
222	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
223	new_end = end - bootpages;
224	new_end = trunc_page(new_end);
225	mapped = pmap_map(&vaddr, new_end, end,
226	    VM_PROT_READ | VM_PROT_WRITE);
227	bzero((caddr_t) mapped, end - new_end);
228	uma_startup((caddr_t)mapped);
229
230	/*
231	 * Compute the number of pages of memory that will be available for
232	 * use (taking into account the overhead of a page structure per
233	 * page).
234	 */
235	first_page = phys_avail[0] / PAGE_SIZE;
236	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
237	npages = (total - (page_range * sizeof(struct vm_page)) -
238	    (end - new_end)) / PAGE_SIZE;
239	end = new_end;
240
241	/*
242	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
243	 */
244	vaddr += PAGE_SIZE;
245
246	/*
247	 * Initialize the mem entry structures now, and put them in the free
248	 * queue.
249	 */
250	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
251	mapped = pmap_map(&vaddr, new_end, end,
252	    VM_PROT_READ | VM_PROT_WRITE);
253	vm_page_array = (vm_page_t) mapped;
254	phys_avail[biggestone + 1] = new_end;
255
256	/*
257	 * Clear all of the page structures
258	 */
259	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
260	vm_page_array_size = page_range;
261
262	/*
263	 * Construct the free queue(s) in descending order (by physical
264	 * address) so that the first 16MB of physical memory is allocated
265	 * last rather than first.  On large-memory machines, this avoids
266	 * the exhaustion of low physical memory before isa_dma_init has run.
267	 */
268	cnt.v_page_count = 0;
269	cnt.v_free_count = 0;
270	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
271		pa = phys_avail[i];
272		last_pa = phys_avail[i + 1];
273		while (pa < last_pa && npages-- > 0) {
274			vm_pageq_add_new_page(pa);
275			pa += PAGE_SIZE;
276		}
277	}
278	return (vaddr);
279}
280
281void
282vm_page_flag_set(vm_page_t m, unsigned short bits)
283{
284
285	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
286	m->flags |= bits;
287}
288
289void
290vm_page_flag_clear(vm_page_t m, unsigned short bits)
291{
292
293	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
294	m->flags &= ~bits;
295}
296
297void
298vm_page_busy(vm_page_t m)
299{
300
301	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
302	KASSERT((m->flags & PG_BUSY) == 0,
303	    ("vm_page_busy: page already busy!!!"));
304	vm_page_flag_set(m, PG_BUSY);
305}
306
307/*
308 *      vm_page_flash:
309 *
310 *      wakeup anyone waiting for the page.
311 */
312void
313vm_page_flash(vm_page_t m)
314{
315	if (m->flags & PG_WANTED) {
316		vm_page_flag_clear(m, PG_WANTED);
317		wakeup(m);
318	}
319}
320
321/*
322 *      vm_page_wakeup:
323 *
324 *      clear the PG_BUSY flag and wakeup anyone waiting for the
325 *      page.
326 *
327 */
328void
329vm_page_wakeup(vm_page_t m)
330{
331
332	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
333	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
334	vm_page_flag_clear(m, PG_BUSY);
335	vm_page_flash(m);
336}
337
338void
339vm_page_io_start(vm_page_t m)
340{
341
342	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
343	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
344	m->busy++;
345}
346
347void
348vm_page_io_finish(vm_page_t m)
349{
350
351	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
352	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
353	m->busy--;
354	if (m->busy == 0)
355		vm_page_flash(m);
356}
357
358/*
359 * Keep page from being freed by the page daemon
360 * much of the same effect as wiring, except much lower
361 * overhead and should be used only for *very* temporary
362 * holding ("wiring").
363 */
364void
365vm_page_hold(vm_page_t mem)
366{
367
368	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
369        mem->hold_count++;
370}
371
372void
373vm_page_unhold(vm_page_t mem)
374{
375
376	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
377	--mem->hold_count;
378	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
379	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
380		vm_page_free_toq(mem);
381}
382
383/*
384 *	vm_page_free:
385 *
386 *	Free a page
387 *
388 *	The clearing of PG_ZERO is a temporary safety until the code can be
389 *	reviewed to determine that PG_ZERO is being properly cleared on
390 *	write faults or maps.  PG_ZERO was previously cleared in
391 *	vm_page_alloc().
392 */
393void
394vm_page_free(vm_page_t m)
395{
396	vm_page_flag_clear(m, PG_ZERO);
397	vm_page_free_toq(m);
398	vm_page_zero_idle_wakeup();
399}
400
401/*
402 *	vm_page_free_zero:
403 *
404 *	Free a page to the zerod-pages queue
405 */
406void
407vm_page_free_zero(vm_page_t m)
408{
409	vm_page_flag_set(m, PG_ZERO);
410	vm_page_free_toq(m);
411}
412
413/*
414 *	vm_page_sleep_if_busy:
415 *
416 *	Sleep and release the page queues lock if PG_BUSY is set or,
417 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
418 *	thread slept and the page queues lock was released.
419 *	Otherwise, retains the page queues lock and returns FALSE.
420 */
421int
422vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
423{
424	vm_object_t object;
425	int is_object_locked;
426
427	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
428	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
429		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
430		/*
431		 * It's possible that while we sleep, the page will get
432		 * unbusied and freed.  If we are holding the object
433		 * lock, we will assume we hold a reference to the object
434		 * such that even if m->object changes, we can re-lock
435		 * it.
436		 *
437		 * Remove mtx_owned() after vm_object locking is finished.
438		 */
439		object = m->object;
440		if ((is_object_locked = object != NULL &&
441		     mtx_owned(&object->mtx)))
442			mtx_unlock(&object->mtx);
443		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
444		if (is_object_locked)
445			mtx_lock(&object->mtx);
446		return (TRUE);
447	}
448	return (FALSE);
449}
450
451/*
452 *	vm_page_dirty:
453 *
454 *	make page all dirty
455 */
456void
457vm_page_dirty(vm_page_t m)
458{
459	KASSERT(m->queue - m->pc != PQ_CACHE,
460	    ("vm_page_dirty: page in cache!"));
461	KASSERT(m->queue - m->pc != PQ_FREE,
462	    ("vm_page_dirty: page is free!"));
463	m->dirty = VM_PAGE_BITS_ALL;
464}
465
466/*
467 *	vm_page_splay:
468 *
469 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
470 *	the vm_page containing the given pindex.  If, however, that
471 *	pindex is not found in the vm_object, returns a vm_page that is
472 *	adjacent to the pindex, coming before or after it.
473 */
474vm_page_t
475vm_page_splay(vm_pindex_t pindex, vm_page_t root)
476{
477	struct vm_page dummy;
478	vm_page_t lefttreemax, righttreemin, y;
479
480	if (root == NULL)
481		return (root);
482	lefttreemax = righttreemin = &dummy;
483	for (;; root = y) {
484		if (pindex < root->pindex) {
485			if ((y = root->left) == NULL)
486				break;
487			if (pindex < y->pindex) {
488				/* Rotate right. */
489				root->left = y->right;
490				y->right = root;
491				root = y;
492				if ((y = root->left) == NULL)
493					break;
494			}
495			/* Link into the new root's right tree. */
496			righttreemin->left = root;
497			righttreemin = root;
498		} else if (pindex > root->pindex) {
499			if ((y = root->right) == NULL)
500				break;
501			if (pindex > y->pindex) {
502				/* Rotate left. */
503				root->right = y->left;
504				y->left = root;
505				root = y;
506				if ((y = root->right) == NULL)
507					break;
508			}
509			/* Link into the new root's left tree. */
510			lefttreemax->right = root;
511			lefttreemax = root;
512		} else
513			break;
514	}
515	/* Assemble the new root. */
516	lefttreemax->right = root->left;
517	righttreemin->left = root->right;
518	root->left = dummy.right;
519	root->right = dummy.left;
520	return (root);
521}
522
523/*
524 *	vm_page_insert:		[ internal use only ]
525 *
526 *	Inserts the given mem entry into the object and object list.
527 *
528 *	The pagetables are not updated but will presumably fault the page
529 *	in if necessary, or if a kernel page the caller will at some point
530 *	enter the page into the kernel's pmap.  We are not allowed to block
531 *	here so we *can't* do this anyway.
532 *
533 *	The object and page must be locked.
534 *	This routine may not block.
535 */
536void
537vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
538{
539	vm_page_t root;
540
541	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
542	if (m->object != NULL)
543		panic("vm_page_insert: page already inserted");
544
545	/*
546	 * Record the object/offset pair in this page
547	 */
548	m->object = object;
549	m->pindex = pindex;
550
551	/*
552	 * Now link into the object's ordered list of backed pages.
553	 */
554	root = object->root;
555	if (root == NULL) {
556		m->left = NULL;
557		m->right = NULL;
558		TAILQ_INSERT_TAIL(&object->memq, m, listq);
559	} else {
560		root = vm_page_splay(pindex, root);
561		if (pindex < root->pindex) {
562			m->left = root->left;
563			m->right = root;
564			root->left = NULL;
565			TAILQ_INSERT_BEFORE(root, m, listq);
566		} else if (pindex == root->pindex)
567			panic("vm_page_insert: offset already allocated");
568		else {
569			m->right = root->right;
570			m->left = root;
571			root->right = NULL;
572			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
573		}
574	}
575	object->root = m;
576	object->generation++;
577
578	/*
579	 * show that the object has one more resident page.
580	 */
581	object->resident_page_count++;
582
583	/*
584	 * Since we are inserting a new and possibly dirty page,
585	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
586	 */
587	if (m->flags & PG_WRITEABLE)
588		vm_object_set_writeable_dirty(object);
589}
590
591/*
592 *	vm_page_remove:
593 *				NOTE: used by device pager as well -wfj
594 *
595 *	Removes the given mem entry from the object/offset-page
596 *	table and the object page list, but do not invalidate/terminate
597 *	the backing store.
598 *
599 *	The object and page must be locked.
600 *	The underlying pmap entry (if any) is NOT removed here.
601 *	This routine may not block.
602 */
603void
604vm_page_remove(vm_page_t m)
605{
606	vm_object_t object;
607	vm_page_t root;
608
609	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
610	if (m->object == NULL)
611		return;
612	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
613	if ((m->flags & PG_BUSY) == 0) {
614		panic("vm_page_remove: page not busy");
615	}
616
617	/*
618	 * Basically destroy the page.
619	 */
620	vm_page_wakeup(m);
621
622	object = m->object;
623
624	/*
625	 * Now remove from the object's list of backed pages.
626	 */
627	if (m != object->root)
628		vm_page_splay(m->pindex, object->root);
629	if (m->left == NULL)
630		root = m->right;
631	else {
632		root = vm_page_splay(m->pindex, m->left);
633		root->right = m->right;
634	}
635	object->root = root;
636	TAILQ_REMOVE(&object->memq, m, listq);
637
638	/*
639	 * And show that the object has one fewer resident page.
640	 */
641	object->resident_page_count--;
642	object->generation++;
643
644	m->object = NULL;
645}
646
647/*
648 *	vm_page_lookup:
649 *
650 *	Returns the page associated with the object/offset
651 *	pair specified; if none is found, NULL is returned.
652 *
653 *	The object must be locked.
654 *	This routine may not block.
655 *	This is a critical path routine
656 */
657vm_page_t
658vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
659{
660	vm_page_t m;
661
662	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
663	if ((m = object->root) != NULL && m->pindex != pindex) {
664		m = vm_page_splay(pindex, m);
665		if ((object->root = m)->pindex != pindex)
666			m = NULL;
667	}
668	return (m);
669}
670
671/*
672 *	vm_page_rename:
673 *
674 *	Move the given memory entry from its
675 *	current object to the specified target object/offset.
676 *
677 *	The object must be locked.
678 *	This routine may not block.
679 *
680 *	Note: swap associated with the page must be invalidated by the move.  We
681 *	      have to do this for several reasons:  (1) we aren't freeing the
682 *	      page, (2) we are dirtying the page, (3) the VM system is probably
683 *	      moving the page from object A to B, and will then later move
684 *	      the backing store from A to B and we can't have a conflict.
685 *
686 *	Note: we *always* dirty the page.  It is necessary both for the
687 *	      fact that we moved it, and because we may be invalidating
688 *	      swap.  If the page is on the cache, we have to deactivate it
689 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
690 *	      on the cache.
691 */
692void
693vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
694{
695
696	vm_page_remove(m);
697	vm_page_insert(m, new_object, new_pindex);
698	if (m->queue - m->pc == PQ_CACHE)
699		vm_page_deactivate(m);
700	vm_page_dirty(m);
701}
702
703/*
704 *	vm_page_select_cache:
705 *
706 *	Find a page on the cache queue with color optimization.  As pages
707 *	might be found, but not applicable, they are deactivated.  This
708 *	keeps us from using potentially busy cached pages.
709 *
710 *	This routine may not block.
711 */
712vm_page_t
713vm_page_select_cache(int color)
714{
715	vm_page_t m;
716
717	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
718	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
719		if ((m->flags & PG_BUSY) == 0 && m->busy == 0 &&
720		    m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) ||
721		    VM_OBJECT_LOCKED(m->object))) {
722			KASSERT(m->dirty == 0,
723			    ("Found dirty cache page %p", m));
724			KASSERT(!pmap_page_is_mapped(m),
725			    ("Found mapped cache page %p", m));
726			KASSERT((m->flags & PG_UNMANAGED) == 0,
727			    ("Found unmanaged cache page %p", m));
728			KASSERT(m->wire_count == 0,
729			    ("Found wired cache page %p", m));
730			break;
731		}
732		vm_page_deactivate(m);
733	}
734	return (m);
735}
736
737/*
738 *	vm_page_alloc:
739 *
740 *	Allocate and return a memory cell associated
741 *	with this VM object/offset pair.
742 *
743 *	page_req classes:
744 *	VM_ALLOC_NORMAL		normal process request
745 *	VM_ALLOC_SYSTEM		system *really* needs a page
746 *	VM_ALLOC_INTERRUPT	interrupt time request
747 *	VM_ALLOC_ZERO		zero page
748 *
749 *	This routine may not block.
750 *
751 *	Additional special handling is required when called from an
752 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
753 *	the page cache in this case.
754 */
755vm_page_t
756vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
757{
758	vm_object_t m_object;
759	vm_page_t m = NULL;
760	int color, flags, page_req;
761
762	page_req = req & VM_ALLOC_CLASS_MASK;
763
764	if ((req & VM_ALLOC_NOOBJ) == 0) {
765		KASSERT(object != NULL,
766		    ("vm_page_alloc: NULL object."));
767		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
768		color = (pindex + object->pg_color) & PQ_L2_MASK;
769	} else
770		color = pindex & PQ_L2_MASK;
771
772	/*
773	 * The pager is allowed to eat deeper into the free page list.
774	 */
775	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
776		page_req = VM_ALLOC_SYSTEM;
777	};
778
779loop:
780	mtx_lock_spin(&vm_page_queue_free_mtx);
781	if (cnt.v_free_count > cnt.v_free_reserved ||
782	    (page_req == VM_ALLOC_SYSTEM &&
783	     cnt.v_cache_count == 0 &&
784	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
785	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
786		/*
787		 * Allocate from the free queue if the number of free pages
788		 * exceeds the minimum for the request class.
789		 */
790		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
791	} else if (page_req != VM_ALLOC_INTERRUPT) {
792		mtx_unlock_spin(&vm_page_queue_free_mtx);
793		/*
794		 * Allocatable from cache (non-interrupt only).  On success,
795		 * we must free the page and try again, thus ensuring that
796		 * cnt.v_*_free_min counters are replenished.
797		 */
798		vm_page_lock_queues();
799		if ((m = vm_page_select_cache(color)) == NULL) {
800#if defined(DIAGNOSTIC)
801			if (cnt.v_cache_count > 0)
802				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
803#endif
804			vm_page_unlock_queues();
805			atomic_add_int(&vm_pageout_deficit, 1);
806			pagedaemon_wakeup();
807			return (NULL);
808		}
809		m_object = m->object;
810		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
811		vm_page_busy(m);
812		vm_page_free(m);
813		vm_page_unlock_queues();
814		if (m_object != object)
815			VM_OBJECT_UNLOCK(m_object);
816		goto loop;
817	} else {
818		/*
819		 * Not allocatable from cache from interrupt, give up.
820		 */
821		mtx_unlock_spin(&vm_page_queue_free_mtx);
822		atomic_add_int(&vm_pageout_deficit, 1);
823		pagedaemon_wakeup();
824		return (NULL);
825	}
826
827	/*
828	 *  At this point we had better have found a good page.
829	 */
830
831	KASSERT(
832	    m != NULL,
833	    ("vm_page_alloc(): missing page on free queue")
834	);
835
836	/*
837	 * Remove from free queue
838	 */
839	vm_pageq_remove_nowakeup(m);
840
841	/*
842	 * Initialize structure.  Only the PG_ZERO flag is inherited.
843	 */
844	flags = PG_BUSY;
845	if (m->flags & PG_ZERO) {
846		vm_page_zero_count--;
847		if (req & VM_ALLOC_ZERO)
848			flags = PG_ZERO | PG_BUSY;
849	}
850	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
851		flags &= ~PG_BUSY;
852	m->flags = flags;
853	if (req & VM_ALLOC_WIRED) {
854		atomic_add_int(&cnt.v_wire_count, 1);
855		m->wire_count = 1;
856	} else
857		m->wire_count = 0;
858	m->hold_count = 0;
859	m->act_count = 0;
860	m->busy = 0;
861	m->valid = 0;
862	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
863	mtx_unlock_spin(&vm_page_queue_free_mtx);
864
865	if ((req & VM_ALLOC_NOOBJ) == 0)
866		vm_page_insert(m, object, pindex);
867	else
868		m->pindex = pindex;
869
870	/*
871	 * Don't wakeup too often - wakeup the pageout daemon when
872	 * we would be nearly out of memory.
873	 */
874	if (vm_paging_needed())
875		pagedaemon_wakeup();
876
877	return (m);
878}
879
880/*
881 *	vm_wait:	(also see VM_WAIT macro)
882 *
883 *	Block until free pages are available for allocation
884 *	- Called in various places before memory allocations.
885 */
886void
887vm_wait(void)
888{
889
890	vm_page_lock_queues();
891	if (curproc == pageproc) {
892		vm_pageout_pages_needed = 1;
893		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
894		    PDROP | PSWP, "VMWait", 0);
895	} else {
896		if (!vm_pages_needed) {
897			vm_pages_needed = 1;
898			wakeup(&vm_pages_needed);
899		}
900		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
901		    "vmwait", 0);
902	}
903}
904
905/*
906 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
907 *
908 *	Block until free pages are available for allocation
909 *	- Called only in vm_fault so that processes page faulting
910 *	  can be easily tracked.
911 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
912 *	  processes will be able to grab memory first.  Do not change
913 *	  this balance without careful testing first.
914 */
915void
916vm_waitpfault(void)
917{
918
919	vm_page_lock_queues();
920	if (!vm_pages_needed) {
921		vm_pages_needed = 1;
922		wakeup(&vm_pages_needed);
923	}
924	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
925	    "pfault", 0);
926}
927
928/*
929 *	vm_page_activate:
930 *
931 *	Put the specified page on the active list (if appropriate).
932 *	Ensure that act_count is at least ACT_INIT but do not otherwise
933 *	mess with it.
934 *
935 *	The page queues must be locked.
936 *	This routine may not block.
937 */
938void
939vm_page_activate(vm_page_t m)
940{
941
942	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
943	if (m->queue != PQ_ACTIVE) {
944		if ((m->queue - m->pc) == PQ_CACHE)
945			cnt.v_reactivated++;
946		vm_pageq_remove(m);
947		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
948			if (m->act_count < ACT_INIT)
949				m->act_count = ACT_INIT;
950			vm_pageq_enqueue(PQ_ACTIVE, m);
951		}
952	} else {
953		if (m->act_count < ACT_INIT)
954			m->act_count = ACT_INIT;
955	}
956}
957
958/*
959 *	vm_page_free_wakeup:
960 *
961 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
962 *	routine is called when a page has been added to the cache or free
963 *	queues.
964 *
965 *	The page queues must be locked.
966 *	This routine may not block.
967 */
968static __inline void
969vm_page_free_wakeup(void)
970{
971
972	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
973	/*
974	 * if pageout daemon needs pages, then tell it that there are
975	 * some free.
976	 */
977	if (vm_pageout_pages_needed &&
978	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
979		wakeup(&vm_pageout_pages_needed);
980		vm_pageout_pages_needed = 0;
981	}
982	/*
983	 * wakeup processes that are waiting on memory if we hit a
984	 * high water mark. And wakeup scheduler process if we have
985	 * lots of memory. this process will swapin processes.
986	 */
987	if (vm_pages_needed && !vm_page_count_min()) {
988		vm_pages_needed = 0;
989		wakeup(&cnt.v_free_count);
990	}
991}
992
993/*
994 *	vm_page_free_toq:
995 *
996 *	Returns the given page to the PQ_FREE list,
997 *	disassociating it with any VM object.
998 *
999 *	Object and page must be locked prior to entry.
1000 *	This routine may not block.
1001 */
1002
1003void
1004vm_page_free_toq(vm_page_t m)
1005{
1006	struct vpgqueues *pq;
1007	vm_object_t object = m->object;
1008
1009	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1010	cnt.v_tfree++;
1011
1012	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1013		printf(
1014		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1015		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1016		    m->hold_count);
1017		if ((m->queue - m->pc) == PQ_FREE)
1018			panic("vm_page_free: freeing free page");
1019		else
1020			panic("vm_page_free: freeing busy page");
1021	}
1022
1023	/*
1024	 * unqueue, then remove page.  Note that we cannot destroy
1025	 * the page here because we do not want to call the pager's
1026	 * callback routine until after we've put the page on the
1027	 * appropriate free queue.
1028	 */
1029	vm_pageq_remove_nowakeup(m);
1030	vm_page_remove(m);
1031
1032	/*
1033	 * If fictitious remove object association and
1034	 * return, otherwise delay object association removal.
1035	 */
1036	if ((m->flags & PG_FICTITIOUS) != 0) {
1037		return;
1038	}
1039
1040	m->valid = 0;
1041	vm_page_undirty(m);
1042
1043	if (m->wire_count != 0) {
1044		if (m->wire_count > 1) {
1045			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1046				m->wire_count, (long)m->pindex);
1047		}
1048		panic("vm_page_free: freeing wired page");
1049	}
1050
1051	/*
1052	 * If we've exhausted the object's resident pages we want to free
1053	 * it up.
1054	 */
1055	if (object &&
1056	    (object->type == OBJT_VNODE) &&
1057	    ((object->flags & OBJ_DEAD) == 0)
1058	) {
1059		struct vnode *vp = (struct vnode *)object->handle;
1060
1061		if (vp) {
1062			VI_LOCK(vp);
1063			if (VSHOULDFREE(vp))
1064				vfree(vp);
1065			VI_UNLOCK(vp);
1066		}
1067	}
1068
1069	/*
1070	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1071	 */
1072	if (m->flags & PG_UNMANAGED) {
1073		m->flags &= ~PG_UNMANAGED;
1074	}
1075
1076	if (m->hold_count != 0) {
1077		m->flags &= ~PG_ZERO;
1078		m->queue = PQ_HOLD;
1079	} else
1080		m->queue = PQ_FREE + m->pc;
1081	pq = &vm_page_queues[m->queue];
1082	mtx_lock_spin(&vm_page_queue_free_mtx);
1083	pq->lcnt++;
1084	++(*pq->cnt);
1085
1086	/*
1087	 * Put zero'd pages on the end ( where we look for zero'd pages
1088	 * first ) and non-zerod pages at the head.
1089	 */
1090	if (m->flags & PG_ZERO) {
1091		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1092		++vm_page_zero_count;
1093	} else {
1094		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1095	}
1096	mtx_unlock_spin(&vm_page_queue_free_mtx);
1097	vm_page_free_wakeup();
1098}
1099
1100/*
1101 *	vm_page_unmanage:
1102 *
1103 * 	Prevent PV management from being done on the page.  The page is
1104 *	removed from the paging queues as if it were wired, and as a
1105 *	consequence of no longer being managed the pageout daemon will not
1106 *	touch it (since there is no way to locate the pte mappings for the
1107 *	page).  madvise() calls that mess with the pmap will also no longer
1108 *	operate on the page.
1109 *
1110 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1111 *	will clear the flag.
1112 *
1113 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1114 *	physical memory as backing store rather then swap-backed memory and
1115 *	will eventually be extended to support 4MB unmanaged physical
1116 *	mappings.
1117 */
1118void
1119vm_page_unmanage(vm_page_t m)
1120{
1121
1122	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1123	if ((m->flags & PG_UNMANAGED) == 0) {
1124		if (m->wire_count == 0)
1125			vm_pageq_remove(m);
1126	}
1127	vm_page_flag_set(m, PG_UNMANAGED);
1128}
1129
1130/*
1131 *	vm_page_wire:
1132 *
1133 *	Mark this page as wired down by yet
1134 *	another map, removing it from paging queues
1135 *	as necessary.
1136 *
1137 *	The page queues must be locked.
1138 *	This routine may not block.
1139 */
1140void
1141vm_page_wire(vm_page_t m)
1142{
1143
1144	/*
1145	 * Only bump the wire statistics if the page is not already wired,
1146	 * and only unqueue the page if it is on some queue (if it is unmanaged
1147	 * it is already off the queues).
1148	 */
1149	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1150	if (m->flags & PG_FICTITIOUS)
1151		return;
1152	if (m->wire_count == 0) {
1153		if ((m->flags & PG_UNMANAGED) == 0)
1154			vm_pageq_remove(m);
1155		atomic_add_int(&cnt.v_wire_count, 1);
1156	}
1157	m->wire_count++;
1158	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1159}
1160
1161/*
1162 *	vm_page_unwire:
1163 *
1164 *	Release one wiring of this page, potentially
1165 *	enabling it to be paged again.
1166 *
1167 *	Many pages placed on the inactive queue should actually go
1168 *	into the cache, but it is difficult to figure out which.  What
1169 *	we do instead, if the inactive target is well met, is to put
1170 *	clean pages at the head of the inactive queue instead of the tail.
1171 *	This will cause them to be moved to the cache more quickly and
1172 *	if not actively re-referenced, freed more quickly.  If we just
1173 *	stick these pages at the end of the inactive queue, heavy filesystem
1174 *	meta-data accesses can cause an unnecessary paging load on memory bound
1175 *	processes.  This optimization causes one-time-use metadata to be
1176 *	reused more quickly.
1177 *
1178 *	BUT, if we are in a low-memory situation we have no choice but to
1179 *	put clean pages on the cache queue.
1180 *
1181 *	A number of routines use vm_page_unwire() to guarantee that the page
1182 *	will go into either the inactive or active queues, and will NEVER
1183 *	be placed in the cache - for example, just after dirtying a page.
1184 *	dirty pages in the cache are not allowed.
1185 *
1186 *	The page queues must be locked.
1187 *	This routine may not block.
1188 */
1189void
1190vm_page_unwire(vm_page_t m, int activate)
1191{
1192
1193	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1194	if (m->flags & PG_FICTITIOUS)
1195		return;
1196	if (m->wire_count > 0) {
1197		m->wire_count--;
1198		if (m->wire_count == 0) {
1199			atomic_subtract_int(&cnt.v_wire_count, 1);
1200			if (m->flags & PG_UNMANAGED) {
1201				;
1202			} else if (activate)
1203				vm_pageq_enqueue(PQ_ACTIVE, m);
1204			else {
1205				vm_page_flag_clear(m, PG_WINATCFLS);
1206				vm_pageq_enqueue(PQ_INACTIVE, m);
1207			}
1208		}
1209	} else {
1210		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1211	}
1212}
1213
1214
1215/*
1216 * Move the specified page to the inactive queue.  If the page has
1217 * any associated swap, the swap is deallocated.
1218 *
1219 * Normally athead is 0 resulting in LRU operation.  athead is set
1220 * to 1 if we want this page to be 'as if it were placed in the cache',
1221 * except without unmapping it from the process address space.
1222 *
1223 * This routine may not block.
1224 */
1225static __inline void
1226_vm_page_deactivate(vm_page_t m, int athead)
1227{
1228
1229	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1230
1231	/*
1232	 * Ignore if already inactive.
1233	 */
1234	if (m->queue == PQ_INACTIVE)
1235		return;
1236	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1237		if ((m->queue - m->pc) == PQ_CACHE)
1238			cnt.v_reactivated++;
1239		vm_page_flag_clear(m, PG_WINATCFLS);
1240		vm_pageq_remove(m);
1241		if (athead)
1242			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1243		else
1244			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1245		m->queue = PQ_INACTIVE;
1246		vm_page_queues[PQ_INACTIVE].lcnt++;
1247		cnt.v_inactive_count++;
1248	}
1249}
1250
1251void
1252vm_page_deactivate(vm_page_t m)
1253{
1254    _vm_page_deactivate(m, 0);
1255}
1256
1257/*
1258 * vm_page_try_to_cache:
1259 *
1260 * Returns 0 on failure, 1 on success
1261 */
1262int
1263vm_page_try_to_cache(vm_page_t m)
1264{
1265
1266	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1267	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1268	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1269		return (0);
1270	}
1271	pmap_remove_all(m);
1272	if (m->dirty)
1273		return (0);
1274	vm_page_cache(m);
1275	return (1);
1276}
1277
1278/*
1279 * vm_page_try_to_free()
1280 *
1281 *	Attempt to free the page.  If we cannot free it, we do nothing.
1282 *	1 is returned on success, 0 on failure.
1283 */
1284int
1285vm_page_try_to_free(vm_page_t m)
1286{
1287
1288	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1289	if (m->object != NULL)
1290		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1291	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1292	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1293		return (0);
1294	}
1295	pmap_remove_all(m);
1296	if (m->dirty)
1297		return (0);
1298	vm_page_busy(m);
1299	vm_page_free(m);
1300	return (1);
1301}
1302
1303/*
1304 * vm_page_cache
1305 *
1306 * Put the specified page onto the page cache queue (if appropriate).
1307 *
1308 * This routine may not block.
1309 */
1310void
1311vm_page_cache(vm_page_t m)
1312{
1313
1314	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1315	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1316	    m->hold_count || m->wire_count) {
1317		printf("vm_page_cache: attempting to cache busy page\n");
1318		return;
1319	}
1320	if ((m->queue - m->pc) == PQ_CACHE)
1321		return;
1322
1323	/*
1324	 * Remove all pmaps and indicate that the page is not
1325	 * writeable or mapped.
1326	 */
1327	pmap_remove_all(m);
1328	if (m->dirty != 0) {
1329		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1330			(long)m->pindex);
1331	}
1332	vm_pageq_remove_nowakeup(m);
1333	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1334	vm_page_free_wakeup();
1335}
1336
1337/*
1338 * vm_page_dontneed
1339 *
1340 *	Cache, deactivate, or do nothing as appropriate.  This routine
1341 *	is typically used by madvise() MADV_DONTNEED.
1342 *
1343 *	Generally speaking we want to move the page into the cache so
1344 *	it gets reused quickly.  However, this can result in a silly syndrome
1345 *	due to the page recycling too quickly.  Small objects will not be
1346 *	fully cached.  On the otherhand, if we move the page to the inactive
1347 *	queue we wind up with a problem whereby very large objects
1348 *	unnecessarily blow away our inactive and cache queues.
1349 *
1350 *	The solution is to move the pages based on a fixed weighting.  We
1351 *	either leave them alone, deactivate them, or move them to the cache,
1352 *	where moving them to the cache has the highest weighting.
1353 *	By forcing some pages into other queues we eventually force the
1354 *	system to balance the queues, potentially recovering other unrelated
1355 *	space from active.  The idea is to not force this to happen too
1356 *	often.
1357 */
1358void
1359vm_page_dontneed(vm_page_t m)
1360{
1361	static int dnweight;
1362	int dnw;
1363	int head;
1364
1365	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1366	dnw = ++dnweight;
1367
1368	/*
1369	 * occassionally leave the page alone
1370	 */
1371	if ((dnw & 0x01F0) == 0 ||
1372	    m->queue == PQ_INACTIVE ||
1373	    m->queue - m->pc == PQ_CACHE
1374	) {
1375		if (m->act_count >= ACT_INIT)
1376			--m->act_count;
1377		return;
1378	}
1379
1380	if (m->dirty == 0 && pmap_is_modified(m))
1381		vm_page_dirty(m);
1382
1383	if (m->dirty || (dnw & 0x0070) == 0) {
1384		/*
1385		 * Deactivate the page 3 times out of 32.
1386		 */
1387		head = 0;
1388	} else {
1389		/*
1390		 * Cache the page 28 times out of every 32.  Note that
1391		 * the page is deactivated instead of cached, but placed
1392		 * at the head of the queue instead of the tail.
1393		 */
1394		head = 1;
1395	}
1396	_vm_page_deactivate(m, head);
1397}
1398
1399/*
1400 * Grab a page, waiting until we are waken up due to the page
1401 * changing state.  We keep on waiting, if the page continues
1402 * to be in the object.  If the page doesn't exist, first allocate it
1403 * and then conditionally zero it.
1404 *
1405 * This routine may block.
1406 */
1407vm_page_t
1408vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1409{
1410	vm_page_t m;
1411
1412	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1413retrylookup:
1414	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1415		vm_page_lock_queues();
1416		if (m->busy || (m->flags & PG_BUSY)) {
1417			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1418			VM_OBJECT_UNLOCK(object);
1419			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1420			VM_OBJECT_LOCK(object);
1421			if ((allocflags & VM_ALLOC_RETRY) == 0)
1422				return (NULL);
1423			goto retrylookup;
1424		} else {
1425			if (allocflags & VM_ALLOC_WIRED)
1426				vm_page_wire(m);
1427			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1428				vm_page_busy(m);
1429			vm_page_unlock_queues();
1430			return (m);
1431		}
1432	}
1433	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1434	if (m == NULL) {
1435		VM_OBJECT_UNLOCK(object);
1436		VM_WAIT;
1437		VM_OBJECT_LOCK(object);
1438		if ((allocflags & VM_ALLOC_RETRY) == 0)
1439			return (NULL);
1440		goto retrylookup;
1441	}
1442	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1443		pmap_zero_page(m);
1444	return (m);
1445}
1446
1447/*
1448 * Mapping function for valid bits or for dirty bits in
1449 * a page.  May not block.
1450 *
1451 * Inputs are required to range within a page.
1452 */
1453__inline int
1454vm_page_bits(int base, int size)
1455{
1456	int first_bit;
1457	int last_bit;
1458
1459	KASSERT(
1460	    base + size <= PAGE_SIZE,
1461	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1462	);
1463
1464	if (size == 0)		/* handle degenerate case */
1465		return (0);
1466
1467	first_bit = base >> DEV_BSHIFT;
1468	last_bit = (base + size - 1) >> DEV_BSHIFT;
1469
1470	return ((2 << last_bit) - (1 << first_bit));
1471}
1472
1473/*
1474 *	vm_page_set_validclean:
1475 *
1476 *	Sets portions of a page valid and clean.  The arguments are expected
1477 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1478 *	of any partial chunks touched by the range.  The invalid portion of
1479 *	such chunks will be zero'd.
1480 *
1481 *	This routine may not block.
1482 *
1483 *	(base + size) must be less then or equal to PAGE_SIZE.
1484 */
1485void
1486vm_page_set_validclean(vm_page_t m, int base, int size)
1487{
1488	int pagebits;
1489	int frag;
1490	int endoff;
1491
1492	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1493	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1494	if (size == 0)	/* handle degenerate case */
1495		return;
1496
1497	/*
1498	 * If the base is not DEV_BSIZE aligned and the valid
1499	 * bit is clear, we have to zero out a portion of the
1500	 * first block.
1501	 */
1502	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1503	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1504		pmap_zero_page_area(m, frag, base - frag);
1505
1506	/*
1507	 * If the ending offset is not DEV_BSIZE aligned and the
1508	 * valid bit is clear, we have to zero out a portion of
1509	 * the last block.
1510	 */
1511	endoff = base + size;
1512	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1513	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1514		pmap_zero_page_area(m, endoff,
1515		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1516
1517	/*
1518	 * Set valid, clear dirty bits.  If validating the entire
1519	 * page we can safely clear the pmap modify bit.  We also
1520	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1521	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1522	 * be set again.
1523	 *
1524	 * We set valid bits inclusive of any overlap, but we can only
1525	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1526	 * the range.
1527	 */
1528	pagebits = vm_page_bits(base, size);
1529	m->valid |= pagebits;
1530#if 0	/* NOT YET */
1531	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1532		frag = DEV_BSIZE - frag;
1533		base += frag;
1534		size -= frag;
1535		if (size < 0)
1536			size = 0;
1537	}
1538	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1539#endif
1540	m->dirty &= ~pagebits;
1541	if (base == 0 && size == PAGE_SIZE) {
1542		pmap_clear_modify(m);
1543		vm_page_flag_clear(m, PG_NOSYNC);
1544	}
1545}
1546
1547void
1548vm_page_clear_dirty(vm_page_t m, int base, int size)
1549{
1550
1551	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1552	m->dirty &= ~vm_page_bits(base, size);
1553}
1554
1555/*
1556 *	vm_page_set_invalid:
1557 *
1558 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1559 *	valid and dirty bits for the effected areas are cleared.
1560 *
1561 *	May not block.
1562 */
1563void
1564vm_page_set_invalid(vm_page_t m, int base, int size)
1565{
1566	int bits;
1567
1568	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1569	bits = vm_page_bits(base, size);
1570	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1571	m->valid &= ~bits;
1572	m->dirty &= ~bits;
1573	m->object->generation++;
1574}
1575
1576/*
1577 * vm_page_zero_invalid()
1578 *
1579 *	The kernel assumes that the invalid portions of a page contain
1580 *	garbage, but such pages can be mapped into memory by user code.
1581 *	When this occurs, we must zero out the non-valid portions of the
1582 *	page so user code sees what it expects.
1583 *
1584 *	Pages are most often semi-valid when the end of a file is mapped
1585 *	into memory and the file's size is not page aligned.
1586 */
1587void
1588vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1589{
1590	int b;
1591	int i;
1592
1593	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1594	/*
1595	 * Scan the valid bits looking for invalid sections that
1596	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1597	 * valid bit may be set ) have already been zerod by
1598	 * vm_page_set_validclean().
1599	 */
1600	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1601		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1602		    (m->valid & (1 << i))
1603		) {
1604			if (i > b) {
1605				pmap_zero_page_area(m,
1606				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1607			}
1608			b = i + 1;
1609		}
1610	}
1611
1612	/*
1613	 * setvalid is TRUE when we can safely set the zero'd areas
1614	 * as being valid.  We can do this if there are no cache consistancy
1615	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1616	 */
1617	if (setvalid)
1618		m->valid = VM_PAGE_BITS_ALL;
1619}
1620
1621/*
1622 *	vm_page_is_valid:
1623 *
1624 *	Is (partial) page valid?  Note that the case where size == 0
1625 *	will return FALSE in the degenerate case where the page is
1626 *	entirely invalid, and TRUE otherwise.
1627 *
1628 *	May not block.
1629 */
1630int
1631vm_page_is_valid(vm_page_t m, int base, int size)
1632{
1633	int bits = vm_page_bits(base, size);
1634
1635	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1636	if (m->valid && ((m->valid & bits) == bits))
1637		return 1;
1638	else
1639		return 0;
1640}
1641
1642/*
1643 * update dirty bits from pmap/mmu.  May not block.
1644 */
1645void
1646vm_page_test_dirty(vm_page_t m)
1647{
1648	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1649		vm_page_dirty(m);
1650	}
1651}
1652
1653int so_zerocp_fullpage = 0;
1654
1655void
1656vm_page_cowfault(vm_page_t m)
1657{
1658	vm_page_t mnew;
1659	vm_object_t object;
1660	vm_pindex_t pindex;
1661
1662	object = m->object;
1663	pindex = m->pindex;
1664
1665 retry_alloc:
1666	vm_page_busy(m);
1667	vm_page_remove(m);
1668	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1669	if (mnew == NULL) {
1670		vm_page_insert(m, object, pindex);
1671		vm_page_unlock_queues();
1672		VM_OBJECT_UNLOCK(object);
1673		VM_WAIT;
1674		VM_OBJECT_LOCK(object);
1675		vm_page_lock_queues();
1676		goto retry_alloc;
1677	}
1678
1679	if (m->cow == 0) {
1680		/*
1681		 * check to see if we raced with an xmit complete when
1682		 * waiting to allocate a page.  If so, put things back
1683		 * the way they were
1684		 */
1685		vm_page_free(mnew);
1686		vm_page_insert(m, object, pindex);
1687	} else { /* clear COW & copy page */
1688		if (!so_zerocp_fullpage)
1689			pmap_copy_page(m, mnew);
1690		mnew->valid = VM_PAGE_BITS_ALL;
1691		vm_page_dirty(mnew);
1692		vm_page_flag_clear(mnew, PG_BUSY);
1693	}
1694}
1695
1696void
1697vm_page_cowclear(vm_page_t m)
1698{
1699
1700	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1701	if (m->cow) {
1702		m->cow--;
1703		/*
1704		 * let vm_fault add back write permission  lazily
1705		 */
1706	}
1707	/*
1708	 *  sf_buf_free() will free the page, so we needn't do it here
1709	 */
1710}
1711
1712void
1713vm_page_cowsetup(vm_page_t m)
1714{
1715
1716	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1717	m->cow++;
1718	pmap_page_protect(m, VM_PROT_READ);
1719}
1720
1721#include "opt_ddb.h"
1722#ifdef DDB
1723#include <sys/kernel.h>
1724
1725#include <ddb/ddb.h>
1726
1727DB_SHOW_COMMAND(page, vm_page_print_page_info)
1728{
1729	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1730	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1731	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1732	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1733	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1734	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1735	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1736	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1737	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1738	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1739}
1740
1741DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1742{
1743	int i;
1744	db_printf("PQ_FREE:");
1745	for (i = 0; i < PQ_L2_SIZE; i++) {
1746		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1747	}
1748	db_printf("\n");
1749
1750	db_printf("PQ_CACHE:");
1751	for (i = 0; i < PQ_L2_SIZE; i++) {
1752		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1753	}
1754	db_printf("\n");
1755
1756	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1757		vm_page_queues[PQ_ACTIVE].lcnt,
1758		vm_page_queues[PQ_INACTIVE].lcnt);
1759}
1760#endif /* DDB */
1761