vm_page.c revision 132414
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33 */
34
35/*
36 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37 * All rights reserved.
38 *
39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 *
41 * Permission to use, copy, modify and distribute this software and
42 * its documentation is hereby granted, provided that both the copyright
43 * notice and this permission notice appear in all copies of the
44 * software, derivative works or modified versions, and any portions
45 * thereof, and that both notices appear in supporting documentation.
46 *
47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 *
51 * Carnegie Mellon requests users of this software to return to
52 *
53 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54 *  School of Computer Science
55 *  Carnegie Mellon University
56 *  Pittsburgh PA 15213-3890
57 *
58 * any improvements or extensions that they make and grant Carnegie the
59 * rights to redistribute these changes.
60 */
61
62/*
63 *			GENERAL RULES ON VM_PAGE MANIPULATION
64 *
65 *	- a pageq mutex is required when adding or removing a page from a
66 *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67 *	  busy state of a page.
68 *
69 *	- a hash chain mutex is required when associating or disassociating
70 *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71 *	  regardless of other mutexes or the busy state of a page.
72 *
73 *	- either a hash chain mutex OR a busied page is required in order
74 *	  to modify the page flags.  A hash chain mutex must be obtained in
75 *	  order to busy a page.  A page's flags cannot be modified by a
76 *	  hash chain mutex if the page is marked busy.
77 *
78 *	- The object memq mutex is held when inserting or removing
79 *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80 *	  is different from the object's main mutex.
81 *
82 *	Generally speaking, you have to be aware of side effects when running
83 *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84 *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85 *	vm_page_cache(), vm_page_activate(), and a number of other routines
86 *	will release the hash chain mutex for you.  Intermediate manipulation
87 *	routines such as vm_page_flag_set() expect the hash chain to be held
88 *	on entry and the hash chain will remain held on return.
89 *
90 *	pageq scanning can only occur with the pageq in question locked.
91 *	We have a known bottleneck with the active queue, but the cache
92 *	and free queues are actually arrays already.
93 */
94
95/*
96 *	Resident memory management module.
97 */
98
99#include <sys/cdefs.h>
100__FBSDID("$FreeBSD: head/sys/vm/vm_page.c 132414 2004-07-19 18:12:04Z alc $");
101
102#include <sys/param.h>
103#include <sys/systm.h>
104#include <sys/lock.h>
105#include <sys/malloc.h>
106#include <sys/mutex.h>
107#include <sys/proc.h>
108#include <sys/vmmeter.h>
109#include <sys/vnode.h>
110
111#include <vm/vm.h>
112#include <vm/vm_param.h>
113#include <vm/vm_kern.h>
114#include <vm/vm_object.h>
115#include <vm/vm_page.h>
116#include <vm/vm_pageout.h>
117#include <vm/vm_pager.h>
118#include <vm/vm_extern.h>
119#include <vm/uma.h>
120#include <vm/uma_int.h>
121
122/*
123 *	Associated with page of user-allocatable memory is a
124 *	page structure.
125 */
126
127struct mtx vm_page_queue_mtx;
128struct mtx vm_page_queue_free_mtx;
129
130vm_page_t vm_page_array = 0;
131int vm_page_array_size = 0;
132long first_page = 0;
133int vm_page_zero_count = 0;
134
135/*
136 *	vm_set_page_size:
137 *
138 *	Sets the page size, perhaps based upon the memory
139 *	size.  Must be called before any use of page-size
140 *	dependent functions.
141 */
142void
143vm_set_page_size(void)
144{
145	if (cnt.v_page_size == 0)
146		cnt.v_page_size = PAGE_SIZE;
147	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
148		panic("vm_set_page_size: page size not a power of two");
149}
150
151/*
152 *	vm_page_startup:
153 *
154 *	Initializes the resident memory module.
155 *
156 *	Allocates memory for the page cells, and
157 *	for the object/offset-to-page hash table headers.
158 *	Each page cell is initialized and placed on the free list.
159 */
160vm_offset_t
161vm_page_startup(vm_offset_t vaddr)
162{
163	vm_offset_t mapped;
164	vm_size_t npages;
165	vm_paddr_t page_range;
166	vm_paddr_t new_end;
167	int i;
168	vm_paddr_t pa;
169	int nblocks;
170	vm_paddr_t last_pa;
171
172	/* the biggest memory array is the second group of pages */
173	vm_paddr_t end;
174	vm_paddr_t biggestsize;
175	int biggestone;
176
177	vm_paddr_t total;
178	vm_size_t bootpages;
179
180	total = 0;
181	biggestsize = 0;
182	biggestone = 0;
183	nblocks = 0;
184	vaddr = round_page(vaddr);
185
186	for (i = 0; phys_avail[i + 1]; i += 2) {
187		phys_avail[i] = round_page(phys_avail[i]);
188		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189	}
190
191	for (i = 0; phys_avail[i + 1]; i += 2) {
192		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
193
194		if (size > biggestsize) {
195			biggestone = i;
196			biggestsize = size;
197		}
198		++nblocks;
199		total += size;
200	}
201
202	end = phys_avail[biggestone+1];
203
204	/*
205	 * Initialize the locks.
206	 */
207	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
208	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
209	    MTX_SPIN);
210
211	/*
212	 * Initialize the queue headers for the free queue, the active queue
213	 * and the inactive queue.
214	 */
215	vm_pageq_init();
216
217	/*
218	 * Allocate memory for use when boot strapping the kernel memory
219	 * allocator.
220	 */
221	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
222	new_end = end - bootpages;
223	new_end = trunc_page(new_end);
224	mapped = pmap_map(&vaddr, new_end, end,
225	    VM_PROT_READ | VM_PROT_WRITE);
226	bzero((caddr_t) mapped, end - new_end);
227	uma_startup((caddr_t)mapped);
228
229	/*
230	 * Compute the number of pages of memory that will be available for
231	 * use (taking into account the overhead of a page structure per
232	 * page).
233	 */
234	first_page = phys_avail[0] / PAGE_SIZE;
235	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
236	npages = (total - (page_range * sizeof(struct vm_page)) -
237	    (end - new_end)) / PAGE_SIZE;
238	end = new_end;
239
240	/*
241	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
242	 */
243	vaddr += PAGE_SIZE;
244
245	/*
246	 * Initialize the mem entry structures now, and put them in the free
247	 * queue.
248	 */
249	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
250	mapped = pmap_map(&vaddr, new_end, end,
251	    VM_PROT_READ | VM_PROT_WRITE);
252	vm_page_array = (vm_page_t) mapped;
253	phys_avail[biggestone + 1] = new_end;
254
255	/*
256	 * Clear all of the page structures
257	 */
258	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
259	vm_page_array_size = page_range;
260
261	/*
262	 * Construct the free queue(s) in descending order (by physical
263	 * address) so that the first 16MB of physical memory is allocated
264	 * last rather than first.  On large-memory machines, this avoids
265	 * the exhaustion of low physical memory before isa_dmainit has run.
266	 */
267	cnt.v_page_count = 0;
268	cnt.v_free_count = 0;
269	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
270		pa = phys_avail[i];
271		last_pa = phys_avail[i + 1];
272		while (pa < last_pa && npages-- > 0) {
273			vm_pageq_add_new_page(pa);
274			pa += PAGE_SIZE;
275		}
276	}
277	return (vaddr);
278}
279
280void
281vm_page_flag_set(vm_page_t m, unsigned short bits)
282{
283
284	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
285	m->flags |= bits;
286}
287
288void
289vm_page_flag_clear(vm_page_t m, unsigned short bits)
290{
291
292	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
293	m->flags &= ~bits;
294}
295
296void
297vm_page_busy(vm_page_t m)
298{
299	KASSERT((m->flags & PG_BUSY) == 0,
300	    ("vm_page_busy: page already busy!!!"));
301	vm_page_flag_set(m, PG_BUSY);
302}
303
304/*
305 *      vm_page_flash:
306 *
307 *      wakeup anyone waiting for the page.
308 */
309void
310vm_page_flash(vm_page_t m)
311{
312	if (m->flags & PG_WANTED) {
313		vm_page_flag_clear(m, PG_WANTED);
314		wakeup(m);
315	}
316}
317
318/*
319 *      vm_page_wakeup:
320 *
321 *      clear the PG_BUSY flag and wakeup anyone waiting for the
322 *      page.
323 *
324 */
325void
326vm_page_wakeup(vm_page_t m)
327{
328	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
329	vm_page_flag_clear(m, PG_BUSY);
330	vm_page_flash(m);
331}
332
333void
334vm_page_io_start(vm_page_t m)
335{
336
337	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
338	m->busy++;
339}
340
341void
342vm_page_io_finish(vm_page_t m)
343{
344
345	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
346	m->busy--;
347	if (m->busy == 0)
348		vm_page_flash(m);
349}
350
351/*
352 * Keep page from being freed by the page daemon
353 * much of the same effect as wiring, except much lower
354 * overhead and should be used only for *very* temporary
355 * holding ("wiring").
356 */
357void
358vm_page_hold(vm_page_t mem)
359{
360
361	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
362        mem->hold_count++;
363}
364
365void
366vm_page_unhold(vm_page_t mem)
367{
368
369	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
370	--mem->hold_count;
371	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
372	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
373		vm_page_free_toq(mem);
374}
375
376/*
377 *	vm_page_free:
378 *
379 *	Free a page
380 *
381 *	The clearing of PG_ZERO is a temporary safety until the code can be
382 *	reviewed to determine that PG_ZERO is being properly cleared on
383 *	write faults or maps.  PG_ZERO was previously cleared in
384 *	vm_page_alloc().
385 */
386void
387vm_page_free(vm_page_t m)
388{
389	vm_page_flag_clear(m, PG_ZERO);
390	vm_page_free_toq(m);
391	vm_page_zero_idle_wakeup();
392}
393
394/*
395 *	vm_page_free_zero:
396 *
397 *	Free a page to the zerod-pages queue
398 */
399void
400vm_page_free_zero(vm_page_t m)
401{
402	vm_page_flag_set(m, PG_ZERO);
403	vm_page_free_toq(m);
404}
405
406/*
407 *	vm_page_sleep_if_busy:
408 *
409 *	Sleep and release the page queues lock if PG_BUSY is set or,
410 *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
411 *	thread slept and the page queues lock was released.
412 *	Otherwise, retains the page queues lock and returns FALSE.
413 */
414int
415vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
416{
417	int is_object_locked;
418
419	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
420	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
421		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
422		/*
423		 * Remove mtx_owned() after vm_object locking is finished.
424		 */
425		if ((is_object_locked = m->object != NULL &&
426		     mtx_owned(&m->object->mtx)))
427			mtx_unlock(&m->object->mtx);
428		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
429		if (is_object_locked)
430			mtx_lock(&m->object->mtx);
431		return (TRUE);
432	}
433	return (FALSE);
434}
435
436/*
437 *	vm_page_dirty:
438 *
439 *	make page all dirty
440 */
441void
442vm_page_dirty(vm_page_t m)
443{
444	KASSERT(m->queue - m->pc != PQ_CACHE,
445	    ("vm_page_dirty: page in cache!"));
446	KASSERT(m->queue - m->pc != PQ_FREE,
447	    ("vm_page_dirty: page is free!"));
448	m->dirty = VM_PAGE_BITS_ALL;
449}
450
451/*
452 *	vm_page_splay:
453 *
454 *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
455 *	the vm_page containing the given pindex.  If, however, that
456 *	pindex is not found in the vm_object, returns a vm_page that is
457 *	adjacent to the pindex, coming before or after it.
458 */
459vm_page_t
460vm_page_splay(vm_pindex_t pindex, vm_page_t root)
461{
462	struct vm_page dummy;
463	vm_page_t lefttreemax, righttreemin, y;
464
465	if (root == NULL)
466		return (root);
467	lefttreemax = righttreemin = &dummy;
468	for (;; root = y) {
469		if (pindex < root->pindex) {
470			if ((y = root->left) == NULL)
471				break;
472			if (pindex < y->pindex) {
473				/* Rotate right. */
474				root->left = y->right;
475				y->right = root;
476				root = y;
477				if ((y = root->left) == NULL)
478					break;
479			}
480			/* Link into the new root's right tree. */
481			righttreemin->left = root;
482			righttreemin = root;
483		} else if (pindex > root->pindex) {
484			if ((y = root->right) == NULL)
485				break;
486			if (pindex > y->pindex) {
487				/* Rotate left. */
488				root->right = y->left;
489				y->left = root;
490				root = y;
491				if ((y = root->right) == NULL)
492					break;
493			}
494			/* Link into the new root's left tree. */
495			lefttreemax->right = root;
496			lefttreemax = root;
497		} else
498			break;
499	}
500	/* Assemble the new root. */
501	lefttreemax->right = root->left;
502	righttreemin->left = root->right;
503	root->left = dummy.right;
504	root->right = dummy.left;
505	return (root);
506}
507
508/*
509 *	vm_page_insert:		[ internal use only ]
510 *
511 *	Inserts the given mem entry into the object and object list.
512 *
513 *	The pagetables are not updated but will presumably fault the page
514 *	in if necessary, or if a kernel page the caller will at some point
515 *	enter the page into the kernel's pmap.  We are not allowed to block
516 *	here so we *can't* do this anyway.
517 *
518 *	The object and page must be locked.
519 *	This routine may not block.
520 */
521void
522vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
523{
524	vm_page_t root;
525
526	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
527	if (m->object != NULL)
528		panic("vm_page_insert: page already inserted");
529
530	/*
531	 * Record the object/offset pair in this page
532	 */
533	m->object = object;
534	m->pindex = pindex;
535
536	/*
537	 * Now link into the object's ordered list of backed pages.
538	 */
539	root = object->root;
540	if (root == NULL) {
541		m->left = NULL;
542		m->right = NULL;
543		TAILQ_INSERT_TAIL(&object->memq, m, listq);
544	} else {
545		root = vm_page_splay(pindex, root);
546		if (pindex < root->pindex) {
547			m->left = root->left;
548			m->right = root;
549			root->left = NULL;
550			TAILQ_INSERT_BEFORE(root, m, listq);
551		} else if (pindex == root->pindex)
552			panic("vm_page_insert: offset already allocated");
553		else {
554			m->right = root->right;
555			m->left = root;
556			root->right = NULL;
557			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
558		}
559	}
560	object->root = m;
561	object->generation++;
562
563	/*
564	 * show that the object has one more resident page.
565	 */
566	object->resident_page_count++;
567
568	/*
569	 * Since we are inserting a new and possibly dirty page,
570	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
571	 */
572	if (m->flags & PG_WRITEABLE)
573		vm_object_set_writeable_dirty(object);
574}
575
576/*
577 *	vm_page_remove:
578 *				NOTE: used by device pager as well -wfj
579 *
580 *	Removes the given mem entry from the object/offset-page
581 *	table and the object page list, but do not invalidate/terminate
582 *	the backing store.
583 *
584 *	The object and page must be locked.
585 *	The underlying pmap entry (if any) is NOT removed here.
586 *	This routine may not block.
587 */
588void
589vm_page_remove(vm_page_t m)
590{
591	vm_object_t object;
592	vm_page_t root;
593
594	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
595	if (m->object == NULL)
596		return;
597	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
598	if ((m->flags & PG_BUSY) == 0) {
599		panic("vm_page_remove: page not busy");
600	}
601
602	/*
603	 * Basically destroy the page.
604	 */
605	vm_page_wakeup(m);
606
607	object = m->object;
608
609	/*
610	 * Now remove from the object's list of backed pages.
611	 */
612	if (m != object->root)
613		vm_page_splay(m->pindex, object->root);
614	if (m->left == NULL)
615		root = m->right;
616	else {
617		root = vm_page_splay(m->pindex, m->left);
618		root->right = m->right;
619	}
620	object->root = root;
621	TAILQ_REMOVE(&object->memq, m, listq);
622
623	/*
624	 * And show that the object has one fewer resident page.
625	 */
626	object->resident_page_count--;
627	object->generation++;
628
629	m->object = NULL;
630}
631
632/*
633 *	vm_page_lookup:
634 *
635 *	Returns the page associated with the object/offset
636 *	pair specified; if none is found, NULL is returned.
637 *
638 *	The object must be locked.
639 *	This routine may not block.
640 *	This is a critical path routine
641 */
642vm_page_t
643vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
644{
645	vm_page_t m;
646
647	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
648	if ((m = object->root) != NULL && m->pindex != pindex) {
649		m = vm_page_splay(pindex, m);
650		if ((object->root = m)->pindex != pindex)
651			m = NULL;
652	}
653	return (m);
654}
655
656/*
657 *	vm_page_rename:
658 *
659 *	Move the given memory entry from its
660 *	current object to the specified target object/offset.
661 *
662 *	The object must be locked.
663 *	This routine may not block.
664 *
665 *	Note: swap associated with the page must be invalidated by the move.  We
666 *	      have to do this for several reasons:  (1) we aren't freeing the
667 *	      page, (2) we are dirtying the page, (3) the VM system is probably
668 *	      moving the page from object A to B, and will then later move
669 *	      the backing store from A to B and we can't have a conflict.
670 *
671 *	Note: we *always* dirty the page.  It is necessary both for the
672 *	      fact that we moved it, and because we may be invalidating
673 *	      swap.  If the page is on the cache, we have to deactivate it
674 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
675 *	      on the cache.
676 */
677void
678vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
679{
680
681	vm_page_remove(m);
682	vm_page_insert(m, new_object, new_pindex);
683	if (m->queue - m->pc == PQ_CACHE)
684		vm_page_deactivate(m);
685	vm_page_dirty(m);
686}
687
688/*
689 *	vm_page_select_cache:
690 *
691 *	Find a page on the cache queue with color optimization.  As pages
692 *	might be found, but not applicable, they are deactivated.  This
693 *	keeps us from using potentially busy cached pages.
694 *
695 *	This routine may not block.
696 */
697vm_page_t
698vm_page_select_cache(int color)
699{
700	vm_page_t m;
701
702	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
703	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
704		if ((m->flags & PG_BUSY) == 0 && m->busy == 0 &&
705		    m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) ||
706		    VM_OBJECT_LOCKED(m->object))) {
707			KASSERT(m->dirty == 0,
708			    ("Found dirty cache page %p", m));
709			KASSERT(!pmap_page_is_mapped(m),
710			    ("Found mapped cache page %p", m));
711			KASSERT((m->flags & PG_UNMANAGED) == 0,
712			    ("Found unmanaged cache page %p", m));
713			KASSERT(m->wire_count == 0,
714			    ("Found wired cache page %p", m));
715			break;
716		}
717		vm_page_deactivate(m);
718	}
719	return (m);
720}
721
722/*
723 *	vm_page_alloc:
724 *
725 *	Allocate and return a memory cell associated
726 *	with this VM object/offset pair.
727 *
728 *	page_req classes:
729 *	VM_ALLOC_NORMAL		normal process request
730 *	VM_ALLOC_SYSTEM		system *really* needs a page
731 *	VM_ALLOC_INTERRUPT	interrupt time request
732 *	VM_ALLOC_ZERO		zero page
733 *
734 *	This routine may not block.
735 *
736 *	Additional special handling is required when called from an
737 *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
738 *	the page cache in this case.
739 */
740vm_page_t
741vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
742{
743	vm_object_t m_object;
744	vm_page_t m = NULL;
745	int color, flags, page_req;
746
747	page_req = req & VM_ALLOC_CLASS_MASK;
748
749	if ((req & VM_ALLOC_NOOBJ) == 0) {
750		KASSERT(object != NULL,
751		    ("vm_page_alloc: NULL object."));
752		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
753		color = (pindex + object->pg_color) & PQ_L2_MASK;
754	} else
755		color = pindex & PQ_L2_MASK;
756
757	/*
758	 * The pager is allowed to eat deeper into the free page list.
759	 */
760	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
761		page_req = VM_ALLOC_SYSTEM;
762	};
763
764loop:
765	mtx_lock_spin(&vm_page_queue_free_mtx);
766	if (cnt.v_free_count > cnt.v_free_reserved ||
767	    (page_req == VM_ALLOC_SYSTEM &&
768	     cnt.v_cache_count == 0 &&
769	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
770	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
771		/*
772		 * Allocate from the free queue if the number of free pages
773		 * exceeds the minimum for the request class.
774		 */
775		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
776	} else if (page_req != VM_ALLOC_INTERRUPT) {
777		mtx_unlock_spin(&vm_page_queue_free_mtx);
778		/*
779		 * Allocatable from cache (non-interrupt only).  On success,
780		 * we must free the page and try again, thus ensuring that
781		 * cnt.v_*_free_min counters are replenished.
782		 */
783		vm_page_lock_queues();
784		if ((m = vm_page_select_cache(color)) == NULL) {
785#if defined(DIAGNOSTIC)
786			if (cnt.v_cache_count > 0)
787				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
788#endif
789			vm_page_unlock_queues();
790			atomic_add_int(&vm_pageout_deficit, 1);
791			pagedaemon_wakeup();
792			return (NULL);
793		}
794		m_object = m->object;
795		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
796		vm_page_busy(m);
797		vm_page_free(m);
798		vm_page_unlock_queues();
799		if (m_object != object)
800			VM_OBJECT_UNLOCK(m_object);
801		goto loop;
802	} else {
803		/*
804		 * Not allocatable from cache from interrupt, give up.
805		 */
806		mtx_unlock_spin(&vm_page_queue_free_mtx);
807		atomic_add_int(&vm_pageout_deficit, 1);
808		pagedaemon_wakeup();
809		return (NULL);
810	}
811
812	/*
813	 *  At this point we had better have found a good page.
814	 */
815
816	KASSERT(
817	    m != NULL,
818	    ("vm_page_alloc(): missing page on free queue")
819	);
820
821	/*
822	 * Remove from free queue
823	 */
824	vm_pageq_remove_nowakeup(m);
825
826	/*
827	 * Initialize structure.  Only the PG_ZERO flag is inherited.
828	 */
829	flags = PG_BUSY;
830	if (m->flags & PG_ZERO) {
831		vm_page_zero_count--;
832		if (req & VM_ALLOC_ZERO)
833			flags = PG_ZERO | PG_BUSY;
834	}
835	if (req & VM_ALLOC_NOOBJ)
836		flags &= ~PG_BUSY;
837	m->flags = flags;
838	if (req & VM_ALLOC_WIRED) {
839		atomic_add_int(&cnt.v_wire_count, 1);
840		m->wire_count = 1;
841	} else
842		m->wire_count = 0;
843	m->hold_count = 0;
844	m->act_count = 0;
845	m->busy = 0;
846	m->valid = 0;
847	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
848	mtx_unlock_spin(&vm_page_queue_free_mtx);
849
850	if ((req & VM_ALLOC_NOOBJ) == 0)
851		vm_page_insert(m, object, pindex);
852	else
853		m->pindex = pindex;
854
855	/*
856	 * Don't wakeup too often - wakeup the pageout daemon when
857	 * we would be nearly out of memory.
858	 */
859	if (vm_paging_needed())
860		pagedaemon_wakeup();
861
862	return (m);
863}
864
865/*
866 *	vm_wait:	(also see VM_WAIT macro)
867 *
868 *	Block until free pages are available for allocation
869 *	- Called in various places before memory allocations.
870 */
871void
872vm_wait(void)
873{
874
875	vm_page_lock_queues();
876	if (curproc == pageproc) {
877		vm_pageout_pages_needed = 1;
878		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
879		    PDROP | PSWP, "VMWait", 0);
880	} else {
881		if (!vm_pages_needed) {
882			vm_pages_needed = 1;
883			wakeup(&vm_pages_needed);
884		}
885		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
886		    "vmwait", 0);
887	}
888}
889
890/*
891 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
892 *
893 *	Block until free pages are available for allocation
894 *	- Called only in vm_fault so that processes page faulting
895 *	  can be easily tracked.
896 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
897 *	  processes will be able to grab memory first.  Do not change
898 *	  this balance without careful testing first.
899 */
900void
901vm_waitpfault(void)
902{
903
904	vm_page_lock_queues();
905	if (!vm_pages_needed) {
906		vm_pages_needed = 1;
907		wakeup(&vm_pages_needed);
908	}
909	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
910	    "pfault", 0);
911}
912
913/*
914 *	vm_page_activate:
915 *
916 *	Put the specified page on the active list (if appropriate).
917 *	Ensure that act_count is at least ACT_INIT but do not otherwise
918 *	mess with it.
919 *
920 *	The page queues must be locked.
921 *	This routine may not block.
922 */
923void
924vm_page_activate(vm_page_t m)
925{
926
927	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
928	if (m->queue != PQ_ACTIVE) {
929		if ((m->queue - m->pc) == PQ_CACHE)
930			cnt.v_reactivated++;
931		vm_pageq_remove(m);
932		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
933			if (m->act_count < ACT_INIT)
934				m->act_count = ACT_INIT;
935			vm_pageq_enqueue(PQ_ACTIVE, m);
936		}
937	} else {
938		if (m->act_count < ACT_INIT)
939			m->act_count = ACT_INIT;
940	}
941}
942
943/*
944 *	vm_page_free_wakeup:
945 *
946 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
947 *	routine is called when a page has been added to the cache or free
948 *	queues.
949 *
950 *	The page queues must be locked.
951 *	This routine may not block.
952 */
953static __inline void
954vm_page_free_wakeup(void)
955{
956
957	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
958	/*
959	 * if pageout daemon needs pages, then tell it that there are
960	 * some free.
961	 */
962	if (vm_pageout_pages_needed &&
963	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
964		wakeup(&vm_pageout_pages_needed);
965		vm_pageout_pages_needed = 0;
966	}
967	/*
968	 * wakeup processes that are waiting on memory if we hit a
969	 * high water mark. And wakeup scheduler process if we have
970	 * lots of memory. this process will swapin processes.
971	 */
972	if (vm_pages_needed && !vm_page_count_min()) {
973		vm_pages_needed = 0;
974		wakeup(&cnt.v_free_count);
975	}
976}
977
978/*
979 *	vm_page_free_toq:
980 *
981 *	Returns the given page to the PQ_FREE list,
982 *	disassociating it with any VM object.
983 *
984 *	Object and page must be locked prior to entry.
985 *	This routine may not block.
986 */
987
988void
989vm_page_free_toq(vm_page_t m)
990{
991	struct vpgqueues *pq;
992	vm_object_t object = m->object;
993
994	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
995	cnt.v_tfree++;
996
997	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
998		printf(
999		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1000		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1001		    m->hold_count);
1002		if ((m->queue - m->pc) == PQ_FREE)
1003			panic("vm_page_free: freeing free page");
1004		else
1005			panic("vm_page_free: freeing busy page");
1006	}
1007
1008	/*
1009	 * unqueue, then remove page.  Note that we cannot destroy
1010	 * the page here because we do not want to call the pager's
1011	 * callback routine until after we've put the page on the
1012	 * appropriate free queue.
1013	 */
1014	vm_pageq_remove_nowakeup(m);
1015	vm_page_remove(m);
1016
1017	/*
1018	 * If fictitious remove object association and
1019	 * return, otherwise delay object association removal.
1020	 */
1021	if ((m->flags & PG_FICTITIOUS) != 0) {
1022		return;
1023	}
1024
1025	m->valid = 0;
1026	vm_page_undirty(m);
1027
1028	if (m->wire_count != 0) {
1029		if (m->wire_count > 1) {
1030			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1031				m->wire_count, (long)m->pindex);
1032		}
1033		panic("vm_page_free: freeing wired page");
1034	}
1035
1036	/*
1037	 * If we've exhausted the object's resident pages we want to free
1038	 * it up.
1039	 */
1040	if (object &&
1041	    (object->type == OBJT_VNODE) &&
1042	    ((object->flags & OBJ_DEAD) == 0)
1043	) {
1044		struct vnode *vp = (struct vnode *)object->handle;
1045
1046		if (vp) {
1047			VI_LOCK(vp);
1048			if (VSHOULDFREE(vp))
1049				vfree(vp);
1050			VI_UNLOCK(vp);
1051		}
1052	}
1053
1054	/*
1055	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1056	 */
1057	if (m->flags & PG_UNMANAGED) {
1058		m->flags &= ~PG_UNMANAGED;
1059	}
1060
1061	if (m->hold_count != 0) {
1062		m->flags &= ~PG_ZERO;
1063		m->queue = PQ_HOLD;
1064	} else
1065		m->queue = PQ_FREE + m->pc;
1066	pq = &vm_page_queues[m->queue];
1067	mtx_lock_spin(&vm_page_queue_free_mtx);
1068	pq->lcnt++;
1069	++(*pq->cnt);
1070
1071	/*
1072	 * Put zero'd pages on the end ( where we look for zero'd pages
1073	 * first ) and non-zerod pages at the head.
1074	 */
1075	if (m->flags & PG_ZERO) {
1076		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1077		++vm_page_zero_count;
1078	} else {
1079		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1080	}
1081	mtx_unlock_spin(&vm_page_queue_free_mtx);
1082	vm_page_free_wakeup();
1083}
1084
1085/*
1086 *	vm_page_unmanage:
1087 *
1088 * 	Prevent PV management from being done on the page.  The page is
1089 *	removed from the paging queues as if it were wired, and as a
1090 *	consequence of no longer being managed the pageout daemon will not
1091 *	touch it (since there is no way to locate the pte mappings for the
1092 *	page).  madvise() calls that mess with the pmap will also no longer
1093 *	operate on the page.
1094 *
1095 *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1096 *	will clear the flag.
1097 *
1098 *	This routine is used by OBJT_PHYS objects - objects using unswappable
1099 *	physical memory as backing store rather then swap-backed memory and
1100 *	will eventually be extended to support 4MB unmanaged physical
1101 *	mappings.
1102 */
1103void
1104vm_page_unmanage(vm_page_t m)
1105{
1106
1107	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1108	if ((m->flags & PG_UNMANAGED) == 0) {
1109		if (m->wire_count == 0)
1110			vm_pageq_remove(m);
1111	}
1112	vm_page_flag_set(m, PG_UNMANAGED);
1113}
1114
1115/*
1116 *	vm_page_wire:
1117 *
1118 *	Mark this page as wired down by yet
1119 *	another map, removing it from paging queues
1120 *	as necessary.
1121 *
1122 *	The page queues must be locked.
1123 *	This routine may not block.
1124 */
1125void
1126vm_page_wire(vm_page_t m)
1127{
1128
1129	/*
1130	 * Only bump the wire statistics if the page is not already wired,
1131	 * and only unqueue the page if it is on some queue (if it is unmanaged
1132	 * it is already off the queues).
1133	 */
1134	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1135	if (m->flags & PG_FICTITIOUS)
1136		return;
1137	if (m->wire_count == 0) {
1138		if ((m->flags & PG_UNMANAGED) == 0)
1139			vm_pageq_remove(m);
1140		atomic_add_int(&cnt.v_wire_count, 1);
1141	}
1142	m->wire_count++;
1143	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1144}
1145
1146/*
1147 *	vm_page_unwire:
1148 *
1149 *	Release one wiring of this page, potentially
1150 *	enabling it to be paged again.
1151 *
1152 *	Many pages placed on the inactive queue should actually go
1153 *	into the cache, but it is difficult to figure out which.  What
1154 *	we do instead, if the inactive target is well met, is to put
1155 *	clean pages at the head of the inactive queue instead of the tail.
1156 *	This will cause them to be moved to the cache more quickly and
1157 *	if not actively re-referenced, freed more quickly.  If we just
1158 *	stick these pages at the end of the inactive queue, heavy filesystem
1159 *	meta-data accesses can cause an unnecessary paging load on memory bound
1160 *	processes.  This optimization causes one-time-use metadata to be
1161 *	reused more quickly.
1162 *
1163 *	BUT, if we are in a low-memory situation we have no choice but to
1164 *	put clean pages on the cache queue.
1165 *
1166 *	A number of routines use vm_page_unwire() to guarantee that the page
1167 *	will go into either the inactive or active queues, and will NEVER
1168 *	be placed in the cache - for example, just after dirtying a page.
1169 *	dirty pages in the cache are not allowed.
1170 *
1171 *	The page queues must be locked.
1172 *	This routine may not block.
1173 */
1174void
1175vm_page_unwire(vm_page_t m, int activate)
1176{
1177
1178	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1179	if (m->flags & PG_FICTITIOUS)
1180		return;
1181	if (m->wire_count > 0) {
1182		m->wire_count--;
1183		if (m->wire_count == 0) {
1184			atomic_subtract_int(&cnt.v_wire_count, 1);
1185			if (m->flags & PG_UNMANAGED) {
1186				;
1187			} else if (activate)
1188				vm_pageq_enqueue(PQ_ACTIVE, m);
1189			else {
1190				vm_page_flag_clear(m, PG_WINATCFLS);
1191				vm_pageq_enqueue(PQ_INACTIVE, m);
1192			}
1193		}
1194	} else {
1195		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1196	}
1197}
1198
1199
1200/*
1201 * Move the specified page to the inactive queue.  If the page has
1202 * any associated swap, the swap is deallocated.
1203 *
1204 * Normally athead is 0 resulting in LRU operation.  athead is set
1205 * to 1 if we want this page to be 'as if it were placed in the cache',
1206 * except without unmapping it from the process address space.
1207 *
1208 * This routine may not block.
1209 */
1210static __inline void
1211_vm_page_deactivate(vm_page_t m, int athead)
1212{
1213
1214	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1215
1216	/*
1217	 * Ignore if already inactive.
1218	 */
1219	if (m->queue == PQ_INACTIVE)
1220		return;
1221	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1222		if ((m->queue - m->pc) == PQ_CACHE)
1223			cnt.v_reactivated++;
1224		vm_page_flag_clear(m, PG_WINATCFLS);
1225		vm_pageq_remove(m);
1226		if (athead)
1227			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1228		else
1229			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1230		m->queue = PQ_INACTIVE;
1231		vm_page_queues[PQ_INACTIVE].lcnt++;
1232		cnt.v_inactive_count++;
1233	}
1234}
1235
1236void
1237vm_page_deactivate(vm_page_t m)
1238{
1239    _vm_page_deactivate(m, 0);
1240}
1241
1242/*
1243 * vm_page_try_to_cache:
1244 *
1245 * Returns 0 on failure, 1 on success
1246 */
1247int
1248vm_page_try_to_cache(vm_page_t m)
1249{
1250
1251	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1252	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1253	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1254		return (0);
1255	}
1256	pmap_remove_all(m);
1257	if (m->dirty)
1258		return (0);
1259	vm_page_cache(m);
1260	return (1);
1261}
1262
1263/*
1264 * vm_page_try_to_free()
1265 *
1266 *	Attempt to free the page.  If we cannot free it, we do nothing.
1267 *	1 is returned on success, 0 on failure.
1268 */
1269int
1270vm_page_try_to_free(vm_page_t m)
1271{
1272
1273	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1274	if (m->object != NULL)
1275		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1276	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1277	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1278		return (0);
1279	}
1280	pmap_remove_all(m);
1281	if (m->dirty)
1282		return (0);
1283	vm_page_busy(m);
1284	vm_page_free(m);
1285	return (1);
1286}
1287
1288/*
1289 * vm_page_cache
1290 *
1291 * Put the specified page onto the page cache queue (if appropriate).
1292 *
1293 * This routine may not block.
1294 */
1295void
1296vm_page_cache(vm_page_t m)
1297{
1298
1299	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1300	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1301	    m->hold_count || m->wire_count) {
1302		printf("vm_page_cache: attempting to cache busy page\n");
1303		return;
1304	}
1305	if ((m->queue - m->pc) == PQ_CACHE)
1306		return;
1307
1308	/*
1309	 * Remove all pmaps and indicate that the page is not
1310	 * writeable or mapped.
1311	 */
1312	pmap_remove_all(m);
1313	if (m->dirty != 0) {
1314		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1315			(long)m->pindex);
1316	}
1317	vm_pageq_remove_nowakeup(m);
1318	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1319	vm_page_free_wakeup();
1320}
1321
1322/*
1323 * vm_page_dontneed
1324 *
1325 *	Cache, deactivate, or do nothing as appropriate.  This routine
1326 *	is typically used by madvise() MADV_DONTNEED.
1327 *
1328 *	Generally speaking we want to move the page into the cache so
1329 *	it gets reused quickly.  However, this can result in a silly syndrome
1330 *	due to the page recycling too quickly.  Small objects will not be
1331 *	fully cached.  On the otherhand, if we move the page to the inactive
1332 *	queue we wind up with a problem whereby very large objects
1333 *	unnecessarily blow away our inactive and cache queues.
1334 *
1335 *	The solution is to move the pages based on a fixed weighting.  We
1336 *	either leave them alone, deactivate them, or move them to the cache,
1337 *	where moving them to the cache has the highest weighting.
1338 *	By forcing some pages into other queues we eventually force the
1339 *	system to balance the queues, potentially recovering other unrelated
1340 *	space from active.  The idea is to not force this to happen too
1341 *	often.
1342 */
1343void
1344vm_page_dontneed(vm_page_t m)
1345{
1346	static int dnweight;
1347	int dnw;
1348	int head;
1349
1350	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1351	dnw = ++dnweight;
1352
1353	/*
1354	 * occassionally leave the page alone
1355	 */
1356	if ((dnw & 0x01F0) == 0 ||
1357	    m->queue == PQ_INACTIVE ||
1358	    m->queue - m->pc == PQ_CACHE
1359	) {
1360		if (m->act_count >= ACT_INIT)
1361			--m->act_count;
1362		return;
1363	}
1364
1365	if (m->dirty == 0 && pmap_is_modified(m))
1366		vm_page_dirty(m);
1367
1368	if (m->dirty || (dnw & 0x0070) == 0) {
1369		/*
1370		 * Deactivate the page 3 times out of 32.
1371		 */
1372		head = 0;
1373	} else {
1374		/*
1375		 * Cache the page 28 times out of every 32.  Note that
1376		 * the page is deactivated instead of cached, but placed
1377		 * at the head of the queue instead of the tail.
1378		 */
1379		head = 1;
1380	}
1381	_vm_page_deactivate(m, head);
1382}
1383
1384/*
1385 * Grab a page, waiting until we are waken up due to the page
1386 * changing state.  We keep on waiting, if the page continues
1387 * to be in the object.  If the page doesn't exist, first allocate it
1388 * and then conditionally zero it.
1389 *
1390 * This routine may block.
1391 */
1392vm_page_t
1393vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1394{
1395	vm_page_t m;
1396
1397	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1398retrylookup:
1399	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1400		vm_page_lock_queues();
1401		if (m->busy || (m->flags & PG_BUSY)) {
1402			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1403			VM_OBJECT_UNLOCK(object);
1404			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1405			VM_OBJECT_LOCK(object);
1406			if ((allocflags & VM_ALLOC_RETRY) == 0)
1407				return (NULL);
1408			goto retrylookup;
1409		} else {
1410			if (allocflags & VM_ALLOC_WIRED)
1411				vm_page_wire(m);
1412			vm_page_busy(m);
1413			vm_page_unlock_queues();
1414			return (m);
1415		}
1416	}
1417	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1418	if (m == NULL) {
1419		VM_OBJECT_UNLOCK(object);
1420		VM_WAIT;
1421		VM_OBJECT_LOCK(object);
1422		if ((allocflags & VM_ALLOC_RETRY) == 0)
1423			return (NULL);
1424		goto retrylookup;
1425	}
1426	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1427		pmap_zero_page(m);
1428	return (m);
1429}
1430
1431/*
1432 * Mapping function for valid bits or for dirty bits in
1433 * a page.  May not block.
1434 *
1435 * Inputs are required to range within a page.
1436 */
1437__inline int
1438vm_page_bits(int base, int size)
1439{
1440	int first_bit;
1441	int last_bit;
1442
1443	KASSERT(
1444	    base + size <= PAGE_SIZE,
1445	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1446	);
1447
1448	if (size == 0)		/* handle degenerate case */
1449		return (0);
1450
1451	first_bit = base >> DEV_BSHIFT;
1452	last_bit = (base + size - 1) >> DEV_BSHIFT;
1453
1454	return ((2 << last_bit) - (1 << first_bit));
1455}
1456
1457/*
1458 *	vm_page_set_validclean:
1459 *
1460 *	Sets portions of a page valid and clean.  The arguments are expected
1461 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1462 *	of any partial chunks touched by the range.  The invalid portion of
1463 *	such chunks will be zero'd.
1464 *
1465 *	This routine may not block.
1466 *
1467 *	(base + size) must be less then or equal to PAGE_SIZE.
1468 */
1469void
1470vm_page_set_validclean(vm_page_t m, int base, int size)
1471{
1472	int pagebits;
1473	int frag;
1474	int endoff;
1475
1476	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1477	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1478	if (size == 0)	/* handle degenerate case */
1479		return;
1480
1481	/*
1482	 * If the base is not DEV_BSIZE aligned and the valid
1483	 * bit is clear, we have to zero out a portion of the
1484	 * first block.
1485	 */
1486	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1487	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1488		pmap_zero_page_area(m, frag, base - frag);
1489
1490	/*
1491	 * If the ending offset is not DEV_BSIZE aligned and the
1492	 * valid bit is clear, we have to zero out a portion of
1493	 * the last block.
1494	 */
1495	endoff = base + size;
1496	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1497	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1498		pmap_zero_page_area(m, endoff,
1499		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1500
1501	/*
1502	 * Set valid, clear dirty bits.  If validating the entire
1503	 * page we can safely clear the pmap modify bit.  We also
1504	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1505	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1506	 * be set again.
1507	 *
1508	 * We set valid bits inclusive of any overlap, but we can only
1509	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1510	 * the range.
1511	 */
1512	pagebits = vm_page_bits(base, size);
1513	m->valid |= pagebits;
1514#if 0	/* NOT YET */
1515	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1516		frag = DEV_BSIZE - frag;
1517		base += frag;
1518		size -= frag;
1519		if (size < 0)
1520			size = 0;
1521	}
1522	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1523#endif
1524	m->dirty &= ~pagebits;
1525	if (base == 0 && size == PAGE_SIZE) {
1526		pmap_clear_modify(m);
1527		vm_page_flag_clear(m, PG_NOSYNC);
1528	}
1529}
1530
1531void
1532vm_page_clear_dirty(vm_page_t m, int base, int size)
1533{
1534
1535	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1536	m->dirty &= ~vm_page_bits(base, size);
1537}
1538
1539/*
1540 *	vm_page_set_invalid:
1541 *
1542 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1543 *	valid and dirty bits for the effected areas are cleared.
1544 *
1545 *	May not block.
1546 */
1547void
1548vm_page_set_invalid(vm_page_t m, int base, int size)
1549{
1550	int bits;
1551
1552	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1553	bits = vm_page_bits(base, size);
1554	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1555	m->valid &= ~bits;
1556	m->dirty &= ~bits;
1557	m->object->generation++;
1558}
1559
1560/*
1561 * vm_page_zero_invalid()
1562 *
1563 *	The kernel assumes that the invalid portions of a page contain
1564 *	garbage, but such pages can be mapped into memory by user code.
1565 *	When this occurs, we must zero out the non-valid portions of the
1566 *	page so user code sees what it expects.
1567 *
1568 *	Pages are most often semi-valid when the end of a file is mapped
1569 *	into memory and the file's size is not page aligned.
1570 */
1571void
1572vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1573{
1574	int b;
1575	int i;
1576
1577	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1578	/*
1579	 * Scan the valid bits looking for invalid sections that
1580	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1581	 * valid bit may be set ) have already been zerod by
1582	 * vm_page_set_validclean().
1583	 */
1584	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1585		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1586		    (m->valid & (1 << i))
1587		) {
1588			if (i > b) {
1589				pmap_zero_page_area(m,
1590				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1591			}
1592			b = i + 1;
1593		}
1594	}
1595
1596	/*
1597	 * setvalid is TRUE when we can safely set the zero'd areas
1598	 * as being valid.  We can do this if there are no cache consistancy
1599	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1600	 */
1601	if (setvalid)
1602		m->valid = VM_PAGE_BITS_ALL;
1603}
1604
1605/*
1606 *	vm_page_is_valid:
1607 *
1608 *	Is (partial) page valid?  Note that the case where size == 0
1609 *	will return FALSE in the degenerate case where the page is
1610 *	entirely invalid, and TRUE otherwise.
1611 *
1612 *	May not block.
1613 */
1614int
1615vm_page_is_valid(vm_page_t m, int base, int size)
1616{
1617	int bits = vm_page_bits(base, size);
1618
1619	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1620	if (m->valid && ((m->valid & bits) == bits))
1621		return 1;
1622	else
1623		return 0;
1624}
1625
1626/*
1627 * update dirty bits from pmap/mmu.  May not block.
1628 */
1629void
1630vm_page_test_dirty(vm_page_t m)
1631{
1632	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1633		vm_page_dirty(m);
1634	}
1635}
1636
1637int so_zerocp_fullpage = 0;
1638
1639void
1640vm_page_cowfault(vm_page_t m)
1641{
1642	vm_page_t mnew;
1643	vm_object_t object;
1644	vm_pindex_t pindex;
1645
1646	object = m->object;
1647	pindex = m->pindex;
1648	vm_page_busy(m);
1649
1650 retry_alloc:
1651	vm_page_remove(m);
1652	/*
1653	 * An interrupt allocation is requested because the page
1654	 * queues lock is held.
1655	 */
1656	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1657	if (mnew == NULL) {
1658		vm_page_insert(m, object, pindex);
1659		vm_page_unlock_queues();
1660		VM_OBJECT_UNLOCK(object);
1661		VM_WAIT;
1662		VM_OBJECT_LOCK(object);
1663		vm_page_lock_queues();
1664		goto retry_alloc;
1665	}
1666
1667	if (m->cow == 0) {
1668		/*
1669		 * check to see if we raced with an xmit complete when
1670		 * waiting to allocate a page.  If so, put things back
1671		 * the way they were
1672		 */
1673		vm_page_busy(mnew);
1674		vm_page_free(mnew);
1675		vm_page_insert(m, object, pindex);
1676	} else { /* clear COW & copy page */
1677		if (!so_zerocp_fullpage)
1678			pmap_copy_page(m, mnew);
1679		mnew->valid = VM_PAGE_BITS_ALL;
1680		vm_page_dirty(mnew);
1681		vm_page_flag_clear(mnew, PG_BUSY);
1682	}
1683}
1684
1685void
1686vm_page_cowclear(vm_page_t m)
1687{
1688
1689	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1690	if (m->cow) {
1691		m->cow--;
1692		/*
1693		 * let vm_fault add back write permission  lazily
1694		 */
1695	}
1696	/*
1697	 *  sf_buf_free() will free the page, so we needn't do it here
1698	 */
1699}
1700
1701void
1702vm_page_cowsetup(vm_page_t m)
1703{
1704
1705	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1706	m->cow++;
1707	pmap_page_protect(m, VM_PROT_READ);
1708}
1709
1710#include "opt_ddb.h"
1711#ifdef DDB
1712#include <sys/kernel.h>
1713
1714#include <ddb/ddb.h>
1715
1716DB_SHOW_COMMAND(page, vm_page_print_page_info)
1717{
1718	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1719	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1720	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1721	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1722	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1723	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1724	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1725	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1726	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1727	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1728}
1729
1730DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1731{
1732	int i;
1733	db_printf("PQ_FREE:");
1734	for (i = 0; i < PQ_L2_SIZE; i++) {
1735		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1736	}
1737	db_printf("\n");
1738
1739	db_printf("PQ_CACHE:");
1740	for (i = 0; i < PQ_L2_SIZE; i++) {
1741		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1742	}
1743	db_printf("\n");
1744
1745	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1746		vm_page_queues[PQ_ACTIVE].lcnt,
1747		vm_page_queues[PQ_INACTIVE].lcnt);
1748}
1749#endif /* DDB */
1750